數(shù)學(xué)建模心得體會(huì)論文(專業(yè)13篇)

字號(hào):

    心得體會(huì)是對(duì)一段時(shí)間內(nèi)的經(jīng)驗(yàn)和感悟的總結(jié)和概括,它可以幫助我們更好地理解和應(yīng)用所學(xué)知識(shí),提升自身的能力和素質(zhì)??偨Y(jié)心得是一個(gè)反思和成長(zhǎng)的過(guò)程,通過(guò)總結(jié)自身的經(jīng)驗(yàn)和體會(huì),我們可以找到自己的不足和改進(jìn)的方向,進(jìn)而實(shí)現(xiàn)個(gè)人的成長(zhǎng)與進(jìn)步?!澳敲慈绾螌?xiě)一篇有深度且有價(jià)值的心得體會(huì)呢?首先我們要對(duì)自己的經(jīng)歷或?qū)W習(xí)工作過(guò)程進(jìn)行回顧和整理,然后提取其中的關(guān)鍵點(diǎn),進(jìn)而進(jìn)行分析和總結(jié)。”這是一篇關(guān)于工作學(xué)習(xí)心得的范文,大家一起來(lái)看看吧。
    數(shù)學(xué)建模心得體會(huì)論文篇一
    數(shù)學(xué)建模是一個(gè)經(jīng)歷觀察、思考、歸類、抽象與的過(guò)程,也是一個(gè)信息捕捉、篩選、整理的過(guò)程,更是一個(gè)思想與方法的產(chǎn)生與選擇的過(guò)程。它給學(xué)生再現(xiàn)了一種“微型科研”的過(guò)程。數(shù)學(xué)建模教學(xué)有利于激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,豐富學(xué)生數(shù)學(xué)探索的情感體驗(yàn);有利于學(xué)生自覺(jué)檢驗(yàn)、鞏固所學(xué)的數(shù)學(xué)知識(shí),促進(jìn)知識(shí)的深化、發(fā)展;有利于學(xué)生體會(huì)和感悟數(shù)學(xué)思想方法。同時(shí)教師自身具備數(shù)學(xué)模型的構(gòu)建意識(shí)與能力,才能指導(dǎo)和要求學(xué)生通過(guò)主動(dòng)思維,自主構(gòu)建有效的數(shù)學(xué)模型,從而使數(shù)學(xué)課堂彰顯科學(xué)的魅力。
    為了使描述更具科學(xué)性,邏輯性,客觀性和可重復(fù)性,人們采用一種普遍認(rèn)為比較嚴(yán)格的語(yǔ)言來(lái)描述各種現(xiàn)象,這種語(yǔ)言就是數(shù)學(xué)。使用數(shù)學(xué)語(yǔ)言描述的事物就稱為數(shù)學(xué)模型。有時(shí)候我們需要做一些實(shí)驗(yàn),但這些實(shí)驗(yàn)往往用抽象出來(lái)了的數(shù)學(xué)模型作為實(shí)際物體的代替而進(jìn)行相應(yīng)的實(shí)驗(yàn),實(shí)驗(yàn)本身也是實(shí)際操作的一種理論替代。1.只有經(jīng)歷這樣的探索過(guò)程,數(shù)學(xué)的思想、方法才能沉積、凝聚,從而使知識(shí)具有更大的智慧價(jià)值。動(dòng)手實(shí)踐、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。學(xué)生的數(shù)學(xué)學(xué)習(xí)活動(dòng)應(yīng)當(dāng)是一個(gè)主動(dòng)、活潑的、生動(dòng)和富有個(gè)性的過(guò)程。因此,在教學(xué)時(shí)我們要善于引導(dǎo)學(xué)生自主探索、合作交流,對(duì)學(xué)習(xí)過(guò)程、學(xué)習(xí)材料、學(xué)習(xí)發(fā)現(xiàn)主動(dòng)歸納、提升,力求建構(gòu)出人人都能理解的數(shù)學(xué)模型。
    教師不應(yīng)只是“講演者”,而應(yīng)不時(shí)扮演下列角色:參謀——提一些求解的建議,提供可參考的信息,但并不代替學(xué)生做出決斷。詢問(wèn)者——故作不知,問(wèn)原因、找漏洞,督促學(xué)生弄清楚、說(shuō)明白,完成進(jìn)度。仲裁者和鑒賞者——評(píng)判學(xué)生工作成果的價(jià)值、意義、優(yōu)劣,鼓勵(lì)學(xué)生有創(chuàng)造性的想法和作法。
    為了讓更多的同學(xué)了解數(shù)學(xué)建模,以便于本協(xié)會(huì)其他活動(dòng)的順利開(kāi)展,在新生報(bào)到后,我們以高教社杯全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽為契機(jī),通過(guò)宣傳和組織,展開(kāi)數(shù)學(xué)建模推廣活動(dòng),向廣大同學(xué)介紹數(shù)學(xué)建模相關(guān)知識(shí),推廣月的主要內(nèi)容有:數(shù)學(xué)建模競(jìng)賽的介紹,數(shù)學(xué)建模所涉及的數(shù)學(xué)知識(shí)的介紹,數(shù)學(xué)建模相關(guān)軟件的推廣等。推廣月活動(dòng)的主要形式是:橫幅、宣傳材料、人工咨詢等。
    二、組織學(xué)生參加每年高教社杯全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽。
    一年一度的高教社杯大學(xué)生數(shù)學(xué)建模競(jìng)賽將于9月15日左右如期舉行,屆時(shí)本協(xié)會(huì)將在相關(guān)指導(dǎo)老師的統(tǒng)一安排下,組織參賽隊(duì)伍參加此次大賽,力爭(zhēng)為我校爭(zhēng)取榮譽(yù)。
    三、年度會(huì)員招收工作。
    在校社團(tuán)管理部統(tǒng)一安排的時(shí)間,展開(kāi)新會(huì)員招收工作,主要針對(duì)大一新生,并適量吸收大二學(xué)生,為協(xié)會(huì)增加一些新鮮力量,為協(xié)會(huì)的長(zhǎng)足發(fā)展注入新的活力,招新活動(dòng)將持續(xù)兩到三天,在兩校區(qū)同時(shí)進(jìn)行。
    四、干事招聘會(huì)。
    在招新活動(dòng)結(jié)束后,我們將在全校范圍內(nèi)的,由協(xié)會(huì)內(nèi)部主要負(fù)責(zé)人組成評(píng)審團(tuán),通過(guò)公開(kāi)招聘的形式,招收一批具有突出能力的新干事,組成一支新的工作人員隊(duì)伍,為更好的開(kāi)展協(xié)會(huì)活動(dòng)和服務(wù)會(huì)員打下基礎(chǔ)。招收新干事部門有:辦公室、外聯(lián)部、實(shí)踐部、宣傳部、科研部、網(wǎng)絡(luò)信息部。
    邀請(qǐng)本協(xié)會(huì)指導(dǎo)老師廖虎教授、余慶紅、吳文海等,舉辦三到四次數(shù)學(xué)建模專題講座,為廣大同學(xué)提供一個(gè)了解數(shù)學(xué)建模、學(xué)習(xí)建模知識(shí)的平臺(tái)。
    六、會(huì)員大會(huì)。
    擬于每年10月下旬和12月上旬,召開(kāi)兩次西安電力高等專科學(xué)校數(shù)學(xué)建模協(xié)會(huì)會(huì)員大會(huì);會(huì)間將有請(qǐng)協(xié)會(huì)的輔導(dǎo)老師:廖虎教授、余慶紅、吳文海等和其他兄弟協(xié)會(huì)。屆時(shí)幾位輔導(dǎo)老師將介紹數(shù)學(xué)建模的意義和魅力,并講述大學(xué)生數(shù)學(xué)建模大賽的來(lái)歷、發(fā)展、參賽形式和我校每屆參與大賽的獲獎(jiǎng)情況等,讓新會(huì)員更快的認(rèn)識(shí)數(shù)學(xué)建模,并激發(fā)其學(xué)習(xí)數(shù)學(xué)的積極性,讓其更好的參與以后協(xié)會(huì)的活動(dòng)。
    七、西安電力高等??茖W(xué)校第二屆大學(xué)生數(shù)學(xué)建模競(jìng)賽。
    為進(jìn)一步提升我校學(xué)生參與數(shù)學(xué)建模的積極性,提高數(shù)學(xué)建模的廣泛參與性,我們擬于每年11月中旬舉辦西安電力高等??茖W(xué)校第二屆大學(xué)生數(shù)學(xué)建模競(jìng)賽;大賽將分為4組,針對(duì)不同層次的大學(xué)生評(píng)選出獲獎(jiǎng)作品。比賽結(jié)束之后將舉行頒獎(jiǎng)大會(huì),為各個(gè)參賽組獲獎(jiǎng)選手頒發(fā)獎(jiǎng)品。
