新高一數(shù)學(xué)必修一第二章教案(專業(yè)13篇)

字號:

    教案是教師自身學(xué)習(xí)和提高的過程,通過編寫教案可以不斷完善自己的教學(xué)方法和經(jīng)驗。如何根據(jù)學(xué)生的學(xué)習(xí)特點和需求來制定教學(xué)目標?不同學(xué)科和年級的教案范例,讓我們一起學(xué)習(xí)借鑒。
    新高一數(shù)學(xué)必修一第二章教案篇一
    1、教材(教學(xué)內(nèi)容)。
    2、設(shè)計理念。
    3、教學(xué)目標。
    情感態(tài)度與價值觀目標:引導(dǎo)學(xué)生學(xué)會閱讀數(shù)學(xué)教材,學(xué)會發(fā)現(xiàn)和欣賞數(shù)學(xué)的理性之美、
    4、重點難點。
    重點:任意角三角函數(shù)的定義、
    難點:任意角三角函數(shù)這一概念的理解(函數(shù)模型的建立)、類比與化歸思想的滲透、
    5、學(xué)情分析。
    6、教法分析。
    7、學(xué)法分析。
    本課時先通過“閱讀”學(xué)習(xí)法,引導(dǎo)學(xué)生改造已有的認知結(jié)構(gòu),再通過類比學(xué)習(xí)法引導(dǎo)學(xué)生形成“任意角的三角函數(shù)的定義”,最后引導(dǎo)學(xué)生運用類比學(xué)習(xí)法,來研究三角函數(shù)一些基本性質(zhì)和符號問題,從而使學(xué)生形成新的認識結(jié)構(gòu),達成教學(xué)目標。
    新高一數(shù)學(xué)必修一第二章教案篇二
    (1)通過實物操作,增強學(xué)生的直觀感知。
    (2)能根據(jù)幾何結(jié)構(gòu)特征對空間物體進行分類。
    (3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構(gòu)特征。
    (4)會表示有關(guān)于幾何體以及柱、錐、臺的分類。
    2.過程與方法。
    (1)讓學(xué)生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結(jié)構(gòu)特征。
    (2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識。
    3.情感態(tài)度與價值觀。
    (1)使學(xué)生感受空間幾何體存在于現(xiàn)實生活周圍,增強學(xué)生學(xué)習(xí)的積極性,同時提高學(xué)生的觀察能力。
    (2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。
    二、教學(xué)重點、難點。
    重點:讓學(xué)生感受大量空間實物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。
    難點:柱、錐、臺、球的結(jié)構(gòu)特征的概括。
    三、教學(xué)用具。
    (1)學(xué)法:觀察、思考、交流、討論、概括。
    (2)實物模型、投影儀。
    四、教學(xué)思路。
    (一)創(chuàng)設(shè)情景,揭示課題。
    1.教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導(dǎo)學(xué)生回憶,舉例和相互交流。教師對學(xué)生的活動及時給予評價。
    2.所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結(jié)構(gòu)特征的空間物體),你能通過觀察。根據(jù)某種標準對這些空間物體進行分類嗎?這是我們所要學(xué)習(xí)的內(nèi)容。
    (二)、研探新知。
    1.引導(dǎo)學(xué)生觀察物體、思考、交流、討論,對物體進行分類,分辯棱柱、圓柱、棱錐。
    3.組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。(1)有兩個面互相平行;(2)其余各面都是平行四邊形;(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
    4.教師與學(xué)生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。
    6.以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。
    7.讓學(xué)生觀察圓柱,并實物模型演示,如何得到圓柱,從而概括出圓標的概念以及相關(guān)的概念及圓柱的表示。
    8.引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實物模型演示引導(dǎo)學(xué)生思考、討論、概括。
    9.教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。
    (三)質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學(xué)生思考。
    1.有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)。
    2.棱柱的何兩個平面都可以作為棱柱的底面嗎?
    3.課本p8,習(xí)題1.1a組第1題。
    5.棱臺與棱柱、棱錐有什么關(guān)系?圓臺與圓柱、圓錐呢?
