教案是教師為備課、授課和教學評價提供指導和支撐的重要工具,它具備明確的教學目標、教學內容、教學方法和教學評價等要素。通過編寫教案,教師可以合理規(guī)劃教學過程,提高教學質量,促進學生的學習效果和能力提升。我們需要認真編寫一份教案了吧。充分了解學生的背景知識和學習需求,為教學活動的設計提供依據。最后,希望大家能夠通過編寫教案,提高課堂教學效果,促進學生的全面發(fā)展。
函數的奇偶性教案人教版篇一
一.多媒體使用的思考:
1.用:充分考慮多媒體的必用性和實用性,如實例引入,借助一些圖片,讓學生更形象的看到對稱。例題展現、問題展現,節(jié)約了教師黑板抄題的時間,提高了課堂效率。當然本節(jié)課不需要動畫展示,如果需要有動畫演示的可以做在課件上,把一些無法言傳的內容呈現在課件上才能真正體現多媒體之“用”。
2.不用:如果要把課件帶入每一節(jié)新授課,那么在制作課件的時候就要效率高,有一些內容就不用放入課件,如:例題的解題過程和在黑板上必須呈現的內容不用再搬到課件上去,否則學生也不知道該看黑板還是課件,增大了學生學習負擔,降低了學習效率。所以我在課件制作中,注重內容與黑板板書不重疊。
在多媒體應用上,我們要注重區(qū)分什么該用,什么不該用以確實提高課堂效率。
設計教學設計的過程中,充分考慮課程標準和教材的要求來確定教學目標,把握學生的學習水平,在教學中給學生充分思考的時間和空間,尊重學生的思想方法,點評優(yōu)化學生的學習收獲,充分調動學生探究的積極性,培養(yǎng)學生學習的興趣。在教學中不變的是先進的教學理念和合理的教學設計。放手給學生們自主學和研究就是我們應該大膽做的。從學生的角度設計教學,才能體現以學生為本!
三.做到重點突出和難點突破。
如何重點突出和難點突破是教學技術、教學專業(yè)上挑戰(zhàn),我們在上每一節(jié)課面對這些問題時都必須精心設計,那樣的課堂才能高效,學生才會喜歡。
在本節(jié)課中重點之一是函數奇偶性概念的理解,從實例引入,讓學生感到本節(jié)課研究的必要性與趣味性,從圖像對稱的本質讓學生給出概念,老師總結,再讓學生回頭感悟,有利于學生真正理解概念和應用概念。如何理解0再定義域內時,奇函數在0處的值為0時本節(jié)課難點之一,從一條辨析題到處問題,在研究問題,自然!同時激發(fā)了學生探究的欲望,學得深刻。
總之,要上好每一節(jié)課才能真正鍛煉老師的教學素養(yǎng)、技術,才能真正提高咱們的教學理念。
函數的奇偶性教案人教版篇二
【過程與方法】。
利用指數函數的圖像和性質,及單調性來解決問題.
【情感態(tài)度與價值觀】。
體會指數函數是一類重要的函數模型,激發(fā)學生學習數學的興趣.
二、教學重難點。
【重點】。
【難點】。
三、教學過程。
(一)導入新課。
取一張紙,在其上畫出平面直角坐標系,并在第一象限任畫一可作為函數圖象的圖形,然后按如下操作并回答相應問題:
答案:(1)可以作為某個函數y=f(x)的圖象,并且它的圖象關于y軸對稱;。
(2)若點(x,f(x))在函數圖象上,則相應的點(-x,f(x))也在函數圖象上,即函數圖象上橫坐標互為相反數的點,它們的縱坐標一定相等.
(二)新課教學。
像上面實踐操作1中的圖象關于y軸對稱的函數即是偶函數,操作2中的圖象關于原點對稱的函數即是奇函數.
(1)偶函數(evenfunction)。
一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數.
(學生活動):仿照偶函數的定義給出奇函數的定義。
(2)奇函數(oddfunction)。
一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做奇函數.
注意:
1函數是奇函數或是偶函數稱為函數的奇偶性,函數的奇偶性是函數的整體性質;。
2由函數的奇偶性定義可知,函數具有奇偶性的'一個必要條件是,對于定義域內的任意一個x,則-x也一定是定義域內的一個自變量(即定義域關于原點對稱).
偶函數的圖象關于y軸對稱;。
奇函數的圖象關于原點對稱.
3.典型例題。
例1.(教材p36例3)應用函數奇偶性定義說明兩個觀察思考中的四個函數的奇偶性.(本例由學生討論,師生共同總結具體方法步驟)。
解:(略)。
1首先確定函數的定義域,并判斷其定義域是否關于原點對稱;。
2確定f(-x)與f(x)的關系;。
3作出相應結論:
若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數.
(三)鞏固提高。
1.教材p46習題1.3b組每1題。
解:(略)。
說明:函數具有奇偶性的一個必要條件是,定義域關于原點對稱,所以判斷函數的奇偶性應應首先判斷函數的定義域是否關于原點對稱,若不是即可斷定函數是非奇非偶函數.
