通過總結(jié)可以清晰地認(rèn)識到自己的成長和不足。寫總結(jié)需要注重文字的美感和語言的準(zhǔn)確性,力求語句通順、層次分明。最重要的是,總結(jié)不僅是一種寫作技巧,更是一種思維方式和方法,我們要將其融入到學(xué)習(xí)和生活的方方面面。
直線和圓的位置關(guān)系說課稿篇一
《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:在平面解析幾何初步的教學(xué)中,教師應(yīng)幫助學(xué)生經(jīng)歷如下過程:首先將幾何問題代數(shù)化,用代數(shù)的語言描述幾何要素及其關(guān)系,進(jìn)而將幾何問題轉(zhuǎn)化為代數(shù)問題;處理代數(shù)問題;分析代數(shù)結(jié)果的幾何含義,最終解決幾何問題。這種思想應(yīng)貫穿平面解析幾何教學(xué)的始終,幫助學(xué)生不斷地體會“數(shù)形結(jié)合”的思想方法。
《直線與圓的位置關(guān)系》這一節(jié)內(nèi)容出現(xiàn)在必修2的第二章《平面解析幾何初步》的第二節(jié)《圓與圓的方程》的第三小節(jié)的位置。就整套教材而言,《平面解析幾何初步》一章的教學(xué)主要是讓學(xué)生體會到用代數(shù)方法處理幾何問題的思想,為選修教材中的《圓錐曲線與方程》一章打好基礎(chǔ)。它是前兩節(jié)《直線與直線方程》和《圓與圓的方程》的綜合應(yīng)用,也為后一小節(jié)《圓與圓的位置關(guān)系》提供研究方法的一個重要示例,是整個《平面解析幾何初步》章節(jié)的重要內(nèi)容,起著貫穿始終、應(yīng)用反饋的重要作用,而且是貫徹“用代數(shù)方法處理幾何問題”思想和“數(shù)形結(jié)合”方法的重要的反映內(nèi)容和工具。在本章中的作用非常重要。
1、知識目標(biāo):
2、能力目標(biāo):
要使學(xué)生體會用代數(shù)方法處理幾何問題的思路和“數(shù)形結(jié)合”的思想方法。
四、教法分析:
1、教學(xué)方法:啟發(fā)式講授法、演示法、輔導(dǎo)法。
2、教材處理:
(1)例題1(1)(2)用兩種不同的辦法求解,讓學(xué)生自己體會這兩種方法。
通過老師引導(dǎo)和讓學(xué)生自己探索解決,反饋學(xué)生的解決情況。
(2)增加一個過一點(diǎn)求圓的切線方程的題型,幫助學(xué)生增加對直線與圓的認(rèn)識。
3、學(xué)法指導(dǎo):本節(jié)課的學(xué)法是繼續(xù)指導(dǎo)學(xué)生把新問題轉(zhuǎn)化為已有知識解決的化歸思想。
4、教具:多媒體電腦、投影儀、自做多媒體。
五、過程分析:
教學(xué)。
環(huán)節(jié)。
教學(xué)內(nèi)容。
設(shè)計意圖。
新課引入。
1、學(xué)生觀察日出照片,把觀察到的情況用自己的語言說出來,抽象出幾何圖形,在學(xué)生回答的基礎(chǔ)上,通過多媒體演示圓與直線的三種位置關(guān)系。讓學(xué)生感受到數(shù)學(xué)產(chǎn)生于生活,與生活密切相關(guān),并能使學(xué)生更好的直觀感受直線和圓的三種位置關(guān)系。然后引入本節(jié)課的課題。
2、在上一章,我們在學(xué)習(xí)了直線的方程后,研究了點(diǎn)和直線、直線與直線的位置關(guān)系,本章我們已經(jīng)學(xué)習(xí)了圓的方程,現(xiàn)在我們要研究直線與圓以及圓與圓的位置關(guān)系。
1數(shù)學(xué)產(chǎn)生于生活,與生活密切相關(guān)。
2、以實(shí)際問題引入有利于激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,有利于擴(kuò)展學(xué)生的視野。
新課講解。
一、知識點(diǎn)撥:
答:把圓心到直線的距離d和半徑r比較大小:
2、我們?nèi)绾卫米鴺?biāo)法將初中判斷直線和圓的位置關(guān)系代數(shù)化?
答:先利用點(diǎn)到直線的距離公式求圓心到直線的距離,再和半徑比較大小。
答:在直線與直線的方程這一節(jié)里,我們先把兩直線的方程聯(lián)立解方程組。
在思考直線和圓的位置關(guān)系時,我們可類似地把直線和圓的方程聯(lián)立解方程組。
二、例題講解:
1、讓學(xué)生先自學(xué)例1并回答下列問題:
(1)第二小題中,消去x的步驟怎樣?如何判斷方程組有沒有解?
(2)你認(rèn)為這兩種方法哪一種較簡單,為什么?
(2)方法一較簡單,因為方法二在求交點(diǎn)坐標(biāo)時仍要解方程組。
圓的切線l,求切線l的方程。
4、練習(xí):課本第83頁練習(xí)1、2。
問題1涉及初中知識,可使得學(xué)生比較容易上手。
問題2體現(xiàn)了將幾何問題代數(shù)化的思想。
問題3以前一章知識做類比,有利于培養(yǎng)學(xué)生類比歸納的能力。
通過前面對知識的分析,例題1對學(xué)生來說應(yīng)該比較容易,又通過兩個問題檢查學(xué)生的理解程度。
例3該例題有利于培養(yǎng)學(xué)生全面考慮問題的良好思維習(xí)慣。
課堂小結(jié)。
作業(yè)布置。
課本p86,a組4、6、b組1。
一、復(fù)習(xí)回顧。
例1。
例2。
例3。
直線和圓的位置關(guān)系說課稿篇二
1、教材分析:
《圓》這一章,是學(xué)生平面幾何學(xué)習(xí)中一個重要的內(nèi)容,如何在圓的教學(xué)中,讓學(xué)生在直線型圖形研究的基礎(chǔ)上進(jìn)一步去體會研究幾何圖形的思維和方法,深刻領(lǐng)悟幾何學(xué)的學(xué)科觀點(diǎn),有著非常重要的意義。下面是《圓》這一章的框架圖:
2、學(xué)情分析:
通過前面8章的有關(guān)幾何的學(xué)習(xí),學(xué)生已經(jīng)具備了一定的空間概念和幾何直觀,具有研究幾何圖形的思維和方法,有了上節(jié)課點(diǎn)和圓的位置關(guān)系的鋪墊,學(xué)生對于探究直線和圓的位置關(guān)系并不會感到陌生。
根據(jù)教學(xué)內(nèi)容的特點(diǎn)及學(xué)生的實(shí)際情況,確定了三個方面的目標(biāo):
2、在探究過程中,提高學(xué)生觀察、分析、抽象概括的能力,體會數(shù)學(xué)的基本思想和思維方式。
3、通過具體的探究活動,認(rèn)識數(shù)學(xué)具有抽象、嚴(yán)謹(jǐn)?shù)奶攸c(diǎn),體會數(shù)學(xué)的價值。
本節(jié)課的教學(xué)難點(diǎn)是能夠從幾何和代數(shù)兩個角度分析直線和圓的位置關(guān)系。
根據(jù)教學(xué)內(nèi)容、教學(xué)目標(biāo)和學(xué)生的認(rèn)知水平,主要采取教師啟發(fā)講授,學(xué)生探究學(xué)習(xí)的教學(xué)方法,教學(xué)中使用了幾何畫板來輔助教學(xué)。
為達(dá)到本節(jié)課的教學(xué)目標(biāo),突出重點(diǎn),突破難點(diǎn),我把教學(xué)過程設(shè)計為四個階段:復(fù)習(xí)舊知,引入課題;探索歸納,得出結(jié)論;拓展運(yùn)用,鞏固新知;歸納小結(jié),提高認(rèn)知。具體過程如下:
(一)復(fù)習(xí)舊知,引入課題。
提前準(zhǔn)備好的學(xué)案上,只有一個o,如右圖,
按照相應(yīng)要求作圖:
1、作點(diǎn)p。
2、過點(diǎn)p作點(diǎn)和圓的位置關(guān)系,為接下來探究直線和圓的位置關(guān)系奠定基礎(chǔ)。
對于問題2的預(yù)案:
提問1:分成幾類:
提問2:分類的依據(jù)是什么。
引導(dǎo)學(xué)生得出:根據(jù)直線和圓的公共點(diǎn)個數(shù),可以把直線和圓的位置關(guān)系分為三類:相交、相切、相離,板書相關(guān)概念。
(二)探索歸納,得出結(jié)論:
剛才是從幾何的角度(交點(diǎn)個數(shù))探究直線和圓的三種位置關(guān)系,這階段將從代數(shù)角度將直線和圓的位置關(guān)系數(shù)量化:
借助幾何畫板,讓學(xué)生從運(yùn)動變化的角度去理解直線和圓的三種位置關(guān)系:
圓具有軸對稱性,直線也具有軸對稱性,所以這個組合圖形本身就具有軸對稱性,其對稱軸是過圓心垂直于該直線的,考慮到對稱軸與直線的這種垂直關(guān)系在運(yùn)動的過程中具有不變性,所以我們在考慮用數(shù)量來刻畫直線和圓的位置關(guān)系時,要找的幾何量一定是和這種垂直關(guān)系密不可分的,因此,圓心到直線的距離就會被考慮,然后先讓學(xué)生猜想,再用幾何畫板演示加以嚴(yán)謹(jǐn)?shù)淖C明驗證猜想。
本章的研究主線就是圓的對稱性,此環(huán)節(jié)的設(shè)計正符合這個研究邏輯,所以我認(rèn)為此環(huán)節(jié)的設(shè)計是我的一個亮點(diǎn)。
(三)拓展運(yùn)用,鞏固新知:
1、已知圓的直徑是13cm,設(shè)圓心到直線的距離是d。
(1)若d=4.5cm,則直線與圓_______,有______個公共點(diǎn)。
(2)若d=6.5cm,則直線與圓_______,有______個公共點(diǎn)。
(3)若d=8cm,則直線與圓_________,有______個公共點(diǎn)。
2、已知圓的半徑為r,直線上一點(diǎn)到圓心的距離為d,若d=r,則直線與圓的位置關(guān)系是()。
a、相交b、相切c、相離d、相切或相交。
本階段的教學(xué)主要是通過對例題和練習(xí)的思考,使學(xué)生初步掌握直線和圓的位置關(guān)系,并能簡單應(yīng)用。
(三)歸納小結(jié),提高認(rèn)識:
知識層面上:
相交。
相切。
相離。
公共點(diǎn)的個數(shù)。
2
1
dr。
d=r。
dr。
公共點(diǎn)名稱。
交點(diǎn)。
切點(diǎn)。
無
直線名稱。
割線。
切線。
無
方法層面上:
經(jīng)歷了從不同角度分析問題和解決問題的過程,掌握解決問題的一些基本方法。
布置作業(yè):學(xué)練優(yōu)p59,60。
直線和圓的位置關(guān)系說課稿篇三
各位評委、老師,大家晚上好!我說課的題目是《直線與圓的位置關(guān)系》,我將通過以下五方面對本節(jié)課進(jìn)行解說。分別是教材分析、學(xué)情分析、教法分析、學(xué)法分析、過程分析。
一、教材分析。
本節(jié)課位于高中數(shù)學(xué)人教a版必修二第四章第二節(jié)(第一課時),它是在學(xué)生初中已經(jīng)學(xué)習(xí)了直線與圓的位置關(guān)系的基礎(chǔ)上,通過直線方程和圓的方程,利用坐標(biāo)法對直線與圓的位置關(guān)系的進(jìn)一步研究與探討。是從初等數(shù)學(xué)過渡到高等數(shù)學(xué)的開始和階梯。同時,這節(jié)課的方法和思想也為今后解決圓與圓的位置關(guān)系,以及圓錐曲線等幾何問題奠定了基礎(chǔ)。它起到了承前啟后的作用。
2.教學(xué)目標(biāo)。
知識與技能:理解直線與圓的位置關(guān)系;學(xué)會利用幾何法和代數(shù)法解決直線和圓的有關(guān)問題。
過程與方法:通過直線與圓位置關(guān)系的探究活動,經(jīng)歷知識的建構(gòu)過程,培養(yǎng)學(xué)生獨(dú)立思考、自主探究、動手實(shí)踐、合作交流的學(xué)習(xí)方式。強(qiáng)化學(xué)生用坐標(biāo)法解決幾何問題的意識,培養(yǎng)學(xué)生分析問題和靈活解決問題的能力。
情感、態(tài)度與價值觀:通過學(xué)生的自主探究、小組討論合作,培養(yǎng)學(xué)生的團(tuán)隊精神和主動學(xué)習(xí)的良好習(xí)慣。
3.教學(xué)重、難點(diǎn)。
難點(diǎn):把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,建立相應(yīng)的數(shù)學(xué)模型;靈活地運(yùn)用“數(shù)形結(jié)合”、解析法來解決直線與圓的相關(guān)問題。
二、學(xué)情分析。
學(xué)生在初中已經(jīng)學(xué)習(xí)了直線與圓的位置關(guān)系,在高中又學(xué)習(xí)了直線方程與圓的方程,并會用坐標(biāo)法解決簡單幾何問題。這些都有助于學(xué)生進(jìn)一步學(xué)習(xí)直線與圓的位置關(guān)系。而我們的學(xué)生已經(jīng)具備了獨(dú)立思考和探究學(xué)習(xí)的能力,但又欠缺空間想象和實(shí)際應(yīng)用能力。
三、教法分析。
根據(jù)以上分析,本節(jié)依據(jù)布魯納發(fā)現(xiàn)教學(xué)法,要學(xué)生通過建立模型、方法探究、合作交流、歸納總結(jié)的學(xué)習(xí)方式,以活動為主線,體現(xiàn)學(xué)生的主體地位。教師在本環(huán)節(jié)中作為問題的設(shè)計者、組織者、引導(dǎo)者、合作者,體現(xiàn)其主導(dǎo)地位。
四、學(xué)法分析。
問題是數(shù)學(xué)的核心,教師在學(xué)生思維發(fā)展的最近區(qū),通過不斷地設(shè)問,為學(xué)生創(chuàng)設(shè)情景,搭建平臺,提供一個自主探究,合作交流的環(huán)境,讓學(xué)生通過不斷地發(fā)現(xiàn)問題、分析問題、解決問題,以培養(yǎng)學(xué)生的思維能力。
五、教學(xué)過程。
教學(xué)就像一條河流,如何讓學(xué)生到達(dá)知識的彼岸,教師在這一過程中的設(shè)計與引導(dǎo)起到了至關(guān)重要的作用。而本節(jié)課我將從六個方面根據(jù)學(xué)生的實(shí)際情況進(jìn)行一個設(shè)計。
(一)情境設(shè)計,鋪墊導(dǎo)入(三分鐘)。
教育的藝術(shù)在于創(chuàng)設(shè)恰當(dāng)?shù)那榫?。本?jié)課創(chuàng)設(shè)的情景是以釣魚島問題導(dǎo)入(本環(huán)節(jié)大約三分鐘)。一艘日本漁船企圖非法登陸我國釣魚島,我國艦艇此刻正在附近海域巡邏。它們?nèi)咧g的位置關(guān)系如下:我國艦艇的雷達(dá)掃描半徑為30km,如果日本漁船不改變航線,我國艦艇能否通過雷達(dá)掃描發(fā)現(xiàn)它呢?情景一設(shè)計的目的在于讓學(xué)生構(gòu)建恰當(dāng)?shù)臄?shù)學(xué)模型,本質(zhì)在于探究“直線與圓的位置關(guān)系”引出了課題,讓學(xué)生從數(shù)學(xué)角度看待日常生活中的問題,增強(qiáng)學(xué)習(xí)的趣味性,使愛國熱情轉(zhuǎn)化為探索和學(xué)習(xí)的動力。
問題作為引導(dǎo)的核心,在這個問題上,我設(shè)計了如下問題:問題1:你能利用已有的平面幾何知識建立適當(dāng)?shù)臄?shù)學(xué)模型,來解決這一問題嗎?目的在于引導(dǎo)學(xué)生主動回憶初中所學(xué)的“直線與圓的三種位置關(guān)系”。并能說明這三種位置關(guān)系中公共點(diǎn)的個數(shù)以及圓心到直線的距離與半徑的大小關(guān)系。通過舊知識的回顧使學(xué)生發(fā)現(xiàn)新的問題,也使新的知識在原有的知識結(jié)構(gòu)中找到伸展點(diǎn),而這個伸展點(diǎn)就是問題2.(二)切入主題、提出課題(2分鐘)。
問題2:如何用直線方程和圓的方程來判斷它們之間的關(guān)系呢?
問題2切入了本節(jié)的中心議題,讓學(xué)生用自主探究的學(xué)習(xí)方式,引導(dǎo)學(xué)生用方程思想解決幾何的問題。
在此教師不用急于讓學(xué)生回答這個問題,而是通過一個具體的問題來進(jìn)行解答。這一具體問題我選擇了課本的例1,之所以選擇例1是因為例1直間給出了直線與圓的方程。學(xué)生只需要思考能用幾種方法來解決和判斷直線與圓的位置關(guān)系。引出了本節(jié)的重點(diǎn)。而第二問還要求學(xué)生求出交點(diǎn)坐標(biāo),目的在于讓學(xué)生進(jìn)一步認(rèn)識方程組解得意義。
(三)探索研究、解決問題(10分鐘)。
通過例1這一具體問題之后,可以讓學(xué)生嘗試歸納判斷直線與圓的位置關(guān)系的方法,在此我設(shè)置了兩個活動?;顒佣阂獙W(xué)生通過合作交流的方式將全班分成小組進(jìn)行合作交流探究?;顒尤阂獙W(xué)生通過歸納小結(jié)的學(xué)習(xí)方法,將各小組的成果進(jìn)行分享,最后進(jìn)行歸納總結(jié)。教師在這一過程中只需要做好引導(dǎo)者和組織者的作用。目的是讓學(xué)生主動的參與課堂,通過分析問題、解決問題培養(yǎng)學(xué)生的能力。而這種由特殊例子到一般方法的歸納,也符合學(xué)生的認(rèn)知結(jié)構(gòu)。讓學(xué)生在交流、探討和歸納的過程中理解和掌握本節(jié)課的重點(diǎn)。即直線與圓的位置關(guān)系的判斷方法。這里的方法可由學(xué)生歸納得出。第一種,幾何法,第二種,代數(shù)發(fā)。這兩種方法都體現(xiàn)了數(shù)學(xué)的思想,并且代數(shù)法對于今后解析幾何的方法應(yīng)用較多,也為后面解決圓錐曲線問題提供了方法依據(jù)。
(四)新知應(yīng)用、深化理解(20分鐘)。
掌握了方法接下來就是應(yīng)用,請學(xué)生利用“幾何法”和“代數(shù)法”解決情景一中的問題,達(dá)到學(xué)以致用,鞏固方法的目的。在此教師可以讓兩名學(xué)生通過不同的方法在黑板上演練,再讓其他學(xué)生進(jìn)行點(diǎn)評,教師在進(jìn)行小結(jié)即可。
例2是本節(jié)的難點(diǎn),如何突破難點(diǎn)呢?我將從例1的一個變式引出。求直線l被圓c截得的弦長ab.在此教師可以作適當(dāng)?shù)狞c(diǎn)撥,求弦長的方法很多,如兩點(diǎn)間距離公式,弦長公式以及圓心到直線的距離與半徑構(gòu)建直角三角形利用勾股定理進(jìn)行求解。通過一題多變,一題多解,不僅體現(xiàn)了新課標(biāo)的要求,還讓學(xué)生在練習(xí)中拓展思維、活用方法,為接下來解決例2這一難點(diǎn)突破奠定基礎(chǔ)。
例2通過剛才的變式,由淺入深,引入例2,環(huán)環(huán)相扣,讓學(xué)生體會利用“幾何法”和“代數(shù)法”解決直線和圓相交時有關(guān)弦長的問題,突破本節(jié)難點(diǎn)。
掌握本節(jié)重點(diǎn),突破難點(diǎn)之后,可以讓學(xué)生根據(jù)情景做適當(dāng)?shù)难由?。情景二:若我國艦艇雷達(dá)掃描半徑為rkm,此時日本非法漁船航線剛好和我國艦艇雷達(dá)掃描的圓形區(qū)域的邊緣相切,計算雷達(dá)掃描的半徑r的值。
情景二研究的是直線與圓相切的情況,同時是含有參數(shù)的問題,引導(dǎo)學(xué)生從運(yùn)動變化的角度來看待問題,提高了思維的梯度。
情景三:對于同樣的情景,你還能根據(jù)“直線與圓的位置關(guān)系”設(shè)置出哪些問題呢?
這一問題,目的在于培養(yǎng)學(xué)生的創(chuàng)新意識,可以作為課后的拓展題,讓學(xué)生通過小組探究來完成。實(shí)際上學(xué)生創(chuàng)設(shè)問題的過程就是檢驗我們教學(xué)成果的過程。
(五)總結(jié)提升、形成方法(5分鐘)。
在課后總結(jié)中,讓學(xué)生通過三個方面進(jìn)行總結(jié)。第一,方法總結(jié),在直線與圓的位置關(guān)系中,你掌握了哪些方法呢?學(xué)會了哪些應(yīng)用呢?你自己的思想上又得到了哪些提升呢?目的在于以自我小結(jié)的形式,對本節(jié)課進(jìn)行簡單的回顧與梳理,也是對所學(xué)內(nèi)容的再次鞏固與提升。
(六)課后作業(yè),鞏固提高在課后訓(xùn)練中,針對學(xué)生不同層次,我設(shè)計了這三種題型:1.鞏固題,2.提高題,探究題。目的在于尊重學(xué)生的個體差異性,調(diào)動學(xué)生的積極性,使每一個學(xué)生在教學(xué)中都能夠有所發(fā)展。
(七)板書設(shè)計。
這是我的板書設(shè)計,本節(jié)課以多媒體演示為主,板書設(shè)計以簡潔明了為主,左邊主要羅列了主要的方法和應(yīng)用。右邊作為例題演示和學(xué)生演練。
教學(xué)反思。
作為教育工作者,目的在于授之以漁。而教學(xué)過程意在于把科學(xué)知識作為培養(yǎng)學(xué)生思維能力的一個階梯。
本節(jié)課,以活動為主線,問題為載體,通過釣魚島問題導(dǎo)入,由淺入深,環(huán)環(huán)相扣,一個情景,兩種方法,三種問題,一氣呵成,這節(jié)課的重難點(diǎn)也得以突破。另外本節(jié)課還有許多不足,如合作學(xué)習(xí)沒達(dá)到預(yù)想的效果,組長沒能起到應(yīng)有的作用。教師對有些知識強(qiáng)調(diào)、點(diǎn)評不到位等。
我的說課到此結(jié)束,不妥之處,敬請各位老師批評指正,謝謝!
