總結(jié)是對過去的沉淀,也是對未來的展望。總結(jié)需要有具體的行動計(jì)劃和改進(jìn)建議。在這里,我們?yōu)榇蠹揖臏?zhǔn)備了一些總結(jié)的樣例,希望能夠給大家提供一些寫作的思路。
數(shù)學(xué)建模課程心得篇一
數(shù)學(xué)建模心得要怎么寫,才更標(biāo)準(zhǔn)規(guī)范?根據(jù)多年的文秘寫作經(jīng)驗(yàn),參考優(yōu)秀的數(shù)學(xué)建模心得樣本能讓你事半功倍,下面分享【數(shù)學(xué)建模心得通用5篇】,供你選擇借鑒。
以前在大一時就曾聽說過數(shù)學(xué)建模這一學(xué)科,但只是很膚淺的了解,還錯誤的以為這門學(xué)科只是跟數(shù)學(xué)有關(guān)系,只要數(shù)學(xué)學(xué)好了,學(xué)好數(shù)學(xué)建模就輕而易舉了。因?yàn)樽约簲?shù)學(xué)一直很好,對數(shù)學(xué)建模很感興趣,也很自信,于是,大二時毫無疑問地選修了數(shù)學(xué)建模這門專業(yè)選修課,但是選擇了以后才發(fā)現(xiàn)根本不像自己想象的那樣簡單。選修課時,對數(shù)學(xué)建模有了進(jìn)一步了解,數(shù)學(xué)建模主要包括三大部分的內(nèi)容:統(tǒng)計(jì),優(yōu)化,微分和差分。但是這也只是表面上的了解而已,上課老師只針對某一部分,告訴你要針對這一部分具體該怎么做,只是一種固定的模式,沒有自己的任何建模思想。
百度上對數(shù)學(xué)建模的定義是這樣子的:當(dāng)需要從定量的角度分析和研究一個實(shí)際問題時,人們就要在深入調(diào)查研究、了解對象信息、作出簡化假設(shè)、分析內(nèi)在規(guī)律等工作的基礎(chǔ)上,用數(shù)學(xué)的符號和語言,把它表述為數(shù)學(xué)式子,也就是數(shù)學(xué)模型,然后用通過計(jì)算得到的模型結(jié)果來解釋實(shí)際問題,并接受實(shí)際的檢驗(yàn)。這個建立數(shù)學(xué)模型的全過程就稱為數(shù)學(xué)建模。不論是用數(shù)學(xué)方法在科技和生產(chǎn)領(lǐng)域解決哪類實(shí)際問題,還是與其它學(xué)科相結(jié)合形成交叉學(xué)科,首要的和關(guān)鍵的一步是建立研究對象的數(shù)學(xué)模型,并加以計(jì)算求解。數(shù)學(xué)建模和計(jì)算機(jī)技術(shù)在知識經(jīng)濟(jì)時代的作用可謂是如虎添翼。
數(shù)學(xué)建模是一種模擬,是用數(shù)學(xué)符號、數(shù)學(xué)式子、程序、圖形等對實(shí)際課題本質(zhì)屬性的抽象而又簡潔的刻劃,它或能解釋某些客觀現(xiàn)象,或能預(yù)測未來的發(fā)展規(guī)律,或能為控制某一現(xiàn)象的發(fā)展提供某種意義下的最優(yōu)策略或較好策略。數(shù)學(xué)模型一般并非現(xiàn)實(shí)問題的直接翻版,它的建立常常既需要人們對現(xiàn)實(shí)問題深入細(xì)微的觀察和分析,又需要人們靈活巧妙地利用各種數(shù)學(xué)知識。這種應(yīng)用知識從實(shí)際課題中抽象、提煉出數(shù)學(xué)模型的過程就稱為數(shù)學(xué)建模數(shù)學(xué)建模數(shù)學(xué)建模數(shù)學(xué)建模。
經(jīng)過了這段時間對數(shù)學(xué)建模的學(xué)習(xí),我終于對數(shù)學(xué)建模有了進(jìn)一步的認(rèn)識,數(shù)學(xué)建模是一個經(jīng)歷觀察、思考、歸類、抽象與總結(jié)的過程,也是一個信息捕捉、篩選、整理的過程,更是一個思想與方法的產(chǎn)生與選擇的過程。它給我們再現(xiàn)了一種“微型科研”的過程。它激發(fā)我們學(xué)習(xí)數(shù)學(xué)的興趣,豐富了數(shù)學(xué)探索的情感體驗(yàn);有利于我們自覺檢驗(yàn)、鞏固所學(xué)的數(shù)學(xué)知識,促進(jìn)知識的深化、發(fā)展;有利于我們體會和感悟數(shù)學(xué)思想方法。
記得第一節(jié)課時,老師給我們解釋什么是數(shù)學(xué)建模,老師舉了一個簡單的例子,“問題:樹上有十只鳥,開槍打死一只,還剩幾只?”,當(dāng)時我們都覺得很奇怪,這問題很高深嗎?這和數(shù)學(xué)建模有什么關(guān)系嗎?緊接著老師就給我們解釋了這道題,“是無聲手槍或別的無聲的槍嗎?不是。槍聲有多大?80—100分貝。那就是說會震得耳朵疼?是。在這個城市里打鳥犯不犯法?不犯。您確定鳥里真的沒有聾子?沒有。有沒有關(guān)在籠子里的?沒有。邊上還有沒有其他的樹,樹上還有沒有其他的鳥?沒有有沒有殘疾的鳥或餓得飛不動的鳥?沒有。打鳥的人眼有沒有花?保證是十只?沒有花,就十只。有沒有傻得不怕死的鳥?都怕死。會不會一槍打死兩只?不會。所有的鳥都可以自由活動嗎?完全可以。如果您的回答沒有騙人,打死的鳥要是掛在是掛在樹上沒掉下來,那么就剩一只,若果掉下來,就一只不剩?!边@就是數(shù)學(xué)建模。從不同度思考一個問題,想盡所有的可能,正所謂智者千慮,絕無一失,這才是數(shù)學(xué)建模的高手。然后,老師講了數(shù)學(xué)建模能力的培養(yǎng)與提升,讓我們感覺到,原來學(xué)好數(shù)學(xué)建模并不是一件簡單的事靠的是分析題意的能力、查找資料的能力、建立數(shù)學(xué)模型的能力、問題的轉(zhuǎn)化能力、現(xiàn)學(xué)現(xiàn)用的能力、編程能力、論文寫作能力等多方面的能力。
首先我要說的是學(xué)習(xí)數(shù)學(xué)模型的意義,說到意義就要說到它的價值,我們知道教育必須反映社會的實(shí)際需要,數(shù)學(xué)建模進(jìn)入大學(xué)課堂,既順應(yīng)時代發(fā)展的潮流,也符合教育改革的要求。對于數(shù)學(xué)教育而言,既應(yīng)該讓學(xué)生掌握準(zhǔn)確快捷的計(jì)算方法和嚴(yán)密的邏輯推理,也需要培養(yǎng)學(xué)生用數(shù)學(xué)工具分析解決實(shí)際問題的意識和能力,傳統(tǒng)的數(shù)學(xué)教學(xué)體系和內(nèi)容無疑偏重于前者,而開設(shè)數(shù)學(xué)建模課程則是加強(qiáng)后者的一種嘗試,數(shù)學(xué)建模的初衷是為了幫助大家提升分析問題,解決問題的能力。
新一輪的基礎(chǔ)教育課程改革經(jīng)過近幾年的實(shí)施與推進(jìn),新課程的理念已逐步被廣大教師接受和認(rèn)同,在教學(xué)實(shí)踐的不同層面都得到了不同程度的體現(xiàn)與落實(shí)。作為課程改革的主陣地和落腳點(diǎn)——課堂教學(xué),卻還有或多或少的不盡如人意的地方。所以我們的課堂教學(xué)有必要依據(jù)新課程理念,建立符合實(shí)際的教學(xué)模式。反思我們的現(xiàn)在推行的解決問題課堂教學(xué)模式,不難發(fā)現(xiàn)與新課程改革的要求基本一致,有著諸多優(yōu)點(diǎn),主要表現(xiàn)在以下幾個方面:
一、借助學(xué)生的生活經(jīng)驗(yàn),創(chuàng)設(shè)和諧課堂。
大量的研究表明,和諧的課堂學(xué)習(xí)環(huán)境可以有效的激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)習(xí)效率。在和諧的課堂學(xué)習(xí)環(huán)境中,學(xué)生的精神狀態(tài)自然就會調(diào)整到最佳,并能隨教師一起很快的進(jìn)入到學(xué)習(xí)中來,從而實(shí)現(xiàn)課堂的高效。本次建模研討中的兩節(jié)均能從學(xué)生的生活經(jīng)驗(yàn)出發(fā),來靈活創(chuàng)設(shè)學(xué)習(xí)情境,激發(fā)學(xué)生的學(xué)習(xí)動力,實(shí)現(xiàn)了和諧課堂的創(chuàng)建,為下面數(shù)學(xué)活動的展開做好鋪墊。
二、創(chuàng)設(shè)學(xué)習(xí)情境,激發(fā)學(xué)生參與數(shù)學(xué)學(xué)習(xí)的內(nèi)在動力。
通過本次研討活動,我深深的感受到:把學(xué)生的數(shù)學(xué)學(xué)習(xí)活動置身于一定的學(xué)習(xí)情境之中,把知識的學(xué)習(xí)寓于情境之中,能最大限度的提高學(xué)生的參與度,提高學(xué)生的學(xué)習(xí)效率。在我們推行的這一模式的實(shí)施中,能明顯的看出教師作為學(xué)生學(xué)習(xí)的組織者、合作者、引領(lǐng)者的教師,能為學(xué)生創(chuàng)設(shè)一個放飛心靈、獲取知識的園地,能在我們的課堂中把學(xué)生知識的獲取、能力的發(fā)展、情感的體驗(yàn)、個性的張揚(yáng)盡可能的融合到一起,盡可能的激發(fā)學(xué)生的學(xué)習(xí)積極性,激發(fā)學(xué)生學(xué)習(xí)的興趣,充分發(fā)揮著學(xué)生在學(xué)習(xí)中的主體作用。例如:李艷秋老師執(zhí)教的《相遇問題》一課中,教師提供的餓“送文件”這一學(xué)習(xí)情境,學(xué)生的就在這一情境中展開數(shù)學(xué)學(xué)習(xí)活動,在經(jīng)歷自主探究、合作交流、質(zhì)疑建構(gòu)中體驗(yàn)數(shù)學(xué)學(xué)習(xí)活動的樂趣,在體驗(yàn)探索中自主獲取知識,積累數(shù)學(xué)活動的經(jīng)驗(yàn)。
三、提供開放的課堂環(huán)境,放手讓學(xué)生自主學(xué)習(xí)。
新課程改革倡導(dǎo)我們的數(shù)學(xué)課堂應(yīng)該是面向全體學(xué)生,強(qiáng)調(diào)學(xué)生自覺參與的過程,反對以往教師在課堂中的“權(quán)威地位”。在這兩節(jié)研討課中教師盡可能為學(xué)生創(chuàng)設(shè)具有接納性、寬容性的開放課堂,創(chuàng)設(shè)具有開放性的學(xué)習(xí)情境、問題引領(lǐng)等,來促使學(xué)生全身心的投入到學(xué)習(xí)中,讓學(xué)生真正的做到動眼、動手、動口,實(shí)現(xiàn)課堂效率的有效、高效。例如:周宏娟老師執(zhí)教的《百分?jǐn)?shù)應(yīng)用三》,讓學(xué)生拿出課前調(diào)查的一個家庭支出情況的相關(guān)信息,讓學(xué)生獨(dú)立提出問題,自主嘗試解決,在這樣開放的學(xué)習(xí)環(huán)境中學(xué)生是可此不彼,積極參與,課堂的效果亦是很高!
數(shù)學(xué)建模屬于一門應(yīng)用數(shù)學(xué),學(xué)習(xí)這門課要求我們學(xué)會如何將實(shí)際問題經(jīng)過分析、簡化轉(zhuǎn)化為個數(shù)學(xué)問題,然后用適用的數(shù)學(xué)方法去解決。數(shù)學(xué)建模是一種數(shù)學(xué)的思考方法,是運(yùn)用數(shù)學(xué)的語言和方法,通過抽象、簡化建立能近似刻畫并解決實(shí)際問題的一種強(qiáng)有力地?cái)?shù)學(xué)手段。在學(xué)習(xí)中,我知道了數(shù)學(xué)建模的過程,其過程如下:
(1)模型準(zhǔn)備:了解問題的實(shí)際背景,明確其實(shí)際意義,掌握對象的各種信息。用數(shù)
學(xué)語言來描述問題。
(2)模型假設(shè):根據(jù)實(shí)際對象的特征和建模的目的,對問題進(jìn)行必要的簡化,并用精確地語言提出一些恰當(dāng)?shù)募僭O(shè)。
(3)模型建立:在假設(shè)的基礎(chǔ)上,利用適當(dāng)?shù)臄?shù)學(xué)工具來刻畫各變量之間的數(shù)學(xué)關(guān)系,建立相應(yīng)的數(shù)學(xué)結(jié)構(gòu)。
(4)模型求解:利用或取得的數(shù)據(jù)資料,對模型的所有參數(shù)做出計(jì)算。
(5)模型分析:對所得的結(jié)果進(jìn)行數(shù)學(xué)上的分析。
(6)模型檢驗(yàn):將模型分析結(jié)果與實(shí)際情形進(jìn)行比較,以此來驗(yàn)證模型的準(zhǔn)確性、合理性和適用性。如果模型與實(shí)際較吻合,則要對計(jì)算結(jié)果給出其實(shí)際含義,并進(jìn)行解釋。如果模型與實(shí)際吻合較差,則應(yīng)該修改假設(shè),再次進(jìn)行建模過程。
在學(xué)習(xí)了數(shù)學(xué)模型后,它所教給我們的不單是一些數(shù)學(xué)方面的知識,比如說一些數(shù)學(xué)計(jì)算軟件,學(xué)習(xí)建模的同時,借用各種建模軟件解決問題是必不可少的matlab,lingo,等都是非常方便的。數(shù)學(xué)模型是數(shù)學(xué)學(xué)習(xí)的新的方式,他為我們提供了自主學(xué)習(xí)的空間,有助于我們體驗(yàn)數(shù)學(xué)在解決實(shí)際問題中的價值和作用,體驗(yàn)數(shù)學(xué)與日常生化和其他學(xué)科的聯(lián)系,體驗(yàn)綜合運(yùn)用知識和方法解決實(shí)際問題的過程,增強(qiáng)應(yīng)用意識;而且數(shù)學(xué)模型還對我們有綜合能力的培養(yǎng)、鍛煉與提高。它培養(yǎng)了我們?nèi)?、多角度考慮問題的能力,使我們的邏輯推理能力和量化分析能力得到很好地鍛煉和提高。而且我認(rèn)為數(shù)學(xué)模型帶給我的是發(fā)散性思維,各種研究方法和手段。教會我凡事要有自己的創(chuàng)新,自己的嚴(yán)密思維,不能局限于俗套??傊畬W(xué)習(xí)數(shù)學(xué)模型有利于激發(fā)我們的學(xué)習(xí)數(shù)學(xué)的興趣,豐富我們學(xué)習(xí)數(shù)學(xué)探索的情感體驗(yàn);有利于我們自覺體驗(yàn)、鞏固所學(xué)的的數(shù)學(xué)知識。還鍛煉了我們的耐心和意志力。
總之,數(shù)學(xué)已經(jīng)成為當(dāng)代高科技的一個重要組成部分和思想庫,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識和能力也已經(jīng)成為數(shù)學(xué)教學(xué)的一個重要方面。而應(yīng)用數(shù)學(xué)去解決各類實(shí)際問題就必須建立數(shù)學(xué)模型。中學(xué)數(shù)學(xué)教學(xué)的過程其實(shí)就是教師引導(dǎo)學(xué)生不斷建模和用模的過程。因此,用建模思想指導(dǎo)中學(xué)數(shù)學(xué)教學(xué)顯得愈發(fā)重要。
自從大二下學(xué)期真正開了數(shù)學(xué)模型這一門課之后,我對數(shù)學(xué)認(rèn)識又進(jìn)一步加深。雖然我是學(xué)純數(shù)學(xué)即數(shù)學(xué)與應(yīng)用數(shù)學(xué),但是在我的認(rèn)知中,數(shù)學(xué)最多的是單純地證明一些定理抑或是反復(fù)的計(jì)算一些步驟比較多的題進(jìn)而求解。隨著老師在課堂上一點(diǎn)一點(diǎn)的引導(dǎo)、介紹、講解,我漸漸地發(fā)現(xiàn)數(shù)學(xué)真的是很萬能啊(在我看來),任何實(shí)際問題只要運(yùn)用數(shù)學(xué)建立模型都可以抽象成一個數(shù)學(xué)方面的問題,進(jìn)而單純的分析、計(jì)算、求解。這只是我大體的認(rèn)識。
首先,通過數(shù)學(xué)模型這一門課我解開了數(shù)學(xué)模型的神秘面紗,與數(shù)學(xué)模型緊密相連的就是數(shù)學(xué)建模,簡而言之來說數(shù)學(xué)建模就是應(yīng)用數(shù)學(xué)模型來解決各種實(shí)際問題的過程,也就是通過對實(shí)際問題的抽象、簡化、確定變量和參數(shù),并應(yīng)用某些規(guī)律建立變量與參數(shù)之間的關(guān)系的數(shù)學(xué)問題(或稱一個數(shù)學(xué)模型),在借用計(jì)算機(jī)求解該數(shù)學(xué)問題,并解釋,檢驗(yàn),評價所得的解,從而確定能否將其用于解決實(shí)際問題的多次循環(huán),不斷深化的過程。
以下是我學(xué)習(xí)數(shù)學(xué)模型的一些心得:
第一,數(shù)學(xué)模型是數(shù)學(xué)的一個分支,它還沒有脫離數(shù)學(xué),眾所周知數(shù)學(xué)是一門比較抽象的課程,主要需要和訓(xùn)練的還是邏輯思維。因此數(shù)學(xué)模型需要和訓(xùn)練的都基本是思維,但和純數(shù)學(xué)區(qū)別的是數(shù)學(xué)模型只要抽象出數(shù)學(xué)問題的本質(zhì),進(jìn)而建模,那之后不是非得自己一步步地演算、求解。
第二,數(shù)學(xué)模型最后的求解很多時候都不可避免地要用到計(jì)算機(jī),比如像matlab,spss,linggo之類的數(shù)學(xué)軟件。因此在學(xué)習(xí)過程中我們也得對這些軟件有一定的了解和認(rèn)識。這也就與平常的學(xué)習(xí)方式產(chǎn)生了區(qū)別,平常的數(shù)學(xué)方式因?yàn)槠鋬?nèi)容和講授被限制在了平常的階梯教室,但數(shù)學(xué)模型這一門課就必須通過自己的實(shí)踐運(yùn)用計(jì)算機(jī)來達(dá)到自己的目的。因此我們的學(xué)習(xí)方式就多了一項(xiàng)(通過計(jì)算機(jī)進(jìn)一步了解數(shù)學(xué)模型的魅力)。
第三,因?yàn)閿?shù)學(xué)模型是對現(xiàn)實(shí)問題的分析,因此老師在課堂上進(jìn)行的授課通常會是老師引導(dǎo)、師生之間相互商量,因此課堂氛圍一般都比較活潑,學(xué)習(xí)起來會相對的比較輕松。這樣對學(xué)生的思維的開拓有很大的好處。因?yàn)槲覀冊谏詈蛯W(xué)習(xí)的過程中都接觸過很多問題的數(shù)學(xué)問題的模型,所以思考其整個過程及其影響因素就不會出現(xiàn)無從下手的感覺。相反的,在考慮問題的時候,我們更能提出自己的一些見解并能積極地與老師展開討論。
第四,數(shù)學(xué)模型充分挖掘了我們的潛能,使我們對自己的能力有了新的認(rèn)識,特別是自學(xué)能力得到了極大的提高,而且思想的交鋒也迸發(fā)了智慧的火花,從而增加了繼續(xù)深入學(xué)習(xí)數(shù)學(xué)的主動性和積極性。再次,它也培養(yǎng)了我們的概括力和想象力,也就是要一眼就能抓住問題的本質(zhì)所在。我們只有先對實(shí)際問題進(jìn)行概括歸納,同時在允許的情況下盡量忽略各種次要因素,僅僅抓住問題的本質(zhì)方面,是問題盡可能簡單化,這樣才能解決問題。
第五,說到數(shù)學(xué)模型就必不可免得會聯(lián)系到數(shù)學(xué)建模大賽。因?yàn)榻逃仨氝m應(yīng)社會的需要,數(shù)學(xué)建模進(jìn)入大學(xué)課堂,既順應(yīng)時代發(fā)展的潮流,也符合教育改革的需求,對于數(shù)學(xué)教育而言,既應(yīng)該讓學(xué)生掌握準(zhǔn)確快捷的計(jì)算方法和嚴(yán)密的邏輯推理,也需要培養(yǎng)學(xué)生用數(shù)學(xué)工具分析和解決實(shí)際問題的意識和能力。數(shù)學(xué)建模大賽就是順應(yīng)這一要求,此外,數(shù)學(xué)建模還可以提高學(xué)生的競賽能力,抗壓能力,問題設(shè)計(jì)的能力,搜索資料的能力,計(jì)算機(jī)運(yùn)用能力,論文寫作與修改完善能力,語言表達(dá)能力,創(chuàng)新能力等科學(xué)綜合素養(yǎng)。
第六,雖然我沒參加過數(shù)學(xué)建模大賽,但是我曾去過數(shù)學(xué)建模的培訓(xùn)課程,通過老師的介紹,我知道數(shù)學(xué)建模對團(tuán)隊(duì)合作要求很高。一個人的能力畢竟有限,不能把什么都做得很好,即使少數(shù)人能方方面面都顧全到,那得多么的累,況且真正的數(shù)學(xué)建模大賽是對時間有限制的,不會讓你不限時地讓你做。正所謂‘三個臭皮匠,勝過諸葛亮’,可見思想與思想之間的交流產(chǎn)生的結(jié)果是多么的好,此外,每個人因?yàn)樗幁h(huán)境與經(jīng)歷還有專業(yè)的限制,每個人思考問題的角度都不盡相同。所以集結(jié)每個人的優(yōu)點(diǎn)才會使自己的團(tuán)隊(duì)所做出來的結(jié)果更優(yōu)秀。
以上只是我在這短短幾個月對數(shù)學(xué)模型的淺顯的認(rèn)識,不用說大家肯定都只道數(shù)學(xué)模型更像是一個工具,所以說它的魅力作用及影響肯定不會僅僅是這些,有時現(xiàn)實(shí)生活中及各個學(xué)科都需要它來解決問題,所以這更要求我們要認(rèn)真學(xué)好這門課。
通過上課我也有一點(diǎn)建議,就是希望老師可以讓同學(xué)們結(jié)成小組再在課上可以討論某幾道題,這樣可以加強(qiáng)同學(xué)們在這方面的能力,也可以提高課堂氛圍。
這學(xué)期,我學(xué)習(xí)了數(shù)學(xué)建模這門課,我覺得他與其他科的不同是與現(xiàn)實(shí)聯(lián)系密切,而且能引導(dǎo)我們把以前學(xué)得到的枯燥的數(shù)學(xué)知識應(yīng)用到實(shí)際問題中去,用建模的思想、方法來解決實(shí)際問題,很神奇,而且也接觸了一些計(jì)算機(jī)軟件,使問題求解很快就出了答案。
在學(xué)習(xí)的過程中,我獲得了很多知識,對我有非常大的提高。同時我有了一些感想和體會。
本來在學(xué)習(xí)數(shù)學(xué)的過程中就遇到過很多困難,感覺很枯燥,很難學(xué),概念抽象、邏輯嚴(yán)密等等,所以我的學(xué)習(xí)積極性慢慢就降低了,而且不知道學(xué)了要怎么用,不知道現(xiàn)實(shí)生活中哪里到。通過學(xué)習(xí)了數(shù)學(xué)模型中的好多模型后,我發(fā)現(xiàn)數(shù)學(xué)應(yīng)用的廣泛性。數(shù)學(xué)模型是一種模擬,使用數(shù)學(xué)符號、數(shù)學(xué)式子、程序、圖形等對實(shí)際課題本質(zhì)屬性的抽象而又簡潔的刻畫,他或能解釋默寫客觀現(xiàn)象,或能預(yù)測未來的發(fā)展規(guī)律,或能為控制某一現(xiàn)象的發(fā)展提供某種意義下的最優(yōu)策略或較好策略。數(shù)學(xué)模型一般并非現(xiàn)實(shí)問題的直接翻版,它的建立常常既需要人們對現(xiàn)實(shí)問題深入細(xì)微的觀察和分析,又需要人們靈活巧妙地利用各種數(shù)學(xué)知識。這種應(yīng)用知識從實(shí)際課題中抽象、提煉出數(shù)學(xué)模型的過程就稱為數(shù)學(xué)建模。不論是用數(shù)學(xué)方法在科技和生產(chǎn)領(lǐng)域解決哪類實(shí)際問題,還是與其他學(xué)科相結(jié)合形成的交叉學(xué)科,首要的和關(guān)鍵的一步是建立研究對象的數(shù)學(xué)模型,并加以計(jì)算求解。數(shù)學(xué)建模和計(jì)算機(jī)技術(shù)在知識經(jīng)濟(jì)的作用可謂是如虎添翼。
數(shù)學(xué)建模屬于一門應(yīng)用數(shù)學(xué),學(xué)習(xí)這門課要求我們學(xué)會如何將實(shí)際問題經(jīng)過分析、簡化轉(zhuǎn)化為個數(shù)學(xué)問題,然后用適用的數(shù)學(xué)方法去解決。數(shù)學(xué)建模是一種數(shù)學(xué)的思考方法,是運(yùn)用數(shù)學(xué)的語言和方法,通過抽象、簡化建立能近似刻畫并解決實(shí)際問題的一種強(qiáng)有力地?cái)?shù)學(xué)手段。在學(xué)習(xí)中,我知道了數(shù)學(xué)建模的過程,其過程如下:
(1)模型準(zhǔn)備:了解問題的實(shí)際背景,明確其實(shí)際意義,掌握對象的各種信息。用數(shù)學(xué)語言來描述問題。
(2)模型假設(shè):根據(jù)實(shí)際對象的特征和建模的目的,對問題進(jìn)行必要的簡化,并用精確地語言提出一些恰當(dāng)?shù)募僭O(shè)。
(3)模型建立:在假設(shè)的基礎(chǔ)上,利用適當(dāng)?shù)臄?shù)學(xué)工具來刻畫各變量之間的數(shù)學(xué)關(guān)系,建立相應(yīng)的數(shù)學(xué)結(jié)構(gòu)。
(4)模型求解:利用或取得的數(shù)據(jù)資料,對模型的所有參數(shù)做出計(jì)算。
(5)模型分析:對所得的結(jié)果進(jìn)行數(shù)學(xué)上的分析。
(6)模型檢驗(yàn):將模型分析結(jié)果與實(shí)際情形進(jìn)行比較,以此來驗(yàn)證模型的準(zhǔn)確性、合理性和適用性。如果模型與實(shí)際較吻合,則要對計(jì)算結(jié)果給出其實(shí)際含義,并進(jìn)行解釋。如果模型與實(shí)際吻合較差,則應(yīng)該修改假設(shè),再次進(jìn)行建模過程。
數(shù)學(xué)模型既順應(yīng)時代發(fā)展的潮流,也符合教育改革的要求。對于數(shù)學(xué)教育而言,既應(yīng)該讓學(xué)生掌握準(zhǔn)確快捷的計(jì)算方法和嚴(yán)密的邏輯推理,也需要培養(yǎng)學(xué)生用數(shù)學(xué)工具分析解決實(shí)際問題的意識和能力,傳統(tǒng)的數(shù)學(xué)教學(xué)體系和內(nèi)容無疑偏重于前者,而開設(shè)數(shù)學(xué)建模課程則是加強(qiáng)后者的一種嘗試,數(shù)學(xué)建模的初衷是為了幫助大家提升分析問題,解決問題的能力。 我認(rèn)為學(xué)習(xí)數(shù)學(xué)模型的意義有如下幾點(diǎn):一 學(xué)習(xí)數(shù)學(xué)模型我們可以參加數(shù)學(xué)建模競賽,而數(shù)學(xué)建模競賽是為了促進(jìn)數(shù)學(xué)建模的發(fā)展而應(yīng)運(yùn)而生的,它可以培養(yǎng)大家的競賽能力、抗壓能力、問題設(shè)計(jì)能力、搜索資料的能力、計(jì)算機(jī)運(yùn)用能力、論文寫作與修改完善能力、語言表達(dá)能力、創(chuàng)新能力等科學(xué)綜合素養(yǎng),它讓大家從傳統(tǒng)的知識培養(yǎng)轉(zhuǎn)變到能力的培養(yǎng),讓我們的思想追求有了質(zhì)的變化!這也是我們現(xiàn)代教育所追求的;二 學(xué)習(xí)數(shù)學(xué)可以提升我的邏輯思維能力和運(yùn)算等抽象能力,但好多人覺得數(shù)學(xué)和實(shí)際遙不可及,可是呢,數(shù)學(xué)建模則成為了解決這種現(xiàn)象的殺手锏,因?yàn)閿?shù)學(xué)建模就是為了培養(yǎng)大家的分析問題和分解決問題的能力。
在學(xué)習(xí)了數(shù)學(xué)模型后,它所教給我們的不單是一些數(shù)學(xué)方面的知識,比如說一些數(shù)學(xué)計(jì)算軟件,學(xué)習(xí)建模的同時,借用各種建模軟件解決問題是必不可少的matlab,lingo,等都是非常方便的。數(shù)學(xué)模型是數(shù)學(xué)學(xué)習(xí)的新的方式,他為我們提供了自主學(xué)習(xí)的空間,有助于我們體驗(yàn)數(shù)學(xué)在解決實(shí)際問題中的價值和作用,體驗(yàn)數(shù)學(xué)與日常生化和其他學(xué)科的聯(lián)系,體驗(yàn)綜合運(yùn)用知識和方法解決實(shí)際問題的過程,增強(qiáng)應(yīng)用意識;而且數(shù)學(xué)模型還對我們有綜合能力的培養(yǎng)、鍛煉與提高。它培養(yǎng)了我們?nèi)妗⒍嘟嵌瓤紤]問題的能力,使我們的邏輯推理能力和量化分析能力得到很好地鍛煉和提高。而且我認(rèn)為數(shù)學(xué)模型帶給我的是發(fā)散性思維,各種研究方法和手段。教會我凡事要有自己的創(chuàng)新,自己的嚴(yán)密思維,不能局限于俗套。總之學(xué)習(xí)數(shù)學(xué)模型有利于激發(fā)我們的學(xué)習(xí)數(shù)學(xué)的興趣,豐富我們學(xué)習(xí)數(shù)學(xué)探索的情感體驗(yàn);有利于我們自覺體驗(yàn)、鞏固所學(xué)的的數(shù)學(xué)知識。還鍛煉了我們的耐心和意志力。
這學(xué)期參加數(shù)學(xué)建模培訓(xùn),使我感觸良多:它所教給我們的不單是一些數(shù)學(xué)方面的知識,更多的其實(shí)是綜合能力的培養(yǎng)、鍛煉與提高。它培養(yǎng)了我們?nèi)?、多角度考慮問題的能力,使我們的邏輯推理能力和量化分析能力得到很好的鍛煉和提高。它還讓我了解了多種數(shù)學(xué)軟件,以及運(yùn)用數(shù)學(xué)軟件對模型進(jìn)行求解。
數(shù)學(xué)模型主要是將現(xiàn)實(shí)對象的信息加以翻譯,歸納的產(chǎn)物。通過對數(shù)學(xué)模型的假設(shè)、求解、驗(yàn)證,得到數(shù)學(xué)上的解答,再經(jīng)過翻譯回到現(xiàn)實(shí)對象,給出分析、決策的結(jié)果。其實(shí),數(shù)學(xué)建模對我們來說并不陌生,在我們的日常生活和工作中,經(jīng)常會用到有關(guān)建模的概念。例如,我們平時出遠(yuǎn)門,會考慮一下出行的路線,以達(dá)到既快速又經(jīng)濟(jì)的目的;一些廠長經(jīng)理為了獲得更大的利潤,往往會策劃出一個合理安排生產(chǎn)和銷售的最優(yōu)方案??這些問題和建模都有著很大的聯(lián)系。而在學(xué)習(xí)數(shù)學(xué)建模訓(xùn)練以前,我們面對這些問題時,解決它的方法往往是一種習(xí)慣性的思維方式,只知道該這樣做,卻不很清楚為什么會這樣做,現(xiàn)在,我們這種陳舊的思考方式己經(jīng)在被數(shù)學(xué)建模訓(xùn)練中培養(yǎng)出的多角度、層次分明、從本質(zhì)上區(qū)分問題的新穎多維的思考方式所替代。這種凝聚了許多優(yōu)秀方法為一體的思考方式一旦被你把握,它就轉(zhuǎn)化成了你自身的素質(zhì),不僅在你以后的學(xué)習(xí)工作中繼續(xù)發(fā)揮作用,也為你的成長道路印下了閃亮的一頁。
數(shù)學(xué)建模所要解決的問題決不是單一學(xué)科問題,它除了要求我們有扎實(shí)的數(shù)學(xué)知識外,還需要我們不停地去學(xué)習(xí)和查閱資料,除了我們要學(xué)習(xí)許多數(shù)學(xué)分支問題外,還要了解工廠生產(chǎn)、經(jīng)濟(jì)投資、保險(xiǎn)事業(yè)等方面的知識,這些知識決不是任何專業(yè)中都能涉獵得到的。它能極大地拓寬和豐富我們的內(nèi)涵,讓我們感到了知識的重要性,也領(lǐng)悟到了“學(xué)習(xí)是不斷發(fā)現(xiàn)真理的過程”這句話的真諦所在,這些知識必將為我們將來的學(xué)習(xí)工作打下堅(jiān)實(shí)的基礎(chǔ)。從現(xiàn)在我們的學(xué)習(xí)來看,我們都是直接受益者。就拿我此次學(xué)習(xí)數(shù)學(xué)建模后寫論文。原本以為這是一件很簡單的事,但做起來才發(fā)覺事情并沒有想象中的簡單。因?yàn)橐鉀Q問題,憑我們現(xiàn)有的知識根本不夠。于是,自己必須要充分利用圖書館和網(wǎng)絡(luò)的作用,查閱各種有關(guān)資料,以盡量獲得比較全面的知識和信息。在這過程中,對自己眼界的開闊,知識的擴(kuò)展無疑大有好處,各學(xué)科的交叉滲透更有利于自己提高解決復(fù)雜問題的能力。毫不夸張的說,建模過程挖掘了我們的潛能,使我們對自己的能力有了新的認(rèn)識,特別是自學(xué)能力得到了極大的提高,而且思想的交鋒也迸發(fā)出了智慧的火花,從而增加了繼續(xù)深入學(xué)習(xí)數(shù)學(xué)的主動性和積極性。再次,數(shù)學(xué)建模也培養(yǎng)了我們的概括力和想象力,也就是要一眼就能抓住問題的本質(zhì)所在。我們只有先對實(shí)際問題進(jìn)行概括歸納,同時在允許的情況下盡量忽略各種次要因素,緊緊抓住問題的本質(zhì)方面,使問題盡可能簡單化,這樣才能解決問題。其實(shí),在我們做論文之前,考慮到的因素有很多,如果把這一系列因數(shù)都考慮的話,將會花費(fèi)更多的時間和精神。因此,在我們考慮一些因素并不是本質(zhì)問題的時候,我就將這些因數(shù)做了假設(shè)以及在模型的推廣時才考慮。這就使模型更加合理和理想。數(shù)學(xué)建模還能增強(qiáng)我們的抽象能力以及想象力。對實(shí)際問題再進(jìn)行“翻譯”,即進(jìn)行抽象,要用我們熟悉的數(shù)學(xué)語言、數(shù)學(xué)符號和數(shù)學(xué)公式將它們準(zhǔn)確的表達(dá)出來。
通過學(xué)習(xí)數(shù)學(xué)建模訓(xùn)練,對我的收益不遜于以前所學(xué)的文化知識,使我終生難忘。而且, 我覺得數(shù)學(xué)建模活動本身就是教學(xué)方法改革的一種探索,它打破常規(guī)的那種老師臺上講,學(xué)生聽,一味鉆研課本的傳統(tǒng)模式,而采取提出問題,課堂討論,帶著問題去學(xué)習(xí)、不固定于基本教材,不拘泥于某種方法,激發(fā)學(xué)生的多種思維,增強(qiáng)其學(xué)習(xí)主動性,培養(yǎng)學(xué)生獨(dú)立思考,積極思維的特性,這樣有利于學(xué)生根據(jù)自己的特點(diǎn)把握所學(xué)知識,形成自己的學(xué)習(xí)機(jī)制,逐步培養(yǎng)很強(qiáng)的自學(xué)能力和分析、解決新問題的能力。這對于我們以后所從事的教育工作也是一個很好的啟發(fā)。
總之,“一份耕耘,一份收獲”。作為一名對數(shù)學(xué)有著濃厚興趣的學(xué)生,我深刻地感到了自己在程序的編制和軟件應(yīng)用以及自學(xué)能力,有了很大的提高,并將對我今后的專業(yè)學(xué)習(xí)有很大的幫助。想到這里,我不由得被老師的良苦用心所感動,為我們創(chuàng)造了如此優(yōu)越的學(xué)習(xí)條件,處處為學(xué)子著想。因此,在今后的學(xué)習(xí)中,我會保持這種學(xué)習(xí)的勁頭,刻苦努力,爭取以更優(yōu)異的成績。
隨著科學(xué)技術(shù)的飛速發(fā)展,人們越來越認(rèn)識到數(shù)學(xué)科學(xué)的重要性:數(shù)學(xué)的思考方式具有根本的重要性,數(shù)學(xué)為組織和構(gòu)造知識提供了方法,將它用于技術(shù)時能使科學(xué)家和工程師生產(chǎn)出系統(tǒng)的、能復(fù)制的、且可以傳播的知識??數(shù)學(xué)科學(xué)對于經(jīng)濟(jì)競爭是必不可少的,數(shù)學(xué)科學(xué)是一種關(guān)鍵性的、普遍的、可實(shí)行的技術(shù).
