八年級(jí)數(shù)學(xué)因式分解教案(實(shí)用20篇)

字號(hào):

    通過編寫教案,教師能夠更好地組織教學(xué)過程,提高學(xué)生學(xué)習(xí)效果。教案的設(shè)計(jì)應(yīng)考慮個(gè)別差異和興趣特點(diǎn),為每個(gè)學(xué)生提供個(gè)性化的學(xué)習(xí)支持。下面是一份詳細(xì)的教案示例,希望對(duì)大家的教學(xué)工作有所啟發(fā)。
    八年級(jí)數(shù)學(xué)因式分解教案篇一
    原式變形后,利用完全平方公式變形,計(jì)算即可得到結(jié)果.
    此題考查了因式分解的應(yīng)用,熟練掌握平方差公式及完全平方公式是解本題的關(guān)鍵.
    22.已知等式配方后,利用非負(fù)數(shù)的性質(zhì)求出a與b的值,即可確定出三角形周長(zhǎng).
    此題考查了因式分解的應(yīng)用,熟練掌握完全平方公式是解本題的關(guān)鍵.
    23.原式利用平方差公式分解得到結(jié)果,即可做出判斷.
    此題考查了因式分解的應(yīng)用,熟練掌握平方差公式是解本題的關(guān)鍵.
    24.本題考查了分式的化簡(jiǎn)求值,解答此題的關(guān)鍵是把分式化到最簡(jiǎn),然后代值計(jì)算.先將分式的分母分解因式,再約分,然后將已知變形為代入原式即可求解.
    八年級(jí)數(shù)學(xué)因式分解教案篇二
    1.知識(shí)與技能
    會(huì)應(yīng)用平方差公式進(jìn)行因式分解,發(fā)展學(xué)生推理能力.
    2.過程與方法
    經(jīng)歷探索利用平方差公式進(jìn)行因式分解的過程,發(fā)展學(xué)生的逆向思維,感受數(shù)學(xué)知識(shí)的完整性.
    3.情感、態(tài)度與價(jià)值觀
    培養(yǎng)學(xué)生良好的互動(dòng)交流的習(xí)慣,體會(huì)數(shù)學(xué)在實(shí)際問題中的應(yīng)用價(jià)值.
    重、難點(diǎn)與關(guān)鍵
    1.重點(diǎn):利用平方差公式分解因式.
    2.難點(diǎn):領(lǐng)會(huì)因式分解的解題步驟和分解因式的徹底性.
    3.關(guān)鍵:應(yīng)用逆向思維的方向,演繹出平方差公式,對(duì)公式的應(yīng)用首先要注意其特征,其次要做好式的變形,把問題轉(zhuǎn)化成能夠應(yīng)用公式的方面上來.
    教學(xué)方法
    采用“問題解決”的教學(xué)方法,讓學(xué)生在問題的牽引下,推進(jìn)自己的思維.
    教學(xué)過程
    一、觀察探討,體驗(yàn)新知
    【問題牽引】
    請(qǐng)同學(xué)們計(jì)算下列各式.
    (1)(a+5)(a-5);(2)(4m+3n)(4m-3n).
    【學(xué)生活動(dòng)】動(dòng)筆計(jì)算出上面的兩道題,并踴躍上臺(tái)板演.
    (1)(a+5)(a-5)=a2-52=a2-25;
    (2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.
    【教師活動(dòng)】引導(dǎo)學(xué)生完成下面的兩道題目,并運(yùn)用數(shù)學(xué)“互逆”的思想,尋找因式分解的規(guī)律.
    1.分解因式:a2-25;2.分解因式16m2-9n.
    【學(xué)生活動(dòng)】從逆向思維入手,很快得到下面答案:
    (1)a2-25=a2-52=(a+5)(a-5).
    (2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).
    【教師活動(dòng)】引導(dǎo)學(xué)生完成a2-b2=(a+b)(a-b)的同時(shí),導(dǎo)出課題:用平方差公式因式分解.
    平方差公式:a2-b2=(a+b)(a-b).
    評(píng)析:平方差公式中的字母a、b,教學(xué)中還要強(qiáng)調(diào)一下,可以表示數(shù)、含字母的代數(shù)式(單項(xiàng)式、多項(xiàng)式).
    二、范例學(xué)習(xí),應(yīng)用所學(xué)
    【例1】把下列各式分解因式:(投影顯示或板書)
    (1)x2-9y2;(2)16x4-y4;
    (3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;
    (5)m2(16x-y)+n2(y-16x).
    【思路點(diǎn)撥】在觀察中發(fā)現(xiàn)1~5題均滿足平方差公式的特征,可以使用平方差公式因式分解.
    【教師活動(dòng)】啟發(fā)學(xué)生從平方差公式的角度進(jìn)行因式分解,請(qǐng)5位學(xué)生上講臺(tái)板演.
    【學(xué)生活動(dòng)】分四人小組,合作探究.
    解:(1)x2-9y2=(x+3y)(x-3y);
    (5)m2(16x-y)+n2(y-16x)
    =(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).
    八年級(jí)數(shù)學(xué)因式分解教案篇三
    1、知識(shí)與能力:
    1)進(jìn)一步鞏固相似三角形的知識(shí).
    2)能夠運(yùn)用三角形相似的知識(shí),解決不能直接測(cè)量物體的長(zhǎng)度和高度(如測(cè)量金字塔高度問題、測(cè)量河寬問題)等的一些實(shí)際問題.
    2.過程與方法:
    經(jīng)歷從實(shí)際問題到建立數(shù)學(xué)模型的過程,發(fā)展學(xué)生的抽象概括能力。
    3.情感、態(tài)度與價(jià)值觀:
    1)通過利用相似形知識(shí)解決生活實(shí)際問題,使學(xué)生體驗(yàn)數(shù)學(xué)來源于生活,服務(wù)于生活。
    2)通過對(duì)問題的探究,培養(yǎng)學(xué)生認(rèn)真踏實(shí)的學(xué)習(xí)態(tài)度和科學(xué)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)方法,通過獲得成功的經(jīng)驗(yàn)和克服困難的經(jīng)歷,增進(jìn)數(shù)學(xué)學(xué)習(xí)的信心。
    (三)教學(xué)重點(diǎn)、難點(diǎn)和關(guān)鍵
    重點(diǎn):利用相似三角形的知識(shí)解決實(shí)際問題。
    難點(diǎn):運(yùn)用相似三角形的判定定理構(gòu)造相似三角形解決實(shí)際問題。
    關(guān)鍵:將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)模型,利用所學(xué)的知識(shí)來進(jìn)行解答。
    【教法與學(xué)法】
    (一)教法分析
    為了突出教學(xué)重點(diǎn),突破教學(xué)難點(diǎn),按照學(xué)生的認(rèn)知規(guī)律和心理特征,在教學(xué)過程中,我采用了以下的教學(xué)方法:
    1.采用情境教學(xué)法。整節(jié)課圍繞測(cè)量物體高度這個(gè)問題展開,按照從易到難層層推進(jìn)。在數(shù)學(xué)教學(xué)中,注重創(chuàng)設(shè)相關(guān)知識(shí)的現(xiàn)實(shí)問題情景,讓學(xué)生充分感知“數(shù)學(xué)來源于生活又服務(wù)于生活”。
    2.貫徹啟發(fā)式教學(xué)原則。教學(xué)的各個(gè)環(huán)節(jié)均從提出問題開始,在師生共同分析、討論和探究中展開學(xué)生的思路,把啟發(fā)式思想貫穿與教學(xué)活動(dòng)的全過程。
    3.采用師生合作教學(xué)模式。本節(jié)課采用師生合作教學(xué)模式,以師生之間、生生之間的全員互動(dòng)關(guān)系為課堂教學(xué)的核心,使學(xué)生共同達(dá)到教學(xué)目標(biāo)。教師要當(dāng)好“導(dǎo)演”,讓學(xué)生當(dāng)好“演員”,從充分尊重學(xué)生的潛能和主體地位出發(fā),課堂教學(xué)以教師的“導(dǎo)”為前提,以學(xué)生的“演”為主體,把較多的課堂時(shí)間留給學(xué)生,使他們有機(jī)會(huì)進(jìn)行獨(dú)立思考,相互磋商,并發(fā)表意見。
    (二)學(xué)法分析
    按照學(xué)生的認(rèn)識(shí)規(guī)律,遵循教師為主導(dǎo),學(xué)生為主體的指導(dǎo)思想,在本節(jié)課的學(xué)習(xí)過程中,采用自主探究、合作交流的學(xué)習(xí)方式,讓學(xué)生思考問題、獲取知識(shí)、掌握方法,運(yùn)用所學(xué)知識(shí)解決實(shí)際問題,啟發(fā)學(xué)生從書本知識(shí)到社會(huì)實(shí)踐,學(xué)以致用,力求促使每個(gè)學(xué)生都在原有的基礎(chǔ)上得到有效的發(fā)展。
    【教學(xué)過程】
    一、知識(shí)梳理
    1、判斷兩三角形相似有哪些方法?