    為加深我校學(xué)生對(duì)數(shù)學(xué)建模知識(shí)的了解,幫助同學(xué)們參與到數(shù)學(xué)建模事業(yè)中去,我們擬邀請(qǐng)全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽獲獎(jiǎng)選手與協(xié)會(huì)會(huì)員一起交流比賽經(jīng)驗(yàn),并由獲獎(jiǎng)選手回答提問(wèn)。
    九、大學(xué)生數(shù)學(xué)建模協(xié)會(huì)網(wǎng)站的建設(shè)與信息服務(wù)。
    在有關(guān)領(lǐng)導(dǎo)的關(guān)心幫助下,本協(xié)會(huì)的網(wǎng)站本著服務(wù)會(huì)員、交流心得、學(xué)習(xí)經(jīng)驗(yàn)、傳播知識(shí)的原則,對(duì)各種數(shù)學(xué)建模相關(guān)知識(shí)(論文、軟件)進(jìn)行發(fā)布,對(duì)校園內(nèi)各種相關(guān)新聞信息進(jìn)行報(bào)道,對(duì)各種同學(xué)們關(guān)心的數(shù)學(xué)問(wèn)題進(jìn)行討論。本學(xué)期,我們將利用網(wǎng)站這一優(yōu)勢(shì),我們將充分利用網(wǎng)絡(luò)信息傳遞速度快的特點(diǎn),在發(fā)揮網(wǎng)站宣傳平臺(tái)這一作用的基礎(chǔ)上,著手舉辦一些時(shí)代性強(qiáng)、參與性強(qiáng)、靈活生動(dòng)的網(wǎng)絡(luò)活動(dòng)。
    數(shù)學(xué)建模心得體會(huì)論文篇二
    數(shù)學(xué)建模是當(dāng)今社會(huì)中越來(lái)越受重視的一門學(xué)科,通過(guò)數(shù)學(xué)方法解決實(shí)際問(wèn)題,對(duì)于培養(yǎng)學(xué)生的邏輯思維、創(chuàng)新能力和實(shí)踐能力起著重要的作用。在我參與數(shù)學(xué)建模的過(guò)程中,我深刻地體會(huì)到,數(shù)學(xué)建模不僅需要良好的數(shù)學(xué)基礎(chǔ),還需要堅(jiān)持、努力和合作的精神,以及對(duì)實(shí)際問(wèn)題的敏感性和獨(dú)立思考的能力。
    首先,數(shù)學(xué)建模需要良好的數(shù)學(xué)基礎(chǔ)。在解決實(shí)際問(wèn)題的過(guò)程中,需要運(yùn)用到多種數(shù)學(xué)方法和模型,如概率統(tǒng)計(jì)、線性規(guī)劃、微分方程等。而這些都要求我們具備扎實(shí)的數(shù)學(xué)基礎(chǔ)。因此,在參與數(shù)學(xué)建模之前,我們要加強(qiáng)對(duì)數(shù)學(xué)基礎(chǔ)知識(shí)的學(xué)習(xí),同時(shí)要注重?cái)?shù)學(xué)的實(shí)際應(yīng)用,培養(yǎng)數(shù)學(xué)思維和解決實(shí)際問(wèn)題的能力。
    其次,數(shù)學(xué)建模需要堅(jiān)持、努力和合作的精神。數(shù)學(xué)建模不是一蹴而就的過(guò)程,需要耐心和毅力去面對(duì)問(wèn)題和困難。在實(shí)際操作中,往往會(huì)遇到數(shù)據(jù)收集不全、模型構(gòu)建不準(zhǔn)確等問(wèn)題,這時(shí)候我們要保持積極樂(lè)觀的心態(tài),不斷嘗試和改進(jìn)。同時(shí),在團(tuán)隊(duì)合作中,我們要尊重他人意見(jiàn),共同努力,形成優(yōu)勢(shì)互補(bǔ)的合作關(guān)系,才能最終完成一個(gè)優(yōu)秀的數(shù)學(xué)模型。
    此外,數(shù)學(xué)建模需要對(duì)實(shí)際問(wèn)題的敏感性和獨(dú)立思考的能力。在解決實(shí)際問(wèn)題時(shí),我們要對(duì)問(wèn)題本身有敏銳的觸覺(jué),能夠發(fā)現(xiàn)問(wèn)題背后的本質(zhì)和規(guī)律。同時(shí),我們也要具備獨(dú)立思考的能力,不僅僅依靠他人的意見(jiàn)和經(jīng)驗(yàn),而是要從自己的角度去分析和解決問(wèn)題。只有這樣才能在數(shù)學(xué)建模中取得令人滿意的結(jié)果。
    最后,數(shù)學(xué)建模是一個(gè)不斷學(xué)習(xí)和提高的過(guò)程。在每一次實(shí)踐中,我們都可以從中汲取經(jīng)驗(yàn),了解到不同領(lǐng)域、不同問(wèn)題的特點(diǎn)和要點(diǎn)。同時(shí),我們也要關(guān)注前沿的數(shù)學(xué)建模成果和方法,及時(shí)補(bǔ)充自己的知識(shí)和技能。通過(guò)不斷學(xué)習(xí)和提高,我們才能在數(shù)學(xué)建模的道路上越走越遠(yuǎn),取得更出色的成就。
    總之,數(shù)學(xué)建模是一門需要我們付出努力和智慧的學(xué)科。通過(guò)我自己的經(jīng)歷,我深刻地認(rèn)識(shí)到數(shù)學(xué)建模不僅僅是一種學(xué)習(xí)方法,更是一種鍛煉自己解決實(shí)際問(wèn)題能力的機(jī)會(huì)。在今后的學(xué)習(xí)和實(shí)踐中,我將繼續(xù)努力,加強(qiáng)自己的數(shù)學(xué)基礎(chǔ),培養(yǎng)堅(jiān)持、努力和合作的精神,提高對(duì)實(shí)際問(wèn)題的敏感性和獨(dú)立思考的能力,不斷學(xué)習(xí)和提高,以更好地應(yīng)對(duì)數(shù)學(xué)建模所帶來(lái)的挑戰(zhàn)。
    數(shù)學(xué)建模心得體會(huì)論文篇三
    數(shù)學(xué)建模是利用數(shù)學(xué)方法解決實(shí)際問(wèn)題的一種實(shí)踐應(yīng)用。即通過(guò)抽象、簡(jiǎn)化、假設(shè)、引進(jìn)變量等處理過(guò)程后,將實(shí)際問(wèn)題用數(shù)學(xué)方式來(lái)表達(dá),建立起數(shù)學(xué)模型,然后運(yùn)用先進(jìn)的數(shù)學(xué)方法和計(jì)算機(jī)技術(shù)進(jìn)行求解。數(shù)學(xué)建模將各種知識(shí)綜合應(yīng)用于解決實(shí)際問(wèn)題中,是培養(yǎng)和提高學(xué)生應(yīng)用所學(xué)知識(shí)分析問(wèn)題、解決問(wèn)題的能力的必備手段之一。
    數(shù)學(xué)建模是在上世紀(jì)六七十年代進(jìn)入一些西方國(guó)家大學(xué)的,我國(guó)的幾所大學(xué)也在80年代初將數(shù)學(xué)建模引入課堂。經(jīng)過(guò)30多年的發(fā)展,現(xiàn)在,絕大多數(shù)本科院校和許多??茖W(xué)校都開(kāi)設(shè)了各種形式的數(shù)學(xué)建模課程和講座,為培養(yǎng)學(xué)生利用數(shù)學(xué)方法分析、解決實(shí)際問(wèn)題的能力開(kāi)辟了一條有效的途徑。
    大學(xué)生數(shù)學(xué)建模競(jìng)賽最早是1985年在美國(guó)出現(xiàn)的,1989年在幾位從事數(shù)學(xué)建模教育的教師的組織和推動(dòng)下,我國(guó)幾所大學(xué)的學(xué)生開(kāi)始參加美國(guó)的競(jìng)賽,而且積極性越來(lái)越高,近幾年參賽校數(shù)、隊(duì)數(shù)占到相當(dāng)大的比例。可以說(shuō),數(shù)學(xué)建模競(jìng)賽是在美國(guó)誕生、在中國(guó)開(kāi)花、結(jié)果的。
    全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽已成為全國(guó)高校規(guī)模最大的基礎(chǔ)性學(xué)科競(jìng)賽,創(chuàng)辦于1992年,每年一屆,目前也是世界上規(guī)模最大的數(shù)學(xué)建模競(jìng)賽。20xx年,來(lái)自全國(guó)33個(gè)省/市/自治區(qū)(包括香港和澳門特區(qū))及新加坡、美國(guó)的1338所院校、25347個(gè)隊(duì)(其中本科組22233隊(duì)、??平M3114隊(duì))、7萬(wàn)多名大學(xué)生報(bào)名參加本項(xiàng)競(jìng)賽。
    數(shù)學(xué)建模是一種數(shù)學(xué)的思想方法,是運(yùn)用數(shù)學(xué)的語(yǔ)言和方法,通過(guò)抽象、簡(jiǎn)化建立能近似刻畫(huà)并“解決”實(shí)際問(wèn)題的一種強(qiáng)有力的數(shù)學(xué)手段。其過(guò)程主要包括以下六個(gè)階段:
    1.模型準(zhǔn)備:了解問(wèn)題的實(shí)際背景,明確其實(shí)際意義,掌握對(duì)象的各種信息。用數(shù)學(xué)語(yǔ)言來(lái)描述問(wèn)題。
    2.模型假設(shè):根據(jù)實(shí)際對(duì)象的特征和建模的目的,對(duì)問(wèn)題進(jìn)行必要的簡(jiǎn)化,并用精確的語(yǔ)言提出一些恰當(dāng)?shù)募僭O(shè)。
    3.模型建立:在假設(shè)的基礎(chǔ)上,利用適當(dāng)?shù)臄?shù)學(xué)工具來(lái)刻劃各變量之間的數(shù)學(xué)關(guān)系,建立相應(yīng)的數(shù)學(xué)結(jié)構(gòu)。
    4.模型求解:利用獲取的數(shù)據(jù)資料,對(duì)模型的所有參數(shù)做出計(jì)算。
    5.模型分析:對(duì)所得的結(jié)果進(jìn)行數(shù)學(xué)上的分析。
    6.模型檢驗(yàn):將模型分析結(jié)果與實(shí)際情形進(jìn)行比較,以此來(lái)驗(yàn)證模型的準(zhǔn)確性、合理性和適用性。如果模型與實(shí)際較吻合,則要對(duì)計(jì)算結(jié)果給出其實(shí)際含義,并進(jìn)行解釋。如果模型與實(shí)際吻合較差,則應(yīng)該修改假設(shè),再次重復(fù)建模過(guò)程。
    7.模型應(yīng)用:應(yīng)用方式因問(wèn)題的性質(zhì)和建模的目的而異。
    數(shù)學(xué)建模心得體會(huì)論文篇四
    通過(guò)一個(gè)月的集訓(xùn),我受益匪淺。我進(jìn)一步的認(rèn)識(shí)到數(shù)學(xué)建模的實(shí)質(zhì)和對(duì)參賽隊(duì)員的要求。數(shù)學(xué)建模就是培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的能力。它要求參賽隊(duì)員有較強(qiáng)的創(chuàng)新精神,有較大的'靈活性和隨機(jī)應(yīng)變能力,要求參賽隊(duì)員之間有良好的團(tuán)隊(duì)精神和相互協(xié)作意識(shí)。在一個(gè)月里,我們學(xué)了許多知識(shí)放方法,可以說(shuō)數(shù)學(xué)建模需要的知識(shí)我們都了解了一點(diǎn),關(guān)鍵在于如何應(yīng)用這些知識(shí)。這種即學(xué)即用的能力是我們以后學(xué)習(xí)、工作所必須的能力。在此我對(duì)建模是出現(xiàn)的一些現(xiàn)象發(fā)表一些看法。
    隨著信息的高速化,我們很容易找到和建模有關(guān)的資料,這對(duì)我們理解題目意思和促發(fā)新思路、新想法是有幫助的。但是有的集訓(xùn)小組或集訓(xùn)隊(duì)員他們建模完全依靠找資料,建出來(lái)的模型就是幾本參考書(shū)的綜合,他們所用的方法完全是別人研究過(guò)的東西,連一點(diǎn)改進(jìn)也沒(méi)有。如果這樣的話,數(shù)學(xué)建模就失去了意義。我始終堅(jiān)持一個(gè)觀點(diǎn):數(shù)學(xué)建模最重要的是創(chuàng)新。無(wú)論是你創(chuàng)造一種新方法還是創(chuàng)造性的運(yùn)用一種方法,還是改進(jìn)別人的方法都是很重要的。沒(méi)有創(chuàng)新,模型就失去了靈魂;沒(méi)有創(chuàng)新,模型就不是你的模型。
    我們隊(duì)配合不是很理想。主要是有個(gè)隊(duì)員他總認(rèn)為自己是正確的,別人找到的資料不如他好,別人提出的觀點(diǎn)、思想思想無(wú)論正確與否,他總是會(huì)反對(duì)一下。他總是十分注重小的方面,不從大局考慮。由于這些原因,我們建的模型總是不好。
    數(shù)學(xué)建模心得體會(huì)論文篇五
    讀數(shù)學(xué)建模是一項(xiàng)需要較高能力的學(xué)問(wèn),需要具備豐富的數(shù)學(xué)知識(shí)和邏輯思維能力。在我學(xué)習(xí)的過(guò)程中,我深刻認(rèn)識(shí)到了數(shù)學(xué)建模的重要性以及在實(shí)際工作和生活中的應(yīng)用價(jià)值。以下是我的讀數(shù)學(xué)建模的心得體會(huì)。
    作為一個(gè)計(jì)算機(jī)科班出身的學(xué)生,我很早就開(kāi)始了接觸數(shù)學(xué)建模。但在一開(kāi)始的時(shí)候,我并沒(méi)有真正理解什么是數(shù)學(xué)建模。直到在大學(xué)的選修課中系統(tǒng)地學(xué)習(xí)了一門《數(shù)學(xué)建模及應(yīng)用》課程后,我才對(duì)數(shù)學(xué)建模有了更深入的認(rèn)知和理解。
    第二段:理解“建模”
    “建?!钡暮诵囊馑际菍?fù)雜的實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)模型,然后用數(shù)學(xué)語(yǔ)言描述該問(wèn)題并進(jìn)行數(shù)學(xué)分析。在實(shí)際的工作和生活中,我們要面對(duì)、研究的諸如市場(chǎng)營(yíng)銷、物流運(yùn)輸、氣象環(huán)境、圖像視頻等不同領(lǐng)域的問(wèn)題都可以通過(guò)“建?!钡姆绞竭M(jìn)行求解。
    第三段:掌握數(shù)學(xué)和編程技能。
    數(shù)學(xué)建模需要掌握扎實(shí)的數(shù)學(xué)功底,同時(shí)也要在編程技能上有所涉獵。這是因?yàn)閿?shù)學(xué)建模過(guò)程中需要運(yùn)用到很多數(shù)據(jù)分類和篩選、數(shù)據(jù)可視化、計(jì)算機(jī)程序的實(shí)現(xiàn)等技能。只有將數(shù)學(xué)和編程技能完美結(jié)合,才能為數(shù)學(xué)建模提供最有利的條件。
    第四段:關(guān)注實(shí)際問(wèn)題。
    在理論知識(shí)的積累與技術(shù)能力的提升之外,數(shù)學(xué)建模中還需要關(guān)注實(shí)際問(wèn)題。我們不能將理論和技術(shù)與實(shí)際問(wèn)題劃分開(kāi)來(lái)。可行的“建?!眴?wèn)題是源于實(shí)際問(wèn)題,因此,在發(fā)現(xiàn)實(shí)際問(wèn)題的基礎(chǔ)上,我們才能夠有更清晰的目標(biāo)和向?qū)崿F(xiàn)目標(biāo)的循序漸進(jìn)的步驟。
    第五段:學(xué)習(xí)和交流。
    數(shù)學(xué)建模需要廣泛學(xué)習(xí)和交流。我們要閱讀相關(guān)領(lǐng)域的探討和論文,獲取更多的行業(yè)知識(shí)。同時(shí),我們還要積極參加學(xué)術(shù)會(huì)議和交流活動(dòng),與其他學(xué)者和專家協(xié)同工作和深度探討,交換經(jīng)驗(yàn)和知識(shí),并不斷提升自己的建模能力。
    在讀數(shù)學(xué)建模的過(guò)程中,我也留下了許多經(jīng)典案例和優(yōu)秀論文,堅(jiān)持探索科學(xué)問(wèn)題的本質(zhì),發(fā)掘應(yīng)用數(shù)學(xué)的潛力。數(shù)學(xué)建模是一個(gè)學(xué)習(xí)與實(shí)踐并行、動(dòng)態(tài)更新的過(guò)程,它將不斷影響我們思考問(wèn)題和解決問(wèn)題的方式,讓我們更好地懂得數(shù)學(xué)對(duì)人類社會(huì)發(fā)展的重要性。
    數(shù)學(xué)建模心得體會(huì)論文篇六
    通過(guò)一個(gè)月的集訓(xùn),我受益匪淺。我進(jìn)一步的認(rèn)識(shí)到數(shù)學(xué)建模的實(shí)質(zhì)和對(duì)參賽隊(duì)員的要求。數(shù)學(xué)建模就是培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的能力。它要求參賽隊(duì)員有較強(qiáng)的創(chuàng)新精神,有較大的靈活性和隨機(jī)應(yīng)變能力,要求參賽隊(duì)員之間有良好的團(tuán)隊(duì)精神和相互協(xié)作意識(shí)。在一個(gè)月里,我們學(xué)了許多知識(shí)放方法,可以說(shuō)數(shù)學(xué)建模需要的`知識(shí)我們都了解了一點(diǎn),關(guān)鍵在于如何應(yīng)用這些知識(shí)。這種即學(xué)即用的能力是我們以后學(xué)習(xí)、工作所必須的能力。在此我對(duì)建模是出現(xiàn)的一些現(xiàn)象發(fā)表一些看法。
