教案可以幫助教師分析學(xué)生的學(xué)習(xí)特點,有針對性地進行教學(xué)設(shè)計。在設(shè)計教學(xué)活動時,要注重培養(yǎng)學(xué)生的主動學(xué)習(xí)能力,創(chuàng)設(shè)豐富多樣的教學(xué)環(huán)境。接下來將為大家分享一些編寫教案的經(jīng)驗和技巧,希望能夠幫助大家提高教學(xué)水平。
七年級數(shù)學(xué)教案設(shè)計篇一
1.教學(xué)目標、重點、難點.
教學(xué)目標:
(1)了解方程的解的概念.
(2)體驗對方程解的估算,會檢驗一個數(shù)是不是某個一元方程的解.
(3)滲透對應(yīng)思想.
重點:方程解的意義,會檢驗一個數(shù)是不是一個一元方程的解.
難點:方程解的意義,會檢驗一個數(shù)是不是一個一元方程的解.
2.例、習(xí)題的意圖。
本節(jié)課重點是了解方程的解的意義.通過實際問題中對所列方程解的估算,了解什么是方程的解以及由于估算遇到了困難,產(chǎn)生尋求方程解法的需求,為后面的學(xué)習(xí)做好鋪墊.
例1是通過實際問題列出方程,根據(jù)(1)題未知數(shù)的取值范圍以及方程解的概念逐一代入方程來尋求方程的解,使學(xué)生親身體驗什么是方程的解,也為例2檢驗一個數(shù)值是不是方程的解做好鋪墊.對第(2)、(3)題再采用(1)題方法尋求方程的解已不容易,這又為后邊學(xué)習(xí)解方程奠定了積極的心理儲備.
例2是根據(jù)方程的解的意義,使學(xué)生會檢驗一個數(shù)值是不是方程的解,這一點應(yīng)切實使學(xué)生掌握.
3.認知難點與突破方法。
難點是方程解的意義和檢驗一個數(shù)是不是一個一元方程的解.例1起著承上啟下的作用,在估算方程解的過程中,理解方程解的意義,學(xué)會檢驗一個數(shù)是不是一個一元方程的解.抓住關(guān)鍵字“等號左右兩邊相等”,檢驗一個數(shù)是不是一個一元方程的解,要分別計算方程的左右兩邊,若其值相等,則這個未知數(shù)是方程的解,若不相等,則不是方程的解.
二、新課引入。
復(fù)習(xí):
1.什么是一元一次方程?
2.練習(xí):當(dāng),,時,求式子的值.
答案:,,.
通過練習(xí)2強調(diào)求式子的值的一般步驟,其中易錯易混的地方,如代入的值是負數(shù),應(yīng)加上括號,數(shù)與數(shù)相乘時應(yīng)恢復(fù)乘號,運算關(guān)系不能混淆等.
三、例題講解。
例1教材p69中例1。
分析:三個題目中的相等關(guān)系分別是:
(1)計算機已使用的時間+繼續(xù)使用的時間=規(guī)定的檢修時間.
(2)2(長+寬)=周長.
(3)女生人數(shù)—男生人數(shù)=.
分析:方程中等號左邊有未知數(shù),估算的值代入方程應(yīng)使等號左邊的值等于等號右邊的值2450,這樣的值才適合方程.由于表示月份,是正整數(shù),不妨讓,,……分別代入方程算一算.
由計算結(jié)果可以看到,每一個的允許值都使代數(shù)式有一個確定的數(shù)值,為方便起見,可以列一個表格:
1234567…185021502300245026002750…從表中發(fā)現(xiàn):當(dāng)時,的值是,也就是,當(dāng)時,方程中等號的左邊:.等號的右邊:2450.由此得到方程的左邊=右邊,就說叫做方程的解,也就是方程中,未知數(shù)的值為5.所以,方程的解就是.
教材p71中的小云朵,可以多選幾個情況來說明,以加強對方程解得意義的理解.
從表中你還能發(fā)現(xiàn)哪個方程的解?(引導(dǎo)學(xué)生得出)如方程的解是;方程的解是等等,使學(xué)生進一步體會方程解的概念.
方程解的意義:使方程中等號左右兩邊相等的未知數(shù)的值,叫做方程的解.
由于這兩個方程估算其解有一定的困難,數(shù)不整齊,或方程比較復(fù)雜,出現(xiàn)矛盾沖突,引導(dǎo)學(xué)生得出:學(xué)習(xí)解方程的方法十分必要.
怎樣檢驗一個數(shù)是否是方程的解呢?
七年級數(shù)學(xué)教案設(shè)計篇二
(二)能力訓(xùn)練目標:
1、經(jīng)歷探索有理數(shù)乘法的運算律的過程,發(fā)展觀察、歸納的能力。
2、能運用乘法運算律簡化計算。
(三)情感與價值觀要求:
1、在共同探索、共同發(fā)現(xiàn)、共同交流的過程中分享成功的喜悅。
2、在討論的過程中,使學(xué)生感受集體的力量,培養(yǎng)團隊意識。
乘法運算律的運用。
乘法運算律的運用。
探究交流相結(jié)合。
創(chuàng)設(shè)問題情境,引入新課。
[活動1]。
問題2:計算下列各題:
(1)(-7)×8;。
(2)8×(-7);
(5)[3×(-4)]×(-5);
(6)3×[(-4)×(-5)];
[師生]由學(xué)生自主探索,教師可參與到學(xué)生的討論中。
像前面那樣規(guī)定有理數(shù)乘法法則后,乘法的交換律和結(jié)合律與分配律在有理數(shù)乘法中仍然成立。我們可以通過問題2來檢驗。(略)。
[師]同學(xué)們自己采用上面的方法來探究一下分配律在有理數(shù)范圍內(nèi)成立嗎?
[生]例如:5×[3十(-7)]和5×3十5×(-7);(略)。
[師](-5)×(3-7)和(-5)×3-5×7的結(jié)果相等嗎?
(注意:(-5)×(3-7)中的3-7應(yīng)看作3與(-7)的和,才能應(yīng)用分配律。否則不能直接應(yīng)用分配律,因為減法沒有分配律。)。
講授新課:
[活動2]用文字語言和字母把乘法交換律、結(jié)合律、分配律表達出來。
應(yīng)得出:
1、一般地,有理數(shù)乘法中,兩個數(shù)相乘,交換因數(shù)的位置,積相等。
2、三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積相等。
3、一般地,一個數(shù)同兩個數(shù)的和相乘,等于這個數(shù)分別同這兩個數(shù)相乘,再把積相加。
[活動3][師生]教師引導(dǎo)學(xué)生討論、交流,從中體會學(xué)習(xí)的快樂。
3、用簡便方法計算:
[活動4]。
練習(xí)(教科書第42頁)。
這節(jié)課我們學(xué)習(xí)乘法的運算律及它們的運用,使我們體驗到了掌握一般的正常運算外,還要靈活運用運算律,能簡便的一定要簡便,這樣做既快又準。
課后作業(yè):課本習(xí)題1.4的第7題(3)、(6)。
用簡便方法計算:
(1)6.868×(-5)+6.868×(一12)+6.868×(+17)。
(2)[(4×8)×25一8]×125。
七年級數(shù)學(xué)教案設(shè)計篇三
本節(jié)課的重難點都是從實際于問題中尋找相等關(guān)系,從而列方程解決實際問題,為了更好地突出重點、突破點,在教學(xué)過程中著力體現(xiàn)以下幾方面的特點:
1、突出問題的應(yīng)用意識。首先用一個學(xué)生感興趣的突出問題引入課題,然后運用算術(shù)方法給出答案,在各環(huán)節(jié)的安排上都設(shè)計成一個個問題,引導(dǎo)學(xué)生能圍繞問題開展思考、討論,進行學(xué)習(xí)。
2、體現(xiàn)學(xué)生的主體意識。始終把學(xué)生放在主體地位,讓學(xué)生通過對列算式與列方程的比較,分別歸納出它們的特點,從感受到從算術(shù)方法到代數(shù)方法是數(shù)學(xué)的進步。通過學(xué)生之間的合作與交流,得了出問題的不同解答方法,讓學(xué)生對這節(jié)課的學(xué)習(xí)內(nèi)容、方法、注意點等進行歸納。
3、體現(xiàn)學(xué)生思維的層次性。首先引導(dǎo)學(xué)生嘗試用算術(shù)方法解決問題,然后逐步引導(dǎo)學(xué)生列出含未知數(shù)的式子,尋找相等關(guān)系列出方程。在尋找相等關(guān)系,設(shè)未知數(shù)及練習(xí)和作業(yè)的布置等環(huán)節(jié)中,都注意了學(xué)生思維的層次性。
4、滲透建模的思想。把實際問題中的數(shù)量關(guān)系用方程的形式表示出來,就是建立一種數(shù)學(xué)模型,有意識地按設(shè)未知數(shù)、列方程等步驟組織學(xué)生學(xué)習(xí),就是培養(yǎng)學(xué)生由實際問題抽象出數(shù)學(xué)模型的能力。
從當(dāng)堂練習(xí)和作業(yè)情況來看,收到了很好的教學(xué)效果,絕大部分學(xué)生都能根據(jù)實際問題準確地建立數(shù)學(xué)模型,但也有少數(shù)幾個學(xué)生存在一定的問題,不能很好地列出方程。
【拓展閱讀】。
七年級數(shù)學(xué)教案設(shè)計篇四
2.內(nèi)容解析。
有理數(shù)的乘法是繼有理數(shù)的加減法之后的又一種基本運算.有理數(shù)乘法既是有理數(shù)運算的深入,又是進一步學(xué)習(xí)有理數(shù)的除法、乘方的基礎(chǔ),對后續(xù)代數(shù)學(xué)習(xí)是至關(guān)重要的.
與有理數(shù)加法法則類似,有理數(shù)乘法法則也是一種規(guī)定,給出這種規(guī)定要遵循的原則是“使原有的運算律保持不變”.本節(jié)課要在小學(xué)已掌握的乘法運算的基礎(chǔ)上,通過合情推理的方式,得到“要使正數(shù)乘正數(shù)(或0)的規(guī)律在正數(shù)乘負數(shù)、負數(shù)乘負數(shù)時仍然成立,那么運算結(jié)果應(yīng)該是什么”的結(jié)論,從而使學(xué)生體會乘法法則的合理性.與加法法則一樣,正數(shù)乘負數(shù)、負數(shù)乘負數(shù)的法則,也要從符號和絕對值來分析.由于絕對值相乘就是非負數(shù)相乘,因此,這里關(guān)鍵是要規(guī)定好含有負數(shù)的兩數(shù)相乘之積的符號,這是有理數(shù)乘法的本質(zhì)特征,也是乘法法則的核心.
基于以上分析,可以確定本課的教學(xué)重點是兩個有理數(shù)相乘的符號法則.
二、目標及其解析。
1.目標。
(1)理解有理數(shù)乘法法則,能利用有理數(shù)乘法法則計算兩個數(shù)的乘法.
(2)能說出有理數(shù)乘法的符號法則,能用例子說明法則的合理性.
2.目標解析。
達成目標(1)的標志是學(xué)生在進行兩個有理數(shù)乘法運算時,能按照乘法法則,先考慮兩乘數(shù)的符號,再考慮兩乘數(shù)的絕對值,并得出正確的結(jié)果.
達成目標(2)的標志是學(xué)生能通過具體例子說明有理數(shù)乘法的符號法則的歸納過程.
三、教學(xué)問題診斷分析。
有理數(shù)的乘法與小學(xué)學(xué)習(xí)的乘法的區(qū)別在于負數(shù)參與了運算.本課要以正數(shù)、0之間的運算為基礎(chǔ),構(gòu)造一組有規(guī)律的算式,先讓學(xué)生從算式左右各數(shù)的符號和絕對值兩個角度觀察這些算式的共同特點并得出規(guī)律,再以問題“要使這個規(guī)律在引入負數(shù)后仍然成立,那么應(yīng)有……”為引導(dǎo),讓學(xué)生思考在這樣的規(guī)律下,正數(shù)乘負數(shù)、負數(shù)乘正數(shù)、兩個負數(shù)相乘各應(yīng)有什么運算結(jié)果,并從積的符號和絕對值兩個角度總結(jié)出規(guī)律,進而給出有理數(shù)乘法法則,在這個過程中體會規(guī)定的合理性.上述過程中,學(xué)生對于為什么要討論這些問題、什么叫“觀察下面的乘法算式”、從哪些角度概括算式的規(guī)律等,都會出現(xiàn)困難.為了解決這些困難,教師應(yīng)該在“如何觀察”上加強指導(dǎo),并明確提出“從符號和絕對值兩個角度看規(guī)律”的要求.
本課的教學(xué)難點是:如何觀察給定的乘法算式;從哪些角度概括算式的規(guī)律.
四、教學(xué)過程設(shè)計。
教師引導(dǎo)學(xué)生從有理數(shù)分類的角度考慮,區(qū)分出有理數(shù)乘法的情況有:正數(shù)乘正數(shù)、正數(shù)與0相乘、正數(shù)乘負數(shù)、負數(shù)乘正數(shù)、負數(shù)乘負數(shù).
設(shè)計意圖:有理數(shù)分為正數(shù)、零、負數(shù),由此引出兩個有理數(shù)相乘的幾種情況,既復(fù)習(xí)有關(guān)知識,為下面的教學(xué)做好準備,又滲透了分類討論思想.
問題2下面從我們熟悉的乘法運算開始.觀察下面的乘法算式,你能發(fā)現(xiàn)什么規(guī)律嗎?
3×3=9,
3×2=6,
3×1=3,
3×0=0.
追問1:你認為問題要我們“觀察”什么?應(yīng)該從哪幾個角度去觀察、發(fā)現(xiàn)規(guī)律?
如果學(xué)生仍然有困難,教師給予提示:
(1)四個算式有什么共同點?——左邊都有一個乘數(shù)3.
(2)其他兩個數(shù)有什么變化規(guī)律?——隨著后一個乘數(shù)逐次遞減1,積逐次遞減3.
設(shè)計意圖:構(gòu)造這組有規(guī)律的算式,為通過合情推理,得到正數(shù)乘負數(shù)的法則做準備.通過追問、提示,使學(xué)生知道“如何觀察”“如何發(fā)現(xiàn)規(guī)律”.
教師:要使這個規(guī)律在引入負數(shù)后仍然成立,那么,3×(-1)=-3,這是因為后一乘數(shù)從0遞減1就是-1,因此積應(yīng)該從0遞減3而得-3.
追問2:根據(jù)這個規(guī)律,下面的兩個積應(yīng)該是什么?
3×(-2)=,
3×(-3)=.
練習(xí):請你模仿上面的過程,自己構(gòu)造出一組算式,并說出它的變化規(guī)律.
設(shè)計意圖:讓學(xué)生自主構(gòu)造算式,加深對運算規(guī)律的理解.
先讓學(xué)生觀察、敘述、補充,教師再總結(jié):都是正數(shù)乘負數(shù),積都為負數(shù),積的.絕對值等于各乘數(shù)絕對值的積.
設(shè)計意圖:先得到一類情況的結(jié)果,降低歸納概括的難度,同時也為后面的學(xué)習(xí)奠定基礎(chǔ).
問題3觀察下列算式,類比上述過程,你又能發(fā)現(xiàn)什么規(guī)律?
3×3=9,
2×3=6,
1×3=3,
0×3=0.
鼓勵學(xué)生模仿正數(shù)乘負數(shù)的過程,自己獨立得出規(guī)律.
設(shè)計意圖:為得到負數(shù)乘正數(shù)的結(jié)論做準備;培養(yǎng)學(xué)生的模仿、概括的能力.
追問1:要使這個規(guī)律在引入負數(shù)后仍然成立,你認為下面的空格應(yīng)各填什么數(shù)?
(-1)×3=,
(-2)×3=,
(-3)×3=.
練習(xí):請你模仿上面的過程,自己構(gòu)造出一組算式,并說出它的變化規(guī)律.
