多邊形的內(nèi)角和教案四年級大全(16篇)

字號:

    教案應(yīng)該兼顧學(xué)生的學(xué)習(xí)特點和需求,注重培養(yǎng)學(xué)生的能力和素養(yǎng)。編寫教案前,教師應(yīng)該充分了解教學(xué)內(nèi)容和學(xué)生的學(xué)習(xí)特點。請大家仔細(xì)研究以下教案范文,嘗試從中獲得教學(xué)設(shè)計的靈感。
    多邊形的內(nèi)角和教案四年級篇一
    難點:探索多邊形內(nèi)角和時,如何把多邊形轉(zhuǎn)化成三角形。
    四、教學(xué)方法:引導(dǎo)發(fā)現(xiàn)法、討論法。
    五、教具、學(xué)具。
    教具:多媒體課件。
    學(xué)具:三角板、量角器。
    六、教學(xué)媒體:大屏幕、實物投影。
    七、教學(xué)過程:
    (一)創(chuàng)設(shè)情境,設(shè)疑激思。
    師:大家都知道三角形的內(nèi)角和是180?,那么四邊形的內(nèi)角和,你知道嗎?
    在獨立探索的基礎(chǔ)上,學(xué)生分組交流與研討,并匯總解決問題的方法。
    方法一:用量角器量出四個角的度數(shù),然后把四個角加起來,發(fā)現(xiàn)內(nèi)角和是360?。
    方法二:把兩個三角形紙板拼在一起構(gòu)成四邊形,發(fā)現(xiàn)兩個三角形內(nèi)角和相加是360?。
    接下來,教師在方法二的基礎(chǔ)上引導(dǎo)學(xué)生利用作輔助線的方法,連結(jié)四邊形的對角線,把一個四邊形轉(zhuǎn)化成兩個三角形。
    師:你知道五邊形的內(nèi)角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?
    學(xué)生先獨立思考每個問題再分組討論。
    關(guān)注:(1)學(xué)生能否類比四邊形的方式解決問題得出正確的結(jié)論。
    (2)學(xué)生能否采用不同的方法。
    方法1:把五邊形分成三個三角形,3個180?的和是540?。
    方法2:從五邊形內(nèi)部一點出發(fā),把五邊形分成五個三角形,然后用5個180?的和減去一個周角360?。結(jié)果得540?。
    方法3:從五邊形一邊上任意一點出發(fā)把五邊形分成四個三角形,然后用4個180?的和減去一個平角180?,結(jié)果得540?。
    方法4:把五邊形分成一個三角形和一個四邊形,然后用180?加上360?,結(jié)果得540?。
    師:你真聰明!做到了學(xué)以致用。
    交流后,學(xué)生運用幾何畫板演示并驗證得到的方法。
    得到五邊形的內(nèi)角和之后,同學(xué)們又認(rèn)真地討論起六邊形、十邊形的內(nèi)角和。類比四邊形、五邊形的討論方法最終得出,六邊形內(nèi)角和是720?,十邊形內(nèi)角和是1440?。
    (二)引申思考,培養(yǎng)創(chuàng)新。
    (3)從多邊形一個頂點引的對角線分三角形的個數(shù)與多邊形邊數(shù)的關(guān)系?
    學(xué)生結(jié)合思考題進(jìn)行討論,并把討論后的結(jié)果進(jìn)行交流。
    發(fā)現(xiàn)1:四邊形內(nèi)角和是2個180?的和,五邊形內(nèi)角和是3個180?的'和,六邊形內(nèi)角和是4個180?的和,十邊形內(nèi)角和是8個180?的和。
    發(fā)現(xiàn)3:一個n邊形從一個頂點引出的對角線分三角形的個數(shù)與邊數(shù)n存在(n-2)的關(guān)系。
    (三)實際應(yīng)用,優(yōu)勢互補(bǔ)。
    (2)一個多邊形的內(nèi)角和是1440?,且每個內(nèi)角都相等,則每個內(nèi)角的度數(shù)是()。
    (四)概括存儲。
    學(xué)生自己歸納總結(jié):
    2、運用轉(zhuǎn)化思想解決數(shù)學(xué)問題。
    3、用數(shù)形結(jié)合的思想解決問題。
    (五)作業(yè):練習(xí)冊第93頁1、2、3。
    八、教學(xué)反思:
    1、教的轉(zhuǎn)變。
    本節(jié)課教師的角色從知識的傳授者轉(zhuǎn)變?yōu)閷W(xué)生學(xué)習(xí)的組織者、引導(dǎo)者、合作者與共同研究者,在引導(dǎo)學(xué)生畫圖、測量發(fā)現(xiàn)結(jié)論后,利用幾何畫板直觀地展示,激發(fā)學(xué)生自覺探究數(shù)學(xué)問題,體驗發(fā)現(xiàn)的樂趣。
    2、學(xué)的轉(zhuǎn)變。
    學(xué)生的角色從學(xué)會轉(zhuǎn)變?yōu)闀W(xué)。本節(jié)課學(xué)生不是停留在學(xué)會課本知識層面,而是站在研究者的角度深入其境。
    3、課堂氛圍的轉(zhuǎn)變。
    整節(jié)課以“流暢、開放、合作、‘隱’導(dǎo)”為基本特征,教師對學(xué)生的思維減少干預(yù),教學(xué)過程呈現(xiàn)一種比較流暢的特征。整節(jié)課學(xué)生與學(xué)生,學(xué)生與教師之間以“對話”、“討論”為出發(fā)點,以互助合作為手段,以解決問題為目的,讓學(xué)生在一個比較寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價值。
    多邊形的內(nèi)角和教案四年級篇二
    難點:探索多邊形內(nèi)角和時,如何把多邊形轉(zhuǎn)化成三角形。
    四、教學(xué)方法:引導(dǎo)發(fā)現(xiàn)法、討論法。
    五、教具、學(xué)具。
    教具:多媒體課件。
    學(xué)具:三角板、量角器。
    六、教學(xué)媒體:大屏幕、實物投影。
    七、教學(xué)過程:
    (一)創(chuàng)設(shè)情境,設(shè)疑激思。
    師:大家都知道三角形的內(nèi)角和是180?,那么四邊形的內(nèi)角和,你知道嗎?
    在獨立探索的基礎(chǔ)上,學(xué)生分組交流與研討,并匯總解決問題的方法。
    方法一:用量角器量出四個角的度數(shù),然后把四個角加起來,發(fā)現(xiàn)內(nèi)角和是360?。
    方法二:把兩個三角形紙板拼在一起構(gòu)成四邊形,發(fā)現(xiàn)兩個三角形內(nèi)角和相加是360?。
    接下來,教師在方法二的基礎(chǔ)上引導(dǎo)學(xué)生利用作輔助線的方法,連結(jié)四邊形的對角線,把一個四邊形轉(zhuǎn)化成兩個三角形。
    師:你知道五邊形的內(nèi)角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?