    四、鞏固深化。
    練習(xí):課本p7練習(xí)1、2(1)(2)。
    課本p8習(xí)題1.1第2、3、4題。
    五、歸納整理。
    由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容。
    六、布置作業(yè)。
    課本p8練習(xí)題1.1b組第1題。
    課外練習(xí)課本p8習(xí)題1.1b組第2題。
    1.2.1空間幾何體的三視圖(1課時)。
    新高一數(shù)學(xué)必修一第二章教案篇三
    三、在細胞質(zhì)中,除了細胞器外,還有呈膠質(zhì)狀態(tài)的細胞質(zhì)基質(zhì)。
    細胞質(zhì):包括細胞器和細胞質(zhì)基質(zhì)。
    四、電子顯微鏡下看到的是亞顯微結(jié)構(gòu),普通顯微鏡下看到顯微結(jié)構(gòu)。
    光鏡能看到:細胞質(zhì),線粒體,葉綠體,液泡,細胞壁。
    實驗:用高倍顯微鏡觀察葉綠體和線粒體。
    健那綠染液是將活細胞中線粒體染色的專一性染料,可以使活細胞中的線粒體呈現(xiàn)藍綠色。
    材料:新鮮的蘚類的葉(葉片薄,直接觀察)。
    菠菜葉稍帶葉肉的下表皮(上表皮起保護作用,幾乎無葉綠體;下表皮海綿組織,有氣孔保衛(wèi)細胞,有葉綠體)。
    五、分泌蛋白的合成和運輸。
    有些蛋白質(zhì)是在細胞內(nèi)合成后,分泌到細胞外起作用,這類蛋白叫分泌蛋白。如消化酶(催化作用)、抗體(免疫)和一部分激素(信息傳遞)。
    核糖體內(nèi)質(zhì)網(wǎng)高爾基體細胞膜。
    (合成肽鏈)(加工成蛋白質(zhì))(進一步加工)(囊泡與細胞膜融合,蛋白質(zhì)釋放)。
    分泌蛋白從合成至分泌到細胞外利用到的細胞器?
    答:核糖體、內(nèi)質(zhì)網(wǎng)、高爾基體、線粒體。
    分泌蛋白從合成至分泌到細胞外利用到的結(jié)構(gòu)?
    核糖體、內(nèi)質(zhì)網(wǎng)、高爾基體、線粒體、細胞核、囊泡、細胞膜。
    六、生物膜系統(tǒng)。
    1、概念:細胞膜、核膜,各種細胞器的膜共同組成的生物膜系統(tǒng)。
    2、作用:使細胞具有穩(wěn)定內(nèi)部環(huán)境物質(zhì)運輸、能量轉(zhuǎn)換、信息傳遞;為各種酶提供大量附著位點,是許多生化反應(yīng)的場所;把各種細胞器分隔開,保證生命活動高效、有序進行。
    3、內(nèi)質(zhì)網(wǎng)膜內(nèi)連核膜外連細胞膜還和線粒體膜直接相連。
    經(jīng)過囊泡與高爾基體膜間接相連。
    新高一數(shù)學(xué)必修一第二章教案篇四
    (1)理解函數(shù)的概念;。
    (2)了解區(qū)間的概念;。
    2、目標解析。
    (2)了解區(qū)間的概念就是指能夠體會用區(qū)間表示數(shù)集的意義和作用;。
    【問題診斷分析】在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是函數(shù)的概念及符號的理解,產(chǎn)生這一問題的原因是:函數(shù)本身就是一個抽象的概念,對學(xué)生來說一個難點。要解決這一問題,就要在通過從實際問題中抽象概況函數(shù)的概念,培養(yǎng)學(xué)生的抽象概況能力,其中關(guān)鍵是理論聯(lián)系實際,把抽象轉(zhuǎn)化為具體。
    【教學(xué)過程】。
    問題1:一枚炮彈發(fā)射后,經(jīng)過26s落到地面擊中目標.炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時間t(單位:s)變化的規(guī)律是:h=130t-5t2.
    1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?
    1.2高度變量h與時間變量t之間的對應(yīng)關(guān)系是否為函數(shù)?若是,其自變量是什么?