先讓學(xué)生觀察、敘述、補充,教師再總結(jié):都是負數(shù)乘正數(shù),積都為負數(shù),積的絕對值等于各乘數(shù)絕對值的積.
追問3:正數(shù)乘負數(shù)、負數(shù)乘正數(shù)兩種情況下的結(jié)論有什么共性?你能把它概括出來嗎?
設(shè)計意圖:讓學(xué)生模仿已有的討論過程,自己得出負數(shù)乘正數(shù)的結(jié)論,并進一步概括出“異號兩數(shù)相乘,積的符號為負,積的絕對值等于各乘數(shù)絕對值的積”.既使學(xué)生感受法則的合理性,又培養(yǎng)他們的歸納思想和概括能力.
問題4利用上面歸納的結(jié)論計算下面的算式,你能發(fā)現(xiàn)其中的規(guī)律嗎?
(-3)×3=,
(-3)×2=,
(-3)×1=,
(-3)×0=.
追問1:按照上述規(guī)律填空,并說說其中有什么規(guī)律?
(-3)×(-1)=,
(-3)×(-2)=,
(-3)×(-3)=.
設(shè)計意圖:由學(xué)生自主探究得出負數(shù)乘負數(shù)的結(jié)論.因為有前面積累的豐富經(jīng)驗,學(xué)生能獨立完成.
問題5總結(jié)上面所有的情況,你能試著自己給出有理數(shù)乘法法則嗎?
學(xué)生獨立思考后進行課堂交流,師生共同完成,得出結(jié)論后再讓學(xué)生看教科書.
學(xué)生獨立思考、回答.如果有困難,可先讓學(xué)生看課本第29頁有理數(shù)乘法法則后面的一段文字.
設(shè)計意圖:讓學(xué)生嘗試歸納乘法法則,明確按法則計算的關(guān)鍵步驟.
例1計算:
(1)。
;(2)。
;(3)。
學(xué)生獨立完成后,全班交流.
教師說明:在(3)中,我們得到了。
=1.與以前學(xué)習(xí)過的倒數(shù)概念一樣,我們說。
與-2互為倒數(shù).一般地,在有理數(shù)中仍然有:乘積是1的兩個數(shù)互為倒數(shù).
追問:在(2)中,8和-8互為相反數(shù).由此,你能說說如何得到一個數(shù)的相反數(shù)嗎?
設(shè)計意圖:本例既作為鞏固乘法法則,又引出了倒數(shù)的概念(因為這個概念很容易理解),同時說明了求一個數(shù)的相反數(shù)與乘-1之間的關(guān)系(反過來有-8=8×(―1)).
設(shè)計意圖:利用有理數(shù)乘法解決實際問題,體現(xiàn)數(shù)學(xué)的應(yīng)用價值.
小結(jié)、布置作業(yè)。
請同學(xué)們帶著下列問題回顧本節(jié)課的內(nèi)容:
(2)用有理數(shù)乘法法則進行兩個有理數(shù)的乘法運算的基本步驟是什么?
(3)舉例說明如何從正數(shù)、0的乘法運算出發(fā),歸納出正數(shù)乘負數(shù)的法則.
(4)你能舉例說明符號法則“負負得正”的合理性嗎?
設(shè)計意圖:引導(dǎo)學(xué)生從知識內(nèi)容和學(xué)習(xí)過程兩個方面進行小結(jié).
作業(yè):教科書第30頁,練習(xí)1,2,3;第37頁,習(xí)題1.4第1題.
五、目標檢測設(shè)計。
1.判斷下列運算結(jié)果的符號:
(1)5×(-3);。
(2)(-3)×3;。
(3)(-2)×(-7);。
(4)(+0.5)×(+0.7).
2計算:
(1)6×(-9);(2)(-6)×0.25;(3)(-0.5)×(-8);。
(4)。
;(5)0×(-6);(6)8×。
設(shè)計意圖:檢測學(xué)生對有理數(shù)乘法法則的理解情況.
七年級數(shù)學(xué)教案設(shè)計篇五
1,掌握有理數(shù)的概念,會對有理數(shù)按照一定的標準進行分類,培養(yǎng)分類能力;。
2,了解分類的標準與分類結(jié)果的相關(guān)性,初步了解“集合”的含義;。
3,體驗分類是數(shù)學(xué)上的常用處理問題的方法。
教學(xué)難點正確理解分類的標準和按照一定的標準進行分類。
知識重點正確理解有理數(shù)的概念。
教學(xué)過程(師生活動)設(shè)計理念。
探索新知在前兩個學(xué)段,我們已經(jīng)學(xué)習(xí)了很多不同類型的數(shù),通過上兩節(jié)課的學(xué)習(xí),又知道了現(xiàn)在的數(shù)包括了負數(shù),現(xiàn)在請同學(xué)們在草稿紙上任意寫出3個數(shù)(同時請3個同學(xué)在黑板上寫出).
問題1:觀察黑板上的9個數(shù),并給它們進行分類.
學(xué)生思考討論和交流分類的情況.
學(xué)生可能只給出很粗略的分類,如只分為“正數(shù)”和“負數(shù)”或“零”三類,此時,教師應(yīng)給予引導(dǎo)和鼓勵.
例如,
對于數(shù)5,可這樣問:5和5.1有相同的類型嗎?5可以表示5個人,而5.1可以表示人數(shù)嗎?(不可以)所以它們是不同類型的數(shù),數(shù)5是正數(shù)中整個的數(shù),我們就稱它為“正整數(shù)”,而5.1不是整個的數(shù),稱為“正分數(shù),,.??…(由于小數(shù)可化為分數(shù),以后把小數(shù)和分數(shù)都稱為分數(shù))。
通過教師的引導(dǎo)、鼓勵和不斷完善,以及學(xué)生自己的概括,最后歸納出我們已經(jīng)學(xué)過的5類不同的數(shù),它們分別是“正整數(shù),零,負整數(shù),正分數(shù),負分數(shù),’.
按照書本的說法,得出“整數(shù)”“分數(shù)”和“有理數(shù)”的概念.
看書了解有理數(shù)名稱的由來.
“統(tǒng)稱”是指“合起來總的名稱”的意思.
學(xué)生自己嘗試分類時,可能會很粗略,教師給予引導(dǎo)和鼓勵,劃分數(shù)的類型要從文字所表示的意義上去引導(dǎo),這樣學(xué)生易于理解。
有理數(shù)的分類表要在黑板或媒體上展示,分類的標準要引導(dǎo)學(xué)生去體會。
練一練1,任意寫出三個有理數(shù),并說出是什么類型的數(shù),與同伴進行交流.
2,教科書第10頁練習(xí).
此練習(xí)中出現(xiàn)了集合的概念,可向?qū)W生作如下的說明.
數(shù)集一般用圓圈或大括號表示,因為集合中的數(shù)是無限的,而本題中只填了所給的幾個數(shù),所以應(yīng)該加上省略號.
思考:上面練習(xí)中的四個集合合并在一起就是全體有理數(shù)的集合嗎?
也可以教師說出一些數(shù),讓學(xué)生進行判斷。
集合的概念不必深入展開。
創(chuàng)新探究問題2:有理數(shù)可分為正數(shù)和負數(shù)兩大類,對嗎?為什么?
教學(xué)時,要讓學(xué)生總結(jié)已經(jīng)學(xué)過的數(shù),鼓勵學(xué)生概括,通過交流和討論,教師作適當(dāng)?shù)闹笇?dǎo),逐步得到如下的分類表。
有理數(shù)這個分類可視學(xué)生的程度確定是否有必要教學(xué)。
小結(jié)與作業(yè)。
課堂小結(jié)到現(xiàn)在為止我們學(xué)過的數(shù)都是有理數(shù)(圓周率除外),有理數(shù)可以按不同的標準進行分類,標準不同,分類的結(jié)果也不同。
本課作業(yè)1,必做題:教科書第18頁習(xí)題1.2第1題。
2,教師自行準備。
本課教育評注(課堂設(shè)計理念,實際教學(xué)效果及改進設(shè)想)。
1,本課在引人了負數(shù)后對所學(xué)過的數(shù)按照一定的標準進行分類,提出了有理數(shù)的概。
念.分類是數(shù)學(xué)中解決問題的常用手段,通過本節(jié)課的學(xué)習(xí)使學(xué)生了解分類的思想并進。
行簡單的分類是數(shù)學(xué)能力的體現(xiàn),教師在教學(xué)中應(yīng)引起足夠的重視.關(guān)于分類標準與分。
類結(jié)果的關(guān)系,分類標準的確定可向?qū)W生作適當(dāng)?shù)臐B透,集合的概念比較抽象,學(xué)生真正接受需要很長的過程,本課不要過多展開。
2,本課具有開放性的特點,給學(xué)生提供了較大的思維空間,能促進學(xué)生積極主動地參加學(xué)習(xí),親自體驗知識的形成過程,可避免直接進行分類所帶來的枯燥性;同時還體現(xiàn)合作學(xué)習(xí)、交流、探究提高的特點,對學(xué)生分類能力的養(yǎng)成有很好的作用。
3,兩種分類方法,應(yīng)以第一種方法為主,第二種方法可視學(xué)生的情況進行。
七年級數(shù)學(xué)教案設(shè)計篇六
2、培養(yǎng)學(xué)生的觀察、比較、分析、歸納、概括能力,以及學(xué)生的探索精神;
3、滲透分類討論思想?
重點:有理數(shù)乘方的運算?
難點:有理數(shù)乘方運算的符號法則?
1、求n個相同因數(shù)的積的運算叫做乘方?
2、乘方的結(jié)果叫做冪,相同的因數(shù)叫做底數(shù),相同因數(shù)的個數(shù)叫做指數(shù)?
一般地,在an中,a取任意有理數(shù),n取正整數(shù)?
應(yīng)當(dāng)注意,乘方是一種運算,冪是乘方運算的結(jié)果?當(dāng)an看作a的n次方的結(jié)果時,也可以讀作a的n次冪。
例1計算:
(1)2,2,2,24;(2)-2,2,3,(-2)4;。
(3)0,02,03,04?
教師指出:2就是21,指數(shù)1通常不寫?讓三個學(xué)生在黑板上計算?
引導(dǎo)學(xué)生觀察、比較、分析這三組計算題中,底數(shù)、指數(shù)和冪之間有什么關(guān)系?
(1)模向觀察。
正數(shù)的任何次冪都是正數(shù);負數(shù)的奇次冪是負數(shù),偶次冪是正數(shù);零的任何次冪都是零?
(2)縱向觀察。
互為相反數(shù)的兩個數(shù)的奇次冪仍互為相反數(shù),偶次冪相等?
(3)任何一個數(shù)的偶次冪都是什么數(shù)?
任何一個數(shù)的偶次冪都是非負數(shù)?
你能把上述的結(jié)論用數(shù)學(xué)符號語言表示嗎?
當(dāng)a0時,an0(n是正整數(shù));
當(dāng)a。
當(dāng)a=0時,an=0(n是正整數(shù))?
(以上為有理數(shù)乘方運算的符號法則)。
a2n=(-a)2n(n是正整數(shù));
=-(-a)2n-1(n是正整數(shù));
a2n0(a是有理數(shù),n是正整數(shù))?
例2計算:
(1)(-3)2,(-3)3,[-(-3)]5;。
(2)-32,-33,-(-3)5;。
(3),?
讓三個學(xué)生在黑板上計算?
課堂練習(xí)。
計算:
(1),,,-,;
(2)(-1)2001,322,-42(-4)2,-23(-2)3;。
(3)(-1)n-1?
讓學(xué)生回憶,做出小結(jié):
1、乘方的有關(guān)概念?
2、乘方的符號法則?3?括號的作用?
1、計算下列各式:
(-3)2;(-2)3;(-4)4;;-0.12;。
-(-3)3;3(-2)3;-6(-3)3;-(-4)2(-1)5?
2、填表:
3、a=-3,b=-5,c=4時,求下列各代數(shù)式的值:
4、當(dāng)a是負數(shù)時,判斷下列各式是否成立?
(1)a2=(-a)2;(2)a3=(-a)3;(3)a2=;(4)a3=。
5、平方得9的數(shù)有幾個?是什么?有沒有平方得-9的有理數(shù)?為什么?
6、若(a+1)2+|b-2|=0,求a2000b3的值?
七年級數(shù)學(xué)教案設(shè)計篇七
2,了解分類的標準與分類結(jié)果的相關(guān)性,初步了解“集合”的含義;
3,體驗分類是數(shù)學(xué)上的常用處理問題的方法。
正確理解有理數(shù)的概念。
探索新知在前兩個學(xué)段,我們已經(jīng)學(xué)習(xí)了很多不同類型的數(shù),通過上兩節(jié)課的學(xué)習(xí),又知道了現(xiàn)在的數(shù)包括了負數(shù),現(xiàn)在請同學(xué)們在草稿紙上任意寫出3個數(shù)(同時請3個同學(xué)在黑板上寫出)。
問題1:觀察黑板上的9個數(shù),并給它們進行分類。
學(xué)生可能只給出很粗略的分類,如只分為“正數(shù)”和“負數(shù)”或“零”三類,此時,教師應(yīng)給予引導(dǎo)和鼓勵。
例如,對于數(shù)5,可這樣問:5和5.1有相同的類型嗎?5可以表示5個人,而5。1可以表示人數(shù)嗎?(不可以)所以它們是不同類型的數(shù),數(shù)5是正數(shù)中整個的數(shù),我們就稱它為“正整數(shù)”,而5.1不是整個的數(shù),稱為“正分數(shù)。(由于小數(shù)可化為分數(shù),以后把小數(shù)和分數(shù)都稱為分數(shù))通過教師的引導(dǎo)、鼓勵和不斷完善,以及學(xué)生自己的概括,最后歸納出我們已經(jīng)學(xué)過的5類不同的數(shù),它們分別是“正整數(shù),零,負整數(shù),正分數(shù),負分數(shù)’。按照書本的說法,得出“整數(shù)”“分數(shù)”和“有理數(shù)”的概念。
“統(tǒng)稱”是指“合起來總的名稱”的意思。
1,任意寫出三個有理數(shù),并說出是什么類型的數(shù),與同伴進行交流。
2,教科書第10頁練習(xí)。
此練習(xí)中出現(xiàn)了集合的概念,可向?qū)W生作如下的說明。
把一些數(shù)放在一起,就組成了一個數(shù)的集合,簡稱“數(shù)集”,所有有理數(shù)組成的數(shù)集叫做有理數(shù)集。類似地,所有整數(shù)組成的數(shù)集叫做整數(shù)集,所有負數(shù)組成的數(shù)集叫做負數(shù)集……;數(shù)集一般用圓圈或大括號表示,因為集合中的數(shù)是無限的,而本題中只填了所給的幾個數(shù),所以應(yīng)該加上省略號。
思考:上面練習(xí)中的四個集合合并在一起就是全體有理數(shù)的集合嗎?也可以教師說出一些數(shù),讓學(xué)生進行判斷。集合的概念不必深入展開。
創(chuàng)新探究。
問題2:有理數(shù)可分為正數(shù)和負數(shù)兩大類,對嗎?為什么?