(教材p41思考題)。
規(guī)律:
偶函數的圖象關于y軸對稱;。
奇函數的圖象關于原點對稱.
(四)小結作業(yè)。
本節(jié)主要學習了函數的奇偶性,判斷函數的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數的奇偶性時,必須注意首先判斷函數的定義域是否關于原點對稱.單調性與奇偶性的綜合應用是本節(jié)的一個難點,需要學生結合函數的圖象充分理解好單調性和奇偶性這兩個性質.
課本p46習題1.3(a組)第9、10題,b組第2題.
四、板書設計。
一、偶函數:一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數.
二、奇函數:一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做奇函數.
三、規(guī)律:
偶函數的圖象關于y軸對稱;。
奇函數的圖象關于原點對稱.
函數的奇偶性教案人教版篇三
在本節(jié)課教學過程中,我讓學生通過圖象直觀獲得函數奇偶性的認識,然后利用表格探究數量變化特征,通過代數運算,驗證發(fā)現的數量特征對定義域中的”任意”值都成立,最后在這個基礎上建立奇偶函數的概念。
在本節(jié)課的教學中我還要注意到以下幾個方面的問題:
1.幻燈片的設計。
幻燈片的使用在一定程度上很好的輔助我的教學活動,但是數學學科中應注意到幻燈片的設計,在出現某些字或者數字時應直接出現,而不要設計成動畫的形式,以免學生分散注意力。
2.學生練習。
在教學過程中應多注意學生的活動,由單一的問答式轉化為多方位的`考察,可以采用學生板演或者把學生練習投影到屏幕上讓全班學生糾正等方式,更好的考察學生掌握情況。
3.例題書寫。
在數學教學中我們都要對例題的解題過程進行講解,并書寫解題過程,以便讓學生更好的模仿。在書寫解題過程或定義時要認真板書,保證字跡清楚,便于學生仿照。
4.語言組織。
在講授過程中還要注意到說話語速,語言組織等講授技巧,應該用平緩的語氣講授,語言描述要簡練易懂,不能拖泥帶水。
5.教學環(huán)節(jié)的完整。
在授課過程中要注意到教學環(huán)節(jié)設計,我們的教學過程有復習引入、講授新課、例題講解、學生練習、課時小結、布置作業(yè)等幾個重要的環(huán)節(jié),有時候可能因為緊張等各種因素往往忽略小細節(jié),遺漏其中的某一環(huán)節(jié),造成教學設計不完善。在以后的教學過程中要注意這些環(huán)節(jié)。
6.教案設計的完整。
在本節(jié)課教學中我因為考慮到有幻燈片而沒有在教案中設計“板書設計”這個環(huán)節(jié),但是在授課過程中又用到了板書,所以一定要設計“板書設計”,以保證教案的完整性。
以上是我對這節(jié)課以后的教學反思,還有很多地方做的還不完善,我要在以后的教學中努力改進這些錯誤,以便更好的適應教學,努力使自己的教學更上一層樓。
函數的奇偶性教案人教版篇四
1。了解函數的單調性和奇偶性的概念,掌握有關證明和判斷的基本方法。
(1)了解并區(qū)分增函數,減函數,單調性,單調區(qū)間,奇函數,偶函數等概念。
(2)能從數和形兩個角度認識單調性和奇偶性。
(3)能借助圖象判斷一些函數的單調性,能利用定義證明某些函數的單調性;能用定義判斷某些函數的奇偶性,并能利用奇偶性簡化一些函數圖象的繪制過程。
2。通過函數單調性的證明,提高學生在代數方面的推理論證能力;通過函數奇偶性概念的形成過程,培養(yǎng)學生的觀察,歸納,抽象的能力,同時滲透數形結合,從特殊到一般的數學思想。
3。通過對函數單調性和奇偶性的理論研究,增學生對數學美的體驗,培養(yǎng)樂于求索的精神,形成科學,嚴謹的研究態(tài)度。
一、知識結構。
(1)函數單調性的概念。包括增函數、減函數的定義,單調區(qū)間的概念函數的單調性的判定方法,函數單調性與函數圖像的關系。
(2)函數奇偶性的概念。包括奇函數、偶函數的定義,函數奇偶性的判定方法,奇函數、偶函數的圖像。
二、重點難點分析。
(1)本節(jié)教學的重點是函數的單調性,奇偶性概念的形成與認識。教學的難點是領悟函數單調性,奇偶性的本質,掌握單調性的證明。
(2)函數的單調性這一性質學生在初中所學函數中曾經了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現在要求把它上升到理論的高度,用準確的數學語言去刻畫它。這種由形到數的翻譯,從直觀到抽象的轉變對高一的學生來說是比較困難的,因此要在概念的形成上重點下功夫。單調性的證明是學生在函數內容中首次接觸到的代數論證內容,學生在代數論證推理方面的能力是比較弱的,許多學生甚至還搞不清什么是代數證明,也沒有意識到它的重要性,所以單調性的證明自然就是教學中的'難點。
三、教法建議。