    學(xué)生先獨立思考每個問題再分組討論。
    關(guān)注:(1)學(xué)生能否類比四邊形的方式解決問題得出正確的結(jié)論。
    (2)學(xué)生能否采用不同的方法。
    方法1:把五邊形分成三個三角形,3個180?的和是540?。
    方法2:從五邊形內(nèi)部一點出發(fā),把五邊形分成五個三角形,然后用5個180?的和減去一個周角360?。結(jié)果得540?。
    方法3:從五邊形一邊上任意一點出發(fā)把五邊形分成四個三角形,然后用4個180?的和減去一個平角180?,結(jié)果得540?。
    方法4:把五邊形分成一個三角形和一個四邊形,然后用180?加上360?,結(jié)果得540?。
    師:你真聰明!做到了學(xué)以致用。
    交流后,學(xué)生運用幾何畫板演示并驗證得到的方法。
    得到五邊形的內(nèi)角和之后,同學(xué)們又認(rèn)真地討論起六邊形、十邊形的內(nèi)角和。類比四邊形、五邊形的討論方法最終得出,六邊形內(nèi)角和是720?,十邊形內(nèi)角和是1440?。
    (二)引申思考,培養(yǎng)創(chuàng)新。
    師:通過前面的討論,你能知道多邊形內(nèi)角和嗎?
    思考:(1)多邊形內(nèi)角和與三角形內(nèi)角和的關(guān)系?
    (3)從多邊形一個頂點引的對角線分三角形的個數(shù)與多邊形邊數(shù)的關(guān)系?
    學(xué)生結(jié)合思考題進(jìn)行討論,并把討論后的結(jié)果進(jìn)行交流。
    發(fā)現(xiàn)1:四邊形內(nèi)角和是2個180?的和,五邊形內(nèi)角和是3個180?的'和,六邊形內(nèi)角和是4個180?的和,十邊形內(nèi)角和是8個180?的和。
    發(fā)現(xiàn)3:一個n邊形從一個頂點引出的對角線分三角形的個數(shù)與邊數(shù)n存在(n-2)的關(guān)系。
    (三)實際應(yīng)用,優(yōu)勢互補(bǔ)。
    (2)一個多邊形的內(nèi)角和是1440?,且每個內(nèi)角都相等,則每個內(nèi)角的度數(shù)是()。
    (四)概括存儲。
    學(xué)生自己歸納總結(jié):
    2、運用轉(zhuǎn)化思想解決數(shù)學(xué)問題。
    3、用數(shù)形結(jié)合的思想解決問題。
    (五)作業(yè):練習(xí)冊第93頁1、2、3。
    八、教學(xué)反思:
    1、教的轉(zhuǎn)變。
    本節(jié)課教師的角色從知識的傳授者轉(zhuǎn)變?yōu)閷W(xué)生學(xué)習(xí)的組織者、引導(dǎo)者、合作者與共同研究者,在引導(dǎo)學(xué)生畫圖、測量發(fā)現(xiàn)結(jié)論后,利用幾何畫板直觀地展示,激發(fā)學(xué)生自覺探究數(shù)學(xué)問題,體驗發(fā)現(xiàn)的樂趣。
    2、學(xué)的轉(zhuǎn)變。
    學(xué)生的角色從學(xué)會轉(zhuǎn)變?yōu)闀W(xué)。本節(jié)課學(xué)生不是停留在學(xué)會課本知識層面,而是站在研究者的角度深入其境。
    3、課堂氛圍的轉(zhuǎn)變。
    整節(jié)課以“流暢、開放、合作、‘隱’導(dǎo)”為基本特征,教師對學(xué)生的思維減少干預(yù),教學(xué)過程呈現(xiàn)一種比較流暢的特征。整節(jié)課學(xué)生與學(xué)生,學(xué)生與教師之間以“對話”、“討論”為出發(fā)點,以互助合作為手段,以解決問題為目的,讓學(xué)生在一個比較寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價值。
    多邊形的內(nèi)角和教案四年級篇三
    (1)知識結(jié)構(gòu):
    (2)重點和難點分析:
    重點:四邊形的有關(guān)概念及內(nèi)角和定理.因為四邊形的有關(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識,對后繼知識的學(xué)習(xí)起著重要的作用,數(shù)學(xué)教案-多邊形的內(nèi)角和。
    難點:四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用.在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個條件,這幾個字的意思學(xué)生不好理解,所以是難點。
    2.教法建議
    (1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學(xué)生認(rèn)識到這些四邊形都是常見圖形,研究它們具有實際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
    (2)本節(jié)的教學(xué),要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對比著指給學(xué)生看,讓學(xué)生明確這些概念。
    (3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決.結(jié)合圖形,讓學(xué)生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學(xué)生加深對對角線的作用的認(rèn)識。
    (4)本節(jié)用到的數(shù)學(xué)思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對這兩種數(shù)學(xué)思想方法進(jìn)行總結(jié),使學(xué)生明白碰到復(fù)雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題,初中數(shù)學(xué)教案《數(shù)學(xué)教案-多邊形的內(nèi)角和》。
    教學(xué)目標(biāo):
    1.使學(xué)生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和定理;
    2.通過引導(dǎo)學(xué)生觀察氣象站的實例,培養(yǎng)學(xué)生從具體事物中抽象出幾何圖形的能力;
    3.通過推導(dǎo)四邊形內(nèi)角和定理,對學(xué)生滲透化歸轉(zhuǎn)化的數(shù)學(xué)思想;
    4.講解四邊形的有關(guān)概念時,聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想.
    教學(xué)重點:
    四邊形的內(nèi)角和定理.
    教學(xué)難點:
    四邊形的概念
    教學(xué)過程:
    (一)復(fù)習(xí)
    在小學(xué)里,我們學(xué)過長方形、正方形、平行四邊形和梯形的有關(guān)知識.請同學(xué)們回憶一下這些圖形的概念.找學(xué)生說出四種幾何圖形的概念,教師作評價.
    (二)提出問題,引入新課
    利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)
    問題:你能類比三角形的概念,說出四邊形的概念嗎?
    (三)理解概念
    1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.
    在定義中要強(qiáng)調(diào)“在同一平面內(nèi)”這個條件,或為學(xué)生稍微說明一下.其次,要給學(xué)生講清楚“首尾”和“順次”的含義.
    2.類比三角形的邊、頂點、內(nèi)角、外角的概念,找學(xué)生答出四邊形的邊、頂點、內(nèi)角、外交的概念.
    3.四邊形的記法:對照圖形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點的順序書寫,可以按順時針或逆時針的順序.
    練習(xí):課本124頁1、2題.
    4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學(xué)生會辨認(rèn)一個四邊形是不是凸四邊形就可以了.
    5.四邊形的對角線:
    (四)四邊形的內(nèi)角和定理
    定理:四邊形的內(nèi)角和等于 .
    注意:在研究四邊形時,常常通過作它的對角線,把關(guān)于四邊形的問題化成關(guān)于三角形的問題來解決.
    (五)應(yīng)用、反思
    例1 已知:如圖,直線 ,垂足為b, 直線 , 垂足為c.
    求證:(1) ;(2)
    證明:(1) (四邊形的內(nèi)角和等于 ),
    練習(xí):
    1.課本124頁3題.