教學(xué)時,要讓學(xué)生總結(jié)已經(jīng)學(xué)過的數(shù),鼓勵學(xué)生概括,通過交流和討論,教師作適當(dāng)?shù)闹笇?dǎo),逐步得到如下的分類表。
有理數(shù)這個分類可視學(xué)生的程度確定是否有必要教學(xué)。
到現(xiàn)在為止我們學(xué)過的數(shù)都是有理數(shù)(圓周率除外),有理數(shù)可以按不同的標準進行分類,標準不同,分類的結(jié)果也不同。
(1)必做題:教科書第18頁習(xí)題1、2第1題。
(2)教師自行準備本課教育評注(課堂設(shè)計理念,實際教學(xué)效果及改進設(shè)想)。
1,本課在引人了負數(shù)后對所學(xué)過的數(shù)按照一定的標準進行分類,提出了有理數(shù)的概念。分類是數(shù)學(xué)中解決問題的常用手段,通過本節(jié)課的學(xué)習(xí)使學(xué)生了解分類的思想并進行簡單的分類是數(shù)學(xué)能力的體現(xiàn),教師在教學(xué)中應(yīng)引起足夠的重視。關(guān)于分類標準與分類結(jié)果的關(guān)系,分類標準的確定可向?qū)W生作適當(dāng)?shù)臐B透,集合的概念比較抽象,學(xué)生真正接受需要很長的過程,本課不要過多展開。
2,本課具有開放性的特點,給學(xué)生提供了較大的思維空間,能促進學(xué)生積極主動地參加學(xué)習(xí),親自體驗知識的形成過程,可避免直接進行分類所帶來的枯燥性;同時還體現(xiàn)合作學(xué)習(xí)、交流、探究提高的特點,對學(xué)生分類能力的養(yǎng)成有很好的作用。
3,兩種分類方法,應(yīng)以第一種方法為主,第二種方法可視學(xué)生的情況進行。
興趣是最好的老師。只有當(dāng)學(xué)生對數(shù)學(xué)產(chǎn)生了極大興趣的時候,教師所傳授的知識才能夠很快被學(xué)生吸收。雖然我國素質(zhì)教育已經(jīng)開展多年了,但是許多教師在講課的時候還是很難進行啟發(fā)式教學(xué),往往將本來應(yīng)該是十分生動的.內(nèi)容,以“填鴨式、滿堂灌”的方式講述。因此,教師一定要注意激發(fā)學(xué)生的學(xué)習(xí)興趣,在講授知識時多考慮一下自己講授的知識以及教授的方法能否引發(fā)學(xué)生的興趣。
激發(fā)學(xué)生的學(xué)習(xí)興趣,教師可以做到以下幾點:(1)設(shè)置問題情境,讓學(xué)生積極思考,提高學(xué)生獨立思考問題的能力,培養(yǎng)學(xué)生的邏輯思維能力。(2)利用多媒體進行教學(xué)。隨著科學(xué)技術(shù)的進步,多媒體教學(xué)已經(jīng)得到了普遍發(fā)展。通過多媒體教學(xué)教師可以將抽象的數(shù)學(xué)符號、枯燥的數(shù)學(xué)定理、復(fù)雜的證明過程呈現(xiàn)出來。這樣就可以使學(xué)生獲得一定感性思維。(3)向?qū)W生講述一下關(guān)于數(shù)學(xué)的小知識或者是小故事,激發(fā)學(xué)生的學(xué)習(xí)興趣。
比如,冀教版初中數(shù)學(xué)八年級上冊第十六章的知識點是勾股定理,教師在講勾股定理這一章時,可以向?qū)W生講述一下古代人是怎樣發(fā)現(xiàn)勾股定理的,或者是向?qū)W生講述一下古代人是怎樣將數(shù)學(xué)知識運用到生活中去的。再比如,第十五章的知識點是軸對稱,教師可以列舉一些體現(xiàn)軸對稱特點的中國古代建筑物,比如說故宮的建筑模式。
素質(zhì)教育要求師生之間是一種民主平等的關(guān)系,師生雙方在教學(xué)內(nèi)容上是傳遞與接受的關(guān)系;在人格上是平等關(guān)系;在社會道德上是相互促進的關(guān)系。教師在日常教學(xué)過程中一定要充分發(fā)揚民主,建立和諧的師生關(guān)系。比如,在數(shù)學(xué)課堂上,有學(xué)生認為教師有的地方講的不對,然后在全班同學(xué)面前給教師提了出來。在這種情況下,教師應(yīng)該大度寬容,首先應(yīng)該表揚學(xué)生積極思考問題,其次,仔細考慮自己是否真的出錯了。最后,如果有錯要及時改正。在初中數(shù)學(xué)教學(xué)過程中,教師應(yīng)該充分調(diào)動學(xué)生的積極性和主動性,形成互動、互惠的師生關(guān)系。
教學(xué)目標具有激勵、導(dǎo)向、評價作用,對教師的教學(xué)和學(xué)生的學(xué)習(xí)都具有十分重要的作用。教師在設(shè)置數(shù)學(xué)教學(xué)目標的時候,要注意將知識與能力、過程與方法、情感態(tài)度與價值觀緊密結(jié)合起來。數(shù)學(xué)教學(xué)不僅要注意問題的解決,也要關(guān)注學(xué)生的思維過程。教師要成為學(xué)生學(xué)習(xí)的指導(dǎo)者和促進者,不僅要注重學(xué)習(xí)的結(jié)果,更要注重學(xué)生學(xué)習(xí)的過程。教師要合理運用教學(xué)方法教學(xué)方法的設(shè)計應(yīng)該遵循多樣性、靈活性、綜合性、創(chuàng)新性的原則。在選擇教學(xué)方法時,教師應(yīng)該依據(jù)教學(xué)規(guī)律和教學(xué)原則。
除此之外,教師在選擇教學(xué)方法時要依據(jù)學(xué)生的學(xué)習(xí)特點,要符合學(xué)生的身心發(fā)展規(guī)律。同時還要依據(jù)教學(xué)的組織形式、時間、設(shè)備條件進行教學(xué)方法的選擇。由于中學(xué)生的注意力還不是特別集中,在一節(jié)課中只運用一種教學(xué)方法會使學(xué)生產(chǎn)生疲憊和倦怠,因此,教師在講授過程中應(yīng)該綜合運用多種教學(xué)方法,以引起學(xué)生的注意力和積極性。比如,在學(xué)習(xí)《命題與證明》這一章時,教師應(yīng)該采用講授法、談話法、練習(xí)法等,這樣既可以使學(xué)生掌握一定的新知識又能夠及時掌握新知識,同時又激發(fā)了學(xué)生學(xué)習(xí)的積極性和主動性。教師在教學(xué)中應(yīng)多采用啟發(fā)式教學(xué)。所謂啟發(fā)式教學(xué)就是教師要承認學(xué)生的主體地位,充分調(diào)動學(xué)生的學(xué)習(xí)積極性和主動性,引導(dǎo)學(xué)生獨立思考、積極探索,生動活潑地學(xué)習(xí),自覺地掌握科學(xué)知識,提高分析問題、解決問題的能力。初中教師在教學(xué)過程中,一定要時刻注意啟發(fā)學(xué)生的思維。這樣才能夠激發(fā)學(xué)生的學(xué)習(xí)興趣,使課堂變得生動、有趣。只有當(dāng)學(xué)生對數(shù)學(xué)產(chǎn)生了極大興趣的時候,教師所傳授的知識才能夠很快被學(xué)生吸收。
綜上所述,在初中數(shù)學(xué)教學(xué)過程中要運用恰當(dāng)、科學(xué)的教學(xué)策略。教師一定要根據(jù)學(xué)生的實際情況,根據(jù)教材的具體內(nèi)容制定科學(xué)的教學(xué)策略,以提高教學(xué)質(zhì)量和學(xué)生學(xué)習(xí)的質(zhì)量。教師在進行教學(xué)時一定要遵循直觀性原則、因材施教原則、理論聯(lián)系實際原則、科學(xué)性等原則。教學(xué)策略是多種多樣的,比如激發(fā)學(xué)生的學(xué)習(xí)興趣;樹立多元化的教學(xué)目標;建立民主平等的師生關(guān)系等。教師一定要跟隨教育改革的步伐,跟隨時代的潮流,積極探索教學(xué)之路,提升數(shù)學(xué)教學(xué)水平,培養(yǎng)出高素質(zhì)的學(xué)生。
七年級數(shù)學(xué)教案設(shè)計篇八
知識與技能:
理解移項法則,會解形如ax+b=cx+d的方程,體會等式變形中的化歸思想.
過程與方法:
1、能夠從實際問題中列出一元一次方程,進一步體會方程模型思想的作用及應(yīng)用價值.
2、經(jīng)歷探索移項法則法的過程,發(fā)展觀察、歸納、猜測、驗證的能力。
情感、態(tài)度與價值觀:
結(jié)合實際問題,探索用移項法則解一元一次方程的方法,進一步認識數(shù)學(xué)來源于生活,并為生活服務(wù),從而學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好數(shù)學(xué)的信心。
教學(xué)重點。
確定實際問題中的相等關(guān)系,建立形如ax+b=cx+d的方程,并利用移項和合并同類項的方法解一元一次方程.
教學(xué)難點。
確定相等關(guān)系并列出一元一次方程,正確地進行移項并解出方程。
教學(xué)過程。
一、情景引入:
二、自主學(xué)習(xí):
1.解方程:
3x+20=4x-25。
觀察上列一元一次方程,與上題的類型有什么區(qū)別?
3.新知學(xué)習(xí)請運用等式的性質(zhì)解下列方程:
(1)4x-15=9;(2)2x=5x-21。
你有什么發(fā)現(xiàn)?
三、精講點撥。
問題2你能說說由方程到方程的變形過程中有什么變化嗎?
移項的定義:一般地,把方程中的某些項改變符號后,從方程的一邊移到另一邊,這種變形叫做移項。
移項的依據(jù)及注意事項:移項實際上是利用等式的性質(zhì)1.注意:移項一定要變號。
例1解下列方程:
解:移項,得3x+2x=32-7。
合并同類項,得5x=25。
系數(shù)化為1,得x=5。
移項時需要移哪些項?為什么?
針對訓(xùn)練:解下列方程:
(1)5x-7=2x-10;(2)-0.3x+3=9+1.2x.
四、合作探究。
列方程解決問題。
思考:如何設(shè)未知數(shù)?
你能找到等量關(guān)系嗎?
五、當(dāng)堂鞏固。
1.對方程7x=6+4x進行移項,得___________,合并同類項,得_________,系數(shù)化為1,得________.
2.小新出生時父親28歲,現(xiàn)在父親的年齡比小新年齡的3倍小2歲.求小新現(xiàn)在的年齡.
六、課堂小結(jié)。
1.本節(jié)課主要學(xué)習(xí)了解一元一次方程的方法:移項,移項的根據(jù)是等式的性質(zhì)1。
2.本節(jié)的實際問題的相等關(guān)系的依據(jù):表示同一個量的兩個式子相等。
3.列方程解實際問題的基本思路。
七、作業(yè)布置。
1.必做題:教科書第91頁習(xí)題3.2第3(3),(4),11題。
2.選做題:
八、板書設(shè)計。
七年級數(shù)學(xué)教案設(shè)計篇九
本課(節(jié))課題3.1認識直棱柱第1課時/共課時。
教學(xué)目標(含重點、難點)及。
1、了解多面體、直棱柱的有關(guān)概念.
2、會認直棱柱的側(cè)棱、側(cè)面、底面.。
3、了解直棱柱的側(cè)棱互相平行且相等,側(cè)面是長方形(含正方形)等特征.。
教學(xué)重點與難點。
教學(xué)重點:直棱柱的有關(guān)概念.
教學(xué)難點:本節(jié)的例題描述一個物體的形狀,把它看成怎樣的兩個幾何體的組合,都需要一定的空間想象能力和表達能力.
內(nèi)容與環(huán)節(jié)預(yù)設(shè)、簡明設(shè)計意圖二度備課(即時反思與糾正)。
析:學(xué)生很容易回答出更多的答案。
師:(繼續(xù)補充)有許多著名的建筑,像古埃及的金字塔、巴黎的艾菲爾鐵塔、美國的迪思尼樂園、德國的古堡風(fēng)光,中國北京的西客站,它們也是由不同的立體圖形組成的;那么立體圖形在生活中有著怎樣的廣泛的應(yīng)用呢?瞧,食物中的冰激凌、櫻桃、端午節(jié)的粽子等。
1.多面體、棱、頂點概念:
2.合作交流。
師:以學(xué)習(xí)小組為單位,拿出事先準備好的幾何體。
學(xué)生活動:(讓學(xué)生從中閉眼摸出某些幾何體,邊摸邊用語言描。
述其特征。)。
師:同學(xué)們再討論一下,能否把自己的語言轉(zhuǎn)化為數(shù)學(xué)語言。
學(xué)生活動:分小組討論。
說明:真正體現(xiàn)了“以生為本”。讓學(xué)生在主動探究中發(fā)現(xiàn)知識,充分發(fā)揮了學(xué)生的主體作用和教師的主導(dǎo)作用,課堂氣氛活躍,教師教的輕松,學(xué)生學(xué)的愉快。
師:請大家找出與長方體,立方體類似的物體或模型。
析:舉出實例。(找出區(qū)別)。
師:(總結(jié))棱柱分為之直棱柱和斜棱柱。(根據(jù)其側(cè)棱與底面是否垂直)根據(jù)底面多邊形的邊數(shù)而分為直三棱柱、直四棱柱……直棱柱有以下特征:
有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;
側(cè)面都是長方形含正方形。
長方體和正方體都是直四棱柱。
3.反饋鞏固。
完成“做一做”
析:由第(3)小題可以得到:
直棱柱的'相鄰兩條側(cè)棱互相平行且相等。
4.學(xué)以至用。
出示例題。(先請學(xué)生單獨考慮,再作講解)。
析:引導(dǎo)學(xué)生著重觀察首飾盒的側(cè)面是什么圖形,上底面是什么圖形,然后與直棱柱的特征作比較。(使學(xué)生養(yǎng)成發(fā)現(xiàn)問題,解決問題的創(chuàng)造性思維習(xí)慣)。
最后完成例題中的“想一想”
5.鞏固練習(xí)(學(xué)生練習(xí))。
完成“課內(nèi)練習(xí)”
師:我們這節(jié)課的重點是什么?哪些地方比較難學(xué)呢?
合作交流后得到:重點直棱柱的有關(guān)概念。
直棱柱有以下特征:
有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;
側(cè)面都是長方形含正方形。
例題中的把首飾盒看成是由兩個直三棱柱、直四棱柱的組合,或著是兩個直四棱柱的組合需要一定的空間想象能力和表達能力。這一點比較難。
板書設(shè)計。
作業(yè)布置或設(shè)計作業(yè)本及課時特訓(xùn)。
七年級數(shù)學(xué)教案設(shè)計篇十
學(xué)習(xí)目標:
1.會用正.負數(shù)表示具有相反意義的量.
2.通過正.負數(shù)學(xué)習(xí),培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)知識的意識.
3.通過探究,滲透對立統(tǒng)一的辨證思想。
學(xué)習(xí)重點:
用正.負數(shù)表示具有相反意義的量。
學(xué)習(xí)難點:
實際問題中的數(shù)量關(guān)系。
教學(xué)方法:
講練相結(jié)合。
教學(xué)過程。
一.學(xué)前準備。
通過上節(jié)課的學(xué)習(xí),我們知道在實際生產(chǎn)和生活中存在著兩種不同意義的量,為了區(qū)分它們,我們用正數(shù)和負數(shù)來分別表示它們.
問題1:“零”為什么即不是正數(shù)也不是負數(shù)呢?
引導(dǎo)學(xué)生思考討論,借助舉例說明.
參考例子:溫度表示中的零上,零下和零度.
二.探究理解解決問題。
問題2:(教科書第4頁例題)。
先引導(dǎo)學(xué)生分析,再讓學(xué)生獨立完成。
(2)20xx年下列國家的商品進出口總額比上一年的變化情況是:
美國減少6.4%,德國增長1.3%,
法國減少2.4%,英國減少3.5%,
意大利增長0.2%,中國增長7.5%.
寫出這些國家20xx年商品進出口總額的增長率.
解:(1)這個月小明體重增長2kg,小華體重增長―1kg,小強體重增長0kg.
(2)六個國家20xx年商品進出口總額的增長率:
美國―6.4%,德國1.3%,
法國―2.4%,英國―3.5%,
意大利0.2%,中國7.5%.
三.鞏固練習(xí)。
從0表示一個也沒有,是正數(shù)和負數(shù)的分界的角度引導(dǎo)學(xué)生理解.
在學(xué)生的討論中簡單介紹分類的數(shù)學(xué)思想先不要給出有理數(shù)的概念.
