教案的編寫還需要考慮到學生的學習興趣和能力水平,能夠激發(fā)學生的學習熱情。在編寫教案時,要注意培養(yǎng)學生的思維能力和創(chuàng)新意識。[教案名字1]
人教版七年級數學教案第五章篇一
掌握多種數學解題方法,比如:換元、待定系數、數學歸納法、分析法、綜合法、反證法等等。在具體的方法中,常用的有:觀察與實驗,聯想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無限,抽象與概括等。
逐步形成“以我為主”的學習模式
數學不是靠老師教會的,而是在老師的引導下,靠自己主動的思維活動去獲取的。學習數學一定要講究“活”,只看書不做題不行,只埋頭做題不總結積累也不行。記數學筆記,特別是對概念理解的不同側面和數學規(guī)律,教師在課堂中拓展的課外知識。記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今后將其補上。
人教版七年級數學教案第五章篇二
1、大于0的數叫做正數(positivenumber)。
2、在正數前面加上負號“-”的數叫做負數(negativenumber)。
3、整數和分數統(tǒng)稱為有理數(rationalnumber)。
4、人們通常用一條直線上的點表示數,這條直線叫做數軸(numberaxis)。
5、在直線上任取一個點表示數0,這個點叫做原點(origin)。
6、一般的,數軸上表示數a的點與原點的距離叫做數a的絕對值(absolutevalue)。
7、由絕對值的定義可知:一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。
8、正數大于0,0大于負數,正數大于負數。
9、兩個負數,絕對值大的反而小。
10、有理數加法法則
(1)同號兩數相加,取相同的符號,并把絕對值相加。
(2)絕對值不相等的異號兩數相加,取絕對值較大的加數的負號,并用較大的絕對值減去較小的絕對值,互為相反數的兩個數相加得0。
(3)一個數同0相加,仍得這個數。
11、有理數的加法中,兩個數相加,交換交換加數的位置,和不變。
12、有理數的加法中,三個數相加,先把前兩個數相加,或者先把后兩個數相加,和不變。
13、有理數減法法則
減去一個數,等于加上這個數的相反數。
14、有理數乘法法則
兩數相乘,同號得正,異號得負,并把絕對值向乘。
任何數同0相乘,都得0。
15、有理數中仍然有:乘積是1的兩個數互為倒數。
16、一般的,有理數乘法中,兩個數相乘,交換因數的位置,積相等。
17、三個數相乘,先把前兩個數相乘,或者先把后兩個數相乘,積相等。
18、一般地,一個數同兩個數的和相乘,等于把這個數分別同這兩個數相乘,再把積相加。
19、有理數除法法則
除以一個不等于0的數,等于乘這個數的倒數。
20、兩數相除,同號得正,異號得負,并把絕對值相除。0除以任何一個不等于0的數,都得0。
21、求n個相同因數的積的運算,叫做乘方,乘方的結果叫做冪(power)。在an中,a叫做底數(basenumber),n叫做指數(exponeht)
22、根據有理數的乘法法則可以得出
負數的奇次冪是負數,負數的偶次冪是正數。
顯然,正數的任何次冪都是正數,0的任何次冪都是0。
23、做有理數混合運算時,應注意以下運算順序:
(1)先乘方,再乘除,最后加減;
(2)同級運算,從左到右進行;
(3)如有括號,先做括號內的運算,按小括號、中括號、大括號依次進行。
24、把一個大于10數表示成a×10n的形式(其中a是整數數位只有一位的數,n是正整數),使用的是科學計數法。
25、接近實際數字,但是與實際數字還是有差別,這個數是一個近似數(approximatenumber)。
26、從一個數的左邊的第一個非0數字起,到末尾數字止,所有的數字都是這個數的有效數字(significantdigit)
短時間提高數學成績的方法
1、查查在知識方面還能做那些努力。關鍵的是做好知識的準備,考前要檢查自己在初中學習的數學知識是否還有漏洞,是否有遺忘或易混的地方;其次是對解題常犯錯誤的準備,再看一下自己的錯誤筆記,如果你沒有錯題本,那可以把以前的做過的卷子找出來。翻看修改的部分,那就是出錯的地方、爭取在答卷時,不犯或少犯過去曾犯過的錯誤。也就是錯誤不二犯。
2、一定要對自己、對未來充滿信心,心態(tài)問題是影響考試的最重要的原因。走進考場就要有舍我其誰的霸氣。要信心十足,要相信自己已經讀了一千天的初中,進行了三百多天的復習,做了三千至四千道初中數學題,養(yǎng)兵千日,用兵一時,現在是收獲的時候,自己會取得好成績的。
3、看完書后,把課本放起來,做習題,通過做習題來再一次檢查自己哪些地方做的不夠好,如果碰到不會的地方,可以再看課本,這樣以來,相信會給你留下深刻的印象。
數學學習方法
1、基礎很重要
是不是感覺數學都能考滿分的同學,連書都不用看,其實數學學霸更重視基礎。,數學公式,幾何圖形的性質,函數的性質等,都是數學學習的基礎,甚至可以說基礎的好壞,直接決定中考數學成績的高低。
李現良表示,班里某位同學來找自己講題,其實題目并不難,但這位同學就是因為一些最基礎的知識沒有掌握透徹,導致做題的時候沒有思路。基礎不牢、地動山搖,一個小小的知識漏洞可能導致你在整一個題中都沒有思路,非常危險。
2、錯題本很重要
在所有科目中,數學這個科目最重要錯題本學習法。李現良同學也特別提倡大家整理錯題,李現良對于錯題本有一些小竅門,那就是平時如果堅持整理錯題,最終會導致自己錯題本很多很厚,我們可以定期復習,對于一些徹底掌握的,可以做個標記,以后就不用再次復習,這樣錯題本使用起來就會效率更高。
3、做題要多反思
數學學習要大量做題去鞏固,但做題不要只講究數量,更要講究質量,遇到經典題,綜合性高的題目時,每道題寫完解答過程后,需要進行分析和反思,多問幾個為什么,這樣才能把題真正做透。
4、把數學知識形成體系
數學學霸李現良表示,課本上的知識都是零散的,建議大家自己畫思維導圖把知識串起來,畫思維導圖的過程,就是不斷理解,讓知識變成結構的過程。
人教版七年級數學教案第五章篇三
一、選擇題:(本題共24分,每小題3分)。
在下列各題的四個備選答案中,只有一個答案是正確的,請你把正確答案前的字母填寫在相應的括號中.
1.若一個數的倒數是7,則這個數是().
a.-7b.7c.d.
2.如果兩個等角互余,那么其中一個角的度數為().
a.30°b.45°c.60°d.不確定。
3.如果去年某廠生產的一種產品的產量為100a件,今年比去年增產了20%,那么今年的產量為()件.
a.20ab.80ac.100ad.120a。
4.下列各式中結果為負數的是().
a.b.c.d.
5.如圖,已知點c是線段ab的中點,點d是cb的中點,那么下列結論中錯誤的是().
a.ac=cbb.bc=2cdc.ad=2cdd.
6.下列變形中,根據等式的性質變形正確的是().
a.由,得x=2。
b.由,得x=4。
c.由,得x=3。
d.由,得。
7.如圖,這是一個馬路上的人行橫道線,即斑馬線的示意圖,請你根據圖示判斷,在過馬路時三條線路ac、ab、ad中最短的是().
a.acb.abc.add.不確定。
8.如圖,有一塊表面刷了紅漆的立方體,長為4厘米,寬為5厘米,高為3厘米,現在把它切分為邊長為1厘米的小正方形,能夠切出兩面刷了紅漆的正方體有()個.
a.48b.36c.24d.12。
二、填空題:(本題共12分,每空3分)。
9.人的大腦約有100000000000個神經元,用科學記數法表示為.
10.在鐘表的表盤上四點整時,時針與分針之間的夾角約為度.
11.一個角的補角與這個角的余角的差等于度.
12.瑞士的教師巴爾末從測量光譜的數據,,,…中得到了巴爾末公式,請你按這種規(guī)律寫出第七個數據,這個數據為.
三、解答題:(本題共30分,每小題5分)。
13.用計算器計算:(結果保留3個有效數字)。
14.化簡:
15.解方程。
16.如示意圖,工廠a與工廠b想在公路m旁修建一座共用的倉庫o,并且要求o到a與o到b的距離之和最短,請你在m上確定倉庫應修建的o點位置,同時說明你選擇該點的理由.
拓展知識。
人教版七年級數學教案第五章篇四
1.理解垂線、垂線段的概念,會用三角尺或量角器過一點畫已知直線的垂線。
2.掌握點到直線的距離的概念,并會度量點到直線的距離。
3.掌握垂線的性質,并會利用所學知識進行簡單的推理。
[教學重點與難點]
1.教學重點:垂線的定義及性質。
2.教學難點:垂線的畫法。
[教學過程設計]
一、復習提問:
1、敘述鄰補角及對頂角的定義。
2、對頂角有怎樣的.性質。
二.新課:
引言:
前面我們復習了兩條相交直線所成的角,如果兩條直線相交成特殊角直角時,這兩條直線有怎樣特殊的位置關系呢?日常生活中有沒有這方面的實例呢?下面我們就來研究這個問題。
(一)垂線的定義
當兩條直線相交的四個角中,有一個角是直角時,就說這兩條直線是互相垂直的,其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。
如圖,直線ab、cd互相垂直,記作,垂足為o。
請同學舉出日常生活中,兩條直線互相垂直的實例。
注意:
1、如遇到線段與線段、線段與射線、射線與射線、線段或射線與直線垂直,特指它們所在的直線互相垂直。
2、掌握如下的推理過程:(如上圖)
反之,
(二)垂線的畫法
探究:
1、用三角尺或量角器畫已知直線l的垂線,這樣的垂線能畫出幾條?
2、經過直線l上一點a畫l的垂線,這樣的垂線能畫出幾條?
3、經過直線l外一點b畫l的垂線,這樣的垂線能畫出幾條?
畫法:
讓三角板的一條直角邊與已知直線重合,沿直線左右移動三角板,使其另一條直角邊經過已知點,沿此直角邊畫直線,則這條直線就是已知直線的垂線。
注意:如過一點畫射線或線段的垂線,是指畫它們所在直線的垂線,垂足有時在延長線上。
(三)垂線的性質
經過一點(已知直線上或直線外),能畫出已知直線的一條垂線,并且只能畫出一條垂線,即:
性質1過一點有且只有一條直線與已知直線垂直。
練習:教材第7頁
探究:
如圖,連接直線l外一點p與直線l上各點o,
a,b,c,……,其中(我們稱po為點p到直線
l的垂線段)。比較線段po、pa、pb、pc……的長短,這些線段中,哪一條最短?
性質2連接直線外一點與直線上各點的所有線段中,垂線段最短。
簡單說成:垂線段最短。
(四)點到直線的距離
直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。
如上圖,po的長度叫做點p到直線l的距離。
人教版七年級數學教案第五章篇五
一。教學目標:
1、認知目標:
1)了解二元一次方程組的概念。
2)理解二元一次方程組的解的概念。
3)會用列表嘗試的方法找二元一次方程組的解。
2、能力目標:
1)滲透把實際問題抽象成數學模型的思想。
2)通過嘗試求解,培養(yǎng)學生的探索能力。
3、情感目標:
1)培養(yǎng)學生細致,認真的學習習慣。
2)在積極的教學評價中,促進師生的情感交流。
二。教學重難點。
重點:二元一次方程組及其解的概念。
難點:用列表嘗試的方法求出方程組的解。
三。教學過程。
(一)創(chuàng)設情景,引入課題。
1、本班共有40人,請問能確定男_幾人嗎?為什么?
(1)如果設本班男生x人,_人,用方程如何表示?(x+y=40)。
(2)這是什么方程?根據什么?
2、男生比_了2人。設男生x人,_人。方程如何表示?x,y的值是多少?
3、本班男生比_2人且男_40人。設該班男生x人,_人。方程如何表示?
兩個方程中的x表示什么?類似的兩個方程中的y都表示?
象這樣,同一個未知數表示相同的量,我們就應用大括號把它們連起來組成一個方程組。
4、點明課題:二元一次方程組。
[設計意圖:從學生身邊取數據,讓他們感受到生活中處處有數學]。
(二)探究新知,練習鞏固。
1、二元一次方程組的概念。
(1)請同學們看課本,了解二元一次方程組的的概念,并找出關鍵詞由教師板書。
[讓學生看書,引起他們對教材重視。找關鍵詞,加深他們對概念的了解。]。
(2)練習:判斷下列是不是二元一次方程組:。
x+y=3,x+y=200,。
2x-3=7,3x+4y=3。
y+z=5,x=y+10,。
2y+1=5,4x-y2=2。
學生作出判斷并要說明理由。
2、二元一次方程組的解的概念。
(1)由學生給出引例的答案,教師指出這就是此方程組的解。
(2)練習:把下列各組數的題序填入圖中適當的位置:
x=1;x=-2;x=;-x=。
y=0;y=2;y=1;y=。
方程x+y=0的解,方程2x+3y=2的解,方程組x+y=0的解。
2x+3y=2。
(3)既滿足第一個方程也滿足第二個方程的解叫作二元一次方程組的解。
(4)練習:已知x=0是方程組x-b=y的解,求a,b的值。
y=0.55x+2a=2y。
(三)合作探索,嘗試求解。
現在我們一起來探索如何尋找方程組的解呢?
1、已知兩個整數x,y,試找出方程組3x+y=8的解。
2x+3y=10。
學生兩人一小組合作探索。并讓已經找出方程組解的學生利用實物投影,講明自己的解題思路。
提煉方法:列表嘗試法。
一般思路:由一個方程取適當的xy的值,代到另一個方程嘗試。
2、據了解,某商店出售兩種不同星號的“紅雙喜”牌乒乓球。其中“紅雙喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同學一共買了4盒,剛好有15個球。
(1)設該同學“紅雙喜”二星乒乓球買了x盒,三星乒乓球買了y盒,請根據問題中的條件列出關于x、y的方程組。(2)用列表嘗試的方法解出這個方程組的解。
由學生獨立完成,并分析講解。
(四)課堂小結,布置作業(yè)。
1、這節(jié)課學哪些知識和方法?(二元一次方程組及解概念,列表嘗試法)。
2、你還有什么問題或想法需要和大家交流?
3、作業(yè)本。
教學設計說明:
1、本課設計主線有兩條。其一是知識線,內容從二元一次方程組的概念到二元一次方程組解的概念再到列表嘗試法,環(huán)環(huán)相扣,層層遞進;第二是能力培養(yǎng)線,學生從看書理解二元一次方程組的概念到學會歸納解的概念,再到自主探索,用列表嘗試法解題,循序漸進,逐步提高。
2、“讓學生成為課堂的真正主體”是本課設計的主要理念。由學生給出數據,得出結果,再讓他們在積極嘗試后進行講解,實現生生互評。把課堂的一切交給學生,相信他們能在已有的知識上進一步學習提高,教師只是點播和引導者。
3、本課在設計時對教材也進行了適當改動。例題方面考慮到數_代,學生對膠卷已漸失興趣,所以改為學生比較熟悉的乒乓球為體裁。另一方面,充分挖掘練習的作用,為知識的落實打下軋實的基礎,為學生今后的進一步學習做好鋪墊。
人教版七年級數學教案第五章篇六
本環(huán)節(jié)主要是創(chuàng)設情境,在實際問題中引出本節(jié)課題.
【設計意圖】。
引導學生發(fā)現:可以借助游戲創(chuàng)設情境,導入新課.
(二)探究新知。
1、利用丹鳳地圖的實際情境探索點的平移與坐標變化的規(guī)律.
2、如圖,已知a(c2,c3),根據下列條件,在相應的坐標系中分別畫出平移后的點,寫出它們的坐標,并觀察平移前后點的坐標變化.
(1)將點a向右平移5個單位長度,得到點a1;
(2)將點a向左平移2個單位長度,得到點a2;
(3)將點a向上平移6個單位長度,得到點a3;
(4)將點a向下平移4個單位長度,得到點a4;
教學過程中注重讓學生明確:將哪個點沿著什么方向,平移幾個單位后,得到的是哪個點.