在當(dāng)今高科技與計(jì)算機(jī)技術(shù)日新月異且日益普及的社會里,高新技術(shù)的發(fā)展離不開數(shù)學(xué)的支持,沒有良好的數(shù)學(xué)素養(yǎng)已無法實(shí)現(xiàn)工程技術(shù)的創(chuàng)新與突破。因此,如何在數(shù)學(xué)教育的過程中培養(yǎng)人們的數(shù)學(xué)素養(yǎng),讓人們學(xué)會用數(shù)學(xué)的知識與方法去處理實(shí)際問題,值得數(shù)學(xué)工作者的思考。 大學(xué)生數(shù)學(xué)建?;顒蛹叭珖髮W(xué)生數(shù)學(xué)建模競賽正是在這種形勢下開展并發(fā)展起來的,其目的在于激勵學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,提高學(xué)生建立數(shù)學(xué)模型和運(yùn)用計(jì)算機(jī)技術(shù)解決實(shí)際問題的綜合能力,拓寬學(xué)生的知識面,培養(yǎng)創(chuàng)造精神及合作意識,推動大學(xué)數(shù)學(xué)教學(xué)體系、教學(xué)內(nèi)容和教學(xué)方法的改革.
這項(xiàng)極富意義的活動,大學(xué)組隊(duì)參加了全國大學(xué)生數(shù)學(xué)建模競賽。為了更好地組織、指導(dǎo)此項(xiàng)活動,讓更多的學(xué)生投入此項(xiàng)活動并從中受益,學(xué)生根據(jù)組織與指導(dǎo)的實(shí)踐,對數(shù)學(xué)建模活動的作用與實(shí)施談一些認(rèn)識,以期起到深化數(shù)學(xué)教學(xué)改革、推動課程建設(shè)的作用。方法,去近似刻畫、建立相應(yīng)數(shù)學(xué)模型并加以解決的過程。為檢驗(yàn)大學(xué)生數(shù)學(xué)建模的能力,而我國大學(xué)生數(shù)學(xué)建模競賽。參加過數(shù)學(xué)建?;顒拥慕處熍c學(xué)生普遍反映,數(shù)學(xué)建?;顒蛹蓉S富了學(xué)生的課外生活,又培養(yǎng)了學(xué)生各方面的能力,同時也促進(jìn)了大學(xué)數(shù)學(xué)教學(xué)的改革。通過數(shù)學(xué)建模活動,教師與學(xué)生對數(shù)學(xué)的作用有了進(jìn)一步的認(rèn)識。激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。 現(xiàn)今大學(xué)工科數(shù)學(xué)教學(xué)普遍存在內(nèi)容多、學(xué)時少的情況,為此很多教師采取了犧牲應(yīng)用、偏重理論講解以完成教學(xué)進(jìn)度的方法,使學(xué)生對數(shù)學(xué)的重要性認(rèn)識不夠,影響了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,很多學(xué)生進(jìn)入專業(yè)課學(xué)習(xí)階段才感覺到數(shù)學(xué)的重要,但為時已晚。
數(shù)學(xué)建?;顒蛹案傎惖念}目是社會、經(jīng)濟(jì)和生產(chǎn)實(shí)踐中經(jīng)過適當(dāng)簡化的實(shí)際問題,體現(xiàn)了數(shù)學(xué)應(yīng)用的廣泛性;學(xué)生參與數(shù)學(xué)建模及競賽活動,感受到了數(shù)學(xué)的生機(jī)與活力,感受到了對自己各方面能力的促進(jìn),從而激發(fā)起他們學(xué)習(xí)數(shù)學(xué)的興趣。培養(yǎng)學(xué)生多方面的能力,培養(yǎng)綜合應(yīng)用數(shù)學(xué)知識及方法進(jìn)行分析、推理、計(jì)算的能力。由于數(shù)學(xué)建模的過程是反復(fù)應(yīng)用數(shù)學(xué)知識與方法對實(shí)際問題進(jìn)行分析、推理與計(jì)算,以得出實(shí)際問題的最佳數(shù)學(xué)模型及模型最優(yōu)解的過程,因而學(xué)生明顯感到自己這一方面的能力在具體的建模過程中得到了較大提高。
數(shù)學(xué)建模就是當(dāng)人們面對各種實(shí)際問題時,根據(jù)人們對問題的理解,完成對模型的假設(shè),建立和確定求解問題的方法與途徑,然后建立好方程組,然后再與計(jì)算機(jī)的軟件相結(jié)合,最終得到該實(shí)際問題的最佳求解答案。
以前在高中時學(xué)過些簡單的線形規(guī)劃,但那時都是些簡單的問題,在列解出方程后通常只有兩個未知數(shù),但這明顯不符合現(xiàn)實(shí)生活中的問題,因?yàn)橥婕暗揭恍?shí)際生產(chǎn)問題時通常都是比較麻煩的,列出方程后的未知數(shù)也不可能只有兩個,因此就要用到數(shù)學(xué)模型與計(jì)算機(jī)相結(jié)合來處理了。
通過對數(shù)學(xué)建模的學(xué)習(xí),使得我對數(shù)學(xué)有了全新的看法,也因此感覺到數(shù)學(xué)這門課程對于生產(chǎn)的利益是密不可分的,開展數(shù)學(xué)建模的學(xué)習(xí)是提升我們綜合能力的好機(jī)會,使得我們不再是紙上談兵了,并且也使得我們又多了一門技能。數(shù)學(xué)建模所解決的問題不是一個單一的數(shù)學(xué)問題,它要求我們除了有扎實(shí)的數(shù)學(xué)功底外,還需要我們?nèi)ゲ粩嗟牟殚嗁Y料,并且還要能熟練的應(yīng)用計(jì)算機(jī)的軟件。所以它能極大的拓寬我們的知識面,這些知識也能為我們將來的工作打下堅(jiān)實(shí)的基礎(chǔ),也讓我理會到學(xué)習(xí)是不斷發(fā)現(xiàn)真理的過程,并且它給我們帶來的知識面不是任何專業(yè)都能涉及到的.在學(xué)習(xí)數(shù)學(xué)建模的過程中,我充分的體會到了數(shù)學(xué)給人們帶便利實(shí)在太大了,在涉及到現(xiàn)實(shí)的工業(yè)生產(chǎn)中,它能給企業(yè)的利益最大化,并且也能節(jié)省國內(nèi)的能源,所以人類要是離開了數(shù)學(xué)建模,那后果真是不堪設(shè)想。其實(shí)數(shù)學(xué)建模對于我們并不陌生,在我們的日常生活和工作中,經(jīng)常會用到有關(guān)建模的概念,而在學(xué)習(xí)數(shù)學(xué)建模以前,我們面對這些問題時,解決它的方法往往是一種習(xí)慣性的思維方式,只知道要這樣做,卻不知道為什么會這樣做,現(xiàn)在我們這種陳舊的思考方式已經(jīng)被數(shù)學(xué)建模轉(zhuǎn)化成多層次,多角度的從問題的本質(zhì)出發(fā)的 一種新穎的思維方式了,這種凝聚了多種優(yōu)秀方法為一體的思考方式一旦被掌握了,它能轉(zhuǎn)化成你自身的素質(zhì),并且能在你以后的生活和工作中繼續(xù)發(fā)揮著作用的。
數(shù)學(xué)建模是一種運(yùn)用數(shù)學(xué)符號,數(shù)學(xué)式子,計(jì)算機(jī)程序等相結(jié)合的對實(shí)際問題做出規(guī)劃而得出最佳的解決方法。不論是用數(shù)學(xué)方法解決在科技和生產(chǎn)領(lǐng)域解決哪類生產(chǎn)實(shí)際問題,還是與其他學(xué)科相結(jié)合形成交叉學(xué)科,首先和關(guān)鍵一步是建立研究對象的數(shù)學(xué)模型,并加以計(jì)算求解,我 就簡單說明一下具體的操作方法:首先是模型的準(zhǔn)備,了解問題的實(shí)際背景,明確其實(shí)際意義,掌握對像的各種信息,用數(shù)學(xué)語言來描述問題。第二步是模型的假設(shè),根據(jù)實(shí)際問題的特征和建模的目的,對問題做出必要的簡化,并用精準(zhǔn)的語言做出恰當(dāng)?shù)募僭O(shè)。第三步是模型的建立,在假設(shè)的基礎(chǔ)上,用適當(dāng)?shù)臄?shù)學(xué)工具來刻劃各變量之間的數(shù)學(xué)關(guān)系,建立相應(yīng)的數(shù)學(xué)架構(gòu)。第四步是模型的求解,利用獲取的數(shù)學(xué)資料,對模型所有參數(shù)做出計(jì)算。第五步是模型的分析,對所得的結(jié)果做出數(shù)學(xué)上的分析。第六步是模型檢測,將模型的分析結(jié)果與實(shí)際情況進(jìn)行比較,以此來確定模型的合理性,如果模型與實(shí)際比較吻合,則要對計(jì)算結(jié)果給出其實(shí)際含義,并做書解釋。第七步是模型應(yīng)用,應(yīng)用的方式因問題的性質(zhì)和建模的目的而異。
在一般的工程技術(shù)領(lǐng)域,數(shù)學(xué)建模仍然大有用武之地,因此數(shù)學(xué)建模的普遍性和重要性不言而喻,由于新工業(yè)和新技術(shù)的不斷涌現(xiàn),提出了許多需要用數(shù)學(xué)建模來解決的問題,因此使得許多的問題迎刃而解,建立數(shù)學(xué)建模和計(jì)算機(jī)的軟件,大量的代替了以前的復(fù)雜的計(jì)算問題。隨著數(shù)學(xué)向這儲如經(jīng)濟(jì)了等領(lǐng)域進(jìn)行滲透,人們在計(jì)算如何使得經(jīng)濟(jì)利益最大化 時,數(shù)學(xué)建模毫無疑問在這里面發(fā)揮出巨大的作用,當(dāng)用數(shù)學(xué)方法研究這些領(lǐng)域中的定量關(guān)系時,數(shù)學(xué)建模就成為首要的。數(shù)學(xué)建模過程是一種創(chuàng)新過程,在思考方法和思維方式上與學(xué)習(xí)其他課程有著較大的區(qū)別,它需要我們在學(xué)習(xí)時能冷靜的單獨(dú)思考,并且要有一定的分析問題的能力。
我相信隨著科技的不斷創(chuàng)新發(fā)展,數(shù)學(xué)建模在其中的地位會越來越高,所以對于一個大學(xué)生來說,學(xué)好數(shù)學(xué)建模固然是非常重要的。
數(shù)學(xué)建模課程心得篇二
通過一個月的集訓(xùn),我受益非淺。我進(jìn)一步的認(rèn)識到數(shù)學(xué)建模的實(shí)質(zhì)和對參賽隊(duì)員的要求。數(shù)學(xué)建模就是培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)知識解決實(shí)際問題的能力。它要求參賽隊(duì)員有較強(qiáng)的 創(chuàng)新精神,有較大的靈活性和隨機(jī)應(yīng)變能力,要求參賽隊(duì)員之間有良好的團(tuán)隊(duì)精神和相互協(xié)作意識。在一個月里,我們學(xué)了許多知識放方法,可以說數(shù)學(xué)建模需要的知識我們都了解了一點(diǎn),關(guān)鍵在于如何應(yīng)用這些知識。這種即學(xué)即用的能力是我們以后學(xué)習(xí)、工作所必須的能力。在此我對建模是出現(xiàn)的一些現(xiàn)象發(fā)表一些看法。
隨著信息的高速化,我們很容易找到和建模有關(guān)的資料,這對我們理解題目意思和促發(fā)新思路、新想法是有幫助的。但是有的集訓(xùn)小組或集訓(xùn)隊(duì)員他們建模完全依靠找資料,建出來的模型就是幾本參考書的綜合,他們所用的方法完全是別人研究過的東西,連一點(diǎn)改進(jìn)也沒有。如果這樣的話,數(shù)學(xué)建模就失去了意義。我始終堅(jiān)持一個觀點(diǎn):數(shù)學(xué)建模最重要的是創(chuàng)新。無論是你創(chuàng)造一種新方法還是創(chuàng)造性的運(yùn)用一種方法,還是改進(jìn)別人的方法都是很重要的。沒有創(chuàng)新,模型就失去了靈魂;沒有創(chuàng)新,模型就不是你的模型。
我們隊(duì)配合不是很理想。主要是有個隊(duì)員他總認(rèn)為自己是正確的,別人找到的資料不如他好,別人提出的觀點(diǎn)、思想思想無論正確與否,他總是會反對一下。他總是十分注重小的方面,不從大局考慮。由于這些原因,我們建的模型總是不好。
到目前為止,我們已經(jīng)學(xué)習(xí)科學(xué)計(jì)算與數(shù)學(xué)建模這門課程半個學(xué)期了,漸漸的對這門課程有點(diǎn)了解了。我覺得開設(shè)數(shù)學(xué)建模這一門學(xué)科是應(yīng)了時代的發(fā)展要求,因?yàn)椋S著科學(xué)技術(shù)的發(fā)展,特別是計(jì)算機(jī)技術(shù)的飛速發(fā)展和廣泛應(yīng)用,科學(xué)研究與工程技術(shù)對實(shí)際問題的研究不斷精確化、定量化、數(shù)字化,使得數(shù)學(xué)在各學(xué)科、各領(lǐng)域的作用日益增強(qiáng),而數(shù)學(xué)建模在這一過程中的作用尤為突出。在前一階段的學(xué)習(xí)中我了解到它不僅僅是參加數(shù)學(xué)建模比賽的學(xué)生才要學(xué)的,也不僅僅是純理論性的研究學(xué)習(xí),這門課程是在實(shí)際生產(chǎn)生活中有很大的應(yīng)用,突破了以前大家對數(shù)學(xué)的誤解,也在一定程度上培養(yǎng)了我們應(yīng)用數(shù)學(xué)工具解決實(shí)際問題的能力。
具體結(jié)合教材內(nèi)容說,在很多時候課本里的都是引用實(shí)際生產(chǎn)生活的例子,這樣我們更能夠切切實(shí)實(shí)感受到這門課程對實(shí)際生產(chǎn)生活的幫助,而并非是我們空想著學(xué)這門課有什么作用啊,簡直是浪費(fèi)時間啊什么的。
現(xiàn)在我就說說我到目前為止學(xué)到了什么,首先,我知道了數(shù)學(xué)建模的基本步驟:第一步我們肯定是要將現(xiàn)實(shí)問題的信息歸納表述為我們的數(shù)學(xué)模型,然后對我們建立的數(shù)學(xué)模型進(jìn)行求解,這一步也可以說是數(shù)學(xué)模型的解答,最后一步我們要需要從那個數(shù)學(xué)世界回歸到現(xiàn)實(shí)世界,也就是將數(shù)學(xué)模型的解答轉(zhuǎn)化為對現(xiàn)實(shí)問題的解答,從而進(jìn)一步來驗(yàn)證現(xiàn)實(shí)問題的信息,這一步是非常重要的一個環(huán)節(jié),這些結(jié)果也需要用實(shí)際的信息加以驗(yàn)證。
這個步驟在一定程度上揭示了現(xiàn)實(shí)問題和數(shù)學(xué)建模的關(guān)系,一方面,數(shù)學(xué)建模是將現(xiàn)實(shí)生活中的現(xiàn)象加以歸納、抽象的產(chǎn)物,它源于現(xiàn)實(shí),卻又高于現(xiàn)實(shí),另一方面,只有當(dāng)數(shù)學(xué)模型的結(jié)果經(jīng)受住現(xiàn)實(shí)問題的檢驗(yàn)時,才可以用來指導(dǎo)實(shí)踐,完成實(shí)踐到理論再回歸到實(shí)踐的這一循環(huán)。
在課本第二章的時候我們開始接觸實(shí)際問題,在第二章片頭我們看到的就是某城市供水量的預(yù)測問題,在這一章里,老師通過城市供水量的預(yù)測問題介紹了求函數(shù)近似表達(dá)式的插值法和擬合法、城市供水量預(yù)測的簡單方法、供水量增長率估與數(shù)值微分,其中插值法主要介紹lagrange法、newton法、分段低次插值和三次樣條插值。至此我們才真正體會了數(shù)學(xué)建模對實(shí)際生產(chǎn)的幫助。
但同時,我們也發(fā)現(xiàn),要學(xué)好數(shù)學(xué)建模這一門學(xué)科,或者說應(yīng)用數(shù)學(xué)建模的知識去解決其他問題,不僅僅只要求我們有扎實(shí)的數(shù)學(xué)知識,還需要我們學(xué)習(xí)更多的數(shù)學(xué)分支學(xué)科,例如有時候我們還需要其他的數(shù)學(xué)軟件來幫我們解決問題,同時還要考察實(shí)際情況學(xué)會從實(shí)際問題中提煉數(shù)學(xué)問題。
總的來說,學(xué)習(xí)數(shù)學(xué)建模這一門學(xué)科對我們的幫助很大,因?yàn)樗粌H增強(qiáng)了我的知識面,我們可以在學(xué)習(xí)這一門學(xué)科的過程中鍛煉我們學(xué)習(xí)積極性,逐步培養(yǎng)很強(qiáng)的自學(xué)能力和分析、解決問題的能力,這對于我們師范生以后走上教育工作崗位也是很有幫助的。
這學(xué)期,我學(xué)習(xí)了數(shù)學(xué)建模這門課,我覺得他與其他科的不同是與現(xiàn)實(shí)聯(lián)系密切,而且能引導(dǎo)我們把以前學(xué)得到的枯燥的數(shù)學(xué)知識應(yīng)用到實(shí)際問題中去,用建模的思想、方法來解決實(shí)際問題,很神奇,而且也接觸了一些計(jì)算機(jī)軟件,使問題求解很快就出了答案。
在學(xué)習(xí)的過程中,我獲得了很多知識,對我有非常大的提高。同時我有了一些感想和體會。
本來在學(xué)習(xí)數(shù)學(xué)的過程中就遇到過很多困難,感覺很枯燥,很難學(xué),概念抽象、邏輯嚴(yán)密等等,所以我的學(xué)習(xí)積極性慢慢就降低了,而且不知道學(xué)了要怎么用,不知道現(xiàn)實(shí)生活中哪里到。通過學(xué)習(xí)了數(shù)學(xué)模型中的好多模型后,我發(fā)現(xiàn)數(shù)學(xué)應(yīng)用的廣泛性。數(shù)學(xué)模型是一種模擬,使用數(shù)學(xué)符號、數(shù)學(xué)式子、程序、圖形等對實(shí)際課題本質(zhì)屬性的抽象而又簡潔的刻畫,他或能解釋默寫客觀現(xiàn)象,或能預(yù)測未來的發(fā)展規(guī)律,或能為控制某一現(xiàn)象的發(fā)展提供某種意義下的最優(yōu)策略或較好策略。數(shù)學(xué)模型一般并非現(xiàn)實(shí)問題的直接翻版,它的建立常常既需要人們對現(xiàn)實(shí)問題深入細(xì)微的觀察和分析,又需要人們靈活巧妙地利用各種數(shù)學(xué)知識。這種應(yīng)用知識從實(shí)際課題中抽象、提煉出數(shù)學(xué)模型的過程就稱為數(shù)學(xué)建模。不論是用數(shù)學(xué)方法在科技和生產(chǎn)領(lǐng)域解決哪類實(shí)際問題,還是與其他學(xué)科相結(jié)合形成的交叉學(xué)科,首要的和關(guān)鍵的一步是建立研究對象的數(shù)學(xué)模型,并加以計(jì)算求解。數(shù)學(xué)建模和計(jì)算機(jī)技術(shù)在知識經(jīng)濟(jì)的作用可謂是如虎添翼。
數(shù)學(xué)建模屬于一門應(yīng)用數(shù)學(xué),學(xué)習(xí)這門課要求我們學(xué)會如何將實(shí)際問題經(jīng)過分析、簡化轉(zhuǎn)化為個數(shù)學(xué)問題,然后用適用的數(shù)學(xué)方法去解決。數(shù)學(xué)建模是一種數(shù)學(xué)的思考方法,是運(yùn)用數(shù)學(xué)的語言和方法,通過抽象、簡化建立能近似刻畫并解決實(shí)際問題的一種強(qiáng)有力地?cái)?shù)學(xué)手段。在學(xué)習(xí)中,我知道了數(shù)學(xué)建模的過程,其過程如下:
(1)模型準(zhǔn)備:了解問題的實(shí)際背景,明確其實(shí)際意義,掌握對象的各種信息。用數(shù)學(xué)語言來描述問題。
(2)模型假設(shè):根據(jù)實(shí)際對象的特征和建模的目的,對問題進(jìn)行必要的簡化,并用精確地語言提出一些恰當(dāng)?shù)募僭O(shè)。
(3)模型建立:在假設(shè)的基礎(chǔ)上,利用適當(dāng)?shù)臄?shù)學(xué)工具來刻畫各變量之間的數(shù)學(xué)關(guān)系,建立相應(yīng)的數(shù)學(xué)結(jié)構(gòu)。
(4)模型求解:利用或取得的數(shù)據(jù)資料,對模型的所有參數(shù)做出計(jì)算。
(5)模型分析:對所得的結(jié)果進(jìn)行數(shù)學(xué)上的分析。
(6)模型檢驗(yàn):將模型分析結(jié)果與實(shí)際情形進(jìn)行比較,以此來驗(yàn)證模型的準(zhǔn)確性、合理性和適用性。如果模型與實(shí)際較吻合,則要對計(jì)算結(jié)果給出其實(shí)際含義,并進(jìn)行解釋。如果模型與實(shí)際吻合較差,則應(yīng)該修改假設(shè),再次進(jìn)行建模過程。
數(shù)學(xué)模型既順應(yīng)時代發(fā)展的潮流,也符合教育改革的要求。對于數(shù)學(xué)教育而言,既應(yīng)該讓學(xué)生掌握準(zhǔn)確快捷的計(jì)算方法和嚴(yán)密的邏輯推理,也需要培養(yǎng)學(xué)生用數(shù)學(xué)工具分析解決實(shí)際問題的意識和能力,傳統(tǒng)的數(shù)學(xué)教學(xué)體系和內(nèi)容無疑偏重于前者,而開設(shè)數(shù)學(xué)建模課程則是加強(qiáng)后者的一種嘗試,數(shù)學(xué)建模的初衷是為了幫助大家提升分析問題,解決問題的能力。我認(rèn)為學(xué)習(xí)數(shù)學(xué)模型的意義有如下幾點(diǎn):一學(xué)習(xí)數(shù)學(xué)模型我們可以參加數(shù)學(xué)建模競賽,而數(shù)學(xué)建模競賽是為了促進(jìn)數(shù)學(xué)建模的發(fā)展而應(yīng)運(yùn)而生的,它可以培養(yǎng)大家的競賽能力、抗壓能力、問題設(shè)計(jì)能力、搜索資料的能力、計(jì)算機(jī)運(yùn)用能力、論文寫作與修改完善能力、語言表達(dá)能力、創(chuàng)新能力等科學(xué)綜合素養(yǎng),它讓大家從傳統(tǒng)的知識培養(yǎng)轉(zhuǎn)變到能力的培養(yǎng),讓我們的思想追求有了質(zhì)的變化!這也是我們現(xiàn)代教育所追求的;二學(xué)習(xí)數(shù)學(xué)可以提升我的邏輯思維能力和運(yùn)算等抽象能力,但好多人覺得數(shù)學(xué)和實(shí)際遙不可及,可是呢,數(shù)學(xué)建模則成為了解決這種現(xiàn)象的殺手锏,因?yàn)閿?shù)學(xué)建模就是為了培養(yǎng)大家的分析問題和分解決問題的能力。
在學(xué)習(xí)了數(shù)學(xué)模型后,它所教給我們的不單是一些數(shù)學(xué)方面的知識,比如說一些數(shù)學(xué)計(jì)算軟件,學(xué)習(xí)建模的同時,借用各種建模軟件解決問題是必不可少的matlab,lingo,等都是非常方便的。數(shù)學(xué)模型是數(shù)學(xué)學(xué)習(xí)的新的方式,他為我們提供了自主學(xué)習(xí)的空間,有助于我們體驗(yàn)數(shù)學(xué)在解決實(shí)際問題中的價值和作用,體驗(yàn)數(shù)學(xué)與日常生化和其他學(xué)科的聯(lián)系,體驗(yàn)綜合運(yùn)用知識和方法解決實(shí)際問題的過程,增強(qiáng)應(yīng)用意識;而且數(shù)學(xué)模型還對我們有綜合能力的培養(yǎng)、鍛煉與提高。它培養(yǎng)了我們?nèi)?、多角度考慮問題的能力,使我們的邏輯推理能力和量化分析能力得到很好地鍛煉和提高。而且我認(rèn)為數(shù)學(xué)模型帶給我的是發(fā)散性思維,各種研究方法和手段。教會我凡事要有自己的創(chuàng)新,自己的嚴(yán)密思維,不能局限于俗套??傊畬W(xué)習(xí)數(shù)學(xué)模型有利于激發(fā)我們的學(xué)習(xí)數(shù)學(xué)的興趣,豐富我們學(xué)習(xí)數(shù)學(xué)探索的情感體驗(yàn);有利于我們自覺體驗(yàn)、鞏固所學(xué)的的數(shù)學(xué)知識。還鍛煉了我們的耐心和意志力。
隨著科學(xué)技術(shù)的飛速發(fā)展,人們越來越認(rèn)識到數(shù)學(xué)科學(xué)的重要性:數(shù)學(xué)的思考方式具有根本的重要性,數(shù)學(xué)為組織和構(gòu)造知識提供了方法,將它用于技術(shù)時能使科學(xué)家和工程師生產(chǎn)出系統(tǒng)的、能復(fù)制的、且可以傳播的知識……數(shù)學(xué)科學(xué)對于經(jīng)濟(jì)競爭是必不可少的,數(shù)學(xué)科學(xué)是一種關(guān)鍵性的、普遍的、可實(shí)行的技術(shù)。
在當(dāng)今高科技與計(jì)算機(jī)技術(shù)日新月異且日益普及的社會里,高新技術(shù)的發(fā)展離不開數(shù)學(xué)的支持,沒有良好的數(shù)學(xué)素養(yǎng)已無法實(shí)現(xiàn)工程技術(shù)的創(chuàng)新與突破。因此,如何在數(shù)學(xué)教育的過程中培養(yǎng)人們的數(shù)學(xué)素養(yǎng),讓人們學(xué)會用數(shù)學(xué)的知識與方法去處理實(shí)際問題,值得數(shù)學(xué)工作者的思考。大學(xué)生數(shù)學(xué)建模活動及全國大學(xué)生數(shù)學(xué)建模競賽正是在這種形勢下開展并發(fā)展起來的,其目的在于激勵學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,提高學(xué)生建立數(shù)學(xué)模型和運(yùn)用計(jì)算機(jī)技術(shù)解決實(shí)際問題的綜合能力,拓寬學(xué)生的知識面,培養(yǎng)創(chuàng)造精神及合作意識,推動大學(xué)數(shù)學(xué)教學(xué)體系、教學(xué)內(nèi)容和教學(xué)方法的改革。
這項(xiàng)極富意義的活動,大學(xué)組隊(duì)參加了全國大學(xué)生數(shù)學(xué)建模競賽。為了更好地組織、指導(dǎo)此項(xiàng)活動,讓更多的學(xué)生投入此項(xiàng)活動并從中受益,學(xué)生根據(jù)組織與指導(dǎo)的實(shí)踐,對數(shù)學(xué)建模活動的作用與實(shí)施談一些認(rèn)識,以期起到深化數(shù)學(xué)教學(xué)改革、推動課程建設(shè)的作用。方法,去近似刻畫、建立相應(yīng)數(shù)學(xué)模型并加以解決的過程。為檢驗(yàn)大學(xué)生數(shù)學(xué)建模的能力,而我國大學(xué)生數(shù)學(xué)建模競賽。參加過數(shù)學(xué)建?;顒拥慕處熍c學(xué)生普遍反映,數(shù)學(xué)建?;顒蛹蓉S富了學(xué)生的課外生活,又培養(yǎng)了學(xué)生各方面的能力,同時也促進(jìn)了大學(xué)數(shù)學(xué)教學(xué)的改革。通過數(shù)學(xué)建?;顒?,教師與學(xué)生對數(shù)學(xué)的作用有了進(jìn)一步的認(rèn)識。激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣?,F(xiàn)今大學(xué)工科數(shù)學(xué)教學(xué)普遍存在內(nèi)容多、學(xué)時少的情況,為此很多教師采取了犧牲應(yīng)用、偏重理論講解以完成教學(xué)進(jìn)度的方法,使學(xué)生對數(shù)學(xué)的重要性認(rèn)識不夠,影響了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,很多學(xué)生進(jìn)入專業(yè)課學(xué)習(xí)階段才感覺到數(shù)學(xué)的重要,但為時已晚。
數(shù)學(xué)建模活動及競賽的題目是社會、經(jīng)濟(jì)和生產(chǎn)實(shí)踐中經(jīng)過適當(dāng)簡化的實(shí)際問題,體現(xiàn)了數(shù)學(xué)應(yīng)用的廣泛性;學(xué)生參與數(shù)學(xué)建模及競賽活動,感受到了數(shù)學(xué)的生機(jī)與活力,感受到了對自己各方面能力的促進(jìn),從而激發(fā)起他們學(xué)習(xí)數(shù)學(xué)的興趣。培養(yǎng)學(xué)生多方面的能力,培養(yǎng)綜合應(yīng)用數(shù)學(xué)知識及方法進(jìn)行分析、推理、計(jì)算的能力。由于數(shù)學(xué)建模的過程是反復(fù)應(yīng)用數(shù)學(xué)知識與方法對實(shí)際問題進(jìn)行分析、推理與計(jì)算,以得出實(shí)際問題的最佳數(shù)學(xué)模型及模型最優(yōu)解的過程,因而學(xué)生明顯感到自己這一方面的能力在具體的建模過程中得到了較大提高學(xué)習(xí)數(shù)學(xué)建模也有一段時間了,說實(shí)話在還沒學(xué)數(shù)學(xué)建模時,我以為這門課程是跟幾何圖形相關(guān)的,但在學(xué)了之后才發(fā)現(xiàn)完全理解錯了,通過這段時間的學(xué)習(xí)使得我對數(shù)學(xué)建模有了一個全新的認(rèn)識,數(shù)學(xué)建模就是當(dāng)人們面對各種實(shí)際問題時,根據(jù)人們對問題的理解,完成對模型的假設(shè),建立和確定求解問題的方法與途徑,然后建立好方程組,然后再與計(jì)算機(jī)的軟件相結(jié)合,最終得到該實(shí)際問題的最佳求解答案。
以前在高中時學(xué)過些簡單的線形規(guī)劃,但那時都是些簡單的問題,在列解出方程后通常只有兩個未知數(shù),但這明顯不符合現(xiàn)實(shí)生活中的問題,因?yàn)橥婕暗揭恍?shí)際生產(chǎn)問題時通常都是比較麻煩的,列出方程后的未知數(shù)也不可能只有兩個,因此就要用到數(shù)學(xué)模型與計(jì)算機(jī)相結(jié)合來處理了。
通過對數(shù)學(xué)建模的學(xué)習(xí),使得我對數(shù)學(xué)有了全新的看法,也因此感覺到數(shù)學(xué)這門課程對于生產(chǎn)的利益是密不可分的,開展數(shù)學(xué)建模的學(xué)習(xí)是提升我們綜合能力的好機(jī)會,使得我們不再是紙上談兵了,并且也使得我們又多了一門技能。數(shù)學(xué)建模所解決的問題不是一個單一的數(shù)學(xué)問題,它要求我們除了有扎實(shí)的數(shù)學(xué)功底外,還需要我們?nèi)ゲ粩嗟牟殚嗁Y料,并且還要能熟練的應(yīng)用計(jì)算機(jī)的軟件。所以它能極大的拓寬我們的知識面,這些知識也能為我們將來的工作打下堅(jiān)實(shí)的基礎(chǔ),也讓我理會到學(xué)習(xí)是不斷發(fā)現(xiàn)真理的過程,并且它給我們帶來的知識面不是任何專業(yè)都能涉及到的.在學(xué)習(xí)數(shù)學(xué)建模的過程中,我充分的體會到了數(shù)學(xué)給人們帶便利實(shí)在太大了,在涉及到現(xiàn)實(shí)的工業(yè)生產(chǎn)中,它能給企業(yè)的利益最大化,并且也能節(jié)省國內(nèi)的能源,所以人類要是離開了數(shù)學(xué)建模,那后果真是不堪設(shè)想。其實(shí)數(shù)學(xué)建模對于我們并不陌生,在我們的日常生活和工作中,經(jīng)常會用到有關(guān)建模的概念,而在學(xué)習(xí)數(shù)學(xué)建模以前,我們面對這些問題時,解決它的方法往往是一種習(xí)慣性的思維方式,只知道要這樣做,卻不知道為什么會這樣做,現(xiàn)在我們這種陳舊的思考方式已經(jīng)被數(shù)學(xué)建模轉(zhuǎn)化成多層次,多角度的從問題的本質(zhì)出發(fā)的一種新穎的思維方式了,這種凝聚了多種優(yōu)秀方法為一體的思考方式一旦被掌握了,它能轉(zhuǎn)化成你自身的素質(zhì),并且能在你以后的生活和工作中繼續(xù)發(fā)揮著作用的。
數(shù)學(xué)建模是一種運(yùn)用數(shù)學(xué)符號,數(shù)學(xué)式子,計(jì)算機(jī)程序等相結(jié)合的對實(shí)際問題做出規(guī)劃而得出最佳的解決方法。不論是用數(shù)學(xué)方法解決在科技和生產(chǎn)領(lǐng)域解決哪類生產(chǎn)實(shí)際問題,還是與其他學(xué)科相結(jié)合形成交叉學(xué)科,首先和關(guān)鍵一步是建立研究對象的數(shù)學(xué)模型,并加以計(jì)算求解,我就簡單說明一下具體的操作方法:首先是模型的準(zhǔn)備,了解問題的實(shí)際背景,明確其實(shí)際意義,掌握對像的各種信息,用數(shù)學(xué)語言來描述問題。第二步是模型的假設(shè),根據(jù)實(shí)際問題的特征和建模的目的,對問題做出必要的簡化,并用精準(zhǔn)的語言做出恰當(dāng)?shù)募僭O(shè)。第三步是模型的建立,在假設(shè)的基礎(chǔ)上,用適當(dāng)?shù)臄?shù)學(xué)工具來刻劃各變量之間的數(shù)學(xué)關(guān)系,建立相應(yīng)的數(shù)學(xué)架構(gòu)。第四步是模型的求解,利用獲取的數(shù)學(xué)資料,對模型所有參數(shù)做出計(jì)算。第五步是模型的分析,對所得的結(jié)果做出數(shù)學(xué)上的分析。第六步是模型檢測,將模型的分析結(jié)果與實(shí)際情況進(jìn)行比較,以此來確定模型的合理性,如果模型與實(shí)際比較吻合,則要對計(jì)算結(jié)果給出其實(shí)際含義,并做書解釋。第七步是模型應(yīng)用,應(yīng)用的方式因問題的性質(zhì)和建模的目的而異。
在一般的工程技術(shù)領(lǐng)域,數(shù)學(xué)建模仍然大有用武之地,因此數(shù)學(xué)建模的普遍性和重要性不言而喻,由于新工業(yè)和新技術(shù)的不斷涌現(xiàn),提出了許多需要用數(shù)學(xué)建模來解決的問題,因此使得許多的問題迎刃而解,建立數(shù)學(xué)建模和計(jì)算機(jī)的軟件,大量的代替了以前的復(fù)雜的計(jì)算問題。隨著數(shù)學(xué)向這儲如經(jīng)濟(jì)了等領(lǐng)域進(jìn)行滲透,人們在計(jì)算如何使得經(jīng)濟(jì)利益最大化時,數(shù)學(xué)建模毫無疑問在這里面發(fā)揮出巨大的作用,當(dāng)用數(shù)學(xué)方法研究這些領(lǐng)域中的定量關(guān)系時,數(shù)學(xué)建模就成為首要的。數(shù)學(xué)建模過程是一種創(chuàng)新過程,在思考方法和思維方式上與學(xué)習(xí)其他課程有著較大的區(qū)別,它需要我們在學(xué)習(xí)時能冷靜的.單獨(dú)思考,并且要有一定的分析問題的能力。
我相信隨著科技的不斷創(chuàng)新發(fā)展,數(shù)學(xué)建模在其中的地位會越來越高,所以對于一個大學(xué)生來說,學(xué)好數(shù)學(xué)建模固然是非常重要的。
一年一度的全國數(shù)學(xué)建模大賽在今年的9 月22 日上午8 點(diǎn)拉開戰(zhàn)幕,各隊(duì)將在3 天72 小時內(nèi)對一個現(xiàn)實(shí)中的實(shí)際問題進(jìn)行模型建立,求解和分析,確定題目后,我們隊(duì)三人分頭行動,一人去圖書館查閱資料,一人在網(wǎng)上搜索相關(guān)信息,一人建立模型,通過三人的努力,在前兩天中建立出兩個模型并編程求解,經(jīng)過艱苦的奮斗,終于在第三天完成了論文的寫作,在這三天里我感觸很深,現(xiàn)將心得體會寫出,希望與大家交流。
1. 團(tuán)隊(duì)精神:團(tuán)隊(duì)精神是數(shù)學(xué)建模是否取得好成績的最重要的因素,一隊(duì)三個人要相互支持,相互鼓勵。切勿自己只管自己的一部分(數(shù)學(xué)好的只管建模,計(jì)算機(jī)好的只管編程,寫作好的只管論文寫作),很多時候,一個人的思考是不全面的,只有大家一起討論才有可能把問題搞清楚,因此無論做任何板塊,三個人要一起齊心才行,只靠一個人的力量,要在三天之內(nèi)寫出一篇高水平的文章幾乎是不可能的。
2. 有影響力的leader:在比賽中,leader 是很重要的,他的作用就相當(dāng)與計(jì)算機(jī)中的cpu,是全隊(duì)的核心,如果一個隊(duì)的leader 不得力,往往影響一個隊(duì)的正常發(fā)揮,就拿選題來說,有人想做a 題,有人想做b 題,如果爭論一天都未確定方案的話,可能就沒有足夠時間完成一篇論文了,又比如,當(dāng)隊(duì)中有人信心動搖時(特別是第三天,人可能已經(jīng)心力交瘁了),leader 應(yīng)發(fā)揮其作用,讓整個隊(duì)伍重整信心,否則可能導(dǎo)致隊(duì)伍的前功盡棄。
3. 合理的時間安排:做任何事情,合理的時間安排非常重要,建模也是一樣,事先要做好一個規(guī)劃,建模一共分十個板塊(摘要,問題提出,模型假設(shè),問題分析,模型假設(shè),模型建立,模型求解,結(jié)果分析,模型的評價與推廣,參考文獻(xiàn),附錄)。你每天要做完哪幾個板塊事先要確定好,這樣做才會使自己游刃有余,保證在規(guī)定時間內(nèi)完成論文,以避免由于時間上的不妥,以致于最后無法完成論文。
4. 正確的論文格式:論文屬于科學(xué)性的文章,它有嚴(yán)格的書寫格式規(guī)范,因此一篇好的論文一定要有正確的格式,就拿摘要來說吧,它要包括6 要素(問題,方法,模型,算法,結(jié)論,特色),它是一篇論文的概括,摘要的好壞將決定你的論文是否吸引評委的目光,但聽閱卷老師說,這次有些論文的摘要里出現(xiàn)了大量的圖表和程序,這都是不符合論文格式的,這種論文也不會取得好成績,因此我們寫論文時要端正態(tài)度,注意書寫格式。