    隨著信息的高速化,我們很容易找到和建模有關(guān)的資料,這對(duì)我們理解題目意思和促發(fā)新思路、新想法是有幫助的。但是有的集訓(xùn)小組或集訓(xùn)隊(duì)員他們建模完全依靠找資料,建出來(lái)的模型就是幾本參考書(shū)的綜合,他們所用的方法完全是別人研究過(guò)的東西,連一點(diǎn)改進(jìn)也沒(méi)有。如果這樣的話,數(shù)學(xué)建模就失去了意義。我始終堅(jiān)持一個(gè)觀點(diǎn):數(shù)學(xué)建模最重要的是創(chuàng)新。無(wú)論是你創(chuàng)造一種新方法還是創(chuàng)造性的運(yùn)用一種方法,還是改進(jìn)別人的方法都是很重要的。沒(méi)有創(chuàng)新,模型就失去了靈魂;沒(méi)有創(chuàng)新,模型就不是你的模型。
    我們隊(duì)配合不是很理想。主要是有個(gè)隊(duì)員他總認(rèn)為自己是正確的,別人找到的資料不如他好,別人提出的觀點(diǎn)、思想思想無(wú)論正確與否,他總是會(huì)反對(duì)一下。他總是十分注重小的方面,不從大局考慮。由于這些原因,我們建的模型總是不好。
    數(shù)學(xué)建模心得體會(huì)論文篇七
    讀數(shù)學(xué)建模課程是我大學(xué)三年級(jí)的必修課程,這門課程讓我感受到了數(shù)學(xué)的實(shí)用性和嚴(yán)謹(jǐn)性,也讓我深刻理解到數(shù)學(xué)在現(xiàn)實(shí)生活中的重要性。在這門課程中,我學(xué)習(xí)了數(shù)學(xué)模型的構(gòu)建、求解和分析方法,我認(rèn)為,這些知識(shí)對(duì)于我以后的學(xué)習(xí)和工作都有很大的幫助。
    第二段:探究。
    在學(xué)習(xí)數(shù)學(xué)建模的過(guò)程中,我發(fā)現(xiàn),一個(gè)好的數(shù)學(xué)模型不僅要符合現(xiàn)實(shí),還要有嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)證明。因此,我學(xué)習(xí)了多種數(shù)學(xué)知識(shí),包括微積分、線性代數(shù)、概率論與數(shù)理統(tǒng)計(jì)等,這些知識(shí)讓我能夠更好地構(gòu)建數(shù)學(xué)模型,同時(shí)也能夠更好地驗(yàn)證和分析結(jié)果。
    第三段:發(fā)揮。
    在實(shí)踐建模的過(guò)程中,我發(fā)現(xiàn),一個(gè)好的數(shù)學(xué)模型不僅需要有合適的數(shù)學(xué)公式,還需要有合理的數(shù)據(jù)支持。因此,我學(xué)習(xí)了如何獲取和分析數(shù)據(jù),并學(xué)會(huì)了使用MATLAB等計(jì)算工具對(duì)數(shù)據(jù)進(jìn)行分析和可視化。這些工具不僅方便了我對(duì)數(shù)據(jù)的理解,還能夠幫助我更好地展示數(shù)學(xué)模型的結(jié)果。
    第四段:總結(jié)。
    通過(guò)學(xué)習(xí)數(shù)學(xué)建模,我發(fā)現(xiàn)成功的模型需要具備以下特點(diǎn):1、模型要符合現(xiàn)實(shí);2、模型的數(shù)學(xué)表達(dá)式要嚴(yán)謹(jǐn);3、模型需要有合理的數(shù)據(jù)支持;4、模型的結(jié)果需要有實(shí)際意義。這些特點(diǎn)相互為依存,缺一不可。同時(shí),我也認(rèn)識(shí)到,在數(shù)學(xué)建模中,靈活性和創(chuàng)新性同樣重要,只有掌握了嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)知識(shí),才能更好地發(fā)揮個(gè)人思維的特點(diǎn),構(gòu)建出更為優(yōu)秀的數(shù)學(xué)模型。
    第五段:?jiǎn)⑹尽?BR>    學(xué)習(xí)數(shù)學(xué)建模的過(guò)程中,我不僅學(xué)到了嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)知識(shí),還學(xué)會(huì)了如何分析和解決實(shí)際問(wèn)題。在以后的學(xué)習(xí)和工作中,我將不斷運(yùn)用這些知識(shí)和技能,以更好地解決實(shí)際問(wèn)題,為社會(huì)做出自己的貢獻(xiàn)。同時(shí),我也希望更多的人能夠認(rèn)識(shí)到數(shù)學(xué)的實(shí)用性和重要性,從而更好地學(xué)習(xí)和應(yīng)用數(shù)學(xué)。
    數(shù)學(xué)建模心得體會(huì)論文篇八
    數(shù)學(xué),源于人們對(duì)生產(chǎn)與生活實(shí)際問(wèn)題,抽象出的數(shù)量關(guān)系與空間結(jié)構(gòu)發(fā)展而成的.近年來(lái),信息技術(shù)飛速發(fā)展,推動(dòng)了應(yīng)用數(shù)學(xué)的發(fā)展,使數(shù)學(xué)日益滲透到社會(huì)各個(gè)領(lǐng)域.中考實(shí)際應(yīng)用題目更貼近日常生活,具有時(shí)代性、靈活性,涉及的模型有方程、函數(shù)、不等式、統(tǒng)計(jì)、幾何等模型.數(shù)學(xué)課程標(biāo)準(zhǔn)指出,教師在教學(xué)中應(yīng)引導(dǎo)學(xué)生從實(shí)際背景中理清數(shù)學(xué)關(guān)系、把握變化規(guī)律,能從實(shí)際問(wèn)題中建立數(shù)學(xué)模型.教師要為學(xué)生創(chuàng)造用數(shù)學(xué)的氛圍,引導(dǎo)學(xué)生參與自主學(xué)習(xí)、自主探索、自主提問(wèn)、自主解決,體驗(yàn)做數(shù)學(xué)的過(guò)程,從而提高解決實(shí)際問(wèn)題的能力.
    一是教師未能實(shí)現(xiàn)角色轉(zhuǎn)換.建模教學(xué)離不開(kāi)學(xué)生“做”數(shù)學(xué)的過(guò)程,因而教師在教學(xué)中要留有讓學(xué)生思考、想象的空間,讓他們自主選擇方法.然而部分教師對(duì)學(xué)生缺乏信任,由“引導(dǎo)者”變?yōu)椤肮噍斦摺?,將解題過(guò)程直接教給學(xué)生,影響了學(xué)生建模能力的提高.二是教師的專業(yè)素養(yǎng)有待提高.開(kāi)展建模教學(xué),需要教師具有一定的專業(yè)素養(yǎng),能駕馭課堂教學(xué),激發(fā)學(xué)生的興趣,啟發(fā)學(xué)生進(jìn)行思考,誘發(fā)學(xué)生進(jìn)行探索,但是部分教師專業(yè)素養(yǎng)有待提高,或認(rèn)為建模就是解應(yīng)用題,或重生活味輕數(shù)學(xué)味,或使討論活動(dòng)流于形式.三是學(xué)生的抽象能力較差.在建模教學(xué)中,教師須呈現(xiàn)生活中的實(shí)際問(wèn)題,其題目長(zhǎng)、信息量大、數(shù)據(jù)多,需要學(xué)生經(jīng)歷閱讀提取有用的信息,但是部分學(xué)生感悟能力差,不能明析已知與未知之間的關(guān)系,影響了學(xué)生成功建模.
    1.自主探索原則.
    學(xué)生長(zhǎng)期處于師講、生聽(tīng)的教學(xué)模式,淪為被動(dòng)接受知識(shí)的“容器”,難有創(chuàng)造的意識(shí).在教學(xué)中,教師要為學(xué)生創(chuàng)設(shè)輕松愉悅的探究氛圍,讓學(xué)生手腦并用,在探索、交流、操作中提高解決問(wèn)題的`能力.
    2.因材施教原則.
    教師要著眼于學(xué)生原有的認(rèn)知結(jié)構(gòu),要貼近學(xué)生的最近發(fā)展區(qū),引導(dǎo)他們從舊知的角度思考,找出問(wèn)題的解決方法。
    3.可接受性原則.
    數(shù)學(xué)建模內(nèi)容的設(shè)計(jì),要符合學(xué)生的年齡特點(diǎn)和認(rèn)知能力,能讓學(xué)生理解所探究的內(nèi)容.若設(shè)計(jì)的問(wèn)題不切實(shí)際,往往會(huì)扼殺學(xué)生的興趣,教師要密切聯(lián)系教學(xué)內(nèi)容、生活實(shí)際,讓學(xué)生有能力解決問(wèn)題.