3、在此基礎上可以歸納出:點的左右平移點的橫坐標變化,縱坐標不變。
點的上下平移點的橫坐標不變,縱坐標變化。
4、點的平移的應用.(見課件)。
5、比一比看誰反應快。
(1)點a(c4,2)先向右平移3個單位長度后得到點b,求點b的坐標.
(2)點a(c4,2)先向左平移2個單位長度后得到點b,求點b的坐標.
(3)點a(c4,2)先向下平移4個單位長度后得到點b,求點b的坐標.
(4)點a(c4,2)先向上平移3個單位長度后得到點b,求點b的坐標.
6、逆向思維:由點的變化探索點的方向和距離。
(1)如果a,b的坐標分別為a(-4,5),b(-4,2),將點a向___平移___個單位長度得到點b;將點b向___平移___個單位長度得到點a。
(2)如果p、q的坐標分別為p(-3,-5),q(2,-5),將點p向___平移___個單位長度得到點q;將點q向___平移___個單位長度得到點p。
(3)點a′(6,3)是由點a(-2,3)經過__________________得到的.點b(4,3)向______________得到b′(4,5)。
7、應用平移解決簡單問題在平面直角坐標系中,有一點(1,3),要使它平移到點(-2,-2),應怎樣平移?說出平移的路線。
人教版七年級數學教案第五章篇七
1知識與技能:
使學生理解和掌握整十數除整十數、幾百幾十數(商一位數)的口算方法,能正確地進行計算。
2過程與方法:
通過觀察、操作、討論的活動,使學生經歷探究口算方法的全過程。
3情感態(tài)度與價值觀:
讓學生感受數學與生活的聯系,培養(yǎng)學生用數學知識解決簡單實際問題的能力。
教學重難點
1教學重點:
掌握用整十數除的口算方法。
2教學難點:
理解用整十數除的口算算理。
教學工具
多媒體設備
教學過程
1復習引入
口算。
20×3=7×50=6×3=
20×5=4×9=8×60=
24÷6=8÷2=12÷3=
42÷6=90÷3=3000÷5=
2新知探究
1.教學例1
有80面彩旗,每班分20面,可以分給幾個班?
(1)提出問題,尋找解決問題的方法。
師:從中你能獲取什么數學信息?
師:怎樣解決這個問題?
(2)列式80÷20
(3)學生獨立探索口算的方法
師:怎樣算80÷20呢,請同學們先自己想一想、算一算,再說給同桌聽一聽。
學生匯報:
預設學生可能會有以下兩種口算方法:
a.因為20×4=80,所以80÷20=4這是想乘算除
b.因為8÷2=4,所以80÷20=4這是根據計數單位的組成
為什么可以不看這個“0”?(80÷20可以想“8個十里面有幾個二十?”)
這樣我們就把除數是整十數的轉化為我們已經學過的表內除法。
(4)師小結:
同學們有的用乘法算除法的,也有用表內除法來想的,都很好,那么你喜歡哪種方法呢?
把你喜歡的方法說給同桌聽。
(5)檢查正誤
師:我們分的結果對不對?請同學們看屏幕(課件演示分的結果)
(6)用剛學會的方法再次口算,并與同桌交流你的想法
40÷2020÷1060÷3090÷30
(7)探究估算的方法
出示:83÷20≈80÷19≈
師:你能知道題目要求我們做什么嗎?你怎么知道的?你是怎樣計算的?和同學們交流一下。
生:求83除以20、80除以19大約得多少,從題目中的約等號看出不用精確計算。
師:誰想把你的方法跟大家說一說。
預設:83接近于80,80除以20等于4,所以83除以20約等于4。
19接近于20,80除以20等于4,所以80除以19約等于4。
2.教學例2
(1)創(chuàng)設情境引出問題
師:誰會解決這個問題?
150÷50
(2)小組討論口算方法
(3)你是怎么這樣快就算出的呢?
a.因為15÷5=3,所以150÷50=3。
b.因為3個50是150,所以150÷50=3。
這一題跟剛才分彩旗的口算方法有不同嗎?
都是運用想乘算除和表內除法這兩種方法來口算的。
師:在解決分彩旗和剛才的問題中,我們共同探討了除法的口算方法,(板題:口算除法)口算時,可以用自己喜歡的方法來口算。
口算練習:150÷30240÷80300÷50540÷90
3.估算
(1)探計估算的方法
師:你能知道題目要求我們做什么嗎?
你能估嗎?請先估算,再把你的估算方法與同伴交流,看看能否互相借鑒。
(2)誰想把你的方法跟大家說一說。
(3)總結方法:把被除數和除數都看作與原數比較接近的整十數再用口算方法算。
(4)判斷估算是否正確:122÷60=2349÷50≈8為什么不正確?
3鞏固提升
1.獨立口算
觀察每道題,怎樣很快說出下面除法算式的商?
如果估算的話把誰估成多少。
2.算一算、說一說。
(1)除數不變,被除數乘幾,商也乘幾。
(2)被除數不變,除數乘幾,商反而除以幾。
3.解決問題
(1)一共要寄240本書,每包40本。要捆多少包?
你能找到什么條件、問題。你會解決嗎?
240÷40=6(包)
答:要捆6包。
(2)這個小朋友也是一個愛看書的好孩子,她在看一本故事書。
出示條件:一共有120個小故事,每天看1個故事。
問題:看完這本書大約需要幾個月?
問:要求看完這本書大約需要幾個月?必須要知道哪些條件,你會求嗎?
120÷30=4(個)
答:看完這本書大約需要4個月。
課后小結
這節(jié)課你有什么收獲?還有什么問題?
本節(jié)課學習了整十數除整十數、幾百幾十數(商一位數)的口算方法,能正確地進行計算。
板書
口算除法
有80面彩旗,每班分20面,可以分給幾個班?
80÷20=
人教版七年級數學教案第五章篇八
2.會用上的點表示有理數,會利用比較有理數的大小;。
3.使學生初步了解數形結合的思想方法,培養(yǎng)學生相互聯系的觀點。
教學建議。
一、重點、難點分析。
本節(jié)的重點是初步理解數形結合的思想方法,正確掌握畫法和用上的點表示有理數,并會比較有理數的大小.難點是正確理解有理數與上點的對應關系。的概念包含兩個內容,一是的三要素:原點、正方向、單位長度缺一不可,二是這三個要素都是規(guī)定的。另外應該明確的是,所有的有理數都可用上的點表示,但上的點所表示的數并不都是有理數。通過學習,使學生初步掌握用解決問題的方法,為今后充分利用“”這個工具打下基礎.
二、知識結構。
有了,數和形得到了初步結合,這有利于對數學問題的研究,數形結合是理解數學、學好數學的重要思想方法,本課知識要點如下表:
定義。
三要素。
應用。
數形結合。
規(guī)定了原點、正方向、單位長度的直線叫。
原點。
正方向。
單位長度。
幫助理解有理數的概念,每個有理數都可用上的點表示,但上的點并非都是有理數。
比較有理數大小,上右邊的數總比左邊的數要大。
在理解并掌握概念的基礎之上,要會畫出,能將已知數在上表示出來,能說出上已知點所表示的數,要知道所有的有理數都可以用上的點表示,會利用比較有理數的大小。
三、教法建議。
小學里曾學過利用射線上的點來表示數,為此我們可引導學生思考:把射線怎樣做些改進就可以用來表示有理數?伴以溫度計為模型,引出的概念.是一條具有三個要素(原點、正方向、單位長度)的直線,這三個要素是判斷一條直線是不是的根本依據。與它所在的位置無關,但為了教學上需要,一般水平放置的,規(guī)定從原點向右為正方向。要注意原點位置選擇的任意性。
關于有理數與上的點的對應關系,應該明確的是有理數可以用上的點表示,但上的點與有理數并不存在一一對應的關系。根據幾個有理數在上所對應的點的相互位置關系,應該能夠判斷它們之間的大小關系。通過點與有理數的對應關系及其應用,逐步滲透數形結合的思想。
四、的相關知識點。
1.的概念。
(1)規(guī)定了原點、正方向和單位長度的直線叫做.
這里包含兩個內容:一是的三要素:原點、正方向、單位長度缺一不可.二是這三個要素都是規(guī)定的.
(2)能形象地表示數,所有的有理數都可用上的點表示,但上的點所表示的數并不都是有理數.
以是理解有理數概念與運算的重要工具.有了,數和形得到初步結合,數與表示數的圖形(如)相結合的思想是學習數學的重要思想.另外,能直觀地解釋相反數,幫助理解絕對值的意義,還可以比較有理數的大小.因此,應重視對的學習.
2.的畫法。
(1)畫直線(一般畫成水平的)、定原點,標出原點“o”.
(2)取原點向右方向為正方向,并標出箭頭.
(3)選適當的長度作為單位長度,并標出…,-3,-2,-1,1,2,3…各點。具體如下圖。
(4)標注數字時,負數的次序不能寫錯,如下圖。
3.用比較有理數的大小。
(1)在上表示的兩數,右邊的數總比左邊的數大。
(2)由正、負數在上的位置可知:正數都有大于0,負數都小于0,正數大于一切負數。
(3)比較大小時,用不等號順次連接三個數要防止出現“”的寫法,正確應寫成“”。
五、定義的理解。
1.規(guī)定了原點、正方向和單位長度的直線叫做,如圖1所示.
2.所有的有理數,都可以用上的點表示.例如:在上畫出表示下列各數的點(如圖2).
a點表示-4;b點表示-1.5;。
o點表示0;c點表示3.5;。
d點表示6.
從上面的例子不難看出,在上表示的兩個數,右邊的數總比左邊的數大,又從正數和負數在上的位置,可以知道:
正數都大于0,負數都小于0,正數大于一切負數.
因為正數都大于0,反過來,大于0的數都是正數,所以,我們可以用,表示是正數;反之,知道是正數也可以表示為。
同理,,表示是負數;反之是負數也可以表示為。
3.正常見幾種錯誤。
1)沒有方向。
2)沒有原點。
3)單位長度不統(tǒng)一。
人教版七年級數學教案第五章篇九
1、讓學生生自主探索小數的加、減法的計算方法,理解計算的算理并能正確地進行加、減法。
2、使學生體會小數加減運算在生活、學習中的廣泛應用,體會數學的工具性作用。
3、激發(fā)學生學習小數加減法的興趣,涌動長大后也要為國爭光的豪情,提高學習的主動性和自覺性。
教學重難點。
教學重點:用豎式計算小數加減法。
教學難點:理解小數點對齊的算理。
教學工具。
多媒體課件。
教學過程。
(一)情景引入。
師:同學們,你們還記得嗎?整數的加減法是怎樣計算的?讓我們用一道習題回顧一下。
(呈現多媒體,學生自主完成習題并總結計算算理)。
師:同學們你們可真棒,那么今天我們學習小數的加減法(引出課題并板書)。
(二)例題講解。
(1)小麗買了下面兩本書,一共花了多少錢?
(2)《數學家的故事》比《童話選》貴多少錢?
生:好的。
(展示小麗遇到的問題(1),并讓學生列出算式)。
師:根據咱們總結的整數加減法的算理,想一想這個式子怎么計算呢?
(讓學生大膽的去嘗試,小組討論,并列出豎式)。
師:你們發(fā)現小數加減法計算時需要注意什么?
生1:注意數位對齊。
生2:注意小數點要對齊。
生3:……。
老師小結:小數點要對齊,得數的小數點也要對齊。
師:小麗啊還有一個問題讓我們看一看(展示問題(2))。
(讓學生自主解決,并再回憶需要注意什么?)。
完成后學生給予總結,完成小數加減法的時候需要注意什么?
(三)習題鞏固。
課本72頁做一做。
課后小結。
學生談一談本節(jié)課你學到了什么?
給出總結:計算小數加、減法,先把各數的小數點對齊(也就是把相同數位上的數對齊),再按照整數加、減法的法則進行計算,最后在得數里對齊橫線上的小數點點上小數點。
課后習題。
一、計算。
1.5-0.5=1-0.9=2.3+0.6=0.9+0.8=。
1.9-0.8=3.5-2.4=0.36+0.65=0.96-0.32=。
二、豎式計算。
20.87-3.65=3.25+1.73=。
18.77+3.14=23.5-2.8=。
三、解決問題。
1、小紅買文具,買鋼筆用去6.7元,買文具盒用去9.8元,一共用去多少錢?
板書。
計算小數加、減法,先把各數的小數點對齊(也就是把相同數位上的數對齊),再按照整數加、減法的法則進行計算,最后在得數里對齊橫線上的小數點點上小數點。
人教版七年級數學教案第五章篇十
在知識與方法上類似于數系的第一次擴張。
也是后繼內容學習的基礎。
內容定位:了解無理數、實數概念,了解(算術)平方根的概念;會用根號表示數的(算術)平方根,會求平方根、立方根,用有理數估計一個無理數的大致范圍,實數簡單的四則運算(不要求分母有理化)。
整體設計思路:無理數的引入----無理數的表示----實數及其相關概念(包括實數運算),實數的應用貫穿于內容的始終。
學習對象----實數概念及其運算;學習過程----通過拼圖活動引進無理數,通過具體問題的解決說明如何表示無理數,進而建立實數概念;以類比,歸納探索的`方式,尋求實數的運算法則;學習方式----操作、猜測、抽象、驗證、類比、推理等。
具體過程:首先通過拼圖活動和計算器探索活動,給出無理數的概念,然后通過具體問題的解決,引入平方根和立方根的概念和開方運算。
最后教科書總結實數的概念及其分類,并用類比的方法引入實數的相關概念、運算律和運算性質等。
第一節(jié):數怎么又不夠用了:通過拼圖活動,讓學生感受無理數產生的實際背景和引入的必要性;借助計算器探索無理數是無限不循環(huán)小數,并從中體會無限逼近的思想;會判斷一個數是有理數還是無理數。
第二、三節(jié):平方根、立方根:如何表示正方形的邊長?它的值到底是多少?并引入算術平方根、平方根、立方根等概念和開方運算。
第四節(jié):公園有多寬:在實際生活和生產實際中,對于無理數我們常常通過估算來求它的近似值,為此這一節(jié)內容介紹估算的方法,包括通過估算比較大小,檢驗計算結果的合理性等,其目的是發(fā)展學生的數感。
第五節(jié):用計算器開方:會用計算器求平方根和立方根。
經歷運用計算器探求數學規(guī)律的活動,發(fā)展合情推理的能力。
第六節(jié):實數。
總結實數的概念及其分類,并用類比的方法引入實數的相關概念、運算律和運算性質等。
1、注重概念的形成過程,讓學生在概念的形成的過程中,逐步理解所學的概念;關注學生對無理數和實數概念的意義理解。
2、鼓勵學生進行探索和交流,重視學生的分析、概括、交流等能力的考察。
3、注意運用類比的方法,使學生清楚新舊知識的區(qū)別和聯系。
4、淡化二次根式的概念。
人教版七年級數學教案第五章篇十一
幾何圖形大?。洪L度、面積、體積等。
位置:相交、垂直、平行等。
2幾何體也簡稱體。包圍著體的是面。
3常見的立體圖形:柱體、椎體、球體等各部分不都在一個平面內。
4平面圖形:在一個平面內的圖形就是平面圖形。
5展開圖:識記一些常用的展開圖。圓柱/圓錐的側面展開圖;。
6點線面體:是組成幾何圖形的基本元素。
7直線、射線、線段。
線段公理:兩點的所有連線中,線段做短(兩點之間,線段最短)。
連接兩點間的線段的長度,叫做這兩點的距離。
經過兩點有一條直線,并且只有一條直線。兩點確定一條直線。
8角。
9角的比較與運算。
角的平分線:從一個角的頂點出發(fā),把這個角分成相等的兩個角的射線,叫做這個角的平分線。
余角:如果兩個角的和等于90度(直角),就說這兩個叫互為余角,即其中每一個角是另一個角的余角。
補角:如果兩個角的和等于180度(平角),就說這兩個叫互為補角,即其中每一個角是另一個角的補角。
性質:等角(同角)的補角相等。等角(同角)的余角相等。
人教版七年級數學教案第五章篇十二
多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。良好的學習數學習慣包括課前自學、專心上課、及時復習、獨立作業(yè)、解決疑難、系統(tǒng)小結和課外學習幾個方面。
及時了解、掌握常用的數學思想和方法
中學數學學習要重點掌握的的數學思想有以上幾個:集合與對應思想,分類討論思想,數形結合思想,運動思想,轉化思想,變換思想。
人教版七年級數學教案第五章篇十三
概念:不等式、不等式的解、不等式的解集、解不等式以及能在數軸上表示簡單不等式的解集.