在例題中,讓學(xué)生通過閱讀題中的含義,找出具有相反意義的量,決定哪個用正數(shù)表示,哪個用負數(shù)表示.
通過問題(2)提醒學(xué)生審題時要注意要求,題中求的是增長率,不是增長值.
四.閱讀思考1頁。
(教科書第8頁)用正負數(shù)表示加工允許誤差.
問題:1.直徑為30.032mm和直徑為29.97的零件是否合格?
2.你知道還有那些事件可以用正負數(shù)表示允許誤差嗎?請舉例.
五.小結(jié)。
1.本節(jié)課你有那些收獲?
2.還有沒解決的問題嗎?
六.應(yīng)用與拓展。
1.必做題:
教科書5頁習(xí)題4.5.:6.7.8題。
2.選做題。
1).甲冷庫的溫度是―12°c,乙冷庫的溫度比甲冷酷低5°c,則乙冷庫的溫度是.
七年級數(shù)學(xué)教案設(shè)計篇十一
識記和理解:記住元謀人、北京人和山頂洞人生活的時代和地點;知道北京人的體質(zhì)特征;了解他們使用的工具特征及獲取生活資料的方式;理解原始人用火的意義。
能力與方法:通過識圖培養(yǎng)觀察能力;通過想象原始人生活情景,培養(yǎng)再造想象能力;通過比較北京人、猿類、現(xiàn)代人,幫助學(xué)生學(xué)習(xí)運用比較的方法學(xué)習(xí)歷史。
情感、態(tài)度與價值觀:了解中華文明悠長的源頭,進行愛國主義教育;認識勞動在人進化中的作用,進行勞動觀點的教育;了解北京人與山頂洞人和生活環(huán)境,認識人與自然的關(guān)系。
【教學(xué)重、難點】重點:是北京人;難點:元謀人的地位、北京人身體不平衡、山頂洞人人工取火的依據(jù)。
【教學(xué)過程】。
一、導(dǎo)入新課。
書上的導(dǎo)言,當(dāng)科學(xué)考隊員,來考察一下我國境內(nèi)早期人類的生活情況。要求學(xué)生初讀課文,觀察《我國境內(nèi)早期人類活動地區(qū)圖》,設(shè)計考察的線路(按一定的時間順序)。調(diào)動學(xué)生的參與興趣。
積極參與設(shè)計考察線路,初步知道先后順序。
二、元謀人。
要求學(xué)生看書,找出“為什么叫元謀人?(同時解決‘北京人’、藍田人等名的來歷)”“生活的年代與地域?”
考察:“作為科學(xué)工作者,你怎么知道他已經(jīng)是人了呢?”“元謀人的發(fā)現(xiàn),有何重要意義?”
教師小結(jié)。過渡:已經(jīng)發(fā)掘的元謀人的遺存不多。接下來我們重點考察一下北京人。
學(xué)生閱讀,仔細研究,體驗一下考察的感覺。
三、北京人。
要求學(xué)生閱讀課本,看看從哪些方面去考察北京人?(生活的年代、地域、環(huán)境、身體特征、工具的使用、火的使用等)。
問題:你認為有哪些條件(不)適宜人的生存?
比較體質(zhì)特征(觀察真人比較)。
怎么樣知道北京人用火?如何得到火的?如何保存火種?使用火有何意義?
教師小結(jié)本目內(nèi)容,說明:北京人遺址是遺存最豐富的遠古人類,于1987年被聯(lián)合國教科文組織命名為“世界遺產(chǎn)名錄。”
活動:想象北京人的一天是如何度過的?
學(xué)生閱讀,先建立一個整體映像。
然后分別進行考察(閱讀、觀察、分析、結(jié)論、發(fā)言等活動)。
增加學(xué)生的自豪感。
四、山頂洞人。
大約二十萬年后,在北京人生活過的地方,又出現(xiàn)了一種進步得多的原始人類――這就是“山頂洞人”。
引導(dǎo)學(xué)生考察一下,山頂洞人有哪些方面比北京人進步(注意哪些方面,列表歸納)。
著重考察:怎么知道他們會人工取火?他們是如何鉆孔的?
五、收獲與疑問。
我們今天的科考結(jié)束了,你有什么收獲呢?
還有哪些問題?
七年級數(shù)學(xué)教案設(shè)計篇十二
1、知識與技能:
理解相交線、垂線的定義,在具體的情景中了解同位角、內(nèi)錯角和同旁內(nèi)角的定義,能找到圖形中的同位角、內(nèi)錯角和同旁內(nèi)角以及對頂角。
2、過程與方法:
能夠通過觀察推斷等方法準確找到圖形中的鄰補角、對頂角,能夠進一步發(fā)展空間觀念。
3、情感態(tài)度價值觀:
培養(yǎng)識圖能力,發(fā)展空間想象能力,和邏輯推理能力。
1、重點:鄰補角、對頂角的概念,對頂角的性質(zhì)與應(yīng)用,以及對同位角、內(nèi)錯角和同旁內(nèi)角的概念和應(yīng)用的理解。
2、難點:理解對頂角相等的性質(zhì)的探索。
1、創(chuàng)設(shè)情景:通過多媒體展示自然界中的相交線的圖形,和同學(xué)們探討自然界中還存在哪些相交線的圖形,幫助同學(xué)們理解數(shù)學(xué)和生活的緊密關(guān)系。
3、抽象圖形:抽象出具體的圖形,和同學(xué)們一起給出相交線的定義。
5、嘗試反饋:在和同學(xué)們的探討中和同學(xué)們一起給出鄰補角和對頂角的定義。
6、在相交線的模型中,如果兩條相交線形成的四個角為直角,介紹垂線的定義。
7、進一步研究:在研究了一條直線與另一條直線之間的關(guān)系之后進一步研究一條直線與兩條直線分別相交時,討論沒有公共頂點的兩個角之間的關(guān)系,理解同位角、內(nèi)錯角和同旁內(nèi)角的定義。
引導(dǎo)同學(xué)們一起進行總結(jié)本節(jié)課學(xué)習(xí)的內(nèi)容,并強調(diào)對頂角的概念和性質(zhì)的理解。
第七頁,第二題,第六題,第十題。
七年級數(shù)學(xué)教案設(shè)計篇十三
比較正數(shù)和負數(shù)的大小。
1、借助數(shù)軸初步學(xué)會比較正數(shù)、0和負數(shù)之間的大小。
2、初步體會數(shù)軸上數(shù)的順序,完成對數(shù)的結(jié)構(gòu)的初步構(gòu)建。
負數(shù)與負數(shù)的比較。
一、復(fù)習(xí):
1、讀數(shù),指出哪些是正數(shù),哪些是負數(shù)?
—85。6+0。9—+0—82。
2、如果+20%表示增加20%,那么—6%表示。
二、新授:
(一)教學(xué)例3:
1、怎樣在數(shù)軸上表示數(shù)?(1、2、3、4、5、6、7)。
2、出示例3:
(1)提問你能在一條直線上表示他們運動后的情況嗎?
(2)讓學(xué)生確定好起點(原點)、方向和單位長度。學(xué)生畫完交流。
(3)教師在黑板上話好直線,在相應(yīng)的點上用小圖片代表大樹和學(xué)生,在問怎樣用數(shù)表示這些學(xué)生和大樹的相對位置關(guān)系?(讓學(xué)生把直線上的點和正負數(shù)對應(yīng)起來。
(4)學(xué)生回答,教師在相應(yīng)點的下方標出對應(yīng)的數(shù),再讓學(xué)生說說直線上其他幾個點代表的數(shù),讓學(xué)生對數(shù)軸上的點表示的正負數(shù)形成相對完整的認識。
(5)總結(jié):我們可以像這樣在直線上表示出正數(shù)、0和負數(shù),像這樣的直線我們叫數(shù)軸。
(6)引導(dǎo)學(xué)生觀察:
a、從0起往右依次是?從0起往左依次是?你發(fā)現(xiàn)什么規(guī)律?
(7)練習(xí):做一做的第1、2題。
(二)教學(xué)例4:
1、出示未來一周的天氣情況,讓學(xué)生把未來一周每天的最低氣溫在數(shù)軸上表示出來,并比較他們的大小。
2、學(xué)生交流比較的方法。
3、通過小精靈的話,引出利用數(shù)軸比較數(shù)的大小規(guī)定:在數(shù)軸上,從左到右的順序就是數(shù)從小到大的順序。
4、再讓學(xué)生進行比較,利用學(xué)生的具體比較來說明“—8在—6的左邊,所以—8〈—6”
5、再通過讓另一學(xué)生比較“8〉6,但是—8〈—6”,使學(xué)生初步體會兩負數(shù)比較大小時,絕對值大的負數(shù)反而小。
6、總結(jié):負數(shù)比0小,所有的負數(shù)都在0的'左邊,也就是負數(shù)都比0小,而正數(shù)比0大,負數(shù)比正數(shù)小。
7、練習(xí):做一做第3題。
三、鞏固練習(xí)。
1、練習(xí)一第4、5題。
2、練習(xí)一第6題。
3、某日傍晚,黃山的氣溫由上午的零上2攝氏度下降了7攝氏度,這天傍晚黃山的氣溫是攝氏度。
四、全課總結(jié)。
(1)在數(shù)軸上,從左到右的順序就是數(shù)從小到大的順序。
(2)負數(shù)比0小,正數(shù)比0大,負數(shù)比正數(shù)小。
第二課教學(xué)反思:
許多教師認為“負數(shù)”這個單元的內(nèi)容很簡單,不需要花過多精力學(xué)生就能基本能掌握??扇绻钊脬@研教材,其實會發(fā)現(xiàn)還有不少值得挖掘的內(nèi)容可以向?qū)W生補充介紹。
例3——兩個不同層面的拓展:
1、在數(shù)軸上表示數(shù)要求的拓展。
數(shù)軸除了可以表示整數(shù),還可以表示小數(shù)和分數(shù)。教材例3只表示出正、負整數(shù),最后一個自然段要求學(xué)生表示出—1。5。建議此處教師補充要求學(xué)生表示出“+1。5”的位置,因為這樣便于對比發(fā)現(xiàn)兩個數(shù)離原點的距離相等,只不過分別在0的左右兩端,滲透+1。5和—1。5絕對值相等。同時,還應(yīng)補充在數(shù)軸上表示分數(shù),如—1/3、—3/2等,提升學(xué)生數(shù)形結(jié)合能力,為例4的教學(xué)打下夯實的基礎(chǔ)。
2、滲透負數(shù)加減法。
教材中所呈現(xiàn)的數(shù)軸可以充分加以應(yīng)用,如可補充提問:在“—2”位置的同學(xué)如果接著向西走1米,將會到達數(shù)軸什么位置?如果是向東走1米呢?如果他從“—2”的位置要走到“—4”,應(yīng)該如何運動?如果他想從“—2”的位置到達“+3”,又該如何運動?其實,這些問題就是解決—2—1;2+1;—4—(—2);3—(—2)等于幾,這樣的設(shè)計對于學(xué)生初中進一步學(xué)習(xí)代數(shù)知識是極為有利的。
例4——薄書讀厚、厚書讀薄。
薄書讀厚——負數(shù)大小比較的三種類型(正數(shù)和負數(shù)、0和負數(shù)、負數(shù)和負數(shù))。
例4教材只提出一個大的問題“比較它們的大小”,這些數(shù)的大小比較可以分為幾類?每類比較又有什么方法,教材則沒有明確標明。所以教學(xué)中,當(dāng)學(xué)生明確數(shù)軸從左到右的順序就是數(shù)從小到大的順序基礎(chǔ)上,我還挖掘了三種不同類型,一一請學(xué)生介紹比較方法,將薄書讀厚。
將厚書讀薄——無論哪種類型,比較方法萬變不離其宗。
無論哪種比較方法,最終都可回歸到“數(shù)軸上左邊的數(shù)比右邊的數(shù)小?!奔词褂袑W(xué)生在比較—8和—6大小時是用“86,所以—8—6”來闡述其原因,其實也與數(shù)軸相關(guān)。因為當(dāng)絕對值越大時,表示離原點的距離越遠,那么在數(shù)軸上表示的點也就在原點左邊越遠,數(shù)也就越小。所以,抓住精髓就能以不變應(yīng)萬變。
在此,我還補充了—3/7和—2/5比較大小的練習(xí),提升學(xué)生靈活應(yīng)用知識解決實際問題的能力。
七年級數(shù)學(xué)教案設(shè)計篇十四
一、識記與理解:通過本課的學(xué)習(xí),使學(xué)生了解并掌握先秦至南北朝時期的藝術(shù)成就:戰(zhàn)國編鐘,秦始皇陵兵馬俑,王羲之與《蘭亭序》,顧愷之與《女史箴圖》、《洛神賦圖》。
二、能力和方法:通過指導(dǎo)學(xué)生鑒賞戰(zhàn)國編鐘、秦始皇陵兵馬俑、《蘭亭序》、《女史箴圖》、《洛神賦圖》等藝術(shù)作品,培養(yǎng)學(xué)生的'藝術(shù)欣賞能力;通過對歷史文物價值的討論,培養(yǎng)學(xué)生歷史分析、評價能力。
三、情感、態(tài)度與價值觀:通過學(xué)習(xí)杰出的藝術(shù)成就,激發(fā)學(xué)生的民族自豪感和對中國文化的認同感;通過對藝術(shù)作品的欣賞,陶冶情趣,養(yǎng)成學(xué)生發(fā)現(xiàn)美、感受美、追求美、創(chuàng)造美的意識;通過對杰出藝術(shù)成就的原因分析,使生認識到人民的創(chuàng)造性是歷史文明和歷史進步的根本動力。
【教學(xué)重、難點】。
重點:戰(zhàn)國編鐘、秦始皇陵兵馬俑。
難點:王羲之、顧愷之的書畫成就和秦始皇陵兵馬俑的藝術(shù)價值。
【課前準備】。
課前收集有關(guān)秦始皇陵兵馬俑和王羲之的故事。
【教學(xué)步驟】。
教師活動學(xué)生活動備注。
一、導(dǎo)入新課。
問學(xué)生,有哪些同學(xué)學(xué)過美術(shù)、音樂、書法?你們知道中國有哪些重要的美術(shù)作品、樂器、書法作品?而引入本課。
二、戰(zhàn)國編鐘。
指導(dǎo)學(xué)生閱讀、觀察編鐘圖,談?wù)劙l(fā)現(xiàn)。
抽學(xué)生講知音的故事。理解春秋戰(zhàn)國時期的音樂成就。
三、秦始皇陵兵馬俑。
先閱讀教材、觀察書上的圖,談?wù)動惺裁锤邢搿?BR> 教師將知識要點落實在教材上。突出其在雕塑的崇高地位。
四、王羲之的書法。
閱讀教材,落實知識點。
仔細觀察書上的字帖,讓學(xué)生暢所欲言。
抽兩個學(xué)生來講王羲之的故事。
談王羲之的品格。
五、顧愷之的繪畫。
閱讀教材,找出要點。
教師講解,指導(dǎo)學(xué)生觀察兩幅名畫,體會之。
補充講“三絕”。
七年級數(shù)學(xué)教案設(shè)計篇十五
1、教學(xué)方法:引導(dǎo)發(fā)現(xiàn)法、探究法、講練法、
(一)重點
準確掌握積的乘方的運算性質(zhì)、
(二)難點
用數(shù)學(xué)語言概括運算性質(zhì)、
(三)解決辦法
增強對三種運算性質(zhì)的理解,并運用對比的方法強化訓(xùn)練以達到準確地區(qū)分、
一課時、
投影儀或電腦、自制膠片、
3、通過舉例來說明積的乘方性質(zhì)應(yīng)如何正確使用,師生共練以達到熟練掌握、
4、多種題型的設(shè)計,讓學(xué)生能從不同的角度全面準確地理解和運用該性質(zhì)、
(一)明確目標
本節(jié)課重點學(xué)習(xí)積的乘方的運算性質(zhì)及其較靈活地運用、
(二)整體感知
(三)教學(xué)過程
1、創(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入
前面我們學(xué)習(xí)了同底數(shù)冪的乘法、冪的乘方這兩個寨的運算性質(zhì),請同學(xué)們通過完成一組練習(xí),來回顧一下這兩個性質(zhì):
填空:
七年級數(shù)學(xué)教案設(shè)計篇一
1.教學(xué)目標、重點、難點.