    數(shù)學(xué)建模心得體會(huì)論文篇九
    (一)教學(xué)觀念陳舊化
    就當(dāng)前高等數(shù)學(xué)的教育教學(xué)而言,高數(shù)老師對(duì)學(xué)生的計(jì)算能力、思考能力以及邏輯思維能力過(guò)于重視,一切以課本為基礎(chǔ)開(kāi)展教學(xué)活動(dòng)。作為一門充滿活力并讓人感到新奇的學(xué)科,由于教育觀念和思想的落后,課堂教學(xué)之中沒(méi)有穿插應(yīng)用實(shí)例,在工作的時(shí)候?qū)W生不知道怎樣把問(wèn)題解決,工作效率無(wú)法進(jìn)一步提升,不僅如此,陳舊的教學(xué)理念和思想讓學(xué)生漸漸的失去學(xué)習(xí)的興趣和動(dòng)力。
    (二)教學(xué)方法傳統(tǒng)化
    教學(xué)方法的優(yōu)秀與否在學(xué)生學(xué)習(xí)的過(guò)程中發(fā)揮著重要的作用,也直接影響著學(xué)生的學(xué)習(xí)成績(jī)。一般高數(shù)老師在授課的時(shí)候都是以課本的順次進(jìn)行,也就意味著老師“由定義到定理”、“由習(xí)題到練習(xí)”,這種默守陳規(guī)的教學(xué)方式無(wú)法為學(xué)生營(yíng)造活躍的學(xué)習(xí)氛圍,讓學(xué)生獨(dú)自學(xué)習(xí)、思考的能力進(jìn)一步下降。這就要求教師致力于和諧課堂氛圍營(yíng)造以及使用新穎的教育教學(xué)方法,讓學(xué)生在課堂中主動(dòng)參與學(xué)習(xí)。
    二、建模在高等數(shù)學(xué)教學(xué)中的作用
    對(duì)學(xué)生的想象力、觀察力、發(fā)現(xiàn)、分析并解決問(wèn)題的能力進(jìn)行培養(yǎng)的過(guò)程中,數(shù)學(xué)建模發(fā)揮著重要的作用。最近幾年,國(guó)內(nèi)出現(xiàn)很多以數(shù)學(xué)建模為主體的賽事活動(dòng)以及教研活動(dòng),其在學(xué)生學(xué)習(xí)興趣的提升、激發(fā)學(xué)生主動(dòng)學(xué)習(xí)的積極性上扮演著重要的角色,發(fā)揮著突出的作用,在高等數(shù)學(xué)教學(xué)中引入數(shù)學(xué)建模還能培養(yǎng)學(xué)生不畏困難的品質(zhì),培養(yǎng)踏實(shí)的工作精神,在協(xié)調(diào)學(xué)生學(xué)習(xí)的知識(shí)、實(shí)際應(yīng)用能力等上有突出的作用。雖然國(guó)內(nèi)高等院校大都開(kāi)設(shè)了數(shù)學(xué)建模選修課或者培訓(xùn)班,但是由于課程的要求和學(xué)生的認(rèn)知水平差異較大,所以課程無(wú)法普及為大眾化的教育。如今,高等院校都在積極的尋找一種載體,對(duì)學(xué)生的整體素質(zhì)進(jìn)行培養(yǎng),提升學(xué)生的創(chuàng)新精神以及創(chuàng)造力,讓學(xué)生滿足社會(huì)對(duì)復(fù)合型人才的需求,而最好的載體則是高等數(shù)學(xué)。
    高等數(shù)學(xué)作為工科類學(xué)生的一門基礎(chǔ)課,由于其必修課的性質(zhì),把數(shù)學(xué)建模引入高等數(shù)學(xué)課堂中具有較廣的影響力。把數(shù)學(xué)建模思想滲入高等數(shù)學(xué)教學(xué)中,不僅能讓數(shù)學(xué)知識(shí)的本來(lái)面貌得以還原,更讓學(xué)生在日常中應(yīng)用數(shù)學(xué)知識(shí)的能力得到很好的培養(yǎng)。數(shù)學(xué)建模要求學(xué)生在簡(jiǎn)化、抽象、翻譯部分現(xiàn)實(shí)世界信息的過(guò)程中使用數(shù)學(xué)的語(yǔ)言以及工具,把內(nèi)在的聯(lián)系使用圖形、表格等方式表現(xiàn)出來(lái),以便于提升學(xué)生的表達(dá)能力。在實(shí)際的學(xué)習(xí)數(shù)學(xué)建模之后,需要檢驗(yàn)現(xiàn)實(shí)的信息,確定最后的結(jié)果是否正確,通過(guò)這一過(guò)程中的鍛煉,學(xué)生在分析問(wèn)題的過(guò)程中可以主動(dòng)地、客觀的辯證的運(yùn)用數(shù)學(xué)方法,最終得出解決問(wèn)題的最好方法。因此,在高等數(shù)學(xué)教學(xué)中引入數(shù)學(xué)建模思想具有重要的意義。
    三、將建模思想應(yīng)用在高等數(shù)學(xué)教學(xué)中的具體措施
    (一)在公式中使用建模思想
    在高數(shù)教材中占有重要位置的是公式,也是要求學(xué)生必須掌握的內(nèi)容之一。為了讓教師的'教學(xué)效果進(jìn)一步提升,在課堂上老師不僅要讓學(xué)生對(duì)計(jì)算的技巧進(jìn)一步提升之余,還要和建模思想結(jié)合在一起,讓解題難度更容易,還讓課堂氛圍更活躍。為了讓學(xué)生對(duì)公式中使用建模思想理解的更透徹,老師還應(yīng)該結(jié)合實(shí)例開(kāi)展教學(xué)。
    (二)講解習(xí)題的時(shí)候使用數(shù)學(xué)模型的方式
    課本例題使用建模思想進(jìn)行解決,老師通過(guò)對(duì)例題的講解,很好的講述使用數(shù)學(xué)建模解決問(wèn)題的方式,讓學(xué)生清醒的認(rèn)識(shí)在解決問(wèn)題的過(guò)程中怎樣使用數(shù)學(xué)建模。完成每章學(xué)習(xí)的內(nèi)容之后,充分的利用時(shí)間為學(xué)生解疑答惑,以學(xué)生所學(xué)的專業(yè)情況和學(xué)生水平的高低選擇合適的例題,完成建模、解決問(wèn)題的全部過(guò)程,提升學(xué)生解決問(wèn)題的效率。
    (三)組織學(xué)生積極參加數(shù)學(xué)建模競(jìng)賽
    一般而言,在競(jìng)賽中可以很好地鍛煉學(xué)生競(jìng)爭(zhēng)意識(shí)以及獨(dú)立思考的能力。這就要求學(xué)校充分的利用資源并廣泛的宣傳,讓學(xué)生積極的參加競(jìng)賽,在實(shí)踐中鍛煉學(xué)生的實(shí)際能力。在日常生活中使用數(shù)學(xué)建模解決問(wèn)題,讓學(xué)生獨(dú)自思考,然后在競(jìng)爭(zhēng)的過(guò)程中意識(shí)到自己的不足,今后也會(huì)努力學(xué)習(xí),改正錯(cuò)誤,提升自身的能力。
    四、結(jié)束語(yǔ)
    高等數(shù)學(xué)主要對(duì)學(xué)生從理論學(xué)習(xí)走向解決實(shí)際問(wèn)題的能力進(jìn)行培養(yǎng),在高等數(shù)學(xué)中應(yīng)用建模思想,促使學(xué)生對(duì)高數(shù)知識(shí)更充分的理解,學(xué)習(xí)的難度進(jìn)一步降低,提升應(yīng)用能力和探索能力。當(dāng)前,在高等教學(xué)過(guò)程中引入建模思想還存在一定的不足,需要高校高等數(shù)學(xué)老師進(jìn)行深入的研究和探索的同時(shí)也需要學(xué)生很好的配合,以便于今后的教學(xué)中進(jìn)一步提升教學(xué)的質(zhì)量。
    參考文獻(xiàn)
    [1]謝鳳艷,楊永艷。高等數(shù)學(xué)教學(xué)中融入數(shù)學(xué)建模思想[j]。齊齊哈爾師范高等??茖W(xué)校學(xué)報(bào),20xx(02):119—120。
    [2]李薇。在高等數(shù)學(xué)教學(xué)中融入數(shù)學(xué)建模思想的探索與實(shí)踐[j]。教育實(shí)踐與改革,20xx(04):177—178,189。
    [3]楊四香。淺析高等數(shù)學(xué)教學(xué)中數(shù)學(xué)建模思想的滲透[j]。長(zhǎng)春教育學(xué)院學(xué)報(bào),20xx(30):89,95。
    [4]劉合財(cái)。在高等數(shù)學(xué)教學(xué)中融入數(shù)學(xué)建模思想[j]。貴陽(yáng)學(xué)院學(xué)報(bào),20xx(03):63—65。
    數(shù)學(xué)建模心得體會(huì)論文篇十
    信息化時(shí)代,數(shù)學(xué)科學(xué)與其他學(xué)科交叉融合,使得數(shù)學(xué)技術(shù)變成了一種普適性的關(guān)鍵技術(shù)。大學(xué)加強(qiáng)數(shù)學(xué)課程的應(yīng)用功能,不但可以為學(xué)生提供解決問(wèn)題的思想和方法,而且更為重要的是可以培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)科學(xué)進(jìn)行定量化、精確化思維的意識(shí),學(xué)會(huì)創(chuàng)造性地解決問(wèn)題的應(yīng)用能力。數(shù)學(xué)建模課程將數(shù)學(xué)的基本原理、現(xiàn)代優(yōu)化算法以及程序設(shè)計(jì)知識(shí)很好地融合在一起,有助于培養(yǎng)學(xué)生綜合應(yīng)用數(shù)學(xué)知識(shí)將現(xiàn)實(shí)問(wèn)題化為數(shù)學(xué)問(wèn)題,并進(jìn)行求解運(yùn)算的能力,激發(fā)學(xué)生對(duì)解決現(xiàn)實(shí)問(wèn)題的探索欲望,強(qiáng)化數(shù)學(xué)課程本身的應(yīng)用功能,凸顯數(shù)學(xué)課程的教育價(jià)值,適應(yīng)大學(xué)數(shù)學(xué)課程以培養(yǎng)學(xué)生創(chuàng)新意識(shí)為宗旨的教育改革需要。