直線和圓的位置關(guān)系說課稿篇四
已知直線都是正數(shù))與圓相切,則以為三邊長的三角形是________三角形.
三、解答題。
當(dāng)為何值時,直線與圓有兩個公共點(diǎn)?有一個公共點(diǎn)?無公共點(diǎn)?
四、填空題。
若直線與圓相切,則實(shí)數(shù)的值等于________.
圓心為且與直線相切的圓的方程為________.
直線與圓相切,則實(shí)數(shù)等于________.
直線與圓相切,則________.
過點(diǎn)作圓的切線,且直線與平行,則與間的距離是________.
過點(diǎn),作圓的切線,則切線的條數(shù)為________條.
過點(diǎn)的圓與直線相切于點(diǎn),則圓的方程為________.
五、解答題。
過點(diǎn)作圓的切線,求此切線的方程.。
圓與直線相切于點(diǎn),且與直線也相切,求圓的方程.。
六、填空題。
由直線上的一點(diǎn)向圓引切線,則切線長的最小值為_____________.
七、解答題。
求滿足下列條件的圓的切線方程:
(1)經(jīng)過點(diǎn);
(2)斜率為;
(3)過點(diǎn).。
已知圓的方程為,求過的圓的切線方程.。
八、填空題。
直線被圓截得的弦長等于________.
直線被圓截得的弦長等于________.
直線被圓所截得的弦長為________.
圓截直線所得弦的長度為4,則實(shí)數(shù)的值是________.
設(shè)直線與圓相交于兩點(diǎn),若,則圓的面積為________.
直線被圓截得的弦長為________.
直線被圓所截得的弦長為________.
圓心坐標(biāo)為的圓在直線上截得的弦長為,那么這個圓的方程為________.
過點(diǎn)的直線被圓截得的弦長為,則直線的斜率為________.
過原點(diǎn)的直線與圓相交所得弦的長為2,則該直線的方程為________.
九、解答題。
圓心在直線上,圓過點(diǎn),且截直線所得弦長為,求圓的方程.。
十、填空題。
過點(diǎn)作圓的弦,其中最短弦的長為________.
十一、解答題。
已知圓,直線.
(1)求證:對,直線與圓總有兩個不同的交點(diǎn);
(2)若直線與圓交于兩點(diǎn),當(dāng)時,求的值.。
設(shè)圓上的點(diǎn)關(guān)于直線的對稱點(diǎn)仍在圓上,且直線被圓截得的弦長為,求圓的方程.。
已知圓,直線.。
證明:不論取什么實(shí)數(shù),直線與圓恒交于兩點(diǎn)。
求直線被圓截得的弦長最小時的方程,并求此時的弦長。
十二、填空題。
圓上到直線的距離等于1的點(diǎn)有________個.
在平面直角坐標(biāo)系中,已知圓上有且僅有四個點(diǎn)到直線的距離為1,則實(shí)數(shù)的取值范圍是________.
設(shè)圓上有且僅有兩個點(diǎn)到直線的距離等于1,則圓半徑的取值范圍是________.
直線與曲線有且只有一個公共點(diǎn),則b的取值范圍是_________。
若直線與圓恒有兩個交點(diǎn),則實(shí)數(shù)的取值范圍為________.
已知點(diǎn)滿足,則的取值范圍是________.
若過點(diǎn)的直線與曲線有公共點(diǎn),則直線的斜率的取值范圍為。
直線和圓的位置關(guān)系說課稿篇五
在本屆貴陽市中青年教師教學(xué)研討會中,修文中學(xué)提出打造有自己特色的“良知高效課堂”,整個課堂進(jìn)程分四步八環(huán)節(jié)。本人承擔(dān)的是直線與圓的位置關(guān)系這一堂課與大家交流,有不足之外請老師們批評指正。
1、教材地位。
從知識結(jié)構(gòu)來看,直線與圓的位置關(guān)系是對圓的方程應(yīng)用的延續(xù)和拓展,又是后續(xù)研究圓與圓的位置關(guān)系和直線與圓錐曲線的位置關(guān)系等內(nèi)容的基礎(chǔ)。在直線與圓的位置關(guān)系的判斷方法的建立過程中蘊(yùn)涵著諸多的數(shù)學(xué)思想方法,這對于進(jìn)一步探索、研究后續(xù)內(nèi)容有很強(qiáng)的啟發(fā)與示范作用。
2、學(xué)生情況。
對于直線和圓,學(xué)生已經(jīng)非常熟悉,并且知道直線與圓有三種位置關(guān)系:相離,相切和相交。從直線與圓的直觀感受上,學(xué)生懂得從圓心到直線的距離與圓的半徑相比較來研究直線與圓的位置關(guān)系。本節(jié)課,學(xué)生將進(jìn)一步挖掘直線與圓的位置關(guān)系中的“數(shù)”的關(guān)系,學(xué)會從不同角度分析思考問題,為后續(xù)學(xué)習(xí)打下基礎(chǔ)。另外學(xué)生在探究問題的能力,合作交流的意識及反思總結(jié)等方面有待加強(qiáng)。
3、教學(xué)目標(biāo)。
新課程標(biāo)準(zhǔn)的要求是能根據(jù)直線與圓的方程判斷其位置關(guān)系(相交、相切、相離),體會用代數(shù)方法處理幾何問題的思想,感受“形”與“數(shù)”的對立和統(tǒng)一;初步掌握數(shù)形結(jié)合的思想方法在研究數(shù)學(xué)問題中的應(yīng)用。
根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,本節(jié)課教學(xué)應(yīng)實(shí)現(xiàn)如下教學(xué)目標(biāo):
4、知識與技能。
直線和圓的位置關(guān)系說課稿篇六
5、過程與方法。
理解直線和圓的三種位置關(guān)系,感受直線和圓的位置與它們的方程所組成的二元二次方程組的解的對應(yīng)關(guān)系;體驗通過比較圓心到直線的距離和半徑之間的大小及通過方程組的解的個數(shù)判斷直線與圓的位置關(guān)系,能用直線和圓的方程解決一些條件下圓的切線問題;領(lǐng)會數(shù)形結(jié)合的數(shù)學(xué)思想方法,提高發(fā)現(xiàn)問題、分析問題、解決問題的能力。
6、情感態(tài)度與價值觀。
通過對本節(jié)課知識的探究活動,加深學(xué)生對解析法解決幾何問題的認(rèn)識,從而領(lǐng)悟其中所蘊(yùn)涵的數(shù)學(xué)思想,體驗探索中成功的喜悅,激發(fā)學(xué)習(xí)熱情,養(yǎng)成良好的學(xué)習(xí)習(xí)慣和品質(zhì)。
教法學(xué)法為了實(shí)現(xiàn)上述教學(xué)目標(biāo),本節(jié)課采取以下教學(xué)方法:
(1)恰當(dāng)?shù)睦枚嗝襟w課件,通過學(xué)生熟悉的實(shí)際生活問題引入課題,拉近數(shù)學(xué)與現(xiàn)實(shí)的距離,激發(fā)學(xué)生的問題意識和求知欲,調(diào)動學(xué)生主體參與的積極性。
(2)采用“啟發(fā)式”問題教學(xué)法,用環(huán)環(huán)相扣的問題將探究活動層層深入,站在學(xué)生思維的最近發(fā)展區(qū)上啟發(fā)誘導(dǎo)。
(3)在整個數(shù)學(xué)教學(xué)過程中,既要體現(xiàn)學(xué)生的主體地位,更要強(qiáng)調(diào)教師的主導(dǎo)地位,在科學(xué)講授的同時教會學(xué)生清晰的思維和嚴(yán)謹(jǐn)?shù)耐评怼?BR> 在學(xué)法上注重以下幾點(diǎn):
(2)在用代數(shù)法解決直線與圓的位置關(guān)系時,要能夠明確運(yùn)算方向,把握關(guān)鍵步驟,正確的處理較為復(fù)雜數(shù)據(jù)。
課堂結(jié)構(gòu)設(shè)計:
整個教學(xué)過程是四步組成,自主學(xué)習(xí),合作探究,老師輔導(dǎo)、課堂展示。共分為八個環(huán)節(jié),復(fù)習(xí)、獨(dú)立訓(xùn)練、相互探討、老師參與、形成結(jié)論、課堂展示、評價(互評師評)、反思。
教學(xué)過程設(shè)計:
通過問題情境,激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生找到要學(xué)的與以學(xué)知識之間的聯(lián)系;問題串的設(shè)置可讓學(xué)生主動參與到學(xué)習(xí)中來;在判斷方法的形成與應(yīng)用的探究中,師生的相互溝通調(diào)動學(xué)生的積極性,培養(yǎng)團(tuán)隊精神;知識的生成和問題的解決,培養(yǎng)學(xué)生獨(dú)立思考的能力,激發(fā)學(xué)生的創(chuàng)新思維;通過練習(xí)檢測學(xué)生對知識的掌握情況;根據(jù)學(xué)生在課堂小結(jié)中的表現(xiàn)和課后作業(yè)情況,查缺補(bǔ)漏,以便調(diào)控教學(xué)。
回顧反思,拓展延伸:
直線和圓的位置關(guān)系說課稿篇七
本節(jié)課的教學(xué),我認(rèn)為成功之處有以下幾點(diǎn):
1.由日落的三張照片(太陽與地平線相離、相切、相交)引入,學(xué)生比較感興趣,充分感受生活中反映直線與圓位置關(guān)系的現(xiàn)象,體驗到數(shù)學(xué)來源于實(shí)踐。對生活中的數(shù)學(xué)問題發(fā)生好奇,這是學(xué)生最容易接受的學(xué)習(xí)數(shù)學(xué)的好方法。新課標(biāo)下的數(shù)學(xué)教學(xué)的基本特點(diǎn)之一就是密切關(guān)注數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系,從生活中“找”數(shù)學(xué),“想”數(shù)學(xué),讓學(xué)生真正感受到生活之中處處有數(shù)學(xué)。
2.在探索直線和圓位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,我先引導(dǎo)學(xué)生回顧點(diǎn)和圓的位置關(guān)系所對應(yīng)的數(shù)量關(guān)系,啟發(fā)學(xué)生運(yùn)用類比的思想來思考問題,解決問題,學(xué)生很輕松的就能夠得出結(jié)論,從而突破本節(jié)課的難點(diǎn),使學(xué)生充分理解位置關(guān)系與數(shù)量關(guān)系的相互轉(zhuǎn)化,這種等價關(guān)系是研究切線的理論基礎(chǔ),從而為下節(jié)課探索切線的性質(zhì)打好基礎(chǔ)。
3.本著學(xué)習(xí)----總結(jié)----再學(xué)習(xí)的思維教學(xué)模式,讓學(xué)生逐步理解知識掌握知識能夠很好的應(yīng)用知識。
同時,我也感覺到本節(jié)課的設(shè)計有不妥之處,主要有以下三點(diǎn):1.學(xué)生觀察得到直線和圓的三種位置關(guān)系后,我設(shè)計的是直接給出定義可以改為讓學(xué)生下定義,師生共同討論的形式給學(xué)生以思維想象的空間,充分調(diào)動學(xué)生的積極性,使學(xué)生實(shí)現(xiàn)自主探究。
2.本節(jié)課中擴(kuò)展應(yīng)用環(huán)節(jié)圖形給的不是很明確,如果能給出精確的圖形那么學(xué)生會容易一些。
3.由于前邊時間有些過長,所以小結(jié)部分有些倉促。
直線和圓的位置關(guān)系說課稿篇八
三、目的分析:
1、知識目標(biāo):
2、能力目標(biāo):
要使學(xué)生體會用代數(shù)方法處理幾何問題的思路和“數(shù)形結(jié)合”的思想方法。
四、教法分析:
1、教學(xué)方法:啟發(fā)式講授法、演示法、輔導(dǎo)法。
2、教材處理:
(1)例題1(1)(2)用兩種不同的辦法求解,讓學(xué)生自己體會這兩種方法。
通過老師引導(dǎo)和讓學(xué)生自己探索解決,反饋學(xué)生的解決情況。
(2)增加一個過一點(diǎn)求圓的切線方程的題型,幫助學(xué)生增加對直線與圓的認(rèn)識。
3、學(xué)法指導(dǎo):本節(jié)課的學(xué)法是繼續(xù)指導(dǎo)學(xué)生把新問題轉(zhuǎn)化為已有知識解決的化歸思想。
4、教具:多媒體電腦、投影儀、自做多媒體。
五、過程分析:
教學(xué)。
環(huán)節(jié)。
教學(xué)內(nèi)容。
設(shè)計意圖。
新課引入。
1、學(xué)生觀察日出照片,把觀察到的情況用自己的語言說出來,抽象出幾何圖形,在學(xué)生回答的基礎(chǔ)上,通過多媒體演示圓與直線的三種位置關(guān)系。讓學(xué)生感受到數(shù)學(xué)產(chǎn)生于生活,與生活密切相關(guān),并能使學(xué)生更好的直觀感受直線和圓的三種位置關(guān)系。然后引入本節(jié)課的課題。
2、在上一章,我們在學(xué)習(xí)了直線的方程后,研究了點(diǎn)和直線、直線與直線的位置關(guān)系,本章我們已經(jīng)學(xué)習(xí)了圓的方程,現(xiàn)在我們要研究直線與圓以及圓與圓的位置關(guān)系。
1數(shù)學(xué)產(chǎn)生于生活,與生活密切相關(guān)。
2、以實(shí)際問題引入有利于激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,有利于擴(kuò)展學(xué)生的視野。
新課講解。
一、知識點(diǎn)撥:
答:把圓心到直線的距離d和半徑r比較大小:
直線和圓的位置關(guān)系說課稿篇九
在本屆貴陽市中青年教師教學(xué)研討會中,修文中學(xué)提出打造有自己特色的“良知高效課堂”,整個課堂進(jìn)程分四步八環(huán)節(jié)。本人承擔(dān)的是直線與圓的位置關(guān)系這一堂課與大家交流,有不足之外請老師們批評指正。
從知識結(jié)構(gòu)來看,直線與圓的位置關(guān)系是對圓的方程應(yīng)用的延續(xù)和拓展,又是后續(xù)研究圓與圓的位置關(guān)系和直線與圓錐曲線的位置關(guān)系等內(nèi)容的基礎(chǔ)。在直線與圓的位置關(guān)系的判斷方法的建立過程中蘊(yùn)涵著諸多的數(shù)學(xué)思想方法,這對于進(jìn)一步探索、研究后續(xù)內(nèi)容有很強(qiáng)的啟發(fā)與示范作用。
對于直線和圓,學(xué)生已經(jīng)非常熟悉,并且知道直線與圓有三種位置關(guān)系:相離,相切和相交。從直線與圓的直觀感受上,學(xué)生懂得從圓心到直線的距離與圓的半徑相比較來研究直線與圓的位置關(guān)系。本節(jié)課,學(xué)生將進(jìn)一步挖掘直線與圓的位置關(guān)系中的“數(shù)”的關(guān)系,學(xué)會從不同角度分析思考問題,為后續(xù)學(xué)習(xí)打下基礎(chǔ)。另外學(xué)生在探究問題的能力,合作交流的意識及反思總結(jié)等方面有待加強(qiáng)。
新課程標(biāo)準(zhǔn)的要求是能根據(jù)直線與圓的方程判斷其位置關(guān)系(相交、相切、相離),體會用代數(shù)方法處理幾何問題的思想,感受“形”與“數(shù)”的對立和統(tǒng)一;初步掌握數(shù)形結(jié)合的思想方法在研究數(shù)學(xué)問題中的應(yīng)用。
根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,本節(jié)課教學(xué)應(yīng)實(shí)現(xiàn)如下教學(xué)目標(biāo):
掌握用圓心到直線的距離d與圓的半徑r的大小比較,判斷直線與圓位置關(guān)系,幾何法。
理解直線和圓的三種位置關(guān)系,感受直線和圓的位置與它們的方程所組成的二元二次方程組的解的對應(yīng)關(guān)系;體驗通過比較圓心到直線的距離和半徑之間的大小及通過方程組的解的個數(shù)判斷直線與圓的位置關(guān)系,能用直線和圓的方程解決一些條件下圓的切線問題;領(lǐng)會數(shù)形結(jié)合的數(shù)學(xué)思想方法,提高發(fā)現(xiàn)問題、分析問題、解決問題的能力。
通過對本節(jié)課知識的探究活動,加深學(xué)生對解析法解決幾何問題的認(rèn)識,從而領(lǐng)悟其中所蘊(yùn)涵的數(shù)學(xué)思想,體驗探索中成功的喜悅,激發(fā)學(xué)習(xí)熱情,養(yǎng)成良好的學(xué)習(xí)習(xí)慣和品質(zhì)。
教法學(xué)法為了實(shí)現(xiàn)上述教學(xué)目標(biāo),本節(jié)課采取以下教學(xué)方法:
(1)恰當(dāng)?shù)睦枚嗝襟w課件,通過學(xué)生熟悉的實(shí)際生活問題引入課題,拉近數(shù)學(xué)與現(xiàn)實(shí)的距離,激發(fā)學(xué)生的問題意識和求知欲,調(diào)動學(xué)生主體參與的積極性。
(2)采用“啟發(fā)式”問題教學(xué)法,用環(huán)環(huán)相扣的問題將探究活動層層深入,站在學(xué)生思維的最近發(fā)展區(qū)上啟發(fā)誘導(dǎo)。
(3)在整個數(shù)學(xué)教學(xué)過程中,既要體現(xiàn)學(xué)生的主體地位,更要強(qiáng)調(diào)教師的主導(dǎo)地位,在科學(xué)講授的同時教會學(xué)生清晰的思維和嚴(yán)謹(jǐn)?shù)耐评怼?BR> 在學(xué)法上注重以下幾點(diǎn):
(2)在用代數(shù)法解決直線與圓的位置關(guān)系時,要能夠明確運(yùn)算方向,把握關(guān)鍵步驟,正確的處理較為復(fù)雜數(shù)據(jù)。
整個教學(xué)過程是四步組成,自主學(xué)習(xí),合作探究,老師輔導(dǎo)、課堂展示。共分為八個環(huán)節(jié),復(fù)習(xí)、獨(dú)立訓(xùn)練、相互探討、老師參與、形成結(jié)論、課堂展示、評價(互評師評)、反思。
通過問題情境,激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生找到要學(xué)的與以學(xué)知識之間的聯(lián)系;問題串的設(shè)置可讓學(xué)生主動參與到學(xué)習(xí)中來;在判斷方法的形成與應(yīng)用的探究中,師生的相互溝通調(diào)動學(xué)生的積極性,培養(yǎng)團(tuán)隊精神;知識的生成和問題的解決,培養(yǎng)學(xué)生獨(dú)立思考的能力,激發(fā)學(xué)生的創(chuàng)新思維;通過練習(xí)檢測學(xué)生對知識的掌握情況;根據(jù)學(xué)生在課堂小結(jié)中的表現(xiàn)和課后作業(yè)情況,查缺補(bǔ)漏,以便調(diào)控教學(xué)。
直線和圓的位置關(guān)系說課稿篇十
1、教材的地位和作用。
圓的教學(xué)在平面幾何中乃至整個中學(xué)教學(xué)都占有重要的地位,而直線和圓的位置關(guān)系的應(yīng)用又比較廣泛,它是初中幾何的綜合運(yùn)用,又是在學(xué)習(xí)了點(diǎn)和圓的位置關(guān)系的基礎(chǔ)上進(jìn)行的,為后面的圓與圓的位置關(guān)系作鋪墊的一節(jié)課,在今后的解題及幾何證明中,將起到重要的作用。
2、教學(xué)目標(biāo):
根據(jù)學(xué)生已有的認(rèn)知的基礎(chǔ)及本課的'教材的地位、作用,依據(jù)教學(xué)大綱的確定本課的教學(xué)目標(biāo)為:
(1)知識目標(biāo):
a、知道直線和圓相交、相切、相離的定義。
會根據(jù)直線和圓相切的定義畫出已知圓的切線。
c、根據(jù)圓心到直線的距離與圓的半徑之間的數(shù)量關(guān)系揭示直線和圓的位置。
2)能力目標(biāo):
讓學(xué)生通過觀察、看圖、列表、分析、對比,能找出圓心到直線的距離和圓的半徑之間的數(shù)量關(guān)系,揭示直線和圓的關(guān)系。此外,通過直線與圓的相對運(yùn)動,培養(yǎng)學(xué)生運(yùn)動變化的辨證唯物主義觀點(diǎn),通過對研究過程的反思,進(jìn)一步強(qiáng)化對分類和歸納的思想的認(rèn)識。
3)情感目標(biāo):
在解決問題中,教師創(chuàng)設(shè)情境導(dǎo)入新課,以觀察素材入手,像一輪紅日從海平面升起的圖片,提出問題,讓學(xué)生結(jié)合學(xué)過的知識,把它們抽象出幾何圖形,再表示出來。讓學(xué)生感受到實(shí)際生活中,存在的直線和圓的三種位置關(guān)系,便于學(xué)生用運(yùn)動的觀點(diǎn)觀察圓與直線的位置關(guān)系,有利于學(xué)生把實(shí)際的問題抽象成數(shù)學(xué)模型,也便于學(xué)生觀察直線和圓的公共點(diǎn)的變化。
3。教材的重點(diǎn)難點(diǎn)。
直線和圓的三種位置關(guān)系是重點(diǎn),本課的難點(diǎn)是直線和圓的三種位置關(guān)系的性質(zhì)與判定的應(yīng)用。
4。在教學(xué)中如何突破這個重點(diǎn)和難點(diǎn)。
解決重點(diǎn)的方法主要是:
(2)把直線在圓的上下移動,引導(dǎo)學(xué)生用運(yùn)動的觀點(diǎn)觀察直線和圓的位置關(guān)系,并讓他們發(fā)現(xiàn)直線與圓的公共點(diǎn)的個數(shù),揭示直線和圓相交、相切、相離的定義,歸納直線和圓的三種位置關(guān)系。是什么?)。
(1)突破直線和圓不能有兩個以上的公共點(diǎn),讓學(xué)生討論,最后明確否定(因為直線和圓有三個或三個以上的公共點(diǎn),那么這與不在同一條直線上的三點(diǎn)就可以作一個圓,相矛盾)。
(2)把直線在圓的上下移動,引導(dǎo)學(xué)生用運(yùn)動的觀點(diǎn)觀察直線和圓的位置關(guān)系,并讓他們發(fā)現(xiàn)直線與圓的公共點(diǎn)的個數(shù),揭示直線和圓相交、相切、相離的定義,歸納直線和圓的三種位置關(guān)系。
(3)突破直線和圓有唯一一個公共點(diǎn)是直線和圓相切(指直線與圓有一個并且只有一個公共點(diǎn),它與有一個公共點(diǎn)的含義不同)。
(4)突破直線和圓的位置關(guān)系的(如果圓o的半徑為r,圓心到直線的距離為d,
1,直線l與圓o相交=dr。
3,直線l與圓o相離=dr。
式子的左邊反映是兩個圖形(直線和圓)的位置關(guān)系的性質(zhì),右邊是反映直線和圓的位置關(guān)系的判定。二、學(xué)情分析根據(jù)初三學(xué)生活潑好動好奇心和求知欲都非常強(qiáng),并且在初一,初二基礎(chǔ)上初三學(xué)生有一定的分析力,歸納力和根據(jù)他們的特點(diǎn),聯(lián)系生活實(shí)際中結(jié)合問題結(jié)合本節(jié)課適合學(xué)生的學(xué)習(xí)材料注重激發(fā)學(xué)生的求知欲讓他們真正理解這節(jié)課是在學(xué)習(xí)了點(diǎn)和圓的位置關(guān)系的基礎(chǔ)上,進(jìn)行的為后面的圓與圓的位置關(guān)系作鋪墊的一節(jié)課。通過直線與圓的相對運(yùn)動,揭示直線與圓的位置關(guān)系,培養(yǎng)學(xué)生運(yùn)動變化的辨證唯物主義觀點(diǎn);通過對研究過程的反思,進(jìn)一步強(qiáng)化對分類和化歸思想的認(rèn)識。
三、教法設(shè)計復(fù)習(xí)點(diǎn)和圓的位置關(guān)系,引導(dǎo)學(xué)生用類比的方法來研究直線與圓的位置關(guān)系,在直線與圓的位置關(guān)系的判定的過程中,采用小組討論的方法,培養(yǎng)學(xué)生互助、協(xié)作的精神。學(xué)生質(zhì)疑這一環(huán)節(jié)充分培養(yǎng)學(xué)生敢于提問的習(xí)慣,做到不懂就問。學(xué)生小結(jié),讓學(xué)生自己歸納本節(jié)課學(xué)習(xí)的內(nèi)容,培養(yǎng)學(xué)生用數(shù)學(xué)語言歸納問題的能力。
1,學(xué)生觀察日出照片,把觀察到的情況用自己的語言說出來,抽象出幾何圖形在學(xué)生回答的基礎(chǔ)上,教師通過多媒體演示圓與直線的三種位置關(guān)系。
2,進(jìn)一步讓學(xué)生感受到數(shù)學(xué)產(chǎn)生于生活,與生活密切相關(guān),并能使學(xué)生更好的直觀感受直線和圓的三種位置關(guān)系。
3,強(qiáng)調(diào)公共點(diǎn)的唯一性。給出定義時,盡可能地有學(xué)生來概括和敘述,有利于提高學(xué)生的語言表達(dá)能力。
4,有利于新舊知識的聯(lián)系,培養(yǎng)學(xué)生的遷移能力,掌握用定量研究來解決問題的方法。在學(xué)生回答問題的基礎(chǔ)上,教師打出直線和圓的位置關(guān)系以及它們的數(shù)量特征。
5,通過直線到圓的距離d和半徑r這兩個數(shù)量之間的關(guān)系來研究直線和圓的位置關(guān)系。這樣很好的體現(xiàn)數(shù)形結(jié)合的思想,使較為復(fù)雜的問題能簡單化。
6,讓學(xué)生自己歸納本節(jié)課學(xué)習(xí)的內(nèi)容,培養(yǎng)學(xué)生用數(shù)學(xué)語言歸納問題的能力。
復(fù)習(xí)點(diǎn)和圓的位置關(guān)系,引導(dǎo)學(xué)生用類比的方法來研究直線與圓的位置關(guān)系,在直線與圓的位置關(guān)系的判定的過程中,采用小組討論的方法,培養(yǎng)學(xué)生互助、協(xié)作的精神。學(xué)生質(zhì)疑這一環(huán)節(jié)充分培養(yǎng)學(xué)生敢于提問的習(xí)慣,做到不懂就問。
學(xué)生小結(jié),讓學(xué)生自己歸納本節(jié)課學(xué)習(xí)的內(nèi)容,培養(yǎng)學(xué)生用數(shù)學(xué)語言歸納問題的能力。
創(chuàng)設(shè)情境、導(dǎo)入新課、新授、鞏固練習(xí)、學(xué)生質(zhì)疑、學(xué)生小結(jié)、布置作業(yè)。
[提問]通過觀察、演示,你知道直線和圓有幾種位置關(guān)系?