(二)內容解析。
現實生活中存在大量的相等關系,也存在大量的不等關系.本節(jié)課從生活實際出發(fā)導入常見行程問題的不等關系,使學生充分認識到學習不等式的重要性和必然性,激發(fā)他們的求知欲望.再通過對實例的進一步深入分析與探索,引出不等式、不等式的解、不等式的解集以及解不等式幾個概念.前面學過方程、方程的解、解方程的概念.通過類比教學、不等式、不等式的解、解不等式幾個概念不難理解.但是對于初學者而言,不等式的解集的理解就有一定的難度.因此教材又進行數形結合,用數軸來表示不等式的解集,這樣直觀形象的表示不等式的解集,對理解不等式的解集有很大的幫助.
基于以上分析,可以確定本節(jié)課的教學重點是:正確理解不等式、不等式的解與解集的意義,把不等式的解集正確地表示在數軸上.
二、目標和目標解析。
(一)教學目標。
1.理解不等式的概念。
2.理解不等式的解與解集的意義,理解它們的區(qū)別與聯系。
3.了解解不等式的概念。
4.用數軸來表示簡單不等式的解集。
(二)目標解析。
1.達成目標1的標志是:能正確區(qū)別不等式、等式以及代數式.
2.達成目標2的標志是:能理解不等式的解是解集中的某一個元素,而解集是所有解組成的一個集合.
3.達成目標3的標志是:理解解不等式是求不等式解集的一個過程.
4、達成目標4的標志是:用數軸表示不等式的解集是數形結合的又一個重要體現,也是學習不等式的一種重要工具.操作時,要掌握好“兩定”:一是定界點,一般在數軸上只標出原點和界點即可,邊界點含于解集中用實心圓點,或者用空心圓點;二是定方向,小于向左,大于向右.
三、教學問題診斷分析。
本節(jié)課實質是一節(jié)概念課,對于不等式、不等式的解以及解不等式可通過類比方程、方程的解、解方程類比教學,學生不難理解,但是對不等式的解集的理解就有一定的難度.
因此,本節(jié)課的教學難點是:理解不等式解集的意義以及在數軸上正確表示不等式的解集.
四、教學支持條件分析。
利用多媒體直觀演示課前引入問題,激發(fā)學生的學習興趣.
五、教學過程設計。
(一)動畫演示情景激趣。
設計意圖:通過實例創(chuàng)設情境,從“等”過渡到“不等”,培養(yǎng)學生的觀察能力,分析能力,激發(fā)他們的學習興趣.
(二)立足實際引出新知。
小組討論,合作交流,然后小組反饋交流結果.
最后,老師將小組反饋意見進行整理(學生沒有討論出來的思路老師進行補充)。
人教版七年級數學教案第五章篇十四
3、在教學中適當滲透分類討論思想。
重點:有理數的加法法則。
重點:異號兩數相加的法則。
教學過程:
二、講授新課。
1、同號兩數相加的法則。
學生回答:兩次運動后物體從起點向右運動了8m。寫成算式就是5+3=8(m)。
教師:如果物體先向左運動5m,再向左運動3m,那么兩次運動后總的結果是多少?
學生回答:兩次運動后物體從起點向左運動了8m。寫成算式就是(-5)+(-3)=-8(m)。
師生共同歸納法則:同號兩數相加,取與加數相同的符號,并把絕對值相加。
2、異號兩數相加的法則。
學生回答:兩次運動后物體從起點向右運動了2m。寫成算式就是5+(-3)=2(m)。
師生借此結論引導學生歸納異號兩數相加的法則:異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值。
3、互為相反數的兩個數相加得零。
教師:如果物體先向右運動5m,再向左運動5m,那么兩次運動后總的結果是多少?
學生回答:經過兩次運動后,物體又回到了原點。也就是物體運動了0m。
師生共同歸納出:互為相反數的兩個數相加得零。
教師:你能用加法法則來解釋這個法則嗎?
學生回答:可用異號兩數相加的法則來解釋。
一般地,還有一個數同0相加,仍得這個數。
三、鞏固知識。
課本p18例1,例2、課本p118練習1、2題。
四、總結。
運算的關鍵:先分類,再按法則運算;。
運算的步驟:先確定符號,再計算絕對值。
注意:要借用數軸來進一步驗證有理數的加法法則;異號兩數相加,首先要確定符號,再把絕對值相加。
五、布置作業(yè)。
課本p24習題1.3第1、7題。
人教版七年級數學教案第五章篇十五
1、熟練掌握一元一次不等式組的解法,會用一元一次不等式組解決有關的實際問題;。
3、體驗數學學習的樂趣,感受一元一次不等式組在解決實際問題中的價值。
正確分析實際問題中的不等關系,列出不等式組。
建立不等式組解實際問題的數學模型。
出示教科書第145頁例2(略)。
問:(1)你是怎樣理解“不能完成任務”的數量含義的?
(2)你是怎樣理解“提前完成任務”的數量含義的?
(3)解決這個問題,你打算怎樣設未知數?列出怎樣的不等式?
師生一起討論解決例2.
1、教科書146頁“歸納”(略).
2、你覺得列一元一次不等式組解應用題與列二元一次方程組解應用題的步驟一樣嗎?
在討論或議論的基礎上老師揭示:
步法一致(設、列、解、答);本質有區(qū)別.(見下表)一元一次不等式組應用題與二元一次方程組應用題解題步驟異同表。
人教版七年級數學教案第五章篇十六
2.使學生掌握求一個已知數的;。
3.培養(yǎng)學生的觀察、歸納與概括的能力.
重點:理解的意義,理解的代數定義與幾何定義的一致性.
難點:多重符號的化簡.
一、從學生原有的認知結構提出問題。
二、師生共同研究的定義。
特點?
引導學生回答:符號不同,一正一負;數字相同.
像這樣,只有符號不同的兩個數,我們說它們互為,如+5與。
應點有什么特點?
引導學生回答:分別在原點的兩側;到原點的距離相等.
這樣我們也可以說,在數軸上的原點兩旁,離開原點距離相等的兩個點所表示的數互為.這個概念很重要,它幫助我們直觀地看出的意義,所以有的書上又稱它為的幾何意義.
3.0的是0.
這是因為0既不是正數,也不是負數,它到原點的距離就是0.這是等于它本身的的數.
三、運用舉例變式練習。
例1(1)分別寫出9與-7的;。
例1由學生完成.
在學習有理數時我們就指出字母可以表示一切有理數,那么數a的如何表示?
引導學生觀察例1,自己得出結論:
數a的是-a,即在一個數前面加上一個負號即是它的。
1.當a=7時,-a=-7,7的是-7;。
2.當-5時,-a=-(-5),讀作“-5的”,-5的是5,因此,-(-5)=5.
3.當a=0時,-a=-0,0的是0,因此,-0=0.
么意思?引導學生回答:-(-8)表示-8的;-(+4)表示+4的`;。
例2簡化-(+3),-(-4),+(-6),+(+5)的符號.
能自己總結出簡化符號的規(guī)律嗎?
括號外的符號與括號內的符號同號,則簡化符號后的數是正數;括號內、外的符號是異號,則簡化符號后的數是負數.
課堂練習。
1.填空:
(1)+1.3的是______;(2)-3的是______;。
(5)-(+4)是______的;(6)-(-7)是______的。
2.簡化下列各數的符號:
-(+8),+(-9),-(-6),-(+7),+(+5).
3.下列兩對數中,哪些是相等的數?哪對互為?
-(-8)與+(-8);-(+8)與+(-8).
四、小結。
指導學生閱讀教材,并總結本節(jié)課學習的主要內容:一是理解的定義——代數定義與幾何定義;二是求a的;三是簡化多重符號的問題.
五、作業(yè)。
1.分別寫出下列各數的:
2.在數軸上標出2,-4.5,0各數與它們的。
3.填空:
(1)-1.6是______的,______的是-0.2.
4.化簡下列各數:
5.填空:
(3)如果-x=-6,那么x=______;(4)如果-x=9,那么x=______.
教學過程是以《教學大綱》中“重視基礎知識的教學、基本技能的訓練和能力的培養(yǎng)”,“數學教學中,發(fā)展思維能力是培養(yǎng)能力的核心”,“堅持啟發(fā)式,反對注入式”等規(guī)定的精神,結合教材特點,以及學生的學習基礎和學習特征而設計的由于內容較為簡單,經過教師適當引導,便可使學生充分參與認知過程.由于“新”知識與有關的“舊”知識的聯系較為直接,在教學中則著力引導觀察、歸納和概括的過程.
探究活動。
有理數a、b在數軸上的位置如圖:
將a,-a,b,-b,1,-1用“”號排列出來.
分析:由圖看出,a1,-1。
解:在數軸上畫出表示-a、-b的點:
由圖看出:-a-1。
點評:通過數軸,運用數形結合的方法排列三個以上數的大小順序,經常是解這一類問題的最快捷,準確的方法.
人教版七年級數學教案第五章篇十七
教師在備課時,應充分估計學生在學習時可能提出的問題,確定好重點,難點,疑點,和關鍵。根據學生的實際改變原先的教學計劃和方法,滿腔熱忱地啟發(fā)學生的思維,針對疑點積極引導。
非常高興,能有機會和同學們共同學習
昨天,老師在七年級三班上課時,把他們分成七個小組,每個小組回答問題的情況以搶答賽的形式記分。你們看(出示投影)這是七年級三班七個小組回答問題的表現情況。答對一題得一分,記作+1分;答錯一題扣一分,記作1分。第幾組最棒?老師還沒來得及計算出每個小組的最后得分,咱們班哪位同學能幫老師算出最后結果?(學生在教師引導下回答)
我們已得出了每個小組的最后分數,那么哪個小組是優(yōu)勝小組?(第一小組),回去以后,老師就把小獎品發(fā)給他們,相信他們一定會很高興。
同學們,這節(jié)課你們愿不愿意也分成幾個小組,看一看那個小組的同學表現得最出色?(原意)那么老師就按座次給同學們分組,每一豎排為一組。老師把組號寫在黑板上,以便記分。
希望各組同學積極思考、踴躍發(fā)言。同學們有沒有信心得到老師的小獎品?(有)同學們加油!
我們已得到了這7個小組的最后得分,那位同學能試著用算式表示?(學生在教師指導下列算式)
以上這些算是都是什么運算?(加法),兩個加數都是什么數?(有理數),這就是我們這節(jié)課要學習的有理數的加法(板書課題)。
剛才老師說要給七年級三班的優(yōu)勝組發(fā)獎品,老師手里有12本作業(yè)本,優(yōu)勝組共6人,老師將送出的作業(yè)本數占總數的幾分之幾?(二分之一)分數最低的一組共7人,他們每人交給老師一個作業(yè)本,占總數的幾分之幾?(十二分之七)如果,老師得到的作業(yè)本記為正數,送出的作業(yè)本記為負數,則老師手里的作業(yè)本增加或減少幾分之幾?同學們能列出算式嗎?(學生列式)對于這個算式,同學們還能輕易的感知出結果嗎?(不能)
對于有理數的加法,有的同學們能直接感知得到結果,有的靠感知是不夠的,這就需要我們共同探索規(guī)律!(出示投影),觀察這7個算式,每一個算式都是怎樣的兩個有理數相加?(引導學生回答)你們還能舉出不同以上情況的算式嗎?(不能),這說明這幾個算式概括了有理數加法的不同情況。
前兩個算式的加數在符號上有什么共同點?(相同),那么我們就可以說這是什么樣的兩數相加?(同號兩數相加)同學們還能觀察出那幾個算式可歸為一類嗎?(3、4、5、異號兩數相加,6、7一個數同0相加)
同學們已把這7個算式分成了三種情況,下面我們分別探討規(guī)律。
(2) 異號兩數相加,其和有何規(guī)律呢?大家觀察這三個式子回答問題。(引導學生分成兩類,容易得到絕對值相同情況的結論。再引導學生觀察絕對值不相同的情況,回答問題)哪位同學能概括一下這個規(guī)律?(引導學生得出)
(3) 一個數同0相加,其和有什么規(guī)律呢?(易得出結論)
同學們經過積極思考,探索出了解決有理數加法的規(guī)律,顧一下(出哪位同學能帶領大家共同回顧一下?(出示投影,學生大聲朗讀)我們把這個規(guī)律稱為有理數的加法法則。
同學們都很聰明,積極參與探索規(guī)律,每個組都有不錯的成績。個別落后的組不要氣餒,繼續(xù)努力,下面老師就給大家一個得分的機會,看哪一組能[出題制勝]!(出示)
(活動過程1后評價、加分;教師以其中一題為例,講解題格式及過程;活動過程2后:讓每組第三排同學評價加分)
同學們已經基本掌握了有理數的加法法則,并會運用它,但七年級三班有幾位同學對這一內容掌握的不是太好,以致在作業(yè)中出了毛病,他們?yōu)榇撕芸鄲?。希望咱們同學能幫幫他們,看哪位同學能像妙手回春的神醫(yī)華佗一樣藥到病 除!(師生共同治病)
看來同學們對有理數的加法已經掌握得很好了,大家還記得前面那個難倒我們的有理數的加法題呢?那位同學能解決這個問題呢?(學生口述 師板書)。在大家的努力下,我們終于攻破了這個難關。
通過這節(jié)課的學習,大家有什么收獲?(學生回答)同學們都有很多收獲,老師認為收獲最多的是優(yōu)勝組的同學,因為他們能得到老師的小獎品,大家趕緊看看那一組獲勝?歡迎優(yōu)勝組上臺領獎,大家掌聲鼓勵!
同學們,希望你們在未來的學習和生活中都能積極進取,獲得一個又一個的勝利。
人教版七年級數學教案第五章篇十八
重點:鄰補角與對頂角的概念。對頂角性質與應用。
難點:理解對頂角相等的性質的探索。
教學設計。
一、創(chuàng)設情境激發(fā)好奇觀察剪刀剪布的過程,引入兩條相交直線所成的角。
在我們的生活的世界中,蘊涵著大量的相交線和平行線,本章要研究相交線所成的角和它的特征。
觀察剪刀剪布的過程,引入兩條相交直線所成的角。
學生觀察、思考、回答問題。
二、認識鄰補角和對頂角,探索對頂角性質。
1、學生畫直線ab、cd相交于點o,并說出圖中4個角,兩兩相配。
共能組成幾對角?根據不同的位置怎么將它們分類?
學生思考并在小組內交流,全班交流。
當學生直觀地感知角有“相鄰”、“對頂”關系時,教師引導學生用。
幾何語言準確表達;。
有公共的頂點o,而且的兩邊分別是兩邊的反向延長線。
2、學生用量角器分別量一量各角的度數,發(fā)現各類角的度數有什么關系?
(學生得出結論:相鄰關系的兩個角互補,對頂的兩個角相等)。
3學生根據觀察和度量完成下表:
兩條直線相交所形成的角分類位置關系數量關系。
教師提問:如果改變的大小,會改變它與其它角的位置關系和數量關系嗎?
4、概括形成鄰補角、對頂角概念和對頂角的性質。
三、初步應用。
練習。
下列說法對不對。
(1)鄰補角可以看成是平角被過它頂點的一條射線分成的兩個角。
(2)鄰補角是互補的兩個角,互補的兩個角是鄰補角。
(3)對頂角相等,相等的兩個角是對頂角。
學生利用對頂角相等的性質解釋剪刀剪布過程中所看到的現象。
四。鞏固運用例題:如圖,直線a,b相交,,求的度數。
鞏固練習。
教科書5頁練習已知,如圖,,求:的度數。
小結。
鄰補角、對頂角。
作業(yè)課本p9—1,2p10—7,8。
人教版七年級數學教案第五章篇十九
本課(節(jié))課題3.1認識直棱柱第1課時/共課時。
教學目標(含重點、難點)及。
1、了解多面體、直棱柱的有關概念.