    1)定義:2)定理(平行法):
    3)判定定理一(邊邊邊):
    4)判定定理二(邊角邊):
    5)判定定理三(角角):
    2、相似三角形有什么性質(zhì)?
    對(duì)應(yīng)角相等,對(duì)應(yīng)邊的比相等
    (通過對(duì)知識(shí)的梳理,幫助學(xué)生形成自己的知識(shí)結(jié)構(gòu)體系,為解決問題儲(chǔ)備理論依據(jù)。)
    二、情境導(dǎo)入
    胡夫金字塔是埃及現(xiàn)存規(guī)模的金字塔,被喻為“世界古代七大奇觀之一”。塔的4個(gè)斜面正對(duì)東南西北四個(gè)方向,塔基呈正方形,每邊長(zhǎng)約230多米。據(jù)考證,為建成大金字塔,共動(dòng)用了10萬人花了時(shí)間.原高146.59米,但由于經(jīng)過幾千年的風(fēng)吹雨打,頂端被風(fēng)化吹蝕.所以高度有所降低。
    (數(shù)學(xué)教學(xué)從學(xué)生的生活體驗(yàn)和客觀存在的事實(shí)或現(xiàn)實(shí)課題出發(fā),為學(xué)生提供較感興趣的問題情景,幫助學(xué)生順利地進(jìn)入學(xué)習(xí)情景。同時(shí),問題是知識(shí)、能力的生長(zhǎng)點(diǎn),通過富有實(shí)際意義的問題能夠激活學(xué)生原有認(rèn)知,促使學(xué)生主動(dòng)地進(jìn)行探索和思考。)
    三、例題講解
    例1(教材p49例3——測(cè)量金字塔高度問題)
    《相似三角形的應(yīng)用》教學(xué)設(shè)計(jì)分析:根據(jù)太陽光的光線是互相平行的特點(diǎn),可知在同一時(shí)刻的陽光下,豎直的兩個(gè)物體的影子互相平行,從而構(gòu)造相似三角形,再利用相似三角形的判定和性質(zhì),根據(jù)已知條件,求出金字塔的高度.
    解:略(見教材p49)
    問:你還可以用什么方法來測(cè)量金字塔的高度?(如用身高等)
    解法二:用鏡面反射(如圖,點(diǎn)a是個(gè)小鏡子,根據(jù)光的反射定律:由入射角等于反射角構(gòu)造相似三角形).(解法略)
    例2(教材p50練習(xí)?——測(cè)量河寬問題)
    《相似三角形的應(yīng)用》教學(xué)設(shè)計(jì)《相似三角形的應(yīng)用》教學(xué)設(shè)計(jì)分析:設(shè)河寬ab長(zhǎng)為xm,由于此種測(cè)量方法構(gòu)造了三角形中的平行截線,故可得到相似三角形,因此有,即《相似三角形的應(yīng)用》教學(xué)設(shè)計(jì).再解x的方程可求出河寬.
    解:略(見教材p50)
    問:你還可以用什么方法來測(cè)量河的寬度?
    解法二:如圖構(gòu)造相似三角形(解法略).
    四、鞏固練習(xí)
    五、回顧小結(jié)
    一)相似三角形的應(yīng)用主要有如下兩個(gè)方面
    1測(cè)高(不能直接使用皮尺或刻度尺量的)
    2測(cè)距(不能直接測(cè)量的兩點(diǎn)間的距離)
    二)測(cè)高的方法
    測(cè)量不能到達(dá)頂部的物體的高度,通常用“在同一時(shí)刻物高與影長(zhǎng)的比例”的原理解決
    三)測(cè)距的方法
    測(cè)量不能到達(dá)兩點(diǎn)間的距離,常構(gòu)造相似三角形求解
    (落實(shí)教師的引導(dǎo)作用以及學(xué)生的主體地位,既訓(xùn)練學(xué)生的概括歸納能力,又有助于學(xué)生在歸納的過程中把所學(xué)的知識(shí)條理化、系統(tǒng)化。)
    六、拓展提高
    怎樣利用相似三角形的有關(guān)知識(shí)測(cè)量旗桿的高度?
    七、作業(yè)
    課本習(xí)題27.210題、11題。
    八年級(jí)數(shù)學(xué)因式分解教案篇四
    1、知識(shí)與能力:
    1)進(jìn)一步鞏固相似三角形的知識(shí).
    2)能夠運(yùn)用三角形相似的知識(shí),解決不能直接測(cè)量物體的長(zhǎng)度和高度(如測(cè)量金字塔高度問題、測(cè)量河寬問題)等的一些實(shí)際問題.
    2.過程與方法:
    經(jīng)歷從實(shí)際問題到建立數(shù)學(xué)模型的過程,發(fā)展學(xué)生的抽象概括能力。
    3.情感、態(tài)度與價(jià)值觀:
    1)通過利用相似形知識(shí)解決生活實(shí)際問題,使學(xué)生體驗(yàn)數(shù)學(xué)來源于生活,服務(wù)于生活。
    2)通過對(duì)問題的探究,培養(yǎng)學(xué)生認(rèn)真踏實(shí)的學(xué)習(xí)態(tài)度和科學(xué)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)方法,通過獲得成功的經(jīng)驗(yàn)和克服困難的經(jīng)歷,增進(jìn)數(shù)學(xué)學(xué)習(xí)的信心。
    (三)教學(xué)重點(diǎn)、難點(diǎn)和關(guān)鍵。
    重點(diǎn):利用相似三角形的知識(shí)解決實(shí)際問題。
    難點(diǎn):運(yùn)用相似三角形的判定定理構(gòu)造相似三角形解決實(shí)際問題。
    關(guān)鍵:將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)模型,利用所學(xué)的知識(shí)來進(jìn)行解答。
    八年級(jí)數(shù)學(xué)因式分解教案篇五
    教學(xué)過程中滲透類比的數(shù)學(xué)思想,形成新的知識(shí)結(jié)構(gòu)體系;設(shè)置探究式教學(xué),讓學(xué)生經(jīng)歷知識(shí)的形成,從而達(dá)到對(duì)知識(shí)的深刻理解與靈活應(yīng)用。
    學(xué)法:自主、合作、探索的學(xué)習(xí)方式
    在教學(xué)活動(dòng)中,既要提高學(xué)生獨(dú)立解決問題的能力,又要培養(yǎng)團(tuán)結(jié)協(xié)作精神,拓展學(xué)生探究問題的深度與廣度,體現(xiàn)素質(zhì)教育的要求。
    八年級(jí)數(shù)學(xué)因式分解教案篇六
    認(rèn)知基礎(chǔ):學(xué)生在七年級(jí)下冊(cè)第四章已學(xué)習(xí)了《變量之間的關(guān)系》,對(duì)變量間互相依存的關(guān)系有了一定的認(rèn)識(shí),但對(duì)于變量間的變化規(guī)律尚不明確,理解的很膚淺,也缺乏理論高度,另外本章在認(rèn)知方式和思維深度上對(duì)學(xué)生有較高的要求,學(xué)生在理解和運(yùn)用時(shí)會(huì)有一定的難度。
    活動(dòng)經(jīng)驗(yàn)基礎(chǔ):在七年級(jí)下冊(cè)《變量之間的關(guān)系》一章中,學(xué)生接觸了大量的生活實(shí)例額,體會(huì)了變量之間相互依賴關(guān)系的普遍性,感受到了學(xué)習(xí)變量關(guān)系的必要性,初步具備了一定的識(shí)圖能力和主動(dòng)參與、合作的意識(shí)和初步的觀察、分析、抽象概括的能力。
    知識(shí)與技能目標(biāo):
    (1)初步掌握函數(shù)概念,能判斷兩個(gè)變量之間的關(guān)系是否可以看作函數(shù)。
    (2)根據(jù)兩個(gè)變量之間的關(guān)系式,給定其中一個(gè)變量的值相應(yīng)的會(huì)求出另一個(gè)變量的值。
