教案還應注重評價的設計,通過評價可以及時了解學生的學習情況,進一步調整教學策略。教案的編寫需要考慮到學生的實際水平和知識背景,確保教學的適度難度。教案是教學活動中用于指導教師進行教學的文字材料,它可以系統(tǒng)地規(guī)劃課堂教學內容和步驟。一個好的教案可以提高教學效果,使學生更好地掌握知識。編寫教案要明確教學目標,確保教學的針對性和有效性。教案的結構應該清晰合理,包括導入、呈現(xiàn)、練習、鞏固和評價等環(huán)節(jié)。教案要與學校的教學大綱和教材要求相一致,符合教學政策和要求。以下是小編為大家收集的教案范文,僅供參考,大家一起來看看吧。
倒數(shù)的認識課教案設計篇一
1、引導學生通過觀察、研究、類推等數(shù)學活動,理解倒數(shù)的意義,總結出求倒數(shù)的方法;
2、通過互助活動,培養(yǎng)學生與人合作、與人交流的習慣;
3、通過自行設計方案,培養(yǎng)學生自主探索和創(chuàng)新的意識。
理解倒數(shù)的.含義,掌握求倒數(shù)的方法。
教學工具
課件
一、導入新課
談話導入課題。
二、教學實施
關于倒數(shù)同學們想知道些什么呢?學習倒數(shù)的含義
1、觀察教材24頁的例1,歸納,總結倒數(shù)的含義。
3.特殊數(shù):0和1 (引導學生辯論0有沒有倒數(shù),1有沒有倒數(shù),是多少?)
教師歸納板書:0沒有倒數(shù),1的倒數(shù)就是它本身。
4.學習例2--求倒數(shù)的方法
5.反饋練習
(1)完成教材24頁的“做一做”,
(2)完成練習六的第2、3題
三、課堂練習
找一找下列數(shù)中哪兩個數(shù)互為倒數(shù)
四、課堂小結
學完本節(jié)課,我們知道了乘積是1的來年各個數(shù)互為倒數(shù)。1的倒數(shù)是它本身,0沒有倒數(shù)。
五、作業(yè)
完成練習六的第1、4題
課后習題
完成練習六的第1、4題。
倒數(shù)的認識課教案設計篇二
教學重點。
理解掌握圓柱的特征.。
教學難點。
1.建立空間觀念.。
2.弄清圓柱側面是一個長方形(正方形),長方形的長和寬與圓柱底面周長和高的關系.。
教學過程。
一、復習準備。
1.投影出示長方體、正方體.。
使學生明確:長方體、正方體.。
2.投影出示圓柱.。
使學生明確:圓柱.。
3.導入、揭示課題.。
板書:圓柱的認識。
二、新授教學。
(一)圓柱的認識。
1.教師提問:在日常生活中,你見過哪些物體是圓柱體?
2.教師出示實物.。
3.出示投影,展示實物圖.。
4.揭示實物圖,出現(xiàn)圓柱幾何圖形.。
教師說明:我們所學的圓柱都是直直的,上下粗細相同的直圓柱,我們叫它圓柱.。
(二)圓柱的面.。
1.分組活動,每人拿一個圓柱,摸一摸它的面.。
2.互相交流,什么感覺.啟發(fā)學生動手實驗:
(1)用手平摸上下底,有什么特點.。
(2)用筆畫一畫,上下底面積有什么特點.。
(3)用雙手摸側面.。
3.教師明確:
圓柱的上、下兩個面叫做底面.它們是兩個完全相同的兩個圓.。
圓柱的側面,是一個曲面.。
(三)圓柱的高.。
出示高、低不同的兩個圓柱.。
1.用直尺和三角板演示圓柱的高.。
使學生明確:圓柱兩個底面之間的距離叫做高.。
(四)操作實驗。
使學生明確:長方形的長等于圓柱底面的周長,寬等于圓柱的高.。
三、課堂小結。
今天這節(jié)課你學到了哪些知識?圓柱體有哪些特征?
四、鞏固練習。
1.指出下面圓柱的底面、側面和高.。
2.指出下面圖形中哪些是圓柱.。
五、實踐作業(yè)。
用硬紙做一個圓柱,再量出它的底面直徑和高各是多少厘米?
六、板書設計。
倒數(shù)的認識課教案設計篇三
教學內容:
數(shù)學第十一冊19頁----倒數(shù)的認識。
教學目標:
(1)知識目標:理解倒數(shù)的意義,掌握求倒數(shù)的方法。
(2)能力目標:會求倒數(shù),提高學生觀察、比較、抽象、概括以及合作學習、口頭表達的能力。
(3)情感目標:提高學生學習數(shù)學的興趣,發(fā)展學生質疑的習慣和合作的意識。
教學重點:
理解倒數(shù)的意義和怎樣求一個數(shù)的倒數(shù)。
教學難點:
正確理解倒數(shù)的意義及0為何沒有倒數(shù)。
一、游戲導入。
教師:我知道同學們特別喜歡做游戲。今天我們一起做個游戲。這個游戲是這樣的。如果我說1、2,大家就說2、1。那我說1、2、3,大家該怎么說?好!游戲正式開始。喜歡!我教育你!我吃西瓜!我打籃球!誰能說一說這個游戲的規(guī)則是什么?在數(shù)學當中,我們還可以怎樣玩這個游戲?繼續(xù)玩,我說分數(shù),大家倒過來說。3/8、15/7、1/80、3(板書)。
二、探究意義。
1.找特點。
師:請同學們觀察黑板上四組數(shù)都有什么特點。
(生:分子、分母互相顛倒)。
師:請同學們把每一組中的兩個數(shù)相乘,看乘積是多少?
(生:每一組中的兩個數(shù)乘積都是1)師及時板書。
師:誰還能很快說出乘積是1的兩個數(shù)嗎?
(生回答)。
師:同學們說得這么快一定找到了竅門,把你找到的竅門跟同學門說說好嗎?
(生:兩個數(shù)分子分母顛倒位置乘積是1)。
師:那么乘積是1的兩個數(shù)數(shù)學給它起個什么名呢?
(生回答,師板書:乘積是1的兩個數(shù)叫互為倒數(shù))。
師:在這個概念中你認為哪個詞比較重要?讓學生自由說出自己的想法。
重點講解“互為”的意思,就是互相是的意思。例如:
3/8×8/3=1我們就說3/8是8/3的倒數(shù),或者說3/8的倒數(shù)是3/8,也可以說8/3和3/8互為倒數(shù)。而不能說8/3的倒數(shù),或3/8是倒數(shù)。
師:誰來把黑板上的后三組數(shù)仿照老師剛才敘述的來說一遍,用上“因為”“所以”一詞。
(指名敘述)。
師:根據(jù)同學們的敘述,我們可以看出倒數(shù)不是指某一個數(shù),而是指兩個數(shù)相互依存的關系,是相對兩個數(shù)而言,不能孤立的說某一個數(shù)是倒數(shù)。
三、探究求倒數(shù)的方法。
師:現(xiàn)在我們已經(jīng)理解了倒數(shù)的意義,那么怎樣求一個數(shù)的倒數(shù)呢?繼續(xù)觀察黑板上的四組數(shù),看互為倒數(shù)的兩個數(shù)有什么特點,(分子,分母調換了位置)根據(jù)這個規(guī)律我們試著求下面幾個數(shù)的倒數(shù)。
出示:3/57/28/65/1210/4。
(指名回答師板書)。
師:你們是怎么找出每個數(shù)的倒數(shù)的?
(說自己的方法)。
師:除了這些分數(shù)外我們還學過哪些數(shù)?(整數(shù)、小數(shù)、帶分數(shù))怎樣求它們的倒數(shù)呢?求同學們試著求下面書的倒數(shù)。
出示:60.527/81。
(生回答,師板書)并說說你是怎樣求的?
師:是不是所有的數(shù)都有倒數(shù)呢?同桌討論。
0為什么沒有倒數(shù)?(0和任何數(shù)相乘都不得1)。
師:通過同學們的練習,誰來總結求一個數(shù)的倒數(shù)的方法?
(生總結,師板書)。
四、小結并揭示課題。
同學們我們今天重點認識了什么?(板書課題:倒數(shù)的認識)你們在這節(jié)課都學會了什么?下面老師想知道你們是否真正的掌握了沒有,所以老師要考考你們,。
五、鞏固練習。
1、填空。
1、乘積是()的兩個數(shù)叫()倒數(shù)。
2、因為7/15x15/7=1所以7/15和15/7()。
3、5的倒數(shù)是()。0.2的倒數(shù)是()。
4、()的倒數(shù)是它本身。()沒有倒數(shù)。
5、8×()=10.25×()=1。
()×2/3=17/2×()=()×8=()×0.15=1。
2、當把小醫(yī)生。
1、得數(shù)是1的兩個數(shù)叫互為倒數(shù)。()。
2a是一個整數(shù),它的倒數(shù)一定是1/a。()。
3、因為2/3×3/2=1,所以2/3是倒數(shù)。()。
4、1的倒數(shù)是1,所以0的倒數(shù)是0。()。
5、真分數(shù)的倒數(shù)都大于1。()。
6、2.5和0.4互為倒數(shù)。()。
7、任何真分數(shù)的倒數(shù)都是假分數(shù)。()。
8、任何假分數(shù)的倒數(shù)都是真分數(shù)。()。
3、面各數(shù)的倒數(shù)。
2.541/826/70.12。
4、列式計算。
1、7/6加上它的倒數(shù)的和乘2/3,積是多少?
2、1減去它的倒數(shù)后除以0.12,商是多少?
3、已知a×3/2=b×3/5,(a、b都是不為0的數(shù))。
求a、b的大小。
六、教學反思:
倒數(shù)的認識”是在學生掌握了整數(shù)乘法、分數(shù)加法和減法計算、分數(shù)乘法的意義和計算法則、分數(shù)乘法應用題等知識的基礎上進行教學的。理解倒數(shù)的意義和會求一個數(shù)的倒數(shù)是學生學習分數(shù)除法的前提。學生必須學好這部分知識,才能更好地掌握后面的分數(shù)除法的計算和應用題。
倒數(shù)的認識課教案設計篇四
教學目標:
1、通過觀察、比較、概括、抽象,從本質上理解倒數(shù)的意義,并能正確地求一個數(shù)的倒數(shù)。
2、培養(yǎng)學生的數(shù)學思維。
教學重點:理解倒數(shù)的意義,求一個數(shù)的倒數(shù)。
教學難點:從本質上理解倒數(shù)的意義。
教學過程:
一、呈現(xiàn)數(shù)據(jù),先計算,再觀察發(fā)現(xiàn)。
1、出示:3/8×8/37/15×15/75×1/50。25×42、
計算后,這些數(shù)據(jù)你發(fā)現(xiàn)有什么規(guī)律?(學生先獨立思考,然后組內交流)。
二、交流思辨,抽象概念。
1、匯報。乘積都是1。
2、你能根據(jù)上面的觀察寫出乘積是1的另一個數(shù)嗎?
3/4×()=1()×9/7=1。
說說你是怎樣寫得,有什么竅門?
如0。5、1。73、抽象概念,乘積是1的兩個數(shù),互為倒數(shù)??梢哉f誰和誰是互為倒數(shù),也可以說誰是誰的'倒數(shù)。
4、讓學生說說上面的數(shù)(用兩種說法)。
5、是互為倒數(shù)的它們的積是1,這兩個數(shù)有特點嗎?仔細觀察這些數(shù)。
學生討論:分數(shù)的分子分母調了一下位置;
師:那么5×1/50。2×5乘積也是1喲!怎么?把整數(shù)和小數(shù)也化成分數(shù)。
6、溝通:分子分母倒一下跟乘積是1有聯(lián)系嗎?
7、現(xiàn)在你對倒數(shù)有了怎樣的認識?
三、求一個數(shù)的倒數(shù)。
1、找一個數(shù)的倒數(shù)。
5/11的倒數(shù)是(),()的倒數(shù)是4/7,()和15是互為倒數(shù)。
你是怎樣找一個數(shù)的倒數(shù)的?說說你的方法。(從倒數(shù)的意義和現(xiàn)象)。
2、會找了嗎?你能找到下列數(shù)的倒數(shù)嗎?
3/54/967/211.251。20。
學生獨立完成,然后交流。
倒數(shù)的認識課教案設計篇五
一、教學內容:
九年義務教育六年制第九冊第二單元《倒數(shù)的認識》。
二、教材分析:
“倒數(shù)的認識”是在學生掌握了整數(shù)乘法、分數(shù)加法和減法計算、分數(shù)乘法的意義和計算法則、分數(shù)乘法應用題等知識的基礎上進行教學的,數(shù)學教案-倒數(shù)的認識。“倒數(shù)的認識”是分數(shù)的基本知識,學好倒數(shù)不僅可以解決有關實際問題,而且還是后面學習分數(shù)除法、分數(shù)四則混合運算和應用題的重要基礎。
三、教學目標:
1.理解倒數(shù)的意義,掌握求倒數(shù)的方法。
2.能熟練地寫出一個數(shù)的倒數(shù)。
3.結合教學實際培養(yǎng)學生的抽象概括能力。
四、教學重點:
理解倒數(shù)的意義,掌握求倒數(shù)的方法。
五、教學難點:
熟練寫出一個數(shù)的倒數(shù)。
六、教學過程:
(一)、談話。
1.交流。
師:我們的黑板是什么顏色?
生:黑色。
師:教室的墻面又是什么顏色?
生:黑色。
師:黑與白在語文上是什么關系?
生:黑是白的反義詞。
生:白是黑的反義詞。
師:能說黑是反義詞或白是反義詞嗎?
生:不能,因為黑與白是相互依存的關系。必須說清楚誰是誰的反義詞。
師:那么,數(shù)學上有沒有相互依存關系的現(xiàn)象呢?
生:約數(shù)和倍數(shù)。
師:你能舉例說明約數(shù)和倍數(shù)的相互依存關系嗎?
生:例如8是4的倍數(shù),4是8的約數(shù)。不能說成8是倍數(shù)或4是約數(shù)。因為8和4是相互依存的。
2.導入今天,我們繼續(xù)來研究數(shù)學中具有相互依存關系的現(xiàn)象的有關知識。
(二)、學習新知。
對數(shù)游戲。
1.學習倒數(shù)的意義。
師:4是3的4/3,
生:3是4的3/4。
師:7是15的7/15;生:15是7的15/7。
提問;看我們做游戲的結果,你們有沒有發(fā)現(xiàn)什么?