5. 論文的寫作:我個人認(rèn)為論文的寫作是至關(guān)重要的,其實(shí)大家最后的模型和結(jié)果都差不多,為什么有些隊(duì)可以送全國,有些隊(duì)可以拿省獎,而有些隊(duì)卻什么都拿不到,這關(guān)鍵在于論文的寫作上面。一篇好的論文首先讀上去便使人感到邏輯清晰,有條例性,能打動評委;其次,論文在語言上的表述也很重要,要注意用詞的準(zhǔn)確性;另外,一篇好的論文應(yīng)有閃光點(diǎn),有自己的特色,有自己的想法和思考在里面,總之,論文寫作的好壞將直接影響到成績的優(yōu)劣。
6. 算法的設(shè)計(jì):算法的設(shè)計(jì)的好壞將直接影響運(yùn)算速度的快慢,建議大家多用數(shù)學(xué)軟件(mathematice,matlab,maple, mathcad,lindo,lingo,sas 等),這里提供十種數(shù)學(xué)建模常用算法,僅供參考:
1、 蒙特卡羅算法(該算法又稱隨機(jī)性模擬算法,是通過計(jì)算機(jī)仿真來解決問題的算法,同時可以通過模擬可以來檢驗(yàn)自己模型的正確性,是比賽時必用的方法)
2、數(shù)據(jù)擬合、參數(shù)估計(jì)、插值等數(shù)據(jù)處理算法(比賽中通常會遇到大量的數(shù)據(jù)需要處理,而處理數(shù)據(jù)的關(guān)鍵就在于這些算法,通常使用matlab 作為工具)
3、線性規(guī)劃、整數(shù)規(guī)劃、多元規(guī)劃、二次規(guī)劃等規(guī)劃類問題(建模競賽大多數(shù)問題屬于最優(yōu)化問題,很多時候這些問題可以用數(shù)學(xué)規(guī)劃算法來描述,通常使用lindo、lingo 軟件實(shí)現(xiàn))
4、圖論算法(這類算法可以分為很多種,包括最短路、網(wǎng)絡(luò)流、二分圖等算法,涉及到圖論的問題可以用這些方法解決,需要認(rèn)真準(zhǔn)備)
5、動態(tài)規(guī)劃、回溯搜索、分治算法、分支定界等計(jì)算機(jī)算法(這些算法是算法設(shè)計(jì)中比較常用的方法,很多場合可以用到競賽中)
6、最優(yōu)化理論的三大非經(jīng)典算法:模擬退火法、神經(jīng)網(wǎng)絡(luò)、遺傳算法(這些問題是用來解決一些較困難的最優(yōu)化問題的算法,對于有些問題非常有幫助,但是算法的實(shí)現(xiàn)比較困難,需慎重使用)
7、網(wǎng)格算法和窮舉法(網(wǎng)格算法和窮舉法都是暴力搜索最優(yōu)點(diǎn)的算法,在很多競賽題中有應(yīng)用,當(dāng)重點(diǎn)討論模型本身而輕視算法的時候,可以使用這種暴力方案,最好使用一些高級語言作為編程工具)
8、一些連續(xù)離散化方法(很多問題都是實(shí)際來的,數(shù)據(jù)可以是連續(xù)的,而計(jì)算機(jī)只認(rèn)的是離散的數(shù)據(jù),因此將其離散化后進(jìn)行差分代替微分、求和代替積分等思想是非常重要的)
9、數(shù)值分析算法(如果在比賽中采用高級語言進(jìn)行編程的話,那一些數(shù)值分析中常用的算法比如方程組求解、矩陣運(yùn)算、函數(shù)積分等算法就需要額外編寫庫函數(shù)進(jìn)行調(diào)用)
10、圖象處理算法(賽題中有一類問題與圖形有關(guān),即使與圖形無關(guān),論文中也應(yīng)該要不乏圖片的,這些圖形如何展示以及如何處理就是需要解決的問題,通常使用matlab 進(jìn)行處理)
數(shù)學(xué)建模課程心得篇三
經(jīng)濟(jì)數(shù)學(xué)建模是經(jīng)濟(jì)學(xué)領(lǐng)域中非常核心的一部分。它通過數(shù)學(xué)方法,把人們在經(jīng)濟(jì)操作中遇到的實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)函數(shù),以便進(jìn)行量化分析,從而得出決策建議。經(jīng)濟(jì)數(shù)學(xué)建模是經(jīng)濟(jì)科學(xué)和數(shù)學(xué)科學(xué)的交叉學(xué)科,它的任務(wù)是了解經(jīng)濟(jì)活動中的現(xiàn)象和規(guī)律,并通過模型預(yù)測未來的經(jīng)濟(jì)走向。在這次經(jīng)濟(jì)數(shù)學(xué)建模的學(xué)習(xí)中,我積累了很多寶貴的經(jīng)驗(yàn),下面我將分享一些心得體會。
二、理論知識的補(bǔ)充。
在進(jìn)行經(jīng)濟(jì)數(shù)學(xué)建模之前,我們必須有足夠的理論知識來支持我們的模型構(gòu)建。在此過程中,我深刻意識到經(jīng)濟(jì)數(shù)學(xué)建模的實(shí)踐和理論相輔相成的關(guān)系。只有通過大量的理論學(xué)習(xí),我們才能理解經(jīng)濟(jì)現(xiàn)象背后的原理,才能夠把現(xiàn)實(shí)問題轉(zhuǎn)化為可解的數(shù)學(xué)模型。
通過學(xué)習(xí)數(shù)學(xué)、統(tǒng)計(jì)學(xué)和經(jīng)濟(jì)學(xué)等相關(guān)學(xué)科的理論知識,我不僅對模型構(gòu)建有了更深入的理解,還掌握了許多常用的數(shù)學(xué)工具和方法。例如,線性回歸、最優(yōu)化、概率論等方法在經(jīng)濟(jì)數(shù)學(xué)建模中非常常見,掌握它們可以幫助我們更加準(zhǔn)確地分析和預(yù)測問題。
三、實(shí)踐應(yīng)用的重要性。
理論知識的補(bǔ)充只是經(jīng)濟(jì)數(shù)學(xué)建模的第一步,真正的挑戰(zhàn)在于將所學(xué)的理論知識應(yīng)用到實(shí)際問題中。在我學(xué)習(xí)的過程中,我意識到實(shí)踐應(yīng)用是我提高建模能力的關(guān)鍵。
通過實(shí)際案例的演練和解決,我不僅更加深入地理解了所學(xué)的理論知識,還學(xué)會了將抽象的概念轉(zhuǎn)化為具體的數(shù)學(xué)模型。我記得在一個關(guān)于市場供求的案例中,我遇到了數(shù)據(jù)采集和模型選擇的難題。通過實(shí)際的調(diào)查和采集數(shù)據(jù),我成功地構(gòu)建了一個供需函數(shù),并用最優(yōu)化方法求解了最佳的市場均衡狀態(tài)。
實(shí)踐應(yīng)用還培養(yǎng)了我解決問題的能力和團(tuán)隊(duì)合作的精神。經(jīng)濟(jì)數(shù)學(xué)建模往往需要團(tuán)隊(duì)協(xié)作,在團(tuán)隊(duì)中分工合作、同心協(xié)力才能更好地完成任務(wù)。在我參與的團(tuán)隊(duì)項(xiàng)目中,我遇到了很多技術(shù)難題,但在團(tuán)隊(duì)的幫助和協(xié)作下,我們成功地攻克了一個個難題,最終完成了一個完整的經(jīng)濟(jì)數(shù)學(xué)建模項(xiàng)目。
四、創(chuàng)新思維的培養(yǎng)。
經(jīng)濟(jì)數(shù)學(xué)建模要求我們具備創(chuàng)新思維,能夠獨(dú)立思考并能夠提出新穎的解決方案。在我實(shí)踐中的體會是,創(chuàng)新思維的培養(yǎng)是一個不斷學(xué)習(xí)和思考的過程。
首先,要有廣博的知識儲備和靈活運(yùn)用的能力。只有通過多學(xué)科知識的融合,我們才能夠從不同的角度看待問題,從而提出創(chuàng)新的解決方案。
其次,要注重實(shí)踐鍛煉和經(jīng)驗(yàn)積累。在實(shí)際問題的解決過程中,我們常常需要嘗試不同的方法和思路,才能找到最佳的解決方案。通過不斷的實(shí)踐和總結(jié),我們的創(chuàng)新能力會日漸增強(qiáng)。
最后,要積極參與學(xué)術(shù)交流和競賽等活動。參與學(xué)術(shù)交流可以讓我們了解到其他研究者的思路和方法,進(jìn)而啟發(fā)我們的創(chuàng)新思維。參與競賽可以使我們在激烈的競爭中不斷提高自己的建模能力,從而培養(yǎng)出更為創(chuàng)新的思維方式。
五、總結(jié)。
總體而言,經(jīng)濟(jì)數(shù)學(xué)建模是一門非常有挑戰(zhàn)性的學(xué)科。通過學(xué)習(xí)和實(shí)踐,我深刻認(rèn)識到它的重要性和實(shí)用性。經(jīng)濟(jì)數(shù)學(xué)建模不僅能夠提高我們的數(shù)學(xué)能力,還能夠培養(yǎng)我們的創(chuàng)新思維和解決問題的能力。雖然困難重重,但只要我們持之以恒,相信以后在這個領(lǐng)域我能取得更好的成果和收獲。
數(shù)學(xué)建模課程心得篇四
總結(jié)了數(shù)學(xué)建模的過程,我們可以得出一些心得體會,如果想要提高數(shù)學(xué)建模的能力,需要注意以下幾個方面。首先是對數(shù)學(xué)知識的掌握,必須要有扎實(shí)的數(shù)學(xué)基礎(chǔ)才能更好地進(jìn)行建模。其次是數(shù)學(xué)建模的思維方式,要具備一種將現(xiàn)實(shí)問題轉(zhuǎn)化為數(shù)學(xué)問題的能力。同時,還要有耐心和毅力,因?yàn)閿?shù)學(xué)建模是一個復(fù)雜而繁瑣的過程。最后,要善于團(tuán)隊(duì)合作,因?yàn)閿?shù)學(xué)建模往往需要多個人的共同努力。
在進(jìn)行數(shù)學(xué)建模時,首先要確保自己對所使用的數(shù)學(xué)知識有充分的掌握。數(shù)學(xué)是建模的基礎(chǔ),只有掌握了數(shù)學(xué),才能更好地進(jìn)行建模。因此,我們要不斷地學(xué)習(xí)和提高自己的數(shù)學(xué)水平,不斷地深入掌握各種數(shù)學(xué)方法和技巧,以便能夠靈活地運(yùn)用到建模中去。
其次是數(shù)學(xué)建模的思維方式。數(shù)學(xué)建模是一種將現(xiàn)實(shí)問題抽象化并轉(zhuǎn)化為數(shù)學(xué)問題的過程。要想更好地進(jìn)行建模,必須要具備這種思維方式。在面對一個問題時,我們要善于用數(shù)學(xué)語言和數(shù)學(xué)模型來描述和解釋這個問題,從而更好地理解和分析問題。只有掌握了這種思維方式,我們才能更好地進(jìn)行數(shù)學(xué)建模。
另外,數(shù)學(xué)建模是一個復(fù)雜而繁瑣的過程,需要耐心和毅力。在進(jìn)行建模過程中,我們常常會遇到各種各樣的問題和困難,可能會進(jìn)行多次的嘗試和推導(dǎo)。面對這種情況,我們不能輕易放棄,要有耐心和毅力去解決問題。只有堅(jiān)持不懈,才能找到解決問題的辦法,達(dá)到預(yù)期的效果。
最后,數(shù)學(xué)建模是一個團(tuán)隊(duì)合作的過程,需要多個人的共同努力。在進(jìn)行建模時,不僅需要各個成員的專業(yè)知識和技能,還需要團(tuán)隊(duì)合作能力。團(tuán)隊(duì)合作可以使我們在建模過程中互相交流和補(bǔ)充,共同解決問題。因此,要善于與他人合作,不斷地溝通和學(xué)習(xí),從而更好地完成建模任務(wù)。
總之,數(shù)學(xué)建模是一門需要不斷學(xué)習(xí)和實(shí)踐的技能,而且往往需要多個人的共同努力。通過對數(shù)學(xué)知識的深入掌握和數(shù)學(xué)建模思維方式的培養(yǎng),以及耐心和毅力的堅(jiān)持,我們可以提高自己的數(shù)學(xué)建模能力。同時,要善于與他人合作,共同解決問題。相信只有這樣,我們才能在數(shù)學(xué)建模中取得更大的進(jìn)步和成就。
數(shù)學(xué)建模課程心得篇五
數(shù)學(xué)建模是一門與日俱增的科學(xué)領(lǐng)域,在許多實(shí)際應(yīng)用問題上都可以發(fā)揮重要的作用。它以現(xiàn)實(shí)問題為出發(fā)點(diǎn),運(yùn)用學(xué)科知識和科學(xué)方法,在不斷的實(shí)踐中研究出解決問題的方法,既可以用于工程技術(shù)領(lǐng)域,也可以對社會問題、經(jīng)濟(jì)問題等有所幫助。在本次參加的“走進(jìn)數(shù)學(xué)建模”實(shí)踐活動中,不僅獲得了有關(guān)數(shù)學(xué)建模的相關(guān)知識,也學(xué)會了如何提升建模的技巧和方法,深刻體會到了數(shù)學(xué)建模在實(shí)際生活中的重要作用。
第二段:體驗(yàn)過程
在活動中,我深刻感受到了“建模是一種轉(zhuǎn)化知識才力的過程”這一理念。在接下來的實(shí)踐中,我們嘗試了一項(xiàng)建模活動——“華山論劍”,這是一種基于游戲理論的經(jīng)典數(shù)學(xué)建模問題。我們首先學(xué)習(xí)到了相關(guān)的游戲規(guī)則和模型解釋,接著進(jìn)行實(shí)際游戲,自行制作策略,并注意反思優(yōu)化,從而得到最優(yōu)解。通過這項(xiàng)建?;顒樱覍W(xué)會了如何利用已有的知識和技巧,較為準(zhǔn)確地處理問題,順利地獲得正確的答案。
第三段:技術(shù)分析
在建模過程中,我們首先需要了解問題背景,明確問題目標(biāo),然后通過分析數(shù)據(jù)和相關(guān)實(shí)例,對問題進(jìn)行分類、建模和協(xié)調(diào)分析。在具體建模過程中,我們需要運(yùn)用數(shù)學(xué)和計(jì)算機(jī)知識,通過正確的數(shù)據(jù)處理方式和解決方案,輸出符合要求的最優(yōu)解。同時,在建模過程中,我們還需要結(jié)合實(shí)際情況,靈活調(diào)整模型,適當(dāng)引入或去除參數(shù),使模型結(jié)果更具創(chuàng)造性和實(shí)用性,滿足問題實(shí)際需要。
第四段:啟示和收獲
通過參加“走進(jìn)數(shù)學(xué)建?!睂?shí)踐活動,我不僅學(xué)習(xí)到了基本的建模理論和技巧方法,還受益于活動中實(shí)際的建模案例,得到了更為深刻的體會和認(rèn)識。我發(fā)現(xiàn),在實(shí)際操作中,建模不僅要有強(qiáng)烈的目的性,而且還要具備創(chuàng)造性和探索性。隨著不斷的實(shí)踐,我逐漸學(xué)會了如何在模型分析中發(fā)揮創(chuàng)造性,如何利用多種方法和技巧來解決實(shí)際問題。同時,我也明確了建模不是一門靜態(tài)的科學(xué),而是需要不斷的更新和迭代,才能不斷適應(yīng)和推動時代發(fā)展。
第五段:結(jié)語
通過“走進(jìn)數(shù)學(xué)建?!睂?shí)踐活動的學(xué)習(xí)體驗(yàn),我深刻體會到了數(shù)學(xué)建模在實(shí)際生活中的應(yīng)用價值和重要性。在今后的學(xué)習(xí)和工作中,我將更加注重培養(yǎng)自身數(shù)學(xué)建模的能力,不斷提升創(chuàng)造性和探索性,多角度、多方面地進(jìn)行實(shí)踐,以期在實(shí)際問題上更好地發(fā)揮建模的作用。同時,我也希望更多的人能夠認(rèn)識到數(shù)學(xué)建模的優(yōu)勢和價值,積極進(jìn)入這個領(lǐng)域,為推動社會進(jìn)步和共同發(fā)展做出更多的貢獻(xiàn)。
數(shù)學(xué)建模課程心得篇六
數(shù)學(xué)建模作為一種綜合性的能力與技術(shù),近年來深受大眾的關(guān)注與推崇。作為一名數(shù)學(xué)愛好者,我對數(shù)學(xué)建模這個領(lǐng)域也產(chǎn)生了濃厚的興趣。在閱讀關(guān)于數(shù)學(xué)建模的相關(guān)書籍、學(xué)習(xí)課程與參加各類競賽的過程中,我深刻地領(lǐng)悟到了數(shù)學(xué)建模的種種魅力,也匯總了一些讀數(shù)學(xué)建模的心得與體會。
第二段:學(xué)習(xí)經(jīng)驗(yàn)。
為了更好地理解數(shù)學(xué)建模,我通過網(wǎng)上課程等不斷學(xué)習(xí)。由于數(shù)學(xué)建模這個領(lǐng)域廣泛涉及到的知識面十分廣泛,所以學(xué)習(xí)的內(nèi)容也十分繁瑣。在學(xué)習(xí)的過程中,我力求將各個專業(yè)領(lǐng)域的知識以及各種方法融合在一起,取長補(bǔ)短,做到融會貫通。同時,也需要不斷地與比賽、挑戰(zhàn)賽等交流中,去檢驗(yàn)自己的知識水平,并不斷地提高自己的學(xué)習(xí)能力。
第三段:實(shí)踐體會。
學(xué)習(xí)歸來,我開始了自己的實(shí)踐之旅。在應(yīng)對數(shù)學(xué)建模的挑戰(zhàn)的過程中,我逐漸意識到模型的準(zhǔn)確度與應(yīng)用性是非常重要的。想要達(dá)到這點(diǎn),必須不斷地加強(qiáng)數(shù)學(xué)知識的學(xué)習(xí),提高自己的實(shí)際操作能力。另外,更加注重分析真實(shí)場景與數(shù)據(jù),了解不同數(shù)據(jù)之間的關(guān)系與差異,并運(yùn)用不同的數(shù)據(jù)分析方法,以保證模型的精度與可靠性。
第四段:對未來的研究目標(biāo)。
雖然我在數(shù)學(xué)建模的學(xué)習(xí)與實(shí)踐中有了一定的收獲,但我深知自己仍是一個初學(xué)者,未來的路還有很長。因此,我計(jì)劃在未來的學(xué)習(xí)與實(shí)踐中,更加注重對數(shù)學(xué)建模理論的深度探究,從更加基礎(chǔ)的角度出發(fā)去分析模型,從而更好地將理論運(yùn)用于實(shí)踐。另外,我也將繼續(xù)參加各種數(shù)學(xué)建模競賽,不斷挑戰(zhàn)自己,提高自己的技能水平。
第五段:總結(jié)。
回首自己的數(shù)學(xué)建模之路,我深深體會到數(shù)學(xué)建模的魅力與難度。在實(shí)踐過程中,我不斷地學(xué)習(xí)、嘗試與挑戰(zhàn)自己,才有了今天的成果。未來,我會繼續(xù)深入學(xué)習(xí)、實(shí)踐,不斷提升自己,讓數(shù)學(xué)建模這個寶藏般的領(lǐng)域,能夠不斷地被挖掘、發(fā)現(xiàn)鏈梢,為人類社會提供更多的發(fā)展動力。
數(shù)學(xué)建模課程心得篇七
數(shù)學(xué)建模是應(yīng)用數(shù)學(xué)的一種重要研究方法,通過數(shù)學(xué)模型來描述和分析實(shí)際問題。為了促進(jìn)學(xué)術(shù)交流和經(jīng)驗(yàn)分享,在數(shù)學(xué)建模領(lǐng)域舉辦會議已經(jīng)成為常態(tài)。最近,我有幸參加了一場數(shù)學(xué)建模會議,此次心得體會將分為五個方面進(jìn)行討論。
首先,數(shù)學(xué)建模會議提供了一個學(xué)術(shù)交流的平臺,使得來自不同學(xué)術(shù)領(lǐng)域的研究人員能夠相互學(xué)習(xí)和交流。會議期間,我有機(jī)會聽取了來自各個領(lǐng)域的專家學(xué)者的報(bào)告,了解到不同領(lǐng)域的最新研究成果和發(fā)展趨勢。這種跨學(xué)科的交流對于推動數(shù)學(xué)建模的發(fā)展起到了積極的作用,讓我們有機(jī)會從更廣泛的角度思考和解決實(shí)際問題。
其次,數(shù)學(xué)建模會議提供了一個分享經(jīng)驗(yàn)和方法的機(jī)會。在會議期間,我結(jié)識了很多來自不同地區(qū)和國家的同行,他們分享了他們在數(shù)學(xué)建模過程中遇到的問題和解決方法。這使得我深刻認(rèn)識到,在數(shù)學(xué)建模的過程中,經(jīng)驗(yàn)和方法的分享非常重要。不同的研究者可能會有不同的問題處理思路和解題方法,通過交流和討論,我們能夠更好地完善和改進(jìn)自己的研究方法。
第三,數(shù)學(xué)建模會議對于培養(yǎng)科研合作意識和團(tuán)隊(duì)精神非常有益。在數(shù)學(xué)建模的過程中,往往需要多個研究人員的合作和協(xié)同工作。會議的舉辦為我們提供了一個與他人合作的機(jī)會。通過與其他研究者交流和討論,我們能夠加深對合作的認(rèn)識,并學(xué)會如何與他人進(jìn)行有效的協(xié)作。這對于培養(yǎng)團(tuán)隊(duì)精神以及提高科研工作效率有著積極的影響。
第四,數(shù)學(xué)建模會議還舉辦了一些專題討論和研討會,為與會者提供了進(jìn)一步深入研究和探討特定問題的機(jī)會。這些討論和研討會往往是研究者之間進(jìn)行深入交流和合作的重要平臺,能夠更為細(xì)致地討論問題,并從不同的角度探索解決方案。對于特定問題的研究和討論能夠促進(jìn)我們對該問題的理解和分析,進(jìn)一步提高我們的研究水平和能力。
最后,數(shù)學(xué)建模會議還提供了一個展示研究成果和交流思想的機(jī)會。在會議期間,我有機(jī)會向其他研究者展示自己的研究成果,并與他們進(jìn)行深入的討論和交流。這種展示和交流的機(jī)會不僅可以增加學(xué)術(shù)影響力,還能夠獲得其他研究者的寶貴意見和建議,進(jìn)一步完善和改進(jìn)自己的研究成果。
綜上所述,數(shù)學(xué)建模會議是一個學(xué)術(shù)交流和經(jīng)驗(yàn)分享的平臺。通過參加數(shù)學(xué)建模會議,我有機(jī)會與其他研究人員進(jìn)行交流和合作,共同推進(jìn)數(shù)學(xué)建模領(lǐng)域的發(fā)展。這次會議不僅使我受益匪淺,也為我提供了一個更廣闊的學(xué)術(shù)視野和思維方式。我相信,在今后的學(xué)術(shù)研究中,我會將這次會議的經(jīng)驗(yàn)和體會運(yùn)用到實(shí)踐中,并不斷完善和提高自己在數(shù)學(xué)建模領(lǐng)域的研究能力。
數(shù)學(xué)建模課程心得篇八
讀數(shù)學(xué)建模課程是我大學(xué)三年級的必修課程,這門課程讓我感受到了數(shù)學(xué)的實(shí)用性和嚴(yán)謹(jǐn)性,也讓我深刻理解到數(shù)學(xué)在現(xiàn)實(shí)生活中的重要性。在這門課程中,我學(xué)習(xí)了數(shù)學(xué)模型的構(gòu)建、求解和分析方法,我認(rèn)為,這些知識對于我以后的學(xué)習(xí)和工作都有很大的幫助。
第二段:探究
在學(xué)習(xí)數(shù)學(xué)建模的過程中,我發(fā)現(xiàn),一個好的數(shù)學(xué)模型不僅要符合現(xiàn)實(shí),還要有嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)證明。因此,我學(xué)習(xí)了多種數(shù)學(xué)知識,包括微積分、線性代數(shù)、概率論與數(shù)理統(tǒng)計(jì)等,這些知識讓我能夠更好地構(gòu)建數(shù)學(xué)模型,同時也能夠更好地驗(yàn)證和分析結(jié)果。
第三段:發(fā)揮
在實(shí)踐建模的過程中,我發(fā)現(xiàn),一個好的數(shù)學(xué)模型不僅需要有合適的數(shù)學(xué)公式,還需要有合理的數(shù)據(jù)支持。因此,我學(xué)習(xí)了如何獲取和分析數(shù)據(jù),并學(xué)會了使用MATLAB等計(jì)算工具對數(shù)據(jù)進(jìn)行分析和可視化。這些工具不僅方便了我對數(shù)據(jù)的理解,還能夠幫助我更好地展示數(shù)學(xué)模型的結(jié)果。
第四段:總結(jié)
通過學(xué)習(xí)數(shù)學(xué)建模,我發(fā)現(xiàn)成功的模型需要具備以下特點(diǎn):1、模型要符合現(xiàn)實(shí);2、模型的數(shù)學(xué)表達(dá)式要嚴(yán)謹(jǐn);3、模型需要有合理的數(shù)據(jù)支持;4、模型的結(jié)果需要有實(shí)際意義。這些特點(diǎn)相互為依存,缺一不可。同時,我也認(rèn)識到,在數(shù)學(xué)建模中,靈活性和創(chuàng)新性同樣重要,只有掌握了嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)知識,才能更好地發(fā)揮個人思維的特點(diǎn),構(gòu)建出更為優(yōu)秀的數(shù)學(xué)模型。
第五段:啟示
學(xué)習(xí)數(shù)學(xué)建模的過程中,我不僅學(xué)到了嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)知識,還學(xué)會了如何分析和解決實(shí)際問題。在以后的學(xué)習(xí)和工作中,我將不斷運(yùn)用這些知識和技能,以更好地解決實(shí)際問題,為社會做出自己的貢獻(xiàn)。同時,我也希望更多的人能夠認(rèn)識到數(shù)學(xué)的實(shí)用性和重要性,從而更好地學(xué)習(xí)和應(yīng)用數(shù)學(xué)。
數(shù)學(xué)建模課程心得篇九
數(shù)學(xué)建模是一個重要的學(xué)科領(lǐng)域,它涵蓋了多個學(xué)科和領(lǐng)域,包括數(shù)學(xué)、計(jì)算機(jī)科學(xué)、物理學(xué)等。在我走進(jìn)數(shù)學(xué)建模的過程中,我不僅學(xué)到了各種數(shù)學(xué)方法和工具的使用,還深刻體會到了數(shù)學(xué)建模帶給我的思維方式和解決問題的能力。在這篇文章中,我將分享我在走進(jìn)數(shù)學(xué)建模過程中的心得體會。
第二段:培養(yǎng)問題意識。
數(shù)學(xué)建模的第一步是培養(yǎng)問題意識。在開始建模之前,我們需要詳細(xì)分析問題,確定問題的具體需求和邊界條件。通過認(rèn)真理解問題,我學(xué)會了如何提出有針對性的問題,并在解決問題的過程中避免陷入無關(guān)的細(xì)節(jié)。這個過程讓我意識到,培養(yǎng)問題意識對于解決問題非常關(guān)鍵。
第三段:選擇合適的數(shù)學(xué)方法。
在數(shù)學(xué)建模中,選擇合適的數(shù)學(xué)方法是至關(guān)重要的。不同的問題需要不同的數(shù)學(xué)方法來解決。通過學(xué)習(xí)不同的數(shù)學(xué)方法和模型,我學(xué)會了靈活運(yùn)用數(shù)學(xué)工具來解決實(shí)際問題。我發(fā)現(xiàn),數(shù)學(xué)方法可以幫助我們從多個維度去分析問題,找到問題的本質(zhì),并給出最優(yōu)的解決方案。
第四段:數(shù)據(jù)處理與模型求解。
數(shù)學(xué)建模中,對數(shù)據(jù)的處理和模型的求解是非常重要的步驟。通過學(xué)習(xí)如何處理大量的數(shù)據(jù)和選擇合適的模型進(jìn)行求解,我學(xué)會了如何從海量信息中提取有效的信息,并將其應(yīng)用于實(shí)際問題的解決中。這個過程不僅讓我對實(shí)際問題有了更深入的理解,還提高了我的計(jì)算和分析能力。
第五段:實(shí)踐與總結(jié)。
數(shù)學(xué)建模需要大量的實(shí)踐和總結(jié)。通過參加數(shù)學(xué)建模比賽和實(shí)際項(xiàng)目,我有機(jī)會將課堂上學(xué)到的知識應(yīng)用到實(shí)際情境中,并與隊(duì)友一起解決實(shí)際問題。這個過程不僅鍛煉了我的團(tuán)隊(duì)合作和溝通能力,還讓我深刻認(rèn)識到數(shù)學(xué)建模的重要性和實(shí)際應(yīng)用價值。
總結(jié):
通過走進(jìn)數(shù)學(xué)建模,我不僅學(xué)到了豐富的數(shù)學(xué)知識和方法,還培養(yǎng)了問題意識和解決問題的能力。數(shù)學(xué)建模讓我不再局限于書本知識,而是能夠?qū)⑺鶎W(xué)的數(shù)學(xué)方法用于實(shí)際問題的解決中。通過不斷實(shí)踐和總結(jié),我相信我會在數(shù)學(xué)建模領(lǐng)域繼續(xù)取得進(jìn)步,并將所學(xué)知識應(yīng)用到更多領(lǐng)域中的實(shí)際問題中。走進(jìn)數(shù)學(xué)建模,讓我發(fā)現(xiàn)了數(shù)學(xué)的魅力,并為未來的學(xué)習(xí)和研究提供了更加廣闊的可能性。
數(shù)學(xué)建模課程心得篇十
數(shù)學(xué)建模比賽是一種很有意義的學(xué)科競賽活動,通過這次比賽,不僅是對我們剛剛學(xué)習(xí)過的知識進(jìn)行了一次鞏固和運(yùn)用,也鍛煉了我們解決實(shí)際問題的能力和團(tuán)隊(duì)合作精神。以下是我在數(shù)學(xué)建模比賽中的一些心得和體會。
首先,成功的數(shù)學(xué)建模團(tuán)隊(duì)需要合理的分工和密切的合作。在比賽中,我們團(tuán)隊(duì)成員根據(jù)自己的興趣和長處,合理地分工合作,每人負(fù)責(zé)一個方面的內(nèi)容。比如,我擅長數(shù)據(jù)的處理和模型的建立,所以我承擔(dān)了這方面的工作;而我的搭檔則負(fù)責(zé)論文的寫作和圖表的制作。通過這種合理的分工和互補(bǔ)的合作,我們的團(tuán)隊(duì)才能高效地解決問題,使得整個團(tuán)隊(duì)的水平得到提升。
其次,數(shù)學(xué)建模比賽需要靈活運(yùn)用所學(xué)的理論知識。在競賽中,我們要遇到各種各樣的實(shí)際問題,這些問題并不像課本上的題目那樣單一和規(guī)定好了的。因此,我們不能局限于課本上的一些定式方法,而應(yīng)該充分利用所學(xué)的理論知識,靈活運(yùn)用在實(shí)際問題的解決中。比如,在我們的一次比賽中,我們遇到了一個需同時考慮時間和資源分配的問題,我們運(yùn)用了線性規(guī)劃的方法,通過建立數(shù)學(xué)模型,求解得到了最優(yōu)解。這一經(jīng)驗(yàn)告訴我們,只有將理論知識與實(shí)際問題相結(jié)合,才能高效地解決問題。
第三,數(shù)學(xué)建模比賽需要靈活運(yùn)用不同的思維方法。在我們的比賽中,我們遇到了一道關(guān)于線性回歸的問題。在分析問題時,我嘗試了線性回歸分析的方法,但結(jié)果并不理想。后來,我的隊(duì)友提出了使用指數(shù)回歸的方法,經(jīng)過計(jì)算和比較,我們發(fā)現(xiàn)指數(shù)回歸結(jié)果更符合實(shí)際情況。通過這次經(jīng)歷,我意識到在數(shù)學(xué)建模比賽中,沒有一種固定的思維方法是適用于所有問題的,我們需要根據(jù)具體問題的特點(diǎn)靈活運(yùn)用各種思維方法,從而得到更好的解決方法。
第四,數(shù)學(xué)建模比賽需要注重實(shí)踐和驗(yàn)證。在比賽中,我們提出了一種模型,但我們不能僅僅憑借理論推導(dǎo)和計(jì)算結(jié)果就認(rèn)為模型是正確的。我們還需要通過實(shí)踐和驗(yàn)證來檢驗(yàn)我們的模型是否可行和準(zhǔn)確。比如,在我們的一次模擬實(shí)驗(yàn)中,我們對模型的結(jié)果進(jìn)行了驗(yàn)證,并發(fā)現(xiàn)結(jié)果與實(shí)際情況相吻合,這使我們對我們的模型有了更大的信心。因此,在數(shù)學(xué)建模比賽中,實(shí)踐和驗(yàn)證是非常重要的環(huán)節(jié)。
最后,數(shù)學(xué)建模比賽讓我充分意識到團(tuán)隊(duì)合作的重要性。在比賽中,我們需要相互協(xié)作、相互配合,從而形成一個默契的團(tuán)隊(duì)。在我和隊(duì)友的分工和合作中,我切身感受到了團(tuán)隊(duì)的力量。每當(dāng)遇到困難和挑戰(zhàn)時,我們共同努力,相互支持,最終取得了成功。通過這次比賽,我認(rèn)識到團(tuán)隊(duì)合作可以彌補(bǔ)個人的不足,使解決問題的效果更好。
總之,數(shù)學(xué)建模比賽是一次非常有意義的經(jīng)歷。通過這次比賽,我不僅學(xué)到了更多的理論知識,也鍛煉了自己的解決問題的能力和團(tuán)隊(duì)合作精神。我相信,這些經(jīng)驗(yàn)和體會將對我今后的學(xué)習(xí)和工作產(chǎn)生深遠(yuǎn)的影響。我會繼續(xù)努力,不斷提升自己,在未來的數(shù)學(xué)建模比賽中取得更好的成績。
數(shù)學(xué)建模課程心得篇十一
首先我要說的是學(xué)習(xí)數(shù)學(xué)模型的意義,說到意義就要說到它的價值,我們知道教育必須反映社會的實(shí)際需要,數(shù)學(xué)建模進(jìn)入大學(xué)課堂,既順應(yīng)時代發(fā)展的潮流,也符合教育改革的要求。對于數(shù)學(xué)教育而言,既應(yīng)該讓學(xué)生掌握準(zhǔn)確快捷的計(jì)算方法和嚴(yán)密的邏輯推理,也需要培養(yǎng)學(xué)生用數(shù)學(xué)工具分析解決實(shí)際問題的意識和能力,傳統(tǒng)的數(shù)學(xué)教學(xué)體系和內(nèi)容無疑偏重于前者,而開設(shè)數(shù)學(xué)建模課程則是加強(qiáng)后者的一種嘗試,數(shù)學(xué)建模的初衷是為了幫助大家提升分析問題,解決問題的能力。
新一輪的基礎(chǔ)教育課程改革經(jīng)過近幾年的實(shí)施與推進(jìn),新課程的理念已逐步被廣大教師接受和認(rèn)同,在教學(xué)實(shí)踐的不同層面都得到了不同程度的體現(xiàn)與落實(shí)。作為課程改革的主陣地和落腳點(diǎn)——課堂教學(xué),卻還有或多或少的不盡如人意的地方。所以我們的課堂教學(xué)有必要依據(jù)新課程理念,建立符合實(shí)際的教學(xué)模式。反思我們的現(xiàn)在推行的解決問題課堂教學(xué)模式,不難發(fā)現(xiàn)與新課程改革的要求基本一致,有著諸多優(yōu)點(diǎn),主要表現(xiàn)在以下幾個方面:
一、借助學(xué)生的生活經(jīng)驗(yàn),創(chuàng)設(shè)和諧課堂。
大量的研究表明,和諧的課堂學(xué)習(xí)環(huán)境可以有效的激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)習(xí)效率。在和諧的課堂學(xué)習(xí)環(huán)境中,學(xué)生的精神狀態(tài)自然就會調(diào)整到最佳,并能隨教師一起很快的進(jìn)入到學(xué)習(xí)中來,從而實(shí)現(xiàn)課堂的高效。本次建模研討中的兩節(jié)均能從學(xué)生的生活經(jīng)驗(yàn)出發(fā),來靈活創(chuàng)設(shè)學(xué)習(xí)情境,激發(fā)學(xué)生的學(xué)習(xí)動力,實(shí)現(xiàn)了和諧課堂的創(chuàng)建,為下面數(shù)學(xué)活動的展開做好鋪墊。
二、創(chuàng)設(shè)學(xué)習(xí)情境,激發(fā)學(xué)生參與數(shù)學(xué)學(xué)習(xí)的內(nèi)在動力。
通過本次研討活動,我深深的感受到:把學(xué)生的數(shù)學(xué)學(xué)習(xí)活動置身于一定的學(xué)習(xí)情境之中,把知識的學(xué)習(xí)寓于情境之中,能最大限度的提高學(xué)生的參與度,提高學(xué)生的學(xué)習(xí)效率。在我們推行的這一模式的實(shí)施中,能明顯的看出教師作為學(xué)生學(xué)習(xí)的組織者、合作者、引領(lǐng)者的教師,能為學(xué)生創(chuàng)設(shè)一個放飛心靈、獲取知識的園地,能在我們的課堂中把學(xué)生知識的獲取、能力的發(fā)展、情感的體驗(yàn)、個性的張揚(yáng)盡可能的融合到一起,盡可能的激發(fā)學(xué)生的學(xué)習(xí)積極性,激發(fā)學(xué)生學(xué)習(xí)的興趣,充分發(fā)揮著學(xué)生在學(xué)習(xí)中的主體作用。例如:李艷秋老師執(zhí)教的《相遇問題》一課中,教師提供的餓“送文件”這一學(xué)習(xí)情境,學(xué)生的就在這一情境中展開數(shù)學(xué)學(xué)習(xí)活動,在經(jīng)歷自主探究、合作交流、質(zhì)疑建構(gòu)中體驗(yàn)數(shù)學(xué)學(xué)習(xí)活動的樂趣,在體驗(yàn)探索中自主獲取知識,積累數(shù)學(xué)活動的經(jīng)驗(yàn)。
三、提供開放的課堂環(huán)境,放手讓學(xué)生自主學(xué)習(xí)。
新課程改革倡導(dǎo)我們的數(shù)學(xué)課堂應(yīng)該是面向全體學(xué)生,強(qiáng)調(diào)學(xué)生自覺參與的過程,反對以往教師在課堂中的“權(quán)威地位”。在這兩節(jié)研討課中教師盡可能為學(xué)生創(chuàng)設(shè)具有接納性、寬容性的開放課堂,創(chuàng)設(shè)具有開放性的學(xué)習(xí)情境、問題引領(lǐng)等,來促使學(xué)生全身心的投入到學(xué)習(xí)中,讓學(xué)生真正的做到動眼、動手、動口,實(shí)現(xiàn)課堂效率的有效、高效。例如:周宏娟老師執(zhí)教的《百分?jǐn)?shù)應(yīng)用三》,讓學(xué)生拿出課前調(diào)查的一個家庭支出情況的相關(guān)信息,讓學(xué)生獨(dú)立提出問題,自主嘗試解決,在這樣開放的學(xué)習(xí)環(huán)境中學(xué)生是可此不彼,積極參與,課堂的效果亦是很高!