    大學(xué)傳統(tǒng)的數(shù)學(xué)主干課程,如高等數(shù)學(xué)、線性代數(shù)、概率論與數(shù)理統(tǒng)計(jì)在奠定學(xué)生的數(shù)學(xué)基礎(chǔ)、培養(yǎng)自學(xué)能力以及為后續(xù)課程的學(xué)習(xí)在基礎(chǔ)方面發(fā)揮奠基作用。但是,這種原有的教學(xué)模式重在突出培養(yǎng)學(xué)生嚴(yán)格的邏輯思維能力,而對(duì)數(shù)學(xué)的應(yīng)用重視不夠,這使得學(xué)生即使掌握了較為高深的數(shù)學(xué)理論,卻并不能將其靈活應(yīng)用于現(xiàn)實(shí)生活解決實(shí)際問(wèn)題,更是缺乏將數(shù)學(xué)應(yīng)用于專業(yè)研究和軍事工程的能力,與創(chuàng)新教育的基本要求差距甚遠(yuǎn)。教育轉(zhuǎn)型要求數(shù)學(xué)教學(xué)模式從傳統(tǒng)的傳授知識(shí)為主向以培養(yǎng)能力素質(zhì)為主轉(zhuǎn)變,特別是將數(shù)學(xué)建模的思想方法融入到數(shù)學(xué)主干課程之中,在教學(xué)過(guò)程中引導(dǎo)學(xué)生將數(shù)學(xué)知識(shí)內(nèi)化為學(xué)生的應(yīng)用能力,充分發(fā)揮數(shù)學(xué)建模思想在數(shù)學(xué)教學(xué)過(guò)程中的引領(lǐng)作用。數(shù)學(xué)課程教學(xué)改革要適應(yīng)這一教學(xué)模式轉(zhuǎn)型需要,深入探究融入式教學(xué)模式的理論與方式,是推進(jìn)數(shù)學(xué)教育改革的重要舉措。
    2.1理清數(shù)學(xué)建模思想方法與數(shù)學(xué)主干課程的關(guān)系。數(shù)學(xué)主干課程提供了大學(xué)數(shù)學(xué)的基礎(chǔ)理論與基本原理,將數(shù)學(xué)建模的思想方法有機(jī)地融入到數(shù)學(xué)主干課程中,不但可以有效地提升數(shù)學(xué)課程的應(yīng)用功能,而且有利于深化學(xué)生對(duì)數(shù)學(xué)本原知識(shí)的理解,培養(yǎng)學(xué)生的綜合應(yīng)用能力。深入研究數(shù)學(xué)主干課程的功能定位,主要從課程目標(biāo)上的一致性、課程內(nèi)容上的互補(bǔ)性、學(xué)習(xí)形式上的互促性、功能上的整體優(yōu)化性等方面,研究數(shù)學(xué)建模本身所承載的思想、方法與數(shù)學(xué)主干課程的內(nèi)容與邏輯關(guān)系,闡述數(shù)學(xué)建模思想方法對(duì)提高學(xué)生創(chuàng)新能力和對(duì)數(shù)學(xué)教育改革的重要意義,探索開(kāi)展融入式教學(xué)及創(chuàng)新數(shù)學(xué)課程教學(xué)模式的有效途徑。
    2.2探索融入式教學(xué)模式提升數(shù)學(xué)主干課程應(yīng)用功能的方式。融入式教學(xué)主要有輕度融入、中度融入和完全融入三種方式。根據(jù)主干課程的基本特點(diǎn),對(duì)課程體系進(jìn)行調(diào)整,在問(wèn)題解決過(guò)程中安排需要融入的知識(shí)體系,按照三種方式融入數(shù)學(xué)建模的思想與方法。以學(xué)生能力訓(xùn)練為主導(dǎo),在培養(yǎng)深厚的數(shù)學(xué)基礎(chǔ)和嚴(yán)格的邏輯思維能力的基礎(chǔ)上,充分發(fā)揮數(shù)學(xué)建模思想方法對(duì)學(xué)生思維方式的培養(yǎng)功能和引導(dǎo)作用,培養(yǎng)學(xué)生敏銳的分析能力、深刻的'歸納演繹能力以及將數(shù)學(xué)知識(shí)應(yīng)用于工程問(wèn)題的創(chuàng)新能力。
    2.3建立數(shù)學(xué)建模思想方法融入數(shù)學(xué)主干課程的評(píng)價(jià)方式。融入式教學(xué)是處于探索中的教學(xué)模式,教學(xué)成效有待于實(shí)踐檢驗(yàn)。選取開(kāi)展融入式教學(xué)的實(shí)驗(yàn)班級(jí),對(duì)數(shù)學(xué)建模思想方法融入主干課程進(jìn)行教學(xué)效果實(shí)踐驗(yàn)證。設(shè)計(jì)相應(yīng)的考察量表,從運(yùn)用直覺(jué)思維深入理解背景知識(shí)、符號(hào)翻譯開(kāi)展邏輯思維、依托圖表理順數(shù)量關(guān)系、大膽嘗試進(jìn)行建模求解等多方面對(duì)實(shí)驗(yàn)課程的教學(xué)效果進(jìn)行檢驗(yàn),深入分析融入式教學(xué)模式的成效與不足,為探索有效的教學(xué)模式提出改進(jìn)的對(duì)策。
    3.1改革課程教學(xué)內(nèi)容,滲透數(shù)學(xué)建模的思想方法。傳統(tǒng)的數(shù)學(xué)主干課程教學(xué)內(nèi)容,將數(shù)學(xué)看作嚴(yán)謹(jǐn)?shù)难堇[體系,教學(xué)過(guò)程中著力于對(duì)學(xué)生傳授大學(xué)數(shù)學(xué)的基礎(chǔ)知識(shí),而對(duì)應(yīng)用能力的培養(yǎng)卻重視不夠。使得本應(yīng)能夠發(fā)揮應(yīng)用功能的數(shù)學(xué)知識(shí)則淪為僵死的教條性數(shù)學(xué)原理,這失去了教學(xué)的活力。學(xué)生即使掌握了再高深的數(shù)學(xué)知識(shí),仍難以學(xué)會(huì)用數(shù)學(xué)的基本方法解決現(xiàn)實(shí)問(wèn)題?,F(xiàn)行的大學(xué)數(shù)學(xué)課程教學(xué)內(nèi)容中,適當(dāng)?shù)貪B透一些應(yīng)用性比較廣泛的數(shù)學(xué)方法,如微元法、迭代法及最佳逼近等方法,有利于促進(jìn)學(xué)生對(duì)數(shù)學(xué)基礎(chǔ)知識(shí)的掌握,同時(shí)理解數(shù)學(xué)原理所蘊(yùn)涵的思想與方法。
    這樣,在解決實(shí)際問(wèn)題的時(shí)候,學(xué)生就會(huì)有意識(shí)地從數(shù)學(xué)的角度進(jìn)行思考,嘗試建立相應(yīng)的數(shù)學(xué)模型并進(jìn)行求解,拓展了數(shù)學(xué)知識(shí)的深度與廣度,提升了學(xué)生的數(shù)學(xué)應(yīng)用能力四、結(jié)語(yǔ)數(shù)學(xué)建模是數(shù)學(xué)科學(xué)在科技、經(jīng)濟(jì)、軍事等領(lǐng)域廣泛應(yīng)用的接口,是數(shù)學(xué)科學(xué)轉(zhuǎn)化成科學(xué)技術(shù)的重要途徑。在數(shù)學(xué)主干課程中融入數(shù)學(xué)建模的思想與方法,可以推動(dòng)大學(xué)數(shù)學(xué)教育改革的深入發(fā)展,加深學(xué)生對(duì)相關(guān)知識(shí)的理解和掌握,有助于從思維方式上培養(yǎng)學(xué)生的創(chuàng)新意識(shí)與創(chuàng)新能力。
    此外,數(shù)學(xué)建模思想方法融入教學(xué)主干課程還涉及到許多問(wèn)題,比如數(shù)學(xué)建模與計(jì)算技術(shù)如何有效結(jié)合以進(jìn)行模擬仿真、融入式教學(xué)模式的基本理論、構(gòu)建新的課程體系等問(wèn)題,仍將有待于更深入的研究。
    數(shù)學(xué)建模心得體會(huì)論文篇十一
    走美杯”是“走進(jìn)美妙的數(shù)學(xué)花園”的簡(jiǎn)稱。
    “走進(jìn)美妙的數(shù)學(xué)花園”中國(guó)青少年數(shù)學(xué)論壇是中國(guó)少年科學(xué)院創(chuàng)新素質(zhì)教育的品牌活動(dòng)。20xx年,由國(guó)際數(shù)學(xué)家大會(huì)組委會(huì)、中國(guó)數(shù)學(xué)會(huì)、中國(guó)教育學(xué)會(huì)、中國(guó)少年科學(xué)院成功舉辦了首屆“走進(jìn)美妙的數(shù)學(xué)花園”中國(guó)少年數(shù)學(xué)論壇,至今已連續(xù)舉辦七屆,全國(guó)三十多個(gè)城市近三十萬(wàn)人參與了此項(xiàng)活動(dòng),在全國(guó)青少年中產(chǎn)生了巨大的影響?!白哌M(jìn)美妙的數(shù)學(xué)花園”中國(guó)青少年數(shù)學(xué)論壇活動(dòng)是一項(xiàng)面對(duì)小學(xué)三年級(jí)至初中二年級(jí)學(xué)生的綜合性數(shù)學(xué)活動(dòng)。通過(guò)“趣味數(shù)學(xué)解題技能展示”、“數(shù)學(xué)建模小論文答辯”、“數(shù)學(xué)益智游戲”、“團(tuán)體對(duì)抗賽”等一系列內(nèi)容豐富的活動(dòng)提高廣大中小學(xué)生的數(shù)學(xué)建模意識(shí)和數(shù)學(xué)應(yīng)用能力,培養(yǎng)他們一種正確的思想方法。著名數(shù)學(xué)家陳省身先生兩次為同學(xué)們親筆題詞“數(shù)學(xué)好玩”和“走進(jìn)美妙的數(shù)學(xué)花園”,大大鼓舞了廣大青少年攀登數(shù)學(xué)高峰的熱情和信心,使同學(xué)們自覺(jué)地成為學(xué)習(xí)的主人,實(shí)現(xiàn)從“學(xué)數(shù)學(xué)”到“用數(shù)學(xué)”過(guò)程的轉(zhuǎn)變,從而進(jìn)一步推動(dòng)我國(guó)數(shù)學(xué)文化的傳播與普及。