    (3)會(huì)對(duì)一個(gè)具體實(shí)例進(jìn)行概括抽象成為函數(shù)問題。
    過程與方法目標(biāo):
    (1)通過函數(shù)概念初步形成利用函數(shù)的觀點(diǎn)認(rèn)識(shí)現(xiàn)實(shí)世界的意識(shí)和能力。
    (2)經(jīng)歷具體實(shí)例的抽象概括過程,進(jìn)一步發(fā)展學(xué)生的抽象思維能力。
    情感態(tài)度與價(jià)值觀目標(biāo):
    (1)經(jīng)歷函數(shù)概念的抽象概括過程,體會(huì)函數(shù)的模型思想。
    (2)能主動(dòng)從事觀察、操作、交流、歸納等探索活動(dòng),形成自己對(duì)數(shù)學(xué)知識(shí)的理解和有效的學(xué)習(xí)模式。
    八年級(jí)數(shù)學(xué)因式分解教案篇七
    根據(jù)大綱要求,結(jié)合本教材特點(diǎn)和學(xué)生認(rèn)知能力,將教學(xué)目標(biāo)確定為:
    知識(shí)與技能:1、理解因式分解的含義,能判斷一個(gè)式子的變形是否為因式分解。
    2、熟練運(yùn)用提取公因式法分解因式。
    過程與方法:在教學(xué)過程中,體會(huì)類比的數(shù)學(xué)思想逐步形成獨(dú)立思考,主動(dòng)探索的習(xí)慣。
    情感態(tài)度與價(jià)值觀:通過現(xiàn)實(shí)情景,讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)的應(yīng)用價(jià)值,并提高學(xué)生關(guān)注生存環(huán)境的環(huán)保意識(shí)。
    八年級(jí)數(shù)學(xué)因式分解教案篇八
    1.經(jīng)歷分式方程的概念,能將實(shí)際問題中的等量關(guān)系用分式方程 表示,體會(huì)分式方程的模型作用.
    2.經(jīng)歷實(shí)際問題-分式方程方程模型的過程,發(fā)展學(xué)生分析問題、解決問題的能力,滲透數(shù)學(xué)的轉(zhuǎn)化思想人體,培養(yǎng)學(xué)生的應(yīng)用意識(shí)。
    3.在活動(dòng)中培養(yǎng)學(xué)生樂于探究、合作學(xué)習(xí)的習(xí)慣,培養(yǎng)學(xué) 生努力尋找 解決問題的進(jìn)取心,體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值.
    將實(shí)際問題中的等量 關(guān)系用分式方程表示
    找實(shí)際問題中的等量關(guān)系
    有兩塊面積相同的小麥試驗(yàn)田,第一塊使用原品種,第二 塊使用新品種,分別收獲小麥9000 kg和15000 kg。已知第一塊試驗(yàn)田每公頃的產(chǎn)量比第二塊少3000 kg,分別求這兩塊試驗(yàn)田每 公頃 的產(chǎn)量。你能找出這一問題中的所有等量關(guān)系嗎?(分組交流)
    如果設(shè)第一塊試驗(yàn)田 每公頃的產(chǎn)量為 kg,那么第二塊試驗(yàn)田每公頃的產(chǎn)量是________kg。
    根據(jù)題意,可得方程___________________
    從甲地到乙地有兩條公路:一條是全長(zhǎng)600 km的普通 公路,另一條是全長(zhǎng)480 km的高速公路。某客 車在 高速公路上行駛的平均速度比在普通公路上快45 km/h,由高速 公路從甲地到乙地所需的時(shí)間 是由普通公路從甲地到乙地所需時(shí)間的一半。求該客車由高速公路從 甲地到乙地所需的時(shí)間。
    這 一問題中有哪些等量關(guān)系?
    如果設(shè)客車由高速公路從甲地到乙地 所需的時(shí)間為 h,那么它由普通公路從甲地到乙地所需的時(shí)間為_________h。
    根據(jù)題意,可得方程_ _____________________。
    學(xué)生分組探討、交流,列出方程.
    上面所得到的方程有什么共同特點(diǎn)?
    分母中含有未知數(shù)的方程叫做分式方程
    分式方程與整式方程有什么區(qū)別?
    (3)根據(jù)分式方程 編一道應(yīng)用題,然后同組交流,看誰編得好
    本節(jié)課你學(xué)到了哪些知識(shí)?有什么感想?
    八年級(jí)數(shù)學(xué)因式分解教案篇九
    教學(xué)目標(biāo):
    1、知道一次函數(shù)與正比例函數(shù)的意義.
    2、能寫出實(shí)際問題中正比例關(guān)系與一次函數(shù)關(guān)系的解析式.
    3、滲透數(shù)學(xué)建模的思想,使學(xué)生體會(huì)到數(shù)學(xué)的抽象性和廣泛的應(yīng)用性.
    4、激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生分析問題、解決問題的能力.
    教學(xué)重點(diǎn):對(duì)于一次函數(shù)與正比例函數(shù)概念的理解.
    教學(xué)難點(diǎn):根據(jù)具體條件求一次函數(shù)與正比例函數(shù)的解析式.
    教學(xué)方法:結(jié)構(gòu)教學(xué)法、以學(xué)生“再創(chuàng)造”為主的教學(xué)方法。
    教學(xué)過程:
    1、復(fù)習(xí)舊課。
    前面我們學(xué)習(xí)了函數(shù)的相關(guān)知識(shí),(教師在黑板上畫出本章結(jié)構(gòu)并讓學(xué)生說出前三。
    2、引入新課。
    就象以前我們學(xué)習(xí)方程、一元一次方程;不等式、一元一次不等式的內(nèi)容時(shí)一樣,我們?cè)趯W(xué)習(xí)了函數(shù)這個(gè)概念以后,要學(xué)習(xí)一些具體的函數(shù),今天我們要學(xué)習(xí)的是一次函數(shù).顧名思義,誰能根據(jù)一次函數(shù)這個(gè)名字,類比一元一次方程、一元一次不等式的概念能舉出一些一次函數(shù)的例子?(學(xué)生完全具備這種類比的能力,所以要快、不要耽誤太多時(shí)間叫幾個(gè)同學(xué)回答就可以了.教師將學(xué)生的正確的例子寫在黑板上)。
    這些函數(shù)有什么共同特點(diǎn)呢?(注意根據(jù)學(xué)生情況適當(dāng)引導(dǎo),看能否歸納出一般結(jié)果.)不難看出函數(shù)都是用自變量的一次式表示的,可以寫成()的形式.一般地,如果(是常數(shù),)(括號(hào)內(nèi)用紅字強(qiáng)調(diào))那么y叫做x的一次函數(shù).特別地,當(dāng)b=0時(shí),一次函數(shù)就成為(是常數(shù),)。
    3、例題講解。
    例1、某油管因地震破裂,導(dǎo)致每分鐘漏出原油30公升。
    (1)如果x分鐘共漏出y公升,寫出y與x之間的函數(shù)關(guān)系式。
    (2)破裂3.5小時(shí)后,共漏出原油多少公升。
    分析:y與x成正比例。
    解:(1)(2)(升)。
    例2、小丸子的存折上已經(jīng)有500元存款了,從現(xiàn)在開始她每個(gè)月可以得到150元的零用錢,小丸子計(jì)劃每月將零用錢的60%存入銀行,用以購(gòu)買她期盼已久的cd隨身聽(價(jià)值1680元)。
    (1)列出小丸子的銀行存款(不計(jì)利息)y與月數(shù)x的函數(shù)關(guān)系式;。
    (2)多長(zhǎng)時(shí)間以后,小丸子的銀行存款才能買隨身聽?