數(shù)學(xué)建模屬于一門應(yīng)用數(shù)學(xué),學(xué)習(xí)這門課要求我們學(xué)會如何將實(shí)際問題經(jīng)過分析、簡化轉(zhuǎn)化為個數(shù)學(xué)問題,然后用適用的數(shù)學(xué)方法去解決。數(shù)學(xué)建模是一種數(shù)學(xué)的思考方法,是運(yùn)用數(shù)學(xué)的語言和方法,通過抽象、簡化建立能近似刻畫并解決實(shí)際問題的一種強(qiáng)有力地?cái)?shù)學(xué)手段。在學(xué)習(xí)中,我知道了數(shù)學(xué)建模的過程,其過程如下:
(1)模型準(zhǔn)備:了解問題的實(shí)際背景,明確其實(shí)際意義,掌握對象的各種信息。用數(shù)
學(xué)語言來描述問題。
(2)模型假設(shè):根據(jù)實(shí)際對象的特征和建模的目的,對問題進(jìn)行必要的簡化,并用精確地語言提出一些恰當(dāng)?shù)募僭O(shè)。
(3)模型建立:在假設(shè)的基礎(chǔ)上,利用適當(dāng)?shù)臄?shù)學(xué)工具來刻畫各變量之間的數(shù)學(xué)關(guān)系,建立相應(yīng)的數(shù)學(xué)結(jié)構(gòu)。
(4)模型求解:利用或取得的數(shù)據(jù)資料,對模型的所有參數(shù)做出計(jì)算。
(5)模型分析:對所得的結(jié)果進(jìn)行數(shù)學(xué)上的分析。
(6)模型檢驗(yàn):將模型分析結(jié)果與實(shí)際情形進(jìn)行比較,以此來驗(yàn)證模型的準(zhǔn)確性、合理性和適用性。如果模型與實(shí)際較吻合,則要對計(jì)算結(jié)果給出其實(shí)際含義,并進(jìn)行解釋。如果模型與實(shí)際吻合較差,則應(yīng)該修改假設(shè),再次進(jìn)行建模過程。
在學(xué)習(xí)了數(shù)學(xué)模型后,它所教給我們的不單是一些數(shù)學(xué)方面的知識,比如說一些數(shù)學(xué)計(jì)算軟件,學(xué)習(xí)建模的同時,借用各種建模軟件解決問題是必不可少的matlab,lingo,等都是非常方便的。數(shù)學(xué)模型是數(shù)學(xué)學(xué)習(xí)的新的方式,他為我們提供了自主學(xué)習(xí)的空間,有助于我們體驗(yàn)數(shù)學(xué)在解決實(shí)際問題中的價值和作用,體驗(yàn)數(shù)學(xué)與日常生化和其他學(xué)科的聯(lián)系,體驗(yàn)綜合運(yùn)用知識和方法解決實(shí)際問題的過程,增強(qiáng)應(yīng)用意識;而且數(shù)學(xué)模型還對我們有綜合能力的培養(yǎng)、鍛煉與提高。它培養(yǎng)了我們?nèi)妗⒍嘟嵌瓤紤]問題的能力,使我們的邏輯推理能力和量化分析能力得到很好地鍛煉和提高。而且我認(rèn)為數(shù)學(xué)模型帶給我的是發(fā)散性思維,各種研究方法和手段。教會我凡事要有自己的創(chuàng)新,自己的嚴(yán)密思維,不能局限于俗套??傊畬W(xué)習(xí)數(shù)學(xué)模型有利于激發(fā)我們的學(xué)習(xí)數(shù)學(xué)的興趣,豐富我們學(xué)習(xí)數(shù)學(xué)探索的情感體驗(yàn);有利于我們自覺體驗(yàn)、鞏固所學(xué)的的數(shù)學(xué)知識。還鍛煉了我們的耐心和意志力。
總之,數(shù)學(xué)已經(jīng)成為當(dāng)代高科技的一個重要組成部分和思想庫,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識和能力也已經(jīng)成為數(shù)學(xué)教學(xué)的一個重要方面。而應(yīng)用數(shù)學(xué)去解決各類實(shí)際問題就必須建立數(shù)學(xué)模型。中學(xué)數(shù)學(xué)教學(xué)的過程其實(shí)就是教師引導(dǎo)學(xué)生不斷建模和用模的過程。因此,用建模思想指導(dǎo)中學(xué)數(shù)學(xué)教學(xué)顯得愈發(fā)重要。
共
2
頁,當(dāng)前第
2
頁
1
2
數(shù)學(xué)建模課程心得篇十二
通過一個月的集訓(xùn),我受益匪淺。我進(jìn)一步的認(rèn)識到數(shù)學(xué)建模的實(shí)質(zhì)和對參賽隊(duì)員的要求。數(shù)學(xué)建模就是培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)知識解決實(shí)際問題的能力。它要求參賽隊(duì)員有較強(qiáng)的創(chuàng)新精神,有較大的靈活性和隨機(jī)應(yīng)變能力,要求參賽隊(duì)員之間有良好的團(tuán)隊(duì)精神和相互協(xié)作意識。在一個月里,我們學(xué)了許多知識放方法,可以說數(shù)學(xué)建模需要的`知識我們都了解了一點(diǎn),關(guān)鍵在于如何應(yīng)用這些知識。這種即學(xué)即用的能力是我們以后學(xué)習(xí)、工作所必須的能力。在此我對建模是出現(xiàn)的一些現(xiàn)象發(fā)表一些看法。
隨著信息的高速化,我們很容易找到和建模有關(guān)的資料,這對我們理解題目意思和促發(fā)新思路、新想法是有幫助的。但是有的集訓(xùn)小組或集訓(xùn)隊(duì)員他們建模完全依靠找資料,建出來的模型就是幾本參考書的綜合,他們所用的方法完全是別人研究過的東西,連一點(diǎn)改進(jìn)也沒有。如果這樣的話,數(shù)學(xué)建模就失去了意義。我始終堅(jiān)持一個觀點(diǎn):數(shù)學(xué)建模最重要的是創(chuàng)新。無論是你創(chuàng)造一種新方法還是創(chuàng)造性的運(yùn)用一種方法,還是改進(jìn)別人的方法都是很重要的。沒有創(chuàng)新,模型就失去了靈魂;沒有創(chuàng)新,模型就不是你的模型。
我們隊(duì)配合不是很理想。主要是有個隊(duì)員他總認(rèn)為自己是正確的,別人找到的資料不如他好,別人提出的觀點(diǎn)、思想思想無論正確與否,他總是會反對一下。他總是十分注重小的方面,不從大局考慮。由于這些原因,我們建的模型總是不好。
數(shù)學(xué)建模課程心得篇十三
通過對專題七的學(xué)習(xí),我知道了數(shù)學(xué)探究與數(shù)學(xué)建模在中學(xué)中學(xué)習(xí)的重要性,知道了什么是數(shù)學(xué)建模,數(shù)學(xué)建模就是把一個具體的實(shí)際問題轉(zhuǎn)化為一個數(shù)學(xué)問題,然后用數(shù)學(xué)方法去解決它,之后我們再把它放回到實(shí)際當(dāng)中去,用我們的模型解釋現(xiàn)實(shí)生活中的種種現(xiàn)象和規(guī)律。
知道了數(shù)學(xué)建模的幾點(diǎn)要求:一個是問題一定源于學(xué)生的日常生活和現(xiàn)實(shí)當(dāng)中,了解和經(jīng)歷解決實(shí)際問題的過程,并且根據(jù)學(xué)生已有的經(jīng)驗(yàn)發(fā)現(xiàn)要提出的問題。同時,希望同學(xué)們在這一過程中感受數(shù)學(xué)的實(shí)用價值和獲得良好的情感體驗(yàn)。當(dāng)然也希望同學(xué)們在這樣的過程當(dāng)中,學(xué)會通過實(shí)際上數(shù)學(xué)探究本身應(yīng)該說在平時教學(xué)當(dāng)中,老師有些在課堂上也是這樣教學(xué)的,他更重要的意義就是引導(dǎo)老師增加一種教學(xué)方式,首先就是這個問題就是有點(diǎn)兒全新性,解決的方案不是很明了,這樣學(xué)生要有一個嘗試,一個探索的過程查詢資料等手段來獲取信息,之后采取各種合作的方式解決問題,養(yǎng)成與人交流的能力。
實(shí)際上數(shù)學(xué)探究本身應(yīng)該說在平時教學(xué)當(dāng)中,老師有些在課堂上也是這樣教學(xué)的,他更重要的意義就是引導(dǎo)老師增加一種教學(xué)方式,首先就是這個問題就是有點(diǎn)兒全新性,解決的方案不是很明了,這樣的話學(xué)生要有一個嘗試,一個探索的過程。數(shù)學(xué)探究活動的關(guān)健詞就是探究,探究是一個活動或者是一個過程,也是一種學(xué)習(xí)方式,我們比較強(qiáng)調(diào)是用這樣的方式影響學(xué)生,讓他主動的參與,在這個活動當(dāng)中得到更多的知識。
探究的結(jié)果我們認(rèn)為不一定是最重要的,當(dāng)然我們希望探究出來一個結(jié)果,通過這種活動影響學(xué)生,改變他的學(xué)習(xí)方式,增加他的學(xué)習(xí)興趣和能力。我們也關(guān)心,大家也可以看到在標(biāo)準(zhǔn)里面,有非常突出的數(shù)學(xué)建模的這些內(nèi)容,但是它的要求、定位和為什么把這些領(lǐng)域加到我的標(biāo)準(zhǔn)當(dāng)中,你應(yīng)該怎么看待這部分內(nèi)容。
數(shù)學(xué)建模課程心得篇十四
計(jì)算機(jī)學(xué)院、軟件學(xué)院級學(xué)生范娜(保送為華東師大研究生)。
9月的“高教杯”全國大學(xué)生數(shù)學(xué)建模競賽已經(jīng)過去一周多了,但是在我心中,計(jì)算機(jī)學(xué)院、軟件學(xué)院三樓機(jī)房的燈光依然明亮,與隊(duì)友三天三夜一起奮戰(zhàn)的記憶依然清晰。
大二下學(xué)期,我院開設(shè)了《數(shù)學(xué)建?!愤x修課,由于每周只有一大節(jié)《數(shù)學(xué)建?!氛n程,再加上大二專業(yè)主干課程很多,任務(wù)重,除了老師課上的講解,平日我很少有時間去溫習(xí)和預(yù)習(xí),更別說去結(jié)合實(shí)例進(jìn)行建模了。那時的數(shù)學(xué)建模對于我來說就是一項(xiàng)很重要的任務(wù),想要參加但是又不知道如何去完成。但是我認(rèn)為數(shù)學(xué)建模是要求把模型用在實(shí)例中進(jìn)行求解,最重要的就是創(chuàng)建模型的思路以及用語言去描述建模的過程和結(jié)果。
暑假快要來臨時,學(xué)院進(jìn)行參賽隊(duì)員的選拔。參賽的選手由老師選拔和筆試選拔兩部分組成。我是在筆試中被選拔出來的,現(xiàn)在想想,可能差一點(diǎn)就失去了參加數(shù)學(xué)建模的資格。我認(rèn)為選拔還是參照筆試的成績確定人選,從全方位考察學(xué)生的綜合素質(zhì)以及寫作素質(zhì),這樣才能更好的遴選出參賽選手,真正的做到給有創(chuàng)新思維的選手機(jī)會。
隨后遇到的問題就是如何組隊(duì)。我們組是由兩個計(jì)算機(jī)專業(yè)和一個通信工程專業(yè)的學(xué)生組成,現(xiàn)在看來我們的組合有一定的偶然性,但更多的是一種合理性。首先,我們組中有兩位女生,都擅長文字處理工作。應(yīng)該明確的是,數(shù)學(xué)建模比賽最后遞交給組委會的是一篇論文,也就是三天三夜的成果是以文字的形式出現(xiàn)在專家面前,文章中的文字排版、遣詞造句至關(guān)重要。女生的特點(diǎn)之一就是細(xì)心,我們平時很注意收集專業(yè)的描述性詞匯,因此論文詞匯豐富、生動;第二,我們?nèi)齻€的思維出發(fā)點(diǎn)不一樣,各有擅長的數(shù)學(xué)模型和知識能力,這就使我們在分別思考后有更多的內(nèi)容可以討論,增加建模的創(chuàng)新點(diǎn),彌補(bǔ)彼此的不足;第三,我們?nèi)齻€的團(tuán)隊(duì)意識很強(qiáng),彼此相互鼓勵相互扶持。
同時,我還發(fā)現(xiàn)這樣一個現(xiàn)象。由于時間緊張的關(guān)系,我們在培訓(xùn)的時候還沒有完整的做過一道題目。也就是說在賽前大家主要進(jìn)行理論上的準(zhǔn)備,很少進(jìn)行實(shí)踐,這樣就不能預(yù)見和發(fā)現(xiàn)小組在未來要進(jìn)行的三天三夜中,究竟會遇到什么問題。針對這樣的現(xiàn)象,我們小組用了三天的時間來進(jìn)行比賽的模擬,每天做一道題。我們嚴(yán)格按照比賽的標(biāo)準(zhǔn)來要求自己:早上開始審題,組員分別思考一小時進(jìn)行個人建模,其次三人一起討論,然后編寫論文,盡量把論文詳細(xì)的寫出來一部分直到一天結(jié)束。在模擬的過程中我們遇到很多的問題,比如時常會忘記討論的初步模型和一些思路,因此我們在真正比賽的時候會對小組的的討論進(jìn)行錄音,這樣可以隨時查看建模的思路。像這樣的細(xì)節(jié)問題只能是在模擬中才能發(fā)現(xiàn)的,因此我認(rèn)為在賽前進(jìn)行比賽的模擬也是十分重要的。
接下來的三天三夜讓我很難忘,我也有很多的感想。數(shù)學(xué)建模不是一般意義的解題,它允許你使用任何已有的東西,包括別人的'研究成果、圖書資料、網(wǎng)絡(luò)資源等等,但抄襲是不允許的。這些東西都需要證明,但要結(jié)合實(shí)例進(jìn)行求解。在賽前word文檔要熟練掌握,如果熟練程度不夠,那么在建模比賽中,在整理文檔這一項(xiàng)上就會浪費(fèi)大量的時間與精力。光有錄入速度是不夠的,還要注意符號的書寫,頁碼的插入,公式編輯器的熟練運(yùn)用。還要有熱情,要有認(rèn)真、嚴(yán)謹(jǐn)?shù)目茖W(xué)精神。當(dāng)我們遇到我們不會的問題,需要用到新的知識時,我們會毫不猶豫的去學(xué)習(xí)這些知識,熱情使我們不懼怕任何困難。
總之,這次建模競賽不論是在知識面上還是在動手能力上都是對我的一種挑戰(zhàn),盡管一路走來十分辛苦,但是卻使我多了一種充實(shí)自我的經(jīng)歷,多了一份創(chuàng)造的經(jīng)驗(yàn),多了一份坦然面對的自信,從而在前進(jìn)的道路上走的更順暢。在這個過程中,指導(dǎo)老師和我們一起度過炎炎夏日,也陪我們熬夜修改論文,非常辛苦,也向給予我們指導(dǎo)的各位老師和建模過程中關(guān)心我們的院領(lǐng)導(dǎo)表示衷心的感謝!
數(shù)學(xué)建模課程心得篇十五
通過一個月的集訓(xùn),我受益匪淺。我進(jìn)一步的認(rèn)識到數(shù)學(xué)建模的實(shí)質(zhì)和對參賽隊(duì)員的要求。數(shù)學(xué)建模就是培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)知識解決實(shí)際問題的能力。它要求參賽隊(duì)員有較強(qiáng)的創(chuàng)新精神,有較大的'靈活性和隨機(jī)應(yīng)變能力,要求參賽隊(duì)員之間有良好的團(tuán)隊(duì)精神和相互協(xié)作意識。在一個月里,我們學(xué)了許多知識放方法,可以說數(shù)學(xué)建模需要的知識我們都了解了一點(diǎn),關(guān)鍵在于如何應(yīng)用這些知識。這種即學(xué)即用的能力是我們以后學(xué)習(xí)、工作所必須的能力。在此我對建模是出現(xiàn)的一些現(xiàn)象發(fā)表一些看法。
隨著信息的高速化,我們很容易找到和建模有關(guān)的資料,這對我們理解題目意思和促發(fā)新思路、新想法是有幫助的。但是有的集訓(xùn)小組或集訓(xùn)隊(duì)員他們建模完全依靠找資料,建出來的模型就是幾本參考書的綜合,他們所用的方法完全是別人研究過的東西,連一點(diǎn)改進(jìn)也沒有。如果這樣的話,數(shù)學(xué)建模就失去了意義。我始終堅(jiān)持一個觀點(diǎn):數(shù)學(xué)建模最重要的是創(chuàng)新。無論是你創(chuàng)造一種新方法還是創(chuàng)造性的運(yùn)用一種方法,還是改進(jìn)別人的方法都是很重要的。沒有創(chuàng)新,模型就失去了靈魂;沒有創(chuàng)新,模型就不是你的模型。
我們隊(duì)配合不是很理想。主要是有個隊(duì)員他總認(rèn)為自己是正確的,別人找到的資料不如他好,別人提出的觀點(diǎn)、思想思想無論正確與否,他總是會反對一下。他總是十分注重小的方面,不從大局考慮。由于這些原因,我們建的模型總是不好。
數(shù)學(xué)建模課程心得篇十六
第一段:引言(大約200字)。
數(shù)學(xué)建模是一門富有挑戰(zhàn)性的學(xué)科,是實(shí)際問題與數(shù)學(xué)工具的結(jié)合。在我參與數(shù)學(xué)建模的過程中,我得到了很多寶貴的經(jīng)驗(yàn)和體會。通過這次數(shù)學(xué)建模的實(shí)踐,我對問題的分析思維能力得到了很大的提高,同時也加深了對數(shù)學(xué)知識的理解。在這篇文章中,我將分享我在數(shù)學(xué)建模中得到的一些心得體會。
第二段:問題的抽象與建模(大約200字)。
在數(shù)學(xué)建模中,第一步就是對實(shí)際問題進(jìn)行抽象,將其轉(zhuǎn)化為數(shù)學(xué)模型。這個過程需要我們深入理解問題的背景和相關(guān)條件,并且能夠從中提取出關(guān)鍵因素。在此過程中,我更加注重思考問題的本質(zhì)和實(shí)質(zhì),并盡量將其簡化和轉(zhuǎn)化為數(shù)學(xué)語言。通過這樣的方法,我能夠更好地理解問題,并且找到解決方法。
第三段:數(shù)學(xué)工具的選擇與運(yùn)用(大約200字)。
數(shù)學(xué)建模需要使用各種數(shù)學(xué)工具來解決實(shí)際問題。在選擇合適的數(shù)學(xué)工具時,我們需要考慮問題的特點(diǎn)和數(shù)學(xué)方法的適用性。在我參與數(shù)學(xué)建模的過程中,我學(xué)會了靈活運(yùn)用數(shù)學(xué)工具,并且在解決問題的過程中發(fā)現(xiàn)了不同方法的優(yōu)缺點(diǎn)。同時,我也深刻認(rèn)識到數(shù)學(xué)工具的應(yīng)用是問題解決的一種手段,我們更應(yīng)該注重問題的理解和建模能力。
第四段:團(tuán)隊(duì)合作與溝通(大約200字)。
在數(shù)學(xué)建模中,團(tuán)隊(duì)合作和良好的溝通是非常重要的。每個人都有自己的專長和想法,只有相互合作和交流,才能更好地解決問題。在我參與數(shù)學(xué)建模的團(tuán)隊(duì)中,我們充分發(fā)揮了每個人的優(yōu)勢,相互協(xié)作,共同攻克了問題。通過互相討論和反饋,我們不斷完善和改進(jìn)我們的模型,最終取得了令人滿意的成果。
第五段:總結(jié)與展望(大約200字)。
通過這次數(shù)學(xué)建模的實(shí)踐,我得到了很多寶貴的經(jīng)驗(yàn)和收獲。我深刻認(rèn)識到數(shù)學(xué)建模是一門綜合運(yùn)用各種數(shù)學(xué)知識和方法的學(xué)科,需要我們具備扎實(shí)的數(shù)學(xué)基礎(chǔ)和良好的問題解決能力。同時,數(shù)學(xué)建模也需要我們擁有團(tuán)隊(duì)合作和溝通的能力,通過共同努力解決問題。在未來的學(xué)習(xí)和實(shí)踐中,我將繼續(xù)深化對數(shù)學(xué)知識的理解,提升問題解決能力,為更復(fù)雜的實(shí)際問題提供更好的解決方案。
通過以上五段式的連貫文章,我對數(shù)學(xué)建模這門學(xué)科作了全面而深入的總結(jié)。我分享了在數(shù)學(xué)建模中的心得體會,包括問題的抽象與建模、數(shù)學(xué)工具的選擇與運(yùn)用,團(tuán)隊(duì)合作與溝通等方面。在總結(jié)與展望部分,我明確了對未來的學(xué)習(xí)和實(shí)踐的規(guī)劃,希望能夠繼續(xù)提升自己的數(shù)學(xué)建模能力,為解決更復(fù)雜的實(shí)際問題做出更大的貢獻(xiàn)。通過這篇文章,我希望能夠鼓勵更多的人參與數(shù)學(xué)建模,并且能夠體會到其中的樂趣和挑戰(zhàn)。
數(shù)學(xué)建模課程心得篇十七
一年一度的全國數(shù)學(xué)建模大賽在今年的x月x日上午8點(diǎn)拉開戰(zhàn)幕,各隊(duì)將在3天72小時內(nèi)對一個現(xiàn)實(shí)中的實(shí)際問題進(jìn)行模型建立,求解和分析,確定題目后,我們隊(duì)三人分頭行動,一人去圖書館查閱資料,一人在網(wǎng)上搜索相關(guān)信息,一人建立模型,通過三人的努力,在前兩天中建立出兩個模型并編程求解,經(jīng)過艱苦的奮斗,終于在第三天完成了論文的寫作,在這三天里我感觸很深,現(xiàn)將心得體會寫出,希望與大家交流。
1.團(tuán)隊(duì)精神:團(tuán)隊(duì)精神是數(shù)學(xué)建模是否取得好成績的最重要的因素,一隊(duì)三個人要相互支持,相互鼓勵。切勿自己只管自己的一部分(數(shù)學(xué)好的只管建模,計(jì)算機(jī)好的只管編程,寫作好的只管論文寫作),很多時候,一個人的思考是不全面的,只有大家一起討論才有可能把問題搞清楚,因此無論做任何板塊,三個人要一起齊心才行,只靠一個人的力量,要在三天之內(nèi)寫出一篇高水平的文章幾乎是不可能的。
2.有影響力的leader:在比賽中,leader是很重要的,他的作用就相當(dāng)與計(jì)算機(jī)中的cpu,是全隊(duì)的核心,如果一個隊(duì)的leader不得力,往往影響一個隊(duì)的正常發(fā)揮,就拿選題來說,有人想做a題,有人想做b題,如果爭論一天都未確定方案的話,可能就沒有足夠時間完成一篇論文了,又比如,當(dāng)隊(duì)中有人信心動搖時(特別是第三天,人可能已經(jīng)心力交瘁了),leader應(yīng)發(fā)揮其作用,讓整個隊(duì)伍重整信心,否則可能導(dǎo)致隊(duì)伍的前功盡棄。
3.合理的時間安排:做任何事情,合理的時間安排非常重要,建模也是一樣,事先要做好一個規(guī)劃,建模一共分十個板塊(摘要,問題提出,模型假設(shè),問題分析,模型假設(shè),模型建立,模型求解,結(jié)果分析,模型的評價與推廣,參考文獻(xiàn),附錄)。你每天要做完哪幾個板塊事先要確定好,這樣做才會使自己游刃有余,保證在規(guī)定時間內(nèi)完成論文,以避免由于時間上的不妥,以致于最后無法完成論文。
4.正確的論文格式:論文屬于科學(xué)性的文章,它有嚴(yán)格的書寫格式規(guī)范,因此一篇好的論文一定要有正確的格式,就拿摘要來說吧,它要包括6要素(問題,方法,模型,算法,結(jié)論,特色),它是一篇論文的概括,摘要的好壞將決定你的論文是否吸引評委的目光,但聽閱卷老師說,這次有些論文的摘要里出現(xiàn)了大量的圖表和程序,這都是不符合論文格式的,這種論文也不會取得好成績,因此我們寫論文時要端正態(tài)度,注意書寫格式。
5.論文的寫作:我個人認(rèn)為論文的寫作是至關(guān)重要的,其實(shí)大家最后的模型和結(jié)果都差不多,為什么有些隊(duì)可以送全國,有些隊(duì)可以拿省獎,而有些隊(duì)卻什么都拿不到,這關(guān)鍵在于論文的寫作上面。一篇好的論文首先讀上去便使人感到邏輯清晰,有條例性,能打動評委;其次,論文在語言上的表述也很重要,要注意用詞的準(zhǔn)確性;另外,一篇好的論文應(yīng)有閃光點(diǎn),有自己的特色,有自己的想法和思考在里面,總之,論文寫作的好壞將直接影響到成績的優(yōu)劣。
6.算法的設(shè)計(jì):算法的設(shè)計(jì)的好壞將直接影響運(yùn)算速度的快慢,建議大家多用數(shù)學(xué)軟件(mathematice,matlab,maple,mathcad,lindo,lingo,sas等),這里提供十種數(shù)學(xué)建模常用算法,僅供參考:
(1)蒙特卡羅算法(該算法又稱隨機(jī)性模擬算法,是通過計(jì)算機(jī)仿真來解決問題的算法,同時可以通過模擬可以來檢驗(yàn)自己模型的正確性,是比賽時必用的方法)。
(2)數(shù)據(jù)擬合、參數(shù)估計(jì)、插值等數(shù)據(jù)處理算法(比賽中通常會遇到大量的數(shù)據(jù)需要處理,而處理數(shù)據(jù)的關(guān)鍵就在于這些算法,通常使用matlab作為工具)。
(3)線性規(guī)劃、整數(shù)規(guī)劃、多元規(guī)劃、二次規(guī)劃等規(guī)劃類問題(建模競賽大多數(shù)問題屬于最優(yōu)化問題,很多時候這些問題可以用數(shù)學(xué)規(guī)劃算法來描述,通常使用lindo、lingo軟件實(shí)現(xiàn))。
(4)圖論算法(這類算法可以分為很多種,包括最短路、網(wǎng)絡(luò)流、二分圖等算法,涉及到圖論的問題可以用這些方法解決,需要認(rèn)真準(zhǔn)備)。
(5)動態(tài)規(guī)劃、回溯搜索、分治算法、分支定界等計(jì)算機(jī)算法(這些算法是算法設(shè)計(jì)中比較常用的方法,很多場合可以用到競賽中)。
(6)最優(yōu)化理論的三大非經(jīng)典算法:模擬退火法、神經(jīng)網(wǎng)絡(luò)、遺傳算法(這些問題是用來解決一些較困難的最優(yōu)化問題的算法,對于有些問題非常有幫助,但是算法的實(shí)現(xiàn)比較困難,需慎重使用)。
(7)網(wǎng)格算法和窮舉法(網(wǎng)格算法和窮舉法都是暴力搜索最優(yōu)點(diǎn)的算法,在很多競賽題中有應(yīng)用,當(dāng)重點(diǎn)討論模型本身而輕視算法的時候,可以使用這種暴力方案,最好使用一些高級語言作為編程工具)。
(8)一些連續(xù)離散化方法(很多問題都是實(shí)際來的,數(shù)據(jù)可以是連續(xù)的,而計(jì)算機(jī)只認(rèn)的是離散的數(shù)據(jù),因此將其離散化后進(jìn)行差分代替微分、求和代替積分等思想是非常重要的)。
(9)數(shù)值分析算法(如果在比賽中采用高級語言進(jìn)行編程的話,那一些數(shù)值分析中常用的算法比如方程組求解、矩陣運(yùn)算、函數(shù)積分等算法就需要額外編寫庫函數(shù)進(jìn)行調(diào)用)。
(10)圖象處理算法(賽題中有一類問題與圖形有關(guān),即使與圖形無關(guān),論文中也應(yīng)該要不乏圖片的,這些圖形如何展示以及如何處理就是需要解決的問題,通常使用matlab進(jìn)行處理)。
數(shù)學(xué)建模課程心得篇一
數(shù)學(xué)建模心得要怎么寫,才更標(biāo)準(zhǔn)規(guī)范?根據(jù)多年的文秘寫作經(jīng)驗(yàn),參考優(yōu)秀的數(shù)學(xué)建模心得樣本能讓你事半功倍,下面分享【數(shù)學(xué)建模心得通用5篇】,供你選擇借鑒。
以前在大一時就曾聽說過數(shù)學(xué)建模這一學(xué)科,但只是很膚淺的了解,還錯誤的以為這門學(xué)科只是跟數(shù)學(xué)有關(guān)系,只要數(shù)學(xué)學(xué)好了,學(xué)好數(shù)學(xué)建模就輕而易舉了。因?yàn)樽约簲?shù)學(xué)一直很好,對數(shù)學(xué)建模很感興趣,也很自信,于是,大二時毫無疑問地選修了數(shù)學(xué)建模這門專業(yè)選修課,但是選擇了以后才發(fā)現(xiàn)根本不像自己想象的那樣簡單。選修課時,對數(shù)學(xué)建模有了進(jìn)一步了解,數(shù)學(xué)建模主要包括三大部分的內(nèi)容:統(tǒng)計(jì),優(yōu)化,微分和差分。但是這也只是表面上的了解而已,上課老師只針對某一部分,告訴你要針對這一部分具體該怎么做,只是一種固定的模式,沒有自己的任何建模思想。
百度上對數(shù)學(xué)建模的定義是這樣子的:當(dāng)需要從定量的角度分析和研究一個實(shí)際問題時,人們就要在深入調(diào)查研究、了解對象信息、作出簡化假設(shè)、分析內(nèi)在規(guī)律等工作的基礎(chǔ)上,用數(shù)學(xué)的符號和語言,把它表述為數(shù)學(xué)式子,也就是數(shù)學(xué)模型,然后用通過計(jì)算得到的模型結(jié)果來解釋實(shí)際問題,并接受實(shí)際的檢驗(yàn)。這個建立數(shù)學(xué)模型的全過程就稱為數(shù)學(xué)建模。不論是用數(shù)學(xué)方法在科技和生產(chǎn)領(lǐng)域解決哪類實(shí)際問題,還是與其它學(xué)科相結(jié)合形成交叉學(xué)科,首要的和關(guān)鍵的一步是建立研究對象的數(shù)學(xué)模型,并加以計(jì)算求解。數(shù)學(xué)建模和計(jì)算機(jī)技術(shù)在知識經(jīng)濟(jì)時代的作用可謂是如虎添翼。
數(shù)學(xué)建模是一種模擬,是用數(shù)學(xué)符號、數(shù)學(xué)式子、程序、圖形等對實(shí)際課題本質(zhì)屬性的抽象而又簡潔的刻劃,它或能解釋某些客觀現(xiàn)象,或能預(yù)測未來的發(fā)展規(guī)律,或能為控制某一現(xiàn)象的發(fā)展提供某種意義下的最優(yōu)策略或較好策略。數(shù)學(xué)模型一般并非現(xiàn)實(shí)問題的直接翻版,它的建立常常既需要人們對現(xiàn)實(shí)問題深入細(xì)微的觀察和分析,又需要人們靈活巧妙地利用各種數(shù)學(xué)知識。這種應(yīng)用知識從實(shí)際課題中抽象、提煉出數(shù)學(xué)模型的過程就稱為數(shù)學(xué)建模數(shù)學(xué)建模數(shù)學(xué)建模數(shù)學(xué)建模。
經(jīng)過了這段時間對數(shù)學(xué)建模的學(xué)習(xí),我終于對數(shù)學(xué)建模有了進(jìn)一步的認(rèn)識,數(shù)學(xué)建模是一個經(jīng)歷觀察、思考、歸類、抽象與總結(jié)的過程,也是一個信息捕捉、篩選、整理的過程,更是一個思想與方法的產(chǎn)生與選擇的過程。它給我們再現(xiàn)了一種“微型科研”的過程。它激發(fā)我們學(xué)習(xí)數(shù)學(xué)的興趣,豐富了數(shù)學(xué)探索的情感體驗(yàn);有利于我們自覺檢驗(yàn)、鞏固所學(xué)的數(shù)學(xué)知識,促進(jìn)知識的深化、發(fā)展;有利于我們體會和感悟數(shù)學(xué)思想方法。