教學(xué)目標:
(1)了解方程的解的概念.
(2)體驗對方程解的估算,會檢驗一個數(shù)是不是某個一元方程的解.
(3)滲透對應(yīng)思想.
重點:方程解的意義,會檢驗一個數(shù)是不是一個一元方程的解.
難點:方程解的意義,會檢驗一個數(shù)是不是一個一元方程的解.
2.例、習(xí)題的意圖。
本節(jié)課重點是了解方程的解的意義.通過實際問題中對所列方程解的估算,了解什么是方程的解以及由于估算遇到了困難,產(chǎn)生尋求方程解法的需求,為后面的學(xué)習(xí)做好鋪墊.
例1是通過實際問題列出方程,根據(jù)(1)題未知數(shù)的取值范圍以及方程解的概念逐一代入方程來尋求方程的解,使學(xué)生親身體驗什么是方程的解,也為例2檢驗一個數(shù)值是不是方程的解做好鋪墊.對第(2)、(3)題再采用(1)題方法尋求方程的解已不容易,這又為后邊學(xué)習(xí)解方程奠定了積極的心理儲備.
例2是根據(jù)方程的解的意義,使學(xué)生會檢驗一個數(shù)值是不是方程的解,這一點應(yīng)切實使學(xué)生掌握.
3.認知難點與突破方法。
難點是方程解的意義和檢驗一個數(shù)是不是一個一元方程的解.例1起著承上啟下的作用,在估算方程解的過程中,理解方程解的意義,學(xué)會檢驗一個數(shù)是不是一個一元方程的解.抓住關(guān)鍵字“等號左右兩邊相等”,檢驗一個數(shù)是不是一個一元方程的解,要分別計算方程的左右兩邊,若其值相等,則這個未知數(shù)是方程的解,若不相等,則不是方程的解.
二、新課引入。
復(fù)習(xí):
1.什么是一元一次方程?
2.練習(xí):當(dāng),,時,求式子的值.
答案:,,.
通過練習(xí)2強調(diào)求式子的值的一般步驟,其中易錯易混的地方,如代入的值是負數(shù),應(yīng)加上括號,數(shù)與數(shù)相乘時應(yīng)恢復(fù)乘號,運算關(guān)系不能混淆等.
三、例題講解。
例1教材p69中例1。
分析:三個題目中的相等關(guān)系分別是:
(1)計算機已使用的時間+繼續(xù)使用的時間=規(guī)定的檢修時間.
(2)2(長+寬)=周長.
(3)女生人數(shù)—男生人數(shù)=.
分析:方程中等號左邊有未知數(shù),估算的值代入方程應(yīng)使等號左邊的值等于等號右邊的值2450,這樣的值才適合方程.由于表示月份,是正整數(shù),不妨讓,,……分別代入方程算一算.
由計算結(jié)果可以看到,每一個的允許值都使代數(shù)式有一個確定的數(shù)值,為方便起見,可以列一個表格:
1234567…185021502300245026002750…從表中發(fā)現(xiàn):當(dāng)時,的值是,也就是,當(dāng)時,方程中等號的左邊:.等號的右邊:2450.由此得到方程的左邊=右邊,就說叫做方程的解,也就是方程中,未知數(shù)的值為5.所以,方程的解就是.
教材p71中的小云朵,可以多選幾個情況來說明,以加強對方程解得意義的理解.
從表中你還能發(fā)現(xiàn)哪個方程的解?(引導(dǎo)學(xué)生得出)如方程的解是;方程的解是等等,使學(xué)生進一步體會方程解的概念.
方程解的意義:使方程中等號左右兩邊相等的未知數(shù)的值,叫做方程的解.
由于這兩個方程估算其解有一定的困難,數(shù)不整齊,或方程比較復(fù)雜,出現(xiàn)矛盾沖突,引導(dǎo)學(xué)生得出:學(xué)習(xí)解方程的方法十分必要.
怎樣檢驗一個數(shù)是否是方程的解呢?
七年級數(shù)學(xué)教案設(shè)計篇二
(二)能力訓(xùn)練目標:
1、經(jīng)歷探索有理數(shù)乘法的運算律的過程,發(fā)展觀察、歸納的能力。
2、能運用乘法運算律簡化計算。
(三)情感與價值觀要求:
1、在共同探索、共同發(fā)現(xiàn)、共同交流的過程中分享成功的喜悅。
2、在討論的過程中,使學(xué)生感受集體的力量,培養(yǎng)團隊意識。
乘法運算律的運用。
乘法運算律的運用。
探究交流相結(jié)合。
創(chuàng)設(shè)問題情境,引入新課。
[活動1]。
問題2:計算下列各題:
(1)(-7)×8;。
(2)8×(-7);
(5)[3×(-4)]×(-5);
(6)3×[(-4)×(-5)];
[師生]由學(xué)生自主探索,教師可參與到學(xué)生的討論中。
像前面那樣規(guī)定有理數(shù)乘法法則后,乘法的交換律和結(jié)合律與分配律在有理數(shù)乘法中仍然成立。我們可以通過問題2來檢驗。(略)。
[師]同學(xué)們自己采用上面的方法來探究一下分配律在有理數(shù)范圍內(nèi)成立嗎?
[生]例如:5×[3十(-7)]和5×3十5×(-7);(略)。
[師](-5)×(3-7)和(-5)×3-5×7的結(jié)果相等嗎?
(注意:(-5)×(3-7)中的3-7應(yīng)看作3與(-7)的和,才能應(yīng)用分配律。否則不能直接應(yīng)用分配律,因為減法沒有分配律。)。
講授新課:
[活動2]用文字語言和字母把乘法交換律、結(jié)合律、分配律表達出來。
應(yīng)得出:
1、一般地,有理數(shù)乘法中,兩個數(shù)相乘,交換因數(shù)的位置,積相等。
2、三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積相等。
3、一般地,一個數(shù)同兩個數(shù)的和相乘,等于這個數(shù)分別同這兩個數(shù)相乘,再把積相加。
[活動3][師生]教師引導(dǎo)學(xué)生討論、交流,從中體會學(xué)習(xí)的快樂。
3、用簡便方法計算:
[活動4]。
練習(xí)(教科書第42頁)。
這節(jié)課我們學(xué)習(xí)乘法的運算律及它們的運用,使我們體驗到了掌握一般的正常運算外,還要靈活運用運算律,能簡便的一定要簡便,這樣做既快又準。
課后作業(yè):課本習(xí)題1.4的第7題(3)、(6)。
用簡便方法計算:
(1)6.868×(-5)+6.868×(一12)+6.868×(+17)。
(2)[(4×8)×25一8]×125。
七年級數(shù)學(xué)教案設(shè)計篇三
本節(jié)課的重難點都是從實際于問題中尋找相等關(guān)系,從而列方程解決實際問題,為了更好地突出重點、突破點,在教學(xué)過程中著力體現(xiàn)以下幾方面的特點:
1、突出問題的應(yīng)用意識。首先用一個學(xué)生感興趣的突出問題引入課題,然后運用算術(shù)方法給出答案,在各環(huán)節(jié)的安排上都設(shè)計成一個個問題,引導(dǎo)學(xué)生能圍繞問題開展思考、討論,進行學(xué)習(xí)。
2、體現(xiàn)學(xué)生的主體意識。始終把學(xué)生放在主體地位,讓學(xué)生通過對列算式與列方程的比較,分別歸納出它們的特點,從感受到從算術(shù)方法到代數(shù)方法是數(shù)學(xué)的進步。通過學(xué)生之間的合作與交流,得了出問題的不同解答方法,讓學(xué)生對這節(jié)課的學(xué)習(xí)內(nèi)容、方法、注意點等進行歸納。
3、體現(xiàn)學(xué)生思維的層次性。首先引導(dǎo)學(xué)生嘗試用算術(shù)方法解決問題,然后逐步引導(dǎo)學(xué)生列出含未知數(shù)的式子,尋找相等關(guān)系列出方程。在尋找相等關(guān)系,設(shè)未知數(shù)及練習(xí)和作業(yè)的布置等環(huán)節(jié)中,都注意了學(xué)生思維的層次性。
4、滲透建模的思想。把實際問題中的數(shù)量關(guān)系用方程的形式表示出來,就是建立一種數(shù)學(xué)模型,有意識地按設(shè)未知數(shù)、列方程等步驟組織學(xué)生學(xué)習(xí),就是培養(yǎng)學(xué)生由實際問題抽象出數(shù)學(xué)模型的能力。
從當(dāng)堂練習(xí)和作業(yè)情況來看,收到了很好的教學(xué)效果,絕大部分學(xué)生都能根據(jù)實際問題準確地建立數(shù)學(xué)模型,但也有少數(shù)幾個學(xué)生存在一定的問題,不能很好地列出方程。
【拓展閱讀】。
七年級數(shù)學(xué)教案設(shè)計篇四
2.內(nèi)容解析。
有理數(shù)的乘法是繼有理數(shù)的加減法之后的又一種基本運算.有理數(shù)乘法既是有理數(shù)運算的深入,又是進一步學(xué)習(xí)有理數(shù)的除法、乘方的基礎(chǔ),對后續(xù)代數(shù)學(xué)習(xí)是至關(guān)重要的.
與有理數(shù)加法法則類似,有理數(shù)乘法法則也是一種規(guī)定,給出這種規(guī)定要遵循的原則是“使原有的運算律保持不變”.本節(jié)課要在小學(xué)已掌握的乘法運算的基礎(chǔ)上,通過合情推理的方式,得到“要使正數(shù)乘正數(shù)(或0)的規(guī)律在正數(shù)乘負數(shù)、負數(shù)乘負數(shù)時仍然成立,那么運算結(jié)果應(yīng)該是什么”的結(jié)論,從而使學(xué)生體會乘法法則的合理性.與加法法則一樣,正數(shù)乘負數(shù)、負數(shù)乘負數(shù)的法則,也要從符號和絕對值來分析.由于絕對值相乘就是非負數(shù)相乘,因此,這里關(guān)鍵是要規(guī)定好含有負數(shù)的兩數(shù)相乘之積的符號,這是有理數(shù)乘法的本質(zhì)特征,也是乘法法則的核心.
基于以上分析,可以確定本課的教學(xué)重點是兩個有理數(shù)相乘的符號法則.
二、目標及其解析。
1.目標。
(1)理解有理數(shù)乘法法則,能利用有理數(shù)乘法法則計算兩個數(shù)的乘法.
(2)能說出有理數(shù)乘法的符號法則,能用例子說明法則的合理性.
2.目標解析。
達成目標(1)的標志是學(xué)生在進行兩個有理數(shù)乘法運算時,能按照乘法法則,先考慮兩乘數(shù)的符號,再考慮兩乘數(shù)的絕對值,并得出正確的結(jié)果.
達成目標(2)的標志是學(xué)生能通過具體例子說明有理數(shù)乘法的符號法則的歸納過程.
三、教學(xué)問題診斷分析。
有理數(shù)的乘法與小學(xué)學(xué)習(xí)的乘法的區(qū)別在于負數(shù)參與了運算.本課要以正數(shù)、0之間的運算為基礎(chǔ),構(gòu)造一組有規(guī)律的算式,先讓學(xué)生從算式左右各數(shù)的符號和絕對值兩個角度觀察這些算式的共同特點并得出規(guī)律,再以問題“要使這個規(guī)律在引入負數(shù)后仍然成立,那么應(yīng)有……”為引導(dǎo),讓學(xué)生思考在這樣的規(guī)律下,正數(shù)乘負數(shù)、負數(shù)乘正數(shù)、兩個負數(shù)相乘各應(yīng)有什么運算結(jié)果,并從積的符號和絕對值兩個角度總結(jié)出規(guī)律,進而給出有理數(shù)乘法法則,在這個過程中體會規(guī)定的合理性.上述過程中,學(xué)生對于為什么要討論這些問題、什么叫“觀察下面的乘法算式”、從哪些角度概括算式的規(guī)律等,都會出現(xiàn)困難.為了解決這些困難,教師應(yīng)該在“如何觀察”上加強指導(dǎo),并明確提出“從符號和絕對值兩個角度看規(guī)律”的要求.
本課的教學(xué)難點是:如何觀察給定的乘法算式;從哪些角度概括算式的規(guī)律.
四、教學(xué)過程設(shè)計。
教師引導(dǎo)學(xué)生從有理數(shù)分類的角度考慮,區(qū)分出有理數(shù)乘法的情況有:正數(shù)乘正數(shù)、正數(shù)與0相乘、正數(shù)乘負數(shù)、負數(shù)乘正數(shù)、負數(shù)乘負數(shù).
設(shè)計意圖:有理數(shù)分為正數(shù)、零、負數(shù),由此引出兩個有理數(shù)相乘的幾種情況,既復(fù)習(xí)有關(guān)知識,為下面的教學(xué)做好準備,又滲透了分類討論思想.
問題2下面從我們熟悉的乘法運算開始.觀察下面的乘法算式,你能發(fā)現(xiàn)什么規(guī)律嗎?
3×3=9,
3×2=6,
3×1=3,
3×0=0.
追問1:你認為問題要我們“觀察”什么?應(yīng)該從哪幾個角度去觀察、發(fā)現(xiàn)規(guī)律?
如果學(xué)生仍然有困難,教師給予提示:
(1)四個算式有什么共同點?——左邊都有一個乘數(shù)3.
(2)其他兩個數(shù)有什么變化規(guī)律?——隨著后一個乘數(shù)逐次遞減1,積逐次遞減3.
設(shè)計意圖:構(gòu)造這組有規(guī)律的算式,為通過合情推理,得到正數(shù)乘負數(shù)的法則做準備.通過追問、提示,使學(xué)生知道“如何觀察”“如何發(fā)現(xiàn)規(guī)律”.
教師:要使這個規(guī)律在引入負數(shù)后仍然成立,那么,3×(-1)=-3,這是因為后一乘數(shù)從0遞減1就是-1,因此積應(yīng)該從0遞減3而得-3.
追問2:根據(jù)這個規(guī)律,下面的兩個積應(yīng)該是什么?
3×(-2)=,
3×(-3)=.
練習(xí):請你模仿上面的過程,自己構(gòu)造出一組算式,并說出它的變化規(guī)律.
設(shè)計意圖:讓學(xué)生自主構(gòu)造算式,加深對運算規(guī)律的理解.
先讓學(xué)生觀察、敘述、補充,教師再總結(jié):都是正數(shù)乘負數(shù),積都為負數(shù),積的.絕對值等于各乘數(shù)絕對值的積.
設(shè)計意圖:先得到一類情況的結(jié)果,降低歸納概括的難度,同時也為后面的學(xué)習(xí)奠定基礎(chǔ).
問題3觀察下列算式,類比上述過程,你又能發(fā)現(xiàn)什么規(guī)律?
3×3=9,
2×3=6,
1×3=3,
0×3=0.
鼓勵學(xué)生模仿正數(shù)乘負數(shù)的過程,自己獨立得出規(guī)律.
設(shè)計意圖:為得到負數(shù)乘正數(shù)的結(jié)論做準備;培養(yǎng)學(xué)生的模仿、概括的能力.
追問1:要使這個規(guī)律在引入負數(shù)后仍然成立,你認為下面的空格應(yīng)各填什么數(shù)?
(-1)×3=,
(-2)×3=,
(-3)×3=.
練習(xí):請你模仿上面的過程,自己構(gòu)造出一組算式,并說出它的變化規(guī)律.
先讓學(xué)生觀察、敘述、補充,教師再總結(jié):都是負數(shù)乘正數(shù),積都為負數(shù),積的絕對值等于各乘數(shù)絕對值的積.