[討論]一輪紅日從海平面升起的照片。
[新授]給出相交、相切、相離的定義。
[類比]復(fù)習(xí)點(diǎn)與圓的位置關(guān)系,討論它們的數(shù)量關(guān)系。通過類比,從而得出直線與圓的位置關(guān)系的性質(zhì)定理及判定方法。
[鞏固練習(xí)]例1,
出示例題。
(1)r=2cm;(2)r=2。4cm;(3)r=3cm。
由學(xué)生填寫下例表格。
公共點(diǎn)個數(shù)。
圓心到直線距離d與半徑r關(guān)系。
公共點(diǎn)名稱。
直線名稱。
圖形。
補(bǔ)充練習(xí)的答案由師生一起歸納填寫。
教學(xué)小結(jié)。
直線與圓的位置關(guān)系,讓學(xué)生自己歸納本節(jié)課學(xué)習(xí)的內(nèi)容,培養(yǎng)學(xué)生用數(shù)學(xué)語言歸納問題的能力。然后老師在多媒體打出圖表。
本節(jié)課主要采用了歸納、演繹、類比的思想方法,從現(xiàn)實(shí)生活中抽象出數(shù)學(xué)模型,體現(xiàn)了數(shù)學(xué)產(chǎn)生于生活的思想,并且將新舊知識進(jìn)行了類比、轉(zhuǎn)化,充分發(fā)揮了學(xué)生的主觀能動性,體現(xiàn)了學(xué)生是學(xué)習(xí)的主體,真正成為學(xué)習(xí)的主人,轉(zhuǎn)變了角色。
六,板書設(shè)計:
1,相交、相切、相離的定義。
例1:
三,課堂練習(xí)。
四,小結(jié)。
直線和圓的位置關(guān)系說課稿篇十一
楊跟上。
一:教材:
人教版九年義務(wù)教育九年級數(shù)學(xué)上冊二:學(xué)情分析。
初三學(xué)生已經(jīng)具備一定的獨(dú)立思考和探索能力,并能在探索過程中形成自己的觀點(diǎn),能在傾聽別人意見的過程中逐漸完善自己的想法,因此本節(jié)課設(shè)計了探究活動,給學(xué)生提供探索與交流的空間,體現(xiàn)知識的形成過程。
三教學(xué)目標(biāo)(知識,技能,情感態(tài)度、價值觀)。
1、知識與技能。
能綜合運(yùn)用以前的數(shù)學(xué)知識解決與本節(jié)有關(guān)的實(shí)際問題。
3.情感態(tài)度與價值觀。
(1)通過和點(diǎn)與圓的位置關(guān)系的類比,學(xué)習(xí)直線與圓的位置關(guān)系,培養(yǎng)學(xué)生類比的思維方法。
(2)培養(yǎng)學(xué)生的相互合作精神四:教學(xué)重點(diǎn)與難點(diǎn):
五:教學(xué)方法:
啟發(fā)探究。
六、教學(xué)環(huán)境及資源準(zhǔn)備。
1、教學(xué)環(huán)境:學(xué)校多媒體教室。2.教學(xué)資源。
(1).教師多媒體課件,(2)學(xué)生準(zhǔn)備硬幣或其他類似圓的用具。
1、自主學(xué)習(xí)策略:通過提出問題讓學(xué)生思考,幫助學(xué)生學(xué)會探索直線與圓的位置關(guān)系關(guān)系。
2、合作探究策略:通過學(xué)生動手操作與相互交流,激發(fā)學(xué)生學(xué)習(xí)興趣,讓學(xué)生在輕松愉快的教學(xué)氣氛下之下掌握直線與圓的位置關(guān)系。
3、理論聯(lián)系實(shí)際策略;通過學(xué)生綜合運(yùn)用數(shù)學(xué)知識解決直線與圓的位置關(guān)系的實(shí)際問題,培養(yǎng)學(xué)生利用知識解決實(shí)際問題的能力。
教學(xué)流程:
一.復(fù)習(xí)回顧,導(dǎo)入新課。
由點(diǎn)和圓的位置關(guān)系設(shè)計了兩個問題,讓學(xué)生獨(dú)立思考,然后回答問題,為下面做準(zhǔn)備。
二:合作交流,探求新知。
第一步,學(xué)生對直線與圓的公共點(diǎn)個數(shù)變化情況的探索。
通過學(xué)生動手操作和探索,然后相互交流,并畫出圖形,得出直線與圓的公共點(diǎn)個數(shù)的變化情況。
第二步,師生共同歸納出直線與圓相交、相切等有關(guān)概念。
1.設(shè)圓o的半徑為r,圓心o到直線的距離為d,那么直線與圓在不同的位置關(guān)系下,d與r有什么樣的數(shù)量關(guān)系?請你分別畫出圖形,認(rèn)真觀察和分析圖形,類比點(diǎn)和圓的位置關(guān)系,看看d和r什么數(shù)量關(guān)系。
我設(shè)計了兩個問題,使學(xué)生學(xué)會通過計算圓心到直線的距離,來判斷直線與圓的位置關(guān)系。四:鞏固提高:
在本節(jié)的教學(xué)中,我設(shè)計了兩個練習(xí)、一個作業(yè)加以鞏固,使學(xué)生能更好的掌握本節(jié)內(nèi)容。
直線和圓的位置關(guān)系說課稿篇十二
重點(diǎn):的性質(zhì)和判定。因為它是本單元的基礎(chǔ)(如:“切線的判斷和性質(zhì)定理”是在它的基礎(chǔ)上研究的),也是高中解析幾何中研究的基礎(chǔ)。
難點(diǎn):在對性質(zhì)和判定的研究中,既要有歸納概括能力,又要有轉(zhuǎn)換思想和能力,所以是本節(jié)的難點(diǎn);另外對“相切”要分清直線與圓有唯一公共點(diǎn)是指有一個并且只有一個公共點(diǎn),與有一個公共點(diǎn)含義不同(這一點(diǎn)到直線和曲線相切時很重要),學(xué)生較難理解。
3.教法建議。
本節(jié)內(nèi)容需要一個課時。
(2)在中,以“形”歸納“數(shù)”,以“數(shù)”判斷“形”為主線,開展在組織下,以學(xué)生為主體,活動式.
第12頁。
直線和圓的位置關(guān)系說課稿篇十三
b.會根據(jù)直線和圓的方程用代數(shù)法和幾何法判斷直線與圓的位置關(guān)系;
c.掌握直線和圓的位置關(guān)系判定的應(yīng)用,會求已知圓的交線和切線方程。
(2)能力目標(biāo)
讓學(xué)生通過觀察,分析,總結(jié)歸納出根據(jù)直線與圓的方程來判斷直線與圓的位置關(guān)系的方法,培養(yǎng)學(xué)生分析問題解決問題的能力,讓學(xué)生對坐標(biāo)法有進(jìn)一步的了解,并能用參數(shù)法、數(shù)形結(jié)合的方法去分析、解決相應(yīng)的數(shù)學(xué)問題,同時訓(xùn)練學(xué)生數(shù)學(xué)思維,培養(yǎng)學(xué)生尋求一題多解的能力。
(3)情感目標(biāo)
通過學(xué)生自己動手實(shí)驗和探索,培養(yǎng)學(xué)生動手能力和發(fā)現(xiàn)問題的能力;通過師生互動,生生互動的教學(xué)活動過程,形成學(xué)生的體驗性認(rèn)識,體會成功的愉悅,提高數(shù)學(xué)學(xué)習(xí)的興趣,樹立學(xué)好數(shù)學(xué)的信心,培養(yǎng)鍥而不舍的鉆研精神和合作交流的科學(xué)態(tài)度。
重點(diǎn):直線和圓的三種位置關(guān)系
難點(diǎn):直線和圓的三種位置關(guān)系的性質(zhì)和判定的應(yīng)用
教學(xué)方法:問題探究式、啟發(fā)式引導(dǎo)、參與式探究、互動式討論
學(xué)習(xí)方法:自主探究、觀察發(fā)現(xiàn)、合作交流、歸納總結(jié)。
教學(xué)手段:借助多媒體動態(tài)演示,構(gòu)建學(xué)生探究式學(xué)習(xí)的教學(xué)環(huán)境。
1、創(chuàng)設(shè)情景、引入新課;
2、引導(dǎo)啟發(fā)、探索新知;
3、講練結(jié)合、鞏固新知;
4、知識拓展、深化提高;
5、小結(jié)新知,畫龍點(diǎn)睛
6、布置作業(yè),復(fù)習(xí)鞏固;
重新閱讀課本本節(jié)相關(guān)內(nèi)容并預(yù)習(xí)下一節(jié)課內(nèi)容。
直線與圓的位置關(guān)系是高考的考點(diǎn)之一,是在學(xué)生已有的平面幾何知識基礎(chǔ)上進(jìn)行教學(xué),以點(diǎn)與圓的位置關(guān)系上升為直線與圓的位置關(guān)系,從簡單到復(fù)雜,從幾何特征到代數(shù)問題(坐標(biāo)法)的教學(xué)過程,它應(yīng)用比較廣泛,同時也為后面圓和圓的位置關(guān)系作了鋪墊,對后面的解題及相關(guān)數(shù)學(xué)問題的解決將起到重要的作用,且本節(jié)是直線與圓錐曲線位置關(guān)系的基礎(chǔ),故要求學(xué)生充分掌握。
針對上述情況,我精心設(shè)計教學(xué)過程,借助多媒體動態(tài)演示直線和圓的位置關(guān)系,直觀形象地展示了直線與圓的位置關(guān)系,化抽象為具體,以便學(xué)生更好的.理解他們之間的關(guān)系及其幾何特征,再引導(dǎo)學(xué)生把幾何形式的結(jié)論轉(zhuǎn)化為代數(shù)形式;教學(xué)過程中采用問題探究式、參與式探究、互動式討論等教學(xué)方法,為學(xué)生自主探究、合作交流構(gòu)建一個好的平臺;分層次設(shè)置例題,讓全體學(xué)生都得到提升;講解例題時應(yīng)用啟發(fā)式引導(dǎo)教學(xué)方法,不斷訓(xùn)練學(xué)生數(shù)學(xué)思維,借助圖象分析題意,加深學(xué)生對數(shù)形結(jié)合思想了解;新課結(jié)束后,引導(dǎo)學(xué)生小結(jié)本課內(nèi)容,培養(yǎng)學(xué)生歸納總結(jié)的能力。
直線和圓的位置關(guān)系說課稿篇十四
“思之不慎,行而失當(dāng)”,“學(xué)然后知不足,教然后知困。知不足,然后能自反也;知困,然后能自強(qiáng)也?!狈此家庾R人類早就有之。作為教師,在教學(xué)中也應(yīng)適時反思教學(xué)過程的得與失。
開課時,借助微機(jī)展示“圓圓的落日慢慢從海平面升起”的動畫,從而展現(xiàn)直線與圓的位置關(guān)系。由此引入課題——直線與圓的位置關(guān)系,學(xué)生比較感興趣,充分感受生活中的數(shù)學(xué)知識,體驗數(shù)學(xué)來源于生活。然后提出問題,引導(dǎo)學(xué)生大膽猜想,思考,發(fā)現(xiàn)三種位置關(guān)系,激發(fā)學(xué)生學(xué)習(xí)興趣,營造探索問題的氛圍。同時讓學(xué)生從生活中“找”數(shù)學(xué),“想”數(shù)學(xué),體會到數(shù)學(xué)知識無處不在,應(yīng)用數(shù)學(xué)無處不有。這也符合“數(shù)學(xué)教學(xué)應(yīng)從生活經(jīng)驗出發(fā)”的新課程標(biāo)準(zhǔn)要求。
在探索直線和圓位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,我先引導(dǎo)學(xué)生回顧點(diǎn)和圓的位置關(guān)系所對應(yīng)的數(shù)量關(guān)系,啟發(fā)學(xué)生用類比的方法來研究直線與圓的位置關(guān)系,在研究過程中,采用小組討論的方法,給予學(xué)生足夠的探索、交流的時間,培養(yǎng)學(xué)生互助、協(xié)作的精神,讓學(xué)生在相互討論中,集思廣益,形成思維互補(bǔ),從而使概念更清楚,結(jié)論更準(zhǔn)確。最后由學(xué)生小結(jié)這一知識點(diǎn),我板書在黑板上,培養(yǎng)學(xué)生用數(shù)學(xué)語言歸納問題的能力,同時感受收獲知識的快樂。
在新知教授完畢,知識升華這塊,我安排了一道實(shí)際問題,一輛火車的噪首會不會影向處在與鐵路相交的另一條公路旁的學(xué)校?如果會影響,影響的時間有多長?新課標(biāo)下的數(shù)學(xué)強(qiáng)調(diào)人人學(xué)有價值的數(shù)學(xué),人人學(xué)有用的數(shù)學(xué),由于此題要學(xué)生回到生活中去運(yùn)用數(shù)學(xué)知識解決生活中遇到的問題,學(xué)生的積極性高漲,都急著討論解決方案,使乏味的數(shù)學(xué)學(xué)習(xí)變得有滋有味,使學(xué)生體會到學(xué)數(shù)學(xué)的重要性,體驗“生活中處處用數(shù)學(xué)”。
一堂課教學(xué)下來,也發(fā)現(xiàn)有諸多不妥之處,讓我認(rèn)識到自己需要繼續(xù)努力。歸納主要有以下三點(diǎn):。
1、教師在課堂應(yīng)當(dāng)以引導(dǎo)者的身份出現(xiàn),把課堂和講臺讓位于學(xué)生,讓“教師的教”真正服務(wù)于“學(xué)生的學(xué)”,而我在這一節(jié)課中因為一方面擔(dān)心學(xué)生在自主研究知識的形成時會浪費(fèi)時間,另一方面擔(dān)心會產(chǎn)生意想不到的或者課前備課時沒有考慮到的回答,總是把自己的思想強(qiáng)加給學(xué)生,比如學(xué)生觀察得到直線和圓的三種位置關(guān)系后,是由我講解的三個概念:相交、相切、相離。學(xué)生只是被動的接受,這樣就會對概念的理解不是很深刻。這里可以改為讓學(xué)生自己下定義,教師適當(dāng)放手,以師生共同討論的形式給學(xué)生以思維想象的空間,充分調(diào)動學(xué)生的積極性,使學(xué)生實(shí)現(xiàn)自主探究。
2、有些課堂提問欠合理化、科學(xué)化,提問隨意性大,缺乏針對性和啟發(fā)性,導(dǎo)致課堂教學(xué)引導(dǎo)不力,問題缺乏精心安排這就使得課堂存在著不少“徒勞的提問”。讓課堂時間分配的不太合理。今后應(yīng)該把一些提問設(shè)計再提煉,能達(dá)到精而準(zhǔn)。
3、在處理課后練習(xí)時,做的不夠細(xì)致,這一環(huán)節(jié)是對前面探究新知識是否掌握的一個小測試,重在幫助學(xué)生掌握方法,而我在講解練習(xí)時,只展示了解題思路,并沒有及時進(jìn)行方法上的總結(jié),致使部分學(xué)生在解決實(shí)際問題時思路不明確。這里教師要根據(jù)情況,簡要?dú)w納、概括應(yīng)掌握的方法,使學(xué)生能夠舉一反三,鞏固和擴(kuò)大知識,吸收、內(nèi)化知識,充分體現(xiàn)”授人以魚不如授人以漁"。
總之,這是我對自己本節(jié)課的一些教學(xué)反思,或者說是對新課程理念的淺薄認(rèn)識。
直線和圓的位置關(guān)系說課稿篇十五
本節(jié)課教學(xué)我所面對的傳授對象是聾啞學(xué)生,根據(jù)聾生的特點(diǎn)在學(xué)生觀察教材123頁三幅照片時,我立刻告訴學(xué)生你說的對,這就是直線和圓的三種關(guān)系:相交、相切和相離。我認(rèn)為是數(shù)學(xué)課而不是語文課,數(shù)學(xué)課只注重學(xué)生的觀察思維能力,不追求學(xué)生的語言表達(dá)能力和概括能力。
還有因為手語的手勢再多再細(xì)也不可能表達(dá)出所有的抽象的甚至連豐富的語言都不好表述的東西,因此在講解數(shù)學(xué)時,我追求細(xì)致,不要想很簡單,很明顯,而一帶而過。因此,教學(xué)時我多次強(qiáng)化學(xué)生對直線與圓的三種關(guān)系的理解,為學(xué)生探究點(diǎn)到直線的距離d和圓半徑r的大小關(guān)系。
然而數(shù)學(xué)教學(xué)時,該細(xì)的地方還是要細(xì),這需要教師自己的把握,在學(xué)生輕而易舉回答出來的問題時,有時要帶領(lǐng)學(xué)生深入思考,并多問個為什么?比如在本課學(xué)生總結(jié)出:“圓的切線垂直于過切點(diǎn)的直徑”時。養(yǎng)成學(xué)生深入思考的好習(xí)慣,不要想當(dāng)然!