記得第一節(jié)課時,老師給我們解釋什么是數(shù)學(xué)建模,老師舉了一個簡單的例子,“問題:樹上有十只鳥,開槍打死一只,還剩幾只?”,當(dāng)時我們都覺得很奇怪,這問題很高深嗎?這和數(shù)學(xué)建模有什么關(guān)系嗎?緊接著老師就給我們解釋了這道題,“是無聲手槍或別的無聲的槍嗎?不是。槍聲有多大?80—100分貝。那就是說會震得耳朵疼?是。在這個城市里打鳥犯不犯法?不犯。您確定鳥里真的沒有聾子?沒有。有沒有關(guān)在籠子里的?沒有。邊上還有沒有其他的樹,樹上還有沒有其他的鳥?沒有有沒有殘疾的鳥或餓得飛不動的鳥?沒有。打鳥的人眼有沒有花?保證是十只?沒有花,就十只。有沒有傻得不怕死的鳥?都怕死。會不會一槍打死兩只?不會。所有的鳥都可以自由活動嗎?完全可以。如果您的回答沒有騙人,打死的鳥要是掛在是掛在樹上沒掉下來,那么就剩一只,若果掉下來,就一只不剩?!边@就是數(shù)學(xué)建模。從不同度思考一個問題,想盡所有的可能,正所謂智者千慮,絕無一失,這才是數(shù)學(xué)建模的高手。然后,老師講了數(shù)學(xué)建模能力的培養(yǎng)與提升,讓我們感覺到,原來學(xué)好數(shù)學(xué)建模并不是一件簡單的事靠的是分析題意的能力、查找資料的能力、建立數(shù)學(xué)模型的能力、問題的轉(zhuǎn)化能力、現(xiàn)學(xué)現(xiàn)用的能力、編程能力、論文寫作能力等多方面的能力。
首先我要說的是學(xué)習(xí)數(shù)學(xué)模型的意義,說到意義就要說到它的價值,我們知道教育必須反映社會的實(shí)際需要,數(shù)學(xué)建模進(jìn)入大學(xué)課堂,既順應(yīng)時代發(fā)展的潮流,也符合教育改革的要求。對于數(shù)學(xué)教育而言,既應(yīng)該讓學(xué)生掌握準(zhǔn)確快捷的計(jì)算方法和嚴(yán)密的邏輯推理,也需要培養(yǎng)學(xué)生用數(shù)學(xué)工具分析解決實(shí)際問題的意識和能力,傳統(tǒng)的數(shù)學(xué)教學(xué)體系和內(nèi)容無疑偏重于前者,而開設(shè)數(shù)學(xué)建模課程則是加強(qiáng)后者的一種嘗試,數(shù)學(xué)建模的初衷是為了幫助大家提升分析問題,解決問題的能力。
新一輪的基礎(chǔ)教育課程改革經(jīng)過近幾年的實(shí)施與推進(jìn),新課程的理念已逐步被廣大教師接受和認(rèn)同,在教學(xué)實(shí)踐的不同層面都得到了不同程度的體現(xiàn)與落實(shí)。作為課程改革的主陣地和落腳點(diǎn)——課堂教學(xué),卻還有或多或少的不盡如人意的地方。所以我們的課堂教學(xué)有必要依據(jù)新課程理念,建立符合實(shí)際的教學(xué)模式。反思我們的現(xiàn)在推行的解決問題課堂教學(xué)模式,不難發(fā)現(xiàn)與新課程改革的要求基本一致,有著諸多優(yōu)點(diǎn),主要表現(xiàn)在以下幾個方面:
一、借助學(xué)生的生活經(jīng)驗(yàn),創(chuàng)設(shè)和諧課堂。
大量的研究表明,和諧的課堂學(xué)習(xí)環(huán)境可以有效的激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)習(xí)效率。在和諧的課堂學(xué)習(xí)環(huán)境中,學(xué)生的精神狀態(tài)自然就會調(diào)整到最佳,并能隨教師一起很快的進(jìn)入到學(xué)習(xí)中來,從而實(shí)現(xiàn)課堂的高效。本次建模研討中的兩節(jié)均能從學(xué)生的生活經(jīng)驗(yàn)出發(fā),來靈活創(chuàng)設(shè)學(xué)習(xí)情境,激發(fā)學(xué)生的學(xué)習(xí)動力,實(shí)現(xiàn)了和諧課堂的創(chuàng)建,為下面數(shù)學(xué)活動的展開做好鋪墊。
二、創(chuàng)設(shè)學(xué)習(xí)情境,激發(fā)學(xué)生參與數(shù)學(xué)學(xué)習(xí)的內(nèi)在動力。
通過本次研討活動,我深深的感受到:把學(xué)生的數(shù)學(xué)學(xué)習(xí)活動置身于一定的學(xué)習(xí)情境之中,把知識的學(xué)習(xí)寓于情境之中,能最大限度的提高學(xué)生的參與度,提高學(xué)生的學(xué)習(xí)效率。在我們推行的這一模式的實(shí)施中,能明顯的看出教師作為學(xué)生學(xué)習(xí)的組織者、合作者、引領(lǐng)者的教師,能為學(xué)生創(chuàng)設(shè)一個放飛心靈、獲取知識的園地,能在我們的課堂中把學(xué)生知識的獲取、能力的發(fā)展、情感的體驗(yàn)、個性的張揚(yáng)盡可能的融合到一起,盡可能的激發(fā)學(xué)生的學(xué)習(xí)積極性,激發(fā)學(xué)生學(xué)習(xí)的興趣,充分發(fā)揮著學(xué)生在學(xué)習(xí)中的主體作用。例如:李艷秋老師執(zhí)教的《相遇問題》一課中,教師提供的餓“送文件”這一學(xué)習(xí)情境,學(xué)生的就在這一情境中展開數(shù)學(xué)學(xué)習(xí)活動,在經(jīng)歷自主探究、合作交流、質(zhì)疑建構(gòu)中體驗(yàn)數(shù)學(xué)學(xué)習(xí)活動的樂趣,在體驗(yàn)探索中自主獲取知識,積累數(shù)學(xué)活動的經(jīng)驗(yàn)。
三、提供開放的課堂環(huán)境,放手讓學(xué)生自主學(xué)習(xí)。
新課程改革倡導(dǎo)我們的數(shù)學(xué)課堂應(yīng)該是面向全體學(xué)生,強(qiáng)調(diào)學(xué)生自覺參與的過程,反對以往教師在課堂中的“權(quán)威地位”。在這兩節(jié)研討課中教師盡可能為學(xué)生創(chuàng)設(shè)具有接納性、寬容性的開放課堂,創(chuàng)設(shè)具有開放性的學(xué)習(xí)情境、問題引領(lǐng)等,來促使學(xué)生全身心的投入到學(xué)習(xí)中,讓學(xué)生真正的做到動眼、動手、動口,實(shí)現(xiàn)課堂效率的有效、高效。例如:周宏娟老師執(zhí)教的《百分?jǐn)?shù)應(yīng)用三》,讓學(xué)生拿出課前調(diào)查的一個家庭支出情況的相關(guān)信息,讓學(xué)生獨(dú)立提出問題,自主嘗試解決,在這樣開放的學(xué)習(xí)環(huán)境中學(xué)生是可此不彼,積極參與,課堂的效果亦是很高!
數(shù)學(xué)建模屬于一門應(yīng)用數(shù)學(xué),學(xué)習(xí)這門課要求我們學(xué)會如何將實(shí)際問題經(jīng)過分析、簡化轉(zhuǎn)化為個數(shù)學(xué)問題,然后用適用的數(shù)學(xué)方法去解決。數(shù)學(xué)建模是一種數(shù)學(xué)的思考方法,是運(yùn)用數(shù)學(xué)的語言和方法,通過抽象、簡化建立能近似刻畫并解決實(shí)際問題的一種強(qiáng)有力地?cái)?shù)學(xué)手段。在學(xué)習(xí)中,我知道了數(shù)學(xué)建模的過程,其過程如下:
(1)模型準(zhǔn)備:了解問題的實(shí)際背景,明確其實(shí)際意義,掌握對象的各種信息。用數(shù)
學(xué)語言來描述問題。
(2)模型假設(shè):根據(jù)實(shí)際對象的特征和建模的目的,對問題進(jìn)行必要的簡化,并用精確地語言提出一些恰當(dāng)?shù)募僭O(shè)。
(3)模型建立:在假設(shè)的基礎(chǔ)上,利用適當(dāng)?shù)臄?shù)學(xué)工具來刻畫各變量之間的數(shù)學(xué)關(guān)系,建立相應(yīng)的數(shù)學(xué)結(jié)構(gòu)。
(4)模型求解:利用或取得的數(shù)據(jù)資料,對模型的所有參數(shù)做出計(jì)算。
(5)模型分析:對所得的結(jié)果進(jìn)行數(shù)學(xué)上的分析。
(6)模型檢驗(yàn):將模型分析結(jié)果與實(shí)際情形進(jìn)行比較,以此來驗(yàn)證模型的準(zhǔn)確性、合理性和適用性。如果模型與實(shí)際較吻合,則要對計(jì)算結(jié)果給出其實(shí)際含義,并進(jìn)行解釋。如果模型與實(shí)際吻合較差,則應(yīng)該修改假設(shè),再次進(jìn)行建模過程。
在學(xué)習(xí)了數(shù)學(xué)模型后,它所教給我們的不單是一些數(shù)學(xué)方面的知識,比如說一些數(shù)學(xué)計(jì)算軟件,學(xué)習(xí)建模的同時,借用各種建模軟件解決問題是必不可少的matlab,lingo,等都是非常方便的。數(shù)學(xué)模型是數(shù)學(xué)學(xué)習(xí)的新的方式,他為我們提供了自主學(xué)習(xí)的空間,有助于我們體驗(yàn)數(shù)學(xué)在解決實(shí)際問題中的價值和作用,體驗(yàn)數(shù)學(xué)與日常生化和其他學(xué)科的聯(lián)系,體驗(yàn)綜合運(yùn)用知識和方法解決實(shí)際問題的過程,增強(qiáng)應(yīng)用意識;而且數(shù)學(xué)模型還對我們有綜合能力的培養(yǎng)、鍛煉與提高。它培養(yǎng)了我們?nèi)?、多角度考慮問題的能力,使我們的邏輯推理能力和量化分析能力得到很好地鍛煉和提高。而且我認(rèn)為數(shù)學(xué)模型帶給我的是發(fā)散性思維,各種研究方法和手段。教會我凡事要有自己的創(chuàng)新,自己的嚴(yán)密思維,不能局限于俗套??傊畬W(xué)習(xí)數(shù)學(xué)模型有利于激發(fā)我們的學(xué)習(xí)數(shù)學(xué)的興趣,豐富我們學(xué)習(xí)數(shù)學(xué)探索的情感體驗(yàn);有利于我們自覺體驗(yàn)、鞏固所學(xué)的的數(shù)學(xué)知識。還鍛煉了我們的耐心和意志力。
總之,數(shù)學(xué)已經(jīng)成為當(dāng)代高科技的一個重要組成部分和思想庫,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識和能力也已經(jīng)成為數(shù)學(xué)教學(xué)的一個重要方面。而應(yīng)用數(shù)學(xué)去解決各類實(shí)際問題就必須建立數(shù)學(xué)模型。中學(xué)數(shù)學(xué)教學(xué)的過程其實(shí)就是教師引導(dǎo)學(xué)生不斷建模和用模的過程。因此,用建模思想指導(dǎo)中學(xué)數(shù)學(xué)教學(xué)顯得愈發(fā)重要。
自從大二下學(xué)期真正開了數(shù)學(xué)模型這一門課之后,我對數(shù)學(xué)認(rèn)識又進(jìn)一步加深。雖然我是學(xué)純數(shù)學(xué)即數(shù)學(xué)與應(yīng)用數(shù)學(xué),但是在我的認(rèn)知中,數(shù)學(xué)最多的是單純地證明一些定理抑或是反復(fù)的計(jì)算一些步驟比較多的題進(jìn)而求解。隨著老師在課堂上一點(diǎn)一點(diǎn)的引導(dǎo)、介紹、講解,我漸漸地發(fā)現(xiàn)數(shù)學(xué)真的是很萬能啊(在我看來),任何實(shí)際問題只要運(yùn)用數(shù)學(xué)建立模型都可以抽象成一個數(shù)學(xué)方面的問題,進(jìn)而單純的分析、計(jì)算、求解。這只是我大體的認(rèn)識。
首先,通過數(shù)學(xué)模型這一門課我解開了數(shù)學(xué)模型的神秘面紗,與數(shù)學(xué)模型緊密相連的就是數(shù)學(xué)建模,簡而言之來說數(shù)學(xué)建模就是應(yīng)用數(shù)學(xué)模型來解決各種實(shí)際問題的過程,也就是通過對實(shí)際問題的抽象、簡化、確定變量和參數(shù),并應(yīng)用某些規(guī)律建立變量與參數(shù)之間的關(guān)系的數(shù)學(xué)問題(或稱一個數(shù)學(xué)模型),在借用計(jì)算機(jī)求解該數(shù)學(xué)問題,并解釋,檢驗(yàn),評價所得的解,從而確定能否將其用于解決實(shí)際問題的多次循環(huán),不斷深化的過程。
以下是我學(xué)習(xí)數(shù)學(xué)模型的一些心得:
第一,數(shù)學(xué)模型是數(shù)學(xué)的一個分支,它還沒有脫離數(shù)學(xué),眾所周知數(shù)學(xué)是一門比較抽象的課程,主要需要和訓(xùn)練的還是邏輯思維。因此數(shù)學(xué)模型需要和訓(xùn)練的都基本是思維,但和純數(shù)學(xué)區(qū)別的是數(shù)學(xué)模型只要抽象出數(shù)學(xué)問題的本質(zhì),進(jìn)而建模,那之后不是非得自己一步步地演算、求解。
第二,數(shù)學(xué)模型最后的求解很多時候都不可避免地要用到計(jì)算機(jī),比如像matlab,spss,linggo之類的數(shù)學(xué)軟件。因此在學(xué)習(xí)過程中我們也得對這些軟件有一定的了解和認(rèn)識。這也就與平常的學(xué)習(xí)方式產(chǎn)生了區(qū)別,平常的數(shù)學(xué)方式因?yàn)槠鋬?nèi)容和講授被限制在了平常的階梯教室,但數(shù)學(xué)模型這一門課就必須通過自己的實(shí)踐運(yùn)用計(jì)算機(jī)來達(dá)到自己的目的。因此我們的學(xué)習(xí)方式就多了一項(xiàng)(通過計(jì)算機(jī)進(jìn)一步了解數(shù)學(xué)模型的魅力)。
第三,因?yàn)閿?shù)學(xué)模型是對現(xiàn)實(shí)問題的分析,因此老師在課堂上進(jìn)行的授課通常會是老師引導(dǎo)、師生之間相互商量,因此課堂氛圍一般都比較活潑,學(xué)習(xí)起來會相對的比較輕松。這樣對學(xué)生的思維的開拓有很大的好處。因?yàn)槲覀冊谏詈蛯W(xué)習(xí)的過程中都接觸過很多問題的數(shù)學(xué)問題的模型,所以思考其整個過程及其影響因素就不會出現(xiàn)無從下手的感覺。相反的,在考慮問題的時候,我們更能提出自己的一些見解并能積極地與老師展開討論。
第四,數(shù)學(xué)模型充分挖掘了我們的潛能,使我們對自己的能力有了新的認(rèn)識,特別是自學(xué)能力得到了極大的提高,而且思想的交鋒也迸發(fā)了智慧的火花,從而增加了繼續(xù)深入學(xué)習(xí)數(shù)學(xué)的主動性和積極性。再次,它也培養(yǎng)了我們的概括力和想象力,也就是要一眼就能抓住問題的本質(zhì)所在。我們只有先對實(shí)際問題進(jìn)行概括歸納,同時在允許的情況下盡量忽略各種次要因素,僅僅抓住問題的本質(zhì)方面,是問題盡可能簡單化,這樣才能解決問題。
第五,說到數(shù)學(xué)模型就必不可免得會聯(lián)系到數(shù)學(xué)建模大賽。因?yàn)榻逃仨氝m應(yīng)社會的需要,數(shù)學(xué)建模進(jìn)入大學(xué)課堂,既順應(yīng)時代發(fā)展的潮流,也符合教育改革的需求,對于數(shù)學(xué)教育而言,既應(yīng)該讓學(xué)生掌握準(zhǔn)確快捷的計(jì)算方法和嚴(yán)密的邏輯推理,也需要培養(yǎng)學(xué)生用數(shù)學(xué)工具分析和解決實(shí)際問題的意識和能力。數(shù)學(xué)建模大賽就是順應(yīng)這一要求,此外,數(shù)學(xué)建模還可以提高學(xué)生的競賽能力,抗壓能力,問題設(shè)計(jì)的能力,搜索資料的能力,計(jì)算機(jī)運(yùn)用能力,論文寫作與修改完善能力,語言表達(dá)能力,創(chuàng)新能力等科學(xué)綜合素養(yǎng)。
第六,雖然我沒參加過數(shù)學(xué)建模大賽,但是我曾去過數(shù)學(xué)建模的培訓(xùn)課程,通過老師的介紹,我知道數(shù)學(xué)建模對團(tuán)隊(duì)合作要求很高。一個人的能力畢竟有限,不能把什么都做得很好,即使少數(shù)人能方方面面都顧全到,那得多么的累,況且真正的數(shù)學(xué)建模大賽是對時間有限制的,不會讓你不限時地讓你做。正所謂‘三個臭皮匠,勝過諸葛亮’,可見思想與思想之間的交流產(chǎn)生的結(jié)果是多么的好,此外,每個人因?yàn)樗幁h(huán)境與經(jīng)歷還有專業(yè)的限制,每個人思考問題的角度都不盡相同。所以集結(jié)每個人的優(yōu)點(diǎn)才會使自己的團(tuán)隊(duì)所做出來的結(jié)果更優(yōu)秀。
以上只是我在這短短幾個月對數(shù)學(xué)模型的淺顯的認(rèn)識,不用說大家肯定都只道數(shù)學(xué)模型更像是一個工具,所以說它的魅力作用及影響肯定不會僅僅是這些,有時現(xiàn)實(shí)生活中及各個學(xué)科都需要它來解決問題,所以這更要求我們要認(rèn)真學(xué)好這門課。
通過上課我也有一點(diǎn)建議,就是希望老師可以讓同學(xué)們結(jié)成小組再在課上可以討論某幾道題,這樣可以加強(qiáng)同學(xué)們在這方面的能力,也可以提高課堂氛圍。
這學(xué)期,我學(xué)習(xí)了數(shù)學(xué)建模這門課,我覺得他與其他科的不同是與現(xiàn)實(shí)聯(lián)系密切,而且能引導(dǎo)我們把以前學(xué)得到的枯燥的數(shù)學(xué)知識應(yīng)用到實(shí)際問題中去,用建模的思想、方法來解決實(shí)際問題,很神奇,而且也接觸了一些計(jì)算機(jī)軟件,使問題求解很快就出了答案。
在學(xué)習(xí)的過程中,我獲得了很多知識,對我有非常大的提高。同時我有了一些感想和體會。
本來在學(xué)習(xí)數(shù)學(xué)的過程中就遇到過很多困難,感覺很枯燥,很難學(xué),概念抽象、邏輯嚴(yán)密等等,所以我的學(xué)習(xí)積極性慢慢就降低了,而且不知道學(xué)了要怎么用,不知道現(xiàn)實(shí)生活中哪里到。通過學(xué)習(xí)了數(shù)學(xué)模型中的好多模型后,我發(fā)現(xiàn)數(shù)學(xué)應(yīng)用的廣泛性。數(shù)學(xué)模型是一種模擬,使用數(shù)學(xué)符號、數(shù)學(xué)式子、程序、圖形等對實(shí)際課題本質(zhì)屬性的抽象而又簡潔的刻畫,他或能解釋默寫客觀現(xiàn)象,或能預(yù)測未來的發(fā)展規(guī)律,或能為控制某一現(xiàn)象的發(fā)展提供某種意義下的最優(yōu)策略或較好策略。數(shù)學(xué)模型一般并非現(xiàn)實(shí)問題的直接翻版,它的建立常常既需要人們對現(xiàn)實(shí)問題深入細(xì)微的觀察和分析,又需要人們靈活巧妙地利用各種數(shù)學(xué)知識。這種應(yīng)用知識從實(shí)際課題中抽象、提煉出數(shù)學(xué)模型的過程就稱為數(shù)學(xué)建模。不論是用數(shù)學(xué)方法在科技和生產(chǎn)領(lǐng)域解決哪類實(shí)際問題,還是與其他學(xué)科相結(jié)合形成的交叉學(xué)科,首要的和關(guān)鍵的一步是建立研究對象的數(shù)學(xué)模型,并加以計(jì)算求解。數(shù)學(xué)建模和計(jì)算機(jī)技術(shù)在知識經(jīng)濟(jì)的作用可謂是如虎添翼。
數(shù)學(xué)建模屬于一門應(yīng)用數(shù)學(xué),學(xué)習(xí)這門課要求我們學(xué)會如何將實(shí)際問題經(jīng)過分析、簡化轉(zhuǎn)化為個數(shù)學(xué)問題,然后用適用的數(shù)學(xué)方法去解決。數(shù)學(xué)建模是一種數(shù)學(xué)的思考方法,是運(yùn)用數(shù)學(xué)的語言和方法,通過抽象、簡化建立能近似刻畫并解決實(shí)際問題的一種強(qiáng)有力地?cái)?shù)學(xué)手段。在學(xué)習(xí)中,我知道了數(shù)學(xué)建模的過程,其過程如下:
(1)模型準(zhǔn)備:了解問題的實(shí)際背景,明確其實(shí)際意義,掌握對象的各種信息。用數(shù)學(xué)語言來描述問題。
(2)模型假設(shè):根據(jù)實(shí)際對象的特征和建模的目的,對問題進(jìn)行必要的簡化,并用精確地語言提出一些恰當(dāng)?shù)募僭O(shè)。
(3)模型建立:在假設(shè)的基礎(chǔ)上,利用適當(dāng)?shù)臄?shù)學(xué)工具來刻畫各變量之間的數(shù)學(xué)關(guān)系,建立相應(yīng)的數(shù)學(xué)結(jié)構(gòu)。
(4)模型求解:利用或取得的數(shù)據(jù)資料,對模型的所有參數(shù)做出計(jì)算。
(5)模型分析:對所得的結(jié)果進(jìn)行數(shù)學(xué)上的分析。
(6)模型檢驗(yàn):將模型分析結(jié)果與實(shí)際情形進(jìn)行比較,以此來驗(yàn)證模型的準(zhǔn)確性、合理性和適用性。如果模型與實(shí)際較吻合,則要對計(jì)算結(jié)果給出其實(shí)際含義,并進(jìn)行解釋。如果模型與實(shí)際吻合較差,則應(yīng)該修改假設(shè),再次進(jìn)行建模過程。
數(shù)學(xué)模型既順應(yīng)時代發(fā)展的潮流,也符合教育改革的要求。對于數(shù)學(xué)教育而言,既應(yīng)該讓學(xué)生掌握準(zhǔn)確快捷的計(jì)算方法和嚴(yán)密的邏輯推理,也需要培養(yǎng)學(xué)生用數(shù)學(xué)工具分析解決實(shí)際問題的意識和能力,傳統(tǒng)的數(shù)學(xué)教學(xué)體系和內(nèi)容無疑偏重于前者,而開設(shè)數(shù)學(xué)建模課程則是加強(qiáng)后者的一種嘗試,數(shù)學(xué)建模的初衷是為了幫助大家提升分析問題,解決問題的能力。 我認(rèn)為學(xué)習(xí)數(shù)學(xué)模型的意義有如下幾點(diǎn):一 學(xué)習(xí)數(shù)學(xué)模型我們可以參加數(shù)學(xué)建模競賽,而數(shù)學(xué)建模競賽是為了促進(jìn)數(shù)學(xué)建模的發(fā)展而應(yīng)運(yùn)而生的,它可以培養(yǎng)大家的競賽能力、抗壓能力、問題設(shè)計(jì)能力、搜索資料的能力、計(jì)算機(jī)運(yùn)用能力、論文寫作與修改完善能力、語言表達(dá)能力、創(chuàng)新能力等科學(xué)綜合素養(yǎng),它讓大家從傳統(tǒng)的知識培養(yǎng)轉(zhuǎn)變到能力的培養(yǎng),讓我們的思想追求有了質(zhì)的變化!這也是我們現(xiàn)代教育所追求的;二 學(xué)習(xí)數(shù)學(xué)可以提升我的邏輯思維能力和運(yùn)算等抽象能力,但好多人覺得數(shù)學(xué)和實(shí)際遙不可及,可是呢,數(shù)學(xué)建模則成為了解決這種現(xiàn)象的殺手锏,因?yàn)閿?shù)學(xué)建模就是為了培養(yǎng)大家的分析問題和分解決問題的能力。
在學(xué)習(xí)了數(shù)學(xué)模型后,它所教給我們的不單是一些數(shù)學(xué)方面的知識,比如說一些數(shù)學(xué)計(jì)算軟件,學(xué)習(xí)建模的同時,借用各種建模軟件解決問題是必不可少的matlab,lingo,等都是非常方便的。數(shù)學(xué)模型是數(shù)學(xué)學(xué)習(xí)的新的方式,他為我們提供了自主學(xué)習(xí)的空間,有助于我們體驗(yàn)數(shù)學(xué)在解決實(shí)際問題中的價值和作用,體驗(yàn)數(shù)學(xué)與日常生化和其他學(xué)科的聯(lián)系,體驗(yàn)綜合運(yùn)用知識和方法解決實(shí)際問題的過程,增強(qiáng)應(yīng)用意識;而且數(shù)學(xué)模型還對我們有綜合能力的培養(yǎng)、鍛煉與提高。它培養(yǎng)了我們?nèi)妗⒍嘟嵌瓤紤]問題的能力,使我們的邏輯推理能力和量化分析能力得到很好地鍛煉和提高。而且我認(rèn)為數(shù)學(xué)模型帶給我的是發(fā)散性思維,各種研究方法和手段。教會我凡事要有自己的創(chuàng)新,自己的嚴(yán)密思維,不能局限于俗套。總之學(xué)習(xí)數(shù)學(xué)模型有利于激發(fā)我們的學(xué)習(xí)數(shù)學(xué)的興趣,豐富我們學(xué)習(xí)數(shù)學(xué)探索的情感體驗(yàn);有利于我們自覺體驗(yàn)、鞏固所學(xué)的的數(shù)學(xué)知識。還鍛煉了我們的耐心和意志力。
這學(xué)期參加數(shù)學(xué)建模培訓(xùn),使我感觸良多:它所教給我們的不單是一些數(shù)學(xué)方面的知識,更多的其實(shí)是綜合能力的培養(yǎng)、鍛煉與提高。它培養(yǎng)了我們?nèi)?、多角度考慮問題的能力,使我們的邏輯推理能力和量化分析能力得到很好的鍛煉和提高。它還讓我了解了多種數(shù)學(xué)軟件,以及運(yùn)用數(shù)學(xué)軟件對模型進(jìn)行求解。
數(shù)學(xué)模型主要是將現(xiàn)實(shí)對象的信息加以翻譯,歸納的產(chǎn)物。通過對數(shù)學(xué)模型的假設(shè)、求解、驗(yàn)證,得到數(shù)學(xué)上的解答,再經(jīng)過翻譯回到現(xiàn)實(shí)對象,給出分析、決策的結(jié)果。其實(shí),數(shù)學(xué)建模對我們來說并不陌生,在我們的日常生活和工作中,經(jīng)常會用到有關(guān)建模的概念。例如,我們平時出遠(yuǎn)門,會考慮一下出行的路線,以達(dá)到既快速又經(jīng)濟(jì)的目的;一些廠長經(jīng)理為了獲得更大的利潤,往往會策劃出一個合理安排生產(chǎn)和銷售的最優(yōu)方案??這些問題和建模都有著很大的聯(lián)系。而在學(xué)習(xí)數(shù)學(xué)建模訓(xùn)練以前,我們面對這些問題時,解決它的方法往往是一種習(xí)慣性的思維方式,只知道該這樣做,卻不很清楚為什么會這樣做,現(xiàn)在,我們這種陳舊的思考方式己經(jīng)在被數(shù)學(xué)建模訓(xùn)練中培養(yǎng)出的多角度、層次分明、從本質(zhì)上區(qū)分問題的新穎多維的思考方式所替代。這種凝聚了許多優(yōu)秀方法為一體的思考方式一旦被你把握,它就轉(zhuǎn)化成了你自身的素質(zhì),不僅在你以后的學(xué)習(xí)工作中繼續(xù)發(fā)揮作用,也為你的成長道路印下了閃亮的一頁。
數(shù)學(xué)建模所要解決的問題決不是單一學(xué)科問題,它除了要求我們有扎實(shí)的數(shù)學(xué)知識外,還需要我們不停地去學(xué)習(xí)和查閱資料,除了我們要學(xué)習(xí)許多數(shù)學(xué)分支問題外,還要了解工廠生產(chǎn)、經(jīng)濟(jì)投資、保險(xiǎn)事業(yè)等方面的知識,這些知識決不是任何專業(yè)中都能涉獵得到的。它能極大地拓寬和豐富我們的內(nèi)涵,讓我們感到了知識的重要性,也領(lǐng)悟到了“學(xué)習(xí)是不斷發(fā)現(xiàn)真理的過程”這句話的真諦所在,這些知識必將為我們將來的學(xué)習(xí)工作打下堅(jiān)實(shí)的基礎(chǔ)。從現(xiàn)在我們的學(xué)習(xí)來看,我們都是直接受益者。就拿我此次學(xué)習(xí)數(shù)學(xué)建模后寫論文。原本以為這是一件很簡單的事,但做起來才發(fā)覺事情并沒有想象中的簡單。因?yàn)橐鉀Q問題,憑我們現(xiàn)有的知識根本不夠。于是,自己必須要充分利用圖書館和網(wǎng)絡(luò)的作用,查閱各種有關(guān)資料,以盡量獲得比較全面的知識和信息。在這過程中,對自己眼界的開闊,知識的擴(kuò)展無疑大有好處,各學(xué)科的交叉滲透更有利于自己提高解決復(fù)雜問題的能力。毫不夸張的說,建模過程挖掘了我們的潛能,使我們對自己的能力有了新的認(rèn)識,特別是自學(xué)能力得到了極大的提高,而且思想的交鋒也迸發(fā)出了智慧的火花,從而增加了繼續(xù)深入學(xué)習(xí)數(shù)學(xué)的主動性和積極性。再次,數(shù)學(xué)建模也培養(yǎng)了我們的概括力和想象力,也就是要一眼就能抓住問題的本質(zhì)所在。我們只有先對實(shí)際問題進(jìn)行概括歸納,同時在允許的情況下盡量忽略各種次要因素,緊緊抓住問題的本質(zhì)方面,使問題盡可能簡單化,這樣才能解決問題。其實(shí),在我們做論文之前,考慮到的因素有很多,如果把這一系列因數(shù)都考慮的話,將會花費(fèi)更多的時間和精神。因此,在我們考慮一些因素并不是本質(zhì)問題的時候,我就將這些因數(shù)做了假設(shè)以及在模型的推廣時才考慮。這就使模型更加合理和理想。數(shù)學(xué)建模還能增強(qiáng)我們的抽象能力以及想象力。對實(shí)際問題再進(jìn)行“翻譯”,即進(jìn)行抽象,要用我們熟悉的數(shù)學(xué)語言、數(shù)學(xué)符號和數(shù)學(xué)公式將它們準(zhǔn)確的表達(dá)出來。
通過學(xué)習(xí)數(shù)學(xué)建模訓(xùn)練,對我的收益不遜于以前所學(xué)的文化知識,使我終生難忘。而且, 我覺得數(shù)學(xué)建模活動本身就是教學(xué)方法改革的一種探索,它打破常規(guī)的那種老師臺上講,學(xué)生聽,一味鉆研課本的傳統(tǒng)模式,而采取提出問題,課堂討論,帶著問題去學(xué)習(xí)、不固定于基本教材,不拘泥于某種方法,激發(fā)學(xué)生的多種思維,增強(qiáng)其學(xué)習(xí)主動性,培養(yǎng)學(xué)生獨(dú)立思考,積極思維的特性,這樣有利于學(xué)生根據(jù)自己的特點(diǎn)把握所學(xué)知識,形成自己的學(xué)習(xí)機(jī)制,逐步培養(yǎng)很強(qiáng)的自學(xué)能力和分析、解決新問題的能力。這對于我們以后所從事的教育工作也是一個很好的啟發(fā)。
總之,“一份耕耘,一份收獲”。作為一名對數(shù)學(xué)有著濃厚興趣的學(xué)生,我深刻地感到了自己在程序的編制和軟件應(yīng)用以及自學(xué)能力,有了很大的提高,并將對我今后的專業(yè)學(xué)習(xí)有很大的幫助。想到這里,我不由得被老師的良苦用心所感動,為我們創(chuàng)造了如此優(yōu)越的學(xué)習(xí)條件,處處為學(xué)子著想。因此,在今后的學(xué)習(xí)中,我會保持這種學(xué)習(xí)的勁頭,刻苦努力,爭取以更優(yōu)異的成績。
隨著科學(xué)技術(shù)的飛速發(fā)展,人們越來越認(rèn)識到數(shù)學(xué)科學(xué)的重要性:數(shù)學(xué)的思考方式具有根本的重要性,數(shù)學(xué)為組織和構(gòu)造知識提供了方法,將它用于技術(shù)時能使科學(xué)家和工程師生產(chǎn)出系統(tǒng)的、能復(fù)制的、且可以傳播的知識??數(shù)學(xué)科學(xué)對于經(jīng)濟(jì)競爭是必不可少的,數(shù)學(xué)科學(xué)是一種關(guān)鍵性的、普遍的、可實(shí)行的技術(shù).