追問3:正數(shù)乘負數(shù)、負數(shù)乘正數(shù)兩種情況下的結(jié)論有什么共性?你能把它概括出來嗎?
設(shè)計意圖:讓學(xué)生模仿已有的討論過程,自己得出負數(shù)乘正數(shù)的結(jié)論,并進一步概括出“異號兩數(shù)相乘,積的符號為負,積的絕對值等于各乘數(shù)絕對值的積”.既使學(xué)生感受法則的合理性,又培養(yǎng)他們的歸納思想和概括能力.
問題4利用上面歸納的結(jié)論計算下面的算式,你能發(fā)現(xiàn)其中的規(guī)律嗎?
(-3)×3=,
(-3)×2=,
(-3)×1=,
(-3)×0=.
追問1:按照上述規(guī)律填空,并說說其中有什么規(guī)律?
(-3)×(-1)=,
(-3)×(-2)=,
(-3)×(-3)=.
設(shè)計意圖:由學(xué)生自主探究得出負數(shù)乘負數(shù)的結(jié)論.因為有前面積累的豐富經(jīng)驗,學(xué)生能獨立完成.
問題5總結(jié)上面所有的情況,你能試著自己給出有理數(shù)乘法法則嗎?
學(xué)生獨立思考后進行課堂交流,師生共同完成,得出結(jié)論后再讓學(xué)生看教科書.
學(xué)生獨立思考、回答.如果有困難,可先讓學(xué)生看課本第29頁有理數(shù)乘法法則后面的一段文字.
設(shè)計意圖:讓學(xué)生嘗試歸納乘法法則,明確按法則計算的關(guān)鍵步驟.
例1計算:
(1)。
;(2)。
;(3)。
學(xué)生獨立完成后,全班交流.
教師說明:在(3)中,我們得到了。
=1.與以前學(xué)習(xí)過的倒數(shù)概念一樣,我們說。
與-2互為倒數(shù).一般地,在有理數(shù)中仍然有:乘積是1的兩個數(shù)互為倒數(shù).
追問:在(2)中,8和-8互為相反數(shù).由此,你能說說如何得到一個數(shù)的相反數(shù)嗎?
設(shè)計意圖:本例既作為鞏固乘法法則,又引出了倒數(shù)的概念(因為這個概念很容易理解),同時說明了求一個數(shù)的相反數(shù)與乘-1之間的關(guān)系(反過來有-8=8×(―1)).
設(shè)計意圖:利用有理數(shù)乘法解決實際問題,體現(xiàn)數(shù)學(xué)的應(yīng)用價值.
小結(jié)、布置作業(yè)。
請同學(xué)們帶著下列問題回顧本節(jié)課的內(nèi)容:
(2)用有理數(shù)乘法法則進行兩個有理數(shù)的乘法運算的基本步驟是什么?
(3)舉例說明如何從正數(shù)、0的乘法運算出發(fā),歸納出正數(shù)乘負數(shù)的法則.
(4)你能舉例說明符號法則“負負得正”的合理性嗎?
設(shè)計意圖:引導(dǎo)學(xué)生從知識內(nèi)容和學(xué)習(xí)過程兩個方面進行小結(jié).
作業(yè):教科書第30頁,練習(xí)1,2,3;第37頁,習(xí)題1.4第1題.
五、目標檢測設(shè)計。
1.判斷下列運算結(jié)果的符號:
(1)5×(-3);。
(2)(-3)×3;。
(3)(-2)×(-7);。
(4)(+0.5)×(+0.7).
2計算:
(1)6×(-9);(2)(-6)×0.25;(3)(-0.5)×(-8);。
(4)。
;(5)0×(-6);(6)8×。
設(shè)計意圖:檢測學(xué)生對有理數(shù)乘法法則的理解情況.
七年級數(shù)學(xué)教案設(shè)計篇五
1,掌握有理數(shù)的概念,會對有理數(shù)按照一定的標準進行分類,培養(yǎng)分類能力;。
2,了解分類的標準與分類結(jié)果的相關(guān)性,初步了解“集合”的含義;。
3,體驗分類是數(shù)學(xué)上的常用處理問題的方法。
教學(xué)難點正確理解分類的標準和按照一定的標準進行分類。
知識重點正確理解有理數(shù)的概念。
教學(xué)過程(師生活動)設(shè)計理念。
探索新知在前兩個學(xué)段,我們已經(jīng)學(xué)習(xí)了很多不同類型的數(shù),通過上兩節(jié)課的學(xué)習(xí),又知道了現(xiàn)在的數(shù)包括了負數(shù),現(xiàn)在請同學(xué)們在草稿紙上任意寫出3個數(shù)(同時請3個同學(xué)在黑板上寫出).
問題1:觀察黑板上的9個數(shù),并給它們進行分類.
學(xué)生思考討論和交流分類的情況.
學(xué)生可能只給出很粗略的分類,如只分為“正數(shù)”和“負數(shù)”或“零”三類,此時,教師應(yīng)給予引導(dǎo)和鼓勵.
例如,
對于數(shù)5,可這樣問:5和5.1有相同的類型嗎?5可以表示5個人,而5.1可以表示人數(shù)嗎?(不可以)所以它們是不同類型的數(shù),數(shù)5是正數(shù)中整個的數(shù),我們就稱它為“正整數(shù)”,而5.1不是整個的數(shù),稱為“正分數(shù),,.??…(由于小數(shù)可化為分數(shù),以后把小數(shù)和分數(shù)都稱為分數(shù))。
通過教師的引導(dǎo)、鼓勵和不斷完善,以及學(xué)生自己的概括,最后歸納出我們已經(jīng)學(xué)過的5類不同的數(shù),它們分別是“正整數(shù),零,負整數(shù),正分數(shù),負分數(shù),’.
按照書本的說法,得出“整數(shù)”“分數(shù)”和“有理數(shù)”的概念.
看書了解有理數(shù)名稱的由來.
“統(tǒng)稱”是指“合起來總的名稱”的意思.
學(xué)生自己嘗試分類時,可能會很粗略,教師給予引導(dǎo)和鼓勵,劃分數(shù)的類型要從文字所表示的意義上去引導(dǎo),這樣學(xué)生易于理解。
有理數(shù)的分類表要在黑板或媒體上展示,分類的標準要引導(dǎo)學(xué)生去體會。
練一練1,任意寫出三個有理數(shù),并說出是什么類型的數(shù),與同伴進行交流.
2,教科書第10頁練習(xí).
此練習(xí)中出現(xiàn)了集合的概念,可向?qū)W生作如下的說明.
數(shù)集一般用圓圈或大括號表示,因為集合中的數(shù)是無限的,而本題中只填了所給的幾個數(shù),所以應(yīng)該加上省略號.
思考:上面練習(xí)中的四個集合合并在一起就是全體有理數(shù)的集合嗎?
也可以教師說出一些數(shù),讓學(xué)生進行判斷。
集合的概念不必深入展開。
創(chuàng)新探究問題2:有理數(shù)可分為正數(shù)和負數(shù)兩大類,對嗎?為什么?
教學(xué)時,要讓學(xué)生總結(jié)已經(jīng)學(xué)過的數(shù),鼓勵學(xué)生概括,通過交流和討論,教師作適當(dāng)?shù)闹笇?dǎo),逐步得到如下的分類表。
有理數(shù)這個分類可視學(xué)生的程度確定是否有必要教學(xué)。
小結(jié)與作業(yè)。
課堂小結(jié)到現(xiàn)在為止我們學(xué)過的數(shù)都是有理數(shù)(圓周率除外),有理數(shù)可以按不同的標準進行分類,標準不同,分類的結(jié)果也不同。
本課作業(yè)1,必做題:教科書第18頁習(xí)題1.2第1題。
2,教師自行準備。
本課教育評注(課堂設(shè)計理念,實際教學(xué)效果及改進設(shè)想)。
1,本課在引人了負數(shù)后對所學(xué)過的數(shù)按照一定的標準進行分類,提出了有理數(shù)的概。
念.分類是數(shù)學(xué)中解決問題的常用手段,通過本節(jié)課的學(xué)習(xí)使學(xué)生了解分類的思想并進。
行簡單的分類是數(shù)學(xué)能力的體現(xiàn),教師在教學(xué)中應(yīng)引起足夠的重視.關(guān)于分類標準與分。
類結(jié)果的關(guān)系,分類標準的確定可向?qū)W生作適當(dāng)?shù)臐B透,集合的概念比較抽象,學(xué)生真正接受需要很長的過程,本課不要過多展開。
2,本課具有開放性的特點,給學(xué)生提供了較大的思維空間,能促進學(xué)生積極主動地參加學(xué)習(xí),親自體驗知識的形成過程,可避免直接進行分類所帶來的枯燥性;同時還體現(xiàn)合作學(xué)習(xí)、交流、探究提高的特點,對學(xué)生分類能力的養(yǎng)成有很好的作用。
3,兩種分類方法,應(yīng)以第一種方法為主,第二種方法可視學(xué)生的情況進行。
七年級數(shù)學(xué)教案設(shè)計篇六
2、培養(yǎng)學(xué)生的觀察、比較、分析、歸納、概括能力,以及學(xué)生的探索精神;
3、滲透分類討論思想?
重點:有理數(shù)乘方的運算?
難點:有理數(shù)乘方運算的符號法則?
1、求n個相同因數(shù)的積的運算叫做乘方?
2、乘方的結(jié)果叫做冪,相同的因數(shù)叫做底數(shù),相同因數(shù)的個數(shù)叫做指數(shù)?
一般地,在an中,a取任意有理數(shù),n取正整數(shù)?
應(yīng)當(dāng)注意,乘方是一種運算,冪是乘方運算的結(jié)果?當(dāng)an看作a的n次方的結(jié)果時,也可以讀作a的n次冪。
例1計算:
(1)2,2,2,24;(2)-2,2,3,(-2)4;。
(3)0,02,03,04?
教師指出:2就是21,指數(shù)1通常不寫?讓三個學(xué)生在黑板上計算?
引導(dǎo)學(xué)生觀察、比較、分析這三組計算題中,底數(shù)、指數(shù)和冪之間有什么關(guān)系?
(1)模向觀察。
正數(shù)的任何次冪都是正數(shù);負數(shù)的奇次冪是負數(shù),偶次冪是正數(shù);零的任何次冪都是零?
(2)縱向觀察。
互為相反數(shù)的兩個數(shù)的奇次冪仍互為相反數(shù),偶次冪相等?
(3)任何一個數(shù)的偶次冪都是什么數(shù)?
任何一個數(shù)的偶次冪都是非負數(shù)?
你能把上述的結(jié)論用數(shù)學(xué)符號語言表示嗎?
當(dāng)a0時,an0(n是正整數(shù));
當(dāng)a。
當(dāng)a=0時,an=0(n是正整數(shù))?
(以上為有理數(shù)乘方運算的符號法則)。
a2n=(-a)2n(n是正整數(shù));
=-(-a)2n-1(n是正整數(shù));
a2n0(a是有理數(shù),n是正整數(shù))?
例2計算:
(1)(-3)2,(-3)3,[-(-3)]5;。
(2)-32,-33,-(-3)5;。
(3),?
讓三個學(xué)生在黑板上計算?
課堂練習(xí)。
計算:
(1),,,-,;
(2)(-1)2001,322,-42(-4)2,-23(-2)3;。
(3)(-1)n-1?
讓學(xué)生回憶,做出小結(jié):
1、乘方的有關(guān)概念?
2、乘方的符號法則?3?括號的作用?
1、計算下列各式:
(-3)2;(-2)3;(-4)4;;-0.12;。
-(-3)3;3(-2)3;-6(-3)3;-(-4)2(-1)5?
2、填表:
3、a=-3,b=-5,c=4時,求下列各代數(shù)式的值:
4、當(dāng)a是負數(shù)時,判斷下列各式是否成立?
(1)a2=(-a)2;(2)a3=(-a)3;(3)a2=;(4)a3=。
5、平方得9的數(shù)有幾個?是什么?有沒有平方得-9的有理數(shù)?為什么?
6、若(a+1)2+|b-2|=0,求a2000b3的值?
七年級數(shù)學(xué)教案設(shè)計篇七
2,了解分類的標準與分類結(jié)果的相關(guān)性,初步了解“集合”的含義;
3,體驗分類是數(shù)學(xué)上的常用處理問題的方法。
正確理解有理數(shù)的概念。
探索新知在前兩個學(xué)段,我們已經(jīng)學(xué)習(xí)了很多不同類型的數(shù),通過上兩節(jié)課的學(xué)習(xí),又知道了現(xiàn)在的數(shù)包括了負數(shù),現(xiàn)在請同學(xué)們在草稿紙上任意寫出3個數(shù)(同時請3個同學(xué)在黑板上寫出)。
問題1:觀察黑板上的9個數(shù),并給它們進行分類。
學(xué)生可能只給出很粗略的分類,如只分為“正數(shù)”和“負數(shù)”或“零”三類,此時,教師應(yīng)給予引導(dǎo)和鼓勵。
例如,對于數(shù)5,可這樣問:5和5.1有相同的類型嗎?5可以表示5個人,而5。1可以表示人數(shù)嗎?(不可以)所以它們是不同類型的數(shù),數(shù)5是正數(shù)中整個的數(shù),我們就稱它為“正整數(shù)”,而5.1不是整個的數(shù),稱為“正分數(shù)。(由于小數(shù)可化為分數(shù),以后把小數(shù)和分數(shù)都稱為分數(shù))通過教師的引導(dǎo)、鼓勵和不斷完善,以及學(xué)生自己的概括,最后歸納出我們已經(jīng)學(xué)過的5類不同的數(shù),它們分別是“正整數(shù),零,負整數(shù),正分數(shù),負分數(shù)’。按照書本的說法,得出“整數(shù)”“分數(shù)”和“有理數(shù)”的概念。
“統(tǒng)稱”是指“合起來總的名稱”的意思。
1,任意寫出三個有理數(shù),并說出是什么類型的數(shù),與同伴進行交流。
2,教科書第10頁練習(xí)。
此練習(xí)中出現(xiàn)了集合的概念,可向?qū)W生作如下的說明。
把一些數(shù)放在一起,就組成了一個數(shù)的集合,簡稱“數(shù)集”,所有有理數(shù)組成的數(shù)集叫做有理數(shù)集。類似地,所有整數(shù)組成的數(shù)集叫做整數(shù)集,所有負數(shù)組成的數(shù)集叫做負數(shù)集……;數(shù)集一般用圓圈或大括號表示,因為集合中的數(shù)是無限的,而本題中只填了所給的幾個數(shù),所以應(yīng)該加上省略號。
思考:上面練習(xí)中的四個集合合并在一起就是全體有理數(shù)的集合嗎?也可以教師說出一些數(shù),讓學(xué)生進行判斷。集合的概念不必深入展開。
創(chuàng)新探究。
問題2:有理數(shù)可分為正數(shù)和負數(shù)兩大類,對嗎?為什么?