(1)函數單調性概念引入時,可以先從學生熟悉的一次函數,,二次函數。反比例函數圖象出發(fā),回憶圖象的增減性,從這點感性認識出發(fā),通過問題逐步向抽象的定義靠攏。如可以設計這樣的問題:圖象怎么就升上去了?可以從點的坐標的角度,也可以從自變量與函數值的關系的角度來解釋,引導學生發(fā)現自變量與函數值的的變化規(guī)律,再把這種規(guī)律用數學語言表示出來。在這個過程當中對一些關鍵的詞語(某個區(qū)間,任意,都有)的理解與必要性的認識就可以融入其中,將概念的形成與認識結合起來。
(2)函數單調性證明的步驟是嚴格規(guī)定的,要讓學生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時,讓學生明確變換的目標,到什么程度就可以斷號,在例題的選擇上應有不同的變換目標為選題的標準,以便幫助學生總結規(guī)律。
函數的奇偶性概念引入時,可設計一個課件,以的圖象為例,讓自變量互為相反數,觀察對應的函數值的變化規(guī)律,先從具體數值開始,逐漸讓在數軸上動起來,觀察任意性,再讓學生把看到的用數學表達式寫出來。經歷了這樣的過程,再得到等式時,就比較容易體會它代表的是無數多個等式,是個恒等式。關于定義域關于原點對稱的問題,也可借助課件將函數圖象進行多次改動,幫助學生發(fā)現定義域的對稱性,同時還可以借助圖象(如)說明定義域關于原點對稱只是函數具備奇偶性的必要條件而不是充分條件。
函數的奇偶性教案人教版篇五
本節(jié)課的主要學習內容是理解函數的奇偶性的概念,掌握利用定義和圖象判斷函數的奇偶性,以及函數奇偶性的幾個性質。
函數的奇偶性是函數中的一個重要內容,它不僅與現實生活中的對稱性密切相關,而且為后面學習冪函數、指數函數、對數函數的性質打下了堅實的基礎。因此本節(jié)課的內容是至關重要的,它對知識起到了承上啟下的作用。
(二)重點、難點。
1、本課時的教學重點是:函數的奇偶性及其幾何意義。
2、本課時的教學難點是:判斷函數的奇偶性的方法與格式。
(三)教學目標。
1、知識與技能:使學生理解函數奇偶性的概念,初步掌握判斷函數奇偶性的方法;
2、方法與過程:引導學生通過觀察、歸納、抽象、概括,自主建構奇函數、偶函數等概念;能運用函數奇偶性概念解決簡單的問題;使學生領會數形結合思想方法,培養(yǎng)學生發(fā)現問題、分析問題和解決問題的能力。
3、情感態(tài)度與價值觀:在奇偶性概念形成過程中,使學生體會數學的科學價值和應用價值,培養(yǎng)學生善于觀察、勇于探索的良好習慣和嚴謹的科學態(tài)度。
二、教法、學法分析。
1、教學方法:啟發(fā)引導式。
結合本章實際,教材簡單易懂,重在應用、解決實際問題,本節(jié)課準備采用“引導發(fā)現法”進行教學,引導發(fā)現法可激發(fā)學生學習的積極性和創(chuàng)造性,分享到探索知識的方法和樂趣,在解決問題的過程中,體驗成功與失敗,從而逐步建立完善的認知結構。使用多媒體輔助教學,突出了知識的產生過程,又增加了課堂的趣味性。
2、學法指導:引導學生采用自主探索與互相協(xié)作相結合的學習方式。讓每一位學生都能參與研究,并最終學會學習。
三、教輔手段。
四、教學過程。
為了達到預期的教學目標,我對整個教學過程進行了系統(tǒng)地規(guī)劃,設計了五個主要的教學程序:設疑導入,觀圖激趣。指導觀察,形成概念。學生探索、發(fā)展思維。知識應用,鞏固提高。歸納小結,布置作業(yè)。
(一)設疑導入,觀圖激趣。
讓學生感受生活中的美:展示圖片蝴蝶,雪花。
學生舉例生活中的對稱現象。
折紙:取一張紙,在其上畫出直角坐標系,并在第一象限任畫一函數的圖象,以y軸為折痕將紙對折,并在紙的背面(即第二象限)畫出第一象限內圖形的痕跡,然后將紙展開,觀察坐標系中的圖形。
問題:將第一象限和第二象限的圖形看成一個整體,觀察圖象上相應的點的坐標有什么特點。
以y軸為折痕將紙對折,然后以x軸為折痕將紙對折,在紙的背面(即第三象限)畫出第二象限內圖象的.痕跡,然后將紙展開。觀察坐標喜之中的圖形:
問題:將第一象限和第三象限的圖形看成一個整體,觀察圖象上相應的點的坐標有什么特點。
(二)指導觀察,形成概念。
這節(jié)課我們首先從兩類對稱:軸對稱和中心對稱展開研究。
思考:請同學們作出函數y=x2的圖象,并觀察這兩個函數圖象的對稱性如何。
給出圖象,然后問學生初中是怎樣判斷圖象關于軸對稱呢此時提出研究方向:今天我們將從數值角度研究圖象的這種特征體現在自變量與函數值之間有何規(guī)律。
借助課件演示,學生會回答自變量互為相反數,函數值相等。接著再讓學生分別計算f(1),f(-1),f(2),f(-2),學生很快會得到f(-1)=f(1),f(-2)=f(2),進而提出在定義域內是否對所有的x,都有類似的情況借助課件演示,學生會得出結論,f(-x)=f(x),從而引導學生先把它們具體化,再用數學符號表示。