2、會認直棱柱的側棱、側面、底面.。
3、了解直棱柱的側棱互相平行且相等,側面是長方形(含正方形)等特征.。
教學重點與難點。
教學重點:直棱柱的有關概念.
教學難點:本節(jié)的例題描述一個物體的形狀,把它看成怎樣的兩個幾何體的組合,都需要一定的空間想象能力和表達能力.
內容與環(huán)節(jié)預設、簡明設計意圖二度備課(即時反思與糾正)。
析:學生很容易回答出更多的答案。
師:(繼續(xù)補充)有許多著名的建筑,像古埃及的金字塔、巴黎的艾菲爾鐵塔、美國的迪思尼樂園、德國的古堡風光,中國北京的西客站,它們也是由不同的立體圖形組成的;那么立體圖形在生活中有著怎樣的廣泛的應用呢?瞧,食物中的冰激凌、櫻桃、端午節(jié)的粽子等。
1.多面體、棱、頂點概念:
2.合作交流。
師:以學習小組為單位,拿出事先準備好的幾何體。
學生活動:(讓學生從中閉眼摸出某些幾何體,邊摸邊用語言描。
述其特征。)。
師:同學們再討論一下,能否把自己的語言轉化為數學語言。
學生活動:分小組討論。
說明:真正體現了“以生為本”。讓學生在主動探究中發(fā)現知識,充分發(fā)揮了學生的主體作用和教師的主導作用,課堂氣氛活躍,教師教的輕松,學生學的愉快。
師:請大家找出與長方體,立方體類似的物體或模型。
析:舉出實例。(找出區(qū)別)。
師:(總結)棱柱分為之直棱柱和斜棱柱。(根據其側棱與底面是否垂直)根據底面多邊形的邊數而分為直三棱柱、直四棱柱……直棱柱有以下特征:
有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;
側面都是長方形含正方形。
長方體和正方體都是直四棱柱。
3.反饋鞏固。
完成“做一做”
析:由第(3)小題可以得到:
直棱柱的'相鄰兩條側棱互相平行且相等。
4.學以至用。
出示例題。(先請學生單獨考慮,再作講解)。
析:引導學生著重觀察首飾盒的側面是什么圖形,上底面是什么圖形,然后與直棱柱的特征作比較。(使學生養(yǎng)成發(fā)現問題,解決問題的創(chuàng)造性思維習慣)。
最后完成例題中的“想一想”
5.鞏固練習(學生練習)。
完成“課內練習”
師:我們這節(jié)課的重點是什么?哪些地方比較難學呢?
合作交流后得到:重點直棱柱的有關概念。
直棱柱有以下特征:
有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;
側面都是長方形含正方形。
例題中的把首飾盒看成是由兩個直三棱柱、直四棱柱的組合,或著是兩個直四棱柱的組合需要一定的空間想象能力和表達能力。這一點比較難。
板書設計。
作業(yè)布置或設計作業(yè)本及課時特訓。
人教版七年級數學教案第五章篇二十
1.經歷觀察、分析、操作、欣賞以及抽象,歸納等過程,經歷探索圖形平移性質的過程以及與他人合作交流的過程,進一步發(fā)展空間觀念,增強審美意識。
2.通過實例認識平移,理解平移的含義,理解平移前后兩個圖形對應點連線平行且相等的性質.
重點、難點。
重點:探索并理解平移的性質.
難點:對平移的認識和性質的探索.
教學過程。
一、引入新課。
1.教師打開幻燈機,投放課本圖5.4-1的圖案.
2.學生觀察這些圖案、思考并回答問題.
(1)它們有什么共同的特點?
(2)能否根據其中的一部分繪制出整個圖案?
3.師生交流.
(1)這引進美麗的圖案是由若干個相同的圖案組合而成的,圖5.4-1上一排左邊的圖案(不考慮顏色)都有“基本圖形”;中間一個正方形,上、下有正立與倒立的正三角形,如圖(1);上排中間的圖案(不考慮顏色)都有“基本圖形”:正十二邊形,四周對稱著4個等邊三角形,如圖(2);上排右邊的圖案(不考慮顏色)都有“基本圖形”;正六邊形,內接六角星,如圖(3);下排的左圖中的“基本圖形”是鴿子與橄欖枝;下排右圖中的“基本圖形”是上、下一對面朝右與面朝左的人頭像組成的圖案.
人教版七年級數學教案第五章篇二十一
比較正數和負數的大小。
1、借助數軸初步學會比較正數、0和負數之間的大小。
2、初步體會數軸上數的順序,完成對數的結構的初步構建。
負數與負數的比較。
一、復習:
1、讀數,指出哪些是正數,哪些是負數?
—85。6+0。9—+0—82。
2、如果+20%表示增加20%,那么—6%表示。
二、新授:
(一)教學例3:
1、怎樣在數軸上表示數?(1、2、3、4、5、6、7)。
2、出示例3:
(1)提問你能在一條直線上表示他們運動后的情況嗎?
(2)讓學生確定好起點(原點)、方向和單位長度。學生畫完交流。
(3)教師在黑板上話好直線,在相應的點上用小圖片代表大樹和學生,在問怎樣用數表示這些學生和大樹的相對位置關系?(讓學生把直線上的點和正負數對應起來。
(4)學生回答,教師在相應點的下方標出對應的數,再讓學生說說直線上其他幾個點代表的數,讓學生對數軸上的點表示的正負數形成相對完整的認識。
(5)總結:我們可以像這樣在直線上表示出正數、0和負數,像這樣的直線我們叫數軸。
(6)引導學生觀察:
a、從0起往右依次是?從0起往左依次是?你發(fā)現什么規(guī)律?
(7)練習:做一做的第1、2題。
(二)教學例4:
1、出示未來一周的天氣情況,讓學生把未來一周每天的最低氣溫在數軸上表示出來,并比較他們的大小。
2、學生交流比較的方法。
3、通過小精靈的話,引出利用數軸比較數的大小規(guī)定:在數軸上,從左到右的順序就是數從小到大的順序。
4、再讓學生進行比較,利用學生的具體比較來說明“—8在—6的左邊,所以—8〈—6”
5、再通過讓另一學生比較“8〉6,但是—8〈—6”,使學生初步體會兩負數比較大小時,絕對值大的負數反而小。
6、總結:負數比0小,所有的負數都在0的'左邊,也就是負數都比0小,而正數比0大,負數比正數小。
7、練習:做一做第3題。
三、鞏固練習。
1、練習一第4、5題。
2、練習一第6題。
3、某日傍晚,黃山的氣溫由上午的零上2攝氏度下降了7攝氏度,這天傍晚黃山的氣溫是攝氏度。
四、全課總結。
(1)在數軸上,從左到右的順序就是數從小到大的順序。
(2)負數比0小,正數比0大,負數比正數小。
第二課教學反思:
許多教師認為“負數”這個單元的內容很簡單,不需要花過多精力學生就能基本能掌握??扇绻钊脬@研教材,其實會發(fā)現還有不少值得挖掘的內容可以向學生補充介紹。
例3——兩個不同層面的拓展:
1、在數軸上表示數要求的拓展。
數軸除了可以表示整數,還可以表示小數和分數。教材例3只表示出正、負整數,最后一個自然段要求學生表示出—1。5。建議此處教師補充要求學生表示出“+1。5”的位置,因為這樣便于對比發(fā)現兩個數離原點的距離相等,只不過分別在0的左右兩端,滲透+1。5和—1。5絕對值相等。同時,還應補充在數軸上表示分數,如—1/3、—3/2等,提升學生數形結合能力,為例4的教學打下夯實的基礎。
2、滲透負數加減法。
教材中所呈現的數軸可以充分加以應用,如可補充提問:在“—2”位置的同學如果接著向西走1米,將會到達數軸什么位置?如果是向東走1米呢?如果他從“—2”的位置要走到“—4”,應該如何運動?如果他想從“—2”的位置到達“+3”,又該如何運動?其實,這些問題就是解決—2—1;2+1;—4—(—2);3—(—2)等于幾,這樣的設計對于學生初中進一步學習代數知識是極為有利的。
例4——薄書讀厚、厚書讀薄。
薄書讀厚——負數大小比較的三種類型(正數和負數、0和負數、負數和負數)。
例4教材只提出一個大的問題“比較它們的大小”,這些數的大小比較可以分為幾類?每類比較又有什么方法,教材則沒有明確標明。所以教學中,當學生明確數軸從左到右的順序就是數從小到大的順序基礎上,我還挖掘了三種不同類型,一一請學生介紹比較方法,將薄書讀厚。
將厚書讀薄——無論哪種類型,比較方法萬變不離其宗。
無論哪種比較方法,最終都可回歸到“數軸上左邊的數比右邊的數小?!奔词褂袑W生在比較—8和—6大小時是用“86,所以—8—6”來闡述其原因,其實也與數軸相關。因為當絕對值越大時,表示離原點的距離越遠,那么在數軸上表示的點也就在原點左邊越遠,數也就越小。所以,抓住精髓就能以不變應萬變。
在此,我還補充了—3/7和—2/5比較大小的練習,提升學生靈活應用知識解決實際問題的能力。
人教版七年級數學教案第五章篇二十二
本節(jié)教學的重點是掌握單項式與多項式相乘的法則.難點是正確、迅速地進行單項式與多項式相乘的計算.本節(jié)知識是進一步學習多項式乘法,以及乘法公式等后續(xù)知識的基礎。
1.單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加,即。
其中,可以表示一個數、一個字母,也可以是一個代數式.。
2.利用法則進行單項式和多項式運算時要注意:
3根據去括號法則和多項式中每一項包含它前面的符號,來確定乘積每一項的`符號;
設m=-4x2,a=2x2,b=3x,c=-1,
∴(-4x2)·(2x2+3x-1)。
=m(a+b+c)。
=ma+mb+mc。
=(-4x2)·2x2+(-4x2)·3x+(-4x2)·(-1)。
=-8x4-12x3+4x2.。
這樣過渡較自然,同時也滲透了一些代換的思想.。
教學設計示例。
一、教學目標。
1.理解和掌握單項式與多項式乘法法則及推導.。
2.熟練運用法則進行單項式與多項式的乘法計算.。
3.培養(yǎng)靈活運用知識的能力,通過用文字概括法則,提高學生數學表達能力.。
4.通過反饋練習,培養(yǎng)學生計算能力和綜合運用知識的能力.。
5.滲透公式恒等變形的數學美.。
二、學法引導。
1.教學方法:講授法、練習法.。
類項,故在學習中應充分利用這種方法去解題.。
三、重點·難點·疑點及解決辦法。
(一)重點。
單項式與多項式乘法法則及其應用.。
(二)難點。
單項式與多項式相乘時結果的符號的確定.。
(三)解決辦法。
復習單項式與單項式的乘法法則,并注意在解題過程中將單項式乘多項式轉化為單項。
式乘單項式后符號確定的問題.。
四、課時安排。
一課時.。
五、教具學具準備。
投影儀、膠片.。
六、師生互動活動設計。
(一)明確目標。
本節(jié)課重點學習單項式與多項式的乘法法則及其應用.。
(二)整體感知。
(三)教學過程。
1.復習導入。
復習:
(1)敘述單項式乘法法則.。
(單項式相乘,把它們的系數、相同字母分別相乘,對于只在一個單項式里含有的字母,則連同它的指數作為積的一個因式.)。
(2)什么叫多項式?說出多項式的項和各項系數.
2.探索新知,講授新課。
簡便計算:
由該等式,你能說出單項式與多項式相乘的法則嗎?單項式與多項式乘法法則:單項式。
與多項式相乘,就是用單項式乘多項式的每一項,再把所得的積相加.。
例1計算:
例2化簡:
練習:錯例辨析。
(2)錯在單項式與多項式的每一項相乘之后沒有添上加號,故正確答案為。
(四)總結、擴展。
(99,河北)下列運算中,不正確的為()。
a.b.。
c.d.。
八、布置作業(yè)。
參考答案:
略
人教版七年級數學教案第五章篇二十三
從簡單的轉盤游戲開始,使學生在生活經驗和試驗的基礎上,進一步體驗不確定事件的特點及事件發(fā)生的可能性大小。
能用實驗對數學猜想做出檢驗,從而增加猜想的可信度。 解決問題
在轉盤游戲過程中,經歷猜測結果,實驗驗證,分析試驗結果等數學活動,增加數學活動經驗。
情感態(tài)度與價值觀
在合作與交流過程中,體驗小組合作更有利于探究數學知識,敢于發(fā)表自己觀點,提高個人認識。
在實驗中,體會不確定事件的特點及事件發(fā)生可能性大小;使每個學生都能積極認真參與課堂設計中的實驗,真正在實驗中獲得知識上的認識。
創(chuàng)設情境,切入標題
請同學們猜測,當我自由轉動轉盤時,指針會落在什么顏域呢?
請各小組分別派一名代表,看哪組能轉出紅色。
結果,8小組有6組轉出了紅色。
為什么會出現這樣的結果呢?
因為,在這個轉盤中,紅域的面積大,白域的面積小,因此,當轉盤停上轉動時,指針落到紅域的可能性大。
大家同意這種看法嗎?下面我們親自動手感受一下。
學生按照題目要求進行實驗。
請各組組長把你組的實驗數據匯報一下(教師把數據填寫在表格里) 實驗結果:六個小組每組實驗16次,全班共實驗96次,指針落在紅域的次數分別如下9,6,10,5,8,12。共計50次。
請同學們對我們的實驗結果進行分析交流,談談你在試驗中有哪些心得。
根據觀察,轉盤上紅域的面積為總面積的一半,指針落在紅域的可能性也應該是一半。通過對我們全班的實驗結果分析,指針落在紅域的比例是50∶96,結果接近百分之五十。
在小組內實驗結果不明顯,實驗次數越多越能說明問題。
通過實驗,我們確定感受到,轉盤游戲中各區(qū)域的面積的可能性大小與指針落在什么區(qū)域的可能性大小有直接關系。以后在生活中再遇到轉盤游戲問題可要想想今天的實驗結論。
下面我們利用轉盤做一下數學游戲(出示幻燈片),學生按教學設計中要求進行游戲,教師巡回指導。
每組每人游戲一次,全班共游戲48次。其游戲結果是,平均數增大1的,共35次,平均數減小1的,共13次。
請同學們對下列問題進行交流(幻燈片出示教材206頁4個問題)。 這個轉盤轉到“平均數增大1”區(qū)域的可能性大,從面積大小就可以看出。
如果平均數增大1,我是在卡片上增加一個數,這個數等于卡片上數字的個數加1,如果是平均數減小1,我就在每個數上都減去1。
同學們說出很多種方法,不一一列舉。
“平均數增大1”的次數占總次數的百分之七十三,“平均數減小1”占百分之二十七。
如果將這個實驗繼續(xù)做下去,卡片上所有數的平均數會增大。
同學們說的都很好,課后能不能自己也利用轉盤設計一個新的游戲,感興趣的同學可以在課下與我交流。
以下過程同教學設計,略去。
指導學生完成教材第206頁習題。
學生可從各個方面加以小結。 布置作業(yè)
仿照課堂游戲,自編一個新的游戲。 能否利用撲克牌設計本節(jié)轉盤游戲。
人教版七年級數學教案第五章篇二十四
1.單項式:只含有數和字母的乘積的代數式叫做單項式.單獨的一個數或一個字母也是單項式.它的本質特征在于:
(1)不含加減運算;。
(2)可以含乘、除、乘方運算,但分母中不能含有字母.
2.單項式的次數、系數:一個單項式中,所有字母的指數和叫做這個單項式的次數.單項式中的數字因數叫做這個單項式的系數.
3.多項式:幾個單項式的和叫做多項式.多項式中,每個單項式叫做多項式的項,其中不含字母的項叫常數項.一個多項式中,次數最高的項的次數,叫做這個多項式的次數.