生1:第一個分數(shù)的分子就是第二個分數(shù)的分母,第一個分數(shù)的分母就是第二個分數(shù)的分子。
生2:兩個分數(shù)的分子、分母相互調換了位置。
生2:兩個分數(shù)的乘積是1。
提問:那么怎樣的兩個數(shù)才是互為倒數(shù)呢?指導看書。
思考:
(1)什么是倒數(shù)?滿足什么條件的兩個數(shù)互為倒數(shù)?
(2)你能找出互為倒數(shù)的兩個數(shù)嗎。請舉例。
評析:回答問題。
理解“互為”的意義。怎樣的兩個數(shù)互為倒數(shù)。
找朋友游戲(課前每位同學發(fā)一張數(shù)字卡片)。
練習。
(1)出示卡片(六位同學舉著卡片依次站在黑板前)。
7/911/41/5086/599。
(2)規(guī)則:如果下面的同學拿到的數(shù)是以上這些數(shù)字的倒數(shù)就到相應的同學前面排隊。
提問:下面的同學你們找到自己的朋友了嗎?那么你們能找到自己的朋友嗎?
3教學求一個數(shù)倒數(shù)的方法。
出示例題:找出下列各數(shù)的倒數(shù)。
2/37/41/591/7/80.4。
小組討論指名板演。
提問:1.你是怎么找出2/3的倒數(shù)的?
生1:因為2/3與3/2乘積是1,所以2/3的倒數(shù)是2/3。
生2:因為互為倒數(shù)的兩個數(shù)的分子與分母正好調換位置,小學數(shù)學教案《數(shù)學教案-倒數(shù)的認識》。2/3的分子與分母調換位置后是3/2,所以2/3的倒數(shù)是3/2。
2.你是怎么找出7/4的倒數(shù)的?
提問:我們怎樣才能很快地找到一個數(shù)的倒數(shù)?為什么?
4.練習請剩下的沒有找到朋友的同學繼續(xù)找倒數(shù)。
5.討論:1的倒數(shù)是誰?0的倒數(shù)呢?
生:1的倒數(shù)是1。
師:能說明一下理由嗎?
生1:因為1與1的乘積還是1。
生2:因為1可以化成1/1,1/2的分子與分母調換位置后還是1/1,即1,所以1的'倒數(shù)是1。
師:0的倒數(shù)呢?
生1:0的倒數(shù)是0。因為1的倒數(shù)是1,所以0的倒數(shù)是0。
生2:因為0與任何數(shù)相乘都得0,所以0的倒數(shù)是任何數(shù)。
生3:0的倒數(shù)是沒有的。因為乘積是1的兩個數(shù)才互為倒數(shù),而0乘任何數(shù)都得0,說明0乘任何數(shù)都不得1,所以0沒有倒數(shù)。
生4:0可以寫成0/1,0/1的倒數(shù)是1/0。
生5:不對,1/0分母是0,沒有意義,所以0是沒有倒數(shù)的。
6.完善求一個數(shù)的倒數(shù)的方法。
三、鞏固練習。
(一)填空。
1.因為5/3*3/5=1,所以和()互為();
2.因為15*1/15=1,所以()和()互為();
3.4/7與()互為倒數(shù);
4.()的倒數(shù)是6/11。
5.()的倒數(shù)是2。
6.1/8的倒數(shù)是()。
7.1/2/7的倒數(shù)是()。
8.0.3的倒數(shù)是()。
(二)判斷。
1.得數(shù)是1的兩個數(shù)互為倒數(shù)。()。
2.互為倒數(shù)的兩個數(shù)乘積一定是1。()。
3.1的倒數(shù)是1,所以0的倒數(shù)是0。()。
4.分數(shù)的倒數(shù)都大于1。()。
(四)思考。
4/5*()=()*8。
四、總結:
今天我們學習了什么知識?你有什么收獲?還有什么問題嗎?
五、布置作業(yè)。
簡評:
一、自主學習中讓學生勇于創(chuàng)新。
新課程標準指出:“學生是學習的主人?!薄坝行У臄?shù)學學習活動不能單純地依賴模仿與記憶。動手實踐,自主探索,合作交流是學生學習數(shù)學的重要方式。”因此,教師在課堂上應相信學生、大膽放手,引導學生主動地進行自學、思考、討論、合作交流等活動,發(fā)現(xiàn)規(guī)律,掌握知識,提高能力。讓學生在討論交流中力圖創(chuàng)新,學習創(chuàng)新。本案里例中“你有沒有發(fā)現(xiàn)什么?”“怎樣求一個數(shù)的倒數(shù)”“1的倒數(shù)是幾,0的倒數(shù)呢?”等處的交流促進了學生對知識的感悟與理解。特別是對“0的倒數(shù)呢?”一問的回答,學生各抒幾見,有的用推理的方法解釋0的倒數(shù)是誰;有的用舊知識來解決新問題;也有的用反證法來闡述理由。雖然有對也有錯,但用不同的方式或不同的角度來思考問題,無疑體現(xiàn)了學生學習方法上的創(chuàng)新,進而實現(xiàn)知識上的統(tǒng)一。
二、在游戲活動中實現(xiàn)新知的推進。
游戲是小學生喜聞樂見的活動方式。游戲可以使學生的注意力更持久,積極性更高??梢宰寣W生在輕松愉快的氣氛中學到知識。這節(jié)課設計的兩個游戲貫穿了新授內容的始終。第一個對數(shù)游戲讓學生通過聽一聽,想一想,說一說來感受倒數(shù)的特征,即互為倒數(shù)的兩個數(shù)分子與分母調換了位置。為后面學習“求一個數(shù)的倒數(shù)的方法“打下基礎。第二個找朋友游戲,首先,讓學生通過找朋友鞏固了怎樣的兩個數(shù)互為倒數(shù)這一知識點;其次,在剩下的數(shù)中選取典型讓學生通過討論想辦法找到朋友。并概括出求一個數(shù)的倒數(shù)的一般方法。這樣使學生在不知不覺中接受新知;再次,在剩下的數(shù)中繼續(xù)找朋友,起到了“做一做”的效果;最后,想辦法找1和0的朋友,完善找一個數(shù)的倒數(shù)的方法。本節(jié)課上設計的游戲不僅在教學上實現(xiàn)了合理、自然的過度,而且讓學生學到了知識,還使學生品嘗到游戲帶來的快樂。
倒數(shù)的認識課教案設計篇六
教學目標:
1、知道倒數(shù)的意義,會求一個數(shù)的倒數(shù)。
2、經(jīng)歷倒數(shù)的意義這一概念的形式過程。
3、利用教師的情感特征,激發(fā)學生的學習興趣,讓學生體會成功的快樂。
教學重點:掌握倒數(shù)的意義,會求一個數(shù)的倒數(shù)。
教學難點:0為什么沒有倒數(shù)。
教學過程:
一、口算引入,揭示課題。
師:出示口算題。
(評析:上課伊始,讓學生進行簡單的口算并進行分類,揭示課題,直奔重點,有利于讓學生在一節(jié)課的最佳時域知曉今天研究的是乘積是1的兩個數(shù)的關系特點。教師只有確立了以學生為本的概念,充分了解學生的學習起點和學習疑難癥結,把握學生跳動的脈博,才能有針對性地下功夫。)。
二、自學課本,初步理解倒數(shù)的意義。
(評析:教師恰到好處地設置疑問,有利于學生層層深入地思考,同時,老師有時假裝糊涂,把聰明留給學生,老師忘了,誰來幫忙,短短的話語滿足了學生求知探新的成功欲,這時促進學生有效學習的基本策略。)。
三、舉例驗證,深入探究倒數(shù)的意義。
(評析:對于概念的教學,我們老師大多比較輕視,認為讓學生讀一、二遍記住就達到目的了。其實,這是表面現(xiàn)象,根本不能促使學生數(shù)學思維品質的提高。所以,讓學生關注基礎知識的本身,這是我們數(shù)學教師不能丟的根本,也是實現(xiàn)新課程提出的三維目標的關鍵,重要的是讓學生在掌握概念的過程中,學會數(shù)學思考,體會解決問題所帶來的成功體驗。
四、仔細觀察,探究求倒數(shù)的方法。
五、綜合練習:
(總評:數(shù)學的本質是一種溝通與合作,教師創(chuàng)設了與學生圍繞倒數(shù)。
這個知識目標進行民主、平等、和諧、生動的對話交流,在交流中,包含了知識信息和情感態(tài)度,行為規(guī)范等多方面的有機組合,促進了學生多方面素養(yǎng)的提高。本課教學活動讓學生經(jīng)歷了學習數(shù)學知識的全過程,著力培養(yǎng)了學生的數(shù)學思維。)。
倒數(shù)的認識課教案設計篇七
1。通過一些實例的探究,讓學生理解和掌握倒數(shù)的意義。在合作探究中掌握求倒數(shù)的方法,會求一個數(shù)的倒數(shù)。
2。使學生經(jīng)歷倒數(shù)意義的概括過程,提高觀察、比較、概括和歸納的能力以及靈活運用知識解決問題的能力。
3。通過學生親身參與探究活動,體驗數(shù)學學習的樂趣,激發(fā)他們積極的學習情感,養(yǎng)成合作探究問題的習慣。
理解倒數(shù)的意義,學會求倒數(shù)的方法。
發(fā)現(xiàn)倒數(shù)的一些特征。
課件。
通過觀察,使學生發(fā)現(xiàn)一個分數(shù)的倒數(shù)就是把它的分子與分母的位置顛倒,進而使學生體會到“倒數(shù)”這一概念中“倒”的含義,很自然的得出求一個分數(shù)的倒數(shù)的方法。
一、猜字游戲引入新課。
找找下面文字的構成規(guī)律。
呆———杏土———干吞———吳。
按照上面的規(guī)律填數(shù)。
——()——()——()。
能根據(jù)分之和分母的位置關系,給這三組數(shù)取個名嗎?揭示課題:倒數(shù)。
二、新知探究。
(一)探究討論,理解倒數(shù)的意義。
1.課件出示算式。
開展小組活動:算一算,找一找,這組算式有什么特點?
小組匯報交流。
我發(fā)現(xiàn)了每組算式兩個分數(shù)的分子與分母正好顛倒了位置,所以我們把這樣的兩個分數(shù)叫做“倒數(shù)”。
2.出示倒數(shù)的意義:乘積是1的兩個數(shù)互為倒數(shù)。
3.你是怎樣理解互為倒數(shù)的呢?能舉例嗎?
(二)深化理解。
1.乘積是1的兩個數(shù)存在著怎樣的倒數(shù)關系呢?
2.互為倒數(shù)的兩個數(shù)有什么特點?
3.想一想:1的.倒數(shù)是多少?0有倒數(shù)嗎?為什么?怎么理解?
因為1×1=1,根據(jù)“乘積是1的兩個數(shù)互為倒數(shù)”,所以1的倒數(shù)是1。
又因為0與任何數(shù)相乘都不等于1,所以0沒有倒數(shù)。)。
(三)運用概念。
1.討論求一個數(shù)的倒數(shù)的方法。
出示例2:寫出其中3/5、7/2兩個分數(shù)的倒數(shù)。
學生試做討論后,教師講過程。
小結:求一個數(shù)(0除外)的倒數(shù),只要把這個數(shù)的分子、分母調換位置。)。
2。怎樣求整數(shù)(除外)的倒數(shù)?請求示6的倒數(shù)是幾?(出示課件)。
三、鞏固練習。
(一)完成教材第28頁的“做一做”
(二)完成教材第29頁練習六的第1—5題。
四、課堂小結。
今天我們學習了有關倒數(shù)的哪些新知識?
將本文的word文檔下載到電腦,方便收藏和打印。
倒數(shù)的認識課教案設計篇八
(1)知識目標:理解倒數(shù)的意義,掌握求倒數(shù)的方法。
(2)能力目標:會求倒數(shù),提高學生觀察、比較、抽象、概括以及合作學習、口頭表達的能力。
(3)情感目標:提高學生學習數(shù)學的興趣,發(fā)展學生質疑的習慣和合作的意識。
教學重點:理解倒數(shù)的意義和怎樣求一個數(shù)的倒數(shù)。
教學難點:正確理解倒數(shù)的意義及0為何沒有倒數(shù)。
教師:我知道同學們特別喜歡做游戲。今天我們一起做個游戲。這個游戲是這樣的。如果我說1、2,大家就說2、1。那我說1、2、3,大家該怎么說?好!游戲正式開始。喜歡!我教育你!我吃西瓜!我打籃球!誰能說一說這個游戲的規(guī)則是什么?在數(shù)學當中,我們還可以怎樣玩這個游戲?繼續(xù)玩,我說分數(shù),大家倒過來說。3/8、15/7、1/80、3(板書)。
1、找特點。
師:請同學們觀察黑板上四組數(shù)都有什么特點。
(生:分子、分母互相顛倒)。
師:請同學們把每一組中的兩個數(shù)相乘,看乘積是多少?
(生:每一組中的兩個數(shù)乘積都是1)師及時板書。
師:誰還能很快說出乘積是1的兩個數(shù)嗎?
(生回答)。
師:同學們說得這么快一定找到了竅門,把你找到的竅門跟同學門說說好嗎?
(生:兩個數(shù)分子分母顛倒位置乘積是1)。
師:那么乘積是1的兩個數(shù)數(shù)學給它起個什么名呢?
(生回答,師板書:乘積是1的兩個數(shù)叫互為倒數(shù))。
師:在這個概念中你認為哪個詞比較重要?讓學生自由說出自己的想法。
重點講解“互為”的意思,就是互相是的意思。例如:
3/8×8/3=1我們就說3/8是8/3的倒數(shù),或者說3/8的倒數(shù)是3/8,也可以說8/3和3/8互為倒數(shù)。而不能說8/3的倒數(shù),或3/8是倒數(shù)。
師:誰來把黑板上的.后三組數(shù)仿照老師剛才敘述的來說一遍,用上“因為”“所以”一詞。
(指名敘述)。
師:根據(jù)同學們的敘述,我們可以看出倒數(shù)不是指某一個數(shù),而是指兩個數(shù)相互依存的關系,是相對兩個數(shù)而言,不能孤立的說某一個數(shù)是倒數(shù)。
師:現(xiàn)在我們已經(jīng)理解了倒數(shù)的意義,那么怎樣求一個數(shù)的倒數(shù)呢?繼續(xù)觀察黑板上的四組數(shù),看互為倒數(shù)的兩個數(shù)有什么特點,(分子,分母調換了位置)根據(jù)這個規(guī)律我們試著求下面幾個數(shù)的倒數(shù)。
出示:3/57/28/65/1210/4。
(指名回答師板書)。
師:你們是怎么找出每個數(shù)的倒數(shù)的?