    設(shè)計意圖:通過以上問題,讓學(xué)生正確理解讓學(xué)生體會用解析式或圖象刻畫兩個變量之間的依賴關(guān)系,從問題的實際意義可知,在t的變化范圍內(nèi)任給一個t,按照給定的對應(yīng)關(guān)系,都有的一個高度h與之對應(yīng)。
    問題2:分析教科書中的實例(2),引導(dǎo)學(xué)生看圖并啟發(fā):在t的變化t按照給定的圖象,都有的一個臭氧層空洞面積s與之相對應(yīng)。
    問題3:要求學(xué)生仿照實例(1)、(2),描述實例(3)中恩格爾系數(shù)和時間的關(guān)系。
    設(shè)計意圖:通過這些問題,讓學(xué)生理解得到函數(shù)的定義,培養(yǎng)學(xué)生的歸納、概況的能力。
    新高一數(shù)學(xué)必修一第二章教案篇五
    了解現(xiàn)實世界和日常生活中的不等關(guān)系,了解不等式(組)的實際背景.
    (2)一元二次不等式。
    會從實際情境中抽象出一元二次不等式模型.
    通過函數(shù)圖象了解一元二次不等式與相應(yīng)的二次函數(shù)、一元二次方程的聯(lián)系.
    會解一元二次不等式,對給定的一元二次不等式,會設(shè)計求解的程序框圖.
    (3)二元一次不等式組與簡單線性規(guī)劃問題。
    會從實際情境中抽象出二元一次不等式組.
    了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組.
    會從實際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決.
    新高一數(shù)學(xué)必修一第二章教案篇六
    (2)利用平面直角坐標系解決直線與圓的位置關(guān)系;
    (3)會用“數(shù)形結(jié)合”的數(shù)學(xué)思想解決問題、
    用坐標法解決幾何問題的步驟:
    第二步:通過代數(shù)運算,解決代數(shù)問題;
    第三步:將代數(shù)運算結(jié)果“翻譯”成幾何結(jié)論、
    重點與難點:直線與圓的方程的應(yīng)用、
    問 題設(shè)計意圖師生活動
    生:回顧,說出自己的看法、
    2、解決直線與圓的位置關(guān)系,你將采用什么方法?
    生:回顧、思考、討論、交流,得到解決問題的方法、
    問 題設(shè)計意圖師生活動
    3、閱讀并思考教科書上的例4,你將選擇什么方 法解決例4的'問題
    生:自 學(xué)例4,并完成練習(xí)題1、2、
    生:建立適當?shù)闹苯亲鴺讼担?探求解決問題的方法、
    8、小結(jié):
    (1)利用“坐標法”解決問對知識進行歸納概括,體會利 師:指導(dǎo) 學(xué)生完成練習(xí)題、
    生:閱讀教科書的例3,并完成第
    問 題設(shè)計意圖師生活動
    題的需要準備什么工作?
    (2)如何建立直角坐標系,才能易于解決平面幾何問題?
    (3)你認為學(xué)好“坐標法”解決問題的關(guān)鍵是什么?
    新高一數(shù)學(xué)必修一第二章教案篇七
    1. 閱讀課本 練習(xí)止.
    2. 回答問題
    (1)課本內(nèi)容分成幾個層次?每個層次的中心內(nèi)容是什么?
    (2)層次間的聯(lián)系是什么?
    (3)對數(shù)函數(shù)的定義是什么?
    (4)對數(shù)函數(shù)與指數(shù)函數(shù)有什么關(guān)系?
    3. 完成 練習(xí)
    4. 小結(jié).
    二、方法指導(dǎo)
    1. 在學(xué)習(xí)對數(shù)函數(shù)時,同學(xué)們應(yīng)從熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì).
    一、提問題
    1. 對數(shù)函數(shù)的自變量和函數(shù)分別在指數(shù)函數(shù)中是什么?
    2.兩個函數(shù)如果互為反函數(shù),則他們的值域,定義域有什么關(guān)系?
    3.是否所有的函數(shù)都有反函數(shù)?試舉例說明.
    二、變題目
    1. 試求下列函數(shù)的反函數(shù):
    (1) ; (2) ;
    (3) ; (4) .
    2. 求下列函數(shù)的定義域:
    (1) ; (2) ; (3) .
    3. 已知 則 = ; 的定義域為 .