    小結(jié):
    知識:四邊形的有關(guān)概念及其內(nèi)角和定理.
    能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法.
    作業(yè): 課本130頁 2、3、4題.
    多邊形的內(nèi)角和教案四年級篇四
    教學(xué)目標(biāo)。
    知識與技能。
    掌握多邊形內(nèi)角和公式及外角和定理,并能應(yīng)用.
    過程與方法。
    2.經(jīng)歷探索多邊形內(nèi)角和公式的過程,嘗試從不同角度尋求解決問題的方法.訓(xùn)練學(xué)生的發(fā)散性思維,培養(yǎng)學(xué)生的創(chuàng)新精神.
    情感態(tài)度價值觀。
    通過猜想、推理等數(shù)學(xué)活動,感受數(shù)學(xué)充滿著探索以及數(shù)學(xué)結(jié)論的確定性,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情.
    重點。
    多邊形的內(nèi)角和教案四年級篇五
    設(shè)計理念:。
    一教材分析:。
    從教材的編排上,本節(jié)課作為第三章的第三節(jié)。從三角形的內(nèi)角和到四邊形的內(nèi)角和至多邊形的內(nèi)角和,環(huán)環(huán)相扣。同時,對今后學(xué)習(xí)的鑲嵌,正多邊形和圓等都是非常重要的。知識的聯(lián)系性比較強(qiáng)。因此,本節(jié)課具在承上啟下的作用,符合學(xué)生的認(rèn)知規(guī)律。再從本節(jié)的教學(xué)理念看,編者從簡單的幾何圖形入手,蘊(yùn)含了把復(fù)雜問題轉(zhuǎn)化為簡單問題,化未知為已知的思想。充分體現(xiàn)了人人學(xué)有價值的數(shù)學(xué),這一新課程標(biāo)準(zhǔn)精神。
    二、學(xué)情分析:。
    三、教學(xué)目標(biāo)的確定:。
    3、通過探索多邊形內(nèi)角和公式,讓學(xué)生逐步從實驗幾何過渡到論證幾何。
    四、重難點的確立:。
    既然是多邊形內(nèi)角和具有承上啟下的作用。因此確定本節(jié)課的重點是探究多邊形的內(nèi)角和的公式。由于七年級學(xué)生初學(xué)幾何,所以學(xué)生在幾何的邏輯推理上感到有難度。所以我確定本節(jié)課的難點是探究多邊形內(nèi)角和公式推導(dǎo)的基本思想,而解決問題的關(guān)鍵是教師恰當(dāng)?shù)囊龑?dǎo)。
    多邊形的內(nèi)角和教案四年級篇六
    1、知識與技能:
    (2)運用三角形的內(nèi)角和知識解決實際問題和拓展性問題。
    2、過程與方法:
    (1)通過測量、撕拼、折疊等方法,探索和發(fā)現(xiàn)三角形三個內(nèi)角的和等于180°。
    (2)知道三角形兩個角的度數(shù),能求出第三個角的度數(shù)。
    (3)發(fā)展學(xué)生動手操作、觀察比較和抽象概括的能力。
    3、情感態(tài)度與價值觀:
    讓學(xué)生體驗數(shù)學(xué)活動的探索樂趣,通過教學(xué)中的活動體會數(shù)學(xué)的轉(zhuǎn)化思想。
    教學(xué)課件、各種三角形。
    1、猜謎語:。
    形狀似座山,穩(wěn)定性能堅。三竿首尾連,學(xué)問不簡單。
    (打一圖形名稱)。
    2、猜三角形。
    3、引出課題。
    師:為什么不會出現(xiàn)兩個直角?今天我們就再次走進(jìn)數(shù)學(xué)王國,探討三角形的內(nèi)角和的奧秘。(板書課題)。
    2、猜一猜。
    3、驗證。
    4、學(xué)生匯報。
    (1)測量。
    (2)剪拼。
    a、學(xué)生上臺演示。
    b、請大家三人小組合作,用剪拼的方法驗證其它三角形。
    c、師演示。
    (3)折拼。
    師:有沒有別的驗證方法?我在電腦里收索到折的方法,請同學(xué)們看一看他是怎么折的(課件演示)。
    (5)數(shù)學(xué)小知識。
    5、鞏固知識。
    教師:為什么不是360°?
    師:接下來,利用三角形的內(nèi)角和我們來解決一些相關(guān)的問題吧!
    1、看圖,求未知角的度數(shù)。
    2、判斷。
    3、如果一個都不知道,或只知道1個角,你能知道三角形各角的度數(shù)嗎?
    (1)我三邊相等。
    (2)我是等腰三角形,我的頂角是96°。
    (3)我有一個銳角是40°。
    4、求四邊形、五邊形內(nèi)角和。
    師:這節(jié)課你有什么收獲?
    多邊形的內(nèi)角和教案四年級篇七
    完成《多邊形的內(nèi)角和》教學(xué)之后,學(xué)生很自然地就會想到對于多邊形的情況如何。為了體現(xiàn)課堂以學(xué)生為主,培養(yǎng)學(xué)生自主探究的能力,在課前的教學(xué)設(shè)計中盡量圍繞學(xué)生展開。如:采取了小組合作學(xué)習(xí)、組與組之間交流等形式。雖然想法上有此意圖,但在具體的實施過程中還是暴露出了很多問題,有事先沒預(yù)計到的,也有想體現(xiàn)但沒體現(xiàn)完整的。經(jīng)過課后反思及老教師們的指點,主要表現(xiàn)在:
    (1)較多的著眼于課堂形式的多樣化及學(xué)生能力(如:合作、探究、交流等)的培養(yǎng),而忽視了教學(xué)中最重要的知識點的落實。學(xué)生練的機(jī)會不多,僅有編制習(xí)題解答這一部分,且對學(xué)生來說要求較高,教師在編題前可先讓學(xué)生解題,給學(xué)生搭好階梯,使其不至于感到突然。
    (2)小組討論可以說是新教材框架中的一個重要部分,教師事先一定要有詳細(xì)的計劃。這也是本堂課暴露缺陷較多的環(huán)節(jié)。比如:組員的設(shè)置(七、八人一組加上發(fā)下的表格較少使得討論未能有效的開展),以4、5人為一組較為合適,且要分工明確,如誰記錄,誰發(fā)言等等,避免某些小組成員流離于合作之外。教師還應(yīng)精心策劃:討論如何有效地開展;時間多長;采取何種討論方法;教師在討論過程中又該擔(dān)當(dāng)何種角色等。
    (3)在小組交流過程中學(xué)生的發(fā)言過分地注重于探索的結(jié)果,而忽視了學(xué)生探索過程的展示。同時教師有些總結(jié)性的話,限制了學(xué)生的思維,不能最大限度的'發(fā)揮學(xué)生自主探究的能力。
    (4)教師在教學(xué)過程中對學(xué)生的評價較為單一,肯定不夠及時,表揚(yáng)不夠熱情,比如當(dāng)最后一個平常表現(xiàn)較為一般的學(xué)生有此創(chuàng)意時,教師就應(yīng)大加贊揚(yáng),從而也能激發(fā)課堂氣氛。