教學(xué)時,要讓學(xué)生總結(jié)已經(jīng)學(xué)過的數(shù),鼓勵學(xué)生概括,通過交流和討論,教師作適當(dāng)?shù)闹笇?dǎo),逐步得到如下的分類表。
有理數(shù)這個分類可視學(xué)生的程度確定是否有必要教學(xué)。
到現(xiàn)在為止我們學(xué)過的數(shù)都是有理數(shù)(圓周率除外),有理數(shù)可以按不同的標準進行分類,標準不同,分類的結(jié)果也不同。
(1)必做題:教科書第18頁習(xí)題1、2第1題。
(2)教師自行準備本課教育評注(課堂設(shè)計理念,實際教學(xué)效果及改進設(shè)想)。
1,本課在引人了負數(shù)后對所學(xué)過的數(shù)按照一定的標準進行分類,提出了有理數(shù)的概念。分類是數(shù)學(xué)中解決問題的常用手段,通過本節(jié)課的學(xué)習(xí)使學(xué)生了解分類的思想并進行簡單的分類是數(shù)學(xué)能力的體現(xiàn),教師在教學(xué)中應(yīng)引起足夠的重視。關(guān)于分類標準與分類結(jié)果的關(guān)系,分類標準的確定可向?qū)W生作適當(dāng)?shù)臐B透,集合的概念比較抽象,學(xué)生真正接受需要很長的過程,本課不要過多展開。
2,本課具有開放性的特點,給學(xué)生提供了較大的思維空間,能促進學(xué)生積極主動地參加學(xué)習(xí),親自體驗知識的形成過程,可避免直接進行分類所帶來的枯燥性;同時還體現(xiàn)合作學(xué)習(xí)、交流、探究提高的特點,對學(xué)生分類能力的養(yǎng)成有很好的作用。
3,兩種分類方法,應(yīng)以第一種方法為主,第二種方法可視學(xué)生的情況進行。
興趣是最好的老師。只有當(dāng)學(xué)生對數(shù)學(xué)產(chǎn)生了極大興趣的時候,教師所傳授的知識才能夠很快被學(xué)生吸收。雖然我國素質(zhì)教育已經(jīng)開展多年了,但是許多教師在講課的時候還是很難進行啟發(fā)式教學(xué),往往將本來應(yīng)該是十分生動的.內(nèi)容,以“填鴨式、滿堂灌”的方式講述。因此,教師一定要注意激發(fā)學(xué)生的學(xué)習(xí)興趣,在講授知識時多考慮一下自己講授的知識以及教授的方法能否引發(fā)學(xué)生的興趣。
激發(fā)學(xué)生的學(xué)習(xí)興趣,教師可以做到以下幾點:(1)設(shè)置問題情境,讓學(xué)生積極思考,提高學(xué)生獨立思考問題的能力,培養(yǎng)學(xué)生的邏輯思維能力。(2)利用多媒體進行教學(xué)。隨著科學(xué)技術(shù)的進步,多媒體教學(xué)已經(jīng)得到了普遍發(fā)展。通過多媒體教學(xué)教師可以將抽象的數(shù)學(xué)符號、枯燥的數(shù)學(xué)定理、復(fù)雜的證明過程呈現(xiàn)出來。這樣就可以使學(xué)生獲得一定感性思維。(3)向?qū)W生講述一下關(guān)于數(shù)學(xué)的小知識或者是小故事,激發(fā)學(xué)生的學(xué)習(xí)興趣。
比如,冀教版初中數(shù)學(xué)八年級上冊第十六章的知識點是勾股定理,教師在講勾股定理這一章時,可以向?qū)W生講述一下古代人是怎樣發(fā)現(xiàn)勾股定理的,或者是向?qū)W生講述一下古代人是怎樣將數(shù)學(xué)知識運用到生活中去的。再比如,第十五章的知識點是軸對稱,教師可以列舉一些體現(xiàn)軸對稱特點的中國古代建筑物,比如說故宮的建筑模式。
素質(zhì)教育要求師生之間是一種民主平等的關(guān)系,師生雙方在教學(xué)內(nèi)容上是傳遞與接受的關(guān)系;在人格上是平等關(guān)系;在社會道德上是相互促進的關(guān)系。教師在日常教學(xué)過程中一定要充分發(fā)揚民主,建立和諧的師生關(guān)系。比如,在數(shù)學(xué)課堂上,有學(xué)生認為教師有的地方講的不對,然后在全班同學(xué)面前給教師提了出來。在這種情況下,教師應(yīng)該大度寬容,首先應(yīng)該表揚學(xué)生積極思考問題,其次,仔細考慮自己是否真的出錯了。最后,如果有錯要及時改正。在初中數(shù)學(xué)教學(xué)過程中,教師應(yīng)該充分調(diào)動學(xué)生的積極性和主動性,形成互動、互惠的師生關(guān)系。
教學(xué)目標具有激勵、導(dǎo)向、評價作用,對教師的教學(xué)和學(xué)生的學(xué)習(xí)都具有十分重要的作用。教師在設(shè)置數(shù)學(xué)教學(xué)目標的時候,要注意將知識與能力、過程與方法、情感態(tài)度與價值觀緊密結(jié)合起來。數(shù)學(xué)教學(xué)不僅要注意問題的解決,也要關(guān)注學(xué)生的思維過程。教師要成為學(xué)生學(xué)習(xí)的指導(dǎo)者和促進者,不僅要注重學(xué)習(xí)的結(jié)果,更要注重學(xué)生學(xué)習(xí)的過程。教師要合理運用教學(xué)方法教學(xué)方法的設(shè)計應(yīng)該遵循多樣性、靈活性、綜合性、創(chuàng)新性的原則。在選擇教學(xué)方法時,教師應(yīng)該依據(jù)教學(xué)規(guī)律和教學(xué)原則。
除此之外,教師在選擇教學(xué)方法時要依據(jù)學(xué)生的學(xué)習(xí)特點,要符合學(xué)生的身心發(fā)展規(guī)律。同時還要依據(jù)教學(xué)的組織形式、時間、設(shè)備條件進行教學(xué)方法的選擇。由于中學(xué)生的注意力還不是特別集中,在一節(jié)課中只運用一種教學(xué)方法會使學(xué)生產(chǎn)生疲憊和倦怠,因此,教師在講授過程中應(yīng)該綜合運用多種教學(xué)方法,以引起學(xué)生的注意力和積極性。比如,在學(xué)習(xí)《命題與證明》這一章時,教師應(yīng)該采用講授法、談話法、練習(xí)法等,這樣既可以使學(xué)生掌握一定的新知識又能夠及時掌握新知識,同時又激發(fā)了學(xué)生學(xué)習(xí)的積極性和主動性。教師在教學(xué)中應(yīng)多采用啟發(fā)式教學(xué)。所謂啟發(fā)式教學(xué)就是教師要承認學(xué)生的主體地位,充分調(diào)動學(xué)生的學(xué)習(xí)積極性和主動性,引導(dǎo)學(xué)生獨立思考、積極探索,生動活潑地學(xué)習(xí),自覺地掌握科學(xué)知識,提高分析問題、解決問題的能力。初中教師在教學(xué)過程中,一定要時刻注意啟發(fā)學(xué)生的思維。這樣才能夠激發(fā)學(xué)生的學(xué)習(xí)興趣,使課堂變得生動、有趣。只有當(dāng)學(xué)生對數(shù)學(xué)產(chǎn)生了極大興趣的時候,教師所傳授的知識才能夠很快被學(xué)生吸收。
綜上所述,在初中數(shù)學(xué)教學(xué)過程中要運用恰當(dāng)、科學(xué)的教學(xué)策略。教師一定要根據(jù)學(xué)生的實際情況,根據(jù)教材的具體內(nèi)容制定科學(xué)的教學(xué)策略,以提高教學(xué)質(zhì)量和學(xué)生學(xué)習(xí)的質(zhì)量。教師在進行教學(xué)時一定要遵循直觀性原則、因材施教原則、理論聯(lián)系實際原則、科學(xué)性等原則。教學(xué)策略是多種多樣的,比如激發(fā)學(xué)生的學(xué)習(xí)興趣;樹立多元化的教學(xué)目標;建立民主平等的師生關(guān)系等。教師一定要跟隨教育改革的步伐,跟隨時代的潮流,積極探索教學(xué)之路,提升數(shù)學(xué)教學(xué)水平,培養(yǎng)出高素質(zhì)的學(xué)生。
七年級數(shù)學(xué)教案設(shè)計篇八
知識與技能:
理解移項法則,會解形如ax+b=cx+d的方程,體會等式變形中的化歸思想.
過程與方法:
1、能夠從實際問題中列出一元一次方程,進一步體會方程模型思想的作用及應(yīng)用價值.
2、經(jīng)歷探索移項法則法的過程,發(fā)展觀察、歸納、猜測、驗證的能力。
情感、態(tài)度與價值觀:
結(jié)合實際問題,探索用移項法則解一元一次方程的方法,進一步認識數(shù)學(xué)來源于生活,并為生活服務(wù),從而學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好數(shù)學(xué)的信心。
教學(xué)重點。
確定實際問題中的相等關(guān)系,建立形如ax+b=cx+d的方程,并利用移項和合并同類項的方法解一元一次方程.
教學(xué)難點。
確定相等關(guān)系并列出一元一次方程,正確地進行移項并解出方程。
教學(xué)過程。
一、情景引入:
二、自主學(xué)習(xí):
1.解方程:
3x+20=4x-25。
觀察上列一元一次方程,與上題的類型有什么區(qū)別?
3.新知學(xué)習(xí)請運用等式的性質(zhì)解下列方程:
(1)4x-15=9;(2)2x=5x-21。
你有什么發(fā)現(xiàn)?
三、精講點撥。
問題2你能說說由方程到方程的變形過程中有什么變化嗎?
移項的定義:一般地,把方程中的某些項改變符號后,從方程的一邊移到另一邊,這種變形叫做移項。
移項的依據(jù)及注意事項:移項實際上是利用等式的性質(zhì)1.注意:移項一定要變號。
例1解下列方程:
解:移項,得3x+2x=32-7。
合并同類項,得5x=25。
系數(shù)化為1,得x=5。
移項時需要移哪些項?為什么?
針對訓(xùn)練:解下列方程:
(1)5x-7=2x-10;(2)-0.3x+3=9+1.2x.
四、合作探究。
列方程解決問題。
思考:如何設(shè)未知數(shù)?
你能找到等量關(guān)系嗎?
五、當(dāng)堂鞏固。
1.對方程7x=6+4x進行移項,得___________,合并同類項,得_________,系數(shù)化為1,得________.
2.小新出生時父親28歲,現(xiàn)在父親的年齡比小新年齡的3倍小2歲.求小新現(xiàn)在的年齡.
六、課堂小結(jié)。
1.本節(jié)課主要學(xué)習(xí)了解一元一次方程的方法:移項,移項的根據(jù)是等式的性質(zhì)1。
2.本節(jié)的實際問題的相等關(guān)系的依據(jù):表示同一個量的兩個式子相等。
3.列方程解實際問題的基本思路。
七、作業(yè)布置。
1.必做題:教科書第91頁習(xí)題3.2第3(3),(4),11題。
2.選做題:
八、板書設(shè)計。
七年級數(shù)學(xué)教案設(shè)計篇九
本課(節(jié))課題3.1認識直棱柱第1課時/共課時。
教學(xué)目標(含重點、難點)及。
1、了解多面體、直棱柱的有關(guān)概念.
2、會認直棱柱的側(cè)棱、側(cè)面、底面.。
3、了解直棱柱的側(cè)棱互相平行且相等,側(cè)面是長方形(含正方形)等特征.。
教學(xué)重點與難點。
教學(xué)重點:直棱柱的有關(guān)概念.
教學(xué)難點:本節(jié)的例題描述一個物體的形狀,把它看成怎樣的兩個幾何體的組合,都需要一定的空間想象能力和表達能力.
內(nèi)容與環(huán)節(jié)預(yù)設(shè)、簡明設(shè)計意圖二度備課(即時反思與糾正)。
析:學(xué)生很容易回答出更多的答案。
師:(繼續(xù)補充)有許多著名的建筑,像古埃及的金字塔、巴黎的艾菲爾鐵塔、美國的迪思尼樂園、德國的古堡風(fēng)光,中國北京的西客站,它們也是由不同的立體圖形組成的;那么立體圖形在生活中有著怎樣的廣泛的應(yīng)用呢?瞧,食物中的冰激凌、櫻桃、端午節(jié)的粽子等。
1.多面體、棱、頂點概念:
2.合作交流。
師:以學(xué)習(xí)小組為單位,拿出事先準備好的幾何體。
學(xué)生活動:(讓學(xué)生從中閉眼摸出某些幾何體,邊摸邊用語言描。
述其特征。)。
師:同學(xué)們再討論一下,能否把自己的語言轉(zhuǎn)化為數(shù)學(xué)語言。
學(xué)生活動:分小組討論。
說明:真正體現(xiàn)了“以生為本”。讓學(xué)生在主動探究中發(fā)現(xiàn)知識,充分發(fā)揮了學(xué)生的主體作用和教師的主導(dǎo)作用,課堂氣氛活躍,教師教的輕松,學(xué)生學(xué)的愉快。
師:請大家找出與長方體,立方體類似的物體或模型。
析:舉出實例。(找出區(qū)別)。
師:(總結(jié))棱柱分為之直棱柱和斜棱柱。(根據(jù)其側(cè)棱與底面是否垂直)根據(jù)底面多邊形的邊數(shù)而分為直三棱柱、直四棱柱……直棱柱有以下特征:
有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;
側(cè)面都是長方形含正方形。
長方體和正方體都是直四棱柱。
3.反饋鞏固。
完成“做一做”
析:由第(3)小題可以得到:
直棱柱的'相鄰兩條側(cè)棱互相平行且相等。
4.學(xué)以至用。
出示例題。(先請學(xué)生單獨考慮,再作講解)。
析:引導(dǎo)學(xué)生著重觀察首飾盒的側(cè)面是什么圖形,上底面是什么圖形,然后與直棱柱的特征作比較。(使學(xué)生養(yǎng)成發(fā)現(xiàn)問題,解決問題的創(chuàng)造性思維習(xí)慣)。
最后完成例題中的“想一想”
5.鞏固練習(xí)(學(xué)生練習(xí))。
完成“課內(nèi)練習(xí)”
師:我們這節(jié)課的重點是什么?哪些地方比較難學(xué)呢?
合作交流后得到:重點直棱柱的有關(guān)概念。
直棱柱有以下特征:
有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;
側(cè)面都是長方形含正方形。
例題中的把首飾盒看成是由兩個直三棱柱、直四棱柱的組合,或著是兩個直四棱柱的組合需要一定的空間想象能力和表達能力。這一點比較難。
板書設(shè)計。
作業(yè)布置或設(shè)計作業(yè)本及課時特訓(xùn)。
七年級數(shù)學(xué)教案設(shè)計篇十
學(xué)習(xí)目標:
1.會用正.負數(shù)表示具有相反意義的量.
2.通過正.負數(shù)學(xué)習(xí),培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)知識的意識.
3.通過探究,滲透對立統(tǒng)一的辨證思想。
學(xué)習(xí)重點:
用正.負數(shù)表示具有相反意義的量。
學(xué)習(xí)難點:
實際問題中的數(shù)量關(guān)系。
教學(xué)方法:
講練相結(jié)合。
教學(xué)過程。
一.學(xué)前準備。
通過上節(jié)課的學(xué)習(xí),我們知道在實際生產(chǎn)和生活中存在著兩種不同意義的量,為了區(qū)分它們,我們用正數(shù)和負數(shù)來分別表示它們.
問題1:“零”為什么即不是正數(shù)也不是負數(shù)呢?
引導(dǎo)學(xué)生思考討論,借助舉例說明.
參考例子:溫度表示中的零上,零下和零度.
二.探究理解解決問題。
問題2:(教科書第4頁例題)。
先引導(dǎo)學(xué)生分析,再讓學(xué)生獨立完成。
(2)20xx年下列國家的商品進出口總額比上一年的變化情況是:
美國減少6.4%,德國增長1.3%,
法國減少2.4%,英國減少3.5%,
意大利增長0.2%,中國增長7.5%.
寫出這些國家20xx年商品進出口總額的增長率.
解:(1)這個月小明體重增長2kg,小華體重增長―1kg,小強體重增長0kg.
(2)六個國家20xx年商品進出口總額的增長率:
美國―6.4%,德國1.3%,
法國―2.4%,英國―3.5%,
意大利0.2%,中國7.5%.
三.鞏固練習(xí)。
從0表示一個也沒有,是正數(shù)和負數(shù)的分界的角度引導(dǎo)學(xué)生理解.
在學(xué)生的討論中簡單介紹分類的數(shù)學(xué)思想先不要給出有理數(shù)的概念.
在例題中,讓學(xué)生通過閱讀題中的含義,找出具有相反意義的量,決定哪個用正數(shù)表示,哪個用負數(shù)表示.
通過問題(2)提醒學(xué)生審題時要注意要求,題中求的是增長率,不是增長值.