在當(dāng)今高科技與計(jì)算機(jī)技術(shù)日新月異且日益普及的社會里,高新技術(shù)的發(fā)展離不開數(shù)學(xué)的支持,沒有良好的數(shù)學(xué)素養(yǎng)已無法實(shí)現(xiàn)工程技術(shù)的創(chuàng)新與突破。因此,如何在數(shù)學(xué)教育的過程中培養(yǎng)人們的數(shù)學(xué)素養(yǎng),讓人們學(xué)會用數(shù)學(xué)的知識與方法去處理實(shí)際問題,值得數(shù)學(xué)工作者的思考。 大學(xué)生數(shù)學(xué)建?;顒蛹叭珖髮W(xué)生數(shù)學(xué)建模競賽正是在這種形勢下開展并發(fā)展起來的,其目的在于激勵學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,提高學(xué)生建立數(shù)學(xué)模型和運(yùn)用計(jì)算機(jī)技術(shù)解決實(shí)際問題的綜合能力,拓寬學(xué)生的知識面,培養(yǎng)創(chuàng)造精神及合作意識,推動大學(xué)數(shù)學(xué)教學(xué)體系、教學(xué)內(nèi)容和教學(xué)方法的改革.
這項(xiàng)極富意義的活動,大學(xué)組隊(duì)參加了全國大學(xué)生數(shù)學(xué)建模競賽。為了更好地組織、指導(dǎo)此項(xiàng)活動,讓更多的學(xué)生投入此項(xiàng)活動并從中受益,學(xué)生根據(jù)組織與指導(dǎo)的實(shí)踐,對數(shù)學(xué)建模活動的作用與實(shí)施談一些認(rèn)識,以期起到深化數(shù)學(xué)教學(xué)改革、推動課程建設(shè)的作用。方法,去近似刻畫、建立相應(yīng)數(shù)學(xué)模型并加以解決的過程。為檢驗(yàn)大學(xué)生數(shù)學(xué)建模的能力,而我國大學(xué)生數(shù)學(xué)建模競賽。參加過數(shù)學(xué)建?;顒拥慕處熍c學(xué)生普遍反映,數(shù)學(xué)建?;顒蛹蓉S富了學(xué)生的課外生活,又培養(yǎng)了學(xué)生各方面的能力,同時也促進(jìn)了大學(xué)數(shù)學(xué)教學(xué)的改革。通過數(shù)學(xué)建模活動,教師與學(xué)生對數(shù)學(xué)的作用有了進(jìn)一步的認(rèn)識。激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。 現(xiàn)今大學(xué)工科數(shù)學(xué)教學(xué)普遍存在內(nèi)容多、學(xué)時少的情況,為此很多教師采取了犧牲應(yīng)用、偏重理論講解以完成教學(xué)進(jìn)度的方法,使學(xué)生對數(shù)學(xué)的重要性認(rèn)識不夠,影響了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,很多學(xué)生進(jìn)入專業(yè)課學(xué)習(xí)階段才感覺到數(shù)學(xué)的重要,但為時已晚。
數(shù)學(xué)建?;顒蛹案傎惖念}目是社會、經(jīng)濟(jì)和生產(chǎn)實(shí)踐中經(jīng)過適當(dāng)簡化的實(shí)際問題,體現(xiàn)了數(shù)學(xué)應(yīng)用的廣泛性;學(xué)生參與數(shù)學(xué)建模及競賽活動,感受到了數(shù)學(xué)的生機(jī)與活力,感受到了對自己各方面能力的促進(jìn),從而激發(fā)起他們學(xué)習(xí)數(shù)學(xué)的興趣。培養(yǎng)學(xué)生多方面的能力,培養(yǎng)綜合應(yīng)用數(shù)學(xué)知識及方法進(jìn)行分析、推理、計(jì)算的能力。由于數(shù)學(xué)建模的過程是反復(fù)應(yīng)用數(shù)學(xué)知識與方法對實(shí)際問題進(jìn)行分析、推理與計(jì)算,以得出實(shí)際問題的最佳數(shù)學(xué)模型及模型最優(yōu)解的過程,因而學(xué)生明顯感到自己這一方面的能力在具體的建模過程中得到了較大提高。
數(shù)學(xué)建模就是當(dāng)人們面對各種實(shí)際問題時,根據(jù)人們對問題的理解,完成對模型的假設(shè),建立和確定求解問題的方法與途徑,然后建立好方程組,然后再與計(jì)算機(jī)的軟件相結(jié)合,最終得到該實(shí)際問題的最佳求解答案。
以前在高中時學(xué)過些簡單的線形規(guī)劃,但那時都是些簡單的問題,在列解出方程后通常只有兩個未知數(shù),但這明顯不符合現(xiàn)實(shí)生活中的問題,因?yàn)橥婕暗揭恍?shí)際生產(chǎn)問題時通常都是比較麻煩的,列出方程后的未知數(shù)也不可能只有兩個,因此就要用到數(shù)學(xué)模型與計(jì)算機(jī)相結(jié)合來處理了。
通過對數(shù)學(xué)建模的學(xué)習(xí),使得我對數(shù)學(xué)有了全新的看法,也因此感覺到數(shù)學(xué)這門課程對于生產(chǎn)的利益是密不可分的,開展數(shù)學(xué)建模的學(xué)習(xí)是提升我們綜合能力的好機(jī)會,使得我們不再是紙上談兵了,并且也使得我們又多了一門技能。數(shù)學(xué)建模所解決的問題不是一個單一的數(shù)學(xué)問題,它要求我們除了有扎實(shí)的數(shù)學(xué)功底外,還需要我們?nèi)ゲ粩嗟牟殚嗁Y料,并且還要能熟練的應(yīng)用計(jì)算機(jī)的軟件。所以它能極大的拓寬我們的知識面,這些知識也能為我們將來的工作打下堅(jiān)實(shí)的基礎(chǔ),也讓我理會到學(xué)習(xí)是不斷發(fā)現(xiàn)真理的過程,并且它給我們帶來的知識面不是任何專業(yè)都能涉及到的.在學(xué)習(xí)數(shù)學(xué)建模的過程中,我充分的體會到了數(shù)學(xué)給人們帶便利實(shí)在太大了,在涉及到現(xiàn)實(shí)的工業(yè)生產(chǎn)中,它能給企業(yè)的利益最大化,并且也能節(jié)省國內(nèi)的能源,所以人類要是離開了數(shù)學(xué)建模,那后果真是不堪設(shè)想。其實(shí)數(shù)學(xué)建模對于我們并不陌生,在我們的日常生活和工作中,經(jīng)常會用到有關(guān)建模的概念,而在學(xué)習(xí)數(shù)學(xué)建模以前,我們面對這些問題時,解決它的方法往往是一種習(xí)慣性的思維方式,只知道要這樣做,卻不知道為什么會這樣做,現(xiàn)在我們這種陳舊的思考方式已經(jīng)被數(shù)學(xué)建模轉(zhuǎn)化成多層次,多角度的從問題的本質(zhì)出發(fā)的 一種新穎的思維方式了,這種凝聚了多種優(yōu)秀方法為一體的思考方式一旦被掌握了,它能轉(zhuǎn)化成你自身的素質(zhì),并且能在你以后的生活和工作中繼續(xù)發(fā)揮著作用的。
數(shù)學(xué)建模是一種運(yùn)用數(shù)學(xué)符號,數(shù)學(xué)式子,計(jì)算機(jī)程序等相結(jié)合的對實(shí)際問題做出規(guī)劃而得出最佳的解決方法。不論是用數(shù)學(xué)方法解決在科技和生產(chǎn)領(lǐng)域解決哪類生產(chǎn)實(shí)際問題,還是與其他學(xué)科相結(jié)合形成交叉學(xué)科,首先和關(guān)鍵一步是建立研究對象的數(shù)學(xué)模型,并加以計(jì)算求解,我 就簡單說明一下具體的操作方法:首先是模型的準(zhǔn)備,了解問題的實(shí)際背景,明確其實(shí)際意義,掌握對像的各種信息,用數(shù)學(xué)語言來描述問題。第二步是模型的假設(shè),根據(jù)實(shí)際問題的特征和建模的目的,對問題做出必要的簡化,并用精準(zhǔn)的語言做出恰當(dāng)?shù)募僭O(shè)。第三步是模型的建立,在假設(shè)的基礎(chǔ)上,用適當(dāng)?shù)臄?shù)學(xué)工具來刻劃各變量之間的數(shù)學(xué)關(guān)系,建立相應(yīng)的數(shù)學(xué)架構(gòu)。第四步是模型的求解,利用獲取的數(shù)學(xué)資料,對模型所有參數(shù)做出計(jì)算。第五步是模型的分析,對所得的結(jié)果做出數(shù)學(xué)上的分析。第六步是模型檢測,將模型的分析結(jié)果與實(shí)際情況進(jìn)行比較,以此來確定模型的合理性,如果模型與實(shí)際比較吻合,則要對計(jì)算結(jié)果給出其實(shí)際含義,并做書解釋。第七步是模型應(yīng)用,應(yīng)用的方式因問題的性質(zhì)和建模的目的而異。
在一般的工程技術(shù)領(lǐng)域,數(shù)學(xué)建模仍然大有用武之地,因此數(shù)學(xué)建模的普遍性和重要性不言而喻,由于新工業(yè)和新技術(shù)的不斷涌現(xiàn),提出了許多需要用數(shù)學(xué)建模來解決的問題,因此使得許多的問題迎刃而解,建立數(shù)學(xué)建模和計(jì)算機(jī)的軟件,大量的代替了以前的復(fù)雜的計(jì)算問題。隨著數(shù)學(xué)向這儲如經(jīng)濟(jì)了等領(lǐng)域進(jìn)行滲透,人們在計(jì)算如何使得經(jīng)濟(jì)利益最大化 時,數(shù)學(xué)建模毫無疑問在這里面發(fā)揮出巨大的作用,當(dāng)用數(shù)學(xué)方法研究這些領(lǐng)域中的定量關(guān)系時,數(shù)學(xué)建模就成為首要的。數(shù)學(xué)建模過程是一種創(chuàng)新過程,在思考方法和思維方式上與學(xué)習(xí)其他課程有著較大的區(qū)別,它需要我們在學(xué)習(xí)時能冷靜的單獨(dú)思考,并且要有一定的分析問題的能力。
我相信隨著科技的不斷創(chuàng)新發(fā)展,數(shù)學(xué)建模在其中的地位會越來越高,所以對于一個大學(xué)生來說,學(xué)好數(shù)學(xué)建模固然是非常重要的。
數(shù)學(xué)建模課程心得篇二
通過一個月的集訓(xùn),我受益非淺。我進(jìn)一步的認(rèn)識到數(shù)學(xué)建模的實(shí)質(zhì)和對參賽隊(duì)員的要求。數(shù)學(xué)建模就是培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)知識解決實(shí)際問題的能力。它要求參賽隊(duì)員有較強(qiáng)的 創(chuàng)新精神,有較大的靈活性和隨機(jī)應(yīng)變能力,要求參賽隊(duì)員之間有良好的團(tuán)隊(duì)精神和相互協(xié)作意識。在一個月里,我們學(xué)了許多知識放方法,可以說數(shù)學(xué)建模需要的知識我們都了解了一點(diǎn),關(guān)鍵在于如何應(yīng)用這些知識。這種即學(xué)即用的能力是我們以后學(xué)習(xí)、工作所必須的能力。在此我對建模是出現(xiàn)的一些現(xiàn)象發(fā)表一些看法。
隨著信息的高速化,我們很容易找到和建模有關(guān)的資料,這對我們理解題目意思和促發(fā)新思路、新想法是有幫助的。但是有的集訓(xùn)小組或集訓(xùn)隊(duì)員他們建模完全依靠找資料,建出來的模型就是幾本參考書的綜合,他們所用的方法完全是別人研究過的東西,連一點(diǎn)改進(jìn)也沒有。如果這樣的話,數(shù)學(xué)建模就失去了意義。我始終堅(jiān)持一個觀點(diǎn):數(shù)學(xué)建模最重要的是創(chuàng)新。無論是你創(chuàng)造一種新方法還是創(chuàng)造性的運(yùn)用一種方法,還是改進(jìn)別人的方法都是很重要的。沒有創(chuàng)新,模型就失去了靈魂;沒有創(chuàng)新,模型就不是你的模型。
我們隊(duì)配合不是很理想。主要是有個隊(duì)員他總認(rèn)為自己是正確的,別人找到的資料不如他好,別人提出的觀點(diǎn)、思想思想無論正確與否,他總是會反對一下。他總是十分注重小的方面,不從大局考慮。由于這些原因,我們建的模型總是不好。
到目前為止,我們已經(jīng)學(xué)習(xí)科學(xué)計(jì)算與數(shù)學(xué)建模這門課程半個學(xué)期了,漸漸的對這門課程有點(diǎn)了解了。我覺得開設(shè)數(shù)學(xué)建模這一門學(xué)科是應(yīng)了時代的發(fā)展要求,因?yàn)椋S著科學(xué)技術(shù)的發(fā)展,特別是計(jì)算機(jī)技術(shù)的飛速發(fā)展和廣泛應(yīng)用,科學(xué)研究與工程技術(shù)對實(shí)際問題的研究不斷精確化、定量化、數(shù)字化,使得數(shù)學(xué)在各學(xué)科、各領(lǐng)域的作用日益增強(qiáng),而數(shù)學(xué)建模在這一過程中的作用尤為突出。在前一階段的學(xué)習(xí)中我了解到它不僅僅是參加數(shù)學(xué)建模比賽的學(xué)生才要學(xué)的,也不僅僅是純理論性的研究學(xué)習(xí),這門課程是在實(shí)際生產(chǎn)生活中有很大的應(yīng)用,突破了以前大家對數(shù)學(xué)的誤解,也在一定程度上培養(yǎng)了我們應(yīng)用數(shù)學(xué)工具解決實(shí)際問題的能力。
具體結(jié)合教材內(nèi)容說,在很多時候課本里的都是引用實(shí)際生產(chǎn)生活的例子,這樣我們更能夠切切實(shí)實(shí)感受到這門課程對實(shí)際生產(chǎn)生活的幫助,而并非是我們空想著學(xué)這門課有什么作用啊,簡直是浪費(fèi)時間啊什么的。
現(xiàn)在我就說說我到目前為止學(xué)到了什么,首先,我知道了數(shù)學(xué)建模的基本步驟:第一步我們肯定是要將現(xiàn)實(shí)問題的信息歸納表述為我們的數(shù)學(xué)模型,然后對我們建立的數(shù)學(xué)模型進(jìn)行求解,這一步也可以說是數(shù)學(xué)模型的解答,最后一步我們要需要從那個數(shù)學(xué)世界回歸到現(xiàn)實(shí)世界,也就是將數(shù)學(xué)模型的解答轉(zhuǎn)化為對現(xiàn)實(shí)問題的解答,從而進(jìn)一步來驗(yàn)證現(xiàn)實(shí)問題的信息,這一步是非常重要的一個環(huán)節(jié),這些結(jié)果也需要用實(shí)際的信息加以驗(yàn)證。
這個步驟在一定程度上揭示了現(xiàn)實(shí)問題和數(shù)學(xué)建模的關(guān)系,一方面,數(shù)學(xué)建模是將現(xiàn)實(shí)生活中的現(xiàn)象加以歸納、抽象的產(chǎn)物,它源于現(xiàn)實(shí),卻又高于現(xiàn)實(shí),另一方面,只有當(dāng)數(shù)學(xué)模型的結(jié)果經(jīng)受住現(xiàn)實(shí)問題的檢驗(yàn)時,才可以用來指導(dǎo)實(shí)踐,完成實(shí)踐到理論再回歸到實(shí)踐的這一循環(huán)。
在課本第二章的時候我們開始接觸實(shí)際問題,在第二章片頭我們看到的就是某城市供水量的預(yù)測問題,在這一章里,老師通過城市供水量的預(yù)測問題介紹了求函數(shù)近似表達(dá)式的插值法和擬合法、城市供水量預(yù)測的簡單方法、供水量增長率估與數(shù)值微分,其中插值法主要介紹lagrange法、newton法、分段低次插值和三次樣條插值。至此我們才真正體會了數(shù)學(xué)建模對實(shí)際生產(chǎn)的幫助。
但同時,我們也發(fā)現(xiàn),要學(xué)好數(shù)學(xué)建模這一門學(xué)科,或者說應(yīng)用數(shù)學(xué)建模的知識去解決其他問題,不僅僅只要求我們有扎實(shí)的數(shù)學(xué)知識,還需要我們學(xué)習(xí)更多的數(shù)學(xué)分支學(xué)科,例如有時候我們還需要其他的數(shù)學(xué)軟件來幫我們解決問題,同時還要考察實(shí)際情況學(xué)會從實(shí)際問題中提煉數(shù)學(xué)問題。
總的來說,學(xué)習(xí)數(shù)學(xué)建模這一門學(xué)科對我們的幫助很大,因?yàn)樗粌H增強(qiáng)了我的知識面,我們可以在學(xué)習(xí)這一門學(xué)科的過程中鍛煉我們學(xué)習(xí)積極性,逐步培養(yǎng)很強(qiáng)的自學(xué)能力和分析、解決問題的能力,這對于我們師范生以后走上教育工作崗位也是很有幫助的。
這學(xué)期,我學(xué)習(xí)了數(shù)學(xué)建模這門課,我覺得他與其他科的不同是與現(xiàn)實(shí)聯(lián)系密切,而且能引導(dǎo)我們把以前學(xué)得到的枯燥的數(shù)學(xué)知識應(yīng)用到實(shí)際問題中去,用建模的思想、方法來解決實(shí)際問題,很神奇,而且也接觸了一些計(jì)算機(jī)軟件,使問題求解很快就出了答案。
在學(xué)習(xí)的過程中,我獲得了很多知識,對我有非常大的提高。同時我有了一些感想和體會。
本來在學(xué)習(xí)數(shù)學(xué)的過程中就遇到過很多困難,感覺很枯燥,很難學(xué),概念抽象、邏輯嚴(yán)密等等,所以我的學(xué)習(xí)積極性慢慢就降低了,而且不知道學(xué)了要怎么用,不知道現(xiàn)實(shí)生活中哪里到。通過學(xué)習(xí)了數(shù)學(xué)模型中的好多模型后,我發(fā)現(xiàn)數(shù)學(xué)應(yīng)用的廣泛性。數(shù)學(xué)模型是一種模擬,使用數(shù)學(xué)符號、數(shù)學(xué)式子、程序、圖形等對實(shí)際課題本質(zhì)屬性的抽象而又簡潔的刻畫,他或能解釋默寫客觀現(xiàn)象,或能預(yù)測未來的發(fā)展規(guī)律,或能為控制某一現(xiàn)象的發(fā)展提供某種意義下的最優(yōu)策略或較好策略。數(shù)學(xué)模型一般并非現(xiàn)實(shí)問題的直接翻版,它的建立常常既需要人們對現(xiàn)實(shí)問題深入細(xì)微的觀察和分析,又需要人們靈活巧妙地利用各種數(shù)學(xué)知識。這種應(yīng)用知識從實(shí)際課題中抽象、提煉出數(shù)學(xué)模型的過程就稱為數(shù)學(xué)建模。不論是用數(shù)學(xué)方法在科技和生產(chǎn)領(lǐng)域解決哪類實(shí)際問題,還是與其他學(xué)科相結(jié)合形成的交叉學(xué)科,首要的和關(guān)鍵的一步是建立研究對象的數(shù)學(xué)模型,并加以計(jì)算求解。數(shù)學(xué)建模和計(jì)算機(jī)技術(shù)在知識經(jīng)濟(jì)的作用可謂是如虎添翼。
數(shù)學(xué)建模屬于一門應(yīng)用數(shù)學(xué),學(xué)習(xí)這門課要求我們學(xué)會如何將實(shí)際問題經(jīng)過分析、簡化轉(zhuǎn)化為個數(shù)學(xué)問題,然后用適用的數(shù)學(xué)方法去解決。數(shù)學(xué)建模是一種數(shù)學(xué)的思考方法,是運(yùn)用數(shù)學(xué)的語言和方法,通過抽象、簡化建立能近似刻畫并解決實(shí)際問題的一種強(qiáng)有力地?cái)?shù)學(xué)手段。在學(xué)習(xí)中,我知道了數(shù)學(xué)建模的過程,其過程如下:
(1)模型準(zhǔn)備:了解問題的實(shí)際背景,明確其實(shí)際意義,掌握對象的各種信息。用數(shù)學(xué)語言來描述問題。
(2)模型假設(shè):根據(jù)實(shí)際對象的特征和建模的目的,對問題進(jìn)行必要的簡化,并用精確地語言提出一些恰當(dāng)?shù)募僭O(shè)。
(3)模型建立:在假設(shè)的基礎(chǔ)上,利用適當(dāng)?shù)臄?shù)學(xué)工具來刻畫各變量之間的數(shù)學(xué)關(guān)系,建立相應(yīng)的數(shù)學(xué)結(jié)構(gòu)。
(4)模型求解:利用或取得的數(shù)據(jù)資料,對模型的所有參數(shù)做出計(jì)算。
(5)模型分析:對所得的結(jié)果進(jìn)行數(shù)學(xué)上的分析。
(6)模型檢驗(yàn):將模型分析結(jié)果與實(shí)際情形進(jìn)行比較,以此來驗(yàn)證模型的準(zhǔn)確性、合理性和適用性。如果模型與實(shí)際較吻合,則要對計(jì)算結(jié)果給出其實(shí)際含義,并進(jìn)行解釋。如果模型與實(shí)際吻合較差,則應(yīng)該修改假設(shè),再次進(jìn)行建模過程。
數(shù)學(xué)模型既順應(yīng)時代發(fā)展的潮流,也符合教育改革的要求。對于數(shù)學(xué)教育而言,既應(yīng)該讓學(xué)生掌握準(zhǔn)確快捷的計(jì)算方法和嚴(yán)密的邏輯推理,也需要培養(yǎng)學(xué)生用數(shù)學(xué)工具分析解決實(shí)際問題的意識和能力,傳統(tǒng)的數(shù)學(xué)教學(xué)體系和內(nèi)容無疑偏重于前者,而開設(shè)數(shù)學(xué)建模課程則是加強(qiáng)后者的一種嘗試,數(shù)學(xué)建模的初衷是為了幫助大家提升分析問題,解決問題的能力。我認(rèn)為學(xué)習(xí)數(shù)學(xué)模型的意義有如下幾點(diǎn):一學(xué)習(xí)數(shù)學(xué)模型我們可以參加數(shù)學(xué)建模競賽,而數(shù)學(xué)建模競賽是為了促進(jìn)數(shù)學(xué)建模的發(fā)展而應(yīng)運(yùn)而生的,它可以培養(yǎng)大家的競賽能力、抗壓能力、問題設(shè)計(jì)能力、搜索資料的能力、計(jì)算機(jī)運(yùn)用能力、論文寫作與修改完善能力、語言表達(dá)能力、創(chuàng)新能力等科學(xué)綜合素養(yǎng),它讓大家從傳統(tǒng)的知識培養(yǎng)轉(zhuǎn)變到能力的培養(yǎng),讓我們的思想追求有了質(zhì)的變化!這也是我們現(xiàn)代教育所追求的;二學(xué)習(xí)數(shù)學(xué)可以提升我的邏輯思維能力和運(yùn)算等抽象能力,但好多人覺得數(shù)學(xué)和實(shí)際遙不可及,可是呢,數(shù)學(xué)建模則成為了解決這種現(xiàn)象的殺手锏,因?yàn)閿?shù)學(xué)建模就是為了培養(yǎng)大家的分析問題和分解決問題的能力。
在學(xué)習(xí)了數(shù)學(xué)模型后,它所教給我們的不單是一些數(shù)學(xué)方面的知識,比如說一些數(shù)學(xué)計(jì)算軟件,學(xué)習(xí)建模的同時,借用各種建模軟件解決問題是必不可少的matlab,lingo,等都是非常方便的。數(shù)學(xué)模型是數(shù)學(xué)學(xué)習(xí)的新的方式,他為我們提供了自主學(xué)習(xí)的空間,有助于我們體驗(yàn)數(shù)學(xué)在解決實(shí)際問題中的價值和作用,體驗(yàn)數(shù)學(xué)與日常生化和其他學(xué)科的聯(lián)系,體驗(yàn)綜合運(yùn)用知識和方法解決實(shí)際問題的過程,增強(qiáng)應(yīng)用意識;而且數(shù)學(xué)模型還對我們有綜合能力的培養(yǎng)、鍛煉與提高。它培養(yǎng)了我們?nèi)?、多角度考慮問題的能力,使我們的邏輯推理能力和量化分析能力得到很好地鍛煉和提高。而且我認(rèn)為數(shù)學(xué)模型帶給我的是發(fā)散性思維,各種研究方法和手段。教會我凡事要有自己的創(chuàng)新,自己的嚴(yán)密思維,不能局限于俗套??傊畬W(xué)習(xí)數(shù)學(xué)模型有利于激發(fā)我們的學(xué)習(xí)數(shù)學(xué)的興趣,豐富我們學(xué)習(xí)數(shù)學(xué)探索的情感體驗(yàn);有利于我們自覺體驗(yàn)、鞏固所學(xué)的的數(shù)學(xué)知識。還鍛煉了我們的耐心和意志力。
隨著科學(xué)技術(shù)的飛速發(fā)展,人們越來越認(rèn)識到數(shù)學(xué)科學(xué)的重要性:數(shù)學(xué)的思考方式具有根本的重要性,數(shù)學(xué)為組織和構(gòu)造知識提供了方法,將它用于技術(shù)時能使科學(xué)家和工程師生產(chǎn)出系統(tǒng)的、能復(fù)制的、且可以傳播的知識……數(shù)學(xué)科學(xué)對于經(jīng)濟(jì)競爭是必不可少的,數(shù)學(xué)科學(xué)是一種關(guān)鍵性的、普遍的、可實(shí)行的技術(shù)。
在當(dāng)今高科技與計(jì)算機(jī)技術(shù)日新月異且日益普及的社會里,高新技術(shù)的發(fā)展離不開數(shù)學(xué)的支持,沒有良好的數(shù)學(xué)素養(yǎng)已無法實(shí)現(xiàn)工程技術(shù)的創(chuàng)新與突破。因此,如何在數(shù)學(xué)教育的過程中培養(yǎng)人們的數(shù)學(xué)素養(yǎng),讓人們學(xué)會用數(shù)學(xué)的知識與方法去處理實(shí)際問題,值得數(shù)學(xué)工作者的思考。大學(xué)生數(shù)學(xué)建模活動及全國大學(xué)生數(shù)學(xué)建模競賽正是在這種形勢下開展并發(fā)展起來的,其目的在于激勵學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,提高學(xué)生建立數(shù)學(xué)模型和運(yùn)用計(jì)算機(jī)技術(shù)解決實(shí)際問題的綜合能力,拓寬學(xué)生的知識面,培養(yǎng)創(chuàng)造精神及合作意識,推動大學(xué)數(shù)學(xué)教學(xué)體系、教學(xué)內(nèi)容和教學(xué)方法的改革。
這項(xiàng)極富意義的活動,大學(xué)組隊(duì)參加了全國大學(xué)生數(shù)學(xué)建模競賽。為了更好地組織、指導(dǎo)此項(xiàng)活動,讓更多的學(xué)生投入此項(xiàng)活動并從中受益,學(xué)生根據(jù)組織與指導(dǎo)的實(shí)踐,對數(shù)學(xué)建模活動的作用與實(shí)施談一些認(rèn)識,以期起到深化數(shù)學(xué)教學(xué)改革、推動課程建設(shè)的作用。方法,去近似刻畫、建立相應(yīng)數(shù)學(xué)模型并加以解決的過程。為檢驗(yàn)大學(xué)生數(shù)學(xué)建模的能力,而我國大學(xué)生數(shù)學(xué)建模競賽。參加過數(shù)學(xué)建?;顒拥慕處熍c學(xué)生普遍反映,數(shù)學(xué)建?;顒蛹蓉S富了學(xué)生的課外生活,又培養(yǎng)了學(xué)生各方面的能力,同時也促進(jìn)了大學(xué)數(shù)學(xué)教學(xué)的改革。通過數(shù)學(xué)建?;顒?,教師與學(xué)生對數(shù)學(xué)的作用有了進(jìn)一步的認(rèn)識。激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣?,F(xiàn)今大學(xué)工科數(shù)學(xué)教學(xué)普遍存在內(nèi)容多、學(xué)時少的情況,為此很多教師采取了犧牲應(yīng)用、偏重理論講解以完成教學(xué)進(jìn)度的方法,使學(xué)生對數(shù)學(xué)的重要性認(rèn)識不夠,影響了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,很多學(xué)生進(jìn)入專業(yè)課學(xué)習(xí)階段才感覺到數(shù)學(xué)的重要,但為時已晚。
數(shù)學(xué)建模活動及競賽的題目是社會、經(jīng)濟(jì)和生產(chǎn)實(shí)踐中經(jīng)過適當(dāng)簡化的實(shí)際問題,體現(xiàn)了數(shù)學(xué)應(yīng)用的廣泛性;學(xué)生參與數(shù)學(xué)建模及競賽活動,感受到了數(shù)學(xué)的生機(jī)與活力,感受到了對自己各方面能力的促進(jìn),從而激發(fā)起他們學(xué)習(xí)數(shù)學(xué)的興趣。培養(yǎng)學(xué)生多方面的能力,培養(yǎng)綜合應(yīng)用數(shù)學(xué)知識及方法進(jìn)行分析、推理、計(jì)算的能力。由于數(shù)學(xué)建模的過程是反復(fù)應(yīng)用數(shù)學(xué)知識與方法對實(shí)際問題進(jìn)行分析、推理與計(jì)算,以得出實(shí)際問題的最佳數(shù)學(xué)模型及模型最優(yōu)解的過程,因而學(xué)生明顯感到自己這一方面的能力在具體的建模過程中得到了較大提高學(xué)習(xí)數(shù)學(xué)建模也有一段時間了,說實(shí)話在還沒學(xué)數(shù)學(xué)建模時,我以為這門課程是跟幾何圖形相關(guān)的,但在學(xué)了之后才發(fā)現(xiàn)完全理解錯了,通過這段時間的學(xué)習(xí)使得我對數(shù)學(xué)建模有了一個全新的認(rèn)識,數(shù)學(xué)建模就是當(dāng)人們面對各種實(shí)際問題時,根據(jù)人們對問題的理解,完成對模型的假設(shè),建立和確定求解問題的方法與途徑,然后建立好方程組,然后再與計(jì)算機(jī)的軟件相結(jié)合,最終得到該實(shí)際問題的最佳求解答案。
以前在高中時學(xué)過些簡單的線形規(guī)劃,但那時都是些簡單的問題,在列解出方程后通常只有兩個未知數(shù),但這明顯不符合現(xiàn)實(shí)生活中的問題,因?yàn)橥婕暗揭恍?shí)際生產(chǎn)問題時通常都是比較麻煩的,列出方程后的未知數(shù)也不可能只有兩個,因此就要用到數(shù)學(xué)模型與計(jì)算機(jī)相結(jié)合來處理了。
通過對數(shù)學(xué)建模的學(xué)習(xí),使得我對數(shù)學(xué)有了全新的看法,也因此感覺到數(shù)學(xué)這門課程對于生產(chǎn)的利益是密不可分的,開展數(shù)學(xué)建模的學(xué)習(xí)是提升我們綜合能力的好機(jī)會,使得我們不再是紙上談兵了,并且也使得我們又多了一門技能。數(shù)學(xué)建模所解決的問題不是一個單一的數(shù)學(xué)問題,它要求我們除了有扎實(shí)的數(shù)學(xué)功底外,還需要我們?nèi)ゲ粩嗟牟殚嗁Y料,并且還要能熟練的應(yīng)用計(jì)算機(jī)的軟件。所以它能極大的拓寬我們的知識面,這些知識也能為我們將來的工作打下堅(jiān)實(shí)的基礎(chǔ),也讓我理會到學(xué)習(xí)是不斷發(fā)現(xiàn)真理的過程,并且它給我們帶來的知識面不是任何專業(yè)都能涉及到的.在學(xué)習(xí)數(shù)學(xué)建模的過程中,我充分的體會到了數(shù)學(xué)給人們帶便利實(shí)在太大了,在涉及到現(xiàn)實(shí)的工業(yè)生產(chǎn)中,它能給企業(yè)的利益最大化,并且也能節(jié)省國內(nèi)的能源,所以人類要是離開了數(shù)學(xué)建模,那后果真是不堪設(shè)想。其實(shí)數(shù)學(xué)建模對于我們并不陌生,在我們的日常生活和工作中,經(jīng)常會用到有關(guān)建模的概念,而在學(xué)習(xí)數(shù)學(xué)建模以前,我們面對這些問題時,解決它的方法往往是一種習(xí)慣性的思維方式,只知道要這樣做,卻不知道為什么會這樣做,現(xiàn)在我們這種陳舊的思考方式已經(jīng)被數(shù)學(xué)建模轉(zhuǎn)化成多層次,多角度的從問題的本質(zhì)出發(fā)的一種新穎的思維方式了,這種凝聚了多種優(yōu)秀方法為一體的思考方式一旦被掌握了,它能轉(zhuǎn)化成你自身的素質(zhì),并且能在你以后的生活和工作中繼續(xù)發(fā)揮著作用的。
數(shù)學(xué)建模是一種運(yùn)用數(shù)學(xué)符號,數(shù)學(xué)式子,計(jì)算機(jī)程序等相結(jié)合的對實(shí)際問題做出規(guī)劃而得出最佳的解決方法。不論是用數(shù)學(xué)方法解決在科技和生產(chǎn)領(lǐng)域解決哪類生產(chǎn)實(shí)際問題,還是與其他學(xué)科相結(jié)合形成交叉學(xué)科,首先和關(guān)鍵一步是建立研究對象的數(shù)學(xué)模型,并加以計(jì)算求解,我就簡單說明一下具體的操作方法:首先是模型的準(zhǔn)備,了解問題的實(shí)際背景,明確其實(shí)際意義,掌握對像的各種信息,用數(shù)學(xué)語言來描述問題。第二步是模型的假設(shè),根據(jù)實(shí)際問題的特征和建模的目的,對問題做出必要的簡化,并用精準(zhǔn)的語言做出恰當(dāng)?shù)募僭O(shè)。第三步是模型的建立,在假設(shè)的基礎(chǔ)上,用適當(dāng)?shù)臄?shù)學(xué)工具來刻劃各變量之間的數(shù)學(xué)關(guān)系,建立相應(yīng)的數(shù)學(xué)架構(gòu)。第四步是模型的求解,利用獲取的數(shù)學(xué)資料,對模型所有參數(shù)做出計(jì)算。第五步是模型的分析,對所得的結(jié)果做出數(shù)學(xué)上的分析。第六步是模型檢測,將模型的分析結(jié)果與實(shí)際情況進(jìn)行比較,以此來確定模型的合理性,如果模型與實(shí)際比較吻合,則要對計(jì)算結(jié)果給出其實(shí)際含義,并做書解釋。第七步是模型應(yīng)用,應(yīng)用的方式因問題的性質(zhì)和建模的目的而異。
在一般的工程技術(shù)領(lǐng)域,數(shù)學(xué)建模仍然大有用武之地,因此數(shù)學(xué)建模的普遍性和重要性不言而喻,由于新工業(yè)和新技術(shù)的不斷涌現(xiàn),提出了許多需要用數(shù)學(xué)建模來解決的問題,因此使得許多的問題迎刃而解,建立數(shù)學(xué)建模和計(jì)算機(jī)的軟件,大量的代替了以前的復(fù)雜的計(jì)算問題。隨著數(shù)學(xué)向這儲如經(jīng)濟(jì)了等領(lǐng)域進(jìn)行滲透,人們在計(jì)算如何使得經(jīng)濟(jì)利益最大化時,數(shù)學(xué)建模毫無疑問在這里面發(fā)揮出巨大的作用,當(dāng)用數(shù)學(xué)方法研究這些領(lǐng)域中的定量關(guān)系時,數(shù)學(xué)建模就成為首要的。數(shù)學(xué)建模過程是一種創(chuàng)新過程,在思考方法和思維方式上與學(xué)習(xí)其他課程有著較大的區(qū)別,它需要我們在學(xué)習(xí)時能冷靜的.單獨(dú)思考,并且要有一定的分析問題的能力。
我相信隨著科技的不斷創(chuàng)新發(fā)展,數(shù)學(xué)建模在其中的地位會越來越高,所以對于一個大學(xué)生來說,學(xué)好數(shù)學(xué)建模固然是非常重要的。
一年一度的全國數(shù)學(xué)建模大賽在今年的9 月22 日上午8 點(diǎn)拉開戰(zhàn)幕,各隊(duì)將在3 天72 小時內(nèi)對一個現(xiàn)實(shí)中的實(shí)際問題進(jìn)行模型建立,求解和分析,確定題目后,我們隊(duì)三人分頭行動,一人去圖書館查閱資料,一人在網(wǎng)上搜索相關(guān)信息,一人建立模型,通過三人的努力,在前兩天中建立出兩個模型并編程求解,經(jīng)過艱苦的奮斗,終于在第三天完成了論文的寫作,在這三天里我感觸很深,現(xiàn)將心得體會寫出,希望與大家交流。
1. 團(tuán)隊(duì)精神:團(tuán)隊(duì)精神是數(shù)學(xué)建模是否取得好成績的最重要的因素,一隊(duì)三個人要相互支持,相互鼓勵。切勿自己只管自己的一部分(數(shù)學(xué)好的只管建模,計(jì)算機(jī)好的只管編程,寫作好的只管論文寫作),很多時候,一個人的思考是不全面的,只有大家一起討論才有可能把問題搞清楚,因此無論做任何板塊,三個人要一起齊心才行,只靠一個人的力量,要在三天之內(nèi)寫出一篇高水平的文章幾乎是不可能的。
2. 有影響力的leader:在比賽中,leader 是很重要的,他的作用就相當(dāng)與計(jì)算機(jī)中的cpu,是全隊(duì)的核心,如果一個隊(duì)的leader 不得力,往往影響一個隊(duì)的正常發(fā)揮,就拿選題來說,有人想做a 題,有人想做b 題,如果爭論一天都未確定方案的話,可能就沒有足夠時間完成一篇論文了,又比如,當(dāng)隊(duì)中有人信心動搖時(特別是第三天,人可能已經(jīng)心力交瘁了),leader 應(yīng)發(fā)揮其作用,讓整個隊(duì)伍重整信心,否則可能導(dǎo)致隊(duì)伍的前功盡棄。
3. 合理的時間安排:做任何事情,合理的時間安排非常重要,建模也是一樣,事先要做好一個規(guī)劃,建模一共分十個板塊(摘要,問題提出,模型假設(shè),問題分析,模型假設(shè),模型建立,模型求解,結(jié)果分析,模型的評價與推廣,參考文獻(xiàn),附錄)。你每天要做完哪幾個板塊事先要確定好,這樣做才會使自己游刃有余,保證在規(guī)定時間內(nèi)完成論文,以避免由于時間上的不妥,以致于最后無法完成論文。
4. 正確的論文格式:論文屬于科學(xué)性的文章,它有嚴(yán)格的書寫格式規(guī)范,因此一篇好的論文一定要有正確的格式,就拿摘要來說吧,它要包括6 要素(問題,方法,模型,算法,結(jié)論,特色),它是一篇論文的概括,摘要的好壞將決定你的論文是否吸引評委的目光,但聽閱卷老師說,這次有些論文的摘要里出現(xiàn)了大量的圖表和程序,這都是不符合論文格式的,這種論文也不會取得好成績,因此我們寫論文時要端正態(tài)度,注意書寫格式。