直線和圓的位置關(guān)系說課稿篇十六
這節(jié)課是義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗教科書九年級上冊第二十四章第2節(jié)第2課時的內(nèi)容。本人在教學(xué)過程中緊緊圍繞新課程理念展開教學(xué),主要從以下幾方面介紹閃光點(diǎn):
一、創(chuàng)設(shè)情境。
1、組織學(xué)生發(fā)現(xiàn),尋找,搜集和利用學(xué)習(xí)資源。
現(xiàn)代課程觀認(rèn)為課程是由教師、教材、學(xué)生和環(huán)境四要素構(gòu)成的,教師和學(xué)生是課程的開發(fā)者和創(chuàng)造者。組織學(xué)生發(fā)現(xiàn),尋找,搜集和利用學(xué)習(xí)資源是教師的一項重要職責(zé)。因此,在教學(xué)中,本人把日出這一自然現(xiàn)象作為課程資源引入數(shù)學(xué)教學(xué),學(xué)生通過回想日出的景象畫出圖畫:一幅是美術(shù)圖畫;一幅是一條直線和一個圓。在學(xué)生都欣賞藝術(shù)圖畫的美時,教師引導(dǎo)學(xué)生欣賞一條直線和一個圓的數(shù)學(xué)美和它的價值,它的價值在于抽象和簡化,便與研究它的性質(zhì)。讓學(xué)生們看見了自然現(xiàn)象中的數(shù)學(xué)價值,同時也反應(yīng)了自然現(xiàn)象和數(shù)學(xué)之間的聯(lián)系。然后,我引導(dǎo)學(xué)生把變化著的自然現(xiàn)象再抽象成數(shù)學(xué)問題,引出直線和圓的相交、相切、相離三種關(guān)系。
2、創(chuàng)設(shè)豐富的教學(xué)情境,激發(fā)學(xué)生的學(xué)習(xí)動機(jī),培養(yǎng)學(xué)習(xí)興趣,充分調(diào)動學(xué)生的學(xué)習(xí)積極性。本人在教學(xué)第一環(huán)節(jié)用現(xiàn)實(shí)生活中日出這一景觀,讓學(xué)生享受美的情境中,在充分的想象中,從生活中抽象出數(shù)學(xué)模型,因此讓學(xué)生畫出兩種不同的日出圖畫,美術(shù)的圖畫讓學(xué)生看見了生活中的美。但在教學(xué)中本人著重引導(dǎo)學(xué)生欣賞另一種圖畫是抽象的數(shù)學(xué)美,在欣賞美的同時,體會生活中的數(shù)學(xué),從而激發(fā)學(xué)生的求知欲。
3、給學(xué)生提供合作交流的空間和時間。首先給學(xué)生的自主學(xué)習(xí)提供時間,讓學(xué)生自己畫出日出情景,接著合作交流兩種日出的圖畫,這樣為學(xué)生創(chuàng)設(shè)合作交流的空間。
4、組織學(xué)生營造教室中的積極的心理氛圍。本人在教學(xué)中注重這一方面的滲透。教學(xué)第一環(huán)節(jié)中,學(xué)生畫出兩種不同的畫面后,及時反饋,給予表揚(yáng)和鼓勵。尤其是教學(xué)過程中,我班田文潔同學(xué)由于偏科、數(shù)學(xué)底子薄弱,我發(fā)現(xiàn)她在畫圖中碰到老師的目光馬上避開,老師意識到她畫圖中可能有問題,我便走到她面前,與她交流,啟發(fā)她如何著手,并且誘導(dǎo)她從數(shù)學(xué)角度思考又該怎樣畫,這就給了她知識上的啟發(fā)和心理上的支持。還有看見胡海林沒有動筆和本,便走過去摸摸他的頭,并用溫和的目光問:“沒有思路嗎?”我啟發(fā)引導(dǎo)后,讓他和同桌交流,讓同桌再幫助他。這樣體現(xiàn)了對學(xué)生的信任、關(guān)心和理解。學(xué)生在老師的關(guān)愛下,學(xué)生的幫助下、受到激勵和鼓勵,激發(fā)了學(xué)習(xí)的興趣,從而用自己的愛心與學(xué)生一起營造了一個平等,尊重、信任、理解和寬容的教學(xué)氛圍。這正是新課程理念所倡導(dǎo)的。
二、新課講解(探究新知)。
這一部分的教學(xué)中主要滲透以下幾個基本理念:
1、讓課堂教學(xué)充滿創(chuàng)新活力。
(1)合作學(xué)習(xí)有利于培養(yǎng)學(xué)生的創(chuàng)新精神與創(chuàng)新能力。講述直線和圓相交、相切、相離的概念時,通過師生合作交流得出兩種方法,即交點(diǎn)的個數(shù)及點(diǎn)到直線的距離d與半徑r之間的關(guān)系,在合作交流中學(xué)生加深了對知識的理解和掌握、同時也有利于創(chuàng)新精神和創(chuàng)新能力的培養(yǎng)。
(2)探究過程是培養(yǎng)創(chuàng)新精神和創(chuàng)新能力的重要途徑。例:在講概念時,提出這一個問題:“通過回憶剛才畫出日出的圖畫,同學(xué)們發(fā)現(xiàn)直線與圓有三種位置,各自有什么特點(diǎn)?”這就為學(xué)生提供了探究的空間,學(xué)生很容易得出交點(diǎn)個數(shù),及時抓住探究過程中這一創(chuàng)新的“火花”,給予欣賞和激勵,從而掌握基礎(chǔ)知識和基本技能。
2、教學(xué)活動中尊重學(xué)生已有的知識和能力。
(1)尊重學(xué)生已有的知識和學(xué)生的經(jīng)驗。在講d與r的關(guān)系時,復(fù)習(xí)了上節(jié)所學(xué)點(diǎn)和圓的位置關(guān)系,這樣,學(xué)生學(xué)習(xí)新知識是在原有知識基礎(chǔ)上自我構(gòu)建的過程,了解學(xué)生的知識基礎(chǔ)是老師備課的一項重要內(nèi)容。
(2)尊重學(xué)生獨(dú)特的感受和理解。由于學(xué)生間認(rèn)知上、情感上的差異,這一部分教學(xué)很多學(xué)生對點(diǎn)到直線的距離即d與r關(guān)系很難表述,甚至想不到,所以曾多次激勵學(xué)生談獨(dú)特的見解。
(3)把新知識納入到原有認(rèn)知結(jié)構(gòu)中去。新知識是學(xué)生已獲得的知識,是學(xué)生自我建構(gòu)后獲得的知識,新知識在獲得后,還有一個重要的任務(wù)就是把新知識以一定的方式組織起來,納到原有的認(rèn)知結(jié)構(gòu)中去,便于記憶和提取。這一環(huán)節(jié)充分體現(xiàn),即講完兩種方法后便出示表格進(jìn)行歸納和總結(jié),從而幫助學(xué)生不斷優(yōu)化認(rèn)知結(jié)構(gòu)。
3、提倡自主,合作,探究的學(xué)習(xí)方式。這一理念在這一環(huán)節(jié)的教學(xué)中又得到充分體現(xiàn)。采用獨(dú)立思考、分組討論,合作交流得出本節(jié)的重要內(nèi)容即本節(jié)的重點(diǎn)。
4、注重教師是學(xué)習(xí)活動的參與者。教師應(yīng)引導(dǎo)學(xué)生在自主探索和合作交流中達(dá)到對新知識的理解。教學(xué)中我發(fā)現(xiàn)馮成同學(xué)的第二種方式是大部分學(xué)生沒有想到的,并且講述很好,過渡自然。因此異常興奮,我與同學(xué)們同時鼓掌,即達(dá)到高潮。充分體現(xiàn)了師生間共同分享感情和認(rèn)識。
三、鞏固練習(xí)(深化練習(xí))。
1、練習(xí)符合學(xué)生的認(rèn)知規(guī)律,難易度適中。
2、練習(xí)量適中,題型多樣,有選擇題,填空題、解答題。
3、注重分層教學(xué)和能力培養(yǎng)、持續(xù)發(fā)展,設(shè)計了必做題,選做題。
四、課堂小結(jié):
課堂小結(jié)是一個重要的環(huán)節(jié),本人給學(xué)生一定的思考和交流的空間,除了讓學(xué)生自己總結(jié)本節(jié)知識外,還用表格的形式又展現(xiàn)給大家,讓同學(xué)們再次回顧、反思、記憶。更重要的是讓學(xué)生總結(jié)本節(jié)的數(shù)學(xué)方法和數(shù)學(xué)思想,以及生活中處處充滿數(shù)學(xué),數(shù)學(xué)為生活服務(wù)等理念。
不論從新課程理念,還是教學(xué)效果來看,這都是一節(jié)比較滿意的課。另外,教學(xué)過程凸現(xiàn)雙基,目標(biāo)落實(shí),教學(xué)結(jié)構(gòu)完整有序,層層推進(jìn)。教師對學(xué)生的尊重和愛護(hù)也都隨處體現(xiàn),教師對知識的精益求精,讓這一節(jié)課所有的知識點(diǎn)都清晰地呈現(xiàn)在學(xué)生面前,教師對學(xué)生間的相互評價,相互合作無疑又為學(xué)生間的友誼注入新的動力,作業(yè)設(shè)計分層教學(xué),有必做題和選做題。
當(dāng)然,這節(jié)課仍有需要改進(jìn)的地方:
一、語言有待錘煉,在整節(jié)課中,老師的提問過于頻繁,其中不乏有很多較好的提問起到點(diǎn)拔、引導(dǎo)作用,但仍有一些問題不必要的,且提問時廢話較多。
二、時間分配的不太合理,練習(xí)時間稍有不足,因前面內(nèi)容即創(chuàng)設(shè)情境和探究新知識占用較多時間,所以后面的練習(xí)時間相對較短,對于分層教學(xué)處理練習(xí)就顯得倉促。
三、板書不夠規(guī)范,因本節(jié)書本沒有例題,所以應(yīng)在黑板上板書作業(yè)格式,這樣在以后作業(yè)中有格式示范,書寫規(guī)范。
四、教學(xué)過程不太注重數(shù)學(xué)思想滲透,例:創(chuàng)設(shè)情境中畫圖,導(dǎo)出直線與圓的三種位置關(guān)系,要啟發(fā)誘導(dǎo)學(xué)生采用了什么數(shù)學(xué)思想。
針對以上問題,在以后的教學(xué)中,要加強(qiáng)語言錘煉,要注重分層教學(xué),注重能力培養(yǎng),要注重數(shù)學(xué)思想和方法滲透。
總之,這是我對自己本節(jié)課的一些教學(xué)反思,或者說是對新課程理念的淺薄認(rèn)識。
直線和圓的位置關(guān)系說課稿篇十七
節(jié)課的教學(xué),我認(rèn)為成功之處有以下幾點(diǎn):
1.由日落的三張照片(太陽與地平線相離、相切、相交)引入,學(xué)生比較感興趣,充分感受生活中反映直線與圓位置關(guān)系的現(xiàn)象,體驗到數(shù)學(xué)來源于實(shí)踐。對生活中的數(shù)學(xué)問題發(fā)生好奇,這是學(xué)生最容易接受的學(xué)習(xí)數(shù)學(xué)的好方法。新課標(biāo)下的數(shù)學(xué)教學(xué)的基本特點(diǎn)之一就是密切關(guān)注數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系,從生活中“找”數(shù)學(xué),“想”數(shù)學(xué),讓學(xué)生真正感受到生活之中處處有數(shù)學(xué)。
2.在探索直線和圓位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,我先引導(dǎo)學(xué)生回顧點(diǎn)和圓的位置關(guān)系所對應(yīng)的數(shù)量關(guān)系,啟發(fā)學(xué)生運(yùn)用類比的思想來思考問題,解決問題,學(xué)生很輕松的就能夠得出結(jié)論,從而突破本節(jié)課的難點(diǎn),使學(xué)生充分理解位置關(guān)系與數(shù)量關(guān)系的相互轉(zhuǎn)化,這種等價關(guān)系是研究切線的理論基礎(chǔ),從而為下節(jié)課探索切線的性質(zhì)打好基礎(chǔ)。
3.新課標(biāo)下的數(shù)學(xué)強(qiáng)調(diào)人人學(xué)有價值的數(shù)學(xué),人人學(xué)有用的數(shù)學(xué),為此,在做一做之后我安排了一道實(shí)際問題:“經(jīng)過兩村莊的筆直公路會不會穿越一個圓形的森林公園?”培養(yǎng)學(xué)生解決實(shí)際問題的能力。由于此題要學(xué)生回到生活中去運(yùn)用數(shù)學(xué),學(xué)生的積極性高漲,都急著討論解決方案,是乏味的數(shù)學(xué)學(xué)習(xí)變得有滋有味,使學(xué)生體會到學(xué)數(shù)學(xué)的重要性,體驗“生活中處處用數(shù)學(xué)”。
同時,我也感覺到本節(jié)課的設(shè)計有不妥之處,主要有以下三點(diǎn):
1.學(xué)生觀察得到直線和圓的三種位置關(guān)系后,是由我講解的三個概念:相交、相切、相離。學(xué)生被動的接受,對概念的理解不是很深刻,可以改為讓學(xué)生下定義,師生共同討論的形式給學(xué)生以思維想象的空間,充分調(diào)動學(xué)生的積極性,使學(xué)生實(shí)現(xiàn)自主探究。
2.雖然我在設(shè)計本節(jié)課時是體現(xiàn)讓學(xué)生自主操作探究的原則,但在讓學(xué)生探索直線和圓三種位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,沒有給予學(xué)生足夠的探索、交流的時間,限制了學(xué)生的思維。此處應(yīng)充分發(fā)揮小組的特點(diǎn),讓學(xué)生相互啟發(fā)討論,形成思維互補(bǔ),集思廣益,從而使概念更清楚,結(jié)論更準(zhǔn)確。
直線和圓的位置關(guān)系說課稿篇十八
這是我第一次進(jìn)入初三進(jìn)行教學(xué),即緊張又興奮。經(jīng)過一個學(xué)期的歷練,在校領(lǐng)導(dǎo)和組內(nèi)老教師的無私幫助下我有了一些進(jìn)步。現(xiàn)以《直線和圓的位置關(guān)系》第一課時為例,反思如下。
在初三的教學(xué)過程中,我?guī)缀跏锹犚还?jié)上一節(jié)。而集體備課也給了我很大的幫助。通過集體備課和聽課,在《直線和圓的位置關(guān)系》這節(jié)課中,我首先引導(dǎo)學(xué)生回憶了點(diǎn)與圓的位置關(guān)系及所對應(yīng)的點(diǎn)到圓心的距離與圓半徑的數(shù)量關(guān)系。從而引出課題:直線和圓的位置關(guān)系。然后由學(xué)生平移直尺,自主探索發(fā)現(xiàn)直線和圓的三種位置關(guān)系,給出定義,聯(lián)系實(shí)際,由學(xué)生發(fā)現(xiàn)日常生活中存在的直線和圓相交、相切、相離的現(xiàn)象,緊接著引導(dǎo)學(xué)生探索三種位置關(guān)系下圓心到直線的距離與圓半徑的大小關(guān)系,由“做一做”進(jìn)行應(yīng)用,最后去解決實(shí)際問題。通過本節(jié)課的教學(xué),我認(rèn)為成功之處有以下幾點(diǎn):
1、在探索直線和圓位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,我先引導(dǎo)學(xué)生回顧點(diǎn)和圓的位置關(guān)系所對應(yīng)的數(shù)量關(guān)系,啟發(fā)學(xué)生運(yùn)用類比的思想來思考問題,解決問題,學(xué)生很輕松的就能夠得出結(jié)論,從而突破本節(jié)課的難點(diǎn),使學(xué)生充分理解位置關(guān)系與數(shù)量關(guān)系的相互轉(zhuǎn)化,這種等價關(guān)系是研究切線的理論基礎(chǔ),從而為下節(jié)課探索切線的性質(zhì)打好基礎(chǔ)。
2、新課標(biāo)下的數(shù)學(xué)強(qiáng)調(diào)人人學(xué)有價值的數(shù)學(xué),人人學(xué)有用的數(shù)學(xué),為此,在做一做之后我安排了兩道實(shí)際問題:“經(jīng)過兩村莊的筆直公路會不會穿越一個圓形的森林公園?”“公路邊的學(xué)校會不會受到噪聲的影響?”培養(yǎng)學(xué)生解決實(shí)際問題的能力。由于這兩題要學(xué)生回到生活中去運(yùn)用數(shù)學(xué),學(xué)生的積極性高漲,都急著討論解決方案,是乏味的數(shù)學(xué)學(xué)習(xí)變得有滋有味,使學(xué)生體會到學(xué)數(shù)學(xué)的重要性,體驗“生活中處處用數(shù)學(xué)”。
同時,我也感覺到本節(jié)課的設(shè)計有不妥之處,主要有以下三點(diǎn):
1.學(xué)生觀察得到直線和圓的三種位置關(guān)系后,是由我講解的三個概念:相交、相切、相離。講得過多,學(xué)生被動的接受,思考得不夠,對概念的理解不是很深刻。可以改為讓學(xué)生類比點(diǎn)與圓的位置關(guān)系下定義,師生共同討論的形式給學(xué)生以思維想象的空間,充分調(diào)動學(xué)生的積極性,使學(xué)生實(shí)現(xiàn)自主探究。
2、雖然我在設(shè)計本節(jié)課時是體現(xiàn)讓學(xué)生自主操作探究的原則,但在讓學(xué)生探索直線和圓三種位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,沒有給予學(xué)生足夠的探索、交流的時間,限制了學(xué)生的思維。此處應(yīng)充分發(fā)揮小組的特點(diǎn),讓學(xué)生相互啟發(fā)討論,形成思維互補(bǔ),集思廣益,從而使概念更清楚,結(jié)論更準(zhǔn)確。
3.對“做一做”的處理不夠,這一環(huán)節(jié)是對探究的成績與效果的探索與檢驗,重在幫助學(xué)生掌握方法,我在講解“做一做”時,沒有充分展示解題思路,沒有及時進(jìn)行方法上的總結(jié),致使部分學(xué)生在解決實(shí)際問題時思路不明確。并在進(jìn)行下面的解題時體現(xiàn)出來。教師要根據(jù)情況,簡要?dú)w納、概括應(yīng)掌握的方法,使學(xué)生能夠舉一反三,不能想當(dāng)然,否則會影響學(xué)生對知識的消化吸收。
總之,在今后的數(shù)學(xué)教學(xué)中還有很多需要我學(xué)習(xí)和掌握的東西,希望能和學(xué)生們一起共同進(jìn)步,真正成為一名合格的數(shù)學(xué)教師。
直線和圓的位置關(guān)系說課稿篇十九
“思之不慎,行而失當(dāng)”,“學(xué)然后知不足,教然后知困。知不足,然后能自反也;知困,然后能自強(qiáng)也。”反思意識人類早就有之。作為教師,在教學(xué)中也應(yīng)適時反思教學(xué)過程的得與失。
開課時,借助微機(jī)展示“圓圓的落日慢慢從海平面升起”的動畫,從而展現(xiàn)直線與圓的位置關(guān)系。由此引入課題——直線與圓的位置關(guān)系,學(xué)生比較感興趣,充分感受生活中的數(shù)學(xué)知識,體驗數(shù)學(xué)來源于生活。然后提出問題,引導(dǎo)學(xué)生大膽猜想,思考,發(fā)現(xiàn)三種位置關(guān)系,激發(fā)學(xué)生學(xué)習(xí)興趣,營造探索問題的氛圍。同時讓學(xué)生從生活中“找”數(shù)學(xué),“想”數(shù)學(xué),體會到數(shù)學(xué)知識無處不在,應(yīng)用數(shù)學(xué)無處不有。這也符合“數(shù)學(xué)教學(xué)應(yīng)從生活經(jīng)驗出發(fā)”的新課程標(biāo)準(zhǔn)要求。
在探索直線和圓位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,我先引導(dǎo)學(xué)生回顧點(diǎn)和圓的位置關(guān)系所對應(yīng)的數(shù)量關(guān)系,啟發(fā)學(xué)生用類比的方法來研究直線與圓的位置關(guān)系,在研究過程中,采用小組討論的方法,給予學(xué)生足夠的探索、交流的時間,培養(yǎng)學(xué)生互助、協(xié)作的精神,讓學(xué)生在相互討論中,集思廣益,形成思維互補(bǔ),從而使概念更清楚,結(jié)論更準(zhǔn)確。最后由學(xué)生小結(jié)這一知識點(diǎn),我板書在黑板上,培養(yǎng)學(xué)生用數(shù)學(xué)語言歸納問題的能力,同時感受收獲知識的快樂。
在新知教授完畢,知識升華這塊,我安排了一道實(shí)際問題,一輛火車的噪首會不會影向處在與鐵路相交的另一條公路旁的學(xué)校?如果會影響,影響的時間有多長?新課標(biāo)下的數(shù)學(xué)強(qiáng)調(diào)人人學(xué)有價值的數(shù)學(xué),人人學(xué)有用的數(shù)學(xué),由于此題要學(xué)生回到生活中去運(yùn)用數(shù)學(xué)知識解決生活中遇到的問題,學(xué)生的積極性高漲,都急著討論解決方案,使乏味的數(shù)學(xué)學(xué)習(xí)變得有滋有味,使學(xué)生體會到學(xué)數(shù)學(xué)的重要性,體驗“生活中處處用數(shù)學(xué)”。
一堂課教學(xué)下來,也發(fā)現(xiàn)有諸多不妥之處,讓我認(rèn)識到自己需要繼續(xù)努力。歸納主要有以下三點(diǎn):。
1、教師在課堂應(yīng)當(dāng)以引導(dǎo)者的身份出現(xiàn),把課堂和講臺讓位于學(xué)生,讓“教師的教”真正服務(wù)于“學(xué)生的學(xué)”,而我在這一節(jié)課中因為一方面擔(dān)心學(xué)生在自主研究知識的形成時會浪費(fèi)時間,另一方面擔(dān)心會產(chǎn)生意想不到的或者課前備課時沒有考慮到的回答,總是把自己的思想強(qiáng)加給學(xué)生,比如學(xué)生觀察得到直線和圓的三種位置關(guān)系后,是由我講解的三個概念:相交、相切、相離。學(xué)生只是被動的接受,這樣就會對概念的理解不是很深刻。這里可以改為讓學(xué)生自己下定義,教師適當(dāng)放手,以師生共同討論的形式給學(xué)生以思維想象的空間,充分調(diào)動學(xué)生的積極性,使學(xué)生實(shí)現(xiàn)自主探究。
2、有些課堂提問欠合理化、科學(xué)化,提問隨意性大,缺乏針對性和啟發(fā)性,導(dǎo)致課堂教學(xué)引導(dǎo)不力,問題缺乏精心安排這就使得課堂存在著不少“徒勞的提問”。讓課堂時間分配的不太合理。今后應(yīng)該把一些提問設(shè)計再提煉,能達(dá)到精而準(zhǔn)。
3、在處理課后練習(xí)時,做的不夠細(xì)致,這一環(huán)節(jié)是對前面探究新知識是否掌握的一個小測試,重在幫助學(xué)生掌握方法,而我在講解練習(xí)時,只展示了解題思路,并沒有及時進(jìn)行方法上的總結(jié),致使部分學(xué)生在解決實(shí)際問題時思路不明確。這里教師要根據(jù)情況,簡要?dú)w納、概括應(yīng)掌握的方法,使學(xué)生能夠舉一反三,鞏固和擴(kuò)大知識,吸收、內(nèi)化知識,充分體現(xiàn)”授人以魚不如授人以漁"。
總之,這是我對自己本節(jié)課的一些教學(xué)反思,或者說是對新課程理念的淺薄認(rèn)識。
將本文的word文檔下載到電腦,方便收藏和打印。
直線和圓的位置關(guān)系說課稿篇一
《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:在平面解析幾何初步的教學(xué)中,教師應(yīng)幫助學(xué)生經(jīng)歷如下過程:首先將幾何問題代數(shù)化,用代數(shù)的語言描述幾何要素及其關(guān)系,進(jìn)而將幾何問題轉(zhuǎn)化為代數(shù)問題;處理代數(shù)問題;分析代數(shù)結(jié)果的幾何含義,最終解決幾何問題。這種思想應(yīng)貫穿平面解析幾何教學(xué)的始終,幫助學(xué)生不斷地體會“數(shù)形結(jié)合”的思想方法。
《直線與圓的位置關(guān)系》這一節(jié)內(nèi)容出現(xiàn)在必修2的第二章《平面解析幾何初步》的第二節(jié)《圓與圓的方程》的第三小節(jié)的位置。就整套教材而言,《平面解析幾何初步》一章的教學(xué)主要是讓學(xué)生體會到用代數(shù)方法處理幾何問題的思想,為選修教材中的《圓錐曲線與方程》一章打好基礎(chǔ)。它是前兩節(jié)《直線與直線方程》和《圓與圓的方程》的綜合應(yīng)用,也為后一小節(jié)《圓與圓的位置關(guān)系》提供研究方法的一個重要示例,是整個《平面解析幾何初步》章節(jié)的重要內(nèi)容,起著貫穿始終、應(yīng)用反饋的重要作用,而且是貫徹“用代數(shù)方法處理幾何問題”思想和“數(shù)形結(jié)合”方法的重要的反映內(nèi)容和工具。在本章中的作用非常重要。
1、知識目標(biāo):
2、能力目標(biāo):
要使學(xué)生體會用代數(shù)方法處理幾何問題的思路和“數(shù)形結(jié)合”的思想方法。
四、教法分析:
1、教學(xué)方法:啟發(fā)式講授法、演示法、輔導(dǎo)法。
2、教材處理:
(1)例題1(1)(2)用兩種不同的辦法求解,讓學(xué)生自己體會這兩種方法。
通過老師引導(dǎo)和讓學(xué)生自己探索解決,反饋學(xué)生的解決情況。
(2)增加一個過一點(diǎn)求圓的切線方程的題型,幫助學(xué)生增加對直線與圓的認(rèn)識。
3、學(xué)法指導(dǎo):本節(jié)課的學(xué)法是繼續(xù)指導(dǎo)學(xué)生把新問題轉(zhuǎn)化為已有知識解決的化歸思想。
4、教具:多媒體電腦、投影儀、自做多媒體。
五、過程分析:
教學(xué)。
環(huán)節(jié)。
教學(xué)內(nèi)容。
設(shè)計意圖。
新課引入。
1、學(xué)生觀察日出照片,把觀察到的情況用自己的語言說出來,抽象出幾何圖形,在學(xué)生回答的基礎(chǔ)上,通過多媒體演示圓與直線的三種位置關(guān)系。讓學(xué)生感受到數(shù)學(xué)產(chǎn)生于生活,與生活密切相關(guān),并能使學(xué)生更好的直觀感受直線和圓的三種位置關(guān)系。然后引入本節(jié)課的課題。
2、在上一章,我們在學(xué)習(xí)了直線的方程后,研究了點(diǎn)和直線、直線與直線的位置關(guān)系,本章我們已經(jīng)學(xué)習(xí)了圓的方程,現(xiàn)在我們要研究直線與圓以及圓與圓的位置關(guān)系。
1數(shù)學(xué)產(chǎn)生于生活,與生活密切相關(guān)。
2、以實(shí)際問題引入有利于激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,有利于擴(kuò)展學(xué)生的視野。
新課講解。
一、知識點(diǎn)撥:
答:把圓心到直線的距離d和半徑r比較大小:
2、我們?nèi)绾卫米鴺?biāo)法將初中判斷直線和圓的位置關(guān)系代數(shù)化?