    分析:銀行存款數(shù)由兩部分構(gòu)成:原有的存款500元,后存入的零用錢。
    例3、已知函數(shù)是正比例函數(shù),求的值。
    分析:本題考察的是正比例函數(shù)的概念。
    解:
    4、小結(jié)。
    由學(xué)生對(duì)本節(jié)課知識(shí)進(jìn)行總結(jié),教師板書即可.
    5、布置作業(yè)。
    書面作業(yè):1、書后習(xí)題2、自己寫出一個(gè)實(shí)際中的一次函數(shù)的例子并進(jìn)行討論。
    八年級(jí)數(shù)學(xué)因式分解教案篇十
    正比例函數(shù)的概念。
    2、內(nèi)容解析。
    一次函數(shù)是最基本的初等函數(shù),是初中函數(shù)學(xué)習(xí)的重要內(nèi)容,正比例函數(shù)是特殊的一次函數(shù),也是初中學(xué)生接觸到的第一種函數(shù),要通過對(duì)正比例函數(shù)內(nèi)容的學(xué)習(xí),為后續(xù)類比學(xué)習(xí)一般一次函數(shù)打好基礎(chǔ),了解研究函數(shù)的基本套路和方法,積累研究一般一次函數(shù)乃至其他各種函數(shù)的基本經(jīng)驗(yàn)。
    對(duì)正比例函數(shù)概念的學(xué)習(xí),既要借助具體的函數(shù)進(jìn)一步加深對(duì)函數(shù)概念的理解,即實(shí)際問題的兩個(gè)變量中,當(dāng)一個(gè)變量變化時(shí),另一個(gè)變量隨著它的變化而變化,而且對(duì)于這個(gè)變量的每一個(gè)確定的值,另一個(gè)變量都有唯一確定的值與之對(duì)應(yīng),這是理解正比例函數(shù)的核心;也要加強(qiáng)對(duì)正比例函數(shù)基本特征的認(rèn)識(shí),即根據(jù)實(shí)際問題構(gòu)建的函數(shù)模型中,函數(shù)和自變量每一對(duì)對(duì)應(yīng)值的比值是一定的,等于比例系數(shù),反映在函數(shù)解析式上,這些函數(shù)都是常數(shù)與自變量的積的形式,這是正比例函數(shù)的基本特征。
    本節(jié)課主要是通過對(duì)生活中大量實(shí)際問題的分析,寫出變量間的函數(shù)關(guān)系式,觀察比較概括出這些函數(shù)關(guān)系式具有的共同特征,根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念,再用正比例函數(shù)的概念對(duì)具體函數(shù)進(jìn)行辨析,對(duì)實(shí)際事例進(jìn)行分析,根據(jù)已知條件寫出正比例函數(shù)的解析式。
    基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn):正比例函數(shù)的概念。
    1、目標(biāo)。
    (1)經(jīng)歷正比例函數(shù)概念的形成過程,理解正比例函數(shù)的概念;
    (2)能根據(jù)已知條件確定正比例函數(shù)的解析式,體會(huì)函數(shù)建模思想。
    2、目標(biāo)解析。
    達(dá)成目標(biāo)(1)的標(biāo)志是:通過對(duì)實(shí)際問題的分析,知道自變量和對(duì)應(yīng)函數(shù)成正比例的特征,能概括抽象出正比例函數(shù)的概念。
    達(dá)成目標(biāo)(2)的標(biāo)志是:能根據(jù)實(shí)際問題中的已知條件確定變量間的正比例函數(shù)關(guān)系式,將實(shí)際問題抽象為函數(shù)模型,體會(huì)函數(shù)建模思想。
    正比例函數(shù)是是初中學(xué)生接觸到的第一種初等函數(shù),由于函數(shù)概念比較抽象,學(xué)生對(duì)函數(shù)基本概念理解未必深刻,在對(duì)實(shí)際問題進(jìn)行分析過程中,需進(jìn)一步強(qiáng)化對(duì)函數(shù)概念的理解:即實(shí)際問題的兩個(gè)變量中,當(dāng)一個(gè)變量變化時(shí),另一個(gè)變量隨著它的變化而變化,而且對(duì)于這個(gè)變量的`每一個(gè)確定的值,另一個(gè)變量都有唯一確定的值與之對(duì)應(yīng);對(duì)正比例函數(shù)概念的理解關(guān)鍵是對(duì)正比例函數(shù)基本特征的認(rèn)識(shí),要通過大量實(shí)例分析,寫出變量間的函數(shù)關(guān)系式,觀察比較發(fā)現(xiàn)這些函數(shù)具有的共同特征,即函數(shù)與自變量的每一對(duì)對(duì)應(yīng)值的比值一定,都等于自變量前的常數(shù),這些函數(shù)都是常數(shù)與自變量的積的形式,再根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念。對(duì)正比例函數(shù)基本特征的認(rèn)識(shí)和正比例函數(shù)概念的抽象歸納過程學(xué)生有一定難度。
    因此本節(jié)課的教學(xué)難點(diǎn)是:對(duì)正比例函數(shù)基本特征的認(rèn)識(shí)和正比例函數(shù)概念的抽象歸納過程。
    八年級(jí)數(shù)學(xué)因式分解教案篇十一
    王老師上課時(shí)通過學(xué)生自己的試算、觀察、發(fā)現(xiàn)、總結(jié)、歸納,得出用平方差公式進(jìn)行因式分解,這樣得出平方差公式后,并且把乘法公式進(jìn)行對(duì)比,通過例題、練習(xí)與小結(jié),教會(huì)學(xué)生如何正確應(yīng)用平方差公式.這里特別要求學(xué)生注意公式的結(jié)構(gòu),教師可以用對(duì)應(yīng)思想來加強(qiáng)對(duì)公式結(jié)構(gòu)的理解和訓(xùn)練。王老師放手讓學(xué)生探索,促進(jìn)學(xué)生主動(dòng)發(fā)展的教學(xué)方法貫穿于這節(jié)課的始終。
    從學(xué)生的練習(xí)情況來看,許多同學(xué)都掌握了這節(jié)課的知識(shí),整個(gè)課堂中,以學(xué)生練為主,王老師能敢于創(chuàng)新、敢于探索,整節(jié)課的學(xué)習(xí),教師始終是學(xué)生學(xué)習(xí)活動(dòng)的組織者、指導(dǎo)者和合作者,而學(xué)生始終都是一個(gè)發(fā)現(xiàn)者、探索者,充分發(fā)揮他們的學(xué)習(xí)主體作用。這樣大大提高了這節(jié)課的效率。
    教師講課語言簡(jiǎn)捷、清晰,有較強(qiáng)的表達(dá)和應(yīng)變能力,課堂教學(xué)基本功好。乘法公式的引入由兩種形式的'引入,又形象直觀地理解了乘法公式的內(nèi)在實(shí)質(zhì)。做到以點(diǎn)撥為主的教學(xué)。對(duì)于公式的牲能嚴(yán)格要求學(xué)生理解,并能讓學(xué)生自己舉例符合公式形狀的例子,課堂內(nèi)的練習(xí)量、內(nèi)容及安排上恰當(dāng)好處,有基本運(yùn)用公式,有變式運(yùn)用公式,也有適當(dāng)?shù)募由顟?yīng)用,滿足了不同層次的學(xué)生的學(xué)習(xí)。效果是比較顯著的。
    八年級(jí)數(shù)學(xué)因式分解教案篇十二
    教學(xué)。
    目標(biāo)(含重點(diǎn)、難點(diǎn))及。
    設(shè)置依據(jù)教學(xué)目標(biāo)。
    1、了解多面體、直棱柱的有關(guān)概念.2、會(huì)認(rèn)直棱柱的側(cè)棱、側(cè)面、底面.。
    3、了解直棱柱的側(cè)棱互相平行且相等,側(cè)面是長(zhǎng)方形(含正方形)等特征.。
    教學(xué)重點(diǎn)與難點(diǎn)。
    教學(xué)過程。
    內(nèi)容與環(huán)節(jié)預(yù)設(shè)、簡(jiǎn)明設(shè)計(jì)意圖二度備課(即時(shí)反思與糾正)。
    一、創(chuàng)設(shè)情景,引入新課。
    析:學(xué)生很容易回答出更多的答案。