4.整式:單項和多項式統(tǒng)稱整式.
人教版七年級數學教案第五章篇一
掌握多種數學解題方法,比如:換元、待定系數、數學歸納法、分析法、綜合法、反證法等等。在具體的方法中,常用的有:觀察與實驗,聯想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無限,抽象與概括等。
逐步形成“以我為主”的學習模式
數學不是靠老師教會的,而是在老師的引導下,靠自己主動的思維活動去獲取的。學習數學一定要講究“活”,只看書不做題不行,只埋頭做題不總結積累也不行。記數學筆記,特別是對概念理解的不同側面和數學規(guī)律,教師在課堂中拓展的課外知識。記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今后將其補上。
人教版七年級數學教案第五章篇二
1、大于0的數叫做正數(positivenumber)。
2、在正數前面加上負號“-”的數叫做負數(negativenumber)。
3、整數和分數統(tǒng)稱為有理數(rationalnumber)。
4、人們通常用一條直線上的點表示數,這條直線叫做數軸(numberaxis)。
5、在直線上任取一個點表示數0,這個點叫做原點(origin)。
6、一般的,數軸上表示數a的點與原點的距離叫做數a的絕對值(absolutevalue)。
7、由絕對值的定義可知:一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。
8、正數大于0,0大于負數,正數大于負數。
9、兩個負數,絕對值大的反而小。
10、有理數加法法則
(1)同號兩數相加,取相同的符號,并把絕對值相加。
(2)絕對值不相等的異號兩數相加,取絕對值較大的加數的負號,并用較大的絕對值減去較小的絕對值,互為相反數的兩個數相加得0。
(3)一個數同0相加,仍得這個數。
11、有理數的加法中,兩個數相加,交換交換加數的位置,和不變。
12、有理數的加法中,三個數相加,先把前兩個數相加,或者先把后兩個數相加,和不變。
13、有理數減法法則
減去一個數,等于加上這個數的相反數。
14、有理數乘法法則
兩數相乘,同號得正,異號得負,并把絕對值向乘。
任何數同0相乘,都得0。
15、有理數中仍然有:乘積是1的兩個數互為倒數。
16、一般的,有理數乘法中,兩個數相乘,交換因數的位置,積相等。
17、三個數相乘,先把前兩個數相乘,或者先把后兩個數相乘,積相等。
18、一般地,一個數同兩個數的和相乘,等于把這個數分別同這兩個數相乘,再把積相加。
19、有理數除法法則
除以一個不等于0的數,等于乘這個數的倒數。
20、兩數相除,同號得正,異號得負,并把絕對值相除。0除以任何一個不等于0的數,都得0。
21、求n個相同因數的積的運算,叫做乘方,乘方的結果叫做冪(power)。在an中,a叫做底數(basenumber),n叫做指數(exponeht)
22、根據有理數的乘法法則可以得出
負數的奇次冪是負數,負數的偶次冪是正數。
顯然,正數的任何次冪都是正數,0的任何次冪都是0。
23、做有理數混合運算時,應注意以下運算順序:
(1)先乘方,再乘除,最后加減;
(2)同級運算,從左到右進行;
(3)如有括號,先做括號內的運算,按小括號、中括號、大括號依次進行。
24、把一個大于10數表示成a×10n的形式(其中a是整數數位只有一位的數,n是正整數),使用的是科學計數法。
25、接近實際數字,但是與實際數字還是有差別,這個數是一個近似數(approximatenumber)。
26、從一個數的左邊的第一個非0數字起,到末尾數字止,所有的數字都是這個數的有效數字(significantdigit)
短時間提高數學成績的方法
1、查查在知識方面還能做那些努力。關鍵的是做好知識的準備,考前要檢查自己在初中學習的數學知識是否還有漏洞,是否有遺忘或易混的地方;其次是對解題常犯錯誤的準備,再看一下自己的錯誤筆記,如果你沒有錯題本,那可以把以前的做過的卷子找出來。翻看修改的部分,那就是出錯的地方、爭取在答卷時,不犯或少犯過去曾犯過的錯誤。也就是錯誤不二犯。
2、一定要對自己、對未來充滿信心,心態(tài)問題是影響考試的最重要的原因。走進考場就要有舍我其誰的霸氣。要信心十足,要相信自己已經讀了一千天的初中,進行了三百多天的復習,做了三千至四千道初中數學題,養(yǎng)兵千日,用兵一時,現在是收獲的時候,自己會取得好成績的。
3、看完書后,把課本放起來,做習題,通過做習題來再一次檢查自己哪些地方做的不夠好,如果碰到不會的地方,可以再看課本,這樣以來,相信會給你留下深刻的印象。
數學學習方法
1、基礎很重要
是不是感覺數學都能考滿分的同學,連書都不用看,其實數學學霸更重視基礎。,數學公式,幾何圖形的性質,函數的性質等,都是數學學習的基礎,甚至可以說基礎的好壞,直接決定中考數學成績的高低。
李現良表示,班里某位同學來找自己講題,其實題目并不難,但這位同學就是因為一些最基礎的知識沒有掌握透徹,導致做題的時候沒有思路。基礎不牢、地動山搖,一個小小的知識漏洞可能導致你在整一個題中都沒有思路,非常危險。
2、錯題本很重要
在所有科目中,數學這個科目最重要錯題本學習法。李現良同學也特別提倡大家整理錯題,李現良對于錯題本有一些小竅門,那就是平時如果堅持整理錯題,最終會導致自己錯題本很多很厚,我們可以定期復習,對于一些徹底掌握的,可以做個標記,以后就不用再次復習,這樣錯題本使用起來就會效率更高。
3、做題要多反思
數學學習要大量做題去鞏固,但做題不要只講究數量,更要講究質量,遇到經典題,綜合性高的題目時,每道題寫完解答過程后,需要進行分析和反思,多問幾個為什么,這樣才能把題真正做透。
4、把數學知識形成體系
數學學霸李現良表示,課本上的知識都是零散的,建議大家自己畫思維導圖把知識串起來,畫思維導圖的過程,就是不斷理解,讓知識變成結構的過程。
人教版七年級數學教案第五章篇三
一、選擇題:(本題共24分,每小題3分)。
在下列各題的四個備選答案中,只有一個答案是正確的,請你把正確答案前的字母填寫在相應的括號中.
1.若一個數的倒數是7,則這個數是().
a.-7b.7c.d.
2.如果兩個等角互余,那么其中一個角的度數為().
a.30°b.45°c.60°d.不確定。
3.如果去年某廠生產的一種產品的產量為100a件,今年比去年增產了20%,那么今年的產量為()件.
a.20ab.80ac.100ad.120a。
4.下列各式中結果為負數的是().
a.b.c.d.
5.如圖,已知點c是線段ab的中點,點d是cb的中點,那么下列結論中錯誤的是().
a.ac=cbb.bc=2cdc.ad=2cdd.
6.下列變形中,根據等式的性質變形正確的是().
a.由,得x=2。
b.由,得x=4。
c.由,得x=3。
d.由,得。
7.如圖,這是一個馬路上的人行橫道線,即斑馬線的示意圖,請你根據圖示判斷,在過馬路時三條線路ac、ab、ad中最短的是().
a.acb.abc.add.不確定。
8.如圖,有一塊表面刷了紅漆的立方體,長為4厘米,寬為5厘米,高為3厘米,現在把它切分為邊長為1厘米的小正方形,能夠切出兩面刷了紅漆的正方體有()個.
a.48b.36c.24d.12。
二、填空題:(本題共12分,每空3分)。
9.人的大腦約有100000000000個神經元,用科學記數法表示為.
10.在鐘表的表盤上四點整時,時針與分針之間的夾角約為度.
11.一個角的補角與這個角的余角的差等于度.
12.瑞士的教師巴爾末從測量光譜的數據,,,…中得到了巴爾末公式,請你按這種規(guī)律寫出第七個數據,這個數據為.
三、解答題:(本題共30分,每小題5分)。
13.用計算器計算:(結果保留3個有效數字)。
14.化簡:
15.解方程。
16.如示意圖,工廠a與工廠b想在公路m旁修建一座共用的倉庫o,并且要求o到a與o到b的距離之和最短,請你在m上確定倉庫應修建的o點位置,同時說明你選擇該點的理由.
拓展知識。
人教版七年級數學教案第五章篇四
1.理解垂線、垂線段的概念,會用三角尺或量角器過一點畫已知直線的垂線。
2.掌握點到直線的距離的概念,并會度量點到直線的距離。
3.掌握垂線的性質,并會利用所學知識進行簡單的推理。
[教學重點與難點]
1.教學重點:垂線的定義及性質。
2.教學難點:垂線的畫法。
[教學過程設計]
一、復習提問:
1、敘述鄰補角及對頂角的定義。
2、對頂角有怎樣的.性質。
二.新課:
引言:
前面我們復習了兩條相交直線所成的角,如果兩條直線相交成特殊角直角時,這兩條直線有怎樣特殊的位置關系呢?日常生活中有沒有這方面的實例呢?下面我們就來研究這個問題。
(一)垂線的定義
當兩條直線相交的四個角中,有一個角是直角時,就說這兩條直線是互相垂直的,其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。
如圖,直線ab、cd互相垂直,記作,垂足為o。
請同學舉出日常生活中,兩條直線互相垂直的實例。
注意:
1、如遇到線段與線段、線段與射線、射線與射線、線段或射線與直線垂直,特指它們所在的直線互相垂直。
2、掌握如下的推理過程:(如上圖)
反之,
(二)垂線的畫法
探究:
1、用三角尺或量角器畫已知直線l的垂線,這樣的垂線能畫出幾條?
2、經過直線l上一點a畫l的垂線,這樣的垂線能畫出幾條?
3、經過直線l外一點b畫l的垂線,這樣的垂線能畫出幾條?
畫法:
讓三角板的一條直角邊與已知直線重合,沿直線左右移動三角板,使其另一條直角邊經過已知點,沿此直角邊畫直線,則這條直線就是已知直線的垂線。
注意:如過一點畫射線或線段的垂線,是指畫它們所在直線的垂線,垂足有時在延長線上。
(三)垂線的性質
經過一點(已知直線上或直線外),能畫出已知直線的一條垂線,并且只能畫出一條垂線,即:
性質1過一點有且只有一條直線與已知直線垂直。
練習:教材第7頁
探究:
如圖,連接直線l外一點p與直線l上各點o,
a,b,c,……,其中(我們稱po為點p到直線
l的垂線段)。比較線段po、pa、pb、pc……的長短,這些線段中,哪一條最短?
性質2連接直線外一點與直線上各點的所有線段中,垂線段最短。
簡單說成:垂線段最短。
(四)點到直線的距離
直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。
如上圖,po的長度叫做點p到直線l的距離。
人教版七年級數學教案第五章篇五
一。教學目標:
1、認知目標:
1)了解二元一次方程組的概念。
2)理解二元一次方程組的解的概念。
3)會用列表嘗試的方法找二元一次方程組的解。
2、能力目標:
1)滲透把實際問題抽象成數學模型的思想。
2)通過嘗試求解,培養(yǎng)學生的探索能力。
3、情感目標:
1)培養(yǎng)學生細致,認真的學習習慣。
2)在積極的教學評價中,促進師生的情感交流。
二。教學重難點。
重點:二元一次方程組及其解的概念。
難點:用列表嘗試的方法求出方程組的解。
三。教學過程。
(一)創(chuàng)設情景,引入課題。
1、本班共有40人,請問能確定男_幾人嗎?為什么?
(1)如果設本班男生x人,_人,用方程如何表示?(x+y=40)。
(2)這是什么方程?根據什么?
2、男生比_了2人。設男生x人,_人。方程如何表示?x,y的值是多少?
3、本班男生比_2人且男_40人。設該班男生x人,_人。方程如何表示?
兩個方程中的x表示什么?類似的兩個方程中的y都表示?
象這樣,同一個未知數表示相同的量,我們就應用大括號把它們連起來組成一個方程組。
4、點明課題:二元一次方程組。
[設計意圖:從學生身邊取數據,讓他們感受到生活中處處有數學]。
(二)探究新知,練習鞏固。
1、二元一次方程組的概念。
(1)請同學們看課本,了解二元一次方程組的的概念,并找出關鍵詞由教師板書。
[讓學生看書,引起他們對教材重視。找關鍵詞,加深他們對概念的了解。]。
(2)練習:判斷下列是不是二元一次方程組:。
x+y=3,x+y=200,。
2x-3=7,3x+4y=3。
y+z=5,x=y+10,。
2y+1=5,4x-y2=2。
學生作出判斷并要說明理由。
2、二元一次方程組的解的概念。
(1)由學生給出引例的答案,教師指出這就是此方程組的解。
(2)練習:把下列各組數的題序填入圖中適當的位置:
x=1;x=-2;x=;-x=。
y=0;y=2;y=1;y=。
方程x+y=0的解,方程2x+3y=2的解,方程組x+y=0的解。
2x+3y=2。
(3)既滿足第一個方程也滿足第二個方程的解叫作二元一次方程組的解。
(4)練習:已知x=0是方程組x-b=y的解,求a,b的值。
y=0.55x+2a=2y。
(三)合作探索,嘗試求解。
現在我們一起來探索如何尋找方程組的解呢?
1、已知兩個整數x,y,試找出方程組3x+y=8的解。
2x+3y=10。
學生兩人一小組合作探索。并讓已經找出方程組解的學生利用實物投影,講明自己的解題思路。
提煉方法:列表嘗試法。
一般思路:由一個方程取適當的xy的值,代到另一個方程嘗試。
2、據了解,某商店出售兩種不同星號的“紅雙喜”牌乒乓球。其中“紅雙喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同學一共買了4盒,剛好有15個球。
(1)設該同學“紅雙喜”二星乒乓球買了x盒,三星乒乓球買了y盒,請根據問題中的條件列出關于x、y的方程組。(2)用列表嘗試的方法解出這個方程組的解。
由學生獨立完成,并分析講解。
(四)課堂小結,布置作業(yè)。
1、這節(jié)課學哪些知識和方法?(二元一次方程組及解概念,列表嘗試法)。
2、你還有什么問題或想法需要和大家交流?
3、作業(yè)本。
教學設計說明:
1、本課設計主線有兩條。其一是知識線,內容從二元一次方程組的概念到二元一次方程組解的概念再到列表嘗試法,環(huán)環(huán)相扣,層層遞進;第二是能力培養(yǎng)線,學生從看書理解二元一次方程組的概念到學會歸納解的概念,再到自主探索,用列表嘗試法解題,循序漸進,逐步提高。
2、“讓學生成為課堂的真正主體”是本課設計的主要理念。由學生給出數據,得出結果,再讓他們在積極嘗試后進行講解,實現生生互評。把課堂的一切交給學生,相信他們能在已有的知識上進一步學習提高,教師只是點播和引導者。
3、本課在設計時對教材也進行了適當改動。例題方面考慮到數_代,學生對膠卷已漸失興趣,所以改為學生比較熟悉的乒乓球為體裁。另一方面,充分挖掘練習的作用,為知識的落實打下軋實的基礎,為學生今后的進一步學習做好鋪墊。
人教版七年級數學教案第五章篇六
本環(huán)節(jié)主要是創(chuàng)設情境,在實際問題中引出本節(jié)課題.
【設計意圖】。
引導學生發(fā)現:可以借助游戲創(chuàng)設情境,導入新課.
(二)探究新知。
1、利用丹鳳地圖的實際情境探索點的平移與坐標變化的規(guī)律.
2、如圖,已知a(c2,c3),根據下列條件,在相應的坐標系中分別畫出平移后的點,寫出它們的坐標,并觀察平移前后點的坐標變化.
(1)將點a向右平移5個單位長度,得到點a1;
(2)將點a向左平移2個單位長度,得到點a2;
(3)將點a向上平移6個單位長度,得到點a3;
(4)將點a向下平移4個單位長度,得到點a4;
教學過程中注重讓學生明確:將哪個點沿著什么方向,平移幾個單位后,得到的是哪個點.