    1.對數(shù)函數(shù)的'有關(guān)概念
    (1)把函數(shù) 叫做對數(shù)函數(shù), 叫做對數(shù)函數(shù)的底數(shù);
    (2)以10為底數(shù)的對數(shù)函數(shù) 為常用對數(shù)函數(shù);
    (3)以無理數(shù) 為底數(shù)的對數(shù)函數(shù) 為自然對數(shù)函數(shù).
    2. 反函數(shù)的概念
    在指數(shù)函數(shù) 中, 是自變量, 是 的函數(shù),其定義域是 ,值域是 ;在對數(shù)函數(shù) 中, 是自變量, 是 的函數(shù),其定義域是 ,值域是 ,像這樣的兩個函數(shù)叫做互為反函數(shù).
    3. 與對數(shù)函數(shù)有關(guān)的定義域的求法:
    4. 舉例說明如何求反函數(shù).
    一、課外作業(yè): 習(xí)題3-5 a組 1,2,3, b組1,
    二、課外思考:
    1. 求定義域: .
    2. 求使函數(shù) 的函數(shù)值恒為負值的 的取值范圍.
    新高一數(shù)學(xué)必修一第二章教案篇八
    1、教材(教學(xué)內(nèi)容)。
    本課時主要研究任意角三角函數(shù)的定義。三角函數(shù)是一類重要的基本初等函數(shù),是描述周期性現(xiàn)象的重要數(shù)學(xué)模型,本課時的內(nèi)容具有承前啟后的重要作用:承前是因為可以用函數(shù)的定義來抽象和規(guī)范三角函數(shù)的定義,同時也可以類比研究函數(shù)的模式和方法來研究三角函數(shù);啟后是指定義了三角函數(shù)之后,就可以進一步研究三角函數(shù)的性質(zhì)及圖象特征,并體會三角函數(shù)在解決具有周期性變化規(guī)律問題中的作用,從而更深入地領(lǐng)會數(shù)學(xué)在其它領(lǐng)域中的重要應(yīng)用。
    2、設(shè)計理念。
    本堂課采用“問題解決”教學(xué)模式,在課堂上既充分發(fā)揮學(xué)生的主體作用,又體現(xiàn)了教師的引導(dǎo)作用。整堂課先通過問題引導(dǎo)學(xué)生梳理已有的知識結(jié)構(gòu),展開合理的聯(lián)想,提出整堂課要解決的中心問題:圓周運動等具周期性規(guī)律運動可以建立函數(shù)模型來刻畫嗎?從而引導(dǎo)學(xué)生帶著問題閱讀和鉆研教材,引發(fā)認知沖突,再通過問題引導(dǎo)學(xué)生改造或重構(gòu)已有的認知結(jié)構(gòu),并運用類比方法,形成“任意角三角函數(shù)的定義”這一新的概念,最后通過例題與練習(xí),將任意角三角函數(shù)的定義,內(nèi)化為學(xué)生新的認識結(jié)構(gòu),從而達成教學(xué)目標。
    3、教學(xué)目標。
    知識與技能目標:形成并掌握任意角三角函數(shù)的定義,并學(xué)會運用這一定義,解決相關(guān)問題。
    過程與方法目標:體會數(shù)學(xué)建模思想、類比思想和化歸思想在數(shù)學(xué)新概念形成中的重要作用。
    情感態(tài)度與價值觀目標:引導(dǎo)學(xué)生學(xué)會閱讀數(shù)學(xué)教材,學(xué)會發(fā)現(xiàn)和欣賞數(shù)學(xué)的理性之美。
    4、重點難點。
    重點:任意角三角函數(shù)的定義。
    難點:任意角三角函數(shù)這一概念的理解(函數(shù)模型的建立)、類比與化歸思想的滲透。
    5、學(xué)情分析。
    學(xué)生已有的認知結(jié)構(gòu):函數(shù)的概念、平面直角坐標系的概念、任意角和弧度制的相關(guān)概念、以直角三角形為載體的銳角三角函數(shù)的概念。在教學(xué)過程中,需要先將學(xué)生的以直角三角形為載體的銳角三角函數(shù)的概念改造為以象限角為載體的銳角三角函數(shù),并形成以角的終邊與單位園的交點的坐標來表示的銳角三角函數(shù)的概念,再拓展到任意角的三角函數(shù)的定義,從而使學(xué)生形成新的認知結(jié)構(gòu)。
    6、教法分析。
    “問題解決”教學(xué)法,是以問題為主線,引導(dǎo)和驅(qū)動學(xué)生的思維和學(xué)習(xí)活動,并通過問題,引導(dǎo)學(xué)生的質(zhì)疑和討論,充分展示學(xué)生的思維過程,最后在解決問題的過程中形成新的認知結(jié)構(gòu)。這種教學(xué)模式能較好地體現(xiàn)課堂上老師的主導(dǎo)作用,也能充分發(fā)揮課堂上學(xué)生的主體作用。
    7、學(xué)法分析。
    本課時先通過“閱讀”學(xué)習(xí)法,引導(dǎo)學(xué)生改造已有的認知結(jié)構(gòu),再通過類比學(xué)習(xí)法引導(dǎo)學(xué)生形成“任意角的三角函數(shù)的定義”,最后引導(dǎo)學(xué)生運用類比學(xué)習(xí)法,來研究三角函數(shù)一些基本性質(zhì)和符號問題,從而使學(xué)生形成新的認識結(jié)構(gòu),達成教學(xué)目標。
    新高一數(shù)學(xué)必修一第二章教案篇九
    了解數(shù)列的概念和幾種簡單的表示方法(列表、圖象、通項公式).