    將本文的word文檔下載到電腦,方便收藏和打印。
    多邊形的內(nèi)角和教案四年級篇八
    《多邊形內(nèi)角和》這節(jié)課,我基本上完成了教學(xué)任務(wù),教學(xué)目標(biāo)基本達(dá)成,《多邊形內(nèi)角和》教學(xué)反思。學(xué)生明確了轉(zhuǎn)化的思想是數(shù)學(xué)最基本的思想方法,知道研究一個新的問題要從簡單的已知入手,能夠用多種方法探究出多邊形的內(nèi)角和,并且能夠運用多邊形的內(nèi)角和公式解決相關(guān)問題。同時也有幾個地方引起了我深深的思考。
    首先,在這節(jié)課的設(shè)計中,我大膽的嘗試并使用網(wǎng)絡(luò)教學(xué)。在我最初的設(shè)計過程中,按照常規(guī)的方法引導(dǎo)學(xué)生先用分割的方法得到四邊形內(nèi)角和,再探究多邊形的內(nèi)角和。但是網(wǎng)絡(luò)教學(xué)教學(xué)就成為一種形式,沒有充分的發(fā)揮它的作用,效果也不是很好。后來改為不做任何方法的'指導(dǎo),采用完全開放的探究,每步探究先讓學(xué)生嘗試,把學(xué)生推到主動位置,放手讓學(xué)生自己學(xué)習(xí),教學(xué)過程主要靠學(xué)生自己去完成,盡可能做到讓學(xué)生在“活動”中學(xué)習(xí),在“主動”中發(fā)展,在“合作”中增知,在“探究”中創(chuàng)新。要充分體現(xiàn)學(xué)生學(xué)習(xí)的自主性:規(guī)律讓學(xué)生自主發(fā)現(xiàn),方法讓學(xué)生自主尋找,思路讓學(xué)生自主探究,問題讓學(xué)生自主解決。課前我很擔(dān)心,但事實說明,這種探究才是真正的讓學(xué)生去嘗試,去挑戰(zhàn)。因此,在課堂教學(xué)中選用探究式,可以讓學(xué)生在自主學(xué)習(xí)中探究,在質(zhì)疑問題中探究,在觀察比較中探究,在矛盾沖突中探究,在問題解決中探究,在實踐活動中探究,教學(xué)反思《多邊形內(nèi)角和》教學(xué)反思》??傊覍μ骄空n有了更深刻的理解。
    這節(jié)課的第一個環(huán)節(jié):引入,我認(rèn)為比較精彩。利用諸葛八卦村作為情景引入,通過介紹他的三奇,一下子吸引學(xué)生的注意力。這樣這節(jié)課的開頭就像一塊無形的“磁鐵”,雖然只有短短的一兩分鐘,卻有效的調(diào)動了學(xué)生的情緒,打動學(xué)生的心靈,形成良好的課堂氣氛切人口。第三個環(huán)節(jié):分層練習(xí)。充分發(fā)揮了網(wǎng)絡(luò)課的優(yōu)勢,真正做到了分層。
    其次,在探究這個環(huán)節(jié)中,有一個關(guān)鍵的地方處理的很不到位。即:當(dāng)一個學(xué)生提出分割方法時,這時沒有及時把握住這個時機(jī),讓更多的學(xué)生去嘗試這種方法,而是讓他自己把所得到的結(jié)論直接告訴大家,因此沒有讓更多的學(xué)生去體驗轉(zhuǎn)化的思想,我認(rèn)為這節(jié)課最大的敗筆就在于此。課下我反復(fù)的思考出現(xiàn)問題的原因,是因為對學(xué)生估計的不足造成的。我總認(rèn)為,在教師不指導(dǎo)的情況下,不會有學(xué)生想到分割這種方法,當(dāng)課堂上學(xué)生出現(xiàn)這種方法時,我就有點激動,順著學(xué)生的思路走了,而忽視了大多數(shù)。因此,在備課時一定要更為細(xì)致的研究學(xué)生可能出現(xiàn)的情況,在上課時才能應(yīng)對自如。
    總之,這節(jié)課我不是很滿意,細(xì)分析,偶然當(dāng)中也包含著必然。新課標(biāo)要求數(shù)學(xué)教學(xué)過程中要注重學(xué)生學(xué)習(xí)的過程,而知識的學(xué)習(xí)是一個建構(gòu)過程,教師通過以組織者、合作者、和引導(dǎo)者的身份,根據(jù)學(xué)生的具體情況,對教材進(jìn)行再加工,有創(chuàng)造地設(shè)計教學(xué)過程,在教學(xué)設(shè)計中要求新求變。用“新”和“變”來激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的欲望和興趣。根據(jù)不同的教學(xué)內(nèi)容選擇不同的教學(xué)模式。因為只有這樣,課堂教學(xué)才能煥發(fā)出生機(jī)和活力。教師在這個過程中要為學(xué)生營造一個積極的、寬松的教學(xué)氛圍。所以,要做一個新時代的教師,除具備一定的專業(yè)知識外,還要具備領(lǐng)導(dǎo)才能,能夠駕御整個課堂。發(fā)現(xiàn)了自己的不足就意味著自己的進(jìn)步。在今后的教學(xué)中,我會更加努力,讓我的每一位學(xué)生在我的每一節(jié)課上都能夠有新的收獲。
    多邊形的內(nèi)角和教案四年級篇九
    我在學(xué)校出了一節(jié)公開課,下面是我的教學(xué)反思。
    教學(xué)回顧:
    一:引入新課。提問三角形內(nèi)角和,正方形和長方形的內(nèi)角和是多少?那任意一四邊形內(nèi)角和都是360度嗎?小組討論交流證明任意四邊形內(nèi)角和都是360度的方法。學(xué)生分析有度量法、剪拼法、切割法,做輔助線。其中把四邊形切割成兩個三角形的方法最為簡單。類似的探究其他多邊形內(nèi)角和。
    二:完成學(xué)案第一部分,用數(shù)學(xué)歸納法完成填空,總結(jié)得出多邊形內(nèi)角和公式。
    三:練習(xí)。
    四:課堂小結(jié)。
    五:作業(yè)。
    反思:
    這節(jié)課本節(jié)的教學(xué)活動充分發(fā)揮學(xué)生的主體作用,激發(fā)了學(xué)生的學(xué)習(xí)興趣,使課堂充滿生機(jī)。在進(jìn)行四邊形內(nèi)角和定理的教學(xué)時,設(shè)計完成三個步驟:
    (1)通過動手操作,讓學(xué)生自己通過實驗的方法發(fā)現(xiàn)四邊形內(nèi)角和定理;
    (2)讓學(xué)生把發(fā)現(xiàn)概括成命題;
    (3)通過學(xué)生討論命題證明的不同方法。
    整節(jié)課充滿著“自主、合作、探究、交流”的教學(xué)理念,營造了思維馳聘的空間,使學(xué)生在主動思考探究的過程中自然的獲得了新的知識。但由于本節(jié)課的.內(nèi)容多,學(xué)習(xí)時間較緊張,所以在給學(xué)生進(jìn)行課堂討論四邊形內(nèi)角和的不同的證明方法這一環(huán)節(jié)時把握地不夠好。由于討論的問題有難度,討論時間不夠充分。而且我為了能完成這節(jié)課的內(nèi)容沒有對四邊形內(nèi)角和的證明方法做以補(bǔ)充(習(xí)題課時才加以補(bǔ)充)。
    多邊形的內(nèi)角和教案四年級篇十