    師:(繼續(xù)補(bǔ)充)有許多著名的建筑,像古埃及的金字塔、巴黎的艾菲爾鐵塔、美國(guó)的迪思尼樂園、德國(guó)的古堡風(fēng)光,中國(guó)北京的西客站,它們也是由不同的立體圖形組成的;那么立體圖形在生活中有著怎樣的廣泛的應(yīng)用呢?瞧,食物中的冰激凌、櫻桃、端午節(jié)的粽子等。
    二、合作交流,探求新知。
    1.多面體、棱、頂點(diǎn)概念:
    2.合作交流。
    師:以學(xué)習(xí)小組為單位,拿出事先準(zhǔn)備好的幾何體。
    學(xué)生活動(dòng):(讓學(xué)生從中閉眼摸出某些幾何體,邊摸邊用語言描。
    述其特征。)。
    師:同學(xué)們?cè)儆懻撘幌?,能否把自己的語言轉(zhuǎn)化為數(shù)學(xué)語言。
    學(xué)生活動(dòng):分小組討論。
    說明:真正體現(xiàn)了“以生為本”。讓學(xué)生在主動(dòng)探究中發(fā)現(xiàn)知識(shí),充分發(fā)揮了學(xué)生的主體作用和教師的主導(dǎo)作用,課堂氣氛活躍,教師教的輕松,學(xué)生學(xué)的愉快。
    師:請(qǐng)大家找出與長(zhǎng)方體,立方體類似的物體或模型。
    析:舉出實(shí)例。(找出區(qū)別)。
    師:(總結(jié))棱柱分為之直棱柱和斜棱柱。(根據(jù)其側(cè)棱與底面是否垂直)根據(jù)底面多邊形的邊數(shù)而分為直三棱柱、直四棱柱……直棱柱有以下特征:
    有上、下兩個(gè)底面,底面是平面圖形中的多邊形,而且彼此全等;
    側(cè)面都是長(zhǎng)方形含正方形。
    長(zhǎng)方體和正方體都是直四棱柱。
    3.反饋鞏固。
    完成“做一做”
    析:由第(3)小題可以得到:
    直棱柱的相鄰兩條側(cè)棱互相平行且相等。
    4.學(xué)以至用。
    出示例題。(先請(qǐng)學(xué)生單獨(dú)考慮,再作講解)。
    析:引導(dǎo)學(xué)生著重觀察首飾盒的側(cè)面是什么圖形,上底面是什么圖形,然后與直棱柱的特征作比較。(使學(xué)生養(yǎng)成發(fā)現(xiàn)問題,解決問題的創(chuàng)造性思維習(xí)慣)。
    最后完成例題中的“想一想”
    5.鞏固練習(xí)(學(xué)生練習(xí))。
    完成“課內(nèi)練習(xí)”
    三、小結(jié)回顧,反思提高。
    師:我們這節(jié)課的重點(diǎn)是什么?哪些地方比較難學(xué)呢?
    合作交流后得到:重點(diǎn)直棱柱的有關(guān)概念。
    直棱柱有以下特征:
    有上、下兩個(gè)底面,底面是平面圖形中的多邊形,而且彼此全等;
    側(cè)面都是長(zhǎng)方形含正方形。
    例題中的把首飾盒看成是由兩個(gè)直三棱柱、直四棱柱的組合,或著是兩個(gè)直四棱柱的組合需要一定的空間想象能力和表達(dá)能力。這一點(diǎn)比較難。
    板書設(shè)計(jì)。
    作業(yè)布置或設(shè)計(jì)作業(yè)本及課時(shí)特訓(xùn)。
    八年級(jí)數(shù)學(xué)因式分解教案篇十三
    《基礎(chǔ)教育課程改革綱要(試行)》指出:“大力推進(jìn)多媒體信息技術(shù)在教學(xué)過程中的普遍應(yīng)用,促進(jìn)信息技術(shù)與學(xué)科課程的整合,逐步實(shí)現(xiàn)教學(xué)內(nèi)容的呈現(xiàn)方式、學(xué)生的學(xué)習(xí)方式、教師的教學(xué)方式和師生互動(dòng)方式的變革,充分發(fā)揮信息技術(shù)的優(yōu)勢(shì),為學(xué)生的學(xué)習(xí)和發(fā)展提供豐富多彩的教育環(huán)境和有力的學(xué)習(xí)工具?!苯處熯\(yùn)用現(xiàn)代多媒體信息技術(shù)對(duì)教學(xué)活動(dòng)進(jìn)行創(chuàng)造性設(shè)計(jì),發(fā)揮計(jì)算機(jī)輔助教學(xué)的特有功能,把信息技術(shù)和數(shù)學(xué)教學(xué)的學(xué)科特點(diǎn)結(jié)合起來,可以使教學(xué)的表現(xiàn)形式更加形象化、多樣化、視覺化,有利于充分揭示數(shù)學(xué)概念的形成與發(fā)展,數(shù)學(xué)思維的過程和實(shí)質(zhì),展示數(shù)學(xué)思維的形成過程,使數(shù)學(xué)課堂教學(xué)收到事半功倍的效果。
    本節(jié)課內(nèi)容是學(xué)生在小學(xué)階段初步了解特殊四邊形以及學(xué)過《三角形》這章的基礎(chǔ)上進(jìn)行的,在知識(shí)結(jié)構(gòu)上打破了教材的編寫順序,從整體的角度探究特殊四邊形性質(zhì)。運(yùn)用多媒體教學(xué)體現(xiàn)出直觀、課容量大、容易接受的特點(diǎn),為進(jìn)一步的理論證明及應(yīng)用起著提供數(shù)據(jù)和宏觀指導(dǎo)作用,使學(xué)生學(xué)習(xí)本章具體內(nèi)容時(shí)知道身在何處,使知識(shí)體系更加系統(tǒng)。本節(jié)課內(nèi)容是四邊形這章的理論基礎(chǔ),在該章占有非常重要的地位。
    本班經(jīng)歷了一年多課改實(shí)踐,學(xué)生對(duì)運(yùn)用現(xiàn)代多媒體信息技術(shù)的教學(xué)方式有濃厚的興趣,能運(yùn)用《幾何畫板》這一工具進(jìn)行簡(jiǎn)單的操作,形成自主探索和合作交流的學(xué)風(fēng),從而樂于在教師的指導(dǎo)下主動(dòng)與同學(xué)探索、發(fā)現(xiàn)、歸納、經(jīng)歷數(shù)學(xué)知識(shí)于實(shí)踐的過程。
    本節(jié)課充分利用現(xiàn)有的先進(jìn)教學(xué)設(shè)備(兩名學(xué)生一臺(tái)電腦),利用筆者自制,借助《幾何畫板》把學(xué)生帶入數(shù)學(xué)模擬實(shí)驗(yàn)室,以研究電動(dòng)門的機(jī)械原理為切入點(diǎn),從學(xué)生已有的生活經(jīng)驗(yàn)出發(fā),讓學(xué)生親身經(jīng)歷數(shù)學(xué)知識(shí)的形成并進(jìn)行解釋與應(yīng)用過程。組員相互配合分別測(cè)量、搜集、分析、整理特殊四邊形的邊長(zhǎng)、角度、對(duì)角線長(zhǎng)度等數(shù)據(jù),并總結(jié)其性質(zhì),通過人機(jī)對(duì)話方式把靜態(tài)、抽象的幾何圖形變?yōu)閯?dòng)態(tài)、直觀地演示出來。在此過程中教師當(dāng)好課堂教學(xué)的組織者、決策者、創(chuàng)造者和參與者,教給學(xué)生自覺主動(dòng)地探究新知識(shí)的方法,激發(fā)學(xué)生的思維,培養(yǎng)學(xué)生的科學(xué)精神和創(chuàng)新思維習(xí)慣,使學(xué)生獲得對(duì)數(shù)學(xué)理解的同時(shí),在思維能力、情感態(tài)度與價(jià)值觀等多方面得到發(fā)展。
    1、初步理解特殊四邊形性質(zhì);
    2、培養(yǎng)學(xué)生自主收集、描述和分析數(shù)據(jù)的能力;
    1、了解特殊四邊形性質(zhì)的形成過程;
    2、初步了解探究新知識(shí)的一些方法;
    1、了解特殊四邊形在日常生活中的應(yīng)用;
    2、學(xué)生在觀察、歸納、類比及實(shí)驗(yàn)教學(xué)活動(dòng)中,體會(huì)成功后的喜悅;
    3、初步具有感性認(rèn)識(shí)上升到理性認(rèn)識(shí)的辯證唯物主義思想。
    教學(xué)環(huán)境:
    多媒體計(jì)算機(jī)網(wǎng)絡(luò)教室。
    教學(xué)課型:
    試驗(yàn)探究式。
    教學(xué)重點(diǎn):
    特殊四邊形性質(zhì)。
    教學(xué)難點(diǎn):
    特殊四邊形性質(zhì)的發(fā)現(xiàn)。
    一、設(shè)置情景,提出問題。
    提出問題:
    1、電動(dòng)門的網(wǎng)格和結(jié)點(diǎn)能組成哪些四邊形?
    2、在開(關(guān))門過程中這些四邊形是如何變化的?
    3、你還發(fā)現(xiàn)了什么?
    解決問題:
    學(xué)生猜想:包括平行四邊形、矩形、菱形、等腰梯形、直角梯形……;
    當(dāng)我們學(xué)習(xí)完本節(jié)知識(shí)后,其他問題就容易解決了。
    (意圖:用《幾何畫板》的動(dòng)態(tài)演示生活事例,充分展示了數(shù)學(xué)的美妙,可以使學(xué)生容易進(jìn)入情境和保持積極學(xué)習(xí)狀態(tài),激起學(xué)生探究解決問題的求知欲望。)。
    二、整體了解,形成系統(tǒng)。
    本節(jié)課從整體角度研究特殊四邊形性質(zhì),為今后的個(gè)體研究打下良好的基礎(chǔ)。我們先研究四邊形中的特殊與一般的關(guān)系。
    提出問題:
    1、本章主要研究哪些特殊四邊形?
    2、從哪幾方面研究這些特殊四邊形?
    解決問題:
    學(xué)生操作電腦(用幾何畫板),了解本章研究的主要圖形;教師個(gè)別指導(dǎo)。
    1、包括:平行四邊形、矩形、菱形、梯形、等腰梯形、直角梯形。
    3、等腰梯形和直角梯形后面應(yīng)該是矩形,但不符合梯形定義,所以沒有圖形。
    (意圖:學(xué)生自主觀察、分組討論了解本章知識(shí)結(jié)構(gòu),從而形成系統(tǒng);通過假設(shè)、猜想、推理、論證、否定假設(shè)獲得新知識(shí))。
    三、個(gè)體研究、總結(jié)性質(zhì)。
    1、平行四邊形性質(zhì)。
    提出問題:
    在平行四邊形的形狀、位置、大小變化過程中,請(qǐng)觀察數(shù)據(jù)并找出邊長(zhǎng)、角度、對(duì)角線長(zhǎng)度相對(duì)不變的性質(zhì)。
    解決問題:
    教師引導(dǎo)學(xué)生拖動(dòng)b點(diǎn)(學(xué)生操作電腦),改變平行四邊形的形狀、位置、大小,并觀察數(shù)據(jù)的變化,從中找出相對(duì)不變的要素。
    在圖形變化過程中,
    (1)對(duì)邊相等;
    (2)對(duì)角相等;
    (3)通過ao=co、bo=do,可得對(duì)角線互相平分;
    (4)通過鄰角互補(bǔ),可得對(duì)邊平行;
    (5)內(nèi)外角和都等于360度;
    (6)鄰角互補(bǔ);
    ……。
    指導(dǎo)學(xué)生填表:
    平行四邊形性質(zhì)矩形性質(zhì)正方形性質(zhì)。
    菱形性質(zhì)。
    梯形性質(zhì)等腰梯形性質(zhì)。
    直角梯形性質(zhì)。
    (既屬于平行四邊形性質(zhì)又屬于矩形性質(zhì)可以畫箭頭)。
    按照平行四邊形性質(zhì)的探索思路,分別研究:
    2、矩形性質(zhì);
    3、菱形性質(zhì);
    4、正方形性質(zhì);
    5、梯形性質(zhì);
    6、等腰梯形性質(zhì);
    7、直角梯形的性質(zhì)。
    (意圖:學(xué)生運(yùn)用電腦自主收集、描述、分析數(shù)據(jù),把抽象的性質(zhì)變?yōu)橹庇^化、形象化,培養(yǎng)獨(dú)立探究,自主自信,使學(xué)生體驗(yàn)到科學(xué)探索的樂趣。)。
    教師總結(jié):
    (意圖:掌握畫箭頭的方法,使學(xué)生了解事物個(gè)體既有該事物一般性質(zhì),又有自己的特點(diǎn)。既清楚地表達(dá),又節(jié)省時(shí)間。)。
    四、聯(lián)系生活,解決問題。
    解決問題:
    學(xué)生操作電腦,觀察圖形、分組討論,教師個(gè)別指導(dǎo)。
    學(xué)生在分別演示開(關(guān))門過程中,觀察數(shù)據(jù)并總結(jié):邊長(zhǎng)、角度、對(duì)角線長(zhǎng)度的變化引起四邊形的形狀、大小、位置的變化。
    四邊形具有不穩(wěn)定性,而三角形沒有這個(gè)特點(diǎn)……。
    (意圖:使學(xué)生體會(huì)到數(shù)學(xué)于生活、又服務(wù)于生活,更重要的是培養(yǎng)學(xué)生應(yīng)用知識(shí)解決實(shí)際問題的能力,體會(huì)成功后的喜悅。)。
    五、小結(jié)。
    1.研究問題從整體到局部的方法;
    2.主要從邊長(zhǎng)、角度、對(duì)角線長(zhǎng)度三方面研究特殊四邊形性質(zhì)。
    六、作業(yè)。
    1.平行四邊形內(nèi)角中,既有兩個(gè)相鄰的角相等,又有一組鄰邊相等,試判斷它是什么圖形。
    2.觀察實(shí)際生活中的電動(dòng)門,在開(關(guān))門過程中特殊四邊形的變化。
    針對(duì)教學(xué)內(nèi)容、學(xué)生特點(diǎn)及設(shè)計(jì)方案,預(yù)計(jì)下列學(xué)習(xí)效果:
    利用多媒體信息技術(shù)圖文并茂、形象直觀的特點(diǎn),通過學(xué)生自主測(cè)量、分析、整理數(shù)據(jù)并總結(jié)其性質(zhì),培養(yǎng)學(xué)生收集、描述和分析數(shù)據(jù)的能力,并達(dá)到初步理解特殊四邊形性質(zhì)的目標(biāo)。
    在問題引入、了解整體、測(cè)量個(gè)體、總結(jié)性質(zhì)的過程中,符合事物的認(rèn)識(shí)規(guī)律及探究新知識(shí)的一般方法,初步形成感性認(rèn)識(shí)上升到理性認(rèn)識(shí)的辯證唯物主義思想。
    由于個(gè)體差異,針對(duì)教學(xué)目標(biāo)難以達(dá)到的個(gè)別學(xué)生,根據(jù)教學(xué)的進(jìn)展,通過師生之間、學(xué)生之間的對(duì)話交流及時(shí)指導(dǎo),使教學(xué)目標(biāo)得以實(shí)現(xiàn)。
    八年級(jí)數(shù)學(xué)因式分解教案篇十四
    2、范例講解。
    (學(xué)生嘗試練習(xí)后,教師講評(píng))。
    例1:解方程例2:解方程例3:解方程講評(píng)時(shí)強(qiáng)調(diào):
    1、怎樣確定最簡(jiǎn)公分母?(先將各分母因式分解)。
    2、解分式方程的步驟、
    鞏固練習(xí):p1471t,2t、
    課堂小結(jié):解分式方程的一般步驟。
    布置作業(yè):見作業(yè)本。
    八年級(jí)數(shù)學(xué)因式分解教案篇十五
    1、了解方差的定義和計(jì)算公式。
    2、理解方差概念產(chǎn)生和形成過程。
    3、會(huì)用方差計(jì)算公式比較兩組數(shù)據(jù)波動(dòng)大小。
    重點(diǎn):掌握方差產(chǎn)生的必要性和應(yīng)用方差公式解決實(shí)際問題。
    難點(diǎn):理解方差公式。
    (一)知識(shí)詳解:
    方差:設(shè)有n個(gè)數(shù)據(jù),各數(shù)據(jù)與它們的平均數(shù)的差的平方分別為。
    用它們的平均數(shù)表示這組數(shù)據(jù)的方差,即。
    給力小貼士:方差越小說明這組數(shù)據(jù)越穩(wěn)定,波動(dòng)性越低。
    (二)自主檢測(cè)小練習(xí):
    1、已知一組數(shù)據(jù)為2.0、-1.3、-4,則這組數(shù)據(jù)的方差為。
    2、甲、乙兩組數(shù)據(jù)如下:
    甲組:1091181213107;
    乙組:7891011121112。
    分別計(jì)算出這兩組數(shù)據(jù)的極差和方差,并說明哪一組數(shù)據(jù)波動(dòng)較小。
    引例:?jiǎn)栴}:從甲、乙兩種農(nóng)作物中各抽取10株苗,分別測(cè)得它的苗高如下(單位:cm):
    甲:9.10.10.13.7.13.10.8.11.8;
    乙:8.13.12.11.10.12.7.7.10.10;
    問:(1)哪種農(nóng)作物的苗長(zhǎng)較高(可以計(jì)算它們的平均數(shù):=)?
    (2)哪種農(nóng)作物的苗長(zhǎng)較整齊?(可以計(jì)算它們的極差,你可以發(fā)現(xiàn))。
    歸納:方差:設(shè)有n個(gè)數(shù)據(jù),各數(shù)據(jù)與它們的平均數(shù)的差的平方分別為。
    用它們的平均數(shù)表示這組數(shù)據(jù)的方差,即用來表示。
    (一)例題講解:
    金志強(qiáng)1013161412。
    提示:先求平均數(shù),然后使用公式計(jì)算方差。
    (二)小試身手。
    1、甲、乙兩名學(xué)生在相同條件下各射擊靶10次,命中的環(huán)數(shù)如下:
    甲:7.8.6.8.6.5.9.10.7.4。
    乙:9.5.7.8.7.6.8.6.7.7。
    經(jīng)過計(jì)算,兩人射擊環(huán)數(shù)的平均數(shù)是,但s=,s=,則ss,所以確定去參加比賽。
    1、求下列數(shù)據(jù)的眾數(shù):
    (1)3.2.5.3.1.2.3(2)5.2.1.5.3.5.2.2。
    方差公式:
    提示:方差越小,說明這組數(shù)據(jù)越集中。波動(dòng)性越小。
    每課一首詩:求方差,有公式;先平均,再求差;求平方,再平均;所得數(shù),是方差。
    1、小爽和小兵在10次百米跑步練習(xí)中的成績(jī)?nèi)缦卤硭荆?單位:秒)。
    如果根據(jù)這些成績(jī)選拔一人參加比賽,你會(huì)選誰呢?
    必做題:教材141頁練習(xí)1.2;選做題:練習(xí)冊(cè)對(duì)應(yīng)部分習(xí)題。
    寫下你的收獲,交流你的經(jīng)驗(yàn),分享你的成果,你會(huì)感到無比的快樂!
    八年級(jí)數(shù)學(xué)因式分解教案篇十六
    1.理解分式的基本性質(zhì).
    2.會(huì)用分式的基本性質(zhì)將分式變形.
    二、重點(diǎn)、難點(diǎn)。
    1.重點(diǎn):理解分式的基本性質(zhì).
    2.難點(diǎn):靈活應(yīng)用分式的基本性質(zhì)將分式變形.
    3.認(rèn)知難點(diǎn)與突破方法。
    教學(xué)難點(diǎn)是靈活應(yīng)用分式的基本性質(zhì)將分式變形.突破的方法是通過復(fù)習(xí)分?jǐn)?shù)的通分、約分總結(jié)出分?jǐn)?shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì).應(yīng)用分式的基本性質(zhì)導(dǎo)出通分、約分的概念,使學(xué)生在理解的基礎(chǔ)上靈活地將分式變形。
    三、例、習(xí)題的意圖分析。
    1.p7的例2是使學(xué)生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應(yīng)用分式的基本性質(zhì),相應(yīng)地把分子(或分母)乘以或除以了這個(gè)整式,填到括號(hào)里作為答案,使分式的值不變。
    2.p9的例3、例4地目的是進(jìn)一步運(yùn)用分式的基本性質(zhì)進(jìn)行約分、通分.值得注意的是:約分是要找準(zhǔn)分子和分母的公因式,最后的結(jié)果要是最簡(jiǎn)分式;通分是要正確地確定各個(gè)分母的最簡(jiǎn)公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡(jiǎn)公分母。
    教師要講清方法,還要及時(shí)地糾正學(xué)生做題時(shí)出現(xiàn)的錯(cuò)誤,使學(xué)生在做提示加深對(duì)相應(yīng)概念及方法的理解。
    3.p11習(xí)題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號(hào).這一類題教材里沒有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號(hào),改變其中任何兩個(gè),分式的值不變。
    “不改變分式的值,使分式的分子和分母都不含‘-’號(hào)”是分式的基本性質(zhì)的應(yīng)用之一,所以補(bǔ)充例5。
    四、課堂引入。
    1.請(qǐng)同學(xué)們考慮:與相等嗎?與相等嗎?為什么?
    2.說出與之間變形的過程,與之間變形的過程,并說出變形依據(jù)?
    3.提問分?jǐn)?shù)的基本性質(zhì),讓學(xué)生類比猜想出分式的基本性質(zhì).
    五、例題講解。
    p7例2.填空:
    [分析]應(yīng)用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個(gè)整式,使分式的值不變.
    p11例3.約分:
    [分析]約分是應(yīng)用分式的基本性質(zhì)把分式的分子、分母同除以同一個(gè)整式,使分式的值不變.所以要找準(zhǔn)分子和分母的公因式,約分的結(jié)果要是最簡(jiǎn)分式.
    p11例4.通分:
    [分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡(jiǎn)公分母.
    (補(bǔ)充)例5.不改變分式的值,使下列分式的分子和分母都不含“-”號(hào).
    [分析]每個(gè)分式的分子、分母和分式本身都有自己的符號(hào),其中兩個(gè)符號(hào)同時(shí)改變,分式的值不變.
    解:=,=,=,=,=。
    六、隨堂練習(xí)。
    1.填空:
    (1)=(2)=。
    (3)=(4)=。
    2.約分:
    3.通分:
    (1)和(2)和。
    (3)和(4)和。
    4.不改變分式的值,使下列分式的分子和分母都不含“-”號(hào).
    七、課后練習(xí)。
    1.判斷下列約分是否正確:
    (1)=(2)=。
    (3)=0。
    2.通分:
    (1)和(2)和。
    3.不改變分式的值,使分子第一項(xiàng)系數(shù)為正,分式本身不帶“-”號(hào).
    八、答案:
    六、1.(1)2x(2)4b(3)bn+n(4)x+y。
    2.(1)(2)(3)(4)-2(x-y)2。
    3.通分:
    (1)=,=。
    (2)=,=。
    (3)==。
    (4)==。
    八年級(jí)數(shù)學(xué)因式分解教案篇十七
    可化為一元二次方程的分式方程的解法.。
    教學(xué)難點(diǎn):解分式方程,學(xué)生不容易理解為什么必須進(jìn)行檢驗(yàn).。
    一、新課引入:
    1.什么叫做分式方程?解可化為一元一次方程的分化方程的方法與步驟是什么?
    2.解可化為一元一次方程的分式方程為什么要檢驗(yàn)?檢驗(yàn)的方法是什么?
    3、產(chǎn)生增根的原因是什么?.。
    二、新課講解:
    八年級(jí)數(shù)學(xué)因式分解教案篇十八
    1.了解方差的定義和計(jì)算公式。
    2.理解方差概念的產(chǎn)生和形成的過程。
    3.會(huì)用方差計(jì)算公式來比較兩組數(shù)據(jù)的波動(dòng)大小。
    1.重點(diǎn):方差產(chǎn)生的必要性和應(yīng)用方差公式解決實(shí)際問題。
    2.難點(diǎn):理解方差公式。
    問題農(nóng)科院計(jì)劃為某地選擇合適的甜玉米種子.選擇種子時(shí),甜玉米的產(chǎn)量和產(chǎn)量的穩(wěn)定性是農(nóng)科院所關(guān)心的問題.為了解甲、乙兩種甜玉米種子的相關(guān)情況,農(nóng)科院各用10塊自然條件相同的試驗(yàn)田進(jìn)行試驗(yàn),得到各試驗(yàn)田每公頃的產(chǎn)量(單位:t)如表所示。
    根據(jù)這些數(shù)據(jù)估計(jì),農(nóng)科院應(yīng)該選擇哪種甜玉米種子呢?
    來衡量這組數(shù)據(jù)的波動(dòng)大小,并把它叫做這組數(shù)據(jù)的方差(variance),記作。
    意義:用來衡量一批數(shù)據(jù)的波動(dòng)大小。
    在樣本容量相同的情況下,方差越大,說明數(shù)據(jù)的波動(dòng)越大,越不穩(wěn)定。
    (1)研究離散程度可用。
    (2)方差應(yīng)用更廣泛衡量一組數(shù)據(jù)的.波動(dòng)大小。
    (3)方差主要應(yīng)用在平均數(shù)相等或接近時(shí)。
    (4)方差大波動(dòng)大,方差小波動(dòng)小,一般選波動(dòng)小的。
    例題:在一次芭蕾舞比賽中,甲乙兩個(gè)芭蕾舞團(tuán)都表演了舞劇《天鵝湖》,參加表演的女演員的身高(單位:cm)分別是:
    甲163164164165165166166167。
    乙163165165166166167168168。
    哪個(gè)芭蕾舞團(tuán)的女演員的身高比較整齊?
    1.已知一組數(shù)據(jù)為2、0、-1、3、-4,則這組數(shù)據(jù)的方差為。
    2.甲、乙兩名學(xué)生在相同的條件下各射靶10次,命中的環(huán)數(shù)如下:
    甲:7、8、6、8、6、5、9、10、7、4。
    乙:9、5、7、8、7、6、8、6、7、7。
    經(jīng)過計(jì)算,兩人射擊環(huán)數(shù)的平均數(shù)相同,但s,所以確定去參加比賽。
    3.甲、乙兩臺(tái)機(jī)床生產(chǎn)同種零件,10天出的次品分別是()。
    甲:0、1、0、2、2、0、3、1、2、4。
    乙:2、3、1、2、0、2、1、1、2、1。
    分別計(jì)算出兩個(gè)樣本的平均數(shù)和方差,根據(jù)你的計(jì)算判斷哪臺(tái)機(jī)床的性能較好?
    八年級(jí)數(shù)學(xué)因式分解教案篇十九
    1、掌握平行四邊形的判定定理1、2、3、4,并能與性質(zhì)定理、定義綜合應(yīng)用。
    2、使學(xué)生理解判定定理與性質(zhì)定理的區(qū)別與聯(lián)系。
    3、會(huì)根據(jù)簡(jiǎn)單的條件畫出平行四邊形,并說明畫圖的依據(jù)是哪幾個(gè)定理。
    1、通過“探索式試明法”開拓學(xué)生思路,發(fā)展學(xué)生思維能力。
    2、通過教學(xué),使學(xué)生逐步學(xué)會(huì)分別從題設(shè)或結(jié)論出發(fā)尋求論證思路的分析方法,進(jìn)一步提高學(xué)生分析問題,解決問題的能力。
    通過一題多解激發(fā)學(xué)生的學(xué)習(xí)興趣。
    通過學(xué)習(xí),體會(huì)幾何證明的方法美。
    構(gòu)造逆命題,分析探索證明,啟發(fā)講解。
    1、教學(xué)重點(diǎn):平行四邊形的判定定理1、2、3的應(yīng)用。
    2、教學(xué)難點(diǎn):綜合應(yīng)用判定定理和性質(zhì)定理。
    (強(qiáng)調(diào)在求證平行四邊形時(shí)用判定定理在已知平行四邊形時(shí)用性質(zhì)定理)。
    八年級(jí)數(shù)學(xué)因式分解教案篇二十
    本周上午我聽了史老師一節(jié)關(guān)于《運(yùn)用平方差公式進(jìn)行因式分解》的公開課,史老師以自己扎實(shí)的數(shù)學(xué)基本功,細(xì)致嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)解題思路,靈活輕松的師生互動(dòng),為我們獻(xiàn)上了一節(jié)優(yōu)質(zhì)的數(shù)學(xué)課。
    史老師針對(duì)本章內(nèi)容所要用上了前面的知識(shí)做了細(xì)致的復(fù)習(xí)。實(shí)現(xiàn)了本章節(jié)知識(shí)點(diǎn)的聯(lián)系與復(fù)習(xí)回顧,對(duì)接下去的`學(xué)習(xí)做了很好的鋪墊。
    史老師通過求長(zhǎng)方形的面積來引導(dǎo)學(xué)生探索、總結(jié)出運(yùn)用平方差公式進(jìn)行因式分解的法則,利用數(shù)形結(jié)合,讓學(xué)生對(duì)這個(gè)法則的理解更深入,同時(shí)突破了難點(diǎn),體現(xiàn)了以教師為主導(dǎo)、學(xué)生自主探究、討論、合作交流的新課改理念。
    史老師通過練習(xí),讓學(xué)生觀察步驟,并做出總結(jié)。使學(xué)生加深了對(duì)知識(shí)的理解,學(xué)會(huì)觀察,發(fā)現(xiàn),總結(jié)知識(shí)。最后史老師還給學(xué)生編了個(gè)解題的順口溜,既方便讓學(xué)生記憶,又能鞏固知識(shí)。
    (1)整節(jié)課老師講得多,學(xué)生個(gè)別回答較少。
    (2)學(xué)生的討論與合作學(xué)習(xí)還需加強(qiáng),討論問題還不夠深入,應(yīng)讓學(xué)生從合作學(xué)習(xí)中有所提高,從與它人的交流中碰撞出思維的火花。
    (3)還需加強(qiáng)的對(duì)知識(shí)點(diǎn)的認(rèn)識(shí),比如為什么要學(xué)升降冪,是為了結(jié)果的有序,數(shù)學(xué)的結(jié)果需要簡(jiǎn)潔有序。這樣讓學(xué)生很清楚,有目的的學(xué)習(xí)效果總是比較好的。