    了解數(shù)列是自變量為正整數(shù)的一類函數(shù)。
    (2)等差數(shù)列、等比數(shù)列。
    理解等差數(shù)列、等比數(shù)列的概念。
    掌握等差數(shù)列、等比數(shù)列的通項公式與前項和公式。
    能在具體的問題情境中,識別數(shù)列的等差關(guān)系或等比關(guān)系,并能用有關(guān)知識解決相應(yīng)的問題。
    了解等差數(shù)列與一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的關(guān)系。
    新高一數(shù)學(xué)必修一第二章教案篇十
    本節(jié)課是“空間幾何體的三視圖和直觀圖”的第一課時,主要內(nèi)容是投影和三視圖,這部分知識是立體幾何的基礎(chǔ)之一,一方面它是對上一節(jié)空間幾何體結(jié)構(gòu)特征的再一次強化,畫出空間幾何體的三視圖并能將三視圖還原為直觀圖,是建立空間概念的基礎(chǔ)和訓(xùn)練學(xué)生幾何直觀能力的有效手段。另外,三視圖部分也是新課程高考的重要內(nèi)容之一,常常結(jié)合給出的三視圖求給定幾何體的表面積或體積設(shè)置在選擇或填空中。同時,三視圖在工程建設(shè)、機械制造中有著廣泛應(yīng)用,同時也為學(xué)生進入高一層學(xué)府學(xué)習(xí)有很大的幫助。所以在人們的日常生活中有著重要意義。
    二、教學(xué)目標。
    (1)知識與技能:能畫出簡單空間圖形(長方體,球,圓柱,圓錐,棱柱等的簡易組合)的三視圖,能識別上述三視圖表示的立體模型,從而進一步熟悉簡單幾何體的結(jié)構(gòu)特征。
    (2)過程與方法:通過直觀感知,操作確認,提高學(xué)生的空間想象能力、幾何直觀能力,培養(yǎng)學(xué)生的應(yīng)用意識。
    (3)情感、態(tài)度與價值觀:讓感受數(shù)學(xué)就在身邊,提高學(xué)生學(xué)習(xí)立體幾何的興趣,培養(yǎng)學(xué)生相互交流、相互合作的精神。
    三、設(shè)計思路。
    本節(jié)課的主要任務(wù)是引導(dǎo)學(xué)生完成由立體圖形到三視圖,再由三視圖想象立體圖形的復(fù)雜過程。直觀感知操作確認是新課程幾何課堂的一個突出特點,也是這節(jié)課的設(shè)計思路。通過大量的多媒體直觀,實物直觀使學(xué)生獲得了對三視圖的感性認識,通過學(xué)生的觀察思考,動手實踐,操作練習(xí),實現(xiàn)認知從感性認識上升為理性認識。培養(yǎng)學(xué)生的空間想象能力,幾何直觀能力為學(xué)習(xí)立體幾何打下基礎(chǔ)。
    教學(xué)的重點、難點。
    (一)重點:畫出空間幾何體及簡單組合體的三視圖,體會在作三視圖時應(yīng)遵循的“長對正、高平齊、寬相等”的原則。
    (二)難點:識別三視圖所表示的空間幾何體,即:將三視圖還原為直觀圖。
    四、學(xué)生現(xiàn)實分析。
    本節(jié)首先簡單介紹了中心投影和平行投影,中心投影和平行投影是日常生活中最常見的兩種投影形式,學(xué)生具有這方面的直接經(jīng)驗和基礎(chǔ)。投影和三視圖雖為高中新增內(nèi)容,但學(xué)生在初中有一定基礎(chǔ),在七年級上冊“從不同方向看”的基礎(chǔ)上給出了三視圖的概念。到了九年級下冊則是在介紹了投影后,用投影的方法給出了三視圖的概念,這一概念已基本接近了高中的三視圖定義,只是在名字上略有差異。初中叫做主視圖、左視圖、俯視圖。進入高中后特別是再次學(xué)習(xí)和認識了柱、錐、臺等幾何體的概念后,學(xué)生在空間想象能力方面有了一定的提高,所以,給出了正視圖、側(cè)視圖、俯視圖的概念。這些概念的變化也說明了學(xué)生年齡特點和思維差異。