    《多邊形內(nèi)角和》這節(jié)課,我基本上完成了教學(xué)任務(wù),教學(xué)目標(biāo)基本達(dá)成,《多邊形內(nèi)角和》教學(xué)反思。學(xué)生明確了轉(zhuǎn)化的思想是數(shù)學(xué)最基本的思想方法,知道研究一個新的問題要從簡單的已知入手,能夠用多種方法探究出多邊形的內(nèi)角和,并且能夠運用多邊形的內(nèi)角和公式解決相關(guān)問題。同時也有幾個地方引起了我深深的思考。
    首先,在這節(jié)課的設(shè)計中,我大膽的嘗試并使用網(wǎng)絡(luò)教學(xué)。在我最初的設(shè)計過程中,按照常規(guī)的方法引導(dǎo)學(xué)生先用分割的`方法得到四邊形內(nèi)角和,再探究多邊形的內(nèi)角和。但是網(wǎng)絡(luò)教學(xué)教學(xué)就成為一種形式,沒有充分的發(fā)揮它的作用,效果也不是很好。后來改為不做任何方法的指導(dǎo),采用完全開放的探究,每步探究先讓學(xué)生嘗試,把學(xué)生推到主動位置,放手讓學(xué)生自己學(xué)習(xí),教學(xué)過程主要靠學(xué)生自己去完成,盡可能做到讓學(xué)生在“活動”中學(xué)習(xí),在“主動”中發(fā)展,在“合作”中增知,在“探究”中創(chuàng)新。要充分體現(xiàn)學(xué)生學(xué)習(xí)的自主性:規(guī)律讓學(xué)生自主發(fā)現(xiàn),方法讓學(xué)生自主尋找,思路讓學(xué)生自主探究,問題讓學(xué)生自主解決。課前我很擔(dān)心,但事實說明,這種探究才是真正的讓學(xué)生去嘗試,去挑戰(zhàn)。因此,在課堂教學(xué)中選用探究式,可以讓學(xué)生在自主學(xué)習(xí)中探究,在質(zhì)疑問題中探究,在觀察比較中探究,在矛盾沖突中探究,在問題解決中探究,在實踐活動中探究,教學(xué)反思《多邊形內(nèi)角和》教學(xué)反思》。總之我對探究課有了更深刻的理解。
    這節(jié)課的第一個環(huán)節(jié):引入,我認(rèn)為比較精彩。利用諸葛八卦村作為情景引入,通過介紹他的三奇,一下子吸引學(xué)生的注意力。這樣這節(jié)課的開頭就像一塊無形的“磁鐵”,雖然只有短短的一兩分鐘,卻有效的調(diào)動了學(xué)生的情緒,打動學(xué)生的心靈,形成良好的課堂氣氛切人口。第三個環(huán)節(jié):分層練習(xí)。充分發(fā)揮了網(wǎng)絡(luò)課的優(yōu)勢,真正做到了分層。
    其次,在探究這個環(huán)節(jié)中,有一個關(guān)鍵的地方處理的很不到位。即:當(dāng)一個學(xué)生提出分割方法時,這時沒有及時把握住這個時機(jī),讓更多的學(xué)生去嘗試這種方法,而是讓他自己把所得到的結(jié)論直接告訴大家,因此沒有讓更多的學(xué)生去體驗轉(zhuǎn)化的思想,我認(rèn)為這節(jié)課最大的敗筆就在于此。課下我反復(fù)的`思考出現(xiàn)問題的原因,是因為對學(xué)生估計的不足造成的。我總認(rèn)為,在教師不指導(dǎo)的情況下,不會有學(xué)生想到分割這種方法,當(dāng)課堂上學(xué)生出現(xiàn)這種方法時,我就有點激動,順著學(xué)生的思路走了,而忽視了大多數(shù)。因此,在備課時一定要更為細(xì)致的研究學(xué)生可能出現(xiàn)的情況,在上課時才能應(yīng)對自如。
    總之,這節(jié)課我不是很滿意,細(xì)分析,偶然當(dāng)中也包含著必然。新課標(biāo)要求數(shù)學(xué)教學(xué)過程中要注重學(xué)生學(xué)習(xí)的過程,而知識的學(xué)習(xí)是一個建構(gòu)過程,教師通過以組織者、合作者、和引導(dǎo)者的身份,根據(jù)學(xué)生的具體情況,對教材進(jìn)行再加工,有創(chuàng)造地設(shè)計教學(xué)過程,在教學(xué)設(shè)計中要求新求變。用“新”和“變”來激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的欲望和興趣。根據(jù)不同的教學(xué)內(nèi)容選擇不同的教學(xué)模式。因為只有這樣,課堂教學(xué)才能煥發(fā)出生機(jī)和活力。教師在這個過程中要為學(xué)生營造一個積極的、寬松的教學(xué)氛圍。所以,要做一個新時代的教師,除具備一定的專業(yè)知識外,還要具備領(lǐng)導(dǎo)才能,能夠駕御整個課堂。發(fā)現(xiàn)了自己的不足就意味著自己的進(jìn)步。在今后的教學(xué)中,我會更加努力,讓我的每一位學(xué)生在我的每一節(jié)課上都能夠有新的收獲。
    將本文的word文檔下載到電腦,方便收藏和打印。
    多邊形的內(nèi)角和教案四年級篇十一
    1、使學(xué)生在理解的基礎(chǔ)上掌握三角形的面積計算公式,能夠正確地計算三角形的面積。
    2、使學(xué)生通過操作和對圖形的觀察、比較,發(fā)展學(xué)生的空間觀念,使學(xué)生知道轉(zhuǎn)化的思考方法在研究三角形面積時的運用。
    3、培養(yǎng)學(xué)生的分析、綜合、抽象、概括和運用轉(zhuǎn)化方法解決實際問題的能力。
    1、用厚紙做完全相同的兩個直角三角形、兩個銳角三角形、兩個鈍角三角形。
    教師:前面我們學(xué)習(xí)了平行四邊形面積的計算,今天我們來學(xué)習(xí)三角形面積的計算。
    板書:三角形面積的計算。
    1、用數(shù)方格的`方法計算三角形的面積。
    教師:前面我們在學(xué)習(xí)長方形面積和平行四邊形面積時,都曾經(jīng)用過數(shù)方格的方法,下面我們再用數(shù)方格的方法來求三角形的面積。
    2、通過操作總結(jié)三角形面積的計算公式。
    讓學(xué)生拿出兩個完全一樣的銳角三角形,提問:
    用兩個完全一樣的銳角三角形能不能拼成一個平行四邊形?讓每個學(xué)生都動手拼一拼,或者同桌的兩個學(xué)生一同拼擺。
    教師邊說邊演示拼的過程。先將兩個銳角三角形重合放置,再按住三角形的右邊頂點,使三角形時針運動相反的方向轉(zhuǎn)動180,到兩個三角形的底邊成一條直線為止,再把右邊三角形向上沿著第一個三角形的右邊平移,直到拼成一個平行四邊形為止,并把拼成的平行四邊形圖畫在黑板上。然后再帶著學(xué)生規(guī)范地照上面的步驟做一遍,做時仍需邊做邊強(qiáng)調(diào):先要把兩個銳角三角形重合,再旋轉(zhuǎn),旋轉(zhuǎn)時哪個點不動?旋轉(zhuǎn)了多少度?平移時是沿著哪條直線移動的?學(xué)生學(xué)會把兩個完全一樣的銳角三角形拼成一個平行四邊形后,教師再說明:平移是圖上各點沿直線移動,旋轉(zhuǎn)是一個點不動,其它的點都圍繞著不動點轉(zhuǎn)。提問:
    每個銳角三角形的面積和拼出的平行四邊形的面積有什么關(guān)系?
