2023年多項式的因式分解教案(實用19篇)

字號:

    教案能夠幫助教師合理安排教學(xué)時間,確保教學(xué)進度。編寫一份完美的教案需要教師具備一定的教學(xué)理論和教學(xué)設(shè)計能力。在這份教案中,我們可以看到教師如何促進學(xué)生的主動學(xué)習(xí),引導(dǎo)他們積極參與課堂活動。
    多項式的因式分解教案篇一
    3、選擇恰當(dāng)?shù)姆椒ㄟM行因式分解。
    5、體驗應(yīng)用知識解決問題的樂趣。
    靈活運用恰當(dāng)?shù)囊蚴椒纸獾姆椒ǎ卣咕毩?xí)2、3。
    一、創(chuàng)設(shè)情景:若a=101,b=99,求a2-b2的值。
    利用因式分解往往能將一些復(fù)雜的運算簡單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。
    二、知識回顧。
    1、因式分解定義:把一個多項式化成幾個整式積的形式,這種變形叫做把這個多項式分解因式.
    判斷下列各式哪些是因式分解?(讓學(xué)生先思考,教師提問講解,讓學(xué)生明確因式分解的概念以及與乘法的關(guān)系)。
    2、.規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過程.
    分解因式要注意以下幾點:(1).分解的對象必須是多項式.
    (2).分解的結(jié)果一定是幾個整式的乘積的形式.(3).要分解到不能分解為止.
    4、強化訓(xùn)練。
    教學(xué)引入。
    師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個長方形折疊就可以得到一個正方形。現(xiàn)在請同學(xué)們拿出一個長方形紙條,按動畫所示進行折疊處理。
    動畫演示:
    場景一:正方形折疊演示。
    師:這就是我們得到的正方形。下面請同學(xué)們拿出三角板(刻度尺)和圓規(guī),我們來研究正方形的幾何性質(zhì)—邊、角以及對角線之間的關(guān)系。請大家測量各邊的長度、各角的大小、對角線的長度以及對角線交點到各頂點的長度。
    [學(xué)生活動:各自測量。]。
    鼓勵學(xué)生將測量結(jié)果與鄰近同學(xué)進行比較,找出共同點。
    講授新課。
    找一兩個學(xué)生表述其結(jié)論,表述是要注意糾正其語言的規(guī)范性。
    動畫演示:
    場景二:正方形的性質(zhì)。
    師:這些性質(zhì)里那些是矩形的性質(zhì)?
    [學(xué)生活動:尋找矩形性質(zhì)。]。
    動畫演示:
    場景三:矩形的性質(zhì)。
    師:同樣在這些性質(zhì)里尋找屬于菱形的性質(zhì)。
    [學(xué)生活動;尋找菱形性質(zhì)。]。
    動畫演示:
    場景四:菱形的性質(zhì)。
    師:這說明正方形具有矩形和菱形的全部性質(zhì)。
    及時提出問題,引導(dǎo)學(xué)生進行思考。
    師:根據(jù)這些性質(zhì),我們能不能給正方形下一個定義?怎么樣給正方形下一個準(zhǔn)確的定義?
    [學(xué)生活動:積極思考,有同學(xué)做躍躍欲試狀。]。
    師:請同學(xué)們回想矩形與菱形的`定義,可以根據(jù)矩形與菱形的定義類似的給出正方形的定義。
    學(xué)生應(yīng)能夠向出十種左右的定義方式,其余作相應(yīng)鼓勵,把以下三種板書:
    “有一組鄰邊相等的矩形叫做正方形?!?BR>    “有一個角是直角的菱形叫做正方形?!?BR>    “有一個角是直角且有一組鄰邊相等的平行四邊形叫做正方形?!?BR>    師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系梳理一下。
    (1).1-x2=(1+x)(1-x)(2).4a2+4a+1=(2a+1)2。
    (3).4x2-8x=4x(x-2)(4).2x2y-6xy2=2xy(x-3y)。
    三、例題講解。
    例1、分解因式。
    (1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)。
    (3)(4)y2+y+。
    例2、分解因式。
    4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=。
    例3、分解因式。
    1、72-2(13x-7)22、8a2b2-2a4b-8b3。
    三、知識應(yīng)用。
    1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)。
    3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2。
    四、拓展應(yīng)用。
    2、20042+20xx被20xx整除嗎?
    3、若n是整數(shù),證明(2n+1)2-(2n-1)2是8的倍數(shù).
    五、課堂小結(jié):今天你對因式分解又有哪些新的認(rèn)識?
    多項式的因式分解教案篇二
    知識點:
    因式分解定義,提取公因式、應(yīng)用公式法、分組分解法、二次三項式的因式(十字相乘法、求根)、因式分解一般步驟。
    教學(xué)目標(biāo):
    理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項式的方法,能把簡單多項式分解因式。
    考查重難點與常見題型:
    考查因式分解能力,在中考試題中,因式分解出現(xiàn)的頻率很高。重點考查的分式提取公因式、應(yīng)用公式法、分組分解法及它們的綜合運用。習(xí)題類型以填空題為多,也有選擇題和解答題。
    教學(xué)過程:
    多項式的因式分解,就是把一個多項式化為幾個整式的積。分解因式要進行到每一個因式都不能再分解為止。分解因式的常用方法有:
    (1)提公因式法。
    如多項式。
    其中m叫做這個多項式各項的公因式,m既可以是一個單項式,也可以是一個多項式。
    (2)運用公式法,即用寫出結(jié)果。
    (3)十字相乘法。
    (4)分組分解法:把各項適當(dāng)分組,先使分解因式能分組進行,再使分解因式在各組之間進行。
    分組時要用到添括號:括號前面是“+”號,括到括號里的各項都不變符號;括號前面是“-”號,括到括號里的各項都改變符號。
    (5)求根公式法:如果有兩個根x1,x2,那么。
    2、教學(xué)實例:學(xué)案示例。
    3、課堂練習(xí):學(xué)案作業(yè)。
    4、課堂:
    5、板書:
    6、課堂作業(yè):學(xué)案作業(yè)。
    7、教學(xué)反思:
    多項式的因式分解教案篇三
    “整式的乘法”是整式的加減的后續(xù)學(xué)習(xí)從冪的運算到各種整式的乘法,整章教材都突出了學(xué)生的自主探索過程,依據(jù)原有的知識基礎(chǔ),或運用乘法的各種運算規(guī)律,或借助直觀而又形象的圖形面積,得到各種運算的基本法則、兩個主要的乘法公式及因式分解的基本方法學(xué)生自己對知識內(nèi)容的探索、認(rèn)識與體驗,完全有利于學(xué)生形成合理的知識結(jié)構(gòu),提高數(shù)學(xué)思維能力.利用公式法進行因式分解時,注意把握多項式的特點,對比乘法公式乘積結(jié)果的形式,選擇正確的分解方法。
    因式分解是一種常用的代數(shù)式的恒等變形,因式分解是多項式乘法公式的逆向變形,它是將一個多項式變形為多項式與多項式的乘積。
    2、教學(xué)目標(biāo)。
    (1)會推導(dǎo)乘法公式。
    (2)在應(yīng)用乘法公式進行計算的基礎(chǔ)上,感受乘法公式的作用和價值。
    (3)會用提公因式法、公式法進行因式分解。
    (5)在因式分解中,經(jīng)歷觀察、探索和做出推斷的過程,提高分析問題和解決問題的能力。
    3、重點、難點和關(guān)鍵。
    重點:乘法公式的意義、分式的由來和正確運用;用提公因式法和公式法進行因式分解。
    難點:正確運用乘法公式;正確分解因式。
    關(guān)鍵:正確理解乘法公式和因式分解的意義。
    二、本單元教學(xué)的方法和策略:
    3.讓學(xué)生掌握基本的數(shù)學(xué)事實與數(shù)學(xué)活動經(jīng)驗,減輕不必要的記憶負擔(dān).。
    三、課時安排:
    2.1平方差公式1課時。
    2.2完全平方公式2課時。
    多項式的因式分解教案篇四
    課標(biāo)要求:理解多項式與多項式相乘的法則,并運用法則進行準(zhǔn)確運算。
    選用教材:選自華東師范大學(xué)出版社出版的《數(shù)學(xué)》八年級上冊第十三章第3節(jié)。課題是《多項式與多項式相乘》,課時為1課時。
    教材地位:本課學(xué)習(xí)多項式與多項式相乘的法則,對學(xué)生初中階段學(xué)好必備的基礎(chǔ)知識與基本技能、解決實際問題起到基礎(chǔ)作用,在提高學(xué)生的運算能力方面有重要的作用。同時,對平方差與完全平方公式的應(yīng)用以及楊輝三角等后續(xù)教學(xué)內(nèi)容起到奠基作用。
    2、教學(xué)目標(biāo)
    知識與技能目標(biāo):理解并掌握多項式乘以多項式的法則,能夠按步驟進行簡單的多項式乘法的運算。
    過程與方法目標(biāo):
    1、通過創(chuàng)設(shè)情景中的問題的探索,體驗數(shù)學(xué)是一個充滿觀察、歸納的過程;
    3、通過為學(xué)生提供自主練習(xí)的活動空間,提高學(xué)生的運算能力;
    4、借助具體到一般的認(rèn)知規(guī)律,培養(yǎng)學(xué)生探索問題的能力和創(chuàng)新的品質(zhì)。
    情感、態(tài)度與價值觀目標(biāo):
    學(xué)生通過主動參與探索法則和拓展探索等的學(xué)習(xí)活動,領(lǐng)悟轉(zhuǎn)化思想,體會數(shù)學(xué)與生活的聯(lián)系,感受數(shù)學(xué)的應(yīng)用價值,從而激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣。
    3、教學(xué)重點:多項式乘以多項式法則的理解和應(yīng)用;
    4、教學(xué)難點:將多項式與多項式的乘法轉(zhuǎn)化為單項式與多項式的乘法,防止漏乘、重復(fù)乘和看錯符號。
    本節(jié)課是在學(xué)習(xí)了“單項式與多項式相乘”的基礎(chǔ)上進行的,學(xué)生已經(jīng)掌握了“單項式與多項式相乘”的運算法則,因此沒有把時間過多地放在復(fù)習(xí)舊知上,而是讓學(xué)生親身參加探索發(fā)現(xiàn),從而獲取新知。在法則的得出過程中,讓學(xué)生在探索的過程中自己發(fā)現(xiàn)總結(jié)規(guī)律,提高了學(xué)生的積極性。在法則的應(yīng)用這一環(huán)節(jié)選配一些變式練習(xí),通過書上的基本練習(xí)達到訓(xùn)練雙基的目的,通過變式練習(xí)達到發(fā)展智力、提高能力的目的。
    注重體現(xiàn)教師的導(dǎo)向作用和學(xué)生的主體地位。教學(xué)過程中盡力引導(dǎo)學(xué)生成為知識的發(fā)現(xiàn)者,把教師的點撥和學(xué)生解決問題結(jié)合起來,為學(xué)生創(chuàng)設(shè)情境,從而不斷激發(fā)學(xué)生的求知欲望和學(xué)習(xí)興趣,使學(xué)生輕松愉快地學(xué)習(xí)。
    1、自主學(xué)習(xí)歸納
    2、小組討論
    多項式的因式分解教案篇五
    因式分解定義,提取公因式、應(yīng)用公式法、分組分解法、二次三項式的因式(十字相乘法、求根)、因式分解一般步驟。
    理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項式的方法,能把簡單多項式分解因式。
    考查因式分解能力,在中考試題中,因式分解出現(xiàn)的頻率很高。重點考查的分式提取公因式、應(yīng)用公式法、分組分解法及它們的綜合運用。習(xí)題類型以填空題為多,也有選擇題和解答題。
    因式分解知識點
    多項式的因式分解,就是把一個多項式化為幾個整式的積。分解因式要進行到每一個因式都不能再分解為止。分解因式的常用方法有:
    (1)提公因式法
    如多項式
    其中m叫做這個多項式各項的公因式, m既可以是一個單項式,也可以是一個多項式。
    (2)運用公式法,即用
    寫出結(jié)果。
    (3)十字相乘法
    (4)分組分解法:把各項適當(dāng)分組,先使分解因式能分組進行,再使分解因式在各組之間進行。
    分組時要用到添括號:括號前面是“+”號,括到括號里的各項都不變符號;括號前面是“-”號,括到括號里的各項都改變符號。
    (5)求根公式法:如果有兩個根x1,x2,那么
    2、教學(xué)實例:學(xué)案示例
    3、課堂練習(xí):學(xué)案作業(yè)
    4、課堂:
    5、板書:
    6、課堂作業(yè):學(xué)案作業(yè)
    7、教學(xué)反思:
    多項式的因式分解教案篇六
    2.理解完全平方式的意義和特點,培養(yǎng)學(xué)生的判斷能力.
    3.進一步培養(yǎng)學(xué)生全面地觀察問題、分析問題和逆向思維的能力.。
    4.通過運用公式法分解因式的教學(xué),使學(xué)生進一步體會“把一個代數(shù)式看作一個字母”的換元思想。
    教學(xué)重點和難點。
    重點:運用完全平方式分解因式.
    難點:靈活運用完全平方公式公解因式.
    教學(xué)過程設(shè)計。
    一、復(fù)習(xí)。
    1.問:什么叫把一個多項式因式分解?我們已經(jīng)學(xué)習(xí)了哪些因式分解的方法?
    答:把一個多項式化成幾個整式乘積形式,叫做把這個多項式因式分解.我們學(xué)過的因式分解的方法有提取公因式法及運用平方差公式法.
    2.把下列各式分解因式:
    (1)ax4-ax2(2)16m4-n4.
    解(1)ax4-ax2=ax2(x2-1)=ax2(x+1)(x-1)。
    (2)16m4-n4=(4m2)2-(n2)2。
    =(4m2+n2)(4m2-n2)。
    =(4m2+n2)(2m+n)(2m-n).
    問:我們學(xué)過的乘法公式除了平方差公式之外,還有哪些公式?
    答:有完全平方公式.
    請寫出完全平方公式.
    完全平方公式是:
    (a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2.
    這節(jié)課我們就來討論如何運用完全平方公式把多項式因式分解.
    二、新課。
    和討論運用平方差公式把多項式因式分解的思路一樣,把完全平方公式反過來,就得到。
    a2+2ab+b2=(a+b)2;a2-2ab+b2=(a-b)2.
    這就是說,兩個數(shù)的平方和,加上(或者減去)這兩個數(shù)的積的2倍,等于這兩個數(shù)的和(或者差)的平方.式子a2+2ab+b2及a2-2ab+b2叫做完全平方式,上面的兩個公式就是完全平方公式.運用這兩個式子,可以把形式是完全平方式的多項式分解因式.
    問:具備什么特征的多項是完全平方式?
    答:一個多項式如果是由三部分組成,其中的兩部分是兩個式子(或數(shù))的平方,并且這兩部分的符號都是正號,第三部分是上面兩個式子(或數(shù))的乘積的二倍,符號可正可負,像這樣的式子就是完全平方式.
    問:下列多項式是否為完全平方式?為什么?
    (1)x2+6x+9;(2)x2+xy+y2;
    (3)25x4-10x2+1;(4)16a2+1.
    x2+6x+9=(x+3).
    (2)不是完全平方式.因為第三部分必須是2xy.
    (3)是完全平方式.25x=(5x),1=1,10x=2·5x·1,所以。
    25x-10x+1=(5x-1).
    (4)不是完全平方式.因為缺第三部分.
    答:完全平方公式為:
    其中a=3x,b=y,2ab=2·(3x)·y.
    例1把25x4+10x2+1分解因式.
    分析:這個多項式是由三部分組成,第一項“25x4”是(5x2)的平方,第三項“1”是1的平方,第二項“10x2”是5x2與1的積的2倍.所以多項式25x4+10x2+1是完全平方式,可以運用完全平方公式分解因式.
    解25x4+10x2+1=(5x2)2+2·5x2·1+12=(5x2+1)2.
    例2把1-m+分解因式.
    問:請同學(xué)分析這個多項式的特點,是否可以用完全平方公式分解因式?有幾種解法?
    答:這個多項式由三部分組成,第一項“1”是1的平方,第三項“”是的平方,第二項“-m”是1與m/4的積的2倍的相反數(shù),因此這個多項式是完全平方式,可以用完全平方公式分解因式.
    解法11-m+=1-2·1·+2=(1-)2.
    解法2先提出,則。
    1-m+=(16-8m+m2)。
    =(42-2·4·m+m2)。
    =(4-m)2.
    三、課堂練習(xí)(投影)。
    1.填空:
    (1)x2-10x+()2=()2;
    (2)9x2+()+4y2=()2;
    (3)1-()+m2/9=()2.
    2.下列各多項式是不是完全平方式?如果是,可以分解成什么式子?如果不是,請把多。
    項式改變?yōu)橥耆椒绞?
    (1)x2-2x+4;(2)9x2+4x+1;(3)a2-4ab+4b2;
    (4)9m2+12m+4;(5)1-a+a2/4.
    3.把下列各式分解因式:
    (1)a2-24a+144;(2)4a2b2+4ab+1;
    (3)19x2+2xy+9y2;(4)14a2-ab+b2.
    答案:
    1.(1)25,(x-5)2;(2)12xy,(3x+2y)2;(3)2m/3,(1-m3)2.
    2.(1)不是完全平方式,如果把第二項的“-2x”改為“-4x”,原式就變?yōu)閤2-4x+4,它是完全平方式;或把第三項的“4”改為1,原式就變?yōu)閤2-2x+1,它是完全平方式.
    (2)不是完全平方式,如果把第二項“4x”改為“6x”,原式變?yōu)?x2+6x+1,它是完全平方式.
    (3)是完全平方式,a2-4ab+4b2=(a-2b)2.
    (4)是完全平方式,9m2+12m+4=(3m+2)2.
    (5)是完全平方式,1-a+a2/4=(1-a2)2.
    3.(1)(a-12)2;(2)(2ab+1)2;
    (3)(13x+3y)2;(4)(12a-b)2.
    四、小結(jié)。
    運用完全平方公式把一個多項式分解因式的.主要思路與方法是:
    1.首先要觀察、分析和判斷所給出的多項式是否為一個完全平方式,如果這個多項式是一個完全平方式,再運用完全平方公式把它進行因式分解.有時需要先把多項式經(jīng)過適當(dāng)變形,得到一個完全平方式,然后再把它因式分解.
    2.在選用完全平方公式時,關(guān)鍵是看多項式中的第二項的符號,如果是正號,則用公式a2+2ab+b2=(a+b)2;如果是負號,則用公式a2-2ab+b2=(a-b)2.
    五、作業(yè)。
    把下列各式分解因式:
    1.(1)a2+8a+16;(2)1-4t+4t2;
    (3)m2-14m+49;(4)y2+y+1/4.
    2.(1)25m2-80m+64;(2)4a2+36a+81;
    (3)4p2-20pq+25q2;(4)16-8xy+x2y2;
    (5)a2b2-4ab+4;(6)25a4-40a2b2+16b4.
    3.(1)m2n-2mn+1;(2)7am+1-14am+7am-1;
    4.(1)x-4x;(2)a5+a4+a3.
    答案:
    1.(1)(a+4)2;(2)(1-2t)2;
    (3)(m-7)2;(4)(y+12)2.
    2.(1)(5m-8)2;(2)(2a+9)2;
    (3)(2p-5q)2;(4)(4-xy)2;
    (5)(ab-2)2;(6)(5a2-4b2)2.
    3.(1)(mn-1)2;(2)7am-1(a-1)2.
    4.(1)x(x+4)(x-4);(2)14a3(2a+1)2.
    課堂教學(xué)設(shè)計說明。
    1.利用完全平方公式進行多項式的因式分解是在學(xué)生已經(jīng)學(xué)習(xí)了提取公因式法及利用平方差公式分解因式的基礎(chǔ)上進行的,因此在教學(xué)設(shè)計中,重點放在判斷一個多項式是否為完全平方式上,采取啟發(fā)式的教學(xué)方法,引導(dǎo)學(xué)生積極思考問題,從中培養(yǎng)學(xué)生的思維品質(zhì).
    2.本節(jié)課要求學(xué)生掌握完全平方公式的特點和靈活運用公式把多項式進行因式分解的方法.在教學(xué)設(shè)計中安排了形式多樣的課堂練習(xí),讓學(xué)生從不同側(cè)面理解完全平方公式的特點.例1和例2的講解可以在老師的引導(dǎo)下,師生共同分析和解答,使學(xué)生當(dāng)堂能夠掌握運用平方公式進行完全因式分解的方法.
    多項式的因式分解教案篇七
    本節(jié)課主要講解的是單項式乘以單項式,是在前面學(xué)習(xí)了冪的運算性質(zhì)的基礎(chǔ)上學(xué)習(xí)的,學(xué)生學(xué)習(xí)單項式的乘法并熟練地進行單項式的乘法運算是以后學(xué)習(xí)多項式乘法的關(guān)鍵,單項式的乘法綜合用到了有理數(shù)的乘法、冪的運算性質(zhì),而后續(xù)的多項式乘以單項式、多項式乘以多項式都要轉(zhuǎn)化為單項式的乘法,因此單項式的乘法將起到承前啟后的作用,在整式乘法中占有獨特的地位。
    2、課標(biāo)要求:能進行簡單的整式乘法的運算。
    3、教學(xué)目標(biāo)
    (1)、通過實際問題的探索,類比得出單項式乘以單項式的法則,發(fā)展邏輯思維能力。
    (2)、通過單項式乘單項式的訓(xùn)練,加強法則的應(yīng)用,提升運算能力。
    (3)、通過運算法則在實際問題中的應(yīng)用,提高解決實際問題的能力。
    4、教學(xué)重點、難點:
    重點:單項式乘單項式法則
    (這是因為要熟練地進行單項式的乘法運算,就必須掌握和深刻理解運算法則,對運算法則理解得越深,運算才能掌握的越好)
    難點:
    1、掌握單項式乘法法則的應(yīng)用
    2、單項式乘法法則有關(guān)系數(shù)和指數(shù)在計算中的不同規(guī)定
    (這是因為單項式的乘法最終將轉(zhuǎn)化為有理數(shù)的乘法、同底數(shù)的冪相乘、冪的乘方、積的乘方等運算,對于初學(xué)者來說,由于難于正確辨認(rèn)和區(qū)別各種不同的運算及運算所使用的法則,易于將各種法則混淆,造成運算結(jié)果錯誤。)
    本節(jié)課在教學(xué)過程的不同階段采用不同的教學(xué)方法,以適應(yīng)教學(xué)的需要。
    1、在新課學(xué)習(xí)階段的單項式的乘法法則的推導(dǎo)過程中,采用了引導(dǎo)發(fā)現(xiàn)法。通過教師設(shè)計的問題,引導(dǎo)學(xué)生將需要解決的問題轉(zhuǎn)化成用已學(xué)過的知識可解決的問題,讓學(xué)生既掌握了新的知識,又培養(yǎng)了學(xué)生探索問題的能力。
    2、在新課學(xué)習(xí)的例題講解階段,采用了講練結(jié)合法。對例題的學(xué)習(xí),圍繞問題進行,通過教師引導(dǎo)、學(xué)生觀察、思考,尋求解決問題的方法,在解題的過程中展開思維。與此同時還進行多次有較強針對性的練習(xí),分散難點,對學(xué)生分層進行訓(xùn)練,化解難點,并注意及時矯正,使學(xué)生在前面出現(xiàn)的錯誤不致于影響后面的解題,為后面的學(xué)習(xí)掃清障礙,通過例題的學(xué)習(xí)教師給出了解題規(guī)范,并注意對學(xué)生良好學(xué)習(xí)習(xí)慣的培養(yǎng)。
    3、在歸納小結(jié)這個階段采用師生共同總結(jié),旨在訓(xùn)練學(xué)生歸納的方法,并形成相應(yīng)的知識系統(tǒng),進一步防范學(xué)生在運算中容易出現(xiàn)的錯誤。
    4、本節(jié)課訓(xùn)練量大,利用投影儀,增大課堂容量,提高課堂教學(xué)效率。
    1、溫故知新(復(fù)習(xí)冪的運算性質(zhì))
    單項式與單項式、單項式與多項式相乘最終將轉(zhuǎn)化為有理數(shù)乘法,同底數(shù)冪相乘,冪的乘方,積的乘方等運算,故通過復(fù)習(xí)冪的運算性質(zhì)為單項式乘單項式、單項式乘多項式的教學(xué)作好鋪墊。
    2、單項式乘法法則的推導(dǎo)
    通過實際問題引導(dǎo)學(xué)生進行觀察、分析兩個單項式如何相乘,使學(xué)生能運用乘法交換律、結(jié)合律和同底數(shù)冪的運算性質(zhì)等知識探索單項式乘以單項式的運算法則。通過類比實際問題的解決引導(dǎo)學(xué)生進行歸納,最后得出單項式乘以單項式的法則,以實現(xiàn)教學(xué)目標(biāo)。
    2、應(yīng)用新知
    例1引導(dǎo)學(xué)生觀察,根椐題目特征,辯認(rèn)出它們是哪種運算,應(yīng)選用什么樣的法則進行計算,使學(xué)生逐漸分清運算類型,正確實運用法則,以實現(xiàn)難點的分散和突破,并提高學(xué)生運算的熟練程度。例2是單項式的乘法在實際生活中的應(yīng)用,通過例2使學(xué)生認(rèn)識到數(shù)學(xué)在日常生活和生產(chǎn)中應(yīng)用十分廣泛,從而逐步培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識。
    在例題的教學(xué)過程中除學(xué)生給出計算過程,教師要給出規(guī)范的解題過程,并要求學(xué)生按規(guī)范的書寫格式進行練習(xí)。
    在每道題完成之后,都配有與例題相近的鞏固練習(xí),由學(xué)生板演和自主練習(xí),發(fā)現(xiàn)問題及時糾正,以實現(xiàn)教學(xué)目標(biāo)2、3。
    1、設(shè)計分段練習(xí)。主要解決重點問題,及時了解學(xué)生對數(shù)學(xué)知識的掌握情況,發(fā)現(xiàn)問題及時矯正,掃清后續(xù)學(xué)習(xí)障礙。
    2、采用不同的練習(xí)方法。如口答、筆答、板演等,以增加反饋層面。通過練習(xí)使大多數(shù)學(xué)生的學(xué)習(xí)情況都能及時反饋,做到對教學(xué)情況心中有數(shù)。
    3、及時矯正。對每次練習(xí)情況進行講評,對正確的解答及時給予肯定,發(fā)現(xiàn)問題及時評講。
    4、課堂氣氛不夠活躍。
    5、錘煉語言的準(zhǔn)確性。
    多項式的因式分解教案篇八
    “整式的乘法”是整式的加減的后續(xù)學(xué)習(xí)從冪的運算到各種整式的乘法,整章教材都突出了學(xué)生的自主探索過程,依據(jù)原有的知識基礎(chǔ),或運用乘法的各種運算規(guī)律,或借助直觀而又形象的圖形面積,得到各種運算的基本法則、兩個主要的乘法公式及因式分解的基本方法學(xué)生自己對知識內(nèi)容的探索、認(rèn)識與體驗,完全有利于學(xué)生形成合理的知識結(jié)構(gòu),提高數(shù)學(xué)思維能力.利用公式法進行因式分解時,注意把握多項式的特點,對比乘法公式乘積結(jié)果的形式,選擇正確的分解方法。
    因式分解是一種常用的代數(shù)式的恒等變形,因式分解是多項式乘法公式的逆向變形,它是將一個多項式變形為多項式與多項式的乘積。
    2、教學(xué)目標(biāo)。
    (1)會推導(dǎo)乘法公式。
    (2)在應(yīng)用乘法公式進行計算的基礎(chǔ)上,感受乘法公式的作用和價值。
    (3)會用提公因式法、公式法進行因式分解。
    (4)了解因式分解的一般步驟。
    (5)在因式分解中,經(jīng)歷觀察、探索和做出推斷的過程,提高分析問題和解決問題的能力。
    3、重點、難點和關(guān)鍵。
    重點:乘法公式的意義、分式的由來和正確運用;用提公因式法和公式法進行因式分解。
    難點:正確運用乘法公式;正確分解因式。
    關(guān)鍵:正確理解乘法公式和因式分解的意義。
    3.讓學(xué)生掌握基本的數(shù)學(xué)事實與數(shù)學(xué)活動經(jīng)驗,減輕不必要的記憶負擔(dān).。
    2.1平方差公式1課時。
    2.2完全平方公式2課時。
    初中優(yōu)秀......
    初中(通用13篇)作為一位不辭辛勞的人民教師,通常需要用到教案來輔助教學(xué),教案有利于教學(xué)水平的提高,有助于教研活動的開展。來參考自己需要的教案吧!下面是小編為......
    多項式的因式分解教案篇九
    1、會運用因式分解進行簡單的多項式除法。
    二、教學(xué)重點與難點教學(xué)重點:
    教學(xué)重點。
    因式分解在多項式除法和解方程兩方面的應(yīng)用。
    教學(xué)難點:
    應(yīng)用因式分解解方程涉及較多的推理過程。
    三、教學(xué)過程。
    (一)引入新課。
    (二)師生互動,講授新課。
    一個小問題:這里的x能等于3/2嗎?為什么?
    想一想:那么(4x—9)(3—2x)呢?練習(xí):課本p162課內(nèi)練習(xí)。
    合作學(xué)習(xí)。
    等練習(xí):課本p162課內(nèi)練習(xí)2。
    (三)梳理知識,總結(jié)收獲因式分解的兩種應(yīng)用:
    (四)布置課后作業(yè)。
    作業(yè)本6、42、課本p163作業(yè)題(選做)。
    多項式的因式分解教案篇十
    2、鞏固因式分解常用的三種方法。
    3、選擇恰當(dāng)?shù)姆椒ㄟM行因式分解。
    4、應(yīng)用因式分解來解決一些實際問題。
    5、體驗應(yīng)用知識解決問題的樂趣。
    一、創(chuàng)設(shè)情景:若a=101,b=99,求a2-b2的值。
    利用因式分解往往能將一些復(fù)雜的運算簡單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。
    二、知識回顧。
    1、因式分解定義:把一個多項式化成幾個整式積的形式,這種變形叫做把這個多項式分解因式.
    判斷下列各式哪些是因式分解?(讓學(xué)生先思考,教師提問講解,讓學(xué)生明確因式分解的概念以及與乘法的關(guān)系)。
    (7).2πr+2πr=2π(r+r)因式分解。
    2、.規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過程.
    分解因式要注意以下幾點:(1).分解的對象必須是多項式.
    (2).分解的結(jié)果一定是幾個整式的乘積的形式.(3).要分解到不能分解為止.
    4、強化訓(xùn)練。
    試一試把下列各式因式分解:。
    (3).4x2-8x=4x(x-2)(4).2x2y-6xy2=2xy(x-3y)。
    三、例題講解。
    例1、分解因式。
    (1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)。
    (3)(4)y2+y+例2、分解因式。
    4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=。
    例3、分解因式。
    1、72-2(13x-7)22、8a2b2-2a4b-8b3。
    三、知識應(yīng)用。
    1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)。
    3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2。
    四、拓展應(yīng)用。
    2、20042+2004被2005整除嗎?
    3、若n是整數(shù),證明(2n+1)2-(2n-1)2是8的倍數(shù).
    五、課堂小結(jié):今天你對因式分解又有哪些新的認(rèn)識?
    多項式的因式分解教案篇十一
    教學(xué)目標(biāo):
    1、進一步鞏固因式分解的概念;2、鞏固因式分解常用的三種方法。
    3、選擇恰當(dāng)?shù)姆椒ㄟM行因式分解4、應(yīng)用因式分解來解決一些實際問題。
    5、體驗應(yīng)用知識解決問題的樂趣。
    教學(xué)重點:靈活運用因式分解解決問題。
    教學(xué)難點:靈活運用恰當(dāng)?shù)囊蚴椒纸獾姆椒ǎ卣咕毩?xí)2、3。
    教學(xué)過程:
    一、創(chuàng)設(shè)情景:若a=101,b=99,求a2-b2的值。
    利用因式分解往往能將一些復(fù)雜的運算簡單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。
    二、知識回顧。
    1、因式分解定義:把一個多項式化成幾個整式積的形式,這種變形叫做把這個多項式分解因式.
    判斷下列各式哪些是因式分解?(讓學(xué)生先思考,教師提問講解,讓學(xué)生明確因式分解的概念以及與乘法的關(guān)系)。
    2、.規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過程.
    分解因式要注意以下幾點:(1).分解的對象必須是多項式.
    (2).分解的結(jié)果一定是幾個整式的乘積的形式.(3).要分解到不能分解為止.
    4、強化訓(xùn)練。
    (3).4x2-8x=4x(x-2)(4).2x2y-6xy2=2xy(x-3y)。
    三、例題講解。
    例1、分解因式。
    (1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)。
    (3)(4)y2+y+例2、分解因式。
    4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=。
    例3、分解因式。
    1、72-2(13x-7)22、8a2b2-2a4b-8b3。
    三、知識應(yīng)用。
    1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)。
    3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2。
    四、拓展應(yīng)用。
    1.計算:7652×17-2352×17解:7652×17-2352×17=17(7652-2352)=17(765+235)(765-235)。
    2、20042+20xx被20xx整除嗎?
    3、若n是整數(shù),證明(2n+1)2-(2n-1)2是8的倍數(shù).
    五、課堂小結(jié):今天你對因式分解又有哪些新的認(rèn)識?
    多項式的因式分解教案篇十二
    因式分解是代數(shù)式的一種重要恒等變形。《數(shù)學(xué)課程標(biāo)準(zhǔn)》雖然降低了因式分解的特殊技巧的要求,也對因式分解常用的四種方法減少為兩種,且公式法的應(yīng)用中,也減少為兩個公式,但絲毫沒有否定因式分解的教育價值及其在代數(shù)運算中的重要作用。本章教材是在學(xué)生學(xué)習(xí)了整式運算的基礎(chǔ)上提出來的,事實上,它是整式乘法的逆向運用,與整式乘法運算有密切的聯(lián)系。分解因式的變形不僅體現(xiàn)了一種“化歸”的思想,而且也是解決后續(xù)—分式的化簡、解方程等—恒等變形的基礎(chǔ),為數(shù)學(xué)交流提供了有效的途徑。分解因式這一章在整個教材中起到了承上啟下的作用。本章的教育價值還體現(xiàn)在使學(xué)生接受對立統(tǒng)一的觀點,培養(yǎng)學(xué)生善于觀察、善于分析、正確預(yù)見、解決問題的能力。
    通過探究平方差公式和運用平方差公式分解因式的活動中,讓學(xué)生發(fā)表自己的觀點,從交流中獲益,讓學(xué)生獲得成功的體驗,鍛煉克服困難的意志建立自信心。
    1、在分解因式的過程中體會整式乘法與因式分解之間的聯(lián)系。
    2、通過公式a-b=(a+b)(a-b)的逆向變形,進一步發(fā)展觀察、歸納、類比、等能力,發(fā)展有條理地思考及語言表達能力。
    3、能運用提公因式法、公式法進行綜合運用。
    4、通過活動4,能將高偶指數(shù)冪轉(zhuǎn)化為2次指數(shù)冪,培養(yǎng)學(xué)生的化歸思想。
    靈活運用平方差公式進行分解因式。
    平方差公式的推導(dǎo)及其運用,兩種因式分解方法(提公因式法、平方差公式)的綜合運用。
    多項式的因式分解教案篇十三
    會應(yīng)用平方差公式進行因式分解,發(fā)展學(xué)生推理能力。
    2、過程與方法。
    經(jīng)歷探索利用平方差公式進行因式分解的過程,發(fā)展學(xué)生的逆向思維,感受數(shù)學(xué)知識的完整性。
    3、情感、態(tài)度與價值觀。
    培養(yǎng)學(xué)生良好的互動交流的習(xí)慣,體會數(shù)學(xué)在實際問題中的應(yīng)用價值。
    1、重點:利用平方差公式分解因式。
    2、難點:領(lǐng)會因式分解的解題步驟和分解因式的徹底性。
    3、關(guān)鍵:應(yīng)用逆向思維的方向,演繹出平方差公式,對公式的應(yīng)用首先要注意其特征,其次要做好式的變形,把問題轉(zhuǎn)化成能夠應(yīng)用公式的方面上來。
    采用“問題解決”的教學(xué)方法,讓學(xué)生在問題的'牽引下,推進自己的思維。
    一、觀察探討,體驗新知。
    【問題牽引】。
    請同學(xué)們計算下列各式。
    (1)(a+5)(a—5);(2)(4m+3n)(4m—3n)。
    【學(xué)生活動】動筆計算出上面的兩道題,并踴躍上臺板演。
    (1)(a+5)(a—5)=a2—52=a2—25;
    (2)(4m+3n)(4m—3n)=(4m)2—(3n)2=16m2—9n2。
    【教師活動】引導(dǎo)學(xué)生完成下面的兩道題目,并運用數(shù)學(xué)“互逆”的思想,尋找因式分解的規(guī)律。
    1、分解因式:a2—25;2、分解因式16m2—9n。
    【學(xué)生活動】從逆向思維入手,很快得到下面答案:
    (1)a2—25=a2—52=(a+5)(a—5)。
    (2)16m2—9n2=(4m)2—(3n)2=(4m+3n)(4m—3n)。
    【教師活動】引導(dǎo)學(xué)生完成a2—b2=(a+b)(a—b)的同時,導(dǎo)出課題:用平方差公式因式分解。
    平方差公式:a2—b2=(a+b)(a—b)。
    評析:平方差公式中的字母a、b,教學(xué)中還要強調(diào)一下,可以表示數(shù)、含字母的代數(shù)式(單項式、多項式)。
    二、范例學(xué)習(xí),應(yīng)用所學(xué)。
    【例1】把下列各式分解因式:(投影顯示或板書)。
    (1)x2—9y2;(2)16x4—y4;
    (3)12a2x2—27b2y2;(4)(x+2y)2—(x—3y)2;
    (5)m2(16x—y)+n2(y—16x)。
    【思路點撥】在觀察中發(fā)現(xiàn)1~5題均滿足平方差公式的特征,可以使用平方差公式因式分解。
    【教師活動】啟發(fā)學(xué)生從平方差公式的角度進行因式分解,請5位學(xué)生上講臺板演。
    【學(xué)生活動】分四人小組,合作探究。
    解:(1)x2—9y2=(x+3y)(x—3y);
    (5)m2(16x—y)+n2(y—16x)。
    =(16x—y)(m2—n2)=(16x—y)(m+n)(m—n)。
    多項式的因式分解教案篇十四
    3、選擇恰當(dāng)?shù)姆椒ㄟM行因式分解。
    4、應(yīng)用因式分解來解決一些實際問題。
    5、體驗應(yīng)用知識解決問題的樂趣。
    靈活運用因式分解解決問題。
    靈活運用恰當(dāng)?shù)囊蚴椒纸獾姆椒?,拓展練?xí)2、3。
    一、創(chuàng)設(shè)情景:若a=101,b=99,求a2-b2的值。
    利用因式分解往往能將一些復(fù)雜的運算簡單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。
    二、知識回顧。
    1、因式分解定義:把一個多項式化成幾個整式積的形式,這種變形叫做把這個多項式分解因式。
    判斷下列各式哪些是因式分解?(讓學(xué)生先思考,教師提問講解,讓學(xué)生明確因式分解的概念以及與乘法的關(guān)系)。
    (7)。2πr+2πr=2π(r+r)因式分解。
    2、。規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過程。
    分解因式要注意以下幾點:(1)。分解的對象必須是多項式。
    (2)。分解的結(jié)果一定是幾個整式的乘積的形式。(3)。要分解到不能分解為止。
    4、強化訓(xùn)練。
    教學(xué)引入。
    師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個長方形折疊就可以得到一個正方形?,F(xiàn)在請同學(xué)們拿出一個長方形紙條,按動畫所示進行折疊處理。
    動畫演示:
    場景一:正方形折疊演示。
    師:這就是我們得到的正方形。下面請同學(xué)們拿出三角板(刻度尺)和圓規(guī),我們來研究正方形的幾何性質(zhì)—邊、角以及對角線之間的關(guān)系。請大家測量各邊的長度、各角的大小、對角線的長度以及對角線交點到各頂點的長度。
    [學(xué)生活動:各自測量。]。
    鼓勵學(xué)生將測量結(jié)果與鄰近同學(xué)進行比較,找出共同點。
    講授新課。
    找一兩個學(xué)生表述其結(jié)論,表述是要注意糾正其語言的規(guī)范性。
    動畫演示:
    場景二:正方形的性質(zhì)。
    師:這些性質(zhì)里那些是矩形的性質(zhì)?
    [學(xué)生活動:尋找矩形性質(zhì)。]。
    動畫演示:
    場景三:矩形的性質(zhì)。
    師:同樣在這些性質(zhì)里尋找屬于菱形的性質(zhì)。
    [學(xué)生活動;尋找菱形性質(zhì)。]。
    動畫演示:
    場景四:菱形的性質(zhì)。
    師:這說明正方形具有矩形和菱形的全部性質(zhì)。
    及時提出問題,引導(dǎo)學(xué)生進行思考。
    師:根據(jù)這些性質(zhì),我們能不能給正方形下一個定義?怎么樣給正方形下一個準(zhǔn)確的定義?
    [學(xué)生活動:積極思考,有同學(xué)做躍躍欲試狀。]。
    師:請同學(xué)們回想矩形與菱形的定義,可以根據(jù)矩形與菱形的定義類似的給出正方形的定義。
    學(xué)生應(yīng)能夠向出十種左右的定義方式,其余作相應(yīng)鼓勵,把以下三種板書:
    “有一組鄰邊相等的矩形叫做正方形?!?BR>    “有一個角是直角的菱形叫做正方形?!?BR>    “有一個角是直角且有一組鄰邊相等的平行四邊形叫做正方形?!?BR>    師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系梳理一下。
    試一試把下列各式因式分解:。
    (1)。1-x2=(1+x)(1-x)(2)。4a2+4a+1=(2a+1)2。
    (3)。4x2-8x=4x(x-2)(4)。2x2y-6xy2=2xy(x-3y)。
    三、例題講解。
    例1、分解因式。
    (1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)。
    (3)(4)y2+y+。
    例2、分解因式。
    4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=。
    例3、分解因式。
    1、72-2(13x-7)22、8a2b2-2a4b-8b3。
    三、知識應(yīng)用。
    1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)。
    3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2。
    四、拓展應(yīng)用。
    2、20042+20xx被20xx整除嗎?
    3、若n是整數(shù),證明(2n+1)2-(2n-1)2是8的倍數(shù)。
    五、課堂小結(jié):今天你對因式分解又有哪些新的認(rèn)識?
    多項式的因式分解教案篇十五
    各位評委、各位老師:
    大家好!今天我說課的題目是:《因式分解復(fù)習(xí)》。我準(zhǔn)備從如下幾個方面展示:教材分析,教法、學(xué)法分析,教學(xué)程序設(shè)計,評價與反思。
    一、教材分析。
    (一)教材的地位和作用。
    本章因式分解的內(nèi)容是多項式因式分解中一部分最基本的知識和基本的方法,今天所復(fù)習(xí)的內(nèi)容包括因式分解的有關(guān)概念,整式乘法與因式分解的區(qū)別和聯(lián)系,因式分解的四種基本方法(即提公因式法、運用公式法、分組分解法、十字相乘法),及因式分解的一般步驟。
    多項式因式分解是代數(shù)式中的重要內(nèi)容,它與前面的整式及后一章的分式聯(lián)系極為密切。因式分解的教學(xué)是在整式四則運算的基礎(chǔ)上進行的,因式分解的理論依據(jù)就是多項式乘法的逆變形。這部分內(nèi)容在分式的通分和約分有著直接的應(yīng)用,在解方程、二次根式及將三角函數(shù)式進行恒等變形等方面有著廣泛的應(yīng)用,也是中考的一個重要考點,可以說因式分解是代數(shù)恒等變形的一個重要工具,所以這部分知識掌握的好壞直接影響著學(xué)生今后對代數(shù)知識的學(xué)習(xí)和應(yīng)用。
    (二)教學(xué)的目標(biāo)和要求。
    從教材作用及適應(yīng)中考要求我確定如下教學(xué)目標(biāo):
    1、知識目標(biāo):a、理解因式分解的概念。b、掌握因式分解的方法及一般步驟。c、會對多項式進行因式分解。
    2、能力目標(biāo):a、通過知識結(jié)構(gòu)圖的復(fù)習(xí)教學(xué),培養(yǎng)學(xué)生歸納總結(jié)能力。b、通過因式分解綜合練習(xí),提高學(xué)生觀察、分析能力。
    3、德育目標(biāo):a、培養(yǎng)學(xué)生運用數(shù)學(xué)知識解決實際問題的意識。b、培養(yǎng)學(xué)生勇于探索、迎難而上的堅強品質(zhì)。
    (三)教學(xué)的重點和難點。
    重點:因式分解的四種基本方法的運用難點:學(xué)生對分解因式的方法、技巧的掌握。
    二、教法與學(xué)法。
    因式分解是數(shù)學(xué)教學(xué)的難點之一,本堂課我采用知識點歸納因式分解的有關(guān)知識,使因式分解教學(xué)條理化、系統(tǒng)化,達到分散難點,最終突破難點的目的;因式分解的理論比較深,分解因式的方法多,變化技巧性較高,為了學(xué)生更好的掌握本節(jié)的內(nèi)容,我采用“提供練習(xí)――引導(dǎo)觀察――發(fā)現(xiàn)歸納”,讓學(xué)生總結(jié)出分解因式的方法的對應(yīng)關(guān)系,再通過適當(dāng)?shù)木毩?xí)實踐,及時消化鞏固,讓學(xué)生獲取知識。在引導(dǎo)觀察的過程中,啟發(fā)學(xué)生發(fā)現(xiàn)問題、解決問題,調(diào)動學(xué)生積極參與討論,肯定成績,使其具有成就感,提高他們學(xué)習(xí)的興趣和學(xué)習(xí)的積極性。
    三、教學(xué)過程分析。
    本節(jié)課通過知識點復(fù)習(xí),達到單元回顧,知識梳理的目的。我采用知識點歸納分解因式的有關(guān)知識,使學(xué)生能夠條理化、系統(tǒng)化地掌握分解因式。其中知識點一回顧了因式分解的基本概念。通過練習(xí)強調(diào)了因式分解與整式乘法之間的關(guān)系,使學(xué)生進一步明確因式分解的定義。
    知識點二回顧因式分解的四種方法,為了幫學(xué)生及時鞏固因式分解幾種常用方法,習(xí)題的篩選主要從以下兩方面考慮:1.鞏固分解因式的概念2.鞏固分解因式的方法的直接應(yīng)用,也進一步感知分解因式中“整體”思想的應(yīng)用。通過每種方法的題組練習(xí),及時糾正學(xué)生出現(xiàn)的錯誤。然后對如何應(yīng)用各種方法進行講評,要使學(xué)生明確學(xué)習(xí)因式分解重在抓住關(guān)鍵,“提公因式法”關(guān)鍵是準(zhǔn)確、徹底、隨時隨地;“運用公式法”關(guān)鍵是善于識別“平方項”;“分組分解法”關(guān)鍵在于分組。通過講評,使學(xué)生在進行分解因式時,能較快檢索到恰當(dāng)方法。讓學(xué)生在分解因式的時候,能做到“瞻前顧后”。即一般來講,我們在分解因式時,先看式子中有沒有公因式,再看能否利用公式法(平方差公式和完全平方公式),最后檢查是否分解到不能再分解。學(xué)生對因式分解方法有了進了一步了解之后,讓學(xué)生完成練習(xí),本組練習(xí)題難度加大,學(xué)生有疑問,可借助小組的智慧,共同解決。
    (檢測)通過這幾道題目檢測學(xué)生對知識的掌握和理解程度。四.評價與反思。
    新課標(biāo)要求我們合理選用教學(xué)素材,優(yōu)化教學(xué)內(nèi)容。所以我在教學(xué)中,選用具有現(xiàn)實性和趣味性的素材,并注意學(xué)科間的聯(lián)系。忠實于教材,但不迷信教材,在研究的基礎(chǔ)上使用教材,對于課堂和課外練習(xí)一部分取材于課本,而概念的引入?yún)s有別于教材。以激發(fā)學(xué)生的學(xué)習(xí)積極性和主動探究數(shù)學(xué)問題的熱情。教學(xué)方法合理化,不拘泥于形式。在教學(xué)中,通過問題串與活動系列,實施開放式教學(xué),隨處可見學(xué)生思維間碰撞的火花,發(fā)展了學(xué)生的思維能力,培養(yǎng)了學(xué)生思考的習(xí)慣,增強了學(xué)生運用數(shù)學(xué)知識解決實際問題的能力。
    無論是教學(xué)環(huán)節(jié)設(shè)計,還是題目練習(xí)的安排上,我都重視知識的產(chǎn)生過程,關(guān)注人的發(fā)展,意到個體間的差異,注意分層教學(xué),讓每一個學(xué)生在課堂上都有所感悟,都有著各自的數(shù)學(xué)體驗,不同的人在數(shù)學(xué)上都得到不同的發(fā)展。
    以上是我對《因式分解復(fù)習(xí)》一課的說課,不當(dāng)之處請各位評委、老師批評指正,謝謝。
    多項式的因式分解教案篇十六
    根據(jù)大綱要求,結(jié)合本教材特點和學(xué)生認(rèn)知能力,將教學(xué)目標(biāo)確定為:
    知識與技能:1、理解因式分解的含義,能判斷一個式子的變形是否為因式分解。
    2、熟練運用提取公因式法分解因式。
    過程與方法:在教學(xué)過程中,體會類比的數(shù)學(xué)思想逐步形成獨立思考,主動探索的習(xí)慣。
    情感態(tài)度與價值觀:通過現(xiàn)實情景,讓學(xué)生認(rèn)識到數(shù)學(xué)的應(yīng)用價值,并提高學(xué)生關(guān)注生存環(huán)境的環(huán)保意識。
    多項式的因式分解教案篇十七
    3、通過總結(jié)法則,培養(yǎng)學(xué)生的抽象概括能力、訓(xùn)練學(xué)生的綜合解題能力和計算能力。
    4、培養(yǎng)學(xué)生耐心細致、嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)思維品質(zhì)。
    2、理解法則導(dǎo)出的根據(jù)。
    一課時。
    投影儀、膠片。
    (1)用式子表示乘法分配律。
    (3)計算:
    (4)填空:
    規(guī)律:多項式除以單項式,先把這個多項式的每一項除以這個單項式,再把所得的商相加。
    (1)多項式除以單項式,商式與被除式的項數(shù)相同,不可丟項,如(1)中容易丟掉最后一項。
    (2)要求學(xué)生說出式子每步變形的依據(jù)。
    (3)讓學(xué)生養(yǎng)成檢驗的'習(xí)慣,利用乘除逆運算,檢驗除的對不對。
    說明:注意弄清題中運算順序,正確運用有關(guān)法則、公式。
    練習(xí):
    (1)p1501,2。
    (2)錯例辯析:
    有兩個錯誤:
    第一,丟項,被除式有三項,商式只有二項,丟了最后一項1;
    第二項是符號上錯誤,商式第一項的符號為“-”,正確答案為()。
    2、運用該法則應(yīng)注意什么?
    正確地把多項式除以單項式問題轉(zhuǎn)化為單項式除以單項式問題。計算不可丟項,分清“約掉”與“消掉”的區(qū)別:“約掉”對乘除法則言,不減項;“消掉”對加減法而言,減項。
    p152a組1,2。
    多項式的因式分解教案篇十八
    知識點:
    因式分解定義,提取公因式、應(yīng)用公式法、分組分解法、二次三項式的因式(十字相乘法、求根)、因式分解一般步驟。
    教學(xué)目標(biāo):
    理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項式的方法,能把簡單多項式分解因式。
    考查重難點與常見題型:
    考查因式分解能力,在中考試題中,因式分解出現(xiàn)的頻率很高。重點考查的分式提取公因式、應(yīng)用公式法、分組分解法及它們的綜合運用。習(xí)題類型以填空題為多,也有選擇題和解答題。
    教學(xué)過程:
    多項式的因式分解,就是把一個多項式化為幾個整式的積。分解因式要進行到每一個因式都不能再分解為止。分解因式的常用方法有:
    如多項式。
    其中m叫做這個多項式各項的公因式,m既可以是一個單項式,也可以是一個多項式。
    (2)運用公式法,即用。
    寫出結(jié)果。
    (3)十字相乘法。
    (4)分組分解法:把各項適當(dāng)分組,先使分解因式能分組進行,再使分解因式在各組之間進行。
    分組時要用到添括號:括號前面是“+”號,括到括號里的各項都不變符號;括號前面是“-”號,括到括號里的各項都改變符號。
    (5)求根公式法:如果有兩個根x1,x2,那么。
    1、教學(xué)實例:學(xué)案示例。
    2、課堂練習(xí):學(xué)案作業(yè)。
    3、課堂:
    4、板書:
    5、課堂作業(yè):學(xué)案作業(yè)。
    6、教學(xué)反思:
    多項式的因式分解教案篇十九
    教學(xué)過程中滲透類比的數(shù)學(xué)思想,形成新的知識結(jié)構(gòu)體系;設(shè)置探究式教學(xué),讓學(xué)生經(jīng)歷知識的形成,從而達到對知識的深刻理解與靈活應(yīng)用。
    學(xué)法:自主、合作、探索的學(xué)習(xí)方式。
    在教學(xué)活動中,既要提高學(xué)生獨立解決問題的能力,又要培養(yǎng)團結(jié)協(xié)作精神,拓展學(xué)生探究問題的深度與廣度,體現(xiàn)素質(zhì)教育的要求。