思考:由于對任一x,必須有一-x與之對應,因此函數的定義域有什么特征。
引導學生發(fā)現函數的定義域一定關于原點對稱。根據以上特點,請學生用完整的語言敘述定義,同時給出板書:
(1)函數f(x)的定義域為a,且關于原點對稱,如果有f(-x)=f(x),則稱f(x)為偶函數。
提出新問題:函數圖象關于原點對稱,它的自變量與函數值之間的數值規(guī)律是什么呢。
學生可類比剛才的方法,很快得出結論,再讓學生給出奇函數的定義:
強調注意點:“定義域關于原點對稱”的條件必不可少。
接著再探究函數奇偶性的判斷方法,根據前面所授知識,歸納步驟:
(1)求出函數的定義域,并判斷是否關于原點對稱。
(2)驗證f(-x)=f(x)或f(-x)=-f(x)3)得出結論。
給出例題,加深理解:
例1,利用定義,判斷下列函數的奇偶性:
(1)f(x)=x2+1。
(2)f(x)=x3-x。
(3)f(x)=x4-3x2-1。
(4)f(x)=1/x3+1。
提出新問題:在例1中的函數中有奇函數,也有偶函數,但象(4)這樣的是什么函數呢?
得到注意點:既不是奇函數也不是偶函數的稱為非奇非偶函數。
接著進行課堂鞏固,強調非奇非偶函數的原因有兩種,一是定義域不關于原點對稱,二是定義域雖關于原點對稱,但不滿足f(-x)=f(x)或f(-x)=-f(x)。
然后根據前面引入知識中,繼續(xù)探究函數奇偶性的第二種判斷方法:圖象法:
給出例2:書p63例3,再進行當堂鞏固,
1。書p65ex2。
y=x4;y=x-1;y=x;y=x-2;y=x5;y=x-3。
歸納:對形如:y=xn的函數,若n為偶數則它為偶函數,若n為奇數,則它為奇函數。
(三)學生探索,發(fā)展思維。
思考:1,函數y=2是什么函數。
2,函數y=0有是什么函數。
(四)布置作業(yè):課本p39習題1、3(a組)第6題,b組第3。
五、板書設計。
函數的奇偶性教案人教版篇六
本節(jié)課的教學模式是采用循序漸進,由簡單的問題引入,然后在教師的引導下,探索結論,最后,在教師的指導下,對所學的實際結論進行學生的實際應用。
一、這種教學模式的教學程序是:
(一)實際練習引入課題,并能去發(fā)現生活中的相關信息,引起學生的興趣。
(二)看圖,具體引入函數進行觀察探索,包括圖像觀察,自變量的變化,函數值的變化規(guī)律。
(三)明確這是函數的一種性質,明確定義,并強調定義中的注意事項,怎樣理解定義中的規(guī)定。
(四)教師具體以例題進行示范,學生們領會對函數奇偶性的`認識,并怎樣進行判斷。
(五)同學們在領會的基礎上,進行實際訓練,達到對知識的理解和應用。
二、這種教學模式的優(yōu)勢是:循序漸進,學生能夠實際參與,在教學中體現和諧,教師的導和學生的練保證教學的效果。
這種教學模式的缺點與解決方法是:
還缺乏對學生更高層次的參與的調動,尤其是職業(yè)中學中部分在初中已經放棄學習的同學的參與問題。對配套練習要進一步細化,要對每一個知識點都要精心設計相應知識點的訓練,圖像的認識上,要加大同學們對生活的感知和相關軟件的使用,并能在電腦上實際體驗函數圖像的對稱情況。
函數的奇偶性教案人教版篇七
今天我說課的課題是高中數學人教a版必修一第一章第三節(jié)函數的基本性質中的函數的奇偶性,下面我將從教材分析,教法、學法分析,教學過程,教輔手段,板書設計等方面對本課時的教學設計進行說明。
(一)教材特點、教材的地位與作用。
本節(jié)課的主要學習內容是理解函數的奇偶性的概念,掌握利用定義和圖象判斷函數的奇偶性,以及函數奇偶性的幾個性質。
函數的奇偶性是函數中的一個重要內容,它不僅與現實生活中的對稱性密切相關,而且為后面學習冪函數、指數函數、對數函數的性質打下了堅實的基礎。因此本節(jié)課的內容是至關重要的,它對知識起到了承上啟下的作用。
(二)重點、難點。
1、本課時的教學重點是:函數的奇偶性及其幾何意義。
2、本課時的教學難點是:判斷函數的奇偶性的方法與格式。
(三)教學目標。
1、知識與技能:使學生理解函數奇偶性的概念,初步掌握判斷函數奇偶性的方法;
2、方法與過程:引導學生通過觀察、歸納、抽象、概括,自主建構奇函數、偶函數等概念;能運用函數奇偶性概念解決簡單的問題;使學生領會數形結合思想方法,培養(yǎng)學生發(fā)現問題、分析問題和解決問題的能力。
3、情感態(tài)度與價值觀:在奇偶性概念形成過程中,使學生體會數學的科學價值和應用價值,培養(yǎng)學生善于觀察、勇于探索的良好習慣和嚴謹的科學態(tài)度。
1.教學方法:啟發(fā)引導式。
結合本章實際,教材簡單易懂,重在應用、解決實際問題,本節(jié)課準備采用"引導發(fā)現法"進行教學,引導發(fā)現法可激發(fā)學生學習的積極性和創(chuàng)造性,分享到探索知識的方法和樂趣,在解決問題的過程中,體驗成功與失敗,從而逐步建立完善的認知結構.使用多媒體輔助教學,突出了知識的產生過程,又增加了課堂的趣味性.