    “走美”活動(dòng)已連續(xù)舉辦七屆,近30萬(wàn)青少年踴躍參與,已取得良好社會(huì)效果,并被寫(xiě)入全國(guó)少工委《少先隊(duì)輔導(dǎo)員工作綱要(試行)》,向全國(guó)少年兒童推廣。
    “走美”作為數(shù)學(xué)競(jìng)賽中的后起之秀,憑借其新穎的考試形式以及較高的競(jìng)賽難度取得了非常迅速的發(fā)展,近年來(lái)在重點(diǎn)中學(xué)選拔中引起了廣泛的關(guān)注??陀^地說(shuō)“走美”一、二等獎(jiǎng)對(duì)小升初作用非常大,三等獎(jiǎng)作用不大。
    1、活動(dòng)對(duì)象。
    全國(guó)各地小學(xué)三年級(jí)至初中二年級(jí)學(xué)生。
    2、總成績(jī)計(jì)算。
    筆試獲獎(jiǎng)率:
    一等獎(jiǎng)5%,二等獎(jiǎng)10%,三等獎(jiǎng)15%。
    3、筆試時(shí)間。
    每年3月上、中旬。
    報(bào)名截止時(shí)間:每年12月底。
    走美杯比賽流程。
    1、全國(guó)組委會(huì)下發(fā)通知,各地組委會(huì)開(kāi)始組織工作。
    2、學(xué)生到當(dāng)?shù)亟M委會(huì)報(bào)名,填寫(xiě)《報(bào)名表》。
    3、各地組委會(huì)將報(bào)名學(xué)生名單全部匯總至全國(guó)組委會(huì)。
    4、全國(guó)“走進(jìn)美妙的數(shù)學(xué)花園”趣味數(shù)學(xué)解題技能展示初賽(全國(guó)統(tǒng)一筆試)。
    6、全國(guó)組委會(huì)公布初賽獲獎(jiǎng)名單并頒發(fā)獲獎(jiǎng)證書(shū)。
    7、獲得初賽一、二、三等獎(jiǎng)選手有資格報(bào)名參加暑期赴英國(guó)劍橋大學(xué)數(shù)學(xué)交流活動(dòng)。
    8、各地按照組委會(huì)要求提交數(shù)學(xué)建模小論文。
    9、前各地組委會(huì)上報(bào)參加全國(guó)總論壇學(xué)生名單。
    10、全國(guó)總論壇和表彰活動(dòng)。
    數(shù)學(xué)建模心得體會(huì)論文篇十二
    在高等教育事業(yè)改革不斷深化的背景下,為了提升教育教學(xué)質(zhì)量,新時(shí)期對(duì)大學(xué)數(shù)學(xué)教學(xué)提出了更高的要求。大學(xué)數(shù)學(xué)作為課堂教學(xué)的主體,教師在傳授知識(shí)的同時(shí),要注重學(xué)生學(xué)習(xí)能力和解決問(wèn)題能力的培養(yǎng)。
    數(shù)學(xué)知識(shí)來(lái)源于生活,應(yīng)用于生活,如微積分作為高等數(shù)學(xué)知識(shí)中的典型代表,在各個(gè)行業(yè)中具有不可或缺的作用。為此,任課教師在大學(xué)數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題、分析問(wèn)題和解決問(wèn)題的能力十分重要,在傳授知識(shí)的過(guò)程中幫助學(xué)生利用所學(xué)知識(shí)來(lái)解決實(shí)際問(wèn)題。一般情況下,教師著重介紹相關(guān)數(shù)學(xué)概念和原理,推導(dǎo)常用公式,促使學(xué)生能夠記住公式,學(xué)會(huì)公式的應(yīng)用過(guò)程,逐漸掌握解題技巧。
    因此,如何能夠在傳授知識(shí)的同時(shí),促使學(xué)生掌握數(shù)學(xué)學(xué)習(xí)方法,將所學(xué)知識(shí)應(yīng)用到實(shí)踐中來(lái)解決數(shù)學(xué)問(wèn)題是一個(gè)首要問(wèn)題。從大量教學(xué)實(shí)踐中可以了解到,在大學(xué)數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模思想十分重要,有助于激發(fā)學(xué)生的學(xué)習(xí)興趣,促使學(xué)生積極投入其中,切實(shí)提升學(xué)生的數(shù)學(xué)專業(yè)水平。
    在大學(xué)數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模思想,應(yīng)該結(jié)合實(shí)際情況,深入挖掘數(shù)學(xué)知識(shí)。在教學(xué)中,教師應(yīng)該充分發(fā)揮自身引導(dǎo)作用,聯(lián)系學(xué)生數(shù)學(xué)知識(shí)實(shí)際學(xué)習(xí)情況,有針對(duì)性地整合數(shù)學(xué)知識(shí),了解相關(guān)數(shù)學(xué)內(nèi)容,這樣不僅可以豐富教學(xué)內(nèi)容,還可以為課堂教學(xué)注入新的活力,有效激發(fā)學(xué)生的學(xué)習(xí)興趣,提升學(xué)習(xí)成效。具體表現(xiàn)在以下方面:
    (一)閉區(qū)間連續(xù)函數(shù)的性質(zhì)。
    閉區(qū)間連續(xù)函數(shù)的性質(zhì)內(nèi)容是大學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,由于知識(shí)理論性較強(qiáng),知識(shí)較為抽象,學(xué)習(xí)難度較大,在講解完相關(guān)理論知識(shí)后,可以引入椅子的穩(wěn)定問(wèn)題,創(chuàng)建數(shù)學(xué)模型,提問(wèn)學(xué)生如何在不平穩(wěn)的地面上平穩(wěn)地放置椅子。學(xué)生可以了解到這一問(wèn)題同所學(xué)知識(shí)相關(guān)聯(lián),閉區(qū)間連續(xù)函數(shù)的性質(zhì)可以解決這一問(wèn)題。學(xué)生整合所學(xué)知識(shí),通過(guò)對(duì)問(wèn)題的分析,可以了解到利用介值定理來(lái)解決問(wèn)題。通過(guò)建立數(shù)學(xué)模型,學(xué)生更加充分地掌握了閉區(qū)間連續(xù)函數(shù)的`性質(zhì),提升了學(xué)習(xí)成效,為后續(xù)知識(shí)學(xué)習(xí)打下了堅(jiān)實(shí)的基礎(chǔ)。
    (二)定積分。
    定積分是高等數(shù)學(xué)教學(xué)中的重要組成部分,在解決幾何問(wèn)題時(shí)均有所應(yīng)用,并且被廣泛應(yīng)用在實(shí)際生活中。如,在一道全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽題目中,計(jì)算煤矸石的堆積,煤礦采煤時(shí)所產(chǎn)生的煤矸石,為了處理煤矸石就需要征用土地來(lái)堆放煤矸石,根據(jù)上級(jí)主管部門的年產(chǎn)量計(jì)劃和經(jīng)費(fèi)如何堆放煤矸石?題目中的關(guān)鍵點(diǎn)在于堆放煤矸石的征地費(fèi)用和電費(fèi)的計(jì)算。征地費(fèi)計(jì)算難度較小,但是煤矸石堆積的電費(fèi)計(jì)算難度較高,但此項(xiàng)內(nèi)容涉及定積分中的變力做功知識(shí)點(diǎn)。學(xué)生掌握這些內(nèi)容后就可以建立數(shù)學(xué)模型,更加高效地了解如何根據(jù)預(yù)期開(kāi)采量來(lái)堆放煤矸石。通過(guò)數(shù)學(xué)模型,學(xué)生也可以了解到定積分內(nèi)容同實(shí)際生活之間的聯(lián)系,學(xué)習(xí)積極性就會(huì)大大提升。
    (三)最值問(wèn)題。
    在高等數(shù)學(xué)中,最值問(wèn)題占比比較大,同時(shí)在實(shí)際生活中應(yīng)用較為普遍,導(dǎo)數(shù)知識(shí)可以解決實(shí)際生活中的最值問(wèn)題,這就需要提高對(duì)導(dǎo)數(shù)知識(shí)實(shí)際應(yīng)用的重視程度。教師在為學(xué)生講解完導(dǎo)數(shù)的相關(guān)概念知識(shí)后,通過(guò)建立關(guān)于天空的采空模型,提問(wèn)學(xué)生為什么雨后太陽(yáng)出來(lái)了,雨滴還在空中,那么將為人們呈現(xiàn)出什么樣的景色?學(xué)生回答彩虹。繼續(xù)提問(wèn)彩虹為什么有顏色,是什么決定了天空中彩虹的高度?對(duì)此,學(xué)生的興趣較為濃厚,可以分為若干個(gè)小組進(jìn)行討論。通過(guò)分析可以得出,雨滴可以反射太陽(yáng)光,形成彩虹。結(jié)合光線的反射和折射定律,借助所學(xué)的導(dǎo)數(shù)知識(shí)來(lái)計(jì)算得出太陽(yáng)光偏轉(zhuǎn)角度的最值,有效解決實(shí)際學(xué)習(xí)的問(wèn)題,加深對(duì)知識(shí)的理解和記憶,提升數(shù)學(xué)知識(shí)學(xué)習(xí)成效。
    (四)微分方程。
    微分方程知識(shí)同實(shí)際生活之間息息相關(guān),建立微分方程可以有效解決實(shí)際生活中的問(wèn)題。這就需要學(xué)生在了解微分方程知識(shí)的基礎(chǔ)上,進(jìn)一步建立數(shù)學(xué)模型來(lái)解決問(wèn)題。如,在當(dāng)前社會(huì)進(jìn)步和發(fā)展下,人均物質(zhì)生活水平顯著提升,肥胖成為危害人們身體健康的主要問(wèn)題之一,受到社會(huì)各界廣泛的關(guān)注和重視。通過(guò)問(wèn)題精簡(jiǎn)化和假設(shè),可以得到微分方程模型,在分析方程中飲食控制和運(yùn)動(dòng)鍛煉兩個(gè)關(guān)鍵要素后,有助于避免人們走入減肥誤區(qū),幫助他們樹(shù)立正確的減肥理念。
    (五)矩陣。