(說自己的方法)。
師:除了這些分數(shù)外我們還學過哪些數(shù)?(整數(shù)、小數(shù)、帶分數(shù))怎樣求它們的倒數(shù)呢?求同學們試著求下面書的倒數(shù)。
出示:60、527/81。
(生回答,師板書)并說說你是怎樣求的?
師:是不是所有的數(shù)都有倒數(shù)呢?同桌討論。
0為什么沒有倒數(shù)?(0和任何數(shù)相乘都不得1)。
師:通過同學們的練習,誰來總結求一個數(shù)的倒數(shù)的方法?
(生總結,師板書)。
同學們我們今天重點認識了什么?(板書課題:倒數(shù)的認識)你們在這節(jié)課都學會了什么?下面老師想知道你們是否真正的掌握了沒有,所以老師要考考你們,。
1、填空。
1、乘積是()的兩個數(shù)叫()倒數(shù)。
2、因為7/15x15/7=1所以7/15和15/7()。
3、5的倒數(shù)是()。0、2的倒數(shù)是()。
4、()的倒數(shù)是它本身。()沒有倒數(shù)。
5、8×()=10、25×()=1。
()×2/3=17/2×()=()×8=()×0、15=1。
2、當把小醫(yī)生。
1、得數(shù)是1的兩個數(shù)叫互為倒數(shù)。()。
2a是一個整數(shù),它的倒數(shù)一定是1/a。()。
3、因為2/3×3/2=1,所以2/3是倒數(shù)。()。
4、1的倒數(shù)是1,所以0的倒數(shù)是0。()。
5、真分數(shù)的倒數(shù)都大于1。()。
6、2、5和0、4互為倒數(shù)。()。
7、任何真分數(shù)的倒數(shù)都是假分數(shù)。()。
8、任何假分數(shù)的倒數(shù)都是真分數(shù)。()。
3、面各數(shù)的倒數(shù)。
2、541/826/70、12。
4、列式計算。
1、7/6加上它的倒數(shù)的和乘2/3,積是多少?
2、1減去它的倒數(shù)后除以0、12,商是多少?
3、已知a×3/2=b×3/5,(a、b都是不為0的數(shù))。
求a、b的大小。
倒數(shù)的認識”是在學生掌握了整數(shù)乘法、分數(shù)加法和減法計算、分數(shù)乘法的意義和計算法則、分數(shù)乘法應用題等知識的基礎上進行教學的。理解倒數(shù)的意義和會求一個數(shù)的倒數(shù)是學生學習分數(shù)除法的前提。學生必須學好這部分知識,才能更好地掌握后面的分數(shù)除法的計算和應用題。
“倒數(shù)的認識”這一課的核心內容是“倒數(shù)的意義和求法”?!暗箶?shù)的意義”屬于概念的教學,我認為,只有讓學生關注基礎知識本身,讓學生在深入剖析“倒數(shù)的意義”的過程中,學會數(shù)學思考,體會解決問題所帶來的成功體驗,才能使學習真正成為學生的需要?!暗箶?shù)的求法”中求一個小數(shù)或帶分數(shù)的倒數(shù)學生可能有些困難。
今天教學倒數(shù)的認識后,我的感觸很多。以往教學這部分內容,我是直接讓學生寫出結果是1的算式,再從學生說的算式中把乘積是1的算式板演在黑板上,再讓學生觀察算式的特點,然后再讓學生理解互為的意思,最后總結出倒數(shù)的意義?,F(xiàn)在想起來有一種牽著學生鼻子走的感覺。通過新課標理論的學習,我重新設計了教案。我覺得這樣設計才是讓學生自己通過觀察、比較、歸納總結出倒數(shù)的意義,是學生自己通過參與整個學習過程后有了真正的收獲。特別是通過游戲的形式激發(fā)學生的學習興趣,學生發(fā)現(xiàn)了算式的'特點,并讓學生舉例后發(fā)現(xiàn),有這樣特點的算式是寫不完的。然后讓學生仿照老師的樣子,通過例子說倒數(shù)的意義,并強調說倒數(shù)的關鍵字詞。這對學生掌握概念是非常必要的。當學生很高興的自認為是掌握了求一個數(shù)的倒數(shù)的方法時,我又給學生設計了障礙:怎樣求帶分數(shù)、小數(shù)和整數(shù)的倒數(shù)。雖然教材新授內容沒有這些知識,但在以后的練習中出現(xiàn)了。我把它提到前面來,大家一起研究。我覺得很有必要。這樣,使學生避免把帶分數(shù)的倒數(shù)也用把分子分母顛倒位置的方法來求。這樣就不會給學生的認知造成誤導。學生在知道了分數(shù)、帶分數(shù)、整數(shù)、小數(shù)的求倒數(shù)的方法以后,我又提出是不是所有的數(shù)都有倒數(shù)么?使學生想到0的倒數(shù)問題。以前我是直接問學生“0“有倒數(shù)嗎?好像暗示學生”0“沒有倒數(shù)。改換成今天這樣問,學生通過自己思考,得出兩種答案,”0“有倒數(shù),另一種是”0“沒有倒數(shù)。有了分歧意見,又一次把學生帶入了問題王國。學生分別發(fā)表自己的見解。最后,大家一致認為”0“沒有倒數(shù)。因為“0”和任何數(shù)相乘都不等于1,也就是0不能作分母。我覺得這節(jié)課的教學比以往教學有了本質的轉變,就是發(fā)揮了學生的主體作用。
倒數(shù)的認識課教案設計篇九
教學內容:
新人教版六年級數(shù)學上冊第28頁的例1。
教學目標:
1、通過學習,使學生知道什么叫做倒數(shù),倒數(shù)表示的是兩個數(shù)之間的關系,它是不能孤立存在的;掌握求倒數(shù)的方法;通過學習,使學生知道“0”沒有倒數(shù),“1”的倒數(shù)還是“1”。
2、學生根據(jù)自己的理解,發(fā)現(xiàn)求倒數(shù)的方法,知道不僅可以用乘法求一個數(shù)的倒數(shù),還可以用調換分子和分母位置的方法求一個數(shù)的倒數(shù)。
3、在知識獲取過程中,培養(yǎng)學生觀察、歸納、推理和概括的能力。提高學生學好數(shù)學的信心。
教學重點:
理解倒數(shù)的意義,學會求倒數(shù)的方法。
教學難點:
熟練正確的求小數(shù)、帶分數(shù)的倒數(shù),發(fā)現(xiàn)倒數(shù)的一些特征。
教學準備:
多媒體課件。
教學過程:
一、猜字游戲導入,揭示課題。
上課之前,老師來考考同學們的語文學得如何?!巴獭边@個字讀什么,如果把上下部分顛倒后是什么字?(“吞”——吳),“士”這個字讀什么,如果把上下部分顛倒后是什么字?(“士”——干)。中國漢字有不少字有這樣的關系,在數(shù)學中也存在這種關系。
如:(板書:3/8)如果把這個分數(shù)的分子和分母的位置調換,是哪個分數(shù)?(8/3)。
師:誰還能說出這樣的數(shù)?(課件出示)。
象這樣把分數(shù)的分子和分母上下顛倒之后就成另一個數(shù),你能給這種特性給這些上下顛倒的數(shù)起個名字嗎?(倒數(shù))今天我們就一起來研究倒數(shù)(板書:倒數(shù)的認識,并讓學生讀一讀。)。
二、出示學習目標:
1、理解倒數(shù)的意義。
2、掌握求一個數(shù)的倒數(shù)的方法,能熟練準確地寫出一個數(shù)的倒數(shù)。
三、自主探究新知。
(一)探究討論,理解倒數(shù)的意義。
1、(課件出示教材第24頁例1的四個算式。)。
開展小組活動:算一算,找一找,這組算式有什么特點?
小組匯報交流。(通過計算,發(fā)現(xiàn)每組算式的乘積都是1。通過觀察發(fā)現(xiàn)相乘的兩個分數(shù)的分子和分母位置是顛倒的。)。
生:我發(fā)現(xiàn)了每組算式兩個分數(shù)的分子與分母正好顛倒了位置,所以我們把這樣的兩個分數(shù)叫做“倒數(shù)”。
2、出示倒數(shù)的意義:乘積是1的兩個數(shù)互為倒數(shù)。(學生齊讀三次)。
(二)深化理解。
1、乘積是1的兩個數(shù)存在著怎樣的倒數(shù)關系呢?
舉例:3/8×8/3=1,那么我們就說8/3是3/8的倒數(shù),反過來(引導學生說)3/8是8/3的倒數(shù),也就是說3/8和8/3互為倒數(shù)。(誰還想舉例說說。)。
2、互為倒數(shù)的兩個數(shù)有什么特點?(兩個數(shù)的分子、分母正好顛倒了位置)。
例如:(2/5的倒數(shù)是5/2,5/2的倒數(shù)是2/5,……不能說5/2是倒數(shù),要說它是誰的倒數(shù)。)。
3、想一想:1的倒數(shù)是多少?0有倒數(shù)嗎?為什么?怎么理解?因為1×1=1,根據(jù)“乘積是1的兩個數(shù)互為倒數(shù)”,所以1的倒數(shù)是1。
又因為0與任何數(shù)相乘都不等于1,所以0沒有倒數(shù)。)。
(三)運用概念。
1、討論求一個數(shù)的倒數(shù)的方法。
所以3/5的倒數(shù)是5/3,7/2的倒數(shù)是2/7。(能不能寫成3/5=5/3,為什么?)。
小結:求一個數(shù)(0除外)的倒數(shù),只要把這個數(shù)的分子、分母調換位置。)。
2、怎樣求小數(shù)和帶分數(shù)的倒數(shù)呢?(課件演示,學生觀察。)。
師強調:帶分數(shù)先化成假分再把分子和分母調換位置;小數(shù)要先把它化成分數(shù)再把分子和分母調換位置。
3、怎樣求整數(shù)(除外)的倒數(shù)?請求示6的倒數(shù)是幾?(出示課件)。
四、堂堂清作業(yè)。
(一)填一填。(出示課件)。
1、乘積是()的()個數(shù)()倒數(shù)。
2、a和b互為倒數(shù),那a的倒數(shù)是(),b的倒數(shù)是()。
3、只有當假分數(shù)為()時,它與它的倒數(shù)相等;而()是沒有倒數(shù)。
4、一個真分數(shù)的倒數(shù)一定是()。
(二)判斷題。(演示課件)。
1、5/3是倒數(shù)。()。
2、因為3/4×4/3=,所以4/3是倒數(shù)。()。
3、真分數(shù)的倒數(shù)大于1,假分數(shù)的倒數(shù)小于1。()。
4、因為1/4+3/4=1,所以1/4和/4互為倒數(shù)。()。
(三)說一說。(課本第29頁的第3題)。
五、課堂小結:
今天我們學習了有關倒數(shù)的哪些新知識?什么叫倒數(shù)?怎樣求一個數(shù)的倒數(shù)?還有什么的問題嗎?板書設計:
乘積是1的兩個數(shù)互為倒數(shù)。0沒有倒數(shù),1的倒數(shù)是它本身。例2:寫出其中2/5、7/2兩個分數(shù)的倒數(shù)。
2/5的分子分母調換位置---5/27/2的分子分母調換位置---2/76的倒數(shù)是1/6求帶分數(shù)的倒數(shù)先把帶分數(shù)化成與假分數(shù),再把分子和分母調換位置。
求小數(shù)的倒數(shù)的先把小數(shù)化成分數(shù),再把分子和分母調換位置。
倒數(shù)的認識課教案設計篇十
1.知道倒數(shù)的意義。
2.經(jīng)歷倒數(shù)的意義這一概念的形成過程。
3.會求一個數(shù)的倒數(shù)。
4.培養(yǎng)學生合作學習,激發(fā)學習興趣,讓學生體驗學習數(shù)學的快樂。
知道倒數(shù)的意義,會求一個數(shù)的倒數(shù)。
:掌握倒數(shù)的意義。
師:同學們,聽說我們文城中心小學要舉行計算比賽,你們想?yún)⒓訂幔?BR> 生:想。
生:分數(shù)乘法。
師:我們來算一算怎么樣?(出示口算卡算一算。)。
生:好。
師:你們的口算不錯,今天要研究的這幾道題肯定難不倒你們,但要想發(fā)現(xiàn)它們的秘密,必須得有一雙火眼金睛才行哦!
1、出示例1:先計算,再觀察,看看有什么規(guī)律。
3/8×8/37/15×15/75×1/51/12×12。
師:上面這幾道算式你能很快地算出結果嗎?
生:能。(指名上去寫結果)。
師:你們算得真快!認真觀察一下算式,有什么發(fā)現(xiàn)嗎?先把你的發(fā)現(xiàn)與同桌交流一下。
(交流完后請個別學生說一說)。
生:乘積都是1。(師板書:乘積是1)。
師:還有別的發(fā)現(xiàn)嗎?(相乘的兩個數(shù)有什么特征?)。
生:相乘的兩個數(shù)的分子、分母正好顛倒了位置。
師:你們能寫出這樣的兩個數(shù)嗎?
生:(齊)能。
2、讓學生自由寫后再歸納倒數(shù)的意義。
師:你們寫的算式乘積都是多少?
生:乘積都是1。
師:像這樣乘積是1的兩個數(shù),我們把它們叫做互為倒數(shù)。(師又接著板書:的兩個數(shù)叫做互為倒數(shù)。)這也就是這節(jié)課我們要學習的內容。(板題:倒數(shù)的認識)。
(讓生齊讀課題和倒數(shù)的意義)。
3、理解“互為倒數(shù)”的含義。
師:“乘積是1的兩個數(shù)互為倒數(shù).”你有不理解的地方嗎?
生生交流后歸納:因為倒數(shù)是表示兩個數(shù)之間的關系,這兩個數(shù)是相互依存的,不能單獨存在。(舉例說明:如3/8和8/3,可以說3/8和8/3互為倒數(shù),也可以說3/8是8/3的倒數(shù),但不能說3/8是倒數(shù))。
師:好像以前也學過有這樣關系的兩個數(shù),還記得嗎?
生:記得,是因數(shù)和倍數(shù)。
1、出示例2:下面哪兩個數(shù)互為倒數(shù)?
3/567/25/31/612/70。
讓學生說,師板書:3/5——————————→5/3。
6———————————→1/6。
師:你是怎樣找一個數(shù)的倒數(shù)的?