5. 論文的寫作:我個人認(rèn)為論文的寫作是至關(guān)重要的,其實(shí)大家最后的模型和結(jié)果都差不多,為什么有些隊(duì)可以送全國,有些隊(duì)可以拿省獎,而有些隊(duì)卻什么都拿不到,這關(guān)鍵在于論文的寫作上面。一篇好的論文首先讀上去便使人感到邏輯清晰,有條例性,能打動評委;其次,論文在語言上的表述也很重要,要注意用詞的準(zhǔn)確性;另外,一篇好的論文應(yīng)有閃光點(diǎn),有自己的特色,有自己的想法和思考在里面,總之,論文寫作的好壞將直接影響到成績的優(yōu)劣。
6. 算法的設(shè)計(jì):算法的設(shè)計(jì)的好壞將直接影響運(yùn)算速度的快慢,建議大家多用數(shù)學(xué)軟件(mathematice,matlab,maple, mathcad,lindo,lingo,sas 等),這里提供十種數(shù)學(xué)建模常用算法,僅供參考:
1、 蒙特卡羅算法(該算法又稱隨機(jī)性模擬算法,是通過計(jì)算機(jī)仿真來解決問題的算法,同時可以通過模擬可以來檢驗(yàn)自己模型的正確性,是比賽時必用的方法)
2、數(shù)據(jù)擬合、參數(shù)估計(jì)、插值等數(shù)據(jù)處理算法(比賽中通常會遇到大量的數(shù)據(jù)需要處理,而處理數(shù)據(jù)的關(guān)鍵就在于這些算法,通常使用matlab 作為工具)
3、線性規(guī)劃、整數(shù)規(guī)劃、多元規(guī)劃、二次規(guī)劃等規(guī)劃類問題(建模競賽大多數(shù)問題屬于最優(yōu)化問題,很多時候這些問題可以用數(shù)學(xué)規(guī)劃算法來描述,通常使用lindo、lingo 軟件實(shí)現(xiàn))
4、圖論算法(這類算法可以分為很多種,包括最短路、網(wǎng)絡(luò)流、二分圖等算法,涉及到圖論的問題可以用這些方法解決,需要認(rèn)真準(zhǔn)備)
5、動態(tài)規(guī)劃、回溯搜索、分治算法、分支定界等計(jì)算機(jī)算法(這些算法是算法設(shè)計(jì)中比較常用的方法,很多場合可以用到競賽中)
6、最優(yōu)化理論的三大非經(jīng)典算法:模擬退火法、神經(jīng)網(wǎng)絡(luò)、遺傳算法(這些問題是用來解決一些較困難的最優(yōu)化問題的算法,對于有些問題非常有幫助,但是算法的實(shí)現(xiàn)比較困難,需慎重使用)
7、網(wǎng)格算法和窮舉法(網(wǎng)格算法和窮舉法都是暴力搜索最優(yōu)點(diǎn)的算法,在很多競賽題中有應(yīng)用,當(dāng)重點(diǎn)討論模型本身而輕視算法的時候,可以使用這種暴力方案,最好使用一些高級語言作為編程工具)
8、一些連續(xù)離散化方法(很多問題都是實(shí)際來的,數(shù)據(jù)可以是連續(xù)的,而計(jì)算機(jī)只認(rèn)的是離散的數(shù)據(jù),因此將其離散化后進(jìn)行差分代替微分、求和代替積分等思想是非常重要的)
9、數(shù)值分析算法(如果在比賽中采用高級語言進(jìn)行編程的話,那一些數(shù)值分析中常用的算法比如方程組求解、矩陣運(yùn)算、函數(shù)積分等算法就需要額外編寫庫函數(shù)進(jìn)行調(diào)用)
10、圖象處理算法(賽題中有一類問題與圖形有關(guān),即使與圖形無關(guān),論文中也應(yīng)該要不乏圖片的,這些圖形如何展示以及如何處理就是需要解決的問題,通常使用matlab 進(jìn)行處理)
數(shù)學(xué)建模課程心得篇三
經(jīng)濟(jì)數(shù)學(xué)建模是經(jīng)濟(jì)學(xué)領(lǐng)域中非常核心的一部分。它通過數(shù)學(xué)方法,把人們在經(jīng)濟(jì)操作中遇到的實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)函數(shù),以便進(jìn)行量化分析,從而得出決策建議。經(jīng)濟(jì)數(shù)學(xué)建模是經(jīng)濟(jì)科學(xué)和數(shù)學(xué)科學(xué)的交叉學(xué)科,它的任務(wù)是了解經(jīng)濟(jì)活動中的現(xiàn)象和規(guī)律,并通過模型預(yù)測未來的經(jīng)濟(jì)走向。在這次經(jīng)濟(jì)數(shù)學(xué)建模的學(xué)習(xí)中,我積累了很多寶貴的經(jīng)驗(yàn),下面我將分享一些心得體會。
二、理論知識的補(bǔ)充。
在進(jìn)行經(jīng)濟(jì)數(shù)學(xué)建模之前,我們必須有足夠的理論知識來支持我們的模型構(gòu)建。在此過程中,我深刻意識到經(jīng)濟(jì)數(shù)學(xué)建模的實(shí)踐和理論相輔相成的關(guān)系。只有通過大量的理論學(xué)習(xí),我們才能理解經(jīng)濟(jì)現(xiàn)象背后的原理,才能夠把現(xiàn)實(shí)問題轉(zhuǎn)化為可解的數(shù)學(xué)模型。
通過學(xué)習(xí)數(shù)學(xué)、統(tǒng)計(jì)學(xué)和經(jīng)濟(jì)學(xué)等相關(guān)學(xué)科的理論知識,我不僅對模型構(gòu)建有了更深入的理解,還掌握了許多常用的數(shù)學(xué)工具和方法。例如,線性回歸、最優(yōu)化、概率論等方法在經(jīng)濟(jì)數(shù)學(xué)建模中非常常見,掌握它們可以幫助我們更加準(zhǔn)確地分析和預(yù)測問題。
三、實(shí)踐應(yīng)用的重要性。
理論知識的補(bǔ)充只是經(jīng)濟(jì)數(shù)學(xué)建模的第一步,真正的挑戰(zhàn)在于將所學(xué)的理論知識應(yīng)用到實(shí)際問題中。在我學(xué)習(xí)的過程中,我意識到實(shí)踐應(yīng)用是我提高建模能力的關(guān)鍵。
通過實(shí)際案例的演練和解決,我不僅更加深入地理解了所學(xué)的理論知識,還學(xué)會了將抽象的概念轉(zhuǎn)化為具體的數(shù)學(xué)模型。我記得在一個關(guān)于市場供求的案例中,我遇到了數(shù)據(jù)采集和模型選擇的難題。通過實(shí)際的調(diào)查和采集數(shù)據(jù),我成功地構(gòu)建了一個供需函數(shù),并用最優(yōu)化方法求解了最佳的市場均衡狀態(tài)。
實(shí)踐應(yīng)用還培養(yǎng)了我解決問題的能力和團(tuán)隊(duì)合作的精神。經(jīng)濟(jì)數(shù)學(xué)建模往往需要團(tuán)隊(duì)協(xié)作,在團(tuán)隊(duì)中分工合作、同心協(xié)力才能更好地完成任務(wù)。在我參與的團(tuán)隊(duì)項(xiàng)目中,我遇到了很多技術(shù)難題,但在團(tuán)隊(duì)的幫助和協(xié)作下,我們成功地攻克了一個個難題,最終完成了一個完整的經(jīng)濟(jì)數(shù)學(xué)建模項(xiàng)目。
四、創(chuàng)新思維的培養(yǎng)。
經(jīng)濟(jì)數(shù)學(xué)建模要求我們具備創(chuàng)新思維,能夠獨(dú)立思考并能夠提出新穎的解決方案。在我實(shí)踐中的體會是,創(chuàng)新思維的培養(yǎng)是一個不斷學(xué)習(xí)和思考的過程。
首先,要有廣博的知識儲備和靈活運(yùn)用的能力。只有通過多學(xué)科知識的融合,我們才能夠從不同的角度看待問題,從而提出創(chuàng)新的解決方案。
其次,要注重實(shí)踐鍛煉和經(jīng)驗(yàn)積累。在實(shí)際問題的解決過程中,我們常常需要嘗試不同的方法和思路,才能找到最佳的解決方案。通過不斷的實(shí)踐和總結(jié),我們的創(chuàng)新能力會日漸增強(qiáng)。
最后,要積極參與學(xué)術(shù)交流和競賽等活動。參與學(xué)術(shù)交流可以讓我們了解到其他研究者的思路和方法,進(jìn)而啟發(fā)我們的創(chuàng)新思維。參與競賽可以使我們在激烈的競爭中不斷提高自己的建模能力,從而培養(yǎng)出更為創(chuàng)新的思維方式。
五、總結(jié)。
總體而言,經(jīng)濟(jì)數(shù)學(xué)建模是一門非常有挑戰(zhàn)性的學(xué)科。通過學(xué)習(xí)和實(shí)踐,我深刻認(rèn)識到它的重要性和實(shí)用性。經(jīng)濟(jì)數(shù)學(xué)建模不僅能夠提高我們的數(shù)學(xué)能力,還能夠培養(yǎng)我們的創(chuàng)新思維和解決問題的能力。雖然困難重重,但只要我們持之以恒,相信以后在這個領(lǐng)域我能取得更好的成果和收獲。
數(shù)學(xué)建模課程心得篇四
總結(jié)了數(shù)學(xué)建模的過程,我們可以得出一些心得體會,如果想要提高數(shù)學(xué)建模的能力,需要注意以下幾個方面。首先是對數(shù)學(xué)知識的掌握,必須要有扎實(shí)的數(shù)學(xué)基礎(chǔ)才能更好地進(jìn)行建模。其次是數(shù)學(xué)建模的思維方式,要具備一種將現(xiàn)實(shí)問題轉(zhuǎn)化為數(shù)學(xué)問題的能力。同時,還要有耐心和毅力,因?yàn)閿?shù)學(xué)建模是一個復(fù)雜而繁瑣的過程。最后,要善于團(tuán)隊(duì)合作,因?yàn)閿?shù)學(xué)建模往往需要多個人的共同努力。
在進(jìn)行數(shù)學(xué)建模時,首先要確保自己對所使用的數(shù)學(xué)知識有充分的掌握。數(shù)學(xué)是建模的基礎(chǔ),只有掌握了數(shù)學(xué),才能更好地進(jìn)行建模。因此,我們要不斷地學(xué)習(xí)和提高自己的數(shù)學(xué)水平,不斷地深入掌握各種數(shù)學(xué)方法和技巧,以便能夠靈活地運(yùn)用到建模中去。
其次是數(shù)學(xué)建模的思維方式。數(shù)學(xué)建模是一種將現(xiàn)實(shí)問題抽象化并轉(zhuǎn)化為數(shù)學(xué)問題的過程。要想更好地進(jìn)行建模,必須要具備這種思維方式。在面對一個問題時,我們要善于用數(shù)學(xué)語言和數(shù)學(xué)模型來描述和解釋這個問題,從而更好地理解和分析問題。只有掌握了這種思維方式,我們才能更好地進(jìn)行數(shù)學(xué)建模。
另外,數(shù)學(xué)建模是一個復(fù)雜而繁瑣的過程,需要耐心和毅力。在進(jìn)行建模過程中,我們常常會遇到各種各樣的問題和困難,可能會進(jìn)行多次的嘗試和推導(dǎo)。面對這種情況,我們不能輕易放棄,要有耐心和毅力去解決問題。只有堅(jiān)持不懈,才能找到解決問題的辦法,達(dá)到預(yù)期的效果。
最后,數(shù)學(xué)建模是一個團(tuán)隊(duì)合作的過程,需要多個人的共同努力。在進(jìn)行建模時,不僅需要各個成員的專業(yè)知識和技能,還需要團(tuán)隊(duì)合作能力。團(tuán)隊(duì)合作可以使我們在建模過程中互相交流和補(bǔ)充,共同解決問題。因此,要善于與他人合作,不斷地溝通和學(xué)習(xí),從而更好地完成建模任務(wù)。
總之,數(shù)學(xué)建模是一門需要不斷學(xué)習(xí)和實(shí)踐的技能,而且往往需要多個人的共同努力。通過對數(shù)學(xué)知識的深入掌握和數(shù)學(xué)建模思維方式的培養(yǎng),以及耐心和毅力的堅(jiān)持,我們可以提高自己的數(shù)學(xué)建模能力。同時,要善于與他人合作,共同解決問題。相信只有這樣,我們才能在數(shù)學(xué)建模中取得更大的進(jìn)步和成就。
數(shù)學(xué)建模課程心得篇五
數(shù)學(xué)建模是一門與日俱增的科學(xué)領(lǐng)域,在許多實(shí)際應(yīng)用問題上都可以發(fā)揮重要的作用。它以現(xiàn)實(shí)問題為出發(fā)點(diǎn),運(yùn)用學(xué)科知識和科學(xué)方法,在不斷的實(shí)踐中研究出解決問題的方法,既可以用于工程技術(shù)領(lǐng)域,也可以對社會問題、經(jīng)濟(jì)問題等有所幫助。在本次參加的“走進(jìn)數(shù)學(xué)建模”實(shí)踐活動中,不僅獲得了有關(guān)數(shù)學(xué)建模的相關(guān)知識,也學(xué)會了如何提升建模的技巧和方法,深刻體會到了數(shù)學(xué)建模在實(shí)際生活中的重要作用。
第二段:體驗(yàn)過程
在活動中,我深刻感受到了“建模是一種轉(zhuǎn)化知識才力的過程”這一理念。在接下來的實(shí)踐中,我們嘗試了一項(xiàng)建模活動——“華山論劍”,這是一種基于游戲理論的經(jīng)典數(shù)學(xué)建模問題。我們首先學(xué)習(xí)到了相關(guān)的游戲規(guī)則和模型解釋,接著進(jìn)行實(shí)際游戲,自行制作策略,并注意反思優(yōu)化,從而得到最優(yōu)解。通過這項(xiàng)建?;顒樱覍W(xué)會了如何利用已有的知識和技巧,較為準(zhǔn)確地處理問題,順利地獲得正確的答案。
第三段:技術(shù)分析
在建模過程中,我們首先需要了解問題背景,明確問題目標(biāo),然后通過分析數(shù)據(jù)和相關(guān)實(shí)例,對問題進(jìn)行分類、建模和協(xié)調(diào)分析。在具體建模過程中,我們需要運(yùn)用數(shù)學(xué)和計(jì)算機(jī)知識,通過正確的數(shù)據(jù)處理方式和解決方案,輸出符合要求的最優(yōu)解。同時,在建模過程中,我們還需要結(jié)合實(shí)際情況,靈活調(diào)整模型,適當(dāng)引入或去除參數(shù),使模型結(jié)果更具創(chuàng)造性和實(shí)用性,滿足問題實(shí)際需要。
第四段:啟示和收獲
通過參加“走進(jìn)數(shù)學(xué)建?!睂?shí)踐活動,我不僅學(xué)習(xí)到了基本的建模理論和技巧方法,還受益于活動中實(shí)際的建模案例,得到了更為深刻的體會和認(rèn)識。我發(fā)現(xiàn),在實(shí)際操作中,建模不僅要有強(qiáng)烈的目的性,而且還要具備創(chuàng)造性和探索性。隨著不斷的實(shí)踐,我逐漸學(xué)會了如何在模型分析中發(fā)揮創(chuàng)造性,如何利用多種方法和技巧來解決實(shí)際問題。同時,我也明確了建模不是一門靜態(tài)的科學(xué),而是需要不斷的更新和迭代,才能不斷適應(yīng)和推動時代發(fā)展。
第五段:結(jié)語
通過“走進(jìn)數(shù)學(xué)建?!睂?shí)踐活動的學(xué)習(xí)體驗(yàn),我深刻體會到了數(shù)學(xué)建模在實(shí)際生活中的應(yīng)用價值和重要性。在今后的學(xué)習(xí)和工作中,我將更加注重培養(yǎng)自身數(shù)學(xué)建模的能力,不斷提升創(chuàng)造性和探索性,多角度、多方面地進(jìn)行實(shí)踐,以期在實(shí)際問題上更好地發(fā)揮建模的作用。同時,我也希望更多的人能夠認(rèn)識到數(shù)學(xué)建模的優(yōu)勢和價值,積極進(jìn)入這個領(lǐng)域,為推動社會進(jìn)步和共同發(fā)展做出更多的貢獻(xiàn)。
數(shù)學(xué)建模課程心得篇六
數(shù)學(xué)建模作為一種綜合性的能力與技術(shù),近年來深受大眾的關(guān)注與推崇。作為一名數(shù)學(xué)愛好者,我對數(shù)學(xué)建模這個領(lǐng)域也產(chǎn)生了濃厚的興趣。在閱讀關(guān)于數(shù)學(xué)建模的相關(guān)書籍、學(xué)習(xí)課程與參加各類競賽的過程中,我深刻地領(lǐng)悟到了數(shù)學(xué)建模的種種魅力,也匯總了一些讀數(shù)學(xué)建模的心得與體會。
第二段:學(xué)習(xí)經(jīng)驗(yàn)。
為了更好地理解數(shù)學(xué)建模,我通過網(wǎng)上課程等不斷學(xué)習(xí)。由于數(shù)學(xué)建模這個領(lǐng)域廣泛涉及到的知識面十分廣泛,所以學(xué)習(xí)的內(nèi)容也十分繁瑣。在學(xué)習(xí)的過程中,我力求將各個專業(yè)領(lǐng)域的知識以及各種方法融合在一起,取長補(bǔ)短,做到融會貫通。同時,也需要不斷地與比賽、挑戰(zhàn)賽等交流中,去檢驗(yàn)自己的知識水平,并不斷地提高自己的學(xué)習(xí)能力。
第三段:實(shí)踐體會。
學(xué)習(xí)歸來,我開始了自己的實(shí)踐之旅。在應(yīng)對數(shù)學(xué)建模的挑戰(zhàn)的過程中,我逐漸意識到模型的準(zhǔn)確度與應(yīng)用性是非常重要的。想要達(dá)到這點(diǎn),必須不斷地加強(qiáng)數(shù)學(xué)知識的學(xué)習(xí),提高自己的實(shí)際操作能力。另外,更加注重分析真實(shí)場景與數(shù)據(jù),了解不同數(shù)據(jù)之間的關(guān)系與差異,并運(yùn)用不同的數(shù)據(jù)分析方法,以保證模型的精度與可靠性。
第四段:對未來的研究目標(biāo)。
雖然我在數(shù)學(xué)建模的學(xué)習(xí)與實(shí)踐中有了一定的收獲,但我深知自己仍是一個初學(xué)者,未來的路還有很長。因此,我計(jì)劃在未來的學(xué)習(xí)與實(shí)踐中,更加注重對數(shù)學(xué)建模理論的深度探究,從更加基礎(chǔ)的角度出發(fā)去分析模型,從而更好地將理論運(yùn)用于實(shí)踐。另外,我也將繼續(xù)參加各種數(shù)學(xué)建模競賽,不斷挑戰(zhàn)自己,提高自己的技能水平。
第五段:總結(jié)。
回首自己的數(shù)學(xué)建模之路,我深深體會到數(shù)學(xué)建模的魅力與難度。在實(shí)踐過程中,我不斷地學(xué)習(xí)、嘗試與挑戰(zhàn)自己,才有了今天的成果。未來,我會繼續(xù)深入學(xué)習(xí)、實(shí)踐,不斷提升自己,讓數(shù)學(xué)建模這個寶藏般的領(lǐng)域,能夠不斷地被挖掘、發(fā)現(xiàn)鏈梢,為人類社會提供更多的發(fā)展動力。
數(shù)學(xué)建模課程心得篇七
數(shù)學(xué)建模是應(yīng)用數(shù)學(xué)的一種重要研究方法,通過數(shù)學(xué)模型來描述和分析實(shí)際問題。為了促進(jìn)學(xué)術(shù)交流和經(jīng)驗(yàn)分享,在數(shù)學(xué)建模領(lǐng)域舉辦會議已經(jīng)成為常態(tài)。最近,我有幸參加了一場數(shù)學(xué)建模會議,此次心得體會將分為五個方面進(jìn)行討論。
首先,數(shù)學(xué)建模會議提供了一個學(xué)術(shù)交流的平臺,使得來自不同學(xué)術(shù)領(lǐng)域的研究人員能夠相互學(xué)習(xí)和交流。會議期間,我有機(jī)會聽取了來自各個領(lǐng)域的專家學(xué)者的報(bào)告,了解到不同領(lǐng)域的最新研究成果和發(fā)展趨勢。這種跨學(xué)科的交流對于推動數(shù)學(xué)建模的發(fā)展起到了積極的作用,讓我們有機(jī)會從更廣泛的角度思考和解決實(shí)際問題。
其次,數(shù)學(xué)建模會議提供了一個分享經(jīng)驗(yàn)和方法的機(jī)會。在會議期間,我結(jié)識了很多來自不同地區(qū)和國家的同行,他們分享了他們在數(shù)學(xué)建模過程中遇到的問題和解決方法。這使得我深刻認(rèn)識到,在數(shù)學(xué)建模的過程中,經(jīng)驗(yàn)和方法的分享非常重要。不同的研究者可能會有不同的問題處理思路和解題方法,通過交流和討論,我們能夠更好地完善和改進(jìn)自己的研究方法。
第三,數(shù)學(xué)建模會議對于培養(yǎng)科研合作意識和團(tuán)隊(duì)精神非常有益。在數(shù)學(xué)建模的過程中,往往需要多個研究人員的合作和協(xié)同工作。會議的舉辦為我們提供了一個與他人合作的機(jī)會。通過與其他研究者交流和討論,我們能夠加深對合作的認(rèn)識,并學(xué)會如何與他人進(jìn)行有效的協(xié)作。這對于培養(yǎng)團(tuán)隊(duì)精神以及提高科研工作效率有著積極的影響。
第四,數(shù)學(xué)建模會議還舉辦了一些專題討論和研討會,為與會者提供了進(jìn)一步深入研究和探討特定問題的機(jī)會。這些討論和研討會往往是研究者之間進(jìn)行深入交流和合作的重要平臺,能夠更為細(xì)致地討論問題,并從不同的角度探索解決方案。對于特定問題的研究和討論能夠促進(jìn)我們對該問題的理解和分析,進(jìn)一步提高我們的研究水平和能力。
最后,數(shù)學(xué)建模會議還提供了一個展示研究成果和交流思想的機(jī)會。在會議期間,我有機(jī)會向其他研究者展示自己的研究成果,并與他們進(jìn)行深入的討論和交流。這種展示和交流的機(jī)會不僅可以增加學(xué)術(shù)影響力,還能夠獲得其他研究者的寶貴意見和建議,進(jìn)一步完善和改進(jìn)自己的研究成果。
綜上所述,數(shù)學(xué)建模會議是一個學(xué)術(shù)交流和經(jīng)驗(yàn)分享的平臺。通過參加數(shù)學(xué)建模會議,我有機(jī)會與其他研究人員進(jìn)行交流和合作,共同推進(jìn)數(shù)學(xué)建模領(lǐng)域的發(fā)展。這次會議不僅使我受益匪淺,也為我提供了一個更廣闊的學(xué)術(shù)視野和思維方式。我相信,在今后的學(xué)術(shù)研究中,我會將這次會議的經(jīng)驗(yàn)和體會運(yùn)用到實(shí)踐中,并不斷完善和提高自己在數(shù)學(xué)建模領(lǐng)域的研究能力。
數(shù)學(xué)建模課程心得篇八
讀數(shù)學(xué)建模課程是我大學(xué)三年級的必修課程,這門課程讓我感受到了數(shù)學(xué)的實(shí)用性和嚴(yán)謹(jǐn)性,也讓我深刻理解到數(shù)學(xué)在現(xiàn)實(shí)生活中的重要性。在這門課程中,我學(xué)習(xí)了數(shù)學(xué)模型的構(gòu)建、求解和分析方法,我認(rèn)為,這些知識對于我以后的學(xué)習(xí)和工作都有很大的幫助。
第二段:探究
在學(xué)習(xí)數(shù)學(xué)建模的過程中,我發(fā)現(xiàn),一個好的數(shù)學(xué)模型不僅要符合現(xiàn)實(shí),還要有嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)證明。因此,我學(xué)習(xí)了多種數(shù)學(xué)知識,包括微積分、線性代數(shù)、概率論與數(shù)理統(tǒng)計(jì)等,這些知識讓我能夠更好地構(gòu)建數(shù)學(xué)模型,同時也能夠更好地驗(yàn)證和分析結(jié)果。
第三段:發(fā)揮
在實(shí)踐建模的過程中,我發(fā)現(xiàn),一個好的數(shù)學(xué)模型不僅需要有合適的數(shù)學(xué)公式,還需要有合理的數(shù)據(jù)支持。因此,我學(xué)習(xí)了如何獲取和分析數(shù)據(jù),并學(xué)會了使用MATLAB等計(jì)算工具對數(shù)據(jù)進(jìn)行分析和可視化。這些工具不僅方便了我對數(shù)據(jù)的理解,還能夠幫助我更好地展示數(shù)學(xué)模型的結(jié)果。
第四段:總結(jié)
通過學(xué)習(xí)數(shù)學(xué)建模,我發(fā)現(xiàn)成功的模型需要具備以下特點(diǎn):1、模型要符合現(xiàn)實(shí);2、模型的數(shù)學(xué)表達(dá)式要嚴(yán)謹(jǐn);3、模型需要有合理的數(shù)據(jù)支持;4、模型的結(jié)果需要有實(shí)際意義。這些特點(diǎn)相互為依存,缺一不可。同時,我也認(rèn)識到,在數(shù)學(xué)建模中,靈活性和創(chuàng)新性同樣重要,只有掌握了嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)知識,才能更好地發(fā)揮個人思維的特點(diǎn),構(gòu)建出更為優(yōu)秀的數(shù)學(xué)模型。
第五段:啟示
學(xué)習(xí)數(shù)學(xué)建模的過程中,我不僅學(xué)到了嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)知識,還學(xué)會了如何分析和解決實(shí)際問題。在以后的學(xué)習(xí)和工作中,我將不斷運(yùn)用這些知識和技能,以更好地解決實(shí)際問題,為社會做出自己的貢獻(xiàn)。同時,我也希望更多的人能夠認(rèn)識到數(shù)學(xué)的實(shí)用性和重要性,從而更好地學(xué)習(xí)和應(yīng)用數(shù)學(xué)。
數(shù)學(xué)建模課程心得篇九
數(shù)學(xué)建模是一個重要的學(xué)科領(lǐng)域,它涵蓋了多個學(xué)科和領(lǐng)域,包括數(shù)學(xué)、計(jì)算機(jī)科學(xué)、物理學(xué)等。在我走進(jìn)數(shù)學(xué)建模的過程中,我不僅學(xué)到了各種數(shù)學(xué)方法和工具的使用,還深刻體會到了數(shù)學(xué)建模帶給我的思維方式和解決問題的能力。在這篇文章中,我將分享我在走進(jìn)數(shù)學(xué)建模過程中的心得體會。
第二段:培養(yǎng)問題意識。
數(shù)學(xué)建模的第一步是培養(yǎng)問題意識。在開始建模之前,我們需要詳細(xì)分析問題,確定問題的具體需求和邊界條件。通過認(rèn)真理解問題,我學(xué)會了如何提出有針對性的問題,并在解決問題的過程中避免陷入無關(guān)的細(xì)節(jié)。這個過程讓我意識到,培養(yǎng)問題意識對于解決問題非常關(guān)鍵。
第三段:選擇合適的數(shù)學(xué)方法。
在數(shù)學(xué)建模中,選擇合適的數(shù)學(xué)方法是至關(guān)重要的。不同的問題需要不同的數(shù)學(xué)方法來解決。通過學(xué)習(xí)不同的數(shù)學(xué)方法和模型,我學(xué)會了靈活運(yùn)用數(shù)學(xué)工具來解決實(shí)際問題。我發(fā)現(xiàn),數(shù)學(xué)方法可以幫助我們從多個維度去分析問題,找到問題的本質(zhì),并給出最優(yōu)的解決方案。
第四段:數(shù)據(jù)處理與模型求解。
數(shù)學(xué)建模中,對數(shù)據(jù)的處理和模型的求解是非常重要的步驟。通過學(xué)習(xí)如何處理大量的數(shù)據(jù)和選擇合適的模型進(jìn)行求解,我學(xué)會了如何從海量信息中提取有效的信息,并將其應(yīng)用于實(shí)際問題的解決中。這個過程不僅讓我對實(shí)際問題有了更深入的理解,還提高了我的計(jì)算和分析能力。
第五段:實(shí)踐與總結(jié)。
數(shù)學(xué)建模需要大量的實(shí)踐和總結(jié)。通過參加數(shù)學(xué)建模比賽和實(shí)際項(xiàng)目,我有機(jī)會將課堂上學(xué)到的知識應(yīng)用到實(shí)際情境中,并與隊(duì)友一起解決實(shí)際問題。這個過程不僅鍛煉了我的團(tuán)隊(duì)合作和溝通能力,還讓我深刻認(rèn)識到數(shù)學(xué)建模的重要性和實(shí)際應(yīng)用價值。
總結(jié):
通過走進(jìn)數(shù)學(xué)建模,我不僅學(xué)到了豐富的數(shù)學(xué)知識和方法,還培養(yǎng)了問題意識和解決問題的能力。數(shù)學(xué)建模讓我不再局限于書本知識,而是能夠?qū)⑺鶎W(xué)的數(shù)學(xué)方法用于實(shí)際問題的解決中。通過不斷實(shí)踐和總結(jié),我相信我會在數(shù)學(xué)建模領(lǐng)域繼續(xù)取得進(jìn)步,并將所學(xué)知識應(yīng)用到更多領(lǐng)域中的實(shí)際問題中。走進(jìn)數(shù)學(xué)建模,讓我發(fā)現(xiàn)了數(shù)學(xué)的魅力,并為未來的學(xué)習(xí)和研究提供了更加廣闊的可能性。
數(shù)學(xué)建模課程心得篇十
數(shù)學(xué)建模比賽是一種很有意義的學(xué)科競賽活動,通過這次比賽,不僅是對我們剛剛學(xué)習(xí)過的知識進(jìn)行了一次鞏固和運(yùn)用,也鍛煉了我們解決實(shí)際問題的能力和團(tuán)隊(duì)合作精神。以下是我在數(shù)學(xué)建模比賽中的一些心得和體會。
首先,成功的數(shù)學(xué)建模團(tuán)隊(duì)需要合理的分工和密切的合作。在比賽中,我們團(tuán)隊(duì)成員根據(jù)自己的興趣和長處,合理地分工合作,每人負(fù)責(zé)一個方面的內(nèi)容。比如,我擅長數(shù)據(jù)的處理和模型的建立,所以我承擔(dān)了這方面的工作;而我的搭檔則負(fù)責(zé)論文的寫作和圖表的制作。通過這種合理的分工和互補(bǔ)的合作,我們的團(tuán)隊(duì)才能高效地解決問題,使得整個團(tuán)隊(duì)的水平得到提升。
其次,數(shù)學(xué)建模比賽需要靈活運(yùn)用所學(xué)的理論知識。在競賽中,我們要遇到各種各樣的實(shí)際問題,這些問題并不像課本上的題目那樣單一和規(guī)定好了的。因此,我們不能局限于課本上的一些定式方法,而應(yīng)該充分利用所學(xué)的理論知識,靈活運(yùn)用在實(shí)際問題的解決中。比如,在我們的一次比賽中,我們遇到了一個需同時考慮時間和資源分配的問題,我們運(yùn)用了線性規(guī)劃的方法,通過建立數(shù)學(xué)模型,求解得到了最優(yōu)解。這一經(jīng)驗(yàn)告訴我們,只有將理論知識與實(shí)際問題相結(jié)合,才能高效地解決問題。
第三,數(shù)學(xué)建模比賽需要靈活運(yùn)用不同的思維方法。在我們的比賽中,我們遇到了一道關(guān)于線性回歸的問題。在分析問題時,我嘗試了線性回歸分析的方法,但結(jié)果并不理想。后來,我的隊(duì)友提出了使用指數(shù)回歸的方法,經(jīng)過計(jì)算和比較,我們發(fā)現(xiàn)指數(shù)回歸結(jié)果更符合實(shí)際情況。通過這次經(jīng)歷,我意識到在數(shù)學(xué)建模比賽中,沒有一種固定的思維方法是適用于所有問題的,我們需要根據(jù)具體問題的特點(diǎn)靈活運(yùn)用各種思維方法,從而得到更好的解決方法。
第四,數(shù)學(xué)建模比賽需要注重實(shí)踐和驗(yàn)證。在比賽中,我們提出了一種模型,但我們不能僅僅憑借理論推導(dǎo)和計(jì)算結(jié)果就認(rèn)為模型是正確的。我們還需要通過實(shí)踐和驗(yàn)證來檢驗(yàn)我們的模型是否可行和準(zhǔn)確。比如,在我們的一次模擬實(shí)驗(yàn)中,我們對模型的結(jié)果進(jìn)行了驗(yàn)證,并發(fā)現(xiàn)結(jié)果與實(shí)際情況相吻合,這使我們對我們的模型有了更大的信心。因此,在數(shù)學(xué)建模比賽中,實(shí)踐和驗(yàn)證是非常重要的環(huán)節(jié)。
最后,數(shù)學(xué)建模比賽讓我充分意識到團(tuán)隊(duì)合作的重要性。在比賽中,我們需要相互協(xié)作、相互配合,從而形成一個默契的團(tuán)隊(duì)。在我和隊(duì)友的分工和合作中,我切身感受到了團(tuán)隊(duì)的力量。每當(dāng)遇到困難和挑戰(zhàn)時,我們共同努力,相互支持,最終取得了成功。通過這次比賽,我認(rèn)識到團(tuán)隊(duì)合作可以彌補(bǔ)個人的不足,使解決問題的效果更好。
總之,數(shù)學(xué)建模比賽是一次非常有意義的經(jīng)歷。通過這次比賽,我不僅學(xué)到了更多的理論知識,也鍛煉了自己的解決問題的能力和團(tuán)隊(duì)合作精神。我相信,這些經(jīng)驗(yàn)和體會將對我今后的學(xué)習(xí)和工作產(chǎn)生深遠(yuǎn)的影響。我會繼續(xù)努力,不斷提升自己,在未來的數(shù)學(xué)建模比賽中取得更好的成績。
數(shù)學(xué)建模課程心得篇十一
首先我要說的是學(xué)習(xí)數(shù)學(xué)模型的意義,說到意義就要說到它的價值,我們知道教育必須反映社會的實(shí)際需要,數(shù)學(xué)建模進(jìn)入大學(xué)課堂,既順應(yīng)時代發(fā)展的潮流,也符合教育改革的要求。對于數(shù)學(xué)教育而言,既應(yīng)該讓學(xué)生掌握準(zhǔn)確快捷的計(jì)算方法和嚴(yán)密的邏輯推理,也需要培養(yǎng)學(xué)生用數(shù)學(xué)工具分析解決實(shí)際問題的意識和能力,傳統(tǒng)的數(shù)學(xué)教學(xué)體系和內(nèi)容無疑偏重于前者,而開設(shè)數(shù)學(xué)建模課程則是加強(qiáng)后者的一種嘗試,數(shù)學(xué)建模的初衷是為了幫助大家提升分析問題,解決問題的能力。
新一輪的基礎(chǔ)教育課程改革經(jīng)過近幾年的實(shí)施與推進(jìn),新課程的理念已逐步被廣大教師接受和認(rèn)同,在教學(xué)實(shí)踐的不同層面都得到了不同程度的體現(xiàn)與落實(shí)。作為課程改革的主陣地和落腳點(diǎn)——課堂教學(xué),卻還有或多或少的不盡如人意的地方。所以我們的課堂教學(xué)有必要依據(jù)新課程理念,建立符合實(shí)際的教學(xué)模式。反思我們的現(xiàn)在推行的解決問題課堂教學(xué)模式,不難發(fā)現(xiàn)與新課程改革的要求基本一致,有著諸多優(yōu)點(diǎn),主要表現(xiàn)在以下幾個方面:
一、借助學(xué)生的生活經(jīng)驗(yàn),創(chuàng)設(shè)和諧課堂。
大量的研究表明,和諧的課堂學(xué)習(xí)環(huán)境可以有效的激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)習(xí)效率。在和諧的課堂學(xué)習(xí)環(huán)境中,學(xué)生的精神狀態(tài)自然就會調(diào)整到最佳,并能隨教師一起很快的進(jìn)入到學(xué)習(xí)中來,從而實(shí)現(xiàn)課堂的高效。本次建模研討中的兩節(jié)均能從學(xué)生的生活經(jīng)驗(yàn)出發(fā),來靈活創(chuàng)設(shè)學(xué)習(xí)情境,激發(fā)學(xué)生的學(xué)習(xí)動力,實(shí)現(xiàn)了和諧課堂的創(chuàng)建,為下面數(shù)學(xué)活動的展開做好鋪墊。
二、創(chuàng)設(shè)學(xué)習(xí)情境,激發(fā)學(xué)生參與數(shù)學(xué)學(xué)習(xí)的內(nèi)在動力。
通過本次研討活動,我深深的感受到:把學(xué)生的數(shù)學(xué)學(xué)習(xí)活動置身于一定的學(xué)習(xí)情境之中,把知識的學(xué)習(xí)寓于情境之中,能最大限度的提高學(xué)生的參與度,提高學(xué)生的學(xué)習(xí)效率。在我們推行的這一模式的實(shí)施中,能明顯的看出教師作為學(xué)生學(xué)習(xí)的組織者、合作者、引領(lǐng)者的教師,能為學(xué)生創(chuàng)設(shè)一個放飛心靈、獲取知識的園地,能在我們的課堂中把學(xué)生知識的獲取、能力的發(fā)展、情感的體驗(yàn)、個性的張揚(yáng)盡可能的融合到一起,盡可能的激發(fā)學(xué)生的學(xué)習(xí)積極性,激發(fā)學(xué)生學(xué)習(xí)的興趣,充分發(fā)揮著學(xué)生在學(xué)習(xí)中的主體作用。例如:李艷秋老師執(zhí)教的《相遇問題》一課中,教師提供的餓“送文件”這一學(xué)習(xí)情境,學(xué)生的就在這一情境中展開數(shù)學(xué)學(xué)習(xí)活動,在經(jīng)歷自主探究、合作交流、質(zhì)疑建構(gòu)中體驗(yàn)數(shù)學(xué)學(xué)習(xí)活動的樂趣,在體驗(yàn)探索中自主獲取知識,積累數(shù)學(xué)活動的經(jīng)驗(yàn)。
三、提供開放的課堂環(huán)境,放手讓學(xué)生自主學(xué)習(xí)。
新課程改革倡導(dǎo)我們的數(shù)學(xué)課堂應(yīng)該是面向全體學(xué)生,強(qiáng)調(diào)學(xué)生自覺參與的過程,反對以往教師在課堂中的“權(quán)威地位”。在這兩節(jié)研討課中教師盡可能為學(xué)生創(chuàng)設(shè)具有接納性、寬容性的開放課堂,創(chuàng)設(shè)具有開放性的學(xué)習(xí)情境、問題引領(lǐng)等,來促使學(xué)生全身心的投入到學(xué)習(xí)中,讓學(xué)生真正的做到動眼、動手、動口,實(shí)現(xiàn)課堂效率的有效、高效。例如:周宏娟老師執(zhí)教的《百分?jǐn)?shù)應(yīng)用三》,讓學(xué)生拿出課前調(diào)查的一個家庭支出情況的相關(guān)信息,讓學(xué)生獨(dú)立提出問題,自主嘗試解決,在這樣開放的學(xué)習(xí)環(huán)境中學(xué)生是可此不彼,積極參與,課堂的效果亦是很高!
數(shù)學(xué)建模屬于一門應(yīng)用數(shù)學(xué),學(xué)習(xí)這門課要求我們學(xué)會如何將實(shí)際問題經(jīng)過分析、簡化轉(zhuǎn)化為個數(shù)學(xué)問題,然后用適用的數(shù)學(xué)方法去解決。數(shù)學(xué)建模是一種數(shù)學(xué)的思考方法,是運(yùn)用數(shù)學(xué)的語言和方法,通過抽象、簡化建立能近似刻畫并解決實(shí)際問題的一種強(qiáng)有力地?cái)?shù)學(xué)手段。在學(xué)習(xí)中,我知道了數(shù)學(xué)建模的過程,其過程如下:
(1)模型準(zhǔn)備:了解問題的實(shí)際背景,明確其實(shí)際意義,掌握對象的各種信息。用數(shù)
學(xué)語言來描述問題。
(2)模型假設(shè):根據(jù)實(shí)際對象的特征和建模的目的,對問題進(jìn)行必要的簡化,并用精確地語言提出一些恰當(dāng)?shù)募僭O(shè)。
(3)模型建立:在假設(shè)的基礎(chǔ)上,利用適當(dāng)?shù)臄?shù)學(xué)工具來刻畫各變量之間的數(shù)學(xué)關(guān)系,建立相應(yīng)的數(shù)學(xué)結(jié)構(gòu)。
(4)模型求解:利用或取得的數(shù)據(jù)資料,對模型的所有參數(shù)做出計(jì)算。
(5)模型分析:對所得的結(jié)果進(jìn)行數(shù)學(xué)上的分析。
(6)模型檢驗(yàn):將模型分析結(jié)果與實(shí)際情形進(jìn)行比較,以此來驗(yàn)證模型的準(zhǔn)確性、合理性和適用性。如果模型與實(shí)際較吻合,則要對計(jì)算結(jié)果給出其實(shí)際含義,并進(jìn)行解釋。如果模型與實(shí)際吻合較差,則應(yīng)該修改假設(shè),再次進(jìn)行建模過程。
在學(xué)習(xí)了數(shù)學(xué)模型后,它所教給我們的不單是一些數(shù)學(xué)方面的知識,比如說一些數(shù)學(xué)計(jì)算軟件,學(xué)習(xí)建模的同時,借用各種建模軟件解決問題是必不可少的matlab,lingo,等都是非常方便的。數(shù)學(xué)模型是數(shù)學(xué)學(xué)習(xí)的新的方式,他為我們提供了自主學(xué)習(xí)的空間,有助于我們體驗(yàn)數(shù)學(xué)在解決實(shí)際問題中的價值和作用,體驗(yàn)數(shù)學(xué)與日常生化和其他學(xué)科的聯(lián)系,體驗(yàn)綜合運(yùn)用知識和方法解決實(shí)際問題的過程,增強(qiáng)應(yīng)用意識;而且數(shù)學(xué)模型還對我們有綜合能力的培養(yǎng)、鍛煉與提高。它培養(yǎng)了我們?nèi)妗⒍嘟嵌瓤紤]問題的能力,使我們的邏輯推理能力和量化分析能力得到很好地鍛煉和提高。而且我認(rèn)為數(shù)學(xué)模型帶給我的是發(fā)散性思維,各種研究方法和手段。教會我凡事要有自己的創(chuàng)新,自己的嚴(yán)密思維,不能局限于俗套??傊畬W(xué)習(xí)數(shù)學(xué)模型有利于激發(fā)我們的學(xué)習(xí)數(shù)學(xué)的興趣,豐富我們學(xué)習(xí)數(shù)學(xué)探索的情感體驗(yàn);有利于我們自覺體驗(yàn)、鞏固所學(xué)的的數(shù)學(xué)知識。還鍛煉了我們的耐心和意志力。
總之,數(shù)學(xué)已經(jīng)成為當(dāng)代高科技的一個重要組成部分和思想庫,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識和能力也已經(jīng)成為數(shù)學(xué)教學(xué)的一個重要方面。而應(yīng)用數(shù)學(xué)去解決各類實(shí)際問題就必須建立數(shù)學(xué)模型。中學(xué)數(shù)學(xué)教學(xué)的過程其實(shí)就是教師引導(dǎo)學(xué)生不斷建模和用模的過程。因此,用建模思想指導(dǎo)中學(xué)數(shù)學(xué)教學(xué)顯得愈發(fā)重要。
共
2
頁,當(dāng)前第
2
頁
1
2
數(shù)學(xué)建模課程心得篇十二
通過一個月的集訓(xùn),我受益匪淺。我進(jìn)一步的認(rèn)識到數(shù)學(xué)建模的實(shí)質(zhì)和對參賽隊(duì)員的要求。數(shù)學(xué)建模就是培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)知識解決實(shí)際問題的能力。它要求參賽隊(duì)員有較強(qiáng)的創(chuàng)新精神,有較大的靈活性和隨機(jī)應(yīng)變能力,要求參賽隊(duì)員之間有良好的團(tuán)隊(duì)精神和相互協(xié)作意識。在一個月里,我們學(xué)了許多知識放方法,可以說數(shù)學(xué)建模需要的`知識我們都了解了一點(diǎn),關(guān)鍵在于如何應(yīng)用這些知識。這種即學(xué)即用的能力是我們以后學(xué)習(xí)、工作所必須的能力。在此我對建模是出現(xiàn)的一些現(xiàn)象發(fā)表一些看法。
隨著信息的高速化,我們很容易找到和建模有關(guān)的資料,這對我們理解題目意思和促發(fā)新思路、新想法是有幫助的。但是有的集訓(xùn)小組或集訓(xùn)隊(duì)員他們建模完全依靠找資料,建出來的模型就是幾本參考書的綜合,他們所用的方法完全是別人研究過的東西,連一點(diǎn)改進(jìn)也沒有。如果這樣的話,數(shù)學(xué)建模就失去了意義。我始終堅(jiān)持一個觀點(diǎn):數(shù)學(xué)建模最重要的是創(chuàng)新。無論是你創(chuàng)造一種新方法還是創(chuàng)造性的運(yùn)用一種方法,還是改進(jìn)別人的方法都是很重要的。沒有創(chuàng)新,模型就失去了靈魂;沒有創(chuàng)新,模型就不是你的模型。
我們隊(duì)配合不是很理想。主要是有個隊(duì)員他總認(rèn)為自己是正確的,別人找到的資料不如他好,別人提出的觀點(diǎn)、思想思想無論正確與否,他總是會反對一下。他總是十分注重小的方面,不從大局考慮。由于這些原因,我們建的模型總是不好。
數(shù)學(xué)建模課程心得篇十三
通過對專題七的學(xué)習(xí),我知道了數(shù)學(xué)探究與數(shù)學(xué)建模在中學(xué)中學(xué)習(xí)的重要性,知道了什么是數(shù)學(xué)建模,數(shù)學(xué)建模就是把一個具體的實(shí)際問題轉(zhuǎn)化為一個數(shù)學(xué)問題,然后用數(shù)學(xué)方法去解決它,之后我們再把它放回到實(shí)際當(dāng)中去,用我們的模型解釋現(xiàn)實(shí)生活中的種種現(xiàn)象和規(guī)律。
知道了數(shù)學(xué)建模的幾點(diǎn)要求:一個是問題一定源于學(xué)生的日常生活和現(xiàn)實(shí)當(dāng)中,了解和經(jīng)歷解決實(shí)際問題的過程,并且根據(jù)學(xué)生已有的經(jīng)驗(yàn)發(fā)現(xiàn)要提出的問題。同時,希望同學(xué)們在這一過程中感受數(shù)學(xué)的實(shí)用價值和獲得良好的情感體驗(yàn)。當(dāng)然也希望同學(xué)們在這樣的過程當(dāng)中,學(xué)會通過實(shí)際上數(shù)學(xué)探究本身應(yīng)該說在平時教學(xué)當(dāng)中,老師有些在課堂上也是這樣教學(xué)的,他更重要的意義就是引導(dǎo)老師增加一種教學(xué)方式,首先就是這個問題就是有點(diǎn)兒全新性,解決的方案不是很明了,這樣學(xué)生要有一個嘗試,一個探索的過程查詢資料等手段來獲取信息,之后采取各種合作的方式解決問題,養(yǎng)成與人交流的能力。
實(shí)際上數(shù)學(xué)探究本身應(yīng)該說在平時教學(xué)當(dāng)中,老師有些在課堂上也是這樣教學(xué)的,他更重要的意義就是引導(dǎo)老師增加一種教學(xué)方式,首先就是這個問題就是有點(diǎn)兒全新性,解決的方案不是很明了,這樣的話學(xué)生要有一個嘗試,一個探索的過程。數(shù)學(xué)探究活動的關(guān)健詞就是探究,探究是一個活動或者是一個過程,也是一種學(xué)習(xí)方式,我們比較強(qiáng)調(diào)是用這樣的方式影響學(xué)生,讓他主動的參與,在這個活動當(dāng)中得到更多的知識。
探究的結(jié)果我們認(rèn)為不一定是最重要的,當(dāng)然我們希望探究出來一個結(jié)果,通過這種活動影響學(xué)生,改變他的學(xué)習(xí)方式,增加他的學(xué)習(xí)興趣和能力。我們也關(guān)心,大家也可以看到在標(biāo)準(zhǔn)里面,有非常突出的數(shù)學(xué)建模的這些內(nèi)容,但是它的要求、定位和為什么把這些領(lǐng)域加到我的標(biāo)準(zhǔn)當(dāng)中,你應(yīng)該怎么看待這部分內(nèi)容。
數(shù)學(xué)建模課程心得篇十四
計(jì)算機(jī)學(xué)院、軟件學(xué)院級學(xué)生范娜(保送為華東師大研究生)。
9月的“高教杯”全國大學(xué)生數(shù)學(xué)建模競賽已經(jīng)過去一周多了,但是在我心中,計(jì)算機(jī)學(xué)院、軟件學(xué)院三樓機(jī)房的燈光依然明亮,與隊(duì)友三天三夜一起奮戰(zhàn)的記憶依然清晰。
大二下學(xué)期,我院開設(shè)了《數(shù)學(xué)建?!愤x修課,由于每周只有一大節(jié)《數(shù)學(xué)建?!氛n程,再加上大二專業(yè)主干課程很多,任務(wù)重,除了老師課上的講解,平日我很少有時間去溫習(xí)和預(yù)習(xí),更別說去結(jié)合實(shí)例進(jìn)行建模了。那時的數(shù)學(xué)建模對于我來說就是一項(xiàng)很重要的任務(wù),想要參加但是又不知道如何去完成。但是我認(rèn)為數(shù)學(xué)建模是要求把模型用在實(shí)例中進(jìn)行求解,最重要的就是創(chuàng)建模型的思路以及用語言去描述建模的過程和結(jié)果。
暑假快要來臨時,學(xué)院進(jìn)行參賽隊(duì)員的選拔。參賽的選手由老師選拔和筆試選拔兩部分組成。我是在筆試中被選拔出來的,現(xiàn)在想想,可能差一點(diǎn)就失去了參加數(shù)學(xué)建模的資格。我認(rèn)為選拔還是參照筆試的成績確定人選,從全方位考察學(xué)生的綜合素質(zhì)以及寫作素質(zhì),這樣才能更好的遴選出參賽選手,真正的做到給有創(chuàng)新思維的選手機(jī)會。
隨后遇到的問題就是如何組隊(duì)。我們組是由兩個計(jì)算機(jī)專業(yè)和一個通信工程專業(yè)的學(xué)生組成,現(xiàn)在看來我們的組合有一定的偶然性,但更多的是一種合理性。首先,我們組中有兩位女生,都擅長文字處理工作。應(yīng)該明確的是,數(shù)學(xué)建模比賽最后遞交給組委會的是一篇論文,也就是三天三夜的成果是以文字的形式出現(xiàn)在專家面前,文章中的文字排版、遣詞造句至關(guān)重要。女生的特點(diǎn)之一就是細(xì)心,我們平時很注意收集專業(yè)的描述性詞匯,因此論文詞匯豐富、生動;第二,我們?nèi)齻€的思維出發(fā)點(diǎn)不一樣,各有擅長的數(shù)學(xué)模型和知識能力,這就使我們在分別思考后有更多的內(nèi)容可以討論,增加建模的創(chuàng)新點(diǎn),彌補(bǔ)彼此的不足;第三,我們?nèi)齻€的團(tuán)隊(duì)意識很強(qiáng),彼此相互鼓勵相互扶持。
同時,我還發(fā)現(xiàn)這樣一個現(xiàn)象。由于時間緊張的關(guān)系,我們在培訓(xùn)的時候還沒有完整的做過一道題目。也就是說在賽前大家主要進(jìn)行理論上的準(zhǔn)備,很少進(jìn)行實(shí)踐,這樣就不能預(yù)見和發(fā)現(xiàn)小組在未來要進(jìn)行的三天三夜中,究竟會遇到什么問題。針對這樣的現(xiàn)象,我們小組用了三天的時間來進(jìn)行比賽的模擬,每天做一道題。我們嚴(yán)格按照比賽的標(biāo)準(zhǔn)來要求自己:早上開始審題,組員分別思考一小時進(jìn)行個人建模,其次三人一起討論,然后編寫論文,盡量把論文詳細(xì)的寫出來一部分直到一天結(jié)束。在模擬的過程中我們遇到很多的問題,比如時常會忘記討論的初步模型和一些思路,因此我們在真正比賽的時候會對小組的的討論進(jìn)行錄音,這樣可以隨時查看建模的思路。像這樣的細(xì)節(jié)問題只能是在模擬中才能發(fā)現(xiàn)的,因此我認(rèn)為在賽前進(jìn)行比賽的模擬也是十分重要的。
接下來的三天三夜讓我很難忘,我也有很多的感想。數(shù)學(xué)建模不是一般意義的解題,它允許你使用任何已有的東西,包括別人的'研究成果、圖書資料、網(wǎng)絡(luò)資源等等,但抄襲是不允許的。這些東西都需要證明,但要結(jié)合實(shí)例進(jìn)行求解。在賽前word文檔要熟練掌握,如果熟練程度不夠,那么在建模比賽中,在整理文檔這一項(xiàng)上就會浪費(fèi)大量的時間與精力。光有錄入速度是不夠的,還要注意符號的書寫,頁碼的插入,公式編輯器的熟練運(yùn)用。還要有熱情,要有認(rèn)真、嚴(yán)謹(jǐn)?shù)目茖W(xué)精神。當(dāng)我們遇到我們不會的問題,需要用到新的知識時,我們會毫不猶豫的去學(xué)習(xí)這些知識,熱情使我們不懼怕任何困難。
總之,這次建模競賽不論是在知識面上還是在動手能力上都是對我的一種挑戰(zhàn),盡管一路走來十分辛苦,但是卻使我多了一種充實(shí)自我的經(jīng)歷,多了一份創(chuàng)造的經(jīng)驗(yàn),多了一份坦然面對的自信,從而在前進(jìn)的道路上走的更順暢。在這個過程中,指導(dǎo)老師和我們一起度過炎炎夏日,也陪我們熬夜修改論文,非常辛苦,也向給予我們指導(dǎo)的各位老師和建模過程中關(guān)心我們的院領(lǐng)導(dǎo)表示衷心的感謝!
數(shù)學(xué)建模課程心得篇十五
通過一個月的集訓(xùn),我受益匪淺。我進(jìn)一步的認(rèn)識到數(shù)學(xué)建模的實(shí)質(zhì)和對參賽隊(duì)員的要求。數(shù)學(xué)建模就是培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)知識解決實(shí)際問題的能力。它要求參賽隊(duì)員有較強(qiáng)的創(chuàng)新精神,有較大的'靈活性和隨機(jī)應(yīng)變能力,要求參賽隊(duì)員之間有良好的團(tuán)隊(duì)精神和相互協(xié)作意識。在一個月里,我們學(xué)了許多知識放方法,可以說數(shù)學(xué)建模需要的知識我們都了解了一點(diǎn),關(guān)鍵在于如何應(yīng)用這些知識。這種即學(xué)即用的能力是我們以后學(xué)習(xí)、工作所必須的能力。在此我對建模是出現(xiàn)的一些現(xiàn)象發(fā)表一些看法。
隨著信息的高速化,我們很容易找到和建模有關(guān)的資料,這對我們理解題目意思和促發(fā)新思路、新想法是有幫助的。但是有的集訓(xùn)小組或集訓(xùn)隊(duì)員他們建模完全依靠找資料,建出來的模型就是幾本參考書的綜合,他們所用的方法完全是別人研究過的東西,連一點(diǎn)改進(jìn)也沒有。如果這樣的話,數(shù)學(xué)建模就失去了意義。我始終堅(jiān)持一個觀點(diǎn):數(shù)學(xué)建模最重要的是創(chuàng)新。無論是你創(chuàng)造一種新方法還是創(chuàng)造性的運(yùn)用一種方法,還是改進(jìn)別人的方法都是很重要的。沒有創(chuàng)新,模型就失去了靈魂;沒有創(chuàng)新,模型就不是你的模型。
我們隊(duì)配合不是很理想。主要是有個隊(duì)員他總認(rèn)為自己是正確的,別人找到的資料不如他好,別人提出的觀點(diǎn)、思想思想無論正確與否,他總是會反對一下。他總是十分注重小的方面,不從大局考慮。由于這些原因,我們建的模型總是不好。
數(shù)學(xué)建模課程心得篇十六
第一段:引言(大約200字)。
數(shù)學(xué)建模是一門富有挑戰(zhàn)性的學(xué)科,是實(shí)際問題與數(shù)學(xué)工具的結(jié)合。在我參與數(shù)學(xué)建模的過程中,我得到了很多寶貴的經(jīng)驗(yàn)和體會。通過這次數(shù)學(xué)建模的實(shí)踐,我對問題的分析思維能力得到了很大的提高,同時也加深了對數(shù)學(xué)知識的理解。在這篇文章中,我將分享我在數(shù)學(xué)建模中得到的一些心得體會。
第二段:問題的抽象與建模(大約200字)。
在數(shù)學(xué)建模中,第一步就是對實(shí)際問題進(jìn)行抽象,將其轉(zhuǎn)化為數(shù)學(xué)模型。這個過程需要我們深入理解問題的背景和相關(guān)條件,并且能夠從中提取出關(guān)鍵因素。在此過程中,我更加注重思考問題的本質(zhì)和實(shí)質(zhì),并盡量將其簡化和轉(zhuǎn)化為數(shù)學(xué)語言。通過這樣的方法,我能夠更好地理解問題,并且找到解決方法。
第三段:數(shù)學(xué)工具的選擇與運(yùn)用(大約200字)。
數(shù)學(xué)建模需要使用各種數(shù)學(xué)工具來解決實(shí)際問題。在選擇合適的數(shù)學(xué)工具時,我們需要考慮問題的特點(diǎn)和數(shù)學(xué)方法的適用性。在我參與數(shù)學(xué)建模的過程中,我學(xué)會了靈活運(yùn)用數(shù)學(xué)工具,并且在解決問題的過程中發(fā)現(xiàn)了不同方法的優(yōu)缺點(diǎn)。同時,我也深刻認(rèn)識到數(shù)學(xué)工具的應(yīng)用是問題解決的一種手段,我們更應(yīng)該注重問題的理解和建模能力。
第四段:團(tuán)隊(duì)合作與溝通(大約200字)。
在數(shù)學(xué)建模中,團(tuán)隊(duì)合作和良好的溝通是非常重要的。每個人都有自己的專長和想法,只有相互合作和交流,才能更好地解決問題。在我參與數(shù)學(xué)建模的團(tuán)隊(duì)中,我們充分發(fā)揮了每個人的優(yōu)勢,相互協(xié)作,共同攻克了問題。通過互相討論和反饋,我們不斷完善和改進(jìn)我們的模型,最終取得了令人滿意的成果。
第五段:總結(jié)與展望(大約200字)。
通過這次數(shù)學(xué)建模的實(shí)踐,我得到了很多寶貴的經(jīng)驗(yàn)和收獲。我深刻認(rèn)識到數(shù)學(xué)建模是一門綜合運(yùn)用各種數(shù)學(xué)知識和方法的學(xué)科,需要我們具備扎實(shí)的數(shù)學(xué)基礎(chǔ)和良好的問題解決能力。同時,數(shù)學(xué)建模也需要我們擁有團(tuán)隊(duì)合作和溝通的能力,通過共同努力解決問題。在未來的學(xué)習(xí)和實(shí)踐中,我將繼續(xù)深化對數(shù)學(xué)知識的理解,提升問題解決能力,為更復(fù)雜的實(shí)際問題提供更好的解決方案。
通過以上五段式的連貫文章,我對數(shù)學(xué)建模這門學(xué)科作了全面而深入的總結(jié)。我分享了在數(shù)學(xué)建模中的心得體會,包括問題的抽象與建模、數(shù)學(xué)工具的選擇與運(yùn)用,團(tuán)隊(duì)合作與溝通等方面。在總結(jié)與展望部分,我明確了對未來的學(xué)習(xí)和實(shí)踐的規(guī)劃,希望能夠繼續(xù)提升自己的數(shù)學(xué)建模能力,為解決更復(fù)雜的實(shí)際問題做出更大的貢獻(xiàn)。通過這篇文章,我希望能夠鼓勵更多的人參與數(shù)學(xué)建模,并且能夠體會到其中的樂趣和挑戰(zhàn)。
數(shù)學(xué)建模課程心得篇十七
一年一度的全國數(shù)學(xué)建模大賽在今年的x月x日上午8點(diǎn)拉開戰(zhàn)幕,各隊(duì)將在3天72小時內(nèi)對一個現(xiàn)實(shí)中的實(shí)際問題進(jìn)行模型建立,求解和分析,確定題目后,我們隊(duì)三人分頭行動,一人去圖書館查閱資料,一人在網(wǎng)上搜索相關(guān)信息,一人建立模型,通過三人的努力,在前兩天中建立出兩個模型并編程求解,經(jīng)過艱苦的奮斗,終于在第三天完成了論文的寫作,在這三天里我感觸很深,現(xiàn)將心得體會寫出,希望與大家交流。
1.團(tuán)隊(duì)精神:團(tuán)隊(duì)精神是數(shù)學(xué)建模是否取得好成績的最重要的因素,一隊(duì)三個人要相互支持,相互鼓勵。切勿自己只管自己的一部分(數(shù)學(xué)好的只管建模,計(jì)算機(jī)好的只管編程,寫作好的只管論文寫作),很多時候,一個人的思考是不全面的,只有大家一起討論才有可能把問題搞清楚,因此無論做任何板塊,三個人要一起齊心才行,只靠一個人的力量,要在三天之內(nèi)寫出一篇高水平的文章幾乎是不可能的。
2.有影響力的leader:在比賽中,leader是很重要的,他的作用就相當(dāng)與計(jì)算機(jī)中的cpu,是全隊(duì)的核心,如果一個隊(duì)的leader不得力,往往影響一個隊(duì)的正常發(fā)揮,就拿選題來說,有人想做a題,有人想做b題,如果爭論一天都未確定方案的話,可能就沒有足夠時間完成一篇論文了,又比如,當(dāng)隊(duì)中有人信心動搖時(特別是第三天,人可能已經(jīng)心力交瘁了),leader應(yīng)發(fā)揮其作用,讓整個隊(duì)伍重整信心,否則可能導(dǎo)致隊(duì)伍的前功盡棄。
3.合理的時間安排:做任何事情,合理的時間安排非常重要,建模也是一樣,事先要做好一個規(guī)劃,建模一共分十個板塊(摘要,問題提出,模型假設(shè),問題分析,模型假設(shè),模型建立,模型求解,結(jié)果分析,模型的評價與推廣,參考文獻(xiàn),附錄)。你每天要做完哪幾個板塊事先要確定好,這樣做才會使自己游刃有余,保證在規(guī)定時間內(nèi)完成論文,以避免由于時間上的不妥,以致于最后無法完成論文。
4.正確的論文格式:論文屬于科學(xué)性的文章,它有嚴(yán)格的書寫格式規(guī)范,因此一篇好的論文一定要有正確的格式,就拿摘要來說吧,它要包括6要素(問題,方法,模型,算法,結(jié)論,特色),它是一篇論文的概括,摘要的好壞將決定你的論文是否吸引評委的目光,但聽閱卷老師說,這次有些論文的摘要里出現(xiàn)了大量的圖表和程序,這都是不符合論文格式的,這種論文也不會取得好成績,因此我們寫論文時要端正態(tài)度,注意書寫格式。
5.論文的寫作:我個人認(rèn)為論文的寫作是至關(guān)重要的,其實(shí)大家最后的模型和結(jié)果都差不多,為什么有些隊(duì)可以送全國,有些隊(duì)可以拿省獎,而有些隊(duì)卻什么都拿不到,這關(guān)鍵在于論文的寫作上面。一篇好的論文首先讀上去便使人感到邏輯清晰,有條例性,能打動評委;其次,論文在語言上的表述也很重要,要注意用詞的準(zhǔn)確性;另外,一篇好的論文應(yīng)有閃光點(diǎn),有自己的特色,有自己的想法和思考在里面,總之,論文寫作的好壞將直接影響到成績的優(yōu)劣。
6.算法的設(shè)計(jì):算法的設(shè)計(jì)的好壞將直接影響運(yùn)算速度的快慢,建議大家多用數(shù)學(xué)軟件(mathematice,matlab,maple,mathcad,lindo,lingo,sas等),這里提供十種數(shù)學(xué)建模常用算法,僅供參考:
(1)蒙特卡羅算法(該算法又稱隨機(jī)性模擬算法,是通過計(jì)算機(jī)仿真來解決問題的算法,同時可以通過模擬可以來檢驗(yàn)自己模型的正確性,是比賽時必用的方法)。
(2)數(shù)據(jù)擬合、參數(shù)估計(jì)、插值等數(shù)據(jù)處理算法(比賽中通常會遇到大量的數(shù)據(jù)需要處理,而處理數(shù)據(jù)的關(guān)鍵就在于這些算法,通常使用matlab作為工具)。
(3)線性規(guī)劃、整數(shù)規(guī)劃、多元規(guī)劃、二次規(guī)劃等規(guī)劃類問題(建模競賽大多數(shù)問題屬于最優(yōu)化問題,很多時候這些問題可以用數(shù)學(xué)規(guī)劃算法來描述,通常使用lindo、lingo軟件實(shí)現(xiàn))。
(4)圖論算法(這類算法可以分為很多種,包括最短路、網(wǎng)絡(luò)流、二分圖等算法,涉及到圖論的問題可以用這些方法解決,需要認(rèn)真準(zhǔn)備)。
(5)動態(tài)規(guī)劃、回溯搜索、分治算法、分支定界等計(jì)算機(jī)算法(這些算法是算法設(shè)計(jì)中比較常用的方法,很多場合可以用到競賽中)。
(6)最優(yōu)化理論的三大非經(jīng)典算法:模擬退火法、神經(jīng)網(wǎng)絡(luò)、遺傳算法(這些問題是用來解決一些較困難的最優(yōu)化問題的算法,對于有些問題非常有幫助,但是算法的實(shí)現(xiàn)比較困難,需慎重使用)。
(7)網(wǎng)格算法和窮舉法(網(wǎng)格算法和窮舉法都是暴力搜索最優(yōu)點(diǎn)的算法,在很多競賽題中有應(yīng)用,當(dāng)重點(diǎn)討論模型本身而輕視算法的時候,可以使用這種暴力方案,最好使用一些高級語言作為編程工具)。
(8)一些連續(xù)離散化方法(很多問題都是實(shí)際來的,數(shù)據(jù)可以是連續(xù)的,而計(jì)算機(jī)只認(rèn)的是離散的數(shù)據(jù),因此將其離散化后進(jìn)行差分代替微分、求和代替積分等思想是非常重要的)。
(9)數(shù)值分析算法(如果在比賽中采用高級語言進(jìn)行編程的話,那一些數(shù)值分析中常用的算法比如方程組求解、矩陣運(yùn)算、函數(shù)積分等算法就需要額外編寫庫函數(shù)進(jìn)行調(diào)用)。
(10)圖象處理算法(賽題中有一類問題與圖形有關(guān),即使與圖形無關(guān),論文中也應(yīng)該要不乏圖片的,這些圖形如何展示以及如何處理就是需要解決的問題,通常使用matlab進(jìn)行處理)。