答:先利用點(diǎn)到直線的距離公式求圓心到直線的距離,再和半徑比較大小。
答:在直線與直線的方程這一節(jié)里,我們先把兩直線的方程聯(lián)立解方程組。
在思考直線和圓的位置關(guān)系時,我們可類似地把直線和圓的方程聯(lián)立解方程組。
二、例題講解:
1、讓學(xué)生先自學(xué)例1并回答下列問題:
(1)第二小題中,消去x的步驟怎樣?如何判斷方程組有沒有解?
(2)你認(rèn)為這兩種方法哪一種較簡單,為什么?
(2)方法一較簡單,因為方法二在求交點(diǎn)坐標(biāo)時仍要解方程組。
圓的切線l,求切線l的方程。
4、練習(xí):課本第83頁練習(xí)1、2。
問題1涉及初中知識,可使得學(xué)生比較容易上手。
問題2體現(xiàn)了將幾何問題代數(shù)化的思想。
問題3以前一章知識做類比,有利于培養(yǎng)學(xué)生類比歸納的能力。
通過前面對知識的分析,例題1對學(xué)生來說應(yīng)該比較容易,又通過兩個問題檢查學(xué)生的理解程度。
例3該例題有利于培養(yǎng)學(xué)生全面考慮問題的良好思維習(xí)慣。
課堂小結(jié)。
作業(yè)布置。
課本p86,a組4、6、b組1。
一、復(fù)習(xí)回顧。
例1。
例2。
例3。
直線和圓的位置關(guān)系說課稿篇二
1、教材分析:
《圓》這一章,是學(xué)生平面幾何學(xué)習(xí)中一個重要的內(nèi)容,如何在圓的教學(xué)中,讓學(xué)生在直線型圖形研究的基礎(chǔ)上進(jìn)一步去體會研究幾何圖形的思維和方法,深刻領(lǐng)悟幾何學(xué)的學(xué)科觀點(diǎn),有著非常重要的意義。下面是《圓》這一章的框架圖:
2、學(xué)情分析:
通過前面8章的有關(guān)幾何的學(xué)習(xí),學(xué)生已經(jīng)具備了一定的空間概念和幾何直觀,具有研究幾何圖形的思維和方法,有了上節(jié)課點(diǎn)和圓的位置關(guān)系的鋪墊,學(xué)生對于探究直線和圓的位置關(guān)系并不會感到陌生。
根據(jù)教學(xué)內(nèi)容的特點(diǎn)及學(xué)生的實(shí)際情況,確定了三個方面的目標(biāo):
2、在探究過程中,提高學(xué)生觀察、分析、抽象概括的能力,體會數(shù)學(xué)的基本思想和思維方式。
3、通過具體的探究活動,認(rèn)識數(shù)學(xué)具有抽象、嚴(yán)謹(jǐn)?shù)奶攸c(diǎn),體會數(shù)學(xué)的價值。
本節(jié)課的教學(xué)難點(diǎn)是能夠從幾何和代數(shù)兩個角度分析直線和圓的位置關(guān)系。
根據(jù)教學(xué)內(nèi)容、教學(xué)目標(biāo)和學(xué)生的認(rèn)知水平,主要采取教師啟發(fā)講授,學(xué)生探究學(xué)習(xí)的教學(xué)方法,教學(xué)中使用了幾何畫板來輔助教學(xué)。
為達(dá)到本節(jié)課的教學(xué)目標(biāo),突出重點(diǎn),突破難點(diǎn),我把教學(xué)過程設(shè)計為四個階段:復(fù)習(xí)舊知,引入課題;探索歸納,得出結(jié)論;拓展運(yùn)用,鞏固新知;歸納小結(jié),提高認(rèn)知。具體過程如下:
(一)復(fù)習(xí)舊知,引入課題。
提前準(zhǔn)備好的學(xué)案上,只有一個o,如右圖,
按照相應(yīng)要求作圖:
1、作點(diǎn)p。
2、過點(diǎn)p作點(diǎn)和圓的位置關(guān)系,為接下來探究直線和圓的位置關(guān)系奠定基礎(chǔ)。
對于問題2的預(yù)案:
提問1:分成幾類:
提問2:分類的依據(jù)是什么。
引導(dǎo)學(xué)生得出:根據(jù)直線和圓的公共點(diǎn)個數(shù),可以把直線和圓的位置關(guān)系分為三類:相交、相切、相離,板書相關(guān)概念。
(二)探索歸納,得出結(jié)論:
剛才是從幾何的角度(交點(diǎn)個數(shù))探究直線和圓的三種位置關(guān)系,這階段將從代數(shù)角度將直線和圓的位置關(guān)系數(shù)量化:
借助幾何畫板,讓學(xué)生從運(yùn)動變化的角度去理解直線和圓的三種位置關(guān)系:
圓具有軸對稱性,直線也具有軸對稱性,所以這個組合圖形本身就具有軸對稱性,其對稱軸是過圓心垂直于該直線的,考慮到對稱軸與直線的這種垂直關(guān)系在運(yùn)動的過程中具有不變性,所以我們在考慮用數(shù)量來刻畫直線和圓的位置關(guān)系時,要找的幾何量一定是和這種垂直關(guān)系密不可分的,因此,圓心到直線的距離就會被考慮,然后先讓學(xué)生猜想,再用幾何畫板演示加以嚴(yán)謹(jǐn)?shù)淖C明驗證猜想。
本章的研究主線就是圓的對稱性,此環(huán)節(jié)的設(shè)計正符合這個研究邏輯,所以我認(rèn)為此環(huán)節(jié)的設(shè)計是我的一個亮點(diǎn)。
(三)拓展運(yùn)用,鞏固新知:
1、已知圓的直徑是13cm,設(shè)圓心到直線的距離是d。
(1)若d=4.5cm,則直線與圓_______,有______個公共點(diǎn)。
(2)若d=6.5cm,則直線與圓_______,有______個公共點(diǎn)。
(3)若d=8cm,則直線與圓_________,有______個公共點(diǎn)。
2、已知圓的半徑為r,直線上一點(diǎn)到圓心的距離為d,若d=r,則直線與圓的位置關(guān)系是()。
a、相交b、相切c、相離d、相切或相交。
本階段的教學(xué)主要是通過對例題和練習(xí)的思考,使學(xué)生初步掌握直線和圓的位置關(guān)系,并能簡單應(yīng)用。
(三)歸納小結(jié),提高認(rèn)識:
知識層面上:
相交。
相切。
相離。
公共點(diǎn)的個數(shù)。
2
1
dr。
d=r。
dr。
公共點(diǎn)名稱。
交點(diǎn)。
切點(diǎn)。
無
直線名稱。
割線。
切線。
無
方法層面上:
經(jīng)歷了從不同角度分析問題和解決問題的過程,掌握解決問題的一些基本方法。
布置作業(yè):學(xué)練優(yōu)p59,60。
直線和圓的位置關(guān)系說課稿篇三
各位評委、老師,大家晚上好!我說課的題目是《直線與圓的位置關(guān)系》,我將通過以下五方面對本節(jié)課進(jìn)行解說。分別是教材分析、學(xué)情分析、教法分析、學(xué)法分析、過程分析。
一、教材分析。
本節(jié)課位于高中數(shù)學(xué)人教a版必修二第四章第二節(jié)(第一課時),它是在學(xué)生初中已經(jīng)學(xué)習(xí)了直線與圓的位置關(guān)系的基礎(chǔ)上,通過直線方程和圓的方程,利用坐標(biāo)法對直線與圓的位置關(guān)系的進(jìn)一步研究與探討。是從初等數(shù)學(xué)過渡到高等數(shù)學(xué)的開始和階梯。同時,這節(jié)課的方法和思想也為今后解決圓與圓的位置關(guān)系,以及圓錐曲線等幾何問題奠定了基礎(chǔ)。它起到了承前啟后的作用。
2.教學(xué)目標(biāo)。
知識與技能:理解直線與圓的位置關(guān)系;學(xué)會利用幾何法和代數(shù)法解決直線和圓的有關(guān)問題。
過程與方法:通過直線與圓位置關(guān)系的探究活動,經(jīng)歷知識的建構(gòu)過程,培養(yǎng)學(xué)生獨(dú)立思考、自主探究、動手實(shí)踐、合作交流的學(xué)習(xí)方式。強(qiáng)化學(xué)生用坐標(biāo)法解決幾何問題的意識,培養(yǎng)學(xué)生分析問題和靈活解決問題的能力。
情感、態(tài)度與價值觀:通過學(xué)生的自主探究、小組討論合作,培養(yǎng)學(xué)生的團(tuán)隊精神和主動學(xué)習(xí)的良好習(xí)慣。
3.教學(xué)重、難點(diǎn)。
難點(diǎn):把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,建立相應(yīng)的數(shù)學(xué)模型;靈活地運(yùn)用“數(shù)形結(jié)合”、解析法來解決直線與圓的相關(guān)問題。
二、學(xué)情分析。
學(xué)生在初中已經(jīng)學(xué)習(xí)了直線與圓的位置關(guān)系,在高中又學(xué)習(xí)了直線方程與圓的方程,并會用坐標(biāo)法解決簡單幾何問題。這些都有助于學(xué)生進(jìn)一步學(xué)習(xí)直線與圓的位置關(guān)系。而我們的學(xué)生已經(jīng)具備了獨(dú)立思考和探究學(xué)習(xí)的能力,但又欠缺空間想象和實(shí)際應(yīng)用能力。
三、教法分析。
根據(jù)以上分析,本節(jié)依據(jù)布魯納發(fā)現(xiàn)教學(xué)法,要學(xué)生通過建立模型、方法探究、合作交流、歸納總結(jié)的學(xué)習(xí)方式,以活動為主線,體現(xiàn)學(xué)生的主體地位。教師在本環(huán)節(jié)中作為問題的設(shè)計者、組織者、引導(dǎo)者、合作者,體現(xiàn)其主導(dǎo)地位。
四、學(xué)法分析。
問題是數(shù)學(xué)的核心,教師在學(xué)生思維發(fā)展的最近區(qū),通過不斷地設(shè)問,為學(xué)生創(chuàng)設(shè)情景,搭建平臺,提供一個自主探究,合作交流的環(huán)境,讓學(xué)生通過不斷地發(fā)現(xiàn)問題、分析問題、解決問題,以培養(yǎng)學(xué)生的思維能力。
五、教學(xué)過程。
教學(xué)就像一條河流,如何讓學(xué)生到達(dá)知識的彼岸,教師在這一過程中的設(shè)計與引導(dǎo)起到了至關(guān)重要的作用。而本節(jié)課我將從六個方面根據(jù)學(xué)生的實(shí)際情況進(jìn)行一個設(shè)計。
(一)情境設(shè)計,鋪墊導(dǎo)入(三分鐘)。
教育的藝術(shù)在于創(chuàng)設(shè)恰當(dāng)?shù)那榫?。本?jié)課創(chuàng)設(shè)的情景是以釣魚島問題導(dǎo)入(本環(huán)節(jié)大約三分鐘)。一艘日本漁船企圖非法登陸我國釣魚島,我國艦艇此刻正在附近海域巡邏。它們?nèi)咧g的位置關(guān)系如下:我國艦艇的雷達(dá)掃描半徑為30km,如果日本漁船不改變航線,我國艦艇能否通過雷達(dá)掃描發(fā)現(xiàn)它呢?情景一設(shè)計的目的在于讓學(xué)生構(gòu)建恰當(dāng)?shù)臄?shù)學(xué)模型,本質(zhì)在于探究“直線與圓的位置關(guān)系”引出了課題,讓學(xué)生從數(shù)學(xué)角度看待日常生活中的問題,增強(qiáng)學(xué)習(xí)的趣味性,使愛國熱情轉(zhuǎn)化為探索和學(xué)習(xí)的動力。
問題作為引導(dǎo)的核心,在這個問題上,我設(shè)計了如下問題:問題1:你能利用已有的平面幾何知識建立適當(dāng)?shù)臄?shù)學(xué)模型,來解決這一問題嗎?目的在于引導(dǎo)學(xué)生主動回憶初中所學(xué)的“直線與圓的三種位置關(guān)系”。并能說明這三種位置關(guān)系中公共點(diǎn)的個數(shù)以及圓心到直線的距離與半徑的大小關(guān)系。通過舊知識的回顧使學(xué)生發(fā)現(xiàn)新的問題,也使新的知識在原有的知識結(jié)構(gòu)中找到伸展點(diǎn),而這個伸展點(diǎn)就是問題2.(二)切入主題、提出課題(2分鐘)。
問題2:如何用直線方程和圓的方程來判斷它們之間的關(guān)系呢?
問題2切入了本節(jié)的中心議題,讓學(xué)生用自主探究的學(xué)習(xí)方式,引導(dǎo)學(xué)生用方程思想解決幾何的問題。
在此教師不用急于讓學(xué)生回答這個問題,而是通過一個具體的問題來進(jìn)行解答。這一具體問題我選擇了課本的例1,之所以選擇例1是因為例1直間給出了直線與圓的方程。學(xué)生只需要思考能用幾種方法來解決和判斷直線與圓的位置關(guān)系。引出了本節(jié)的重點(diǎn)。而第二問還要求學(xué)生求出交點(diǎn)坐標(biāo),目的在于讓學(xué)生進(jìn)一步認(rèn)識方程組解得意義。
(三)探索研究、解決問題(10分鐘)。
通過例1這一具體問題之后,可以讓學(xué)生嘗試歸納判斷直線與圓的位置關(guān)系的方法,在此我設(shè)置了兩個活動?;顒佣阂獙W(xué)生通過合作交流的方式將全班分成小組進(jìn)行合作交流探究?;顒尤阂獙W(xué)生通過歸納小結(jié)的學(xué)習(xí)方法,將各小組的成果進(jìn)行分享,最后進(jìn)行歸納總結(jié)。教師在這一過程中只需要做好引導(dǎo)者和組織者的作用。目的是讓學(xué)生主動的參與課堂,通過分析問題、解決問題培養(yǎng)學(xué)生的能力。而這種由特殊例子到一般方法的歸納,也符合學(xué)生的認(rèn)知結(jié)構(gòu)。讓學(xué)生在交流、探討和歸納的過程中理解和掌握本節(jié)課的重點(diǎn)。即直線與圓的位置關(guān)系的判斷方法。這里的方法可由學(xué)生歸納得出。第一種,幾何法,第二種,代數(shù)發(fā)。這兩種方法都體現(xiàn)了數(shù)學(xué)的思想,并且代數(shù)法對于今后解析幾何的方法應(yīng)用較多,也為后面解決圓錐曲線問題提供了方法依據(jù)。
(四)新知應(yīng)用、深化理解(20分鐘)。
掌握了方法接下來就是應(yīng)用,請學(xué)生利用“幾何法”和“代數(shù)法”解決情景一中的問題,達(dá)到學(xué)以致用,鞏固方法的目的。在此教師可以讓兩名學(xué)生通過不同的方法在黑板上演練,再讓其他學(xué)生進(jìn)行點(diǎn)評,教師在進(jìn)行小結(jié)即可。
例2是本節(jié)的難點(diǎn),如何突破難點(diǎn)呢?我將從例1的一個變式引出。求直線l被圓c截得的弦長ab.在此教師可以作適當(dāng)?shù)狞c(diǎn)撥,求弦長的方法很多,如兩點(diǎn)間距離公式,弦長公式以及圓心到直線的距離與半徑構(gòu)建直角三角形利用勾股定理進(jìn)行求解。通過一題多變,一題多解,不僅體現(xiàn)了新課標(biāo)的要求,還讓學(xué)生在練習(xí)中拓展思維、活用方法,為接下來解決例2這一難點(diǎn)突破奠定基礎(chǔ)。
例2通過剛才的變式,由淺入深,引入例2,環(huán)環(huán)相扣,讓學(xué)生體會利用“幾何法”和“代數(shù)法”解決直線和圓相交時有關(guān)弦長的問題,突破本節(jié)難點(diǎn)。
掌握本節(jié)重點(diǎn),突破難點(diǎn)之后,可以讓學(xué)生根據(jù)情景做適當(dāng)?shù)难由?。情景二:若我國艦艇雷達(dá)掃描半徑為rkm,此時日本非法漁船航線剛好和我國艦艇雷達(dá)掃描的圓形區(qū)域的邊緣相切,計算雷達(dá)掃描的半徑r的值。
情景二研究的是直線與圓相切的情況,同時是含有參數(shù)的問題,引導(dǎo)學(xué)生從運(yùn)動變化的角度來看待問題,提高了思維的梯度。
情景三:對于同樣的情景,你還能根據(jù)“直線與圓的位置關(guān)系”設(shè)置出哪些問題呢?
這一問題,目的在于培養(yǎng)學(xué)生的創(chuàng)新意識,可以作為課后的拓展題,讓學(xué)生通過小組探究來完成。實(shí)際上學(xué)生創(chuàng)設(shè)問題的過程就是檢驗我們教學(xué)成果的過程。
(五)總結(jié)提升、形成方法(5分鐘)。
在課后總結(jié)中,讓學(xué)生通過三個方面進(jìn)行總結(jié)。第一,方法總結(jié),在直線與圓的位置關(guān)系中,你掌握了哪些方法呢?學(xué)會了哪些應(yīng)用呢?你自己的思想上又得到了哪些提升呢?目的在于以自我小結(jié)的形式,對本節(jié)課進(jìn)行簡單的回顧與梳理,也是對所學(xué)內(nèi)容的再次鞏固與提升。
(六)課后作業(yè),鞏固提高在課后訓(xùn)練中,針對學(xué)生不同層次,我設(shè)計了這三種題型:1.鞏固題,2.提高題,探究題。目的在于尊重學(xué)生的個體差異性,調(diào)動學(xué)生的積極性,使每一個學(xué)生在教學(xué)中都能夠有所發(fā)展。
(七)板書設(shè)計。
這是我的板書設(shè)計,本節(jié)課以多媒體演示為主,板書設(shè)計以簡潔明了為主,左邊主要羅列了主要的方法和應(yīng)用。右邊作為例題演示和學(xué)生演練。
教學(xué)反思。
作為教育工作者,目的在于授之以漁。而教學(xué)過程意在于把科學(xué)知識作為培養(yǎng)學(xué)生思維能力的一個階梯。
本節(jié)課,以活動為主線,問題為載體,通過釣魚島問題導(dǎo)入,由淺入深,環(huán)環(huán)相扣,一個情景,兩種方法,三種問題,一氣呵成,這節(jié)課的重難點(diǎn)也得以突破。另外本節(jié)課還有許多不足,如合作學(xué)習(xí)沒達(dá)到預(yù)想的效果,組長沒能起到應(yīng)有的作用。教師對有些知識強(qiáng)調(diào)、點(diǎn)評不到位等。
我的說課到此結(jié)束,不妥之處,敬請各位老師批評指正,謝謝!