生:把分子、分母交換位置。(師板書在箭頭上面)。
師:那6的倒數(shù)怎么找?
生:把6看作6/1,然后再交換分子、分母的位置。
2、師再次引導學生觀察以上的數(shù),哪兩個數(shù)互為倒數(shù)?哪些數(shù)沒有找到倒數(shù)?引發(fā)學生質疑。
生:1和0有倒數(shù)嗎?那它們的倒數(shù)是什么呢?為什么?
同桌之間再次交流得出:1的倒數(shù)是1,0沒有倒數(shù)。(師相機板書)。
3、總結求一個數(shù)的倒數(shù)的方法:求真分數(shù)和假分數(shù)的倒數(shù)只要交換分數(shù)的分子、分母的位置,而求整數(shù)的倒數(shù)要把整數(shù)看作分母是1的分數(shù),再交換分子、分母的位置。
4、引導學生打開課本學習。
四、鞏固練習。
1、課本24頁做一做。
2、互說倒數(shù)。(25頁練習六第2題,同桌合作,師生合作)。
3、25頁第3題:下面的說法對不對?為什么?
(1)7/12與12/7的乘積為1。所以7/12和12/7互為倒數(shù)。()。
(2)1/2×4/3×3/2=1,所以1/2、4/3、3/2互為倒數(shù)。()。
(3)0的倒數(shù)還是0。()。
(4)一個數(shù)的倒數(shù)一定比這個數(shù)小。()。
4、第4題。
這節(jié)課我們學習了什么?你學到了什么知識?能說一說嗎?
板書設計:
(1)3/8×8/3=17/15×15/7=15×1/5=11/12×12=1。
乘積是1的兩個數(shù)互為倒數(shù)。
(2)3/567/25/31/612/70。
分子、分母交換位置。
3/5————————————→5/33/5的倒數(shù)是5/3。
分子、分母交換位置。
6=6/1———————————→1/66的倒數(shù)是1/6。
1的倒數(shù)是1,0沒有倒數(shù)。
倒數(shù)的認識這部分內容是在學習分數(shù)乘法的基礎上進行教學的。學好倒數(shù)的認識這部分內容能夠為后面學習分數(shù)除法打好基礎。所以學好這部分內容對之后學習分數(shù)除法是至關重要的。我主要結合教材編排的特點、本班學生的認知規(guī)律及教學的重、難點對教學流程進行預設,收到了較好的效果。
一、談話導入激發(fā)求知欲望,深入研究發(fā)現(xiàn)其中奧秘。
在導入這個環(huán)節(jié),我主要結合本學期要舉行的計算比賽,通過談話激發(fā)學生學習的熱情及求知欲望,讓學生對學習充滿信心,并引發(fā)期待學好新知識的決心。從學生的表現(xiàn)來看,很多地方都讓我意想不到,如交流1和0的倒數(shù)時,很多學生都能根據(jù)倒數(shù)的意義推理出1的倒數(shù)是1,0沒有倒數(shù),并且說得有憑有據(jù)的,這是其一。還有在互說倒數(shù)這個環(huán)節(jié),我出示了一些真分數(shù)、假分數(shù)和整數(shù),學生都能正確地說出它們的倒數(shù),這純屬正常發(fā)揮,不算什么,但在最后我分別出示了一個帶分數(shù)和一個小數(shù),讓學生說出它們的倒數(shù),拓展了我所提供給學生的知識內容,我以為會把他們難住了,沒想到一位同學毫不猶豫地說出了它的倒數(shù),在我的追問下,竟然還能把找這個數(shù)的倒數(shù)的過程說得滴水不漏,這不能不讓我為之豎起大拇指。
二、精心預設洞悉其中規(guī)律,引發(fā)質疑解開心中疑團。
著名教育家蘇霍姆林斯基說過:“在人的內心深處,都有一種根深蒂固的需要,那就是希望自己是一個發(fā)現(xiàn)者和探索者?!睂τ谖覀兊膶W生來說,這種需求特別強烈。在這部分的教學中,掌握倒數(shù)的意義是學好這部分內容的關鍵。因此在教學倒數(shù)的意義時,我主要是讓學生通過算一算,看一看,寫一寫,說一說的形式,還有合作學習的方式獲得“什么樣的兩個數(shù)是互為倒數(shù)”這個概念,為了更好地理解“互為倒數(shù)”,我讓學生自己質疑,然后再給他們設計一個交流的平臺,讓他們自己解開心中的疑慮,使學生在深入思考中得出結論,這就是學生學習的成果。我覺得,這樣做不僅活躍了課堂氣氛,而且還讓學生經(jīng)歷了探索的過程,解決了心中的困惑,更主要的是讓學生體會到了成功的喜悅。
經(jīng)過這節(jié)課,我最大的收獲是看到學生的成長及迸發(fā)出的那股探索知識的勁頭,無一不讓我為之高興。但在高興之余,我也看到了課堂中的不足之處,有相當一部分學生不善于表現(xiàn)自己,思維火花受到限制,導致回答問題的人氣不足,這將是我在今后教學中所面臨的一大挑戰(zhàn)。
倒數(shù)的認識課教案設計篇十一
1.學生通過觀察算式的特點,引出倒數(shù)的意義,并能夠真正的理解和掌握。
2.學習求一個數(shù)的倒數(shù)的方法,使學生能夠正確地求出一個數(shù)的倒數(shù)。
3.培養(yǎng)學生的觀察能力和概括能力。
1.正確理解倒數(shù)的意義及互為的含義。
2.正確地求出一個數(shù)的倒數(shù)。
(一)激發(fā)興趣,引出概念
1.投影。哪個同學和老師比賽?誰說得快?
師:你們想知道老師為什么說得這么快嗎?這兩個因數(shù)之間有什么聯(lián)系嗎?這節(jié)課老師就要把這中間的奧秘告訴你們,相信你們得知后比老師說得還快。這節(jié)課我們一起學習倒數(shù)的認識。(板書課題)
2.同學認真觀察每個算式,你發(fā)現(xiàn)了什么?同桌互相說一說。指名說。
板書:乘積是1 兩個數(shù)
3.你還能很快說出乘積是1的兩個數(shù)嗎?你為什么說得這么快,有什么竅門嗎?
生:兩個數(shù)分子、分母顛倒位置就可以了。
師:說得好,因此我們把乘積是1的兩個數(shù)叫做互為倒數(shù)。(把板書補充完整)
4.舉例說明,什么叫互為倒數(shù)?
師:3是倒數(shù)這句話對嗎?為什么?
你們說得對,誰能說出幾組倒數(shù)?
同桌互相說,每人說兩組。(指名說)
問:怎樣判斷他們說得是否正確?
生:看這組數(shù)的乘積是否是1。如果乘積是1,這兩個數(shù)是互為倒數(shù);如果乘積不等于
倒數(shù)的認識課教案設計篇十二
“倒數(shù)的認識”是在學生掌握了整數(shù)乘法、分數(shù)加法和減法計算、分數(shù)乘法的意義和計算法則、分數(shù)乘法應用題等知識的基礎上進行教學的,數(shù)學教案-倒數(shù)的認識?!暗箶?shù)的認識”是分數(shù)的基本知識,學好倒數(shù)不僅可以解決有關實際問題,而且還是后面學習分數(shù)除法、分數(shù)四則混合運算和應用題的重要基礎。
1.理解倒數(shù)的意義,掌握求倒數(shù)的方法。
2.能熟練地寫出一個數(shù)的倒數(shù)。
3.結合教學實際培養(yǎng)學生的抽象概括能力。
理解倒數(shù)的意義,掌握求倒數(shù)的方法。
熟練寫出一個數(shù)的倒數(shù)。
1.交流
師: 我們的黑板是什么顏色?
生:黑色。
師:教室的墻面又是什么顏色?
生:黑色。
師:黑與白在語文上是什么關系?
生:黑是白的反義詞。
生:白是黑的反義詞。
師:能說黑是反義詞或白是反義詞嗎?
生:不能,因為黑與白是相互依存的關系。必須說清楚誰是誰的反義詞。
師:那么,數(shù)學上有沒有相互依存關系的現(xiàn)象呢?
生:約數(shù)和倍數(shù)。
師:你能舉例說明約數(shù)和倍數(shù)的相互依存關系嗎?
生:例如8是4的倍數(shù),4是8的約數(shù)。不能說成8是倍數(shù)或4是約數(shù)。因為8和4是相互依存的。
2.導入 今天,我們繼續(xù)來研究數(shù)學中具有相互依存關系的現(xiàn)象的有關知識。
對數(shù)游戲
1.學習倒數(shù)的意義
師:4是3的4/3,
生:3是4的 3/4
師:7是15的7/15; 生:15是7的15/7。
提問;看我們做游戲的結果,你們有沒有發(fā)現(xiàn)什么?
生1:第一個分數(shù)的分子就是第二個分數(shù)的分母,第一個分數(shù)的分母就是第二個分數(shù)的分子。
生2:兩個分數(shù)的分子、分母相互調換了位置。
生2:兩個分數(shù)的乘積是1。
提問:那么怎樣的兩個數(shù)才是互為倒數(shù)呢?指導看書。
思考:
(1)什么是倒數(shù)?滿足什么條件的兩個數(shù)互為倒數(shù)?
(2)你能找出互為倒數(shù)的兩個數(shù)嗎。請舉例
評析:回答問題
理解“互為”的意義。怎樣的兩個數(shù)互為倒數(shù)。
找朋友游戲(課前每位同學發(fā)一張數(shù)字卡片)
練習
(1)出示卡片 (六位同學舉著卡片依次站在黑板前)
7/9 11/4 1/50 8 6/5 99
(2) 規(guī)則:如果下面的同學拿到的數(shù)是以上這些數(shù)字的倒數(shù)就到相應的同學前面排隊
提問:下面的同學你們找到自己的朋友了嗎?那么你們能找到自己的朋友嗎?
3教學求一個數(shù)倒數(shù)的方法
出示例題:找出下列各數(shù)的倒數(shù)
2/3 7/4 1/5 9 1/7/8 0.4
小組討論 指名板演
提問:1.你是怎么找出2/3的倒數(shù)的?
生1:因為2/3與3/2乘積是1,所以2/3的倒數(shù)是2/3
生2:因為互為倒數(shù)的兩個數(shù)的分子與分母正好調換位置,小學數(shù)學教案《數(shù)學教案-倒數(shù)的認識》。2/3的分子與分母調換位置后是3/2,所以2/3的倒數(shù)是3/2 。
2.你是怎么找出7/4的倒數(shù)的?
提問: 我們怎樣才能很快地找到一個數(shù)的倒數(shù)?為什么?
4.練習 請剩下的沒有找到朋友的同學繼續(xù)找倒數(shù)
5.討論:1的倒數(shù)是誰?0的倒數(shù)呢?
生:1的倒數(shù)是1
師:能說明一下理由嗎?
生1:因為1與1的乘積還是1。
生2:因為1可以化成1/1,1/2的分子與分母調換位置后還是1/1,即1,所以1的倒數(shù)是1。
師:0的倒數(shù)呢?
生1:0的倒數(shù)是0。因為1的倒數(shù)是1,所以0的倒數(shù)是0。
生2:因為0與任何數(shù)相乘都得0,所以0的倒數(shù)是任何數(shù)。
生3:0的倒數(shù)是沒有的。因為乘積是1的兩個數(shù)才互為倒數(shù),而0乘任何數(shù)都得0,說明0乘任何數(shù)都不得1,所以0沒有倒數(shù)。
生4:0可以寫成0/1,0/1的倒數(shù)是1/0。
生5:不對,1/0分母是0,沒有意義,所以0是沒有倒數(shù)的。
6.完善求一個數(shù)的倒數(shù)的方法
(一)填空
1.因為5/3*3/5=1,所以()和()互為();
2.因為15*1/15=1,所以()和()互為 ();
3.4/7與()互為倒數(shù);
4.()的倒數(shù)是6/11
5.()的倒數(shù)是2
6.1/8的倒數(shù)是()
7.1/2/7的倒數(shù)是()
8.0.3的倒數(shù)是()
(二)判斷
1.得數(shù)是1的兩個數(shù)互為 倒數(shù)。()
2.互為倒數(shù)的兩個數(shù)乘積一定是1。()
3. 1的倒數(shù)是1,所以0的倒數(shù)是0 。()
4.分數(shù)的倒數(shù)都大于1。()
(四)思考
4/5*()=()*8
今天我們學習了什么知識?你有什么收獲?還有什么問題嗎?
新課程標準 指出:“學生是學習的主人?!薄坝行У臄?shù)學學習活動不能單純地依賴模仿與記憶。動手實踐,自主探索,合作交流是學生學習數(shù)學的重要方式。”因此,教師在課堂上應相信學生、大膽放手,引導學生主動地進行自學、思考、討論、合作交流等活動,發(fā)現(xiàn)規(guī)律,掌握知識,提高能力。讓學生在討論交流中力圖創(chuàng)新,學習創(chuàng)新。本案里例中“你有沒有發(fā)現(xiàn)什么?”“怎樣求一個數(shù)的倒數(shù)”“1的倒數(shù)是幾,0的倒數(shù)呢?”等處的交流促進了學生對知識的感悟與理解。特別是對“0的倒數(shù)呢?”一問的回答,學生各抒幾見,有的用推理的方法解釋0的倒數(shù)是誰;有的用舊知識來解決新問題;也有的用反證法來闡述理由。雖然有對也有錯,但用不同的方式或不同的角度來思考問題,無疑體現(xiàn)了學生學習方法上的創(chuàng)新,進而實現(xiàn)知識上的統(tǒng)一。
游戲是小學生喜聞樂見的活動方式。游戲可以使學生的注意力更持久,積極性更高。可以讓學生在輕松愉快的氣氛中學到知識。這節(jié)課設計的兩個游戲貫穿了新授內容的始終。第一個對數(shù)游戲讓學生通過聽一聽,想一想,說一說來感受倒數(shù)的特征,即互為倒數(shù)的兩個數(shù)分子與分母調換了位置。為后面學習“求一個數(shù)的倒數(shù)的方法“打下基礎。第二個找朋友游戲,首先,讓學生通過找朋友鞏固了怎樣的兩個數(shù)互為倒數(shù)這一知識點;其次,在剩下的數(shù)中選取典型讓學生通過討論想辦法找到朋友。并概括出求一個數(shù)的倒數(shù)的一般方法。這樣使學生在不知不覺中接受新知;再次,在剩下的數(shù)中繼續(xù)找朋友,起到了“做一做”的效果;最后,想辦法找1和0的朋友,完善找一個數(shù)的倒數(shù)的方法。本節(jié)課上設計的游戲不僅在教學上實現(xiàn)了合理、自然的過度,而且讓學生學到了知識,還使學生品嘗到游戲帶來的快樂。
倒數(shù)的認識課教案設計篇一
1、引導學生通過觀察、研究、類推等數(shù)學活動,理解倒數(shù)的意義,總結出求倒數(shù)的方法;
2、通過互助活動,培養(yǎng)學生與人合作、與人交流的習慣;
3、通過自行設計方案,培養(yǎng)學生自主探索和創(chuàng)新的意識。
理解倒數(shù)的.含義,掌握求倒數(shù)的方法。
教學工具
課件
一、導入新課
談話導入課題。
二、教學實施
關于倒數(shù)同學們想知道些什么呢?學習倒數(shù)的含義
1、觀察教材24頁的例1,歸納,總結倒數(shù)的含義。
3.特殊數(shù):0和1 (引導學生辯論0有沒有倒數(shù),1有沒有倒數(shù),是多少?)