四.閱讀思考1頁。
(教科書第8頁)用正負數(shù)表示加工允許誤差.
問題:1.直徑為30.032mm和直徑為29.97的零件是否合格?
2.你知道還有那些事件可以用正負數(shù)表示允許誤差嗎?請舉例.
五.小結(jié)。
1.本節(jié)課你有那些收獲?
2.還有沒解決的問題嗎?
六.應(yīng)用與拓展。
1.必做題:
教科書5頁習(xí)題4.5.:6.7.8題。
2.選做題。
1).甲冷庫的溫度是―12°c,乙冷庫的溫度比甲冷酷低5°c,則乙冷庫的溫度是.
七年級數(shù)學(xué)教案設(shè)計篇十一
識記和理解:記住元謀人、北京人和山頂洞人生活的時代和地點;知道北京人的體質(zhì)特征;了解他們使用的工具特征及獲取生活資料的方式;理解原始人用火的意義。
能力與方法:通過識圖培養(yǎng)觀察能力;通過想象原始人生活情景,培養(yǎng)再造想象能力;通過比較北京人、猿類、現(xiàn)代人,幫助學(xué)生學(xué)習(xí)運用比較的方法學(xué)習(xí)歷史。
情感、態(tài)度與價值觀:了解中華文明悠長的源頭,進行愛國主義教育;認識勞動在人進化中的作用,進行勞動觀點的教育;了解北京人與山頂洞人和生活環(huán)境,認識人與自然的關(guān)系。
【教學(xué)重、難點】重點:是北京人;難點:元謀人的地位、北京人身體不平衡、山頂洞人人工取火的依據(jù)。
【教學(xué)過程】。
一、導(dǎo)入新課。
書上的導(dǎo)言,當(dāng)科學(xué)考隊員,來考察一下我國境內(nèi)早期人類的生活情況。要求學(xué)生初讀課文,觀察《我國境內(nèi)早期人類活動地區(qū)圖》,設(shè)計考察的線路(按一定的時間順序)。調(diào)動學(xué)生的參與興趣。
積極參與設(shè)計考察線路,初步知道先后順序。
二、元謀人。
要求學(xué)生看書,找出“為什么叫元謀人?(同時解決‘北京人’、藍田人等名的來歷)”“生活的年代與地域?”
考察:“作為科學(xué)工作者,你怎么知道他已經(jīng)是人了呢?”“元謀人的發(fā)現(xiàn),有何重要意義?”
教師小結(jié)。過渡:已經(jīng)發(fā)掘的元謀人的遺存不多。接下來我們重點考察一下北京人。
學(xué)生閱讀,仔細研究,體驗一下考察的感覺。
三、北京人。
要求學(xué)生閱讀課本,看看從哪些方面去考察北京人?(生活的年代、地域、環(huán)境、身體特征、工具的使用、火的使用等)。
問題:你認為有哪些條件(不)適宜人的生存?
比較體質(zhì)特征(觀察真人比較)。
怎么樣知道北京人用火?如何得到火的?如何保存火種?使用火有何意義?
教師小結(jié)本目內(nèi)容,說明:北京人遺址是遺存最豐富的遠古人類,于1987年被聯(lián)合國教科文組織命名為“世界遺產(chǎn)名錄。”
活動:想象北京人的一天是如何度過的?
學(xué)生閱讀,先建立一個整體映像。
然后分別進行考察(閱讀、觀察、分析、結(jié)論、發(fā)言等活動)。
增加學(xué)生的自豪感。
四、山頂洞人。
大約二十萬年后,在北京人生活過的地方,又出現(xiàn)了一種進步得多的原始人類――這就是“山頂洞人”。
引導(dǎo)學(xué)生考察一下,山頂洞人有哪些方面比北京人進步(注意哪些方面,列表歸納)。
著重考察:怎么知道他們會人工取火?他們是如何鉆孔的?
五、收獲與疑問。
我們今天的科考結(jié)束了,你有什么收獲呢?
還有哪些問題?
七年級數(shù)學(xué)教案設(shè)計篇十二
1、知識與技能:
理解相交線、垂線的定義,在具體的情景中了解同位角、內(nèi)錯角和同旁內(nèi)角的定義,能找到圖形中的同位角、內(nèi)錯角和同旁內(nèi)角以及對頂角。
2、過程與方法:
能夠通過觀察推斷等方法準確找到圖形中的鄰補角、對頂角,能夠進一步發(fā)展空間觀念。
3、情感態(tài)度價值觀:
培養(yǎng)識圖能力,發(fā)展空間想象能力,和邏輯推理能力。
1、重點:鄰補角、對頂角的概念,對頂角的性質(zhì)與應(yīng)用,以及對同位角、內(nèi)錯角和同旁內(nèi)角的概念和應(yīng)用的理解。
2、難點:理解對頂角相等的性質(zhì)的探索。
1、創(chuàng)設(shè)情景:通過多媒體展示自然界中的相交線的圖形,和同學(xué)們探討自然界中還存在哪些相交線的圖形,幫助同學(xué)們理解數(shù)學(xué)和生活的緊密關(guān)系。
3、抽象圖形:抽象出具體的圖形,和同學(xué)們一起給出相交線的定義。
5、嘗試反饋:在和同學(xué)們的探討中和同學(xué)們一起給出鄰補角和對頂角的定義。
6、在相交線的模型中,如果兩條相交線形成的四個角為直角,介紹垂線的定義。
7、進一步研究:在研究了一條直線與另一條直線之間的關(guān)系之后進一步研究一條直線與兩條直線分別相交時,討論沒有公共頂點的兩個角之間的關(guān)系,理解同位角、內(nèi)錯角和同旁內(nèi)角的定義。
引導(dǎo)同學(xué)們一起進行總結(jié)本節(jié)課學(xué)習(xí)的內(nèi)容,并強調(diào)對頂角的概念和性質(zhì)的理解。
第七頁,第二題,第六題,第十題。
七年級數(shù)學(xué)教案設(shè)計篇十三
比較正數(shù)和負數(shù)的大小。
1、借助數(shù)軸初步學(xué)會比較正數(shù)、0和負數(shù)之間的大小。
2、初步體會數(shù)軸上數(shù)的順序,完成對數(shù)的結(jié)構(gòu)的初步構(gòu)建。
負數(shù)與負數(shù)的比較。
一、復(fù)習(xí):
1、讀數(shù),指出哪些是正數(shù),哪些是負數(shù)?
—85。6+0。9—+0—82。
2、如果+20%表示增加20%,那么—6%表示。
二、新授:
(一)教學(xué)例3:
1、怎樣在數(shù)軸上表示數(shù)?(1、2、3、4、5、6、7)。
2、出示例3:
(1)提問你能在一條直線上表示他們運動后的情況嗎?
(2)讓學(xué)生確定好起點(原點)、方向和單位長度。學(xué)生畫完交流。
(3)教師在黑板上話好直線,在相應(yīng)的點上用小圖片代表大樹和學(xué)生,在問怎樣用數(shù)表示這些學(xué)生和大樹的相對位置關(guān)系?(讓學(xué)生把直線上的點和正負數(shù)對應(yīng)起來。
(4)學(xué)生回答,教師在相應(yīng)點的下方標出對應(yīng)的數(shù),再讓學(xué)生說說直線上其他幾個點代表的數(shù),讓學(xué)生對數(shù)軸上的點表示的正負數(shù)形成相對完整的認識。
(5)總結(jié):我們可以像這樣在直線上表示出正數(shù)、0和負數(shù),像這樣的直線我們叫數(shù)軸。
(6)引導(dǎo)學(xué)生觀察:
a、從0起往右依次是?從0起往左依次是?你發(fā)現(xiàn)什么規(guī)律?
(7)練習(xí):做一做的第1、2題。
(二)教學(xué)例4:
1、出示未來一周的天氣情況,讓學(xué)生把未來一周每天的最低氣溫在數(shù)軸上表示出來,并比較他們的大小。
2、學(xué)生交流比較的方法。
3、通過小精靈的話,引出利用數(shù)軸比較數(shù)的大小規(guī)定:在數(shù)軸上,從左到右的順序就是數(shù)從小到大的順序。
4、再讓學(xué)生進行比較,利用學(xué)生的具體比較來說明“—8在—6的左邊,所以—8〈—6”
5、再通過讓另一學(xué)生比較“8〉6,但是—8〈—6”,使學(xué)生初步體會兩負數(shù)比較大小時,絕對值大的負數(shù)反而小。
6、總結(jié):負數(shù)比0小,所有的負數(shù)都在0的'左邊,也就是負數(shù)都比0小,而正數(shù)比0大,負數(shù)比正數(shù)小。
7、練習(xí):做一做第3題。
三、鞏固練習(xí)。
1、練習(xí)一第4、5題。
2、練習(xí)一第6題。
3、某日傍晚,黃山的氣溫由上午的零上2攝氏度下降了7攝氏度,這天傍晚黃山的氣溫是攝氏度。
四、全課總結(jié)。
(1)在數(shù)軸上,從左到右的順序就是數(shù)從小到大的順序。
(2)負數(shù)比0小,正數(shù)比0大,負數(shù)比正數(shù)小。
第二課教學(xué)反思:
許多教師認為“負數(shù)”這個單元的內(nèi)容很簡單,不需要花過多精力學(xué)生就能基本能掌握??扇绻钊脬@研教材,其實會發(fā)現(xiàn)還有不少值得挖掘的內(nèi)容可以向?qū)W生補充介紹。
例3——兩個不同層面的拓展:
1、在數(shù)軸上表示數(shù)要求的拓展。
數(shù)軸除了可以表示整數(shù),還可以表示小數(shù)和分數(shù)。教材例3只表示出正、負整數(shù),最后一個自然段要求學(xué)生表示出—1。5。建議此處教師補充要求學(xué)生表示出“+1。5”的位置,因為這樣便于對比發(fā)現(xiàn)兩個數(shù)離原點的距離相等,只不過分別在0的左右兩端,滲透+1。5和—1。5絕對值相等。同時,還應(yīng)補充在數(shù)軸上表示分數(shù),如—1/3、—3/2等,提升學(xué)生數(shù)形結(jié)合能力,為例4的教學(xué)打下夯實的基礎(chǔ)。
2、滲透負數(shù)加減法。
教材中所呈現(xiàn)的數(shù)軸可以充分加以應(yīng)用,如可補充提問:在“—2”位置的同學(xué)如果接著向西走1米,將會到達數(shù)軸什么位置?如果是向東走1米呢?如果他從“—2”的位置要走到“—4”,應(yīng)該如何運動?如果他想從“—2”的位置到達“+3”,又該如何運動?其實,這些問題就是解決—2—1;2+1;—4—(—2);3—(—2)等于幾,這樣的設(shè)計對于學(xué)生初中進一步學(xué)習(xí)代數(shù)知識是極為有利的。
例4——薄書讀厚、厚書讀薄。
薄書讀厚——負數(shù)大小比較的三種類型(正數(shù)和負數(shù)、0和負數(shù)、負數(shù)和負數(shù))。
例4教材只提出一個大的問題“比較它們的大小”,這些數(shù)的大小比較可以分為幾類?每類比較又有什么方法,教材則沒有明確標明。所以教學(xué)中,當(dāng)學(xué)生明確數(shù)軸從左到右的順序就是數(shù)從小到大的順序基礎(chǔ)上,我還挖掘了三種不同類型,一一請學(xué)生介紹比較方法,將薄書讀厚。
將厚書讀薄——無論哪種類型,比較方法萬變不離其宗。
無論哪種比較方法,最終都可回歸到“數(shù)軸上左邊的數(shù)比右邊的數(shù)小?!奔词褂袑W(xué)生在比較—8和—6大小時是用“86,所以—8—6”來闡述其原因,其實也與數(shù)軸相關(guān)。因為當(dāng)絕對值越大時,表示離原點的距離越遠,那么在數(shù)軸上表示的點也就在原點左邊越遠,數(shù)也就越小。所以,抓住精髓就能以不變應(yīng)萬變。
在此,我還補充了—3/7和—2/5比較大小的練習(xí),提升學(xué)生靈活應(yīng)用知識解決實際問題的能力。
七年級數(shù)學(xué)教案設(shè)計篇十四
一、識記與理解:通過本課的學(xué)習(xí),使學(xué)生了解并掌握先秦至南北朝時期的藝術(shù)成就:戰(zhàn)國編鐘,秦始皇陵兵馬俑,王羲之與《蘭亭序》,顧愷之與《女史箴圖》、《洛神賦圖》。
二、能力和方法:通過指導(dǎo)學(xué)生鑒賞戰(zhàn)國編鐘、秦始皇陵兵馬俑、《蘭亭序》、《女史箴圖》、《洛神賦圖》等藝術(shù)作品,培養(yǎng)學(xué)生的'藝術(shù)欣賞能力;通過對歷史文物價值的討論,培養(yǎng)學(xué)生歷史分析、評價能力。
三、情感、態(tài)度與價值觀:通過學(xué)習(xí)杰出的藝術(shù)成就,激發(fā)學(xué)生的民族自豪感和對中國文化的認同感;通過對藝術(shù)作品的欣賞,陶冶情趣,養(yǎng)成學(xué)生發(fā)現(xiàn)美、感受美、追求美、創(chuàng)造美的意識;通過對杰出藝術(shù)成就的原因分析,使生認識到人民的創(chuàng)造性是歷史文明和歷史進步的根本動力。
【教學(xué)重、難點】。
重點:戰(zhàn)國編鐘、秦始皇陵兵馬俑。
難點:王羲之、顧愷之的書畫成就和秦始皇陵兵馬俑的藝術(shù)價值。
【課前準備】。
課前收集有關(guān)秦始皇陵兵馬俑和王羲之的故事。
【教學(xué)步驟】。
教師活動學(xué)生活動備注。
一、導(dǎo)入新課。
問學(xué)生,有哪些同學(xué)學(xué)過美術(shù)、音樂、書法?你們知道中國有哪些重要的美術(shù)作品、樂器、書法作品?而引入本課。
二、戰(zhàn)國編鐘。
指導(dǎo)學(xué)生閱讀、觀察編鐘圖,談?wù)劙l(fā)現(xiàn)。
抽學(xué)生講知音的故事。理解春秋戰(zhàn)國時期的音樂成就。
三、秦始皇陵兵馬俑。
先閱讀教材、觀察書上的圖,談?wù)動惺裁锤邢搿?BR> 教師將知識要點落實在教材上。突出其在雕塑的崇高地位。
四、王羲之的書法。
閱讀教材,落實知識點。
仔細觀察書上的字帖,讓學(xué)生暢所欲言。
抽兩個學(xué)生來講王羲之的故事。
談王羲之的品格。
五、顧愷之的繪畫。
閱讀教材,找出要點。
教師講解,指導(dǎo)學(xué)生觀察兩幅名畫,體會之。
補充講“三絕”。
七年級數(shù)學(xué)教案設(shè)計篇十五
1、教學(xué)方法:引導(dǎo)發(fā)現(xiàn)法、探究法、講練法、
(一)重點
準確掌握積的乘方的運算性質(zhì)、
(二)難點
用數(shù)學(xué)語言概括運算性質(zhì)、
(三)解決辦法
增強對三種運算性質(zhì)的理解,并運用對比的方法強化訓(xùn)練以達到準確地區(qū)分、
一課時、
投影儀或電腦、自制膠片、
3、通過舉例來說明積的乘方性質(zhì)應(yīng)如何正確使用,師生共練以達到熟練掌握、
4、多種題型的設(shè)計,讓學(xué)生能從不同的角度全面準確地理解和運用該性質(zhì)、
(一)明確目標
本節(jié)課重點學(xué)習(xí)積的乘方的運算性質(zhì)及其較靈活地運用、
(二)整體感知
(三)教學(xué)過程
1、創(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入
前面我們學(xué)習(xí)了同底數(shù)冪的乘法、冪的乘方這兩個寨的運算性質(zhì),請同學(xué)們通過完成一組練習(xí),來回顧一下這兩個性質(zhì):
填空:

