高一數(shù)學必修一詳細教案(精選16篇)

字號:

    教案包括教學目標、教學內容、教學方法、教學過程等重要內容。教案的設計還要具備系統(tǒng)性和連貫性,讓學生在不同階段的學習任務之間有一個自然的銜接。小編為大家整理了一些教育教學改革中的教案設計,供大家參考和借鑒。
    高一數(shù)學必修一詳細教案篇一
    1.閱讀課本練習止。
    2.回答問題:
    (1)課本內容分成幾個層次?每個層次的中心內容是什么?
    (2)層次間的聯(lián)系是什么?
    (3)對數(shù)函數(shù)的定義是什么?
    (4)對數(shù)函數(shù)與指數(shù)函數(shù)有什么關系?
    3.完成練習。
    4.小結。
    二、方法指導。
    1.在學習對數(shù)函數(shù)時,同學們應從熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認識逐步轉化為對對數(shù)函數(shù)的認識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內,便于觀察圖象的特征,找出共性,歸納性質。
    2.本節(jié)課的主線是對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問題都應圍繞著這條主線展開,同學們在學習時應該把兩個函數(shù)進行類比,通過互為反函數(shù)的兩個函數(shù)的關系由已知函數(shù)研究未知函數(shù)的性質。
    一、提問題。
    1.對數(shù)函數(shù)的自變量和函數(shù)分別在指數(shù)函數(shù)中是什么?
    2.兩個函數(shù)如果互為反函數(shù),則他們的值域,定義域有什么關系?
    3.是否所有的函數(shù)都有反函數(shù)?試舉例說明。
    二、變題目。
    1.試求下列函數(shù)的反函數(shù):
    (1);(2);(3);(4)。
    2.求下列函數(shù)的定義域:。
    (1);(2);(3)。
    3.已知則=;的定義域為。
    1.對數(shù)函數(shù)的有關概念。
    (1)把函數(shù)叫做對數(shù)函數(shù),叫做對數(shù)函數(shù)的底數(shù)。
    (2)以10為底數(shù)的對數(shù)函數(shù)為常用對數(shù)函數(shù)。
    (3)以無理數(shù)為底數(shù)的對數(shù)函數(shù)為自然對數(shù)函數(shù)。
    2.反函數(shù)的概念。
    在指數(shù)函數(shù)中,是自變量,是的函數(shù),其定義域是,值域是;在對數(shù)函數(shù)中,是自變量,是的函數(shù),其定義域是,值域是,像這樣的兩個函數(shù)叫做互為反函數(shù)。
    3.與對數(shù)函數(shù)有關的定義域的求法:
    4.舉例說明如何求反函數(shù)。
    一、課外作業(yè):習題3-5a組1,2,3,b組1,
    二、課外思考:
    1.求定義域:
    2.求使函數(shù)的函數(shù)值恒為負值的的取值范圍。
    高一數(shù)學必修一詳細教案篇二
    一、除了高等植物成熟的篩管細胞和哺乳動物成熟的紅細胞等極少數(shù)細胞外,真核細胞都有細胞核。植物的導管細胞是死細胞(主要運輸水分、無機鹽),篩管主要運輸有機物。
    二、細胞核控制著細胞的代謝和遺傳。
    三、細胞核的結構。
    2.染色質(主要由dna和蛋白質組成,dna是遺傳信息的載體。
    4.核孔(實現(xiàn)核質之間頻繁的物質交換和信息交流)核孔有選擇透過性,上面有載體,大分子物質(蛋白質和mrna)出入細胞需要能量和載體,細胞代謝越旺盛,核孔越多,核仁體積越大。
    四、細胞分裂時,細胞核解體,染色質高度螺旋化,縮短變粗,成為光學顯微鏡下清晰可見的圓柱狀或桿狀的染色體。分裂結束時,染色體解螺旋,重新成為細絲狀的染色質。染色質(分裂間期)和染色體(分裂時)是同樣的物質在細胞不同時期的兩種存在狀態(tài)。
    五、細胞既是生物體結構的基本單位,又是生物體代謝和遺傳的基本單位。
    高一數(shù)學必修一詳細教案篇三
    1. 閱讀課本 練習止.
    2. 回答問題
    (1)課本內容分成幾個層次?每個層次的中心內容是什么?
    (2)層次間的聯(lián)系是什么?
    (3)對數(shù)函數(shù)的定義是什么?
    (4)對數(shù)函數(shù)與指數(shù)函數(shù)有什么關系?
    3. 完成 練習
    4. 小結.
    二、方法指導
    1. 在學習對數(shù)函數(shù)時,同學們應從熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認識逐步轉化為對對數(shù)函數(shù)的認識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內,便于觀察圖象的特征,找出共性,歸納性質.
    一、提問題
    1. 對數(shù)函數(shù)的自變量和函數(shù)分別在指數(shù)函數(shù)中是什么?
    2.兩個函數(shù)如果互為反函數(shù),則他們的值域,定義域有什么關系?
    3.是否所有的函數(shù)都有反函數(shù)?試舉例說明.
    二、變題目
    1. 試求下列函數(shù)的反函數(shù):
    (1) ; (2) ;
    (3) ; (4) .
    2. 求下列函數(shù)的定義域:
    (1) ; (2) ; (3) .
    3. 已知 則 = ; 的定義域為 .
    1.對數(shù)函數(shù)的'有關概念
    (1)把函數(shù) 叫做對數(shù)函數(shù), 叫做對數(shù)函數(shù)的底數(shù);
    (2)以10為底數(shù)的對數(shù)函數(shù) 為常用對數(shù)函數(shù);
    (3)以無理數(shù) 為底數(shù)的對數(shù)函數(shù) 為自然對數(shù)函數(shù).
    2. 反函數(shù)的概念
    在指數(shù)函數(shù) 中, 是自變量, 是 的函數(shù),其定義域是 ,值域是 ;在對數(shù)函數(shù) 中, 是自變量, 是 的函數(shù),其定義域是 ,值域是 ,像這樣的兩個函數(shù)叫做互為反函數(shù).
    3. 與對數(shù)函數(shù)有關的定義域的求法:
    4. 舉例說明如何求反函數(shù).
    一、課外作業(yè): 習題3-5 a組 1,2,3, b組1,
    二、課外思考:
    1. 求定義域: .
    2. 求使函數(shù) 的函數(shù)值恒為負值的 的取值范圍.
    高一數(shù)學必修一詳細教案篇四
    (3)會用“數(shù)形結合”的數(shù)學思想解決問題、
    用坐標法解決幾何問題的步驟:
    第二步:通過代數(shù)運算,解決代數(shù)問題;
    第三步:將代數(shù)運算結果“翻譯”成幾何結論、
    重點與難點:直線與圓的方程的應用、
    問 題設計意圖師生活動
    生:回顧,說出自己的看法、
    2、解決直線與圓的位置關系,你將采用什么方法?
    生:回顧、思考、討論、交流,得到解決問題的方法、
    問 題設計意圖師生活動
    3、閱讀并思考教科書上的例4,你將選擇什么方 法解決例4的'問題
    生:自 學例4,并完成練習題1、2、
    生:建立適當?shù)闹苯亲鴺讼担?探求解決問題的方法、
    8、小結:
    (1)利用“坐標法”解決問對知識進行歸納概括,體會利 師:指導 學生完成練習題、
    生:閱讀教科書的例3,并完成第
    問 題設計意圖師生活動
    題的需要準備什么工作?
    (2)如何建立直角坐標系,才能易于解決平面幾何問題?
    (3)你認為學好“坐標法”解決問題的關鍵是什么?
    高一數(shù)學必修一詳細教案篇五
    (2)了解區(qū)間的概念;。
    (2)了解區(qū)間的概念就是指能夠體會用區(qū)間表示數(shù)集的意義和作用;。
    【問題診斷分析】在本節(jié)課的教學中,學生可能遇到的問題是函數(shù)的概念及符號的理解,產生這一問題的原因是:函數(shù)本身就是一個抽象的概念,對學生來說一個難點。要解決這一問題,就要在通過從實際問題中抽象概況函數(shù)的概念,培養(yǎng)學生的抽象概況能力,其中關鍵是理論聯(lián)系實際,把抽象轉化為具體。
    問題1:一枚炮彈發(fā)射后,經(jīng)過26s落到地面擊中目標.炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時間t(單位:s)變化的規(guī)律是:h=130t-5t2.
    1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?
    1.2高度變量h與時間變量t之間的對應關系是否為函數(shù)?若是,其自變量是什么?
    設計意圖:通過以上問題,讓學生正確理解讓學生體會用解析式或圖象刻畫兩個變量之間的依賴關系,從問題的實際意義可知,在t的變化范圍內任給一個t,按照給定的對應關系,都有的一個高度h與之對應。
    問題2:分析教科書中的實例(2),引導學生看圖并啟發(fā):在t的變化t按照給定的`圖象,都有的一個臭氧層空洞面積s與之相對應。
    問題3:要求學生仿照實例(1)、(2),描述實例(3)中恩格爾系數(shù)和時間的關系。
    設計意圖:通過這些問題,讓學生理解得到函數(shù)的定義,培養(yǎng)學生的歸納、概況的能力。
    高一數(shù)學必修一詳細教案篇六
    1、知識目標:使學生理解指數(shù)函數(shù)的定義,初步掌握指數(shù)函數(shù)的圖像和性質。
    2、能力目標:通過定義的引入,圖像特征的觀察、發(fā)現(xiàn)過程使學生懂得理論與實踐的辯證關系,適時滲透分類討論的數(shù)學思想,培養(yǎng)學生的探索發(fā)現(xiàn)能力和分析問題、解決問題的能力。
    3、情感目標:通過學生的參與過程,培養(yǎng)他們手腦并用、多思勤練的良好學習習慣和勇于探索、鍥而不舍的治學精神。
    高一數(shù)學必修一詳細教案篇七
    3.通過參與編題解題,激發(fā)學生學習的愛好.
    教學重點是通項公式的熟悉;教學難點是對公式的靈活運用.
    實物投影儀,多媒體軟件,電腦.
    研探式.
    一.復習提問
    等差數(shù)列的概念是從相鄰兩項的關系加以定義的,這個關系用遞推公式來表示比較簡單,但我們要圍繞通項公式作進一步的理解與應用.
    二.主體設計
    通項公式反映了項與項數(shù)之間的函數(shù)關系,當?shù)炔顢?shù)列的首項與公差確定后,數(shù)列的每一項便確定了,可以求指定的項(即已知求).找學生試舉一例如:“已知等差數(shù)列中,首項,公差,求.”這是通項公式的簡單應用,由學生解答后,要求每個學生出一些運用等差數(shù)列通項公式的題目,包括正用、反用與變用,簡單、復雜,定量、定性的均可,教師巡視將好題搜集起來,分類投影在屏幕上.
    1.方程思想的運用
    (1)已知等差數(shù)列中,首項,公差,則-397是該數(shù)列的第x項.
    (2)已知等差數(shù)列中,首項,則公差
    (3)已知等差數(shù)列中,公差,則首項
    這一類問題先由學生解決,之后教師點評,四個量,在一個等式中,運用方程的思想方法,已知其中三個量的值,可以求得第四個量.
    2.基本量方法的使用
    (1)已知等差數(shù)列中,求的值.
    (2)已知等差數(shù)列中,求.
    若學生的題目只有這兩種類型,教師可以小結(請出題者、解題者概括):因為已知條件可以化為關于和的二元方程組,所以這些等差數(shù)列是確定的,由和寫出通項公式,便可歸結為前一類問題.解決這類問題只需把兩個條件(等式)化為關于和的二元方程組,以求得和,和稱作基本量.
    教師提出新的問題,已知等差數(shù)列的一個條件(等式),能否確定一個等差數(shù)列?學生回答后,教師再啟發(fā),由這一個條件可得到關于和的二元方程,這是一個和的`制約關系,從這個關系可以得到什么結論?舉例說明(例題可由學生或教師給出,視具體情況而定).
    如:已知等差數(shù)列中,…
    由條件可得即,可知,這是比較顯然的,與之相關的還能有什么結論?若學生答不出可提示,一定得某一項的值么?能否與兩項有關?多項有關?由學生發(fā)現(xiàn)規(guī)律,完善問題(3)已知等差數(shù)列中,求;;;;….
    類似的還有
    (4)已知等差數(shù)列中,求的值.
    以上屬于對數(shù)列的項進行定量的研究,有無定性的判定?引出
    3.研究等差數(shù)列的單調性
    4.研究項的符號
    這是為研究等差數(shù)列前項和的最值所做的預備工作.可配備的題目如
    (1)已知數(shù)列的通項公式為,問數(shù)列從第幾項開始小于0?
    (2)等差數(shù)列從第x項起以后每項均為負數(shù).
    三.小結
    1.用方程思想熟悉等差數(shù)列通項公式;
    2.用函數(shù)思想解決等差數(shù)列問題.
    四.板書設計
    等差數(shù)列通項公式1.方程思想的運用
    2.基本量方法的使用
    3.研究等差數(shù)列的單調性
    4.研究項的符號
    高一數(shù)學必修一詳細教案篇八
    教學目標。
    1、理解平面向量的坐標的概念;。
    2、掌握平面向量的坐標運算;。
    3、會根據(jù)向量的坐標,判斷向量是否共線.
    教學重難點。
    教學重點:平面向量的坐標運算。
    教學難點:向量的坐標表示的理解及運算的準確性.
    教學過程。
    平面向量基本定理:。
    什么叫平面的一組基底?
    平面的基底有多少組?
    引入:。
    1.平面內建立了直角坐標系,點a可以用什么來。
    表示?
    2.平面向量是否也有類似的表示呢?
    高一數(shù)學必修一詳細教案篇九
    教學目標。
    3.讓學生深刻理解向量在處理平面幾何問題中的優(yōu)越性.
    教學重難點。
    教學重點:用向量方法解決實際問題的基本方法:向量法解決幾何問題的“三步曲”.
    教學難點:如何將幾何等實際問題化歸為向量問題.
    教學過程。
    由于向量的線性運算和數(shù)量積運算具有鮮明的幾何背景,平面幾何圖形的許多性質,如平移、全等、相似、長度、夾角等都可以由向量的線性運算及數(shù)量積表示出來,因此,可用向量方法解決平面幾何中的一些問題,下面我們通過幾個具體實例,說明向量方法在平面幾何中的運用。
    思考:
    運用向量方法解決平面幾何問題可以分哪幾個步驟?
    運用向量方法解決平面幾何問題可以分哪幾個步驟?
    “三步曲”:
    (2)通過向量運算,研究幾何元素之間的關系,如距離、夾角等問題;。
    (3)把運算結果“翻譯”成幾何關系.
    高一數(shù)學必修一詳細教案篇十
    >教學目標
    落實情況.
    解?絕對值不等式注意不要丟掉?這部分解集.。
    五、作業(yè)。
    1.閱讀課本?含絕對值不等式解法.。
    2.習題?2、3、4。
    課堂教學設計說明。
    1.抓住解型絕對值不等式的關鍵是絕對值的意義,為此首先通過復習讓學生掌握好絕對值的意義,為解絕對值不等式打下牢固的基礎.
    2.在解與絕對值不等式中的關鍵處設問、質疑、點撥,讓學生融會貫通的掌握它們解法之間的內在聯(lián)系,以達到提高學生解題能力的目的.
    3.針對學生解()絕對值不等式容易出現(xiàn)丟掉這部分解集的錯誤,在教學中應根據(jù)絕對值的意義從數(shù)軸進行突破,并在練習中糾正這個錯誤,以提高學生的運算能力.
    高一數(shù)學必修一詳細教案篇十一
    了解數(shù)列的概念和幾種簡單的表示方法(列表、圖象、通項公式).
    了解數(shù)列是自變量為正整數(shù)的一類函數(shù)。
    (2)等差數(shù)列、等比數(shù)列。
    理解等差數(shù)列、等比數(shù)列的概念。
    掌握等差數(shù)列、等比數(shù)列的通項公式與前項和公式。
    能在具體的問題情境中,識別數(shù)列的等差關系或等比關系,并能用有關知識解決相應的問題。
    了解等差數(shù)列與一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的關系。
    高一數(shù)學必修一詳細教案篇十二
    一、創(chuàng)設情景,激趣導入。
    學生活動:學生猜測各種可能性,你一言我一語地發(fā)表自己的高見。師:大家的猜測都有自己的道理,但答案到底是什么呢?暫時老師還不想告訴你們,我想通過下面的活動,大家一定能自己找到答案的。
    二、探究體驗,經(jīng)歷過程。
    1、教學例1.
    方法一:
    師:學校準備從每個班中選幾名熱愛運動的學生參加體育訓練,為下學期的校運動會做準備。下面是三(1)班參加跳繩、踢毽比賽的學生名單。
    學生可能回答;
    一共有17人,9+8=17(人)。
    可是,參加這兩項活動的沒有17人呀。
    我發(fā)現(xiàn)有的人兩項活動都參加了。
    應該是一共有14人參加了,算式是9+8-3=14(人)。
    師:到底怎么回事呢?為什么有人說一共是14人呢?為什么要減去3呢?
    生:因為有3個人重復了。
    生:因為這3個人既參加了跳繩,又參加了踢毽。
    生:因為跳繩的9人里面有這3個人,踢毽的8人里面也有這3個人,所以計算的時候就不能是9+8=17(人),還應該減去3人,所以是9+8-3=14(人)。
    生:因為9+8就把這3個人重復算了,也就是多算了一遍,所以要減掉3人。
    師:同學們的發(fā)言真是精彩,報名參加校體育訓練的一共有多少名同。
    學呢?
    生:14人。
    方法二:
    師:為了能使同學們更方便的看清楚,我們把一項活動演示一遍,請班里的`14名同學分別對應的替代其中一人,自己選一個替代的對象吧。
    班內的14名學生分別選定自己要替代的人。
    生:不知道站哪邊。
    師:哦?為什么?怎么會出現(xiàn)這樣的情況呢?
    生:站中間。
    三位同學都站到了講臺的中間。
    師:那左邊、右邊、中間分別表示什么?
    生:左邊表示參加跳繩的同學,右邊表示參加踢毽的同學,中間就是兩種訓練都參加的同學。
    方法三:
    師:誰能用畫圖的方法來表示一下剛才看到的情形?
    學生組內討論,畫出自己設計的圖來,教師巡視觀察了解情況并及時指導創(chuàng)作。
    分組展示自己設計的圖畫,并介紹自己的創(chuàng)意或想法。
    學生可能會說:
    生1:我覺得左邊的同學是代表參加跳繩的,應該圈在一起;右邊的同學代表參加踢毽的,他們也應該圈在一起;中間的同學再畫一個圈。師:這樣的話,能不能讓大家一看就知道中間的是既參加了跳繩的,又參加了踢毽的呢?再想想,看還有沒有更好的畫法。
    生2:中間的同學也應該和左邊的圈在一起,因為他們也參加了跳繩的呀。
    生3:那我還說中間的還可以圈到右邊呢,他們還參加了踢毽呢。師:那就按你們說的試試吧。
    學生動手試著畫圖,并向全班展示。
    方法四:
    師:看圖,說說每一部分分別表示什么?生:左邊,表示只參加跳繩的;右邊,表示只參加踢毽的;中間既參加跳繩又參加踢毽的。
    師:你能列式計算這兩個小組的人數(shù)嗎?
    生:9+8-3=14(人)。
    生:(8-3)+3+(9-3)=14(人)。
    高一數(shù)學必修一詳細教案篇十三
    教學目標。
    熟悉兩角和與差的正、余公式的推導過程,提高邏輯推理能力。
    掌握兩角和與差的正、余弦公式,能用公式解決相關問題。
    教學重難點。
    熟練兩角和與差的正、余弦公式的正用、逆用和變用技巧。
    教學過程。
    復習。
    兩角差的余弦公式。
    用-b代替b看看有什么結果?
    高一數(shù)學必修一詳細教案篇十四
    教學目標。
    掌握三角函數(shù)模型應用基本步驟:
    (1)根據(jù)圖象建立解析式;
    (2)根據(jù)解析式作出圖象;
    (3)將實際問題抽象為與三角函數(shù)有關的簡單函數(shù)模型。
    教學重難點。
    利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型。
    教學過程。
    一、練習講解:《習案》作業(yè)十三的第3、4題。
    (精確到0.001).
    米的速度減少,那么該船在什么時間必須停止卸貨,將船駛向較深的水域。
    本題的解答中,給出貨船的進、出港時間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實際意義。關于課本第64頁的“思考”問題,實際上,在貨船的安全水深正好與港口水深相等時停止卸貨將船駛向較深的水域是不行的,因為這樣不能保證船有足夠的時間發(fā)動螺旋槳。
    練習:教材p65面3題。
    三、小結:1、三角函數(shù)模型應用基本步驟:
    (1)根據(jù)圖象建立解析式;
    (2)根據(jù)解析式作出圖象;
    (3)將實際問題抽象為與三角函數(shù)有關的簡單函數(shù)模型。
    2、利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型。
    四、作業(yè)《習案》作業(yè)十四及十五。
    高一數(shù)學必修一詳細教案篇十五
    教學目標。
    掌握三角函數(shù)模型應用基本步驟:。
    (1)根據(jù)圖象建立解析式;
    (2)根據(jù)解析式作出圖象;
    (3)將實際問題抽象為與三角函數(shù)有關的簡單函數(shù)模型。
    教學重難點。
    利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型。
    教學過程。
    一、練習講解:《習案》作業(yè)十三的第3、4題。
    (精確到0.001)。
    米的速度減少,那么該船在什么時間必須停止卸貨,將船駛向較深的水域?
    本題的解答中,給出貨船的進、出港時間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實際意義。關于課本第64頁的“思考”問題,實際上,在貨船的安全水深正好與港口水深相等時停止卸貨將船駛向較深的水域是不行的,因為這樣不能保證船有足夠的時間發(fā)動螺旋槳。
    練習:教材p65面3題。
    三、小結:1、三角函數(shù)模型應用基本步驟:。
    (1)根據(jù)圖象建立解析式;
    (2)根據(jù)解析式作出圖象;
    (3)將實際問題抽象為與三角函數(shù)有關的簡單函數(shù)模型。
    2、利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型。
    四、作業(yè)《習案》作業(yè)十四及十五。
    高一數(shù)學必修一詳細教案篇十六
    (1)理解函數(shù)的概念;。
    (2)了解區(qū)間的概念;。
    2、目標解析。
    (2)了解區(qū)間的概念就是指能夠體會用區(qū)間表示數(shù)集的意義和作用;。
    【問題診斷分析】在本節(jié)課的教學中,學生可能遇到的問題是函數(shù)的概念及符號的理解,產生這一問題的原因是:函數(shù)本身就是一個抽象的概念,對學生來說一個難點。要解決這一問題,就要在通過從實際問題中抽象概況函數(shù)的概念,培養(yǎng)學生的抽象概況能力,其中關鍵是理論聯(lián)系實際,把抽象轉化為具體。
    【教學過程】。
    問題1:一枚炮彈發(fā)射后,經(jīng)過26s落到地面擊中目標.炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時間t(單位:s)變化的規(guī)律是:h=130t-5t2.
    1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?
    1.2高度變量h與時間變量t之間的對應關系是否為函數(shù)?若是,其自變量是什么?
    設計意圖:通過以上問題,讓學生正確理解讓學生體會用解析式或圖象刻畫兩個變量之間的依賴關系,從問題的實際意義可知,在t的變化范圍內任給一個t,按照給定的對應關系,都有的一個高度h與之對應。
    問題2:分析教科書中的實例(2),引導學生看圖并啟發(fā):在t的變化t按照給定的圖象,都有的一個臭氧層空洞面積s與之相對應。
    問題3:要求學生仿照實例(1)、(2),描述實例(3)中恩格爾系數(shù)和時間的關系。
    設計意圖:通過這些問題,讓學生理解得到函數(shù)的定義,培養(yǎng)學生的歸納、概況的能力。