教師歸納板書:0沒有倒數(shù),1的倒數(shù)就是它本身。
4.學習例2--求倒數(shù)的方法
5.反饋練習
(1)完成教材24頁的“做一做”,
(2)完成練習六的第2、3題
三、課堂練習
找一找下列數(shù)中哪兩個數(shù)互為倒數(shù)
四、課堂小結
學完本節(jié)課,我們知道了乘積是1的來年各個數(shù)互為倒數(shù)。1的倒數(shù)是它本身,0沒有倒數(shù)。
五、作業(yè)
完成練習六的第1、4題
課后習題
完成練習六的第1、4題。
倒數(shù)的認識課教案設計篇二
教學重點。
理解掌握圓柱的特征.。
教學難點。
1.建立空間觀念.。
2.弄清圓柱側面是一個長方形(正方形),長方形的長和寬與圓柱底面周長和高的關系.。
教學過程。
一、復習準備。
1.投影出示長方體、正方體.。
使學生明確:長方體、正方體.。
2.投影出示圓柱.。
使學生明確:圓柱.。
3.導入、揭示課題.。
板書:圓柱的認識。
二、新授教學。
(一)圓柱的認識。
1.教師提問:在日常生活中,你見過哪些物體是圓柱體?
2.教師出示實物.。
3.出示投影,展示實物圖.。
4.揭示實物圖,出現(xiàn)圓柱幾何圖形.。
教師說明:我們所學的圓柱都是直直的,上下粗細相同的直圓柱,我們叫它圓柱.。
(二)圓柱的面.。
1.分組活動,每人拿一個圓柱,摸一摸它的面.。
2.互相交流,什么感覺.啟發(fā)學生動手實驗:
(1)用手平摸上下底,有什么特點.。
(2)用筆畫一畫,上下底面積有什么特點.。
(3)用雙手摸側面.。
3.教師明確:
圓柱的上、下兩個面叫做底面.它們是兩個完全相同的兩個圓.。
圓柱的側面,是一個曲面.。
(三)圓柱的高.。
出示高、低不同的兩個圓柱.。
1.用直尺和三角板演示圓柱的高.。
使學生明確:圓柱兩個底面之間的距離叫做高.。
(四)操作實驗。
使學生明確:長方形的長等于圓柱底面的周長,寬等于圓柱的高.。
三、課堂小結。
今天這節(jié)課你學到了哪些知識?圓柱體有哪些特征?
四、鞏固練習。
1.指出下面圓柱的底面、側面和高.。
2.指出下面圖形中哪些是圓柱.。
五、實踐作業(yè)。
用硬紙做一個圓柱,再量出它的底面直徑和高各是多少厘米?
六、板書設計。
倒數(shù)的認識課教案設計篇三
教學內容:
數(shù)學第十一冊19頁----倒數(shù)的認識。
教學目標:
(1)知識目標:理解倒數(shù)的意義,掌握求倒數(shù)的方法。
(2)能力目標:會求倒數(shù),提高學生觀察、比較、抽象、概括以及合作學習、口頭表達的能力。
(3)情感目標:提高學生學習數(shù)學的興趣,發(fā)展學生質疑的習慣和合作的意識。
教學重點:
理解倒數(shù)的意義和怎樣求一個數(shù)的倒數(shù)。
教學難點:
正確理解倒數(shù)的意義及0為何沒有倒數(shù)。
一、游戲導入。
教師:我知道同學們特別喜歡做游戲。今天我們一起做個游戲。這個游戲是這樣的。如果我說1、2,大家就說2、1。那我說1、2、3,大家該怎么說?好!游戲正式開始。喜歡!我教育你!我吃西瓜!我打籃球!誰能說一說這個游戲的規(guī)則是什么?在數(shù)學當中,我們還可以怎樣玩這個游戲?繼續(xù)玩,我說分數(shù),大家倒過來說。3/8、15/7、1/80、3(板書)。
二、探究意義。
1.找特點。
師:請同學們觀察黑板上四組數(shù)都有什么特點。
(生:分子、分母互相顛倒)。
師:請同學們把每一組中的兩個數(shù)相乘,看乘積是多少?
(生:每一組中的兩個數(shù)乘積都是1)師及時板書。
師:誰還能很快說出乘積是1的兩個數(shù)嗎?
(生回答)。
師:同學們說得這么快一定找到了竅門,把你找到的竅門跟同學門說說好嗎?
(生:兩個數(shù)分子分母顛倒位置乘積是1)。
師:那么乘積是1的兩個數(shù)數(shù)學給它起個什么名呢?
(生回答,師板書:乘積是1的兩個數(shù)叫互為倒數(shù))。
師:在這個概念中你認為哪個詞比較重要?讓學生自由說出自己的想法。
重點講解“互為”的意思,就是互相是的意思。例如:
3/8×8/3=1我們就說3/8是8/3的倒數(shù),或者說3/8的倒數(shù)是3/8,也可以說8/3和3/8互為倒數(shù)。而不能說8/3的倒數(shù),或3/8是倒數(shù)。
師:誰來把黑板上的后三組數(shù)仿照老師剛才敘述的來說一遍,用上“因為”“所以”一詞。
(指名敘述)。
師:根據(jù)同學們的敘述,我們可以看出倒數(shù)不是指某一個數(shù),而是指兩個數(shù)相互依存的關系,是相對兩個數(shù)而言,不能孤立的說某一個數(shù)是倒數(shù)。
三、探究求倒數(shù)的方法。
師:現(xiàn)在我們已經(jīng)理解了倒數(shù)的意義,那么怎樣求一個數(shù)的倒數(shù)呢?繼續(xù)觀察黑板上的四組數(shù),看互為倒數(shù)的兩個數(shù)有什么特點,(分子,分母調換了位置)根據(jù)這個規(guī)律我們試著求下面幾個數(shù)的倒數(shù)。
出示:3/57/28/65/1210/4。
(指名回答師板書)。
師:你們是怎么找出每個數(shù)的倒數(shù)的?
(說自己的方法)。
師:除了這些分數(shù)外我們還學過哪些數(shù)?(整數(shù)、小數(shù)、帶分數(shù))怎樣求它們的倒數(shù)呢?求同學們試著求下面書的倒數(shù)。
出示:60.527/81。
(生回答,師板書)并說說你是怎樣求的?
師:是不是所有的數(shù)都有倒數(shù)呢?同桌討論。
0為什么沒有倒數(shù)?(0和任何數(shù)相乘都不得1)。
師:通過同學們的練習,誰來總結求一個數(shù)的倒數(shù)的方法?
(生總結,師板書)。
四、小結并揭示課題。
同學們我們今天重點認識了什么?(板書課題:倒數(shù)的認識)你們在這節(jié)課都學會了什么?下面老師想知道你們是否真正的掌握了沒有,所以老師要考考你們,。
五、鞏固練習。
1、填空。
1、乘積是()的兩個數(shù)叫()倒數(shù)。
2、因為7/15x15/7=1所以7/15和15/7()。
3、5的倒數(shù)是()。0.2的倒數(shù)是()。
4、()的倒數(shù)是它本身。()沒有倒數(shù)。
5、8×()=10.25×()=1。
()×2/3=17/2×()=()×8=()×0.15=1。
2、當把小醫(yī)生。
1、得數(shù)是1的兩個數(shù)叫互為倒數(shù)。()。
2a是一個整數(shù),它的倒數(shù)一定是1/a。()。
3、因為2/3×3/2=1,所以2/3是倒數(shù)。()。
4、1的倒數(shù)是1,所以0的倒數(shù)是0。()。
5、真分數(shù)的倒數(shù)都大于1。()。
6、2.5和0.4互為倒數(shù)。()。
7、任何真分數(shù)的倒數(shù)都是假分數(shù)。()。
8、任何假分數(shù)的倒數(shù)都是真分數(shù)。()。
3、面各數(shù)的倒數(shù)。
2.541/826/70.12。
4、列式計算。
1、7/6加上它的倒數(shù)的和乘2/3,積是多少?
2、1減去它的倒數(shù)后除以0.12,商是多少?
3、已知a×3/2=b×3/5,(a、b都是不為0的數(shù))。
求a、b的大小。
六、教學反思:
倒數(shù)的認識”是在學生掌握了整數(shù)乘法、分數(shù)加法和減法計算、分數(shù)乘法的意義和計算法則、分數(shù)乘法應用題等知識的基礎上進行教學的。理解倒數(shù)的意義和會求一個數(shù)的倒數(shù)是學生學習分數(shù)除法的前提。學生必須學好這部分知識,才能更好地掌握后面的分數(shù)除法的計算和應用題。
倒數(shù)的認識課教案設計篇四
教學目標:
1、通過觀察、比較、概括、抽象,從本質上理解倒數(shù)的意義,并能正確地求一個數(shù)的倒數(shù)。
2、培養(yǎng)學生的數(shù)學思維。
教學重點:理解倒數(shù)的意義,求一個數(shù)的倒數(shù)。
教學難點:從本質上理解倒數(shù)的意義。
教學過程:
一、呈現(xiàn)數(shù)據(jù),先計算,再觀察發(fā)現(xiàn)。
1、出示:3/8×8/37/15×15/75×1/50。25×42、
計算后,這些數(shù)據(jù)你發(fā)現(xiàn)有什么規(guī)律?(學生先獨立思考,然后組內交流)。
二、交流思辨,抽象概念。
1、匯報。乘積都是1。
2、你能根據(jù)上面的觀察寫出乘積是1的另一個數(shù)嗎?
3/4×()=1()×9/7=1。
說說你是怎樣寫得,有什么竅門?
如0。5、1。73、抽象概念,乘積是1的兩個數(shù),互為倒數(shù)??梢哉f誰和誰是互為倒數(shù),也可以說誰是誰的'倒數(shù)。
4、讓學生說說上面的數(shù)(用兩種說法)。
5、是互為倒數(shù)的它們的積是1,這兩個數(shù)有特點嗎?仔細觀察這些數(shù)。
學生討論:分數(shù)的分子分母調了一下位置;
師:那么5×1/50。2×5乘積也是1喲!怎么?把整數(shù)和小數(shù)也化成分數(shù)。
6、溝通:分子分母倒一下跟乘積是1有聯(lián)系嗎?
7、現(xiàn)在你對倒數(shù)有了怎樣的認識?
三、求一個數(shù)的倒數(shù)。
1、找一個數(shù)的倒數(shù)。
5/11的倒數(shù)是(),()的倒數(shù)是4/7,()和15是互為倒數(shù)。
你是怎樣找一個數(shù)的倒數(shù)的?說說你的方法。(從倒數(shù)的意義和現(xiàn)象)。
2、會找了嗎?你能找到下列數(shù)的倒數(shù)嗎?
3/54/967/211.251。20。
學生獨立完成,然后交流。
倒數(shù)的認識課教案設計篇五
一、教學內容:
九年義務教育六年制第九冊第二單元《倒數(shù)的認識》。
二、教材分析:
“倒數(shù)的認識”是在學生掌握了整數(shù)乘法、分數(shù)加法和減法計算、分數(shù)乘法的意義和計算法則、分數(shù)乘法應用題等知識的基礎上進行教學的,數(shù)學教案-倒數(shù)的認識。“倒數(shù)的認識”是分數(shù)的基本知識,學好倒數(shù)不僅可以解決有關實際問題,而且還是后面學習分數(shù)除法、分數(shù)四則混合運算和應用題的重要基礎。
三、教學目標:
1.理解倒數(shù)的意義,掌握求倒數(shù)的方法。
2.能熟練地寫出一個數(shù)的倒數(shù)。
3.結合教學實際培養(yǎng)學生的抽象概括能力。
四、教學重點:
理解倒數(shù)的意義,掌握求倒數(shù)的方法。
五、教學難點:
熟練寫出一個數(shù)的倒數(shù)。
六、教學過程:
(一)、談話。
1.交流。
師:我們的黑板是什么顏色?
生:黑色。
師:教室的墻面又是什么顏色?
生:黑色。
師:黑與白在語文上是什么關系?
生:黑是白的反義詞。
生:白是黑的反義詞。
師:能說黑是反義詞或白是反義詞嗎?
生:不能,因為黑與白是相互依存的關系。必須說清楚誰是誰的反義詞。
師:那么,數(shù)學上有沒有相互依存關系的現(xiàn)象呢?
生:約數(shù)和倍數(shù)。
師:你能舉例說明約數(shù)和倍數(shù)的相互依存關系嗎?
生:例如8是4的倍數(shù),4是8的約數(shù)。不能說成8是倍數(shù)或4是約數(shù)。因為8和4是相互依存的。
2.導入今天,我們繼續(xù)來研究數(shù)學中具有相互依存關系的現(xiàn)象的有關知識。
(二)、學習新知。
對數(shù)游戲。
1.學習倒數(shù)的意義。
師:4是3的4/3,
生:3是4的3/4。
師:7是15的7/15;生:15是7的15/7。
提問;看我們做游戲的結果,你們有沒有發(fā)現(xiàn)什么?
生1:第一個分數(shù)的分子就是第二個分數(shù)的分母,第一個分數(shù)的分母就是第二個分數(shù)的分子。
生2:兩個分數(shù)的分子、分母相互調換了位置。
生2:兩個分數(shù)的乘積是1。
提問:那么怎樣的兩個數(shù)才是互為倒數(shù)呢?指導看書。
思考:
(1)什么是倒數(shù)?滿足什么條件的兩個數(shù)互為倒數(shù)?
(2)你能找出互為倒數(shù)的兩個數(shù)嗎。請舉例。
評析:回答問題。
理解“互為”的意義。怎樣的兩個數(shù)互為倒數(shù)。
找朋友游戲(課前每位同學發(fā)一張數(shù)字卡片)。
練習。
(1)出示卡片(六位同學舉著卡片依次站在黑板前)。
7/911/41/5086/599。
(2)規(guī)則:如果下面的同學拿到的數(shù)是以上這些數(shù)字的倒數(shù)就到相應的同學前面排隊。
提問:下面的同學你們找到自己的朋友了嗎?那么你們能找到自己的朋友嗎?
3教學求一個數(shù)倒數(shù)的方法。
出示例題:找出下列各數(shù)的倒數(shù)。
2/37/41/591/7/80.4。
小組討論指名板演。
提問:1.你是怎么找出2/3的倒數(shù)的?
生1:因為2/3與3/2乘積是1,所以2/3的倒數(shù)是2/3。
生2:因為互為倒數(shù)的兩個數(shù)的分子與分母正好調換位置,小學數(shù)學教案《數(shù)學教案-倒數(shù)的認識》。2/3的分子與分母調換位置后是3/2,所以2/3的倒數(shù)是3/2。
2.你是怎么找出7/4的倒數(shù)的?
提問:我們怎樣才能很快地找到一個數(shù)的倒數(shù)?為什么?
4.練習請剩下的沒有找到朋友的同學繼續(xù)找倒數(shù)。
5.討論:1的倒數(shù)是誰?0的倒數(shù)呢?
生:1的倒數(shù)是1。
師:能說明一下理由嗎?
生1:因為1與1的乘積還是1。
生2:因為1可以化成1/1,1/2的分子與分母調換位置后還是1/1,即1,所以1的'倒數(shù)是1。
師:0的倒數(shù)呢?
生1:0的倒數(shù)是0。因為1的倒數(shù)是1,所以0的倒數(shù)是0。
生2:因為0與任何數(shù)相乘都得0,所以0的倒數(shù)是任何數(shù)。
生3:0的倒數(shù)是沒有的。因為乘積是1的兩個數(shù)才互為倒數(shù),而0乘任何數(shù)都得0,說明0乘任何數(shù)都不得1,所以0沒有倒數(shù)。
生4:0可以寫成0/1,0/1的倒數(shù)是1/0。
生5:不對,1/0分母是0,沒有意義,所以0是沒有倒數(shù)的。
6.完善求一個數(shù)的倒數(shù)的方法。
三、鞏固練習。
(一)填空。
1.因為5/3*3/5=1,所以和()互為();
2.因為15*1/15=1,所以()和()互為();
3.4/7與()互為倒數(shù);
4.()的倒數(shù)是6/11。
5.()的倒數(shù)是2。
6.1/8的倒數(shù)是()。
7.1/2/7的倒數(shù)是()。
8.0.3的倒數(shù)是()。
(二)判斷。
1.得數(shù)是1的兩個數(shù)互為倒數(shù)。()。
2.互為倒數(shù)的兩個數(shù)乘積一定是1。()。
3.1的倒數(shù)是1,所以0的倒數(shù)是0。()。
4.分數(shù)的倒數(shù)都大于1。()。
(四)思考。
4/5*()=()*8。
四、總結:
今天我們學習了什么知識?你有什么收獲?還有什么問題嗎?
五、布置作業(yè)。
簡評:
一、自主學習中讓學生勇于創(chuàng)新。
新課程標準指出:“學生是學習的主人?!薄坝行У臄?shù)學學習活動不能單純地依賴模仿與記憶。動手實踐,自主探索,合作交流是學生學習數(shù)學的重要方式。”因此,教師在課堂上應相信學生、大膽放手,引導學生主動地進行自學、思考、討論、合作交流等活動,發(fā)現(xiàn)規(guī)律,掌握知識,提高能力。讓學生在討論交流中力圖創(chuàng)新,學習創(chuàng)新。本案里例中“你有沒有發(fā)現(xiàn)什么?”“怎樣求一個數(shù)的倒數(shù)”“1的倒數(shù)是幾,0的倒數(shù)呢?”等處的交流促進了學生對知識的感悟與理解。特別是對“0的倒數(shù)呢?”一問的回答,學生各抒幾見,有的用推理的方法解釋0的倒數(shù)是誰;有的用舊知識來解決新問題;也有的用反證法來闡述理由。雖然有對也有錯,但用不同的方式或不同的角度來思考問題,無疑體現(xiàn)了學生學習方法上的創(chuàng)新,進而實現(xiàn)知識上的統(tǒng)一。
二、在游戲活動中實現(xiàn)新知的推進。
游戲是小學生喜聞樂見的活動方式。游戲可以使學生的注意力更持久,積極性更高??梢宰寣W生在輕松愉快的氣氛中學到知識。這節(jié)課設計的兩個游戲貫穿了新授內容的始終。第一個對數(shù)游戲讓學生通過聽一聽,想一想,說一說來感受倒數(shù)的特征,即互為倒數(shù)的兩個數(shù)分子與分母調換了位置。為后面學習“求一個數(shù)的倒數(shù)的方法“打下基礎。第二個找朋友游戲,首先,讓學生通過找朋友鞏固了怎樣的兩個數(shù)互為倒數(shù)這一知識點;其次,在剩下的數(shù)中選取典型讓學生通過討論想辦法找到朋友。并概括出求一個數(shù)的倒數(shù)的一般方法。這樣使學生在不知不覺中接受新知;再次,在剩下的數(shù)中繼續(xù)找朋友,起到了“做一做”的效果;最后,想辦法找1和0的朋友,完善找一個數(shù)的倒數(shù)的方法。本節(jié)課上設計的游戲不僅在教學上實現(xiàn)了合理、自然的過度,而且讓學生學到了知識,還使學生品嘗到游戲帶來的快樂。
倒數(shù)的認識課教案設計篇六
教學目標:
1、知道倒數(shù)的意義,會求一個數(shù)的倒數(shù)。
2、經(jīng)歷倒數(shù)的意義這一概念的形式過程。
3、利用教師的情感特征,激發(fā)學生的學習興趣,讓學生體會成功的快樂。
教學重點:掌握倒數(shù)的意義,會求一個數(shù)的倒數(shù)。
教學難點:0為什么沒有倒數(shù)。
教學過程:
一、口算引入,揭示課題。
師:出示口算題。
(評析:上課伊始,讓學生進行簡單的口算并進行分類,揭示課題,直奔重點,有利于讓學生在一節(jié)課的最佳時域知曉今天研究的是乘積是1的兩個數(shù)的關系特點。教師只有確立了以學生為本的概念,充分了解學生的學習起點和學習疑難癥結,把握學生跳動的脈博,才能有針對性地下功夫。)。
二、自學課本,初步理解倒數(shù)的意義。
(評析:教師恰到好處地設置疑問,有利于學生層層深入地思考,同時,老師有時假裝糊涂,把聰明留給學生,老師忘了,誰來幫忙,短短的話語滿足了學生求知探新的成功欲,這時促進學生有效學習的基本策略。)。
三、舉例驗證,深入探究倒數(shù)的意義。
(評析:對于概念的教學,我們老師大多比較輕視,認為讓學生讀一、二遍記住就達到目的了。其實,這是表面現(xiàn)象,根本不能促使學生數(shù)學思維品質的提高。所以,讓學生關注基礎知識的本身,這是我們數(shù)學教師不能丟的根本,也是實現(xiàn)新課程提出的三維目標的關鍵,重要的是讓學生在掌握概念的過程中,學會數(shù)學思考,體會解決問題所帶來的成功體驗。
四、仔細觀察,探究求倒數(shù)的方法。
五、綜合練習:
(總評:數(shù)學的本質是一種溝通與合作,教師創(chuàng)設了與學生圍繞倒數(shù)。
這個知識目標進行民主、平等、和諧、生動的對話交流,在交流中,包含了知識信息和情感態(tài)度,行為規(guī)范等多方面的有機組合,促進了學生多方面素養(yǎng)的提高。本課教學活動讓學生經(jīng)歷了學習數(shù)學知識的全過程,著力培養(yǎng)了學生的數(shù)學思維。)。
倒數(shù)的認識課教案設計篇七
1。通過一些實例的探究,讓學生理解和掌握倒數(shù)的意義。在合作探究中掌握求倒數(shù)的方法,會求一個數(shù)的倒數(shù)。
2。使學生經(jīng)歷倒數(shù)意義的概括過程,提高觀察、比較、概括和歸納的能力以及靈活運用知識解決問題的能力。
3。通過學生親身參與探究活動,體驗數(shù)學學習的樂趣,激發(fā)他們積極的學習情感,養(yǎng)成合作探究問題的習慣。
理解倒數(shù)的意義,學會求倒數(shù)的方法。
發(fā)現(xiàn)倒數(shù)的一些特征。
課件。
通過觀察,使學生發(fā)現(xiàn)一個分數(shù)的倒數(shù)就是把它的分子與分母的位置顛倒,進而使學生體會到“倒數(shù)”這一概念中“倒”的含義,很自然的得出求一個分數(shù)的倒數(shù)的方法。
一、猜字游戲引入新課。
找找下面文字的構成規(guī)律。
呆———杏土———干吞———吳。
按照上面的規(guī)律填數(shù)。
——()——()——()。
能根據(jù)分之和分母的位置關系,給這三組數(shù)取個名嗎?揭示課題:倒數(shù)。
二、新知探究。
(一)探究討論,理解倒數(shù)的意義。
1.課件出示算式。
開展小組活動:算一算,找一找,這組算式有什么特點?
小組匯報交流。
我發(fā)現(xiàn)了每組算式兩個分數(shù)的分子與分母正好顛倒了位置,所以我們把這樣的兩個分數(shù)叫做“倒數(shù)”。
2.出示倒數(shù)的意義:乘積是1的兩個數(shù)互為倒數(shù)。
3.你是怎樣理解互為倒數(shù)的呢?能舉例嗎?
(二)深化理解。
1.乘積是1的兩個數(shù)存在著怎樣的倒數(shù)關系呢?
2.互為倒數(shù)的兩個數(shù)有什么特點?
3.想一想:1的.倒數(shù)是多少?0有倒數(shù)嗎?為什么?怎么理解?
因為1×1=1,根據(jù)“乘積是1的兩個數(shù)互為倒數(shù)”,所以1的倒數(shù)是1。
又因為0與任何數(shù)相乘都不等于1,所以0沒有倒數(shù)。)。
(三)運用概念。
1.討論求一個數(shù)的倒數(shù)的方法。
出示例2:寫出其中3/5、7/2兩個分數(shù)的倒數(shù)。
學生試做討論后,教師講過程。
小結:求一個數(shù)(0除外)的倒數(shù),只要把這個數(shù)的分子、分母調換位置。)。
2。怎樣求整數(shù)(除外)的倒數(shù)?請求示6的倒數(shù)是幾?(出示課件)。
三、鞏固練習。
(一)完成教材第28頁的“做一做”
(二)完成教材第29頁練習六的第1—5題。
四、課堂小結。
今天我們學習了有關倒數(shù)的哪些新知識?
將本文的word文檔下載到電腦,方便收藏和打印。
倒數(shù)的認識課教案設計篇八
(1)知識目標:理解倒數(shù)的意義,掌握求倒數(shù)的方法。
(2)能力目標:會求倒數(shù),提高學生觀察、比較、抽象、概括以及合作學習、口頭表達的能力。
(3)情感目標:提高學生學習數(shù)學的興趣,發(fā)展學生質疑的習慣和合作的意識。
教學重點:理解倒數(shù)的意義和怎樣求一個數(shù)的倒數(shù)。
教學難點:正確理解倒數(shù)的意義及0為何沒有倒數(shù)。
教師:我知道同學們特別喜歡做游戲。今天我們一起做個游戲。這個游戲是這樣的。如果我說1、2,大家就說2、1。那我說1、2、3,大家該怎么說?好!游戲正式開始。喜歡!我教育你!我吃西瓜!我打籃球!誰能說一說這個游戲的規(guī)則是什么?在數(shù)學當中,我們還可以怎樣玩這個游戲?繼續(xù)玩,我說分數(shù),大家倒過來說。3/8、15/7、1/80、3(板書)。
1、找特點。
師:請同學們觀察黑板上四組數(shù)都有什么特點。
(生:分子、分母互相顛倒)。
師:請同學們把每一組中的兩個數(shù)相乘,看乘積是多少?
(生:每一組中的兩個數(shù)乘積都是1)師及時板書。
師:誰還能很快說出乘積是1的兩個數(shù)嗎?
(生回答)。
師:同學們說得這么快一定找到了竅門,把你找到的竅門跟同學門說說好嗎?
(生:兩個數(shù)分子分母顛倒位置乘積是1)。
師:那么乘積是1的兩個數(shù)數(shù)學給它起個什么名呢?
(生回答,師板書:乘積是1的兩個數(shù)叫互為倒數(shù))。
師:在這個概念中你認為哪個詞比較重要?讓學生自由說出自己的想法。
重點講解“互為”的意思,就是互相是的意思。例如:
3/8×8/3=1我們就說3/8是8/3的倒數(shù),或者說3/8的倒數(shù)是3/8,也可以說8/3和3/8互為倒數(shù)。而不能說8/3的倒數(shù),或3/8是倒數(shù)。
師:誰來把黑板上的.后三組數(shù)仿照老師剛才敘述的來說一遍,用上“因為”“所以”一詞。
(指名敘述)。
師:根據(jù)同學們的敘述,我們可以看出倒數(shù)不是指某一個數(shù),而是指兩個數(shù)相互依存的關系,是相對兩個數(shù)而言,不能孤立的說某一個數(shù)是倒數(shù)。
師:現(xiàn)在我們已經(jīng)理解了倒數(shù)的意義,那么怎樣求一個數(shù)的倒數(shù)呢?繼續(xù)觀察黑板上的四組數(shù),看互為倒數(shù)的兩個數(shù)有什么特點,(分子,分母調換了位置)根據(jù)這個規(guī)律我們試著求下面幾個數(shù)的倒數(shù)。
出示:3/57/28/65/1210/4。
(指名回答師板書)。
師:你們是怎么找出每個數(shù)的倒數(shù)的?
(說自己的方法)。
師:除了這些分數(shù)外我們還學過哪些數(shù)?(整數(shù)、小數(shù)、帶分數(shù))怎樣求它們的倒數(shù)呢?求同學們試著求下面書的倒數(shù)。
出示:60、527/81。
(生回答,師板書)并說說你是怎樣求的?
師:是不是所有的數(shù)都有倒數(shù)呢?同桌討論。
0為什么沒有倒數(shù)?(0和任何數(shù)相乘都不得1)。
師:通過同學們的練習,誰來總結求一個數(shù)的倒數(shù)的方法?
(生總結,師板書)。
同學們我們今天重點認識了什么?(板書課題:倒數(shù)的認識)你們在這節(jié)課都學會了什么?下面老師想知道你們是否真正的掌握了沒有,所以老師要考考你們,。
1、填空。
1、乘積是()的兩個數(shù)叫()倒數(shù)。
2、因為7/15x15/7=1所以7/15和15/7()。
3、5的倒數(shù)是()。0、2的倒數(shù)是()。
4、()的倒數(shù)是它本身。()沒有倒數(shù)。
5、8×()=10、25×()=1。
()×2/3=17/2×()=()×8=()×0、15=1。
2、當把小醫(yī)生。
1、得數(shù)是1的兩個數(shù)叫互為倒數(shù)。()。
2a是一個整數(shù),它的倒數(shù)一定是1/a。()。
3、因為2/3×3/2=1,所以2/3是倒數(shù)。()。
4、1的倒數(shù)是1,所以0的倒數(shù)是0。()。
5、真分數(shù)的倒數(shù)都大于1。()。
6、2、5和0、4互為倒數(shù)。()。
7、任何真分數(shù)的倒數(shù)都是假分數(shù)。()。
8、任何假分數(shù)的倒數(shù)都是真分數(shù)。()。
3、面各數(shù)的倒數(shù)。
2、541/826/70、12。
4、列式計算。
1、7/6加上它的倒數(shù)的和乘2/3,積是多少?
2、1減去它的倒數(shù)后除以0、12,商是多少?
3、已知a×3/2=b×3/5,(a、b都是不為0的數(shù))。
求a、b的大小。
倒數(shù)的認識”是在學生掌握了整數(shù)乘法、分數(shù)加法和減法計算、分數(shù)乘法的意義和計算法則、分數(shù)乘法應用題等知識的基礎上進行教學的。理解倒數(shù)的意義和會求一個數(shù)的倒數(shù)是學生學習分數(shù)除法的前提。學生必須學好這部分知識,才能更好地掌握后面的分數(shù)除法的計算和應用題。
“倒數(shù)的認識”這一課的核心內容是“倒數(shù)的意義和求法”?!暗箶?shù)的意義”屬于概念的教學,我認為,只有讓學生關注基礎知識本身,讓學生在深入剖析“倒數(shù)的意義”的過程中,學會數(shù)學思考,體會解決問題所帶來的成功體驗,才能使學習真正成為學生的需要?!暗箶?shù)的求法”中求一個小數(shù)或帶分數(shù)的倒數(shù)學生可能有些困難。
今天教學倒數(shù)的認識后,我的感觸很多。以往教學這部分內容,我是直接讓學生寫出結果是1的算式,再從學生說的算式中把乘積是1的算式板演在黑板上,再讓學生觀察算式的特點,然后再讓學生理解互為的意思,最后總結出倒數(shù)的意義?,F(xiàn)在想起來有一種牽著學生鼻子走的感覺。通過新課標理論的學習,我重新設計了教案。我覺得這樣設計才是讓學生自己通過觀察、比較、歸納總結出倒數(shù)的意義,是學生自己通過參與整個學習過程后有了真正的收獲。特別是通過游戲的形式激發(fā)學生的學習興趣,學生發(fā)現(xiàn)了算式的'特點,并讓學生舉例后發(fā)現(xiàn),有這樣特點的算式是寫不完的。然后讓學生仿照老師的樣子,通過例子說倒數(shù)的意義,并強調說倒數(shù)的關鍵字詞。這對學生掌握概念是非常必要的。當學生很高興的自認為是掌握了求一個數(shù)的倒數(shù)的方法時,我又給學生設計了障礙:怎樣求帶分數(shù)、小數(shù)和整數(shù)的倒數(shù)。雖然教材新授內容沒有這些知識,但在以后的練習中出現(xiàn)了。我把它提到前面來,大家一起研究。我覺得很有必要。這樣,使學生避免把帶分數(shù)的倒數(shù)也用把分子分母顛倒位置的方法來求。這樣就不會給學生的認知造成誤導。學生在知道了分數(shù)、帶分數(shù)、整數(shù)、小數(shù)的求倒數(shù)的方法以后,我又提出是不是所有的數(shù)都有倒數(shù)么?使學生想到0的倒數(shù)問題。以前我是直接問學生“0“有倒數(shù)嗎?好像暗示學生”0“沒有倒數(shù)。改換成今天這樣問,學生通過自己思考,得出兩種答案,”0“有倒數(shù),另一種是”0“沒有倒數(shù)。有了分歧意見,又一次把學生帶入了問題王國。學生分別發(fā)表自己的見解。最后,大家一致認為”0“沒有倒數(shù)。因為“0”和任何數(shù)相乘都不等于1,也就是0不能作分母。我覺得這節(jié)課的教學比以往教學有了本質的轉變,就是發(fā)揮了學生的主體作用。
倒數(shù)的認識課教案設計篇九
教學內容:
新人教版六年級數(shù)學上冊第28頁的例1。
教學目標:
1、通過學習,使學生知道什么叫做倒數(shù),倒數(shù)表示的是兩個數(shù)之間的關系,它是不能孤立存在的;掌握求倒數(shù)的方法;通過學習,使學生知道“0”沒有倒數(shù),“1”的倒數(shù)還是“1”。
2、學生根據(jù)自己的理解,發(fā)現(xiàn)求倒數(shù)的方法,知道不僅可以用乘法求一個數(shù)的倒數(shù),還可以用調換分子和分母位置的方法求一個數(shù)的倒數(shù)。
3、在知識獲取過程中,培養(yǎng)學生觀察、歸納、推理和概括的能力。提高學生學好數(shù)學的信心。
教學重點:
理解倒數(shù)的意義,學會求倒數(shù)的方法。
教學難點:
熟練正確的求小數(shù)、帶分數(shù)的倒數(shù),發(fā)現(xiàn)倒數(shù)的一些特征。
教學準備:
多媒體課件。
教學過程:
一、猜字游戲導入,揭示課題。
上課之前,老師來考考同學們的語文學得如何?!巴獭边@個字讀什么,如果把上下部分顛倒后是什么字?(“吞”——吳),“士”這個字讀什么,如果把上下部分顛倒后是什么字?(“士”——干)。中國漢字有不少字有這樣的關系,在數(shù)學中也存在這種關系。
如:(板書:3/8)如果把這個分數(shù)的分子和分母的位置調換,是哪個分數(shù)?(8/3)。
師:誰還能說出這樣的數(shù)?(課件出示)。
象這樣把分數(shù)的分子和分母上下顛倒之后就成另一個數(shù),你能給這種特性給這些上下顛倒的數(shù)起個名字嗎?(倒數(shù))今天我們就一起來研究倒數(shù)(板書:倒數(shù)的認識,并讓學生讀一讀。)。
二、出示學習目標:
1、理解倒數(shù)的意義。
2、掌握求一個數(shù)的倒數(shù)的方法,能熟練準確地寫出一個數(shù)的倒數(shù)。
三、自主探究新知。
(一)探究討論,理解倒數(shù)的意義。
1、(課件出示教材第24頁例1的四個算式。)。
開展小組活動:算一算,找一找,這組算式有什么特點?
小組匯報交流。(通過計算,發(fā)現(xiàn)每組算式的乘積都是1。通過觀察發(fā)現(xiàn)相乘的兩個分數(shù)的分子和分母位置是顛倒的。)。
生:我發(fā)現(xiàn)了每組算式兩個分數(shù)的分子與分母正好顛倒了位置,所以我們把這樣的兩個分數(shù)叫做“倒數(shù)”。
2、出示倒數(shù)的意義:乘積是1的兩個數(shù)互為倒數(shù)。(學生齊讀三次)。
(二)深化理解。
1、乘積是1的兩個數(shù)存在著怎樣的倒數(shù)關系呢?
舉例:3/8×8/3=1,那么我們就說8/3是3/8的倒數(shù),反過來(引導學生說)3/8是8/3的倒數(shù),也就是說3/8和8/3互為倒數(shù)。(誰還想舉例說說。)。
2、互為倒數(shù)的兩個數(shù)有什么特點?(兩個數(shù)的分子、分母正好顛倒了位置)。
例如:(2/5的倒數(shù)是5/2,5/2的倒數(shù)是2/5,……不能說5/2是倒數(shù),要說它是誰的倒數(shù)。)。
3、想一想:1的倒數(shù)是多少?0有倒數(shù)嗎?為什么?怎么理解?因為1×1=1,根據(jù)“乘積是1的兩個數(shù)互為倒數(shù)”,所以1的倒數(shù)是1。
又因為0與任何數(shù)相乘都不等于1,所以0沒有倒數(shù)。)。
(三)運用概念。
1、討論求一個數(shù)的倒數(shù)的方法。
所以3/5的倒數(shù)是5/3,7/2的倒數(shù)是2/7。(能不能寫成3/5=5/3,為什么?)。
小結:求一個數(shù)(0除外)的倒數(shù),只要把這個數(shù)的分子、分母調換位置。)。
2、怎樣求小數(shù)和帶分數(shù)的倒數(shù)呢?(課件演示,學生觀察。)。
師強調:帶分數(shù)先化成假分再把分子和分母調換位置;小數(shù)要先把它化成分數(shù)再把分子和分母調換位置。
3、怎樣求整數(shù)(除外)的倒數(shù)?請求示6的倒數(shù)是幾?(出示課件)。
四、堂堂清作業(yè)。
(一)填一填。(出示課件)。
1、乘積是()的()個數(shù)()倒數(shù)。
2、a和b互為倒數(shù),那a的倒數(shù)是(),b的倒數(shù)是()。
3、只有當假分數(shù)為()時,它與它的倒數(shù)相等;而()是沒有倒數(shù)。
4、一個真分數(shù)的倒數(shù)一定是()。
(二)判斷題。(演示課件)。
1、5/3是倒數(shù)。()。
2、因為3/4×4/3=,所以4/3是倒數(shù)。()。
3、真分數(shù)的倒數(shù)大于1,假分數(shù)的倒數(shù)小于1。()。
4、因為1/4+3/4=1,所以1/4和/4互為倒數(shù)。()。
(三)說一說。(課本第29頁的第3題)。
五、課堂小結:
今天我們學習了有關倒數(shù)的哪些新知識?什么叫倒數(shù)?怎樣求一個數(shù)的倒數(shù)?還有什么的問題嗎?板書設計:
乘積是1的兩個數(shù)互為倒數(shù)。0沒有倒數(shù),1的倒數(shù)是它本身。例2:寫出其中2/5、7/2兩個分數(shù)的倒數(shù)。
2/5的分子分母調換位置---5/27/2的分子分母調換位置---2/76的倒數(shù)是1/6求帶分數(shù)的倒數(shù)先把帶分數(shù)化成與假分數(shù),再把分子和分母調換位置。
求小數(shù)的倒數(shù)的先把小數(shù)化成分數(shù),再把分子和分母調換位置。
倒數(shù)的認識課教案設計篇十
1.知道倒數(shù)的意義。
2.經(jīng)歷倒數(shù)的意義這一概念的形成過程。
3.會求一個數(shù)的倒數(shù)。
4.培養(yǎng)學生合作學習,激發(fā)學習興趣,讓學生體驗學習數(shù)學的快樂。
知道倒數(shù)的意義,會求一個數(shù)的倒數(shù)。
:掌握倒數(shù)的意義。
師:同學們,聽說我們文城中心小學要舉行計算比賽,你們想?yún)⒓訂幔?BR> 生:想。
生:分數(shù)乘法。
師:我們來算一算怎么樣?(出示口算卡算一算。)。
生:好。
師:你們的口算不錯,今天要研究的這幾道題肯定難不倒你們,但要想發(fā)現(xiàn)它們的秘密,必須得有一雙火眼金睛才行哦!
1、出示例1:先計算,再觀察,看看有什么規(guī)律。
3/8×8/37/15×15/75×1/51/12×12。
師:上面這幾道算式你能很快地算出結果嗎?
生:能。(指名上去寫結果)。
師:你們算得真快!認真觀察一下算式,有什么發(fā)現(xiàn)嗎?先把你的發(fā)現(xiàn)與同桌交流一下。
(交流完后請個別學生說一說)。
生:乘積都是1。(師板書:乘積是1)。
師:還有別的發(fā)現(xiàn)嗎?(相乘的兩個數(shù)有什么特征?)。
生:相乘的兩個數(shù)的分子、分母正好顛倒了位置。
師:你們能寫出這樣的兩個數(shù)嗎?
生:(齊)能。
2、讓學生自由寫后再歸納倒數(shù)的意義。
師:你們寫的算式乘積都是多少?
生:乘積都是1。
師:像這樣乘積是1的兩個數(shù),我們把它們叫做互為倒數(shù)。(師又接著板書:的兩個數(shù)叫做互為倒數(shù)。)這也就是這節(jié)課我們要學習的內容。(板題:倒數(shù)的認識)。
(讓生齊讀課題和倒數(shù)的意義)。
3、理解“互為倒數(shù)”的含義。
師:“乘積是1的兩個數(shù)互為倒數(shù).”你有不理解的地方嗎?
生生交流后歸納:因為倒數(shù)是表示兩個數(shù)之間的關系,這兩個數(shù)是相互依存的,不能單獨存在。(舉例說明:如3/8和8/3,可以說3/8和8/3互為倒數(shù),也可以說3/8是8/3的倒數(shù),但不能說3/8是倒數(shù))。
師:好像以前也學過有這樣關系的兩個數(shù),還記得嗎?
生:記得,是因數(shù)和倍數(shù)。
1、出示例2:下面哪兩個數(shù)互為倒數(shù)?
3/567/25/31/612/70。
讓學生說,師板書:3/5——————————→5/3。
6———————————→1/6。
師:你是怎樣找一個數(shù)的倒數(shù)的?
生:把分子、分母交換位置。(師板書在箭頭上面)。
師:那6的倒數(shù)怎么找?
生:把6看作6/1,然后再交換分子、分母的位置。
2、師再次引導學生觀察以上的數(shù),哪兩個數(shù)互為倒數(shù)?哪些數(shù)沒有找到倒數(shù)?引發(fā)學生質疑。
生:1和0有倒數(shù)嗎?那它們的倒數(shù)是什么呢?為什么?
同桌之間再次交流得出:1的倒數(shù)是1,0沒有倒數(shù)。(師相機板書)。
3、總結求一個數(shù)的倒數(shù)的方法:求真分數(shù)和假分數(shù)的倒數(shù)只要交換分數(shù)的分子、分母的位置,而求整數(shù)的倒數(shù)要把整數(shù)看作分母是1的分數(shù),再交換分子、分母的位置。
4、引導學生打開課本學習。
四、鞏固練習。
1、課本24頁做一做。
2、互說倒數(shù)。(25頁練習六第2題,同桌合作,師生合作)。
3、25頁第3題:下面的說法對不對?為什么?
(1)7/12與12/7的乘積為1。所以7/12和12/7互為倒數(shù)。()。
(2)1/2×4/3×3/2=1,所以1/2、4/3、3/2互為倒數(shù)。()。
(3)0的倒數(shù)還是0。()。
(4)一個數(shù)的倒數(shù)一定比這個數(shù)小。()。
4、第4題。
這節(jié)課我們學習了什么?你學到了什么知識?能說一說嗎?
板書設計:
(1)3/8×8/3=17/15×15/7=15×1/5=11/12×12=1。
乘積是1的兩個數(shù)互為倒數(shù)。
(2)3/567/25/31/612/70。
分子、分母交換位置。
3/5————————————→5/33/5的倒數(shù)是5/3。
分子、分母交換位置。
6=6/1———————————→1/66的倒數(shù)是1/6。
1的倒數(shù)是1,0沒有倒數(shù)。
倒數(shù)的認識這部分內容是在學習分數(shù)乘法的基礎上進行教學的。學好倒數(shù)的認識這部分內容能夠為后面學習分數(shù)除法打好基礎。所以學好這部分內容對之后學習分數(shù)除法是至關重要的。我主要結合教材編排的特點、本班學生的認知規(guī)律及教學的重、難點對教學流程進行預設,收到了較好的效果。
一、談話導入激發(fā)求知欲望,深入研究發(fā)現(xiàn)其中奧秘。
在導入這個環(huán)節(jié),我主要結合本學期要舉行的計算比賽,通過談話激發(fā)學生學習的熱情及求知欲望,讓學生對學習充滿信心,并引發(fā)期待學好新知識的決心。從學生的表現(xiàn)來看,很多地方都讓我意想不到,如交流1和0的倒數(shù)時,很多學生都能根據(jù)倒數(shù)的意義推理出1的倒數(shù)是1,0沒有倒數(shù),并且說得有憑有據(jù)的,這是其一。還有在互說倒數(shù)這個環(huán)節(jié),我出示了一些真分數(shù)、假分數(shù)和整數(shù),學生都能正確地說出它們的倒數(shù),這純屬正常發(fā)揮,不算什么,但在最后我分別出示了一個帶分數(shù)和一個小數(shù),讓學生說出它們的倒數(shù),拓展了我所提供給學生的知識內容,我以為會把他們難住了,沒想到一位同學毫不猶豫地說出了它的倒數(shù),在我的追問下,竟然還能把找這個數(shù)的倒數(shù)的過程說得滴水不漏,這不能不讓我為之豎起大拇指。
二、精心預設洞悉其中規(guī)律,引發(fā)質疑解開心中疑團。
著名教育家蘇霍姆林斯基說過:“在人的內心深處,都有一種根深蒂固的需要,那就是希望自己是一個發(fā)現(xiàn)者和探索者?!睂τ谖覀兊膶W生來說,這種需求特別強烈。在這部分的教學中,掌握倒數(shù)的意義是學好這部分內容的關鍵。因此在教學倒數(shù)的意義時,我主要是讓學生通過算一算,看一看,寫一寫,說一說的形式,還有合作學習的方式獲得“什么樣的兩個數(shù)是互為倒數(shù)”這個概念,為了更好地理解“互為倒數(shù)”,我讓學生自己質疑,然后再給他們設計一個交流的平臺,讓他們自己解開心中的疑慮,使學生在深入思考中得出結論,這就是學生學習的成果。我覺得,這樣做不僅活躍了課堂氣氛,而且還讓學生經(jīng)歷了探索的過程,解決了心中的困惑,更主要的是讓學生體會到了成功的喜悅。
經(jīng)過這節(jié)課,我最大的收獲是看到學生的成長及迸發(fā)出的那股探索知識的勁頭,無一不讓我為之高興。但在高興之余,我也看到了課堂中的不足之處,有相當一部分學生不善于表現(xiàn)自己,思維火花受到限制,導致回答問題的人氣不足,這將是我在今后教學中所面臨的一大挑戰(zhàn)。
倒數(shù)的認識課教案設計篇十一
1.學生通過觀察算式的特點,引出倒數(shù)的意義,并能夠真正的理解和掌握。
2.學習求一個數(shù)的倒數(shù)的方法,使學生能夠正確地求出一個數(shù)的倒數(shù)。
3.培養(yǎng)學生的觀察能力和概括能力。
1.正確理解倒數(shù)的意義及互為的含義。
2.正確地求出一個數(shù)的倒數(shù)。
(一)激發(fā)興趣,引出概念
1.投影。哪個同學和老師比賽?誰說得快?
師:你們想知道老師為什么說得這么快嗎?這兩個因數(shù)之間有什么聯(lián)系嗎?這節(jié)課老師就要把這中間的奧秘告訴你們,相信你們得知后比老師說得還快。這節(jié)課我們一起學習倒數(shù)的認識。(板書課題)
2.同學認真觀察每個算式,你發(fā)現(xiàn)了什么?同桌互相說一說。指名說。
板書:乘積是1 兩個數(shù)
3.你還能很快說出乘積是1的兩個數(shù)嗎?你為什么說得這么快,有什么竅門嗎?
生:兩個數(shù)分子、分母顛倒位置就可以了。
師:說得好,因此我們把乘積是1的兩個數(shù)叫做互為倒數(shù)。(把板書補充完整)
4.舉例說明,什么叫互為倒數(shù)?
師:3是倒數(shù)這句話對嗎?為什么?
你們說得對,誰能說出幾組倒數(shù)?
同桌互相說,每人說兩組。(指名說)
問:怎樣判斷他們說得是否正確?
生:看這組數(shù)的乘積是否是1。如果乘積是1,這兩個數(shù)是互為倒數(shù);如果乘積不等于
倒數(shù)的認識課教案設計篇十二
“倒數(shù)的認識”是在學生掌握了整數(shù)乘法、分數(shù)加法和減法計算、分數(shù)乘法的意義和計算法則、分數(shù)乘法應用題等知識的基礎上進行教學的,數(shù)學教案-倒數(shù)的認識?!暗箶?shù)的認識”是分數(shù)的基本知識,學好倒數(shù)不僅可以解決有關實際問題,而且還是后面學習分數(shù)除法、分數(shù)四則混合運算和應用題的重要基礎。
1.理解倒數(shù)的意義,掌握求倒數(shù)的方法。
2.能熟練地寫出一個數(shù)的倒數(shù)。
3.結合教學實際培養(yǎng)學生的抽象概括能力。
理解倒數(shù)的意義,掌握求倒數(shù)的方法。
熟練寫出一個數(shù)的倒數(shù)。
1.交流
師: 我們的黑板是什么顏色?
生:黑色。
師:教室的墻面又是什么顏色?
生:黑色。
師:黑與白在語文上是什么關系?
生:黑是白的反義詞。
生:白是黑的反義詞。
師:能說黑是反義詞或白是反義詞嗎?
生:不能,因為黑與白是相互依存的關系。必須說清楚誰是誰的反義詞。
師:那么,數(shù)學上有沒有相互依存關系的現(xiàn)象呢?
生:約數(shù)和倍數(shù)。
師:你能舉例說明約數(shù)和倍數(shù)的相互依存關系嗎?
生:例如8是4的倍數(shù),4是8的約數(shù)。不能說成8是倍數(shù)或4是約數(shù)。因為8和4是相互依存的。
2.導入 今天,我們繼續(xù)來研究數(shù)學中具有相互依存關系的現(xiàn)象的有關知識。
對數(shù)游戲
1.學習倒數(shù)的意義
師:4是3的4/3,
生:3是4的 3/4
師:7是15的7/15; 生:15是7的15/7。
提問;看我們做游戲的結果,你們有沒有發(fā)現(xiàn)什么?
生1:第一個分數(shù)的分子就是第二個分數(shù)的分母,第一個分數(shù)的分母就是第二個分數(shù)的分子。
生2:兩個分數(shù)的分子、分母相互調換了位置。
生2:兩個分數(shù)的乘積是1。
提問:那么怎樣的兩個數(shù)才是互為倒數(shù)呢?指導看書。
思考:
(1)什么是倒數(shù)?滿足什么條件的兩個數(shù)互為倒數(shù)?
(2)你能找出互為倒數(shù)的兩個數(shù)嗎。請舉例
評析:回答問題
理解“互為”的意義。怎樣的兩個數(shù)互為倒數(shù)。
找朋友游戲(課前每位同學發(fā)一張數(shù)字卡片)
練習
(1)出示卡片 (六位同學舉著卡片依次站在黑板前)
7/9 11/4 1/50 8 6/5 99
(2) 規(guī)則:如果下面的同學拿到的數(shù)是以上這些數(shù)字的倒數(shù)就到相應的同學前面排隊
提問:下面的同學你們找到自己的朋友了嗎?那么你們能找到自己的朋友嗎?
3教學求一個數(shù)倒數(shù)的方法
出示例題:找出下列各數(shù)的倒數(shù)
2/3 7/4 1/5 9 1/7/8 0.4
小組討論 指名板演
提問:1.你是怎么找出2/3的倒數(shù)的?
生1:因為2/3與3/2乘積是1,所以2/3的倒數(shù)是2/3
生2:因為互為倒數(shù)的兩個數(shù)的分子與分母正好調換位置,小學數(shù)學教案《數(shù)學教案-倒數(shù)的認識》。2/3的分子與分母調換位置后是3/2,所以2/3的倒數(shù)是3/2 。
2.你是怎么找出7/4的倒數(shù)的?
提問: 我們怎樣才能很快地找到一個數(shù)的倒數(shù)?為什么?
4.練習 請剩下的沒有找到朋友的同學繼續(xù)找倒數(shù)
5.討論:1的倒數(shù)是誰?0的倒數(shù)呢?
生:1的倒數(shù)是1
師:能說明一下理由嗎?
生1:因為1與1的乘積還是1。
生2:因為1可以化成1/1,1/2的分子與分母調換位置后還是1/1,即1,所以1的倒數(shù)是1。
師:0的倒數(shù)呢?
生1:0的倒數(shù)是0。因為1的倒數(shù)是1,所以0的倒數(shù)是0。
生2:因為0與任何數(shù)相乘都得0,所以0的倒數(shù)是任何數(shù)。
生3:0的倒數(shù)是沒有的。因為乘積是1的兩個數(shù)才互為倒數(shù),而0乘任何數(shù)都得0,說明0乘任何數(shù)都不得1,所以0沒有倒數(shù)。
生4:0可以寫成0/1,0/1的倒數(shù)是1/0。
生5:不對,1/0分母是0,沒有意義,所以0是沒有倒數(shù)的。
6.完善求一個數(shù)的倒數(shù)的方法
(一)填空
1.因為5/3*3/5=1,所以()和()互為();
2.因為15*1/15=1,所以()和()互為 ();
3.4/7與()互為倒數(shù);
4.()的倒數(shù)是6/11
5.()的倒數(shù)是2
6.1/8的倒數(shù)是()
7.1/2/7的倒數(shù)是()
8.0.3的倒數(shù)是()
(二)判斷
1.得數(shù)是1的兩個數(shù)互為 倒數(shù)。()
2.互為倒數(shù)的兩個數(shù)乘積一定是1。()
3. 1的倒數(shù)是1,所以0的倒數(shù)是0 。()
4.分數(shù)的倒數(shù)都大于1。()
(四)思考
4/5*()=()*8
今天我們學習了什么知識?你有什么收獲?還有什么問題嗎?
新課程標準 指出:“學生是學習的主人?!薄坝行У臄?shù)學學習活動不能單純地依賴模仿與記憶。動手實踐,自主探索,合作交流是學生學習數(shù)學的重要方式。”因此,教師在課堂上應相信學生、大膽放手,引導學生主動地進行自學、思考、討論、合作交流等活動,發(fā)現(xiàn)規(guī)律,掌握知識,提高能力。讓學生在討論交流中力圖創(chuàng)新,學習創(chuàng)新。本案里例中“你有沒有發(fā)現(xiàn)什么?”“怎樣求一個數(shù)的倒數(shù)”“1的倒數(shù)是幾,0的倒數(shù)呢?”等處的交流促進了學生對知識的感悟與理解。特別是對“0的倒數(shù)呢?”一問的回答,學生各抒幾見,有的用推理的方法解釋0的倒數(shù)是誰;有的用舊知識來解決新問題;也有的用反證法來闡述理由。雖然有對也有錯,但用不同的方式或不同的角度來思考問題,無疑體現(xiàn)了學生學習方法上的創(chuàng)新,進而實現(xiàn)知識上的統(tǒng)一。
游戲是小學生喜聞樂見的活動方式。游戲可以使學生的注意力更持久,積極性更高。可以讓學生在輕松愉快的氣氛中學到知識。這節(jié)課設計的兩個游戲貫穿了新授內容的始終。第一個對數(shù)游戲讓學生通過聽一聽,想一想,說一說來感受倒數(shù)的特征,即互為倒數(shù)的兩個數(shù)分子與分母調換了位置。為后面學習“求一個數(shù)的倒數(shù)的方法“打下基礎。第二個找朋友游戲,首先,讓學生通過找朋友鞏固了怎樣的兩個數(shù)互為倒數(shù)這一知識點;其次,在剩下的數(shù)中選取典型讓學生通過討論想辦法找到朋友。并概括出求一個數(shù)的倒數(shù)的一般方法。這樣使學生在不知不覺中接受新知;再次,在剩下的數(shù)中繼續(xù)找朋友,起到了“做一做”的效果;最后,想辦法找1和0的朋友,完善找一個數(shù)的倒數(shù)的方法。本節(jié)課上設計的游戲不僅在教學上實現(xiàn)了合理、自然的過度,而且讓學生學到了知識,還使學生品嘗到游戲帶來的快樂。