    在高等數(shù)學(xué)教學(xué)中,矩陣的概念較為抽象和復(fù)雜,在講解問(wèn)題之前,應(yīng)該根據(jù)知識(shí)點(diǎn)來(lái)創(chuàng)設(shè)教學(xué)情境,輔助教學(xué)活動(dòng)。通過(guò)引入企業(yè)工廠生產(chǎn)總成本模型,充分描述工廠生產(chǎn)中需要的原材料和勞動(dòng)力,并且詳細(xì)記錄管理費(fèi)用。這有助于加深人們對(duì)矩陣概念的認(rèn)知和理解,提升學(xué)習(xí)成效,同時(shí)幫助學(xué)生深入理解和記憶,鍛煉學(xué)生的數(shù)學(xué)解題思維,加深概念理解和記憶,掌握解題技巧和方法,從而提升學(xué)生的數(shù)學(xué)建模意識(shí)。
    綜上所述,在大學(xué)數(shù)學(xué)教學(xué)中,可以通過(guò)數(shù)學(xué)建模思想來(lái)引導(dǎo)學(xué)生養(yǎng)成良好的自主學(xué)習(xí)能力,發(fā)揮自身的主體能動(dòng)性和創(chuàng)新能力,提升學(xué)生解決問(wèn)題的能力,將所學(xué)知識(shí)靈活運(yùn)用到實(shí)際生活中,養(yǎng)成良好的數(shù)學(xué)素養(yǎng)。
    數(shù)學(xué)建模心得體會(huì)論文篇十三
    摘要:在新課改以后,要求教師要在教學(xué)中重視學(xué)生的主體地位,提升學(xué)生學(xué)習(xí)興趣,培養(yǎng)他們的自主學(xué)習(xí)能力。本文從小學(xué)數(shù)學(xué)教學(xué)過(guò)程中數(shù)學(xué)建模入手,對(duì)如何將數(shù)學(xué)建模運(yùn)用到學(xué)生解題過(guò)程中進(jìn)行了分析。
    數(shù)學(xué)建模是指利用數(shù)學(xué)模型的形式去解決實(shí)際中遇到的問(wèn)題,換句話說(shuō),就是利用數(shù)學(xué)思維、數(shù)學(xué)方法解決各種數(shù)學(xué)問(wèn)題。數(shù)學(xué)建模是在新課程改革后出現(xiàn)的新概念,經(jīng)過(guò)一段時(shí)間的觀察我們可以發(fā)現(xiàn),數(shù)學(xué)建模的方法能夠有效的提高學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生的數(shù)學(xué)能力。這種方式能夠?qū)?fù)雜的數(shù)學(xué)問(wèn)題利用簡(jiǎn)單的方式找到解決方案,是提高小學(xué)數(shù)學(xué)課堂效率及課堂質(zhì)量的有效手段。小學(xué)數(shù)學(xué)是小學(xué)學(xué)習(xí)中的重要課程之一,也是培養(yǎng)學(xué)生數(shù)學(xué)思維的重要階段??梢哉f(shuō),小學(xué)數(shù)學(xué)的學(xué)習(xí)是學(xué)生學(xué)習(xí)數(shù)學(xué)的關(guān)鍵,對(duì)今后的學(xué)習(xí)起到極大的影響。因此,對(duì)于小學(xué)數(shù)學(xué)教師來(lái)說(shuō),不斷的完善教學(xué)手段,提高數(shù)學(xué)課堂質(zhì)量是教學(xué)工作中的重中之重。而數(shù)學(xué)建模就是為了解決數(shù)學(xué)在生活中的實(shí)際問(wèn)題,能夠讓學(xué)生感受到數(shù)學(xué)本身的魅力,培養(yǎng)他們的數(shù)學(xué)思維,提高數(shù)學(xué)學(xué)習(xí)能力,從而讓小學(xué)數(shù)學(xué)教學(xué)質(zhì)量也得到大幅度的提升。小學(xué)數(shù)學(xué)與數(shù)學(xué)建模之間有著密不可分的作用,兩者相互聯(lián)系、相互促進(jìn),如何有效的將數(shù)學(xué)建模運(yùn)用在小學(xué)數(shù)學(xué)教學(xué)過(guò)程中,是每個(gè)小學(xué)數(shù)學(xué)教師都值得思考的問(wèn)題。
    數(shù)學(xué)建模是為了解決數(shù)學(xué)中遇到的問(wèn)題,數(shù)學(xué)本身特別是小學(xué)數(shù)學(xué)也是一門較貼近學(xué)生生活的學(xué)科。因此在數(shù)學(xué)學(xué)習(xí)中,教師要首先培養(yǎng)學(xué)生的數(shù)學(xué)學(xué)習(xí)意識(shí),讓他們感受到數(shù)學(xué)與生活的緊密聯(lián)系,然后再引導(dǎo)學(xué)生用數(shù)學(xué)建模去解決遇到的問(wèn)題。在這一過(guò)程中,數(shù)學(xué)教師要注意以下兩個(gè)問(wèn)題:(一)在教學(xué)中一定要貼近學(xué)生的生活,課堂中所提出的問(wèn)題也必須要符合生活實(shí)際,讓學(xué)生對(duì)所學(xué)內(nèi)容感到親切。積極引導(dǎo)學(xué)生利用多種方式解決同一問(wèn)題,尤其是利用數(shù)學(xué)建模的方式,以達(dá)到培養(yǎng)他們的數(shù)學(xué)思維以及想象能力的目的。(二)在學(xué)生進(jìn)行數(shù)學(xué)建模的過(guò)程中要利用多鼓勵(lì)的方式調(diào)動(dòng)他們對(duì)數(shù)學(xué)學(xué)習(xí)的積極性,讓他們?cè)跀?shù)學(xué)建模中獲得成就感,增加自信心,以此來(lái)提高學(xué)生在今后學(xué)習(xí)中使用數(shù)學(xué)建模方法的熱情。
    二、提高學(xué)生想象力,用數(shù)學(xué)建模簡(jiǎn)化問(wèn)題。
    對(duì)于小學(xué)生來(lái)說(shuō),他們的思維與其他年齡段相比極其活躍,擁有了豐富的想象力。在數(shù)學(xué)學(xué)習(xí)中,如果能將想象力與數(shù)學(xué)學(xué)習(xí)結(jié)合在一起,一定會(huì)得到意想不到的效果。教師可以根據(jù)小學(xué)生這一特點(diǎn),提高他們的想象力,然后再引導(dǎo)他們利用數(shù)學(xué)建模解決問(wèn)題,讓題目簡(jiǎn)單化。具體來(lái)說(shuō),就是在面對(duì)復(fù)雜的'數(shù)學(xué)問(wèn)題時(shí),教師可以先為學(xué)生創(chuàng)建教學(xué)情境,以這樣的方式提高學(xué)生的學(xué)習(xí)興趣,讓他們?cè)敢庵鲃?dòng)去深入的研究遇到的題目。之后教師再去對(duì)他們進(jìn)行引導(dǎo),讓他們能夠理解題目中所提問(wèn)題的含義,并能夠運(yùn)用他們的想象能力思考解決問(wèn)題的方式。最后再引導(dǎo)他們進(jìn)行數(shù)學(xué)建模,解決問(wèn)題。這樣的方式充分的利用了學(xué)生的想象能力,將所需解決的問(wèn)題簡(jiǎn)單化。
    三、選擇合適的題目作為建模案例。
    在數(shù)學(xué)建模過(guò)程中,教師也要時(shí)刻牢記題目應(yīng)該貼近學(xué)生的生活,符合實(shí)際,并且具有一定的趣味性,讓他們有興趣投入到數(shù)學(xué)建模的過(guò)程中去,然后再反復(fù)練習(xí)之后達(dá)到提高他們建模能力的目的。在選擇數(shù)學(xué)建模案例時(shí)教師主要應(yīng)該注意以下兩點(diǎn):首先,教師在選擇建模案例時(shí)要盡量選擇比較典型的問(wèn)題,能夠讓學(xué)生在學(xué)習(xí)了該題目以后掌握這一類的解題方法,達(dá)到小學(xué)數(shù)學(xué)教學(xué)的目的。所以,這就需要教師對(duì)題目進(jìn)行深入的分析,看是否在擁有趣味性、真實(shí)性的同時(shí)符合教學(xué)要求。其次,題目最好能夠擁有可變性,教師能夠通過(guò)對(duì)題目中已知條件的改變讓學(xué)生進(jìn)行不同方面的建模練習(xí),以此提高他們數(shù)學(xué)建模的能力。
    四、引導(dǎo)學(xué)生主動(dòng)進(jìn)行數(shù)學(xué)建模。
    在教師經(jīng)過(guò)反復(fù)的教學(xué)后,學(xué)生都已經(jīng)擁有了基本的數(shù)學(xué)建模知識(shí),了解了數(shù)學(xué)建模過(guò)程,并且能夠在解題過(guò)程中簡(jiǎn)單的使用數(shù)學(xué)建模。此時(shí),教師在教學(xué)中就可以引導(dǎo)學(xué)生利用數(shù)學(xué)建模解決數(shù)學(xué)題目了。引導(dǎo)學(xué)生用數(shù)學(xué)建模方法解決數(shù)學(xué)問(wèn)題,就要在解題過(guò)程中多對(duì)學(xué)生進(jìn)行這一方面的鼓勵(lì),讓他們提高建模信心。在這一過(guò)程中,教師還可以嘗試讓學(xué)生之間利用合作的方式讓他們進(jìn)行數(shù)學(xué)建模方法的探討,并在探討的過(guò)程中吸取他人的經(jīng)驗(yàn),提高自己數(shù)學(xué)建模水平,同時(shí)這樣的方式能夠讓數(shù)學(xué)建模深入到每一個(gè)學(xué)生的心中,逐漸影響每一個(gè)學(xué)生的解題思路,讓他們能夠在解題過(guò)程中熟練運(yùn)用建模的方式,提高解題能力。數(shù)學(xué)建模的方法能夠有效的改變過(guò)去的傳統(tǒng)教學(xué)思路,增加學(xué)生對(duì)數(shù)學(xué)的學(xué)習(xí)興趣,提高數(shù)學(xué)解題能力。這種教學(xué)方法對(duì)于小學(xué)數(shù)學(xué)教師來(lái)說(shuō),值得不斷的探討研究,并應(yīng)用在教學(xué)中,以此提高數(shù)學(xué)課堂的教學(xué)效率和教學(xué)質(zhì)量。