    五、教學(xué)方法。
    (1)教學(xué)方法及教學(xué)手段。
    針對本節(jié)課知識是由抽象到具體再到抽象、空間思維難度較大的特點,我采用的教法是直觀教學(xué)法、啟導(dǎo)發(fā)現(xiàn)法。
    在教學(xué)中,通過創(chuàng)設(shè)問題情境,充分調(diào)動學(xué)生學(xué)習(xí)的積極性和主動性,并引導(dǎo)啟發(fā)學(xué)生動眼、動腦、動手、同時采用多媒體的教學(xué)手段,加強直觀性和啟發(fā)性,解決了教師“口說無憑”的尷尬境地,增大了課堂容量,提高了課堂效率。
    (2)學(xué)法指導(dǎo)。
    力爭在新課程要求的大背景下組織教學(xué),為學(xué)生創(chuàng)設(shè)良好的問題情境,留給學(xué)生充分的思考空間,在學(xué)生的辯證和討論前提下,發(fā)揮教師的概括和引領(lǐng)的作用。
    新高一數(shù)學(xué)必修一第二章教案篇十一
    1.要讀好課本。
    有些“自我感覺良好”的學(xué)生,常輕視課本中基礎(chǔ)知識、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高騖遠,重“量”輕“質(zhì)”,陷入題海,到正規(guī)作業(yè)或考試中不是演算出錯就是中途“卡殼”。因此,同學(xué)們應(yīng)從高一開始,增強自己從課本入手進行研究的意識。
    2.要記好筆記。
    首先,在課堂教學(xué)中培養(yǎng)好的聽課習(xí)慣是很重要的。當然聽是主要的,聽能使注意力集中,要把老師講的關(guān)鍵性部分聽懂、聽會。聽的時候注意思考、分析問題,但是光聽不記,或光記不聽必然顧此失彼,課堂效益低下,因此應(yīng)適當?shù)赜心康男缘挠浐霉P記,領(lǐng)會課上老師的主要精神與意圖??茖W(xué)的記筆記可以提高45分鐘課堂效益。
    3.要做好作業(yè)。
    在課堂、課外練習(xí)中培養(yǎng)良好的作業(yè)習(xí)慣也很有必要.在作業(yè)中不但做得整齊、清潔,培養(yǎng)一種美感,還要有條理,這是培養(yǎng)邏輯能力的一條有效途徑,必須獨立完成。同時可以培養(yǎng)一種獨立思考和解題正確的責(zé)任感。在作業(yè)時要提倡效率,應(yīng)該十分鐘完成的作業(yè),不拖到半小時完成,疲疲憊憊的作業(yè)習(xí)慣使思維松散、精力不集中,這對培養(yǎng)數(shù)學(xué)能力是有害而無益的。
    4.要寫好總結(jié)。
    一個人不斷接受新知識,不斷遭遇挫折產(chǎn)生疑問,不斷地總結(jié),才有不斷地提高?!安粫偨Y(jié)的同學(xué),他的能力就不會提高,挫折經(jīng)驗是成功的基石?!弊匀唤邕m者生存的生物進化過程便是最好的例證。學(xué)習(xí)要經(jīng)??偨Y(jié)規(guī)律,目的就是為了更一步的發(fā)展。
    通過與老師、同學(xué)平時的接觸交流,逐步總結(jié)出一般性的學(xué)習(xí)步驟,它包括:制定計劃、課前自學(xué)、專心上課、及時復(fù)習(xí)、獨立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個方面,簡單概括為四個環(huán)節(jié)(預(yù)習(xí)、上課、整理、作業(yè))和一個步驟(復(fù)習(xí)總結(jié))。每一個環(huán)節(jié)都有較深刻的內(nèi)容,帶有較強的目的性、針對性,要落實到位。堅持“兩先兩后一小結(jié)”(先預(yù)習(xí)后聽課,先復(fù)習(xí)后做作業(yè),寫好每個單元的總結(jié))的學(xué)習(xí)習(xí)慣。
    1.課前預(yù)習(xí)教材。課前可以把教材上第二天老師要講的內(nèi)容看一下,看看哪些能看懂,哪些不懂。這樣老師在講課的時候我們就能帶著問題去聽,把自己沒看懂的問題聽懂。
    2.上課專心聽講。這是很重要的,很多同學(xué)以為自己什么都弄懂了,就自己做自己的題目。其實即使是自己看懂了的,也可以看看老師也沒有另外的理解方法,老師的方法是不是比自己好。聽老師有時候講比自己看更好。
    小編推薦:高一數(shù)學(xué)怎么學(xué)才能學(xué)好。
    3.課后認真復(fù)習(xí)。剛學(xué)的知識,還沒完全被消化吸收成為自己的知識,如果不及時復(fù)習(xí),就很容易忘記。所以,課后一定要抽出一些時間,及時對所學(xué)進行鞏固。
    4.通過習(xí)題鞏固。數(shù)學(xué)是理科,需要通過一定量的習(xí)題來鞏固,量變積累到了一定量才能質(zhì)變嘛。這個并非要各位打題海戰(zhàn)術(shù),只要求各位做到熟練為止。
    5.錯題反復(fù)研究。自己準備一個錯題本,把考試時候做錯的題目記錄下來,寫上做錯的原因,反復(fù)研究,避免再次出錯。
    新高一數(shù)學(xué)必修一第二章教案篇十二
    1、知識目標:使學(xué)生理解指數(shù)函數(shù)的定義,初步掌握指數(shù)函數(shù)的圖像和性質(zhì)。
    2、能力目標:通過定義的引入,圖像特征的觀察、發(fā)現(xiàn)過程使學(xué)生懂得理論與實踐的辯證關(guān)系,適時滲透分類討論的數(shù)學(xué)思想,培養(yǎng)學(xué)生的探索發(fā)現(xiàn)能力和分析問題、解決問題的能力。
    3、情感目標:通過學(xué)生的參與過程,培養(yǎng)他們手腦并用、多思勤練的良好學(xué)習(xí)習(xí)慣和勇于探索、鍥而不舍的治學(xué)精神。
    新高一數(shù)學(xué)必修一第二章教案篇十三
    教學(xué)目標。
    3.讓學(xué)生深刻理解向量在處理平面幾何問題中的優(yōu)越性.
    教學(xué)重難點。
    教學(xué)重點:用向量方法解決實際問題的基本方法:向量法解決幾何問題的“三步曲”.
    教學(xué)難點:如何將幾何等實際問題化歸為向量問題.
    教學(xué)過程。
    由于向量的線性運算和數(shù)量積運算具有鮮明的幾何背景,平面幾何圖形的許多性質(zhì),如平移、全等、相似、長度、夾角等都可以由向量的線性運算及數(shù)量積表示出來,因此,可用向量方法解決平面幾何中的一些問題,下面我們通過幾個具體實例,說明向量方法在平面幾何中的運用。
    思考:
    運用向量方法解決平面幾何問題可以分哪幾個步驟?
    運用向量方法解決平面幾何問題可以分哪幾個步驟?
    “三步曲”:
    (2)通過向量運算,研究幾何元素之間的關(guān)系,如距離、夾角等問題;。
    (3)把運算結(jié)果“翻譯”成幾何關(guān)系.