    學(xué)生回答后,教師強(qiáng)調(diào):每個銳角三角形是拼成的平行四邊形面積的一半。
    教師結(jié)合黑板上分別由兩個完全相同的三角形拼成的平行四邊形的圖指出:通過上面的實驗,兩個完全一樣的三角形,不論是直角三角形,銳角三角形,還是鈍角三角形,都可以拼成一個平行四邊形。提問:
    這個平行四邊形的底和三角形的底有什么關(guān)系?
    這個平行四邊形的高和三角形的高有什么關(guān)系?
    這個平行四邊形的面積和其中一個三角形的面積有什么關(guān)系?
    多邊形的內(nèi)角和教案四年級篇十二
    1、通過復(fù)習(xí),使學(xué)生理清各種平面圖形面積計算公式之間的關(guān)系。
    2、使學(xué)生能夠應(yīng)用面積計算公式,熟練計算平行四邊形、三角形、梯形和組合圖形的面積。
    3、能靈活運用所學(xué)知識解決有關(guān)的實際問題。
    熟練計算平行四邊形、三角形、梯形及組合圖形的面積。
    平行四邊形、三角形、梯形的磁片。
    一、創(chuàng)設(shè)情境,揭示課題。
    1、想一想,本單元我們學(xué)習(xí)了哪些知識?
    揭示課題:今天這節(jié)課我們對第五單元的知識進(jìn)行整理和復(fù)習(xí)。
    2、在小組內(nèi)說一說,你學(xué)會了什么?
    二、知識梳理,形成網(wǎng)絡(luò)。
    老師根據(jù)學(xué)生所說,演示轉(zhuǎn)化過程,形成如教材96頁的板書。
    (2)從整理圖中能看出各種圖形之間的關(guān)系嗎?
    學(xué)生回答后老師簡要小結(jié)。
    2、練一練:
    老師出示下題讓學(xué)生獨立完成后集體核對。
    選擇條件分別計算下列各圖形的面積。
    3、師:剛才復(fù)習(xí)的是基本圖形的面積,而由幾個基本圖形組合而成的圖形叫什么?
    出示第96頁的第2題,讓學(xué)生自己獨立完成。
    集體核對時讓學(xué)生說一說自己的幾種方法。
    學(xué)生可能會想到下面幾種方法。
    比較哪種方法比較簡便?
    三、應(yīng)用拓展。
    1、練習(xí)十九第1題。
    (1)讓學(xué)生審題,說一說解題步驟。
    (2)獨立完成。
    (3)小組交流,說一說你的發(fā)現(xiàn)。
    (4)全班交流。
    師小結(jié):幾個圖形都在兩條平行線之間,說明它們的`高是相等的,在高相等的條件下,面積不等,說明它們的高都不等。
    2、練習(xí)十九第4題。
    (1)先讓學(xué)生獨立完成第1小題,集體核對。
    想一想該如何擺放小樹?讓學(xué)生在草稿本上畫一畫示意圖。
    集體訂正,展示。
    四、小結(jié):說一說今天這節(jié)課最大的收獲是什么?
    五、課堂作業(yè):練習(xí)十九第2、3題。
    多邊形的內(nèi)角和教案四年級篇十三
    (1)知識結(jié)構(gòu):
    (2)重點和難點分析:
    重點:四邊形的有關(guān)概念及內(nèi)角和定理。因為四邊形的有關(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識,對后繼知識的學(xué)習(xí)起著重要的作用,數(shù)學(xué)教案-多邊形的內(nèi)角和。
    難點:四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用。在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個條件,這幾個字的意思學(xué)生不好理解,所以是難點。
    2.教法建議。
    (1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學(xué)生認(rèn)識到這些四邊形都是常見圖形,研究它們具有實際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
    (2)本節(jié)的教學(xué),要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對比著指給學(xué)生看,讓學(xué)生明確這些概念。
    (3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決。結(jié)合圖形,讓學(xué)生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學(xué)生加深對對角線的作用的認(rèn)識。
    (4)本節(jié)用到的數(shù)學(xué)思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對這兩種數(shù)學(xué)思想方法進(jìn)行總結(jié),使學(xué)生明白碰到復(fù)雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題,初中數(shù)學(xué)教案《數(shù)學(xué)教案-多邊形的內(nèi)角和》。
    教學(xué)目標(biāo):
    1.使學(xué)生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和定理;
    2.通過引導(dǎo)學(xué)生觀察氣象站的實例,培養(yǎng)學(xué)生從具體事物中抽象出幾何圖形的能力;
    3.通過推導(dǎo)四邊形內(nèi)角和定理,對學(xué)生滲透化歸轉(zhuǎn)化的數(shù)學(xué)思想;
    4.講解四邊形的有關(guān)概念時,聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想。
    教學(xué)重點:
    教學(xué)難點:
    四邊形的概念。
    教學(xué)過程:
    (一)復(fù)習(xí)。
    在小學(xué)里,我們學(xué)過長方形、正方形、平行四邊形和梯形的有關(guān)知識。請同學(xué)們回憶一下這些圖形的概念。找學(xué)生說出四種幾何圖形的概念,教師作評價。
    (二)提出問題,引入新課。
    利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件。(先看畫面一)。
    問題:你能類比三角形的概念,說出四邊形的概念嗎?
    (三)理解概念。
    1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形。
    在定義中要強(qiáng)調(diào)“在同一平面內(nèi)”這個條件,或為學(xué)生稍微說明一下。其次,要給學(xué)生講清楚“首尾”和“順次”的含義。
    2.類比三角形的邊、頂點、內(nèi)角、外角的概念,找學(xué)生答出四邊形的邊、頂點、內(nèi)角、外交的概念。
    3.四邊形的記法:對照圖形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點的順序書寫,可以按順時針或逆時針的順序。
    練習(xí):課本124頁1、2題。
    4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學(xué)生會辨認(rèn)一個四邊形是不是凸四邊形就可以了。
    5.四邊形的對角線:
    (四)四邊形的內(nèi)角和定理。
    定理:四邊形的內(nèi)角和等于.