2.學法指導:引導學生采用自主探索與互相協(xié)作相結合的學習方式。讓每一位學生都能參與研究,并最終學會學習.
為了達到預期的教學目標,我對整個教學過程進行了系統(tǒng)地規(guī)劃,設計了五個主要的教學程序:設疑導入,觀圖激趣。指導觀察,形成概念。學生探索、發(fā)展思維。知識應用,鞏固提高。歸納小結,布置作業(yè)。
(一)設疑導入,觀圖激趣。
讓學生感受生活中的美:展示圖片蝴蝶,雪花。
學生舉例生活中的對稱現象。
折紙:取一張紙,在其上畫出直角坐標系,并在第一象限任畫一函數的圖象,以y軸為折痕將紙對折,并在紙的背面(即第二象限)畫出第一象限內圖形的痕跡,然后將紙展開,觀察坐標系中的'圖形。
問題:將第一象限和第二象限的圖形看成一個整體,觀察圖象上相應的點的坐標有什么特點。
以y軸為折痕將紙對折,然后以x軸為折痕將紙對折,在紙的背面(即第三象限)畫出第二象限內圖象的痕跡,然后將紙展開.觀察坐標喜之中的圖形:
問題:將第一象限和第三象限的圖形看成一個整體,觀察圖象上相應的點的坐標有什么特點。
(二)指導觀察,形成概念。
這節(jié)課我們首先從兩類對稱:軸對稱和中心對稱展開研究.
思考:請同學們作出函數y=x2的圖象,并觀察這兩個函數圖象的對稱性如何。
借助課件演示,學生會回答自變量互為相反數,函數值相等.接著再讓學生分別計算f(1),f(-1),f(2),f(-2),學生很快會得到f(-1)=f(1),f(-2)=f(2),進而提出在定義域內是否對所有的x,都有類似的情況借助課件演示,學生會得出結論,f(-x)=f(x),從而引導學生先把它們具體化,再用數學符號表示.
思考:由于對任一x,必須有一-x與之對應,因此函數的定義域有什么特征。
引導學生發(fā)現函數的定義域一定關于原點對稱.根據以上特點,請學生用完整的語言敘述定義,同時給出板書:
提出新問題:函數圖象關于原點對稱,它的自變量與函數值之間的數值規(guī)律是什么呢(同時打出y=1/x的圖象讓學生觀察研究)。
學生可類比剛才的方法,很快得出結論,再讓學生給出奇函數的定義:
強調注意點:"定義域關于原點對稱"的條件必不可少.
接著再探究函數奇偶性的判斷方法,根據前面所授知識,歸納步驟:
(1)求出函數的定義域,并判斷是否關于原點對稱。
(2)驗證f(-x)=f(x)或f(-x)=-f(x)3)得出結論。
給出例題,加深理解:
例1,利用定義,判斷下列函數的奇偶性:
(1)f(x)=x2+1。
(2)f(x)=x3-x。
(3)f(x)=x4-3x2-1。
(4)f(x)=1/x3+1。
提出新問題:在例1中的函數中有奇函數,也有偶函數,但象(4)這樣的是什么函數呢?
得到注意點:既不是奇函數也不是偶函數的稱為非奇非偶函數。
接著進行課堂鞏固,強調非奇非偶函數的原因有兩種,一是定義域不關于原點對稱,二是定義域雖關于原點對稱,但不滿足f(-x)=f(x)或f(-x)=-f(x)。
然后根據前面引入知識中,繼續(xù)探究函數奇偶性的第二種判斷方法:圖象法:
函數f(x)是奇函數=圖象關于原點對稱。
函數f(x)是偶函數=圖象關于y軸對稱。
給出例2:書p63例3,再進行當堂鞏固,
1,書p65ex2。
y=x4;y=x-1;y=x;y=x-2;y=x5;y=x-3。
歸納:對形如:y=xn的函數,若n為偶數則它為偶函數,若n為奇數,則它為奇函數。
(三)學生探索,發(fā)展思維。
思考:
2,函數y=0有是什么函數。
(四)布置作業(yè)。
課本p39習題1.3(a組)第6題,b組第3。
函數的奇偶性教案人教版篇八
《函數的奇偶性》這節(jié)課采用的是我校712課堂模式,主要給老師們展示教學環(huán)節(jié)。
在《函數的奇偶性》這節(jié)課教學過程中,我讓學生通過圖象直觀獲得函數奇偶性的認識,然后利用表格探究數量變化特征,通過代數運算,驗證發(fā)現的數量特征對定義域中的”任意”值都成立,最后在這個基礎上建立奇偶函數的概念。
在本節(jié)課的教學中我還要注意到以下幾個方面的問題:
1、幻燈片的設計。
幻燈片的使用在一定程度上很好的輔助我的教學活動,但是數學學科中應注意到幻燈片的設計,在出現某些字或者數字時應直接出現,而不要設計成動畫的形式,以免學生分散注意力。
2、學生練習。
在教學過程中應多注意學生的活動,由單一的問答式轉化為多方位的考察,可以采用學生板演或者把學生練習投影到屏幕上讓全班學生糾正等方式,更好的考察學生掌握情況。
3、例題書寫。
在數學教學中我們都要對例題的解題過程進行講解,并書寫解題過程,以便讓學生更好的模仿。在書寫解題過程或定義時要認真板書,保證字跡清楚,便于學生仿照。
4、語言組織。
在講授過程中還要注意到說話語速,語言組織等講授技巧,應該用平緩的語氣講授,語言描述要簡練易懂,不能拖泥帶水。
5、教學環(huán)節(jié)的完整。
在授課過程中要注意到教學環(huán)節(jié)設計,我們的教學過程有復習引入、講授新課、例題講解、學生練習、課時小結、布置作業(yè)等幾個重要的環(huán)節(jié),有時候可能因為緊張等各種因素往往忽略小細節(jié),遺漏其中的某一環(huán)節(jié),造成教學設計不完善。在以后的教學過程中要注意這些環(huán)節(jié)。
6、教案設計的完整。
在本節(jié)課教學中我因為考慮到有幻燈片而沒有在教案中設計“板書設計”這個環(huán)節(jié),但是在授課過程中又用到了板書,所以一定要設計“板書設計”,以保證教案的完整性。
以上是我對這節(jié)課以后的教學反思,還有很多地方做的還不完善,我要在以后的教學中努力改進這些錯誤,以便更好的適應教學,努力使自己的教學更上一層樓。
函數的奇偶性教案人教版篇九
【知識目標】:使學生從形與數兩方面理解函數單調性的概念,學會利用函數圖像理解和研究函數的性質,初步掌握利用函數圖象和單調性定義判斷、證明函數單調性的方法.
【能力目標】通過對函數單調性定義的探究,滲透數形結合數學思想方法,培養(yǎng)學生觀察、歸納、抽象的能力和語言表達能力;通過對函數單調性的證明,提高學生的推理論證能力.
【教學難點】歸納抽象函數單調性的定義以及根據定義證明函數的單調性.由于判斷或證明函數的單調性,常常要綜合運用一些知識(如不等式、因式分解、配方及數形結合的思想方法等)所以判斷或證明函數的單調性是本節(jié)課的難點.
【教材分析】函數的單調性是函數的重要性質之一,它把自變量的變化方向和函數值的變化方向定性的聯(lián)系在一起,所以本節(jié)課在教材中的作用如下(1)函數的單調性起著承前啟后的作用。一方面,初中數學的許多內容在解決函數的某些問題中得到了充分運用,函數的單調性與前一節(jié)內容函數的概念和圖像知識的延續(xù)有密切的聯(lián)系;函數的單調性一節(jié)中的知識是它和后面的函數奇偶性,合稱為函數的簡單性質,是今后研究指數函數、對數函數、冪函數及其他函數單調性的理論基礎。
(2)函數的單調性是培養(yǎng)學生數學能力的良好題材,這節(jié)課通過對具體函數圖像的歸納和抽象,概括出函數在某個區(qū)間上是增函數或減函數的準確定義,明確指出函數的增減性是相對于某個區(qū)間來說的。教材中判斷函數的增減性,既有從圖像上進行觀察的直觀方法,又有根據其定義進行邏輯推理的嚴格證明方法,最后將兩種方法統(tǒng)一起來,形成根據觀察圖像得出猜想結論,進而用推理證明猜想的體系。同時還要綜合利用前面的知識解決函數單調性的一些問題,有利于學生數學能力的提高。