3、在此基礎上可以歸納出:點的左右平移點的橫坐標變化,縱坐標不變。
點的上下平移點的橫坐標不變,縱坐標變化。
4、點的平移的應用.(見課件)。
5、比一比看誰反應快。
(1)點a(c4,2)先向右平移3個單位長度后得到點b,求點b的坐標.
(2)點a(c4,2)先向左平移2個單位長度后得到點b,求點b的坐標.
(3)點a(c4,2)先向下平移4個單位長度后得到點b,求點b的坐標.
(4)點a(c4,2)先向上平移3個單位長度后得到點b,求點b的坐標.
6、逆向思維:由點的變化探索點的方向和距離。
(1)如果a,b的坐標分別為a(-4,5),b(-4,2),將點a向___平移___個單位長度得到點b;將點b向___平移___個單位長度得到點a。
(2)如果p、q的坐標分別為p(-3,-5),q(2,-5),將點p向___平移___個單位長度得到點q;將點q向___平移___個單位長度得到點p。
(3)點a′(6,3)是由點a(-2,3)經過__________________得到的.點b(4,3)向______________得到b′(4,5)。
7、應用平移解決簡單問題在平面直角坐標系中,有一點(1,3),要使它平移到點(-2,-2),應怎樣平移?說出平移的路線。
人教版七年級數學教案第五章篇七
1知識與技能:
使學生理解和掌握整十數除整十數、幾百幾十數(商一位數)的口算方法,能正確地進行計算。
2過程與方法:
通過觀察、操作、討論的活動,使學生經歷探究口算方法的全過程。
3情感態(tài)度與價值觀:
讓學生感受數學與生活的聯系,培養(yǎng)學生用數學知識解決簡單實際問題的能力。
教學重難點
1教學重點:
掌握用整十數除的口算方法。
2教學難點:
理解用整十數除的口算算理。
教學工具
多媒體設備
教學過程
1復習引入
口算。
20×3=7×50=6×3=
20×5=4×9=8×60=
24÷6=8÷2=12÷3=
42÷6=90÷3=3000÷5=
2新知探究
1.教學例1
有80面彩旗,每班分20面,可以分給幾個班?
(1)提出問題,尋找解決問題的方法。
師:從中你能獲取什么數學信息?
師:怎樣解決這個問題?
(2)列式80÷20
(3)學生獨立探索口算的方法
師:怎樣算80÷20呢,請同學們先自己想一想、算一算,再說給同桌聽一聽。
學生匯報:
預設學生可能會有以下兩種口算方法:
a.因為20×4=80,所以80÷20=4這是想乘算除
b.因為8÷2=4,所以80÷20=4這是根據計數單位的組成
為什么可以不看這個“0”?(80÷20可以想“8個十里面有幾個二十?”)
這樣我們就把除數是整十數的轉化為我們已經學過的表內除法。
(4)師小結:
同學們有的用乘法算除法的,也有用表內除法來想的,都很好,那么你喜歡哪種方法呢?
把你喜歡的方法說給同桌聽。
(5)檢查正誤
師:我們分的結果對不對?請同學們看屏幕(課件演示分的結果)
(6)用剛學會的方法再次口算,并與同桌交流你的想法
40÷2020÷1060÷3090÷30
(7)探究估算的方法
出示:83÷20≈80÷19≈
師:你能知道題目要求我們做什么嗎?你怎么知道的?你是怎樣計算的?和同學們交流一下。
生:求83除以20、80除以19大約得多少,從題目中的約等號看出不用精確計算。
師:誰想把你的方法跟大家說一說。
預設:83接近于80,80除以20等于4,所以83除以20約等于4。
19接近于20,80除以20等于4,所以80除以19約等于4。
2.教學例2
(1)創(chuàng)設情境引出問題
師:誰會解決這個問題?
150÷50
(2)小組討論口算方法
(3)你是怎么這樣快就算出的呢?
a.因為15÷5=3,所以150÷50=3。
b.因為3個50是150,所以150÷50=3。
這一題跟剛才分彩旗的口算方法有不同嗎?
都是運用想乘算除和表內除法這兩種方法來口算的。
師:在解決分彩旗和剛才的問題中,我們共同探討了除法的口算方法,(板題:口算除法)口算時,可以用自己喜歡的方法來口算。
口算練習:150÷30240÷80300÷50540÷90
3.估算
(1)探計估算的方法
師:你能知道題目要求我們做什么嗎?
你能估嗎?請先估算,再把你的估算方法與同伴交流,看看能否互相借鑒。
(2)誰想把你的方法跟大家說一說。
(3)總結方法:把被除數和除數都看作與原數比較接近的整十數再用口算方法算。
(4)判斷估算是否正確:122÷60=2349÷50≈8為什么不正確?
3鞏固提升
1.獨立口算
觀察每道題,怎樣很快說出下面除法算式的商?
如果估算的話把誰估成多少。
2.算一算、說一說。
(1)除數不變,被除數乘幾,商也乘幾。
(2)被除數不變,除數乘幾,商反而除以幾。
3.解決問題
(1)一共要寄240本書,每包40本。要捆多少包?
你能找到什么條件、問題。你會解決嗎?
240÷40=6(包)
答:要捆6包。
(2)這個小朋友也是一個愛看書的好孩子,她在看一本故事書。
出示條件:一共有120個小故事,每天看1個故事。
問題:看完這本書大約需要幾個月?
問:要求看完這本書大約需要幾個月?必須要知道哪些條件,你會求嗎?
120÷30=4(個)
答:看完這本書大約需要4個月。
課后小結
這節(jié)課你有什么收獲?還有什么問題?
本節(jié)課學習了整十數除整十數、幾百幾十數(商一位數)的口算方法,能正確地進行計算。
板書
口算除法
有80面彩旗,每班分20面,可以分給幾個班?
80÷20=
人教版七年級數學教案第五章篇八
2.會用上的點表示有理數,會利用比較有理數的大小;。
3.使學生初步了解數形結合的思想方法,培養(yǎng)學生相互聯系的觀點。
教學建議。
一、重點、難點分析。
本節(jié)的重點是初步理解數形結合的思想方法,正確掌握畫法和用上的點表示有理數,并會比較有理數的大小.難點是正確理解有理數與上點的對應關系。的概念包含兩個內容,一是的三要素:原點、正方向、單位長度缺一不可,二是這三個要素都是規(guī)定的。另外應該明確的是,所有的有理數都可用上的點表示,但上的點所表示的數并不都是有理數。通過學習,使學生初步掌握用解決問題的方法,為今后充分利用“”這個工具打下基礎.
二、知識結構。
有了,數和形得到了初步結合,這有利于對數學問題的研究,數形結合是理解數學、學好數學的重要思想方法,本課知識要點如下表:
定義。
三要素。
應用。
數形結合。
規(guī)定了原點、正方向、單位長度的直線叫。
原點。
正方向。
單位長度。
幫助理解有理數的概念,每個有理數都可用上的點表示,但上的點并非都是有理數。
比較有理數大小,上右邊的數總比左邊的數要大。
在理解并掌握概念的基礎之上,要會畫出,能將已知數在上表示出來,能說出上已知點所表示的數,要知道所有的有理數都可以用上的點表示,會利用比較有理數的大小。
三、教法建議。
小學里曾學過利用射線上的點來表示數,為此我們可引導學生思考:把射線怎樣做些改進就可以用來表示有理數?伴以溫度計為模型,引出的概念.是一條具有三個要素(原點、正方向、單位長度)的直線,這三個要素是判斷一條直線是不是的根本依據。與它所在的位置無關,但為了教學上需要,一般水平放置的,規(guī)定從原點向右為正方向。要注意原點位置選擇的任意性。
關于有理數與上的點的對應關系,應該明確的是有理數可以用上的點表示,但上的點與有理數并不存在一一對應的關系。根據幾個有理數在上所對應的點的相互位置關系,應該能夠判斷它們之間的大小關系。通過點與有理數的對應關系及其應用,逐步滲透數形結合的思想。
四、的相關知識點。
1.的概念。
(1)規(guī)定了原點、正方向和單位長度的直線叫做.
這里包含兩個內容:一是的三要素:原點、正方向、單位長度缺一不可.二是這三個要素都是規(guī)定的.
(2)能形象地表示數,所有的有理數都可用上的點表示,但上的點所表示的數并不都是有理數.
以是理解有理數概念與運算的重要工具.有了,數和形得到初步結合,數與表示數的圖形(如)相結合的思想是學習數學的重要思想.另外,能直觀地解釋相反數,幫助理解絕對值的意義,還可以比較有理數的大小.因此,應重視對的學習.
2.的畫法。
(1)畫直線(一般畫成水平的)、定原點,標出原點“o”.
(2)取原點向右方向為正方向,并標出箭頭.
(3)選適當的長度作為單位長度,并標出…,-3,-2,-1,1,2,3…各點。具體如下圖。
(4)標注數字時,負數的次序不能寫錯,如下圖。
3.用比較有理數的大小。
(1)在上表示的兩數,右邊的數總比左邊的數大。
(2)由正、負數在上的位置可知:正數都有大于0,負數都小于0,正數大于一切負數。
(3)比較大小時,用不等號順次連接三個數要防止出現“”的寫法,正確應寫成“”。
五、定義的理解。
1.規(guī)定了原點、正方向和單位長度的直線叫做,如圖1所示.
2.所有的有理數,都可以用上的點表示.例如:在上畫出表示下列各數的點(如圖2).
a點表示-4;b點表示-1.5;。
o點表示0;c點表示3.5;。
d點表示6.
從上面的例子不難看出,在上表示的兩個數,右邊的數總比左邊的數大,又從正數和負數在上的位置,可以知道:
正數都大于0,負數都小于0,正數大于一切負數.
因為正數都大于0,反過來,大于0的數都是正數,所以,我們可以用,表示是正數;反之,知道是正數也可以表示為。
同理,,表示是負數;反之是負數也可以表示為。
3.正常見幾種錯誤。
1)沒有方向。
2)沒有原點。
3)單位長度不統(tǒng)一。
人教版七年級數學教案第五章篇九
1、讓學生生自主探索小數的加、減法的計算方法,理解計算的算理并能正確地進行加、減法。
2、使學生體會小數加減運算在生活、學習中的廣泛應用,體會數學的工具性作用。
3、激發(fā)學生學習小數加減法的興趣,涌動長大后也要為國爭光的豪情,提高學習的主動性和自覺性。
教學重難點。
教學重點:用豎式計算小數加減法。
教學難點:理解小數點對齊的算理。
教學工具。
多媒體課件。
教學過程。
(一)情景引入。
師:同學們,你們還記得嗎?整數的加減法是怎樣計算的?讓我們用一道習題回顧一下。
(呈現多媒體,學生自主完成習題并總結計算算理)。
師:同學們你們可真棒,那么今天我們學習小數的加減法(引出課題并板書)。
(二)例題講解。
(1)小麗買了下面兩本書,一共花了多少錢?
(2)《數學家的故事》比《童話選》貴多少錢?
生:好的。
(展示小麗遇到的問題(1),并讓學生列出算式)。
師:根據咱們總結的整數加減法的算理,想一想這個式子怎么計算呢?
(讓學生大膽的去嘗試,小組討論,并列出豎式)。
師:你們發(fā)現小數加減法計算時需要注意什么?
生1:注意數位對齊。
生2:注意小數點要對齊。
生3:……。
老師小結:小數點要對齊,得數的小數點也要對齊。
師:小麗啊還有一個問題讓我們看一看(展示問題(2))。
(讓學生自主解決,并再回憶需要注意什么?)。
完成后學生給予總結,完成小數加減法的時候需要注意什么?
(三)習題鞏固。
課本72頁做一做。
課后小結。
學生談一談本節(jié)課你學到了什么?
給出總結:計算小數加、減法,先把各數的小數點對齊(也就是把相同數位上的數對齊),再按照整數加、減法的法則進行計算,最后在得數里對齊橫線上的小數點點上小數點。
課后習題。
一、計算。
1.5-0.5=1-0.9=2.3+0.6=0.9+0.8=。
1.9-0.8=3.5-2.4=0.36+0.65=0.96-0.32=。
二、豎式計算。
20.87-3.65=3.25+1.73=。
18.77+3.14=23.5-2.8=。
三、解決問題。
1、小紅買文具,買鋼筆用去6.7元,買文具盒用去9.8元,一共用去多少錢?
板書。
計算小數加、減法,先把各數的小數點對齊(也就是把相同數位上的數對齊),再按照整數加、減法的法則進行計算,最后在得數里對齊橫線上的小數點點上小數點。
人教版七年級數學教案第五章篇十
在知識與方法上類似于數系的第一次擴張。
也是后繼內容學習的基礎。
內容定位:了解無理數、實數概念,了解(算術)平方根的概念;會用根號表示數的(算術)平方根,會求平方根、立方根,用有理數估計一個無理數的大致范圍,實數簡單的四則運算(不要求分母有理化)。
整體設計思路:無理數的引入----無理數的表示----實數及其相關概念(包括實數運算),實數的應用貫穿于內容的始終。
學習對象----實數概念及其運算;學習過程----通過拼圖活動引進無理數,通過具體問題的解決說明如何表示無理數,進而建立實數概念;以類比,歸納探索的`方式,尋求實數的運算法則;學習方式----操作、猜測、抽象、驗證、類比、推理等。
具體過程:首先通過拼圖活動和計算器探索活動,給出無理數的概念,然后通過具體問題的解決,引入平方根和立方根的概念和開方運算。
最后教科書總結實數的概念及其分類,并用類比的方法引入實數的相關概念、運算律和運算性質等。
第一節(jié):數怎么又不夠用了:通過拼圖活動,讓學生感受無理數產生的實際背景和引入的必要性;借助計算器探索無理數是無限不循環(huán)小數,并從中體會無限逼近的思想;會判斷一個數是有理數還是無理數。
第二、三節(jié):平方根、立方根:如何表示正方形的邊長?它的值到底是多少?并引入算術平方根、平方根、立方根等概念和開方運算。
第四節(jié):公園有多寬:在實際生活和生產實際中,對于無理數我們常常通過估算來求它的近似值,為此這一節(jié)內容介紹估算的方法,包括通過估算比較大小,檢驗計算結果的合理性等,其目的是發(fā)展學生的數感。
第五節(jié):用計算器開方:會用計算器求平方根和立方根。
經歷運用計算器探求數學規(guī)律的活動,發(fā)展合情推理的能力。
第六節(jié):實數。
總結實數的概念及其分類,并用類比的方法引入實數的相關概念、運算律和運算性質等。
1、注重概念的形成過程,讓學生在概念的形成的過程中,逐步理解所學的概念;關注學生對無理數和實數概念的意義理解。
2、鼓勵學生進行探索和交流,重視學生的分析、概括、交流等能力的考察。
3、注意運用類比的方法,使學生清楚新舊知識的區(qū)別和聯系。
4、淡化二次根式的概念。
人教版七年級數學教案第五章篇十一
幾何圖形大?。洪L度、面積、體積等。
位置:相交、垂直、平行等。
2幾何體也簡稱體。包圍著體的是面。
3常見的立體圖形:柱體、椎體、球體等各部分不都在一個平面內。
4平面圖形:在一個平面內的圖形就是平面圖形。
5展開圖:識記一些常用的展開圖。圓柱/圓錐的側面展開圖;。
6點線面體:是組成幾何圖形的基本元素。
7直線、射線、線段。
線段公理:兩點的所有連線中,線段做短(兩點之間,線段最短)。
連接兩點間的線段的長度,叫做這兩點的距離。
經過兩點有一條直線,并且只有一條直線。兩點確定一條直線。
8角。
9角的比較與運算。
角的平分線:從一個角的頂點出發(fā),把這個角分成相等的兩個角的射線,叫做這個角的平分線。
余角:如果兩個角的和等于90度(直角),就說這兩個叫互為余角,即其中每一個角是另一個角的余角。
補角:如果兩個角的和等于180度(平角),就說這兩個叫互為補角,即其中每一個角是另一個角的補角。
性質:等角(同角)的補角相等。等角(同角)的余角相等。
人教版七年級數學教案第五章篇十二
多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。良好的學習數學習慣包括課前自學、專心上課、及時復習、獨立作業(yè)、解決疑難、系統(tǒng)小結和課外學習幾個方面。
及時了解、掌握常用的數學思想和方法
中學數學學習要重點掌握的的數學思想有以上幾個:集合與對應思想,分類討論思想,數形結合思想,運動思想,轉化思想,變換思想。
人教版七年級數學教案第五章篇十三
概念:不等式、不等式的解、不等式的解集、解不等式以及能在數軸上表示簡單不等式的解集.
(二)內容解析。
現實生活中存在大量的相等關系,也存在大量的不等關系.本節(jié)課從生活實際出發(fā)導入常見行程問題的不等關系,使學生充分認識到學習不等式的重要性和必然性,激發(fā)他們的求知欲望.再通過對實例的進一步深入分析與探索,引出不等式、不等式的解、不等式的解集以及解不等式幾個概念.前面學過方程、方程的解、解方程的概念.通過類比教學、不等式、不等式的解、解不等式幾個概念不難理解.但是對于初學者而言,不等式的解集的理解就有一定的難度.因此教材又進行數形結合,用數軸來表示不等式的解集,這樣直觀形象的表示不等式的解集,對理解不等式的解集有很大的幫助.
基于以上分析,可以確定本節(jié)課的教學重點是:正確理解不等式、不等式的解與解集的意義,把不等式的解集正確地表示在數軸上.
二、目標和目標解析。
(一)教學目標。
1.理解不等式的概念。
2.理解不等式的解與解集的意義,理解它們的區(qū)別與聯系。
3.了解解不等式的概念。
4.用數軸來表示簡單不等式的解集。
(二)目標解析。
1.達成目標1的標志是:能正確區(qū)別不等式、等式以及代數式.
2.達成目標2的標志是:能理解不等式的解是解集中的某一個元素,而解集是所有解組成的一個集合.
3.達成目標3的標志是:理解解不等式是求不等式解集的一個過程.
4、達成目標4的標志是:用數軸表示不等式的解集是數形結合的又一個重要體現,也是學習不等式的一種重要工具.操作時,要掌握好“兩定”:一是定界點,一般在數軸上只標出原點和界點即可,邊界點含于解集中用實心圓點,或者用空心圓點;二是定方向,小于向左,大于向右.
三、教學問題診斷分析。
本節(jié)課實質是一節(jié)概念課,對于不等式、不等式的解以及解不等式可通過類比方程、方程的解、解方程類比教學,學生不難理解,但是對不等式的解集的理解就有一定的難度.
因此,本節(jié)課的教學難點是:理解不等式解集的意義以及在數軸上正確表示不等式的解集.
四、教學支持條件分析。
利用多媒體直觀演示課前引入問題,激發(fā)學生的學習興趣.
五、教學過程設計。
(一)動畫演示情景激趣。
設計意圖:通過實例創(chuàng)設情境,從“等”過渡到“不等”,培養(yǎng)學生的觀察能力,分析能力,激發(fā)他們的學習興趣.
(二)立足實際引出新知。
小組討論,合作交流,然后小組反饋交流結果.
最后,老師將小組反饋意見進行整理(學生沒有討論出來的思路老師進行補充)。
人教版七年級數學教案第五章篇十四
3、在教學中適當滲透分類討論思想。
重點:有理數的加法法則。
重點:異號兩數相加的法則。
教學過程:
二、講授新課。
1、同號兩數相加的法則。
學生回答:兩次運動后物體從起點向右運動了8m。寫成算式就是5+3=8(m)。
教師:如果物體先向左運動5m,再向左運動3m,那么兩次運動后總的結果是多少?
學生回答:兩次運動后物體從起點向左運動了8m。寫成算式就是(-5)+(-3)=-8(m)。
師生共同歸納法則:同號兩數相加,取與加數相同的符號,并把絕對值相加。
2、異號兩數相加的法則。
學生回答:兩次運動后物體從起點向右運動了2m。寫成算式就是5+(-3)=2(m)。
師生借此結論引導學生歸納異號兩數相加的法則:異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值。
3、互為相反數的兩個數相加得零。
教師:如果物體先向右運動5m,再向左運動5m,那么兩次運動后總的結果是多少?
學生回答:經過兩次運動后,物體又回到了原點。也就是物體運動了0m。
師生共同歸納出:互為相反數的兩個數相加得零。
教師:你能用加法法則來解釋這個法則嗎?
學生回答:可用異號兩數相加的法則來解釋。
一般地,還有一個數同0相加,仍得這個數。
三、鞏固知識。
課本p18例1,例2、課本p118練習1、2題。
四、總結。
運算的關鍵:先分類,再按法則運算;。
運算的步驟:先確定符號,再計算絕對值。
注意:要借用數軸來進一步驗證有理數的加法法則;異號兩數相加,首先要確定符號,再把絕對值相加。
五、布置作業(yè)。
課本p24習題1.3第1、7題。
人教版七年級數學教案第五章篇十五
1、熟練掌握一元一次不等式組的解法,會用一元一次不等式組解決有關的實際問題;。
3、體驗數學學習的樂趣,感受一元一次不等式組在解決實際問題中的價值。
正確分析實際問題中的不等關系,列出不等式組。
建立不等式組解實際問題的數學模型。
出示教科書第145頁例2(略)。
問:(1)你是怎樣理解“不能完成任務”的數量含義的?
(2)你是怎樣理解“提前完成任務”的數量含義的?
(3)解決這個問題,你打算怎樣設未知數?列出怎樣的不等式?
師生一起討論解決例2.
1、教科書146頁“歸納”(略).
2、你覺得列一元一次不等式組解應用題與列二元一次方程組解應用題的步驟一樣嗎?
在討論或議論的基礎上老師揭示:
步法一致(設、列、解、答);本質有區(qū)別.(見下表)一元一次不等式組應用題與二元一次方程組應用題解題步驟異同表。
人教版七年級數學教案第五章篇十六
2.使學生掌握求一個已知數的;。
3.培養(yǎng)學生的觀察、歸納與概括的能力.
重點:理解的意義,理解的代數定義與幾何定義的一致性.
難點:多重符號的化簡.
一、從學生原有的認知結構提出問題。
二、師生共同研究的定義。
特點?
引導學生回答:符號不同,一正一負;數字相同.
像這樣,只有符號不同的兩個數,我們說它們互為,如+5與。
應點有什么特點?
引導學生回答:分別在原點的兩側;到原點的距離相等.
這樣我們也可以說,在數軸上的原點兩旁,離開原點距離相等的兩個點所表示的數互為.這個概念很重要,它幫助我們直觀地看出的意義,所以有的書上又稱它為的幾何意義.
3.0的是0.
這是因為0既不是正數,也不是負數,它到原點的距離就是0.這是等于它本身的的數.
三、運用舉例變式練習。
例1(1)分別寫出9與-7的;。
例1由學生完成.
在學習有理數時我們就指出字母可以表示一切有理數,那么數a的如何表示?
引導學生觀察例1,自己得出結論:
數a的是-a,即在一個數前面加上一個負號即是它的。
1.當a=7時,-a=-7,7的是-7;。
2.當-5時,-a=-(-5),讀作“-5的”,-5的是5,因此,-(-5)=5.
3.當a=0時,-a=-0,0的是0,因此,-0=0.
么意思?引導學生回答:-(-8)表示-8的;-(+4)表示+4的`;。
例2簡化-(+3),-(-4),+(-6),+(+5)的符號.
能自己總結出簡化符號的規(guī)律嗎?
括號外的符號與括號內的符號同號,則簡化符號后的數是正數;括號內、外的符號是異號,則簡化符號后的數是負數.
課堂練習。
1.填空:
(1)+1.3的是______;(2)-3的是______;。
(5)-(+4)是______的;(6)-(-7)是______的。
2.簡化下列各數的符號:
-(+8),+(-9),-(-6),-(+7),+(+5).
3.下列兩對數中,哪些是相等的數?哪對互為?
-(-8)與+(-8);-(+8)與+(-8).
四、小結。
指導學生閱讀教材,并總結本節(jié)課學習的主要內容:一是理解的定義——代數定義與幾何定義;二是求a的;三是簡化多重符號的問題.
五、作業(yè)。
1.分別寫出下列各數的:
2.在數軸上標出2,-4.5,0各數與它們的。
3.填空:
(1)-1.6是______的,______的是-0.2.
4.化簡下列各數:
5.填空:
(3)如果-x=-6,那么x=______;(4)如果-x=9,那么x=______.
教學過程是以《教學大綱》中“重視基礎知識的教學、基本技能的訓練和能力的培養(yǎng)”,“數學教學中,發(fā)展思維能力是培養(yǎng)能力的核心”,“堅持啟發(fā)式,反對注入式”等規(guī)定的精神,結合教材特點,以及學生的學習基礎和學習特征而設計的由于內容較為簡單,經過教師適當引導,便可使學生充分參與認知過程.由于“新”知識與有關的“舊”知識的聯系較為直接,在教學中則著力引導觀察、歸納和概括的過程.
探究活動。
有理數a、b在數軸上的位置如圖:
將a,-a,b,-b,1,-1用“”號排列出來.
分析:由圖看出,a1,-1。
解:在數軸上畫出表示-a、-b的點:
由圖看出:-a-1。
點評:通過數軸,運用數形結合的方法排列三個以上數的大小順序,經常是解這一類問題的最快捷,準確的方法.
人教版七年級數學教案第五章篇十七
教師在備課時,應充分估計學生在學習時可能提出的問題,確定好重點,難點,疑點,和關鍵。根據學生的實際改變原先的教學計劃和方法,滿腔熱忱地啟發(fā)學生的思維,針對疑點積極引導。
非常高興,能有機會和同學們共同學習
昨天,老師在七年級三班上課時,把他們分成七個小組,每個小組回答問題的情況以搶答賽的形式記分。你們看(出示投影)這是七年級三班七個小組回答問題的表現情況。答對一題得一分,記作+1分;答錯一題扣一分,記作1分。第幾組最棒?老師還沒來得及計算出每個小組的最后得分,咱們班哪位同學能幫老師算出最后結果?(學生在教師引導下回答)
我們已得出了每個小組的最后分數,那么哪個小組是優(yōu)勝小組?(第一小組),回去以后,老師就把小獎品發(fā)給他們,相信他們一定會很高興。
同學們,這節(jié)課你們愿不愿意也分成幾個小組,看一看那個小組的同學表現得最出色?(原意)那么老師就按座次給同學們分組,每一豎排為一組。老師把組號寫在黑板上,以便記分。
希望各組同學積極思考、踴躍發(fā)言。同學們有沒有信心得到老師的小獎品?(有)同學們加油!
我們已得到了這7個小組的最后得分,那位同學能試著用算式表示?(學生在教師指導下列算式)
以上這些算是都是什么運算?(加法),兩個加數都是什么數?(有理數),這就是我們這節(jié)課要學習的有理數的加法(板書課題)。
剛才老師說要給七年級三班的優(yōu)勝組發(fā)獎品,老師手里有12本作業(yè)本,優(yōu)勝組共6人,老師將送出的作業(yè)本數占總數的幾分之幾?(二分之一)分數最低的一組共7人,他們每人交給老師一個作業(yè)本,占總數的幾分之幾?(十二分之七)如果,老師得到的作業(yè)本記為正數,送出的作業(yè)本記為負數,則老師手里的作業(yè)本增加或減少幾分之幾?同學們能列出算式嗎?(學生列式)對于這個算式,同學們還能輕易的感知出結果嗎?(不能)
對于有理數的加法,有的同學們能直接感知得到結果,有的靠感知是不夠的,這就需要我們共同探索規(guī)律!(出示投影),觀察這7個算式,每一個算式都是怎樣的兩個有理數相加?(引導學生回答)你們還能舉出不同以上情況的算式嗎?(不能),這說明這幾個算式概括了有理數加法的不同情況。
前兩個算式的加數在符號上有什么共同點?(相同),那么我們就可以說這是什么樣的兩數相加?(同號兩數相加)同學們還能觀察出那幾個算式可歸為一類嗎?(3、4、5、異號兩數相加,6、7一個數同0相加)
同學們已把這7個算式分成了三種情況,下面我們分別探討規(guī)律。
(2) 異號兩數相加,其和有何規(guī)律呢?大家觀察這三個式子回答問題。(引導學生分成兩類,容易得到絕對值相同情況的結論。再引導學生觀察絕對值不相同的情況,回答問題)哪位同學能概括一下這個規(guī)律?(引導學生得出)
(3) 一個數同0相加,其和有什么規(guī)律呢?(易得出結論)
同學們經過積極思考,探索出了解決有理數加法的規(guī)律,顧一下(出哪位同學能帶領大家共同回顧一下?(出示投影,學生大聲朗讀)我們把這個規(guī)律稱為有理數的加法法則。
同學們都很聰明,積極參與探索規(guī)律,每個組都有不錯的成績。個別落后的組不要氣餒,繼續(xù)努力,下面老師就給大家一個得分的機會,看哪一組能[出題制勝]!(出示)
(活動過程1后評價、加分;教師以其中一題為例,講解題格式及過程;活動過程2后:讓每組第三排同學評價加分)
同學們已經基本掌握了有理數的加法法則,并會運用它,但七年級三班有幾位同學對這一內容掌握的不是太好,以致在作業(yè)中出了毛病,他們?yōu)榇撕芸鄲?。希望咱們同學能幫幫他們,看哪位同學能像妙手回春的神醫(yī)華佗一樣藥到病 除!(師生共同治病)
看來同學們對有理數的加法已經掌握得很好了,大家還記得前面那個難倒我們的有理數的加法題呢?那位同學能解決這個問題呢?(學生口述 師板書)。在大家的努力下,我們終于攻破了這個難關。
通過這節(jié)課的學習,大家有什么收獲?(學生回答)同學們都有很多收獲,老師認為收獲最多的是優(yōu)勝組的同學,因為他們能得到老師的小獎品,大家趕緊看看那一組獲勝?歡迎優(yōu)勝組上臺領獎,大家掌聲鼓勵!
同學們,希望你們在未來的學習和生活中都能積極進取,獲得一個又一個的勝利。
人教版七年級數學教案第五章篇十八
重點:鄰補角與對頂角的概念。對頂角性質與應用。
難點:理解對頂角相等的性質的探索。
教學設計。
一、創(chuàng)設情境激發(fā)好奇觀察剪刀剪布的過程,引入兩條相交直線所成的角。
在我們的生活的世界中,蘊涵著大量的相交線和平行線,本章要研究相交線所成的角和它的特征。
觀察剪刀剪布的過程,引入兩條相交直線所成的角。
學生觀察、思考、回答問題。
二、認識鄰補角和對頂角,探索對頂角性質。
1、學生畫直線ab、cd相交于點o,并說出圖中4個角,兩兩相配。
共能組成幾對角?根據不同的位置怎么將它們分類?
學生思考并在小組內交流,全班交流。
當學生直觀地感知角有“相鄰”、“對頂”關系時,教師引導學生用。
幾何語言準確表達;。
有公共的頂點o,而且的兩邊分別是兩邊的反向延長線。
2、學生用量角器分別量一量各角的度數,發(fā)現各類角的度數有什么關系?
(學生得出結論:相鄰關系的兩個角互補,對頂的兩個角相等)。
3學生根據觀察和度量完成下表:
兩條直線相交所形成的角分類位置關系數量關系。
教師提問:如果改變的大小,會改變它與其它角的位置關系和數量關系嗎?
4、概括形成鄰補角、對頂角概念和對頂角的性質。
三、初步應用。
練習。
下列說法對不對。
(1)鄰補角可以看成是平角被過它頂點的一條射線分成的兩個角。
(2)鄰補角是互補的兩個角,互補的兩個角是鄰補角。
(3)對頂角相等,相等的兩個角是對頂角。
學生利用對頂角相等的性質解釋剪刀剪布過程中所看到的現象。
四。鞏固運用例題:如圖,直線a,b相交,,求的度數。
鞏固練習。
教科書5頁練習已知,如圖,,求:的度數。
小結。
鄰補角、對頂角。
作業(yè)課本p9—1,2p10—7,8。
人教版七年級數學教案第五章篇十九
本課(節(jié))課題3.1認識直棱柱第1課時/共課時。
教學目標(含重點、難點)及。
1、了解多面體、直棱柱的有關概念.
2、會認直棱柱的側棱、側面、底面.。
3、了解直棱柱的側棱互相平行且相等,側面是長方形(含正方形)等特征.。
教學重點與難點。
教學重點:直棱柱的有關概念.
教學難點:本節(jié)的例題描述一個物體的形狀,把它看成怎樣的兩個幾何體的組合,都需要一定的空間想象能力和表達能力.
內容與環(huán)節(jié)預設、簡明設計意圖二度備課(即時反思與糾正)。
析:學生很容易回答出更多的答案。
師:(繼續(xù)補充)有許多著名的建筑,像古埃及的金字塔、巴黎的艾菲爾鐵塔、美國的迪思尼樂園、德國的古堡風光,中國北京的西客站,它們也是由不同的立體圖形組成的;那么立體圖形在生活中有著怎樣的廣泛的應用呢?瞧,食物中的冰激凌、櫻桃、端午節(jié)的粽子等。
1.多面體、棱、頂點概念:
2.合作交流。
師:以學習小組為單位,拿出事先準備好的幾何體。
學生活動:(讓學生從中閉眼摸出某些幾何體,邊摸邊用語言描。
述其特征。)。
師:同學們再討論一下,能否把自己的語言轉化為數學語言。
學生活動:分小組討論。
說明:真正體現了“以生為本”。讓學生在主動探究中發(fā)現知識,充分發(fā)揮了學生的主體作用和教師的主導作用,課堂氣氛活躍,教師教的輕松,學生學的愉快。
師:請大家找出與長方體,立方體類似的物體或模型。
析:舉出實例。(找出區(qū)別)。
師:(總結)棱柱分為之直棱柱和斜棱柱。(根據其側棱與底面是否垂直)根據底面多邊形的邊數而分為直三棱柱、直四棱柱……直棱柱有以下特征:
有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;
側面都是長方形含正方形。
長方體和正方體都是直四棱柱。
3.反饋鞏固。
完成“做一做”
析:由第(3)小題可以得到:
直棱柱的'相鄰兩條側棱互相平行且相等。
4.學以至用。
出示例題。(先請學生單獨考慮,再作講解)。
析:引導學生著重觀察首飾盒的側面是什么圖形,上底面是什么圖形,然后與直棱柱的特征作比較。(使學生養(yǎng)成發(fā)現問題,解決問題的創(chuàng)造性思維習慣)。
最后完成例題中的“想一想”
5.鞏固練習(學生練習)。
完成“課內練習”
師:我們這節(jié)課的重點是什么?哪些地方比較難學呢?
合作交流后得到:重點直棱柱的有關概念。
直棱柱有以下特征:
有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;
側面都是長方形含正方形。
例題中的把首飾盒看成是由兩個直三棱柱、直四棱柱的組合,或著是兩個直四棱柱的組合需要一定的空間想象能力和表達能力。這一點比較難。
板書設計。
作業(yè)布置或設計作業(yè)本及課時特訓。
人教版七年級數學教案第五章篇二十
1.經歷觀察、分析、操作、欣賞以及抽象,歸納等過程,經歷探索圖形平移性質的過程以及與他人合作交流的過程,進一步發(fā)展空間觀念,增強審美意識。
2.通過實例認識平移,理解平移的含義,理解平移前后兩個圖形對應點連線平行且相等的性質.
重點、難點。
重點:探索并理解平移的性質.
難點:對平移的認識和性質的探索.
教學過程。
一、引入新課。
1.教師打開幻燈機,投放課本圖5.4-1的圖案.
2.學生觀察這些圖案、思考并回答問題.
(1)它們有什么共同的特點?
(2)能否根據其中的一部分繪制出整個圖案?
3.師生交流.
(1)這引進美麗的圖案是由若干個相同的圖案組合而成的,圖5.4-1上一排左邊的圖案(不考慮顏色)都有“基本圖形”;中間一個正方形,上、下有正立與倒立的正三角形,如圖(1);上排中間的圖案(不考慮顏色)都有“基本圖形”:正十二邊形,四周對稱著4個等邊三角形,如圖(2);上排右邊的圖案(不考慮顏色)都有“基本圖形”;正六邊形,內接六角星,如圖(3);下排的左圖中的“基本圖形”是鴿子與橄欖枝;下排右圖中的“基本圖形”是上、下一對面朝右與面朝左的人頭像組成的圖案.
人教版七年級數學教案第五章篇二十一
比較正數和負數的大小。
1、借助數軸初步學會比較正數、0和負數之間的大小。
2、初步體會數軸上數的順序,完成對數的結構的初步構建。
負數與負數的比較。
一、復習:
1、讀數,指出哪些是正數,哪些是負數?
—85。6+0。9—+0—82。
2、如果+20%表示增加20%,那么—6%表示。
二、新授:
(一)教學例3:
1、怎樣在數軸上表示數?(1、2、3、4、5、6、7)。
2、出示例3:
(1)提問你能在一條直線上表示他們運動后的情況嗎?
(2)讓學生確定好起點(原點)、方向和單位長度。學生畫完交流。
(3)教師在黑板上話好直線,在相應的點上用小圖片代表大樹和學生,在問怎樣用數表示這些學生和大樹的相對位置關系?(讓學生把直線上的點和正負數對應起來。
(4)學生回答,教師在相應點的下方標出對應的數,再讓學生說說直線上其他幾個點代表的數,讓學生對數軸上的點表示的正負數形成相對完整的認識。
(5)總結:我們可以像這樣在直線上表示出正數、0和負數,像這樣的直線我們叫數軸。
(6)引導學生觀察:
a、從0起往右依次是?從0起往左依次是?你發(fā)現什么規(guī)律?
(7)練習:做一做的第1、2題。
(二)教學例4:
1、出示未來一周的天氣情況,讓學生把未來一周每天的最低氣溫在數軸上表示出來,并比較他們的大小。
2、學生交流比較的方法。
3、通過小精靈的話,引出利用數軸比較數的大小規(guī)定:在數軸上,從左到右的順序就是數從小到大的順序。
4、再讓學生進行比較,利用學生的具體比較來說明“—8在—6的左邊,所以—8〈—6”
5、再通過讓另一學生比較“8〉6,但是—8〈—6”,使學生初步體會兩負數比較大小時,絕對值大的負數反而小。
6、總結:負數比0小,所有的負數都在0的'左邊,也就是負數都比0小,而正數比0大,負數比正數小。
7、練習:做一做第3題。
三、鞏固練習。
1、練習一第4、5題。
2、練習一第6題。
3、某日傍晚,黃山的氣溫由上午的零上2攝氏度下降了7攝氏度,這天傍晚黃山的氣溫是攝氏度。
四、全課總結。
(1)在數軸上,從左到右的順序就是數從小到大的順序。
(2)負數比0小,正數比0大,負數比正數小。
第二課教學反思:
許多教師認為“負數”這個單元的內容很簡單,不需要花過多精力學生就能基本能掌握??扇绻钊脬@研教材,其實會發(fā)現還有不少值得挖掘的內容可以向學生補充介紹。
例3——兩個不同層面的拓展:
1、在數軸上表示數要求的拓展。
數軸除了可以表示整數,還可以表示小數和分數。教材例3只表示出正、負整數,最后一個自然段要求學生表示出—1。5。建議此處教師補充要求學生表示出“+1。5”的位置,因為這樣便于對比發(fā)現兩個數離原點的距離相等,只不過分別在0的左右兩端,滲透+1。5和—1。5絕對值相等。同時,還應補充在數軸上表示分數,如—1/3、—3/2等,提升學生數形結合能力,為例4的教學打下夯實的基礎。
2、滲透負數加減法。
教材中所呈現的數軸可以充分加以應用,如可補充提問:在“—2”位置的同學如果接著向西走1米,將會到達數軸什么位置?如果是向東走1米呢?如果他從“—2”的位置要走到“—4”,應該如何運動?如果他想從“—2”的位置到達“+3”,又該如何運動?其實,這些問題就是解決—2—1;2+1;—4—(—2);3—(—2)等于幾,這樣的設計對于學生初中進一步學習代數知識是極為有利的。
例4——薄書讀厚、厚書讀薄。
薄書讀厚——負數大小比較的三種類型(正數和負數、0和負數、負數和負數)。
例4教材只提出一個大的問題“比較它們的大小”,這些數的大小比較可以分為幾類?每類比較又有什么方法,教材則沒有明確標明。所以教學中,當學生明確數軸從左到右的順序就是數從小到大的順序基礎上,我還挖掘了三種不同類型,一一請學生介紹比較方法,將薄書讀厚。
將厚書讀薄——無論哪種類型,比較方法萬變不離其宗。
無論哪種比較方法,最終都可回歸到“數軸上左邊的數比右邊的數小?!奔词褂袑W生在比較—8和—6大小時是用“86,所以—8—6”來闡述其原因,其實也與數軸相關。因為當絕對值越大時,表示離原點的距離越遠,那么在數軸上表示的點也就在原點左邊越遠,數也就越小。所以,抓住精髓就能以不變應萬變。
在此,我還補充了—3/7和—2/5比較大小的練習,提升學生靈活應用知識解決實際問題的能力。
人教版七年級數學教案第五章篇二十二
本節(jié)教學的重點是掌握單項式與多項式相乘的法則.難點是正確、迅速地進行單項式與多項式相乘的計算.本節(jié)知識是進一步學習多項式乘法,以及乘法公式等后續(xù)知識的基礎。
1.單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加,即。
其中,可以表示一個數、一個字母,也可以是一個代數式.。
2.利用法則進行單項式和多項式運算時要注意:
3根據去括號法則和多項式中每一項包含它前面的符號,來確定乘積每一項的`符號;
設m=-4x2,a=2x2,b=3x,c=-1,
∴(-4x2)·(2x2+3x-1)。
=m(a+b+c)。
=ma+mb+mc。
=(-4x2)·2x2+(-4x2)·3x+(-4x2)·(-1)。
=-8x4-12x3+4x2.。
這樣過渡較自然,同時也滲透了一些代換的思想.。
教學設計示例。
一、教學目標。
1.理解和掌握單項式與多項式乘法法則及推導.。
2.熟練運用法則進行單項式與多項式的乘法計算.。
3.培養(yǎng)靈活運用知識的能力,通過用文字概括法則,提高學生數學表達能力.。
4.通過反饋練習,培養(yǎng)學生計算能力和綜合運用知識的能力.。
5.滲透公式恒等變形的數學美.。
二、學法引導。
1.教學方法:講授法、練習法.。
類項,故在學習中應充分利用這種方法去解題.。
三、重點·難點·疑點及解決辦法。
(一)重點。
單項式與多項式乘法法則及其應用.。
(二)難點。
單項式與多項式相乘時結果的符號的確定.。
(三)解決辦法。
復習單項式與單項式的乘法法則,并注意在解題過程中將單項式乘多項式轉化為單項。
式乘單項式后符號確定的問題.。
四、課時安排。
一課時.。
五、教具學具準備。
投影儀、膠片.。
六、師生互動活動設計。
(一)明確目標。
本節(jié)課重點學習單項式與多項式的乘法法則及其應用.。
(二)整體感知。
(三)教學過程。
1.復習導入。
復習:
(1)敘述單項式乘法法則.。
(單項式相乘,把它們的系數、相同字母分別相乘,對于只在一個單項式里含有的字母,則連同它的指數作為積的一個因式.)。
(2)什么叫多項式?說出多項式的項和各項系數.
2.探索新知,講授新課。
簡便計算:
由該等式,你能說出單項式與多項式相乘的法則嗎?單項式與多項式乘法法則:單項式。
與多項式相乘,就是用單項式乘多項式的每一項,再把所得的積相加.。
例1計算:
例2化簡:
練習:錯例辨析。
(2)錯在單項式與多項式的每一項相乘之后沒有添上加號,故正確答案為。
(四)總結、擴展。
(99,河北)下列運算中,不正確的為()。
a.b.。
c.d.。
八、布置作業(yè)。
參考答案:
略
人教版七年級數學教案第五章篇二十三
從簡單的轉盤游戲開始,使學生在生活經驗和試驗的基礎上,進一步體驗不確定事件的特點及事件發(fā)生的可能性大小。
能用實驗對數學猜想做出檢驗,從而增加猜想的可信度。 解決問題
在轉盤游戲過程中,經歷猜測結果,實驗驗證,分析試驗結果等數學活動,增加數學活動經驗。
情感態(tài)度與價值觀
在合作與交流過程中,體驗小組合作更有利于探究數學知識,敢于發(fā)表自己觀點,提高個人認識。
在實驗中,體會不確定事件的特點及事件發(fā)生可能性大小;使每個學生都能積極認真參與課堂設計中的實驗,真正在實驗中獲得知識上的認識。
創(chuàng)設情境,切入標題
請同學們猜測,當我自由轉動轉盤時,指針會落在什么顏域呢?
請各小組分別派一名代表,看哪組能轉出紅色。
結果,8小組有6組轉出了紅色。
為什么會出現這樣的結果呢?
因為,在這個轉盤中,紅域的面積大,白域的面積小,因此,當轉盤停上轉動時,指針落到紅域的可能性大。
大家同意這種看法嗎?下面我們親自動手感受一下。
學生按照題目要求進行實驗。
請各組組長把你組的實驗數據匯報一下(教師把數據填寫在表格里) 實驗結果:六個小組每組實驗16次,全班共實驗96次,指針落在紅域的次數分別如下9,6,10,5,8,12。共計50次。
請同學們對我們的實驗結果進行分析交流,談談你在試驗中有哪些心得。
根據觀察,轉盤上紅域的面積為總面積的一半,指針落在紅域的可能性也應該是一半。通過對我們全班的實驗結果分析,指針落在紅域的比例是50∶96,結果接近百分之五十。
在小組內實驗結果不明顯,實驗次數越多越能說明問題。
通過實驗,我們確定感受到,轉盤游戲中各區(qū)域的面積的可能性大小與指針落在什么區(qū)域的可能性大小有直接關系。以后在生活中再遇到轉盤游戲問題可要想想今天的實驗結論。
下面我們利用轉盤做一下數學游戲(出示幻燈片),學生按教學設計中要求進行游戲,教師巡回指導。
每組每人游戲一次,全班共游戲48次。其游戲結果是,平均數增大1的,共35次,平均數減小1的,共13次。
請同學們對下列問題進行交流(幻燈片出示教材206頁4個問題)。 這個轉盤轉到“平均數增大1”區(qū)域的可能性大,從面積大小就可以看出。
如果平均數增大1,我是在卡片上增加一個數,這個數等于卡片上數字的個數加1,如果是平均數減小1,我就在每個數上都減去1。
同學們說出很多種方法,不一一列舉。
“平均數增大1”的次數占總次數的百分之七十三,“平均數減小1”占百分之二十七。
如果將這個實驗繼續(xù)做下去,卡片上所有數的平均數會增大。
同學們說的都很好,課后能不能自己也利用轉盤設計一個新的游戲,感興趣的同學可以在課下與我交流。
以下過程同教學設計,略去。
指導學生完成教材第206頁習題。
學生可從各個方面加以小結。 布置作業(yè)
仿照課堂游戲,自編一個新的游戲。 能否利用撲克牌設計本節(jié)轉盤游戲。
人教版七年級數學教案第五章篇二十四
1.單項式:只含有數和字母的乘積的代數式叫做單項式.單獨的一個數或一個字母也是單項式.它的本質特征在于:
(1)不含加減運算;。
(2)可以含乘、除、乘方運算,但分母中不能含有字母.
2.單項式的次數、系數:一個單項式中,所有字母的指數和叫做這個單項式的次數.單項式中的數字因數叫做這個單項式的系數.
3.多項式:幾個單項式的和叫做多項式.多項式中,每個單項式叫做多項式的項,其中不含字母的項叫常數項.一個多項式中,次數最高的項的次數,叫做這個多項式的次數.
4.整式:單項和多項式統(tǒng)稱整式.