    注意:在研究四邊形時,常常通過作它的對角線,把關(guān)于四邊形的問題化成關(guān)于三角形的問題來解決。
    (五)應(yīng)用、反思。
    例1已知:如圖,直線,垂足為b,直線,垂足為c.
    求證:(1);(2)。
    證明:(1)(四邊形的內(nèi)角和等于),
    練習(xí):
    1.課本124頁3題。
    小結(jié):
    知識:四邊形的有關(guān)概念及其內(nèi)角和定理。
    能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法。
    作業(yè):課本130頁2、3、4題。
    多邊形的內(nèi)角和教案四年級篇十四
    1、回憶所學(xué)的平面圖形的面積推導(dǎo)過程,弄清圖形面積之間的內(nèi)在聯(lián)系,鞏固學(xué)生對面積計算公式的理解和記憶。
    2、通過整理知識網(wǎng)絡(luò)圖進(jìn)一步發(fā)展學(xué)生的空間觀念,提高學(xué)生分析和綜合概括的能力。
    3、讓學(xué)生通過靈活運用知識解決實際問題,提高不同層次學(xué)生解決實際問題的能力。
    4、體會數(shù)學(xué)與生活的聯(lián)系,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,以及良好的學(xué)習(xí)習(xí)慣和學(xué)習(xí)態(tài)度。
    通過整理知識網(wǎng)絡(luò)圖進(jìn)一步發(fā)展學(xué)生的空間觀念,提高學(xué)生分析和綜合概括的能力。
    通過靈活運用知識解決實際問題,提高不同層次學(xué)生解決實際問題的能力。
    根據(jù)本課的教學(xué)內(nèi)容,本課采用先整理后練習(xí)的復(fù)習(xí)模式。
    本課的指導(dǎo)思想是發(fā)揮學(xué)生的主題作用,引導(dǎo)學(xué)生自主學(xué)習(xí),使不同學(xué)生在數(shù)學(xué)課上得到不同的發(fā)展?!墩n標(biāo)》指出:動手實踐、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的.重要方式;學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者與合作者。本課在回憶整理應(yīng)用的教學(xué)環(huán)節(jié)中,通過教師引導(dǎo)和點撥,提高學(xué)生的歸納整理知識的能力,并充分調(diào)動了學(xué)生的學(xué)習(xí)積極性,從而提高了學(xué)生運用所學(xué)的知識解決問題的能力。
    (一)整理和復(fù)習(xí)。
    1、回憶。
    課的開始,我讓學(xué)生回憶學(xué)過的平面圖形的面積,想到哪個說哪個,給了學(xué)生選擇的余地,提高學(xué)生回答問題的興趣。然后讓學(xué)生回憶推動過程時,采取了先讓同桌交流的方法,這是因為我分析學(xué)生可能會想到不同圖形的面積推導(dǎo)公式,為了照顧不同層次的學(xué)生,讓學(xué)生能人人動口,提高學(xué)生的語言表達(dá)能力。
    2、整理。
    在整理的過程中,學(xué)生邊說,我一邊用課件演示,空間想象能力強(qiáng)的學(xué)生可以閉上眼睛在頭腦中演示這個過程,空間想象能力弱的學(xué)生,可以借助多媒體來回憶,以便幫助他們更好的理解記憶面積公式。
    (二)構(gòu)建知識網(wǎng)絡(luò)圖。
    構(gòu)建知識網(wǎng)絡(luò)圖是課前我比較擔(dān)心的,我不知道學(xué)生會把知識網(wǎng)絡(luò)圖構(gòu)建成什么樣子。雖然課上在我的引領(lǐng)下這樣比較好控制,但是為了照顧不同層次的學(xué)生,我把這項工作放在了課前,先讓學(xué)生在家里整理好,這要就避免了學(xué)生之間相互模仿,無法體現(xiàn)個性;再通過課上的回憶讓學(xué)生自己修改,使學(xué)生逐步學(xué)會整理歸納的方法;最后同學(xué)之間交流,完善知識網(wǎng)絡(luò)圖。在這個環(huán)節(jié),面對學(xué)生構(gòu)建的知識網(wǎng)絡(luò)圖,只要有道理我就會給予肯定,這樣才能使學(xué)生敢于發(fā)表自己的意見,體現(xiàn)個體差異,增強(qiáng)自信心。
    (三)解決問題。
    在解決問題的過程中,我用了羊村村長領(lǐng)著大家去羊村參觀這一情境,充分調(diào)動了不同層次學(xué)生的學(xué)習(xí)積極性。
    要想去羊村參觀就得闖關(guān)成功,這三關(guān)分別針對不同方面:第一關(guān)針對的是我們班的學(xué)困生,這些題讓他們回答,可以使他們獲得成功的體驗,幫助他們樹立自信心,提高學(xué)習(xí)數(shù)學(xué)的興趣;第二關(guān)考驗學(xué)生是否能靈活運用面積公式,針對的是中等學(xué)生;第三關(guān)是對學(xué)生在面積計算中經(jīng)常出現(xiàn)錯誤的地方進(jìn)行針對性練習(xí),面向全體學(xué)生,以提高做題正確率。
    闖關(guān)成功后,計算玻璃的面積,是解決實際生活中的問題,讓學(xué)生體會到數(shù)學(xué)與生活的聯(lián)系。這塊玻璃是一個組合圖形,既可以用分割法計算,又可以用添補(bǔ)法計算,學(xué)生自己動手分一分、畫一畫,用自己的方法計算,充分體現(xiàn)了學(xué)生的個體差異。為了幫助學(xué)生理解,我制作了課件進(jìn)行演示,直觀形象,針對學(xué)困生降低了難度。
    (四)課堂作業(yè)。
    課堂作業(yè)的設(shè)計也充分考慮到了不同層次的學(xué)生,第1題和第題較為簡單,學(xué)優(yōu)生做完后,給出了一道思考題,這道題為學(xué)有余力的學(xué)生準(zhǔn)備。
    (五)小結(jié)。
    今天我們復(fù)習(xí)了多邊形的面積,并利用圖形之間的內(nèi)在聯(lián)系制作了知識網(wǎng)絡(luò)圖,還運用所學(xué)幫助羊村解決了實際問題,在這里懶羊羊代表羊村謝謝大家,帶給大家一首好聽的歌,請大家伴隨著歌聲下課。
    多邊形的內(nèi)角和教案四年級篇十五
    《探索多邊形的內(nèi)角和》一課終于上完了,然而對這一課的思考才剛剛開始,正如周夢莉校長所說,我們的目標(biāo)不是這一課本身,而是對于這一課的研究給我們數(shù)學(xué)教學(xué)的一點啟發(fā)。
    有幸與實驗小學(xué)趙麗老師同時選中《多邊形的內(nèi)角和》這一課,但我們從不同角度不同方式對它進(jìn)行了解讀。20世紀(jì)90年代,因為農(nóng)村小學(xué)學(xué)生人數(shù)的急劇減少,我們學(xué)校在課堂上嘗試性的進(jìn)行了分層異步教學(xué),在同一節(jié)課中,根據(jù)學(xué)生認(rèn)知水平差異,把學(xué)生分成a,b兩組,在組內(nèi)又依托知識水平相近原則,把3,4名學(xué)生分為一個小組,通常采用合——分——合的模式進(jìn)行教學(xué),即,當(dāng)a組同學(xué)教學(xué)時,b組自學(xué),反之亦然,經(jīng)過與普通班的對比研究,發(fā)現(xiàn)復(fù)式班學(xué)生在學(xué)習(xí)效果上有著明顯的成效?;谶@一基礎(chǔ),我采用分層的模式來進(jìn)行多邊形的內(nèi)角和的教學(xué),這一嘗試,讓我對自己的.數(shù)學(xué)教學(xué)有了如下反思:
    1,以經(jīng)驗為基礎(chǔ),讓學(xué)生得到不同的發(fā)展。
    基于學(xué)生的認(rèn)知經(jīng)驗及活動經(jīng)驗,對學(xué)生進(jìn)行分組,以期達(dá)到不同的學(xué)生在數(shù)學(xué)上得到不同程度的發(fā)展的目標(biāo),學(xué)習(xí)能力較強(qiáng)的同學(xué)要能吃飽,學(xué)習(xí)能力較弱的同學(xué)要在原有基礎(chǔ)上有所進(jìn)步。在實際教學(xué)中,對于a組和b組的學(xué)生,除了在教學(xué)形式上有所區(qū)別外,a組教學(xué)為主,b組自學(xué)為主,我在教學(xué)時間的分配上對ab組并沒有顯著區(qū)分,在以后的嘗試探索中,我應(yīng)對a組加以更細(xì)致的教學(xué)指導(dǎo),對b組更大膽的放手,讓學(xué)生上臺說,做,教,減少b組的教學(xué)時間。
    2,勇于放手,培養(yǎng)學(xué)生自學(xué)的能力。
    在一開始設(shè)計b組的學(xué)習(xí)單時,即使b組同學(xué)學(xué)習(xí)能力較強(qiáng),但出于對學(xué)生的擔(dān)憂,擔(dān)心學(xué)生想不到用分一分的方法,在學(xué)習(xí)單上,我引導(dǎo)學(xué)生,多邊形能夠分成幾個三角形,內(nèi)角和怎么算。而周校長建議我,是否能給學(xué)生更多的空間,把“小問題”變?yōu)椤按髥栴}”,直接提問學(xué)生,多邊形的內(nèi)角和是多少,讓學(xué)生去嘗試探索各種方法,而不僅局限于轉(zhuǎn)化為三角形內(nèi)角和的方法。在后來的實際教學(xué)中,采用了“大問題”的提問方式,我驚喜的發(fā)現(xiàn),學(xué)生的探究自學(xué)能力比我預(yù)想的出色許多。
    3,細(xì)節(jié)入手,培養(yǎng)學(xué)生良好習(xí)慣。
    小學(xué)數(shù)學(xué)良好習(xí)慣的培養(yǎng)不僅對學(xué)生自身的數(shù)學(xué)學(xué)習(xí)有所裨益,對課堂教效果的影響更是尤為明顯。在分層教學(xué)的模式中,為避免ab組互相間的干擾,必須在課堂上對每組學(xué)生提出明確的要求,課前乃至平時都要對學(xué)生的學(xué)習(xí)習(xí)慣進(jìn)行培養(yǎng),這樣才能讓我們的數(shù)學(xué)老師對課堂全局的把握更加深刻,才能夠讓數(shù)學(xué)課堂井然有序,數(shù)學(xué)教學(xué)效果得到最大程度的保證。
    “授人以魚,不如授人以漁?!蔽覀兊臄?shù)學(xué)分層教學(xué)不光是為了學(xué)生掌握某一定的知識,而是讓學(xué)生在不同的學(xué)習(xí)方式中不斷感悟體會,尋找適合自己的學(xué)習(xí)方法,最終以得到不同程度的發(fā)展。
    多邊形的內(nèi)角和教案四年級篇十六
    (1)知識結(jié)構(gòu):
    (2)重點和難點分析:
    重點:四邊形的有關(guān)概念及內(nèi)角和定理.因為四邊形的有關(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識,對后繼知識的學(xué)習(xí)起著重要的作用。
    難點:四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用.在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個條件,這幾個字的意思學(xué)生不好理解,所以是難點。
    2.教法建議。
    (1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學(xué)生認(rèn)識到這些四邊形都是常見圖形,研究它們具有實際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
    (2)本節(jié)的教學(xué),要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對比著指給學(xué)生看,讓學(xué)生明確這些概念。
    (3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決.結(jié)合圖形,讓學(xué)生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學(xué)生加深對對角線的作用的認(rèn)識。
    (4)本節(jié)用到的`數(shù)學(xué)思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對這兩種數(shù)學(xué)思想方法進(jìn)行總結(jié),使學(xué)生明白碰到復(fù)雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題。
    教學(xué)目標(biāo):
    2.通過引導(dǎo)學(xué)生觀察氣象站的實例,培養(yǎng)學(xué)生從具體事物中抽象出幾何圖形的能力;。
    3.通過推導(dǎo)四邊形內(nèi)角和定理,對學(xué)生滲透化歸轉(zhuǎn)化的數(shù)學(xué)思想;。
    4.講解四邊形的有關(guān)概念時,聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想.
    教學(xué)重點:
    教學(xué)難點:
    四邊形的概念。
    教學(xué)過程:
    (一)復(fù)習(xí)。
    在小學(xué)里,我們學(xué)過長方形、正方形、平行四邊形和梯形的有關(guān)知識.請同學(xué)們回憶一下這些圖形的概念.找學(xué)生說出四種幾何圖形的概念,教師作評價.
    (二)提出問題,引入新課。
    利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)。
    問題:你能類比三角形的概念,說出四邊形的概念嗎?
    (三)理解概念。
    1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.
    在定義中要強(qiáng)調(diào)“在同一平面內(nèi)”這個條件,或為學(xué)生稍微說明一下.其次,要給學(xué)生講清楚“首尾”和“順次”的含義.
    2.類比三角形的邊、頂點、內(nèi)角、外角的概念,找學(xué)生答出四邊形的邊、頂點、內(nèi)角、外交的概念.
    3.四邊形的記法:對照圖形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點的順序書寫,可以按順時針或逆時針的順序.
    練習(xí):課本124頁1、2題.
    4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學(xué)生會辨認(rèn)一個四邊形是不是凸四邊形就可以了.
    5.四邊形的對角線:
    注意:在研究四邊形時,常常通過作它的對角線,把關(guān)于四邊形的問題化成關(guān)于三角形的問題來解決.
    (五)應(yīng)用、反思。
    例1已知:如圖,直線,垂足為b,直線,垂足為c.
    求證:(1);(2)。
    (2)。
    練習(xí):
    1.課本124頁3題.
    小結(jié):
    能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法.
    作業(yè):課本130頁2、3、4題.