(3)函數的單調性有著廣泛的實際應用。在解決函數值域、定義域、不等式、比較兩數大小等具體問題中均需用到函數的單調性;同時在這一節(jié)中利用函數圖象來研究函數性質的'數形結合思想將貫穿于我們整個數學教學。因此“函數的單調性”在中學數學內容里占有十分重要的地位。它體現了函數的變化趨勢和變化特點,在利用函數觀點解決問題中起著十分重要的作用,為培養(yǎng)創(chuàng)新意識和實踐能力提供了重要方式和途徑。
【學情分析】從學生的知識上看,學生已經學過一次函數,二次函數,反比例函數等簡單函數,函數的概念及函數的表示,能畫出一些簡單函數的圖像,從圖像的直觀變化,學生能粗略的得到函數增減性的定義,所以引入函數的單調性的定義應該是順理成章的。從學生現有的學習能力看,通過初中對函數的認識與實驗,學生已具備了一定的觀察事物的能力,積累了一些研究問題的經驗,在一定程度上具備了抽象、概括的能力和語言轉換能力。從學生的心理學習心理上看,學生頭腦中雖有一些函數性質的實物實例,但并沒有上升為“概念”的水平,如何“定性”“定量”地描述函數性質是學生關注的問題,也是學習的重點問題。函數的單調性是學生從已經學習的函數中比較容易發(fā)現的一個性質,學生也容易產生共鳴,通過對比產生頓悟,渴望獲得這種學習的積極心向是學生學好本節(jié)課的情感基礎。但是如何運用數學符號將自然語言的描述提升為形式化的定義,學生接受起來比較困難?在教學中要多引導,讓學生真正的理解函數單調性的定義。
【教學方法】教師是教學的主體、學生是學習的主體,通過雙主體的教學模式方法:啟發(fā)式教學法——以設問和疑問層層引導,激發(fā)學生,啟發(fā)學生積極思考,逐步從常識走向科學,將感性認識提升到理性認識,培養(yǎng)和發(fā)展學生的抽象思維能力。探究教學法——引導學生去疑;鼓勵學生去探;激勵學生去思,培養(yǎng)學生的創(chuàng)造性思維和批判精神。合作學習——通過組織小組討論達到探究、歸納的目的?!窘虒W手段】計算機、投影儀.
【教學過程】一、創(chuàng)設情境,引入課題(利用電腦展示)1.如圖為某市一天內的氣溫變化圖:(1)觀察這個氣溫變化圖,說出氣溫在這一天內的變化情況.(2)怎樣用數學語言刻畫在這一天內“隨著時間的增大,氣溫逐漸升高或下降”這一特征?引導學生識圖,捕捉信息,啟發(fā)學生思考.問題:觀察圖形,能得到什么信息?預案:(1)當天的最高溫度、最低溫度以及何時達到;(2)在某時刻的溫度;(3)某些時段溫度升高,某些時段溫度降低.在生活中,我們關心很多數據的變化規(guī)律,了解這些數據的變化規(guī)律,是很有幫助的.問題:還能舉出生活中其他的數據變化情況嗎?預案:股票價格、水位變化、心電圖等等春蘭股份線性圖.水位變化圖歸納:用函數觀點看,其實就是隨著自變量的變化,函數值是變大還是變小.
〖設計意圖〗由生活情境引入新課,激發(fā)興趣.二、歸納探索,形成概念對于自變量變化時,函數值是變大還是變小,初中同學們就有了一定的認識,但是沒有嚴格的定義,今天我們的任務首先就是建立函數單調性的嚴格定義.1.借助圖象,直觀感知問題1:分別作出函數的圖象,并且觀察自變量變化時,函數值有什么變化規(guī)律?(學生自己動手畫,然后電腦顯示下圖)預案:生:函數在整個定義域內y隨x的增大而增大;函數在整個定義域內y隨x的增大而減小.師:函數的圖像變化規(guī)律生:在y軸的的左側y隨x的增大而減小.在y軸的的右側y隨x的增大而增大。師:我們學過區(qū)間的表示方法,如何用區(qū)間的概念來表述圖像的變化規(guī)律生:在上y隨x的增大而增大,在上y隨x的增大而減小.師:這樣表述就比較嚴密了,很好。由上面的討論可知,函數的單調性與自變量的范圍有關,一個函數并不一定在整個正義域內是單調函數,但在定義城的某個子集上可以是單調函數。(3)函數的圖像變化規(guī)律如何。
生:(1)定義域中的減函數。(2)在上y隨x的增大而減小,在上y隨x的增大而減小.師:對于兩種答案,哪一種是正確的,為什么?學生分組討論。從定義域,圖像的角度考慮,也可以舉反例引導學生進行分類描述(增函數、減函數).并引導學生用區(qū)間明確描述函數的單調性從而讓學生明確函數的單調性是對定義域內某個區(qū)間而言的,是函數的局部性質.
問題2:能不能根據自己的理解說說什么是增函數、減函數?預案:如果函數在某個區(qū)間上隨自變量x的增大,y也越來越大,我們說函數在該區(qū)間上為增函數;如果函數在某個區(qū)間上隨自變量x的增大,y越來越小,我們說函數在該區(qū)間上為減函數.教師指出:這種認識是從圖象的角度得到的,是對函數單調性的直觀,描述性的認識.