直線和圓的位置關(guān)系說課稿篇四
已知直線都是正數(shù))與圓相切,則以為三邊長的三角形是________三角形.
三、解答題。
當(dāng)為何值時,直線與圓有兩個公共點(diǎn)?有一個公共點(diǎn)?無公共點(diǎn)?
四、填空題。
若直線與圓相切,則實(shí)數(shù)的值等于________.
圓心為且與直線相切的圓的方程為________.
直線與圓相切,則實(shí)數(shù)等于________.
直線與圓相切,則________.
過點(diǎn)作圓的切線,且直線與平行,則與間的距離是________.
過點(diǎn),作圓的切線,則切線的條數(shù)為________條.
過點(diǎn)的圓與直線相切于點(diǎn),則圓的方程為________.
五、解答題。
過點(diǎn)作圓的切線,求此切線的方程.。
圓與直線相切于點(diǎn),且與直線也相切,求圓的方程.。
六、填空題。
由直線上的一點(diǎn)向圓引切線,則切線長的最小值為_____________.
七、解答題。
求滿足下列條件的圓的切線方程:
(1)經(jīng)過點(diǎn);
(2)斜率為;
(3)過點(diǎn).。
已知圓的方程為,求過的圓的切線方程.。
八、填空題。
直線被圓截得的弦長等于________.
直線被圓截得的弦長等于________.
直線被圓所截得的弦長為________.
圓截直線所得弦的長度為4,則實(shí)數(shù)的值是________.
設(shè)直線與圓相交于兩點(diǎn),若,則圓的面積為________.
直線被圓截得的弦長為________.
直線被圓所截得的弦長為________.
圓心坐標(biāo)為的圓在直線上截得的弦長為,那么這個圓的方程為________.
過點(diǎn)的直線被圓截得的弦長為,則直線的斜率為________.
過原點(diǎn)的直線與圓相交所得弦的長為2,則該直線的方程為________.
九、解答題。
圓心在直線上,圓過點(diǎn),且截直線所得弦長為,求圓的方程.。
十、填空題。
過點(diǎn)作圓的弦,其中最短弦的長為________.
十一、解答題。
已知圓,直線.
(1)求證:對,直線與圓總有兩個不同的交點(diǎn);
(2)若直線與圓交于兩點(diǎn),當(dāng)時,求的值.。
設(shè)圓上的點(diǎn)關(guān)于直線的對稱點(diǎn)仍在圓上,且直線被圓截得的弦長為,求圓的方程.。
已知圓,直線.。
證明:不論取什么實(shí)數(shù),直線與圓恒交于兩點(diǎn)。
求直線被圓截得的弦長最小時的方程,并求此時的弦長。
十二、填空題。
圓上到直線的距離等于1的點(diǎn)有________個.
在平面直角坐標(biāo)系中,已知圓上有且僅有四個點(diǎn)到直線的距離為1,則實(shí)數(shù)的取值范圍是________.
設(shè)圓上有且僅有兩個點(diǎn)到直線的距離等于1,則圓半徑的取值范圍是________.
直線與曲線有且只有一個公共點(diǎn),則b的取值范圍是_________。
若直線與圓恒有兩個交點(diǎn),則實(shí)數(shù)的取值范圍為________.
已知點(diǎn)滿足,則的取值范圍是________.
若過點(diǎn)的直線與曲線有公共點(diǎn),則直線的斜率的取值范圍為。
直線和圓的位置關(guān)系說課稿篇五
在本屆貴陽市中青年教師教學(xué)研討會中,修文中學(xué)提出打造有自己特色的“良知高效課堂”,整個課堂進(jìn)程分四步八環(huán)節(jié)。本人承擔(dān)的是直線與圓的位置關(guān)系這一堂課與大家交流,有不足之外請老師們批評指正。
1、教材地位。
從知識結(jié)構(gòu)來看,直線與圓的位置關(guān)系是對圓的方程應(yīng)用的延續(xù)和拓展,又是后續(xù)研究圓與圓的位置關(guān)系和直線與圓錐曲線的位置關(guān)系等內(nèi)容的基礎(chǔ)。在直線與圓的位置關(guān)系的判斷方法的建立過程中蘊(yùn)涵著諸多的數(shù)學(xué)思想方法,這對于進(jìn)一步探索、研究后續(xù)內(nèi)容有很強(qiáng)的啟發(fā)與示范作用。
2、學(xué)生情況。
對于直線和圓,學(xué)生已經(jīng)非常熟悉,并且知道直線與圓有三種位置關(guān)系:相離,相切和相交。從直線與圓的直觀感受上,學(xué)生懂得從圓心到直線的距離與圓的半徑相比較來研究直線與圓的位置關(guān)系。本節(jié)課,學(xué)生將進(jìn)一步挖掘直線與圓的位置關(guān)系中的“數(shù)”的關(guān)系,學(xué)會從不同角度分析思考問題,為后續(xù)學(xué)習(xí)打下基礎(chǔ)。另外學(xué)生在探究問題的能力,合作交流的意識及反思總結(jié)等方面有待加強(qiáng)。
3、教學(xué)目標(biāo)。
新課程標(biāo)準(zhǔn)的要求是能根據(jù)直線與圓的方程判斷其位置關(guān)系(相交、相切、相離),體會用代數(shù)方法處理幾何問題的思想,感受“形”與“數(shù)”的對立和統(tǒng)一;初步掌握數(shù)形結(jié)合的思想方法在研究數(shù)學(xué)問題中的應(yīng)用。
根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,本節(jié)課教學(xué)應(yīng)實(shí)現(xiàn)如下教學(xué)目標(biāo):
4、知識與技能。
直線和圓的位置關(guān)系說課稿篇六
5、過程與方法。
理解直線和圓的三種位置關(guān)系,感受直線和圓的位置與它們的方程所組成的二元二次方程組的解的對應(yīng)關(guān)系;體驗通過比較圓心到直線的距離和半徑之間的大小及通過方程組的解的個數(shù)判斷直線與圓的位置關(guān)系,能用直線和圓的方程解決一些條件下圓的切線問題;領(lǐng)會數(shù)形結(jié)合的數(shù)學(xué)思想方法,提高發(fā)現(xiàn)問題、分析問題、解決問題的能力。
6、情感態(tài)度與價值觀。
通過對本節(jié)課知識的探究活動,加深學(xué)生對解析法解決幾何問題的認(rèn)識,從而領(lǐng)悟其中所蘊(yùn)涵的數(shù)學(xué)思想,體驗探索中成功的喜悅,激發(fā)學(xué)習(xí)熱情,養(yǎng)成良好的學(xué)習(xí)習(xí)慣和品質(zhì)。
教法學(xué)法為了實(shí)現(xiàn)上述教學(xué)目標(biāo),本節(jié)課采取以下教學(xué)方法:
(1)恰當(dāng)?shù)睦枚嗝襟w課件,通過學(xué)生熟悉的實(shí)際生活問題引入課題,拉近數(shù)學(xué)與現(xiàn)實(shí)的距離,激發(fā)學(xué)生的問題意識和求知欲,調(diào)動學(xué)生主體參與的積極性。
(2)采用“啟發(fā)式”問題教學(xué)法,用環(huán)環(huán)相扣的問題將探究活動層層深入,站在學(xué)生思維的最近發(fā)展區(qū)上啟發(fā)誘導(dǎo)。
(3)在整個數(shù)學(xué)教學(xué)過程中,既要體現(xiàn)學(xué)生的主體地位,更要強(qiáng)調(diào)教師的主導(dǎo)地位,在科學(xué)講授的同時教會學(xué)生清晰的思維和嚴(yán)謹(jǐn)?shù)耐评怼?BR> 在學(xué)法上注重以下幾點(diǎn):
(2)在用代數(shù)法解決直線與圓的位置關(guān)系時,要能夠明確運(yùn)算方向,把握關(guān)鍵步驟,正確的處理較為復(fù)雜數(shù)據(jù)。
課堂結(jié)構(gòu)設(shè)計:
整個教學(xué)過程是四步組成,自主學(xué)習(xí),合作探究,老師輔導(dǎo)、課堂展示。共分為八個環(huán)節(jié),復(fù)習(xí)、獨(dú)立訓(xùn)練、相互探討、老師參與、形成結(jié)論、課堂展示、評價(互評師評)、反思。
教學(xué)過程設(shè)計:
通過問題情境,激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生找到要學(xué)的與以學(xué)知識之間的聯(lián)系;問題串的設(shè)置可讓學(xué)生主動參與到學(xué)習(xí)中來;在判斷方法的形成與應(yīng)用的探究中,師生的相互溝通調(diào)動學(xué)生的積極性,培養(yǎng)團(tuán)隊精神;知識的生成和問題的解決,培養(yǎng)學(xué)生獨(dú)立思考的能力,激發(fā)學(xué)生的創(chuàng)新思維;通過練習(xí)檢測學(xué)生對知識的掌握情況;根據(jù)學(xué)生在課堂小結(jié)中的表現(xiàn)和課后作業(yè)情況,查缺補(bǔ)漏,以便調(diào)控教學(xué)。
回顧反思,拓展延伸:
直線和圓的位置關(guān)系說課稿篇七
本節(jié)課的教學(xué),我認(rèn)為成功之處有以下幾點(diǎn):
1.由日落的三張照片(太陽與地平線相離、相切、相交)引入,學(xué)生比較感興趣,充分感受生活中反映直線與圓位置關(guān)系的現(xiàn)象,體驗到數(shù)學(xué)來源于實(shí)踐。對生活中的數(shù)學(xué)問題發(fā)生好奇,這是學(xué)生最容易接受的學(xué)習(xí)數(shù)學(xué)的好方法。新課標(biāo)下的數(shù)學(xué)教學(xué)的基本特點(diǎn)之一就是密切關(guān)注數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系,從生活中“找”數(shù)學(xué),“想”數(shù)學(xué),讓學(xué)生真正感受到生活之中處處有數(shù)學(xué)。
2.在探索直線和圓位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,我先引導(dǎo)學(xué)生回顧點(diǎn)和圓的位置關(guān)系所對應(yīng)的數(shù)量關(guān)系,啟發(fā)學(xué)生運(yùn)用類比的思想來思考問題,解決問題,學(xué)生很輕松的就能夠得出結(jié)論,從而突破本節(jié)課的難點(diǎn),使學(xué)生充分理解位置關(guān)系與數(shù)量關(guān)系的相互轉(zhuǎn)化,這種等價關(guān)系是研究切線的理論基礎(chǔ),從而為下節(jié)課探索切線的性質(zhì)打好基礎(chǔ)。
3.本著學(xué)習(xí)----總結(jié)----再學(xué)習(xí)的思維教學(xué)模式,讓學(xué)生逐步理解知識掌握知識能夠很好的應(yīng)用知識。
同時,我也感覺到本節(jié)課的設(shè)計有不妥之處,主要有以下三點(diǎn):1.學(xué)生觀察得到直線和圓的三種位置關(guān)系后,我設(shè)計的是直接給出定義可以改為讓學(xué)生下定義,師生共同討論的形式給學(xué)生以思維想象的空間,充分調(diào)動學(xué)生的積極性,使學(xué)生實(shí)現(xiàn)自主探究。
2.本節(jié)課中擴(kuò)展應(yīng)用環(huán)節(jié)圖形給的不是很明確,如果能給出精確的圖形那么學(xué)生會容易一些。
3.由于前邊時間有些過長,所以小結(jié)部分有些倉促。
直線和圓的位置關(guān)系說課稿篇八
三、目的分析:
1、知識目標(biāo):
2、能力目標(biāo):
要使學(xué)生體會用代數(shù)方法處理幾何問題的思路和“數(shù)形結(jié)合”的思想方法。
四、教法分析:
1、教學(xué)方法:啟發(fā)式講授法、演示法、輔導(dǎo)法。
2、教材處理:
(1)例題1(1)(2)用兩種不同的辦法求解,讓學(xué)生自己體會這兩種方法。
通過老師引導(dǎo)和讓學(xué)生自己探索解決,反饋學(xué)生的解決情況。
(2)增加一個過一點(diǎn)求圓的切線方程的題型,幫助學(xué)生增加對直線與圓的認(rèn)識。
3、學(xué)法指導(dǎo):本節(jié)課的學(xué)法是繼續(xù)指導(dǎo)學(xué)生把新問題轉(zhuǎn)化為已有知識解決的化歸思想。
4、教具:多媒體電腦、投影儀、自做多媒體。
五、過程分析:
教學(xué)。
環(huán)節(jié)。
教學(xué)內(nèi)容。
設(shè)計意圖。
新課引入。
1、學(xué)生觀察日出照片,把觀察到的情況用自己的語言說出來,抽象出幾何圖形,在學(xué)生回答的基礎(chǔ)上,通過多媒體演示圓與直線的三種位置關(guān)系。讓學(xué)生感受到數(shù)學(xué)產(chǎn)生于生活,與生活密切相關(guān),并能使學(xué)生更好的直觀感受直線和圓的三種位置關(guān)系。然后引入本節(jié)課的課題。
2、在上一章,我們在學(xué)習(xí)了直線的方程后,研究了點(diǎn)和直線、直線與直線的位置關(guān)系,本章我們已經(jīng)學(xué)習(xí)了圓的方程,現(xiàn)在我們要研究直線與圓以及圓與圓的位置關(guān)系。
1數(shù)學(xué)產(chǎn)生于生活,與生活密切相關(guān)。
2、以實(shí)際問題引入有利于激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,有利于擴(kuò)展學(xué)生的視野。
新課講解。
一、知識點(diǎn)撥:
答:把圓心到直線的距離d和半徑r比較大小:
直線和圓的位置關(guān)系說課稿篇九
在本屆貴陽市中青年教師教學(xué)研討會中,修文中學(xué)提出打造有自己特色的“良知高效課堂”,整個課堂進(jìn)程分四步八環(huán)節(jié)。本人承擔(dān)的是直線與圓的位置關(guān)系這一堂課與大家交流,有不足之外請老師們批評指正。
從知識結(jié)構(gòu)來看,直線與圓的位置關(guān)系是對圓的方程應(yīng)用的延續(xù)和拓展,又是后續(xù)研究圓與圓的位置關(guān)系和直線與圓錐曲線的位置關(guān)系等內(nèi)容的基礎(chǔ)。在直線與圓的位置關(guān)系的判斷方法的建立過程中蘊(yùn)涵著諸多的數(shù)學(xué)思想方法,這對于進(jìn)一步探索、研究后續(xù)內(nèi)容有很強(qiáng)的啟發(fā)與示范作用。
對于直線和圓,學(xué)生已經(jīng)非常熟悉,并且知道直線與圓有三種位置關(guān)系:相離,相切和相交。從直線與圓的直觀感受上,學(xué)生懂得從圓心到直線的距離與圓的半徑相比較來研究直線與圓的位置關(guān)系。本節(jié)課,學(xué)生將進(jìn)一步挖掘直線與圓的位置關(guān)系中的“數(shù)”的關(guān)系,學(xué)會從不同角度分析思考問題,為后續(xù)學(xué)習(xí)打下基礎(chǔ)。另外學(xué)生在探究問題的能力,合作交流的意識及反思總結(jié)等方面有待加強(qiáng)。
新課程標(biāo)準(zhǔn)的要求是能根據(jù)直線與圓的方程判斷其位置關(guān)系(相交、相切、相離),體會用代數(shù)方法處理幾何問題的思想,感受“形”與“數(shù)”的對立和統(tǒng)一;初步掌握數(shù)形結(jié)合的思想方法在研究數(shù)學(xué)問題中的應(yīng)用。
根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,本節(jié)課教學(xué)應(yīng)實(shí)現(xiàn)如下教學(xué)目標(biāo):
掌握用圓心到直線的距離d與圓的半徑r的大小比較,判斷直線與圓位置關(guān)系,幾何法。
理解直線和圓的三種位置關(guān)系,感受直線和圓的位置與它們的方程所組成的二元二次方程組的解的對應(yīng)關(guān)系;體驗通過比較圓心到直線的距離和半徑之間的大小及通過方程組的解的個數(shù)判斷直線與圓的位置關(guān)系,能用直線和圓的方程解決一些條件下圓的切線問題;領(lǐng)會數(shù)形結(jié)合的數(shù)學(xué)思想方法,提高發(fā)現(xiàn)問題、分析問題、解決問題的能力。
通過對本節(jié)課知識的探究活動,加深學(xué)生對解析法解決幾何問題的認(rèn)識,從而領(lǐng)悟其中所蘊(yùn)涵的數(shù)學(xué)思想,體驗探索中成功的喜悅,激發(fā)學(xué)習(xí)熱情,養(yǎng)成良好的學(xué)習(xí)習(xí)慣和品質(zhì)。
教法學(xué)法為了實(shí)現(xiàn)上述教學(xué)目標(biāo),本節(jié)課采取以下教學(xué)方法:
(1)恰當(dāng)?shù)睦枚嗝襟w課件,通過學(xué)生熟悉的實(shí)際生活問題引入課題,拉近數(shù)學(xué)與現(xiàn)實(shí)的距離,激發(fā)學(xué)生的問題意識和求知欲,調(diào)動學(xué)生主體參與的積極性。
(2)采用“啟發(fā)式”問題教學(xué)法,用環(huán)環(huán)相扣的問題將探究活動層層深入,站在學(xué)生思維的最近發(fā)展區(qū)上啟發(fā)誘導(dǎo)。
(3)在整個數(shù)學(xué)教學(xué)過程中,既要體現(xiàn)學(xué)生的主體地位,更要強(qiáng)調(diào)教師的主導(dǎo)地位,在科學(xué)講授的同時教會學(xué)生清晰的思維和嚴(yán)謹(jǐn)?shù)耐评怼?BR> 在學(xué)法上注重以下幾點(diǎn):
(2)在用代數(shù)法解決直線與圓的位置關(guān)系時,要能夠明確運(yùn)算方向,把握關(guān)鍵步驟,正確的處理較為復(fù)雜數(shù)據(jù)。
整個教學(xué)過程是四步組成,自主學(xué)習(xí),合作探究,老師輔導(dǎo)、課堂展示。共分為八個環(huán)節(jié),復(fù)習(xí)、獨(dú)立訓(xùn)練、相互探討、老師參與、形成結(jié)論、課堂展示、評價(互評師評)、反思。
通過問題情境,激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生找到要學(xué)的與以學(xué)知識之間的聯(lián)系;問題串的設(shè)置可讓學(xué)生主動參與到學(xué)習(xí)中來;在判斷方法的形成與應(yīng)用的探究中,師生的相互溝通調(diào)動學(xué)生的積極性,培養(yǎng)團(tuán)隊精神;知識的生成和問題的解決,培養(yǎng)學(xué)生獨(dú)立思考的能力,激發(fā)學(xué)生的創(chuàng)新思維;通過練習(xí)檢測學(xué)生對知識的掌握情況;根據(jù)學(xué)生在課堂小結(jié)中的表現(xiàn)和課后作業(yè)情況,查缺補(bǔ)漏,以便調(diào)控教學(xué)。
直線和圓的位置關(guān)系說課稿篇十
1、教材的地位和作用。
圓的教學(xué)在平面幾何中乃至整個中學(xué)教學(xué)都占有重要的地位,而直線和圓的位置關(guān)系的應(yīng)用又比較廣泛,它是初中幾何的綜合運(yùn)用,又是在學(xué)習(xí)了點(diǎn)和圓的位置關(guān)系的基礎(chǔ)上進(jìn)行的,為后面的圓與圓的位置關(guān)系作鋪墊的一節(jié)課,在今后的解題及幾何證明中,將起到重要的作用。
2、教學(xué)目標(biāo):
根據(jù)學(xué)生已有的認(rèn)知的基礎(chǔ)及本課的'教材的地位、作用,依據(jù)教學(xué)大綱的確定本課的教學(xué)目標(biāo)為:
(1)知識目標(biāo):
a、知道直線和圓相交、相切、相離的定義。
會根據(jù)直線和圓相切的定義畫出已知圓的切線。
c、根據(jù)圓心到直線的距離與圓的半徑之間的數(shù)量關(guān)系揭示直線和圓的位置。
2)能力目標(biāo):
讓學(xué)生通過觀察、看圖、列表、分析、對比,能找出圓心到直線的距離和圓的半徑之間的數(shù)量關(guān)系,揭示直線和圓的關(guān)系。此外,通過直線與圓的相對運(yùn)動,培養(yǎng)學(xué)生運(yùn)動變化的辨證唯物主義觀點(diǎn),通過對研究過程的反思,進(jìn)一步強(qiáng)化對分類和歸納的思想的認(rèn)識。
3)情感目標(biāo):
在解決問題中,教師創(chuàng)設(shè)情境導(dǎo)入新課,以觀察素材入手,像一輪紅日從海平面升起的圖片,提出問題,讓學(xué)生結(jié)合學(xué)過的知識,把它們抽象出幾何圖形,再表示出來。讓學(xué)生感受到實(shí)際生活中,存在的直線和圓的三種位置關(guān)系,便于學(xué)生用運(yùn)動的觀點(diǎn)觀察圓與直線的位置關(guān)系,有利于學(xué)生把實(shí)際的問題抽象成數(shù)學(xué)模型,也便于學(xué)生觀察直線和圓的公共點(diǎn)的變化。
3。教材的重點(diǎn)難點(diǎn)。
直線和圓的三種位置關(guān)系是重點(diǎn),本課的難點(diǎn)是直線和圓的三種位置關(guān)系的性質(zhì)與判定的應(yīng)用。
4。在教學(xué)中如何突破這個重點(diǎn)和難點(diǎn)。
解決重點(diǎn)的方法主要是:
(2)把直線在圓的上下移動,引導(dǎo)學(xué)生用運(yùn)動的觀點(diǎn)觀察直線和圓的位置關(guān)系,并讓他們發(fā)現(xiàn)直線與圓的公共點(diǎn)的個數(shù),揭示直線和圓相交、相切、相離的定義,歸納直線和圓的三種位置關(guān)系。是什么?)。
(1)突破直線和圓不能有兩個以上的公共點(diǎn),讓學(xué)生討論,最后明確否定(因為直線和圓有三個或三個以上的公共點(diǎn),那么這與不在同一條直線上的三點(diǎn)就可以作一個圓,相矛盾)。
(2)把直線在圓的上下移動,引導(dǎo)學(xué)生用運(yùn)動的觀點(diǎn)觀察直線和圓的位置關(guān)系,并讓他們發(fā)現(xiàn)直線與圓的公共點(diǎn)的個數(shù),揭示直線和圓相交、相切、相離的定義,歸納直線和圓的三種位置關(guān)系。
(3)突破直線和圓有唯一一個公共點(diǎn)是直線和圓相切(指直線與圓有一個并且只有一個公共點(diǎn),它與有一個公共點(diǎn)的含義不同)。
(4)突破直線和圓的位置關(guān)系的(如果圓o的半徑為r,圓心到直線的距離為d,
1,直線l與圓o相交=dr。
3,直線l與圓o相離=dr。
式子的左邊反映是兩個圖形(直線和圓)的位置關(guān)系的性質(zhì),右邊是反映直線和圓的位置關(guān)系的判定。二、學(xué)情分析根據(jù)初三學(xué)生活潑好動好奇心和求知欲都非常強(qiáng),并且在初一,初二基礎(chǔ)上初三學(xué)生有一定的分析力,歸納力和根據(jù)他們的特點(diǎn),聯(lián)系生活實(shí)際中結(jié)合問題結(jié)合本節(jié)課適合學(xué)生的學(xué)習(xí)材料注重激發(fā)學(xué)生的求知欲讓他們真正理解這節(jié)課是在學(xué)習(xí)了點(diǎn)和圓的位置關(guān)系的基礎(chǔ)上,進(jìn)行的為后面的圓與圓的位置關(guān)系作鋪墊的一節(jié)課。通過直線與圓的相對運(yùn)動,揭示直線與圓的位置關(guān)系,培養(yǎng)學(xué)生運(yùn)動變化的辨證唯物主義觀點(diǎn);通過對研究過程的反思,進(jìn)一步強(qiáng)化對分類和化歸思想的認(rèn)識。
三、教法設(shè)計復(fù)習(xí)點(diǎn)和圓的位置關(guān)系,引導(dǎo)學(xué)生用類比的方法來研究直線與圓的位置關(guān)系,在直線與圓的位置關(guān)系的判定的過程中,采用小組討論的方法,培養(yǎng)學(xué)生互助、協(xié)作的精神。學(xué)生質(zhì)疑這一環(huán)節(jié)充分培養(yǎng)學(xué)生敢于提問的習(xí)慣,做到不懂就問。學(xué)生小結(jié),讓學(xué)生自己歸納本節(jié)課學(xué)習(xí)的內(nèi)容,培養(yǎng)學(xué)生用數(shù)學(xué)語言歸納問題的能力。
1,學(xué)生觀察日出照片,把觀察到的情況用自己的語言說出來,抽象出幾何圖形在學(xué)生回答的基礎(chǔ)上,教師通過多媒體演示圓與直線的三種位置關(guān)系。
2,進(jìn)一步讓學(xué)生感受到數(shù)學(xué)產(chǎn)生于生活,與生活密切相關(guān),并能使學(xué)生更好的直觀感受直線和圓的三種位置關(guān)系。
3,強(qiáng)調(diào)公共點(diǎn)的唯一性。給出定義時,盡可能地有學(xué)生來概括和敘述,有利于提高學(xué)生的語言表達(dá)能力。
4,有利于新舊知識的聯(lián)系,培養(yǎng)學(xué)生的遷移能力,掌握用定量研究來解決問題的方法。在學(xué)生回答問題的基礎(chǔ)上,教師打出直線和圓的位置關(guān)系以及它們的數(shù)量特征。
5,通過直線到圓的距離d和半徑r這兩個數(shù)量之間的關(guān)系來研究直線和圓的位置關(guān)系。這樣很好的體現(xiàn)數(shù)形結(jié)合的思想,使較為復(fù)雜的問題能簡單化。
6,讓學(xué)生自己歸納本節(jié)課學(xué)習(xí)的內(nèi)容,培養(yǎng)學(xué)生用數(shù)學(xué)語言歸納問題的能力。
復(fù)習(xí)點(diǎn)和圓的位置關(guān)系,引導(dǎo)學(xué)生用類比的方法來研究直線與圓的位置關(guān)系,在直線與圓的位置關(guān)系的判定的過程中,采用小組討論的方法,培養(yǎng)學(xué)生互助、協(xié)作的精神。學(xué)生質(zhì)疑這一環(huán)節(jié)充分培養(yǎng)學(xué)生敢于提問的習(xí)慣,做到不懂就問。
學(xué)生小結(jié),讓學(xué)生自己歸納本節(jié)課學(xué)習(xí)的內(nèi)容,培養(yǎng)學(xué)生用數(shù)學(xué)語言歸納問題的能力。
創(chuàng)設(shè)情境、導(dǎo)入新課、新授、鞏固練習(xí)、學(xué)生質(zhì)疑、學(xué)生小結(jié)、布置作業(yè)。
[提問]通過觀察、演示,你知道直線和圓有幾種位置關(guān)系?
[討論]一輪紅日從海平面升起的照片。
[新授]給出相交、相切、相離的定義。
[類比]復(fù)習(xí)點(diǎn)與圓的位置關(guān)系,討論它們的數(shù)量關(guān)系。通過類比,從而得出直線與圓的位置關(guān)系的性質(zhì)定理及判定方法。
[鞏固練習(xí)]例1,
出示例題。
(1)r=2cm;(2)r=2。4cm;(3)r=3cm。
由學(xué)生填寫下例表格。
公共點(diǎn)個數(shù)。
圓心到直線距離d與半徑r關(guān)系。
公共點(diǎn)名稱。
直線名稱。
圖形。
補(bǔ)充練習(xí)的答案由師生一起歸納填寫。
教學(xué)小結(jié)。
直線與圓的位置關(guān)系,讓學(xué)生自己歸納本節(jié)課學(xué)習(xí)的內(nèi)容,培養(yǎng)學(xué)生用數(shù)學(xué)語言歸納問題的能力。然后老師在多媒體打出圖表。
本節(jié)課主要采用了歸納、演繹、類比的思想方法,從現(xiàn)實(shí)生活中抽象出數(shù)學(xué)模型,體現(xiàn)了數(shù)學(xué)產(chǎn)生于生活的思想,并且將新舊知識進(jìn)行了類比、轉(zhuǎn)化,充分發(fā)揮了學(xué)生的主觀能動性,體現(xiàn)了學(xué)生是學(xué)習(xí)的主體,真正成為學(xué)習(xí)的主人,轉(zhuǎn)變了角色。
六,板書設(shè)計:
1,相交、相切、相離的定義。
例1:
三,課堂練習(xí)。
四,小結(jié)。
直線和圓的位置關(guān)系說課稿篇十一
楊跟上。
一:教材:
人教版九年義務(wù)教育九年級數(shù)學(xué)上冊二:學(xué)情分析。
初三學(xué)生已經(jīng)具備一定的獨(dú)立思考和探索能力,并能在探索過程中形成自己的觀點(diǎn),能在傾聽別人意見的過程中逐漸完善自己的想法,因此本節(jié)課設(shè)計了探究活動,給學(xué)生提供探索與交流的空間,體現(xiàn)知識的形成過程。
三教學(xué)目標(biāo)(知識,技能,情感態(tài)度、價值觀)。
1、知識與技能。
能綜合運(yùn)用以前的數(shù)學(xué)知識解決與本節(jié)有關(guān)的實(shí)際問題。
3.情感態(tài)度與價值觀。
(1)通過和點(diǎn)與圓的位置關(guān)系的類比,學(xué)習(xí)直線與圓的位置關(guān)系,培養(yǎng)學(xué)生類比的思維方法。
(2)培養(yǎng)學(xué)生的相互合作精神四:教學(xué)重點(diǎn)與難點(diǎn):
五:教學(xué)方法:
啟發(fā)探究。
六、教學(xué)環(huán)境及資源準(zhǔn)備。
1、教學(xué)環(huán)境:學(xué)校多媒體教室。2.教學(xué)資源。
(1).教師多媒體課件,(2)學(xué)生準(zhǔn)備硬幣或其他類似圓的用具。
1、自主學(xué)習(xí)策略:通過提出問題讓學(xué)生思考,幫助學(xué)生學(xué)會探索直線與圓的位置關(guān)系關(guān)系。
2、合作探究策略:通過學(xué)生動手操作與相互交流,激發(fā)學(xué)生學(xué)習(xí)興趣,讓學(xué)生在輕松愉快的教學(xué)氣氛下之下掌握直線與圓的位置關(guān)系。
3、理論聯(lián)系實(shí)際策略;通過學(xué)生綜合運(yùn)用數(shù)學(xué)知識解決直線與圓的位置關(guān)系的實(shí)際問題,培養(yǎng)學(xué)生利用知識解決實(shí)際問題的能力。
教學(xué)流程:
一.復(fù)習(xí)回顧,導(dǎo)入新課。
由點(diǎn)和圓的位置關(guān)系設(shè)計了兩個問題,讓學(xué)生獨(dú)立思考,然后回答問題,為下面做準(zhǔn)備。
二:合作交流,探求新知。
第一步,學(xué)生對直線與圓的公共點(diǎn)個數(shù)變化情況的探索。
通過學(xué)生動手操作和探索,然后相互交流,并畫出圖形,得出直線與圓的公共點(diǎn)個數(shù)的變化情況。
第二步,師生共同歸納出直線與圓相交、相切等有關(guān)概念。
1.設(shè)圓o的半徑為r,圓心o到直線的距離為d,那么直線與圓在不同的位置關(guān)系下,d與r有什么樣的數(shù)量關(guān)系?請你分別畫出圖形,認(rèn)真觀察和分析圖形,類比點(diǎn)和圓的位置關(guān)系,看看d和r什么數(shù)量關(guān)系。
我設(shè)計了兩個問題,使學(xué)生學(xué)會通過計算圓心到直線的距離,來判斷直線與圓的位置關(guān)系。四:鞏固提高:
在本節(jié)的教學(xué)中,我設(shè)計了兩個練習(xí)、一個作業(yè)加以鞏固,使學(xué)生能更好的掌握本節(jié)內(nèi)容。
直線和圓的位置關(guān)系說課稿篇十二
重點(diǎn):的性質(zhì)和判定。因為它是本單元的基礎(chǔ)(如:“切線的判斷和性質(zhì)定理”是在它的基礎(chǔ)上研究的),也是高中解析幾何中研究的基礎(chǔ)。
難點(diǎn):在對性質(zhì)和判定的研究中,既要有歸納概括能力,又要有轉(zhuǎn)換思想和能力,所以是本節(jié)的難點(diǎn);另外對“相切”要分清直線與圓有唯一公共點(diǎn)是指有一個并且只有一個公共點(diǎn),與有一個公共點(diǎn)含義不同(這一點(diǎn)到直線和曲線相切時很重要),學(xué)生較難理解。
3.教法建議。
本節(jié)內(nèi)容需要一個課時。
(2)在中,以“形”歸納“數(shù)”,以“數(shù)”判斷“形”為主線,開展在組織下,以學(xué)生為主體,活動式.
第12頁。
直線和圓的位置關(guān)系說課稿篇十三
b.會根據(jù)直線和圓的方程用代數(shù)法和幾何法判斷直線與圓的位置關(guān)系;
c.掌握直線和圓的位置關(guān)系判定的應(yīng)用,會求已知圓的交線和切線方程。
(2)能力目標(biāo)
讓學(xué)生通過觀察,分析,總結(jié)歸納出根據(jù)直線與圓的方程來判斷直線與圓的位置關(guān)系的方法,培養(yǎng)學(xué)生分析問題解決問題的能力,讓學(xué)生對坐標(biāo)法有進(jìn)一步的了解,并能用參數(shù)法、數(shù)形結(jié)合的方法去分析、解決相應(yīng)的數(shù)學(xué)問題,同時訓(xùn)練學(xué)生數(shù)學(xué)思維,培養(yǎng)學(xué)生尋求一題多解的能力。
(3)情感目標(biāo)
通過學(xué)生自己動手實(shí)驗和探索,培養(yǎng)學(xué)生動手能力和發(fā)現(xiàn)問題的能力;通過師生互動,生生互動的教學(xué)活動過程,形成學(xué)生的體驗性認(rèn)識,體會成功的愉悅,提高數(shù)學(xué)學(xué)習(xí)的興趣,樹立學(xué)好數(shù)學(xué)的信心,培養(yǎng)鍥而不舍的鉆研精神和合作交流的科學(xué)態(tài)度。
重點(diǎn):直線和圓的三種位置關(guān)系
難點(diǎn):直線和圓的三種位置關(guān)系的性質(zhì)和判定的應(yīng)用
教學(xué)方法:問題探究式、啟發(fā)式引導(dǎo)、參與式探究、互動式討論
學(xué)習(xí)方法:自主探究、觀察發(fā)現(xiàn)、合作交流、歸納總結(jié)。
教學(xué)手段:借助多媒體動態(tài)演示,構(gòu)建學(xué)生探究式學(xué)習(xí)的教學(xué)環(huán)境。
1、創(chuàng)設(shè)情景、引入新課;
2、引導(dǎo)啟發(fā)、探索新知;
3、講練結(jié)合、鞏固新知;
4、知識拓展、深化提高;
5、小結(jié)新知,畫龍點(diǎn)睛
6、布置作業(yè),復(fù)習(xí)鞏固;
重新閱讀課本本節(jié)相關(guān)內(nèi)容并預(yù)習(xí)下一節(jié)課內(nèi)容。
直線與圓的位置關(guān)系是高考的考點(diǎn)之一,是在學(xué)生已有的平面幾何知識基礎(chǔ)上進(jìn)行教學(xué),以點(diǎn)與圓的位置關(guān)系上升為直線與圓的位置關(guān)系,從簡單到復(fù)雜,從幾何特征到代數(shù)問題(坐標(biāo)法)的教學(xué)過程,它應(yīng)用比較廣泛,同時也為后面圓和圓的位置關(guān)系作了鋪墊,對后面的解題及相關(guān)數(shù)學(xué)問題的解決將起到重要的作用,且本節(jié)是直線與圓錐曲線位置關(guān)系的基礎(chǔ),故要求學(xué)生充分掌握。
針對上述情況,我精心設(shè)計教學(xué)過程,借助多媒體動態(tài)演示直線和圓的位置關(guān)系,直觀形象地展示了直線與圓的位置關(guān)系,化抽象為具體,以便學(xué)生更好的.理解他們之間的關(guān)系及其幾何特征,再引導(dǎo)學(xué)生把幾何形式的結(jié)論轉(zhuǎn)化為代數(shù)形式;教學(xué)過程中采用問題探究式、參與式探究、互動式討論等教學(xué)方法,為學(xué)生自主探究、合作交流構(gòu)建一個好的平臺;分層次設(shè)置例題,讓全體學(xué)生都得到提升;講解例題時應(yīng)用啟發(fā)式引導(dǎo)教學(xué)方法,不斷訓(xùn)練學(xué)生數(shù)學(xué)思維,借助圖象分析題意,加深學(xué)生對數(shù)形結(jié)合思想了解;新課結(jié)束后,引導(dǎo)學(xué)生小結(jié)本課內(nèi)容,培養(yǎng)學(xué)生歸納總結(jié)的能力。
直線和圓的位置關(guān)系說課稿篇十四
“思之不慎,行而失當(dāng)”,“學(xué)然后知不足,教然后知困。知不足,然后能自反也;知困,然后能自強(qiáng)也?!狈此家庾R人類早就有之。作為教師,在教學(xué)中也應(yīng)適時反思教學(xué)過程的得與失。
開課時,借助微機(jī)展示“圓圓的落日慢慢從海平面升起”的動畫,從而展現(xiàn)直線與圓的位置關(guān)系。由此引入課題——直線與圓的位置關(guān)系,學(xué)生比較感興趣,充分感受生活中的數(shù)學(xué)知識,體驗數(shù)學(xué)來源于生活。然后提出問題,引導(dǎo)學(xué)生大膽猜想,思考,發(fā)現(xiàn)三種位置關(guān)系,激發(fā)學(xué)生學(xué)習(xí)興趣,營造探索問題的氛圍。同時讓學(xué)生從生活中“找”數(shù)學(xué),“想”數(shù)學(xué),體會到數(shù)學(xué)知識無處不在,應(yīng)用數(shù)學(xué)無處不有。這也符合“數(shù)學(xué)教學(xué)應(yīng)從生活經(jīng)驗出發(fā)”的新課程標(biāo)準(zhǔn)要求。
在探索直線和圓位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,我先引導(dǎo)學(xué)生回顧點(diǎn)和圓的位置關(guān)系所對應(yīng)的數(shù)量關(guān)系,啟發(fā)學(xué)生用類比的方法來研究直線與圓的位置關(guān)系,在研究過程中,采用小組討論的方法,給予學(xué)生足夠的探索、交流的時間,培養(yǎng)學(xué)生互助、協(xié)作的精神,讓學(xué)生在相互討論中,集思廣益,形成思維互補(bǔ),從而使概念更清楚,結(jié)論更準(zhǔn)確。最后由學(xué)生小結(jié)這一知識點(diǎn),我板書在黑板上,培養(yǎng)學(xué)生用數(shù)學(xué)語言歸納問題的能力,同時感受收獲知識的快樂。
在新知教授完畢,知識升華這塊,我安排了一道實(shí)際問題,一輛火車的噪首會不會影向處在與鐵路相交的另一條公路旁的學(xué)校?如果會影響,影響的時間有多長?新課標(biāo)下的數(shù)學(xué)強(qiáng)調(diào)人人學(xué)有價值的數(shù)學(xué),人人學(xué)有用的數(shù)學(xué),由于此題要學(xué)生回到生活中去運(yùn)用數(shù)學(xué)知識解決生活中遇到的問題,學(xué)生的積極性高漲,都急著討論解決方案,使乏味的數(shù)學(xué)學(xué)習(xí)變得有滋有味,使學(xué)生體會到學(xué)數(shù)學(xué)的重要性,體驗“生活中處處用數(shù)學(xué)”。
一堂課教學(xué)下來,也發(fā)現(xiàn)有諸多不妥之處,讓我認(rèn)識到自己需要繼續(xù)努力。歸納主要有以下三點(diǎn):。
1、教師在課堂應(yīng)當(dāng)以引導(dǎo)者的身份出現(xiàn),把課堂和講臺讓位于學(xué)生,讓“教師的教”真正服務(wù)于“學(xué)生的學(xué)”,而我在這一節(jié)課中因為一方面擔(dān)心學(xué)生在自主研究知識的形成時會浪費(fèi)時間,另一方面擔(dān)心會產(chǎn)生意想不到的或者課前備課時沒有考慮到的回答,總是把自己的思想強(qiáng)加給學(xué)生,比如學(xué)生觀察得到直線和圓的三種位置關(guān)系后,是由我講解的三個概念:相交、相切、相離。學(xué)生只是被動的接受,這樣就會對概念的理解不是很深刻。這里可以改為讓學(xué)生自己下定義,教師適當(dāng)放手,以師生共同討論的形式給學(xué)生以思維想象的空間,充分調(diào)動學(xué)生的積極性,使學(xué)生實(shí)現(xiàn)自主探究。
2、有些課堂提問欠合理化、科學(xué)化,提問隨意性大,缺乏針對性和啟發(fā)性,導(dǎo)致課堂教學(xué)引導(dǎo)不力,問題缺乏精心安排這就使得課堂存在著不少“徒勞的提問”。讓課堂時間分配的不太合理。今后應(yīng)該把一些提問設(shè)計再提煉,能達(dá)到精而準(zhǔn)。
3、在處理課后練習(xí)時,做的不夠細(xì)致,這一環(huán)節(jié)是對前面探究新知識是否掌握的一個小測試,重在幫助學(xué)生掌握方法,而我在講解練習(xí)時,只展示了解題思路,并沒有及時進(jìn)行方法上的總結(jié),致使部分學(xué)生在解決實(shí)際問題時思路不明確。這里教師要根據(jù)情況,簡要?dú)w納、概括應(yīng)掌握的方法,使學(xué)生能夠舉一反三,鞏固和擴(kuò)大知識,吸收、內(nèi)化知識,充分體現(xiàn)”授人以魚不如授人以漁"。
總之,這是我對自己本節(jié)課的一些教學(xué)反思,或者說是對新課程理念的淺薄認(rèn)識。
直線和圓的位置關(guān)系說課稿篇十五
本節(jié)課教學(xué)我所面對的傳授對象是聾啞學(xué)生,根據(jù)聾生的特點(diǎn)在學(xué)生觀察教材123頁三幅照片時,我立刻告訴學(xué)生你說的對,這就是直線和圓的三種關(guān)系:相交、相切和相離。我認(rèn)為是數(shù)學(xué)課而不是語文課,數(shù)學(xué)課只注重學(xué)生的觀察思維能力,不追求學(xué)生的語言表達(dá)能力和概括能力。
還有因為手語的手勢再多再細(xì)也不可能表達(dá)出所有的抽象的甚至連豐富的語言都不好表述的東西,因此在講解數(shù)學(xué)時,我追求細(xì)致,不要想很簡單,很明顯,而一帶而過。因此,教學(xué)時我多次強(qiáng)化學(xué)生對直線與圓的三種關(guān)系的理解,為學(xué)生探究點(diǎn)到直線的距離d和圓半徑r的大小關(guān)系。
然而數(shù)學(xué)教學(xué)時,該細(xì)的地方還是要細(xì),這需要教師自己的把握,在學(xué)生輕而易舉回答出來的問題時,有時要帶領(lǐng)學(xué)生深入思考,并多問個為什么?比如在本課學(xué)生總結(jié)出:“圓的切線垂直于過切點(diǎn)的直徑”時。養(yǎng)成學(xué)生深入思考的好習(xí)慣,不要想當(dāng)然!
直線和圓的位置關(guān)系說課稿篇十六
這節(jié)課是義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗教科書九年級上冊第二十四章第2節(jié)第2課時的內(nèi)容。本人在教學(xué)過程中緊緊圍繞新課程理念展開教學(xué),主要從以下幾方面介紹閃光點(diǎn):
一、創(chuàng)設(shè)情境。
1、組織學(xué)生發(fā)現(xiàn),尋找,搜集和利用學(xué)習(xí)資源。
現(xiàn)代課程觀認(rèn)為課程是由教師、教材、學(xué)生和環(huán)境四要素構(gòu)成的,教師和學(xué)生是課程的開發(fā)者和創(chuàng)造者。組織學(xué)生發(fā)現(xiàn),尋找,搜集和利用學(xué)習(xí)資源是教師的一項重要職責(zé)。因此,在教學(xué)中,本人把日出這一自然現(xiàn)象作為課程資源引入數(shù)學(xué)教學(xué),學(xué)生通過回想日出的景象畫出圖畫:一幅是美術(shù)圖畫;一幅是一條直線和一個圓。在學(xué)生都欣賞藝術(shù)圖畫的美時,教師引導(dǎo)學(xué)生欣賞一條直線和一個圓的數(shù)學(xué)美和它的價值,它的價值在于抽象和簡化,便與研究它的性質(zhì)。讓學(xué)生們看見了自然現(xiàn)象中的數(shù)學(xué)價值,同時也反應(yīng)了自然現(xiàn)象和數(shù)學(xué)之間的聯(lián)系。然后,我引導(dǎo)學(xué)生把變化著的自然現(xiàn)象再抽象成數(shù)學(xué)問題,引出直線和圓的相交、相切、相離三種關(guān)系。
2、創(chuàng)設(shè)豐富的教學(xué)情境,激發(fā)學(xué)生的學(xué)習(xí)動機(jī),培養(yǎng)學(xué)習(xí)興趣,充分調(diào)動學(xué)生的學(xué)習(xí)積極性。本人在教學(xué)第一環(huán)節(jié)用現(xiàn)實(shí)生活中日出這一景觀,讓學(xué)生享受美的情境中,在充分的想象中,從生活中抽象出數(shù)學(xué)模型,因此讓學(xué)生畫出兩種不同的日出圖畫,美術(shù)的圖畫讓學(xué)生看見了生活中的美。但在教學(xué)中本人著重引導(dǎo)學(xué)生欣賞另一種圖畫是抽象的數(shù)學(xué)美,在欣賞美的同時,體會生活中的數(shù)學(xué),從而激發(fā)學(xué)生的求知欲。
3、給學(xué)生提供合作交流的空間和時間。首先給學(xué)生的自主學(xué)習(xí)提供時間,讓學(xué)生自己畫出日出情景,接著合作交流兩種日出的圖畫,這樣為學(xué)生創(chuàng)設(shè)合作交流的空間。
4、組織學(xué)生營造教室中的積極的心理氛圍。本人在教學(xué)中注重這一方面的滲透。教學(xué)第一環(huán)節(jié)中,學(xué)生畫出兩種不同的畫面后,及時反饋,給予表揚(yáng)和鼓勵。尤其是教學(xué)過程中,我班田文潔同學(xué)由于偏科、數(shù)學(xué)底子薄弱,我發(fā)現(xiàn)她在畫圖中碰到老師的目光馬上避開,老師意識到她畫圖中可能有問題,我便走到她面前,與她交流,啟發(fā)她如何著手,并且誘導(dǎo)她從數(shù)學(xué)角度思考又該怎樣畫,這就給了她知識上的啟發(fā)和心理上的支持。還有看見胡海林沒有動筆和本,便走過去摸摸他的頭,并用溫和的目光問:“沒有思路嗎?”我啟發(fā)引導(dǎo)后,讓他和同桌交流,讓同桌再幫助他。這樣體現(xiàn)了對學(xué)生的信任、關(guān)心和理解。學(xué)生在老師的關(guān)愛下,學(xué)生的幫助下、受到激勵和鼓勵,激發(fā)了學(xué)習(xí)的興趣,從而用自己的愛心與學(xué)生一起營造了一個平等,尊重、信任、理解和寬容的教學(xué)氛圍。這正是新課程理念所倡導(dǎo)的。
二、新課講解(探究新知)。
這一部分的教學(xué)中主要滲透以下幾個基本理念:
1、讓課堂教學(xué)充滿創(chuàng)新活力。
(1)合作學(xué)習(xí)有利于培養(yǎng)學(xué)生的創(chuàng)新精神與創(chuàng)新能力。講述直線和圓相交、相切、相離的概念時,通過師生合作交流得出兩種方法,即交點(diǎn)的個數(shù)及點(diǎn)到直線的距離d與半徑r之間的關(guān)系,在合作交流中學(xué)生加深了對知識的理解和掌握、同時也有利于創(chuàng)新精神和創(chuàng)新能力的培養(yǎng)。
(2)探究過程是培養(yǎng)創(chuàng)新精神和創(chuàng)新能力的重要途徑。例:在講概念時,提出這一個問題:“通過回憶剛才畫出日出的圖畫,同學(xué)們發(fā)現(xiàn)直線與圓有三種位置,各自有什么特點(diǎn)?”這就為學(xué)生提供了探究的空間,學(xué)生很容易得出交點(diǎn)個數(shù),及時抓住探究過程中這一創(chuàng)新的“火花”,給予欣賞和激勵,從而掌握基礎(chǔ)知識和基本技能。
2、教學(xué)活動中尊重學(xué)生已有的知識和能力。
(1)尊重學(xué)生已有的知識和學(xué)生的經(jīng)驗。在講d與r的關(guān)系時,復(fù)習(xí)了上節(jié)所學(xué)點(diǎn)和圓的位置關(guān)系,這樣,學(xué)生學(xué)習(xí)新知識是在原有知識基礎(chǔ)上自我構(gòu)建的過程,了解學(xué)生的知識基礎(chǔ)是老師備課的一項重要內(nèi)容。
(2)尊重學(xué)生獨(dú)特的感受和理解。由于學(xué)生間認(rèn)知上、情感上的差異,這一部分教學(xué)很多學(xué)生對點(diǎn)到直線的距離即d與r關(guān)系很難表述,甚至想不到,所以曾多次激勵學(xué)生談獨(dú)特的見解。
(3)把新知識納入到原有認(rèn)知結(jié)構(gòu)中去。新知識是學(xué)生已獲得的知識,是學(xué)生自我建構(gòu)后獲得的知識,新知識在獲得后,還有一個重要的任務(wù)就是把新知識以一定的方式組織起來,納到原有的認(rèn)知結(jié)構(gòu)中去,便于記憶和提取。這一環(huán)節(jié)充分體現(xiàn),即講完兩種方法后便出示表格進(jìn)行歸納和總結(jié),從而幫助學(xué)生不斷優(yōu)化認(rèn)知結(jié)構(gòu)。
3、提倡自主,合作,探究的學(xué)習(xí)方式。這一理念在這一環(huán)節(jié)的教學(xué)中又得到充分體現(xiàn)。采用獨(dú)立思考、分組討論,合作交流得出本節(jié)的重要內(nèi)容即本節(jié)的重點(diǎn)。
4、注重教師是學(xué)習(xí)活動的參與者。教師應(yīng)引導(dǎo)學(xué)生在自主探索和合作交流中達(dá)到對新知識的理解。教學(xué)中我發(fā)現(xiàn)馮成同學(xué)的第二種方式是大部分學(xué)生沒有想到的,并且講述很好,過渡自然。因此異常興奮,我與同學(xué)們同時鼓掌,即達(dá)到高潮。充分體現(xiàn)了師生間共同分享感情和認(rèn)識。
三、鞏固練習(xí)(深化練習(xí))。
1、練習(xí)符合學(xué)生的認(rèn)知規(guī)律,難易度適中。
2、練習(xí)量適中,題型多樣,有選擇題,填空題、解答題。
3、注重分層教學(xué)和能力培養(yǎng)、持續(xù)發(fā)展,設(shè)計了必做題,選做題。
四、課堂小結(jié):
課堂小結(jié)是一個重要的環(huán)節(jié),本人給學(xué)生一定的思考和交流的空間,除了讓學(xué)生自己總結(jié)本節(jié)知識外,還用表格的形式又展現(xiàn)給大家,讓同學(xué)們再次回顧、反思、記憶。更重要的是讓學(xué)生總結(jié)本節(jié)的數(shù)學(xué)方法和數(shù)學(xué)思想,以及生活中處處充滿數(shù)學(xué),數(shù)學(xué)為生活服務(wù)等理念。
不論從新課程理念,還是教學(xué)效果來看,這都是一節(jié)比較滿意的課。另外,教學(xué)過程凸現(xiàn)雙基,目標(biāo)落實(shí),教學(xué)結(jié)構(gòu)完整有序,層層推進(jìn)。教師對學(xué)生的尊重和愛護(hù)也都隨處體現(xiàn),教師對知識的精益求精,讓這一節(jié)課所有的知識點(diǎn)都清晰地呈現(xiàn)在學(xué)生面前,教師對學(xué)生間的相互評價,相互合作無疑又為學(xué)生間的友誼注入新的動力,作業(yè)設(shè)計分層教學(xué),有必做題和選做題。
當(dāng)然,這節(jié)課仍有需要改進(jìn)的地方:
一、語言有待錘煉,在整節(jié)課中,老師的提問過于頻繁,其中不乏有很多較好的提問起到點(diǎn)拔、引導(dǎo)作用,但仍有一些問題不必要的,且提問時廢話較多。
二、時間分配的不太合理,練習(xí)時間稍有不足,因前面內(nèi)容即創(chuàng)設(shè)情境和探究新知識占用較多時間,所以后面的練習(xí)時間相對較短,對于分層教學(xué)處理練習(xí)就顯得倉促。
三、板書不夠規(guī)范,因本節(jié)書本沒有例題,所以應(yīng)在黑板上板書作業(yè)格式,這樣在以后作業(yè)中有格式示范,書寫規(guī)范。
四、教學(xué)過程不太注重數(shù)學(xué)思想滲透,例:創(chuàng)設(shè)情境中畫圖,導(dǎo)出直線與圓的三種位置關(guān)系,要啟發(fā)誘導(dǎo)學(xué)生采用了什么數(shù)學(xué)思想。
針對以上問題,在以后的教學(xué)中,要加強(qiáng)語言錘煉,要注重分層教學(xué),注重能力培養(yǎng),要注重數(shù)學(xué)思想和方法滲透。
總之,這是我對自己本節(jié)課的一些教學(xué)反思,或者說是對新課程理念的淺薄認(rèn)識。
直線和圓的位置關(guān)系說課稿篇十七
節(jié)課的教學(xué),我認(rèn)為成功之處有以下幾點(diǎn):
1.由日落的三張照片(太陽與地平線相離、相切、相交)引入,學(xué)生比較感興趣,充分感受生活中反映直線與圓位置關(guān)系的現(xiàn)象,體驗到數(shù)學(xué)來源于實(shí)踐。對生活中的數(shù)學(xué)問題發(fā)生好奇,這是學(xué)生最容易接受的學(xué)習(xí)數(shù)學(xué)的好方法。新課標(biāo)下的數(shù)學(xué)教學(xué)的基本特點(diǎn)之一就是密切關(guān)注數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系,從生活中“找”數(shù)學(xué),“想”數(shù)學(xué),讓學(xué)生真正感受到生活之中處處有數(shù)學(xué)。
2.在探索直線和圓位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,我先引導(dǎo)學(xué)生回顧點(diǎn)和圓的位置關(guān)系所對應(yīng)的數(shù)量關(guān)系,啟發(fā)學(xué)生運(yùn)用類比的思想來思考問題,解決問題,學(xué)生很輕松的就能夠得出結(jié)論,從而突破本節(jié)課的難點(diǎn),使學(xué)生充分理解位置關(guān)系與數(shù)量關(guān)系的相互轉(zhuǎn)化,這種等價關(guān)系是研究切線的理論基礎(chǔ),從而為下節(jié)課探索切線的性質(zhì)打好基礎(chǔ)。
3.新課標(biāo)下的數(shù)學(xué)強(qiáng)調(diào)人人學(xué)有價值的數(shù)學(xué),人人學(xué)有用的數(shù)學(xué),為此,在做一做之后我安排了一道實(shí)際問題:“經(jīng)過兩村莊的筆直公路會不會穿越一個圓形的森林公園?”培養(yǎng)學(xué)生解決實(shí)際問題的能力。由于此題要學(xué)生回到生活中去運(yùn)用數(shù)學(xué),學(xué)生的積極性高漲,都急著討論解決方案,是乏味的數(shù)學(xué)學(xué)習(xí)變得有滋有味,使學(xué)生體會到學(xué)數(shù)學(xué)的重要性,體驗“生活中處處用數(shù)學(xué)”。
同時,我也感覺到本節(jié)課的設(shè)計有不妥之處,主要有以下三點(diǎn):
1.學(xué)生觀察得到直線和圓的三種位置關(guān)系后,是由我講解的三個概念:相交、相切、相離。學(xué)生被動的接受,對概念的理解不是很深刻,可以改為讓學(xué)生下定義,師生共同討論的形式給學(xué)生以思維想象的空間,充分調(diào)動學(xué)生的積極性,使學(xué)生實(shí)現(xiàn)自主探究。
2.雖然我在設(shè)計本節(jié)課時是體現(xiàn)讓學(xué)生自主操作探究的原則,但在讓學(xué)生探索直線和圓三種位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,沒有給予學(xué)生足夠的探索、交流的時間,限制了學(xué)生的思維。此處應(yīng)充分發(fā)揮小組的特點(diǎn),讓學(xué)生相互啟發(fā)討論,形成思維互補(bǔ),集思廣益,從而使概念更清楚,結(jié)論更準(zhǔn)確。
直線和圓的位置關(guān)系說課稿篇十八
這是我第一次進(jìn)入初三進(jìn)行教學(xué),即緊張又興奮。經(jīng)過一個學(xué)期的歷練,在校領(lǐng)導(dǎo)和組內(nèi)老教師的無私幫助下我有了一些進(jìn)步。現(xiàn)以《直線和圓的位置關(guān)系》第一課時為例,反思如下。
在初三的教學(xué)過程中,我?guī)缀跏锹犚还?jié)上一節(jié)。而集體備課也給了我很大的幫助。通過集體備課和聽課,在《直線和圓的位置關(guān)系》這節(jié)課中,我首先引導(dǎo)學(xué)生回憶了點(diǎn)與圓的位置關(guān)系及所對應(yīng)的點(diǎn)到圓心的距離與圓半徑的數(shù)量關(guān)系。從而引出課題:直線和圓的位置關(guān)系。然后由學(xué)生平移直尺,自主探索發(fā)現(xiàn)直線和圓的三種位置關(guān)系,給出定義,聯(lián)系實(shí)際,由學(xué)生發(fā)現(xiàn)日常生活中存在的直線和圓相交、相切、相離的現(xiàn)象,緊接著引導(dǎo)學(xué)生探索三種位置關(guān)系下圓心到直線的距離與圓半徑的大小關(guān)系,由“做一做”進(jìn)行應(yīng)用,最后去解決實(shí)際問題。通過本節(jié)課的教學(xué),我認(rèn)為成功之處有以下幾點(diǎn):
1、在探索直線和圓位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,我先引導(dǎo)學(xué)生回顧點(diǎn)和圓的位置關(guān)系所對應(yīng)的數(shù)量關(guān)系,啟發(fā)學(xué)生運(yùn)用類比的思想來思考問題,解決問題,學(xué)生很輕松的就能夠得出結(jié)論,從而突破本節(jié)課的難點(diǎn),使學(xué)生充分理解位置關(guān)系與數(shù)量關(guān)系的相互轉(zhuǎn)化,這種等價關(guān)系是研究切線的理論基礎(chǔ),從而為下節(jié)課探索切線的性質(zhì)打好基礎(chǔ)。
2、新課標(biāo)下的數(shù)學(xué)強(qiáng)調(diào)人人學(xué)有價值的數(shù)學(xué),人人學(xué)有用的數(shù)學(xué),為此,在做一做之后我安排了兩道實(shí)際問題:“經(jīng)過兩村莊的筆直公路會不會穿越一個圓形的森林公園?”“公路邊的學(xué)校會不會受到噪聲的影響?”培養(yǎng)學(xué)生解決實(shí)際問題的能力。由于這兩題要學(xué)生回到生活中去運(yùn)用數(shù)學(xué),學(xué)生的積極性高漲,都急著討論解決方案,是乏味的數(shù)學(xué)學(xué)習(xí)變得有滋有味,使學(xué)生體會到學(xué)數(shù)學(xué)的重要性,體驗“生活中處處用數(shù)學(xué)”。
同時,我也感覺到本節(jié)課的設(shè)計有不妥之處,主要有以下三點(diǎn):
1.學(xué)生觀察得到直線和圓的三種位置關(guān)系后,是由我講解的三個概念:相交、相切、相離。講得過多,學(xué)生被動的接受,思考得不夠,對概念的理解不是很深刻。可以改為讓學(xué)生類比點(diǎn)與圓的位置關(guān)系下定義,師生共同討論的形式給學(xué)生以思維想象的空間,充分調(diào)動學(xué)生的積極性,使學(xué)生實(shí)現(xiàn)自主探究。
2、雖然我在設(shè)計本節(jié)課時是體現(xiàn)讓學(xué)生自主操作探究的原則,但在讓學(xué)生探索直線和圓三種位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,沒有給予學(xué)生足夠的探索、交流的時間,限制了學(xué)生的思維。此處應(yīng)充分發(fā)揮小組的特點(diǎn),讓學(xué)生相互啟發(fā)討論,形成思維互補(bǔ),集思廣益,從而使概念更清楚,結(jié)論更準(zhǔn)確。
3.對“做一做”的處理不夠,這一環(huán)節(jié)是對探究的成績與效果的探索與檢驗,重在幫助學(xué)生掌握方法,我在講解“做一做”時,沒有充分展示解題思路,沒有及時進(jìn)行方法上的總結(jié),致使部分學(xué)生在解決實(shí)際問題時思路不明確。并在進(jìn)行下面的解題時體現(xiàn)出來。教師要根據(jù)情況,簡要?dú)w納、概括應(yīng)掌握的方法,使學(xué)生能夠舉一反三,不能想當(dāng)然,否則會影響學(xué)生對知識的消化吸收。
總之,在今后的數(shù)學(xué)教學(xué)中還有很多需要我學(xué)習(xí)和掌握的東西,希望能和學(xué)生們一起共同進(jìn)步,真正成為一名合格的數(shù)學(xué)教師。
直線和圓的位置關(guān)系說課稿篇十九
“思之不慎,行而失當(dāng)”,“學(xué)然后知不足,教然后知困。知不足,然后能自反也;知困,然后能自強(qiáng)也。”反思意識人類早就有之。作為教師,在教學(xué)中也應(yīng)適時反思教學(xué)過程的得與失。
開課時,借助微機(jī)展示“圓圓的落日慢慢從海平面升起”的動畫,從而展現(xiàn)直線與圓的位置關(guān)系。由此引入課題——直線與圓的位置關(guān)系,學(xué)生比較感興趣,充分感受生活中的數(shù)學(xué)知識,體驗數(shù)學(xué)來源于生活。然后提出問題,引導(dǎo)學(xué)生大膽猜想,思考,發(fā)現(xiàn)三種位置關(guān)系,激發(fā)學(xué)生學(xué)習(xí)興趣,營造探索問題的氛圍。同時讓學(xué)生從生活中“找”數(shù)學(xué),“想”數(shù)學(xué),體會到數(shù)學(xué)知識無處不在,應(yīng)用數(shù)學(xué)無處不有。這也符合“數(shù)學(xué)教學(xué)應(yīng)從生活經(jīng)驗出發(fā)”的新課程標(biāo)準(zhǔn)要求。
在探索直線和圓位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,我先引導(dǎo)學(xué)生回顧點(diǎn)和圓的位置關(guān)系所對應(yīng)的數(shù)量關(guān)系,啟發(fā)學(xué)生用類比的方法來研究直線與圓的位置關(guān)系,在研究過程中,采用小組討論的方法,給予學(xué)生足夠的探索、交流的時間,培養(yǎng)學(xué)生互助、協(xié)作的精神,讓學(xué)生在相互討論中,集思廣益,形成思維互補(bǔ),從而使概念更清楚,結(jié)論更準(zhǔn)確。最后由學(xué)生小結(jié)這一知識點(diǎn),我板書在黑板上,培養(yǎng)學(xué)生用數(shù)學(xué)語言歸納問題的能力,同時感受收獲知識的快樂。
在新知教授完畢,知識升華這塊,我安排了一道實(shí)際問題,一輛火車的噪首會不會影向處在與鐵路相交的另一條公路旁的學(xué)校?如果會影響,影響的時間有多長?新課標(biāo)下的數(shù)學(xué)強(qiáng)調(diào)人人學(xué)有價值的數(shù)學(xué),人人學(xué)有用的數(shù)學(xué),由于此題要學(xué)生回到生活中去運(yùn)用數(shù)學(xué)知識解決生活中遇到的問題,學(xué)生的積極性高漲,都急著討論解決方案,使乏味的數(shù)學(xué)學(xué)習(xí)變得有滋有味,使學(xué)生體會到學(xué)數(shù)學(xué)的重要性,體驗“生活中處處用數(shù)學(xué)”。
一堂課教學(xué)下來,也發(fā)現(xiàn)有諸多不妥之處,讓我認(rèn)識到自己需要繼續(xù)努力。歸納主要有以下三點(diǎn):。
1、教師在課堂應(yīng)當(dāng)以引導(dǎo)者的身份出現(xiàn),把課堂和講臺讓位于學(xué)生,讓“教師的教”真正服務(wù)于“學(xué)生的學(xué)”,而我在這一節(jié)課中因為一方面擔(dān)心學(xué)生在自主研究知識的形成時會浪費(fèi)時間,另一方面擔(dān)心會產(chǎn)生意想不到的或者課前備課時沒有考慮到的回答,總是把自己的思想強(qiáng)加給學(xué)生,比如學(xué)生觀察得到直線和圓的三種位置關(guān)系后,是由我講解的三個概念:相交、相切、相離。學(xué)生只是被動的接受,這樣就會對概念的理解不是很深刻。這里可以改為讓學(xué)生自己下定義,教師適當(dāng)放手,以師生共同討論的形式給學(xué)生以思維想象的空間,充分調(diào)動學(xué)生的積極性,使學(xué)生實(shí)現(xiàn)自主探究。
2、有些課堂提問欠合理化、科學(xué)化,提問隨意性大,缺乏針對性和啟發(fā)性,導(dǎo)致課堂教學(xué)引導(dǎo)不力,問題缺乏精心安排這就使得課堂存在著不少“徒勞的提問”。讓課堂時間分配的不太合理。今后應(yīng)該把一些提問設(shè)計再提煉,能達(dá)到精而準(zhǔn)。
3、在處理課后練習(xí)時,做的不夠細(xì)致,這一環(huán)節(jié)是對前面探究新知識是否掌握的一個小測試,重在幫助學(xué)生掌握方法,而我在講解練習(xí)時,只展示了解題思路,并沒有及時進(jìn)行方法上的總結(jié),致使部分學(xué)生在解決實(shí)際問題時思路不明確。這里教師要根據(jù)情況,簡要?dú)w納、概括應(yīng)掌握的方法,使學(xué)生能夠舉一反三,鞏固和擴(kuò)大知識,吸收、內(nèi)化知識,充分體現(xiàn)”授人以魚不如授人以漁"。
總之,這是我對自己本節(jié)課的一些教學(xué)反思,或者說是對新課程理念的淺薄認(rèn)識。
將本文的word文檔下載到電腦,方便收藏和打印。