〖設計意圖〗從圖象直觀感知函數單調性,完成對函數單調性的第一次認識.2.探究規(guī)律,理性認識問題1:下圖是函數的圖象,能說出這個函數分別在哪個區(qū)間為增函數和減函數嗎?(電腦顯示,學生分組討論)學生的困難是難以確定分界點的確切位置.通過討論,使學生感受到用函數圖象判斷函數單調性雖然比較直觀,但有時不夠精確,需要結合解析式進行嚴密化、精確化的研究.
〖設計意圖〗使學生體會到用數量大小關系嚴格表述函數單調性的必要性.問題2:如何從解析式的角度說明在為增函數?預案:生:在給定區(qū)間內取兩個數,例如1和2,因為1222,所以在為增函數.生:僅僅兩個數的大小關系不能說明函數y=x2在區(qū)間[0,+∞)上為單調遞增函數,應該舉出無數個。由于很多學生不能分清“無數”和“所有”的區(qū)別,所以許多學生對學生2的說法表示贊同。
生:函數)無數個如(2)中的實數,顯然f(x)也隨x的增大而增大,是不是也可以說函數在區(qū)間上是增函數?可這與圖象矛盾啊?師:“無數個”能不能代表“所有”呢?比如:2、3、4、5……有無數個自然數都比大,那我們能不能說所有的自然數都比大呢?所以具體值取得再多,也不能代表所有的,思考如何體現區(qū)間上的所有值。引導學生利用字母表示數。生:任取且,因為,即,所以在為增函數.舊教材的定義在這里就可以歸納出來,但是人教b版新教材使用了自變量的增量和函數值的增量來表述,并為以后學習利用導數判斷函數的單調性做準備,所以需進一步引導學生利用增量來定義函數的單調性。
(5)仿(4)且,由圖象可知,即給自變量一個增量,,函數值的增量所以在為增函數。對于學生錯誤的回答,引導學生分別用圖形語言和文字語言進行辨析,使學生認識到問題的根源在于自變量不可能被窮舉,從而引導學生在給定的區(qū)間內任意取兩個自變量進一步尋求自變量的增量與函數值的增量之間的變化規(guī)律,判斷函數單調性。注意這里的“都有”是對應于“任意”的。
〖設計意圖〗把對單調性的認識由感性上升到理性認識的高度,完成對概念的第二次認識.事實上也給出了證明單調性的方法,為證明單調性做好鋪墊.3.抽象思維,形成概念問題:你能用準確的數學符號語言表述出增函數的定義嗎?師生共同探究,得出增函數嚴格的定義,然后學生類比得出減函數的定義.
(1)板書定義設函數的定義域為a,區(qū)間ma,如果取區(qū)間m中的任意兩個值,當改變量時,都有,那么就稱函數在區(qū)間m上是增函數,如圖(1)當改變量時,都有,那么就稱函數在區(qū)間m上是減函數,如圖(2)。
函數的奇偶性教案人教版篇十
教材分析:
本章包括銳角三角函數的概念(主要是正弦、余弦和正切的概念),以及利用銳角三角函數解直角三角形等內容。銳角三角函數為解直角三角形提供了有效的工具,解直角三角形在實際當中有著廣泛的應用,這也為銳角三角函數提供了與實際聯(lián)系的機會。研究銳角三角函數的直接基礎是相似三角形的一些結論,解直角三角形主要依賴銳角三角函數和勾股定理等內容,因此相似三角形和勾股定理等是學習本章的直接基礎。
本章內容與已學'相似三角形''勾股定理'等內容聯(lián)系緊密,并為高中數學中三角函數等知識的學習作好準備。
學情分析:
銳角三角函數的概念既是本章的難點,也是學習本章的關鍵。難點在于,銳角三角函數的概念反映了角度與數值之間對應的函數關系,這種角與數之間的對應關系,以及用含有幾個字母的符號sina、cosa、tana表示函數等,學生過去沒有接觸過,因此對學生來講有一定的難度。至于關鍵,因為只有正確掌握了銳角三角函數的概念,才能真正理解直角三角形中邊、角之間的關系,從而才能利用這些關系解直角三角形。
第一課時。
教學目標:
知識與技能:
1、通過探究使學生知道當直角三角形的銳角固定時,它的對邊與斜邊的比值都固定(即正弦值不變)這一事實。
2、能根據正弦概念正確進行計算。
3、經歷當直角三角形的銳角固定時,它的對邊與斜邊的比值是固定值這一事實,發(fā)展學生的形象思維,培養(yǎng)學生由特殊到一般的演繹推理能力。
過程與方法:
通過銳角三角函數的學習,進一步認識函數,體會函數的變化與對應的思想,逐步培養(yǎng)學生會觀察、比較、分析、概括等邏輯思維能力.
情感態(tài)度與價值觀:
引導學生探索、發(fā)現,以培養(yǎng)學生獨立思考、勇于創(chuàng)新的精神和良好的學習習慣.
重難點:
1.重點:理解認識正弦(sina)概念,通過探究使學生知道當銳角固定時,它的對邊與斜邊的比值是固定值這一事實.
2.難點與關鍵:引導學生比較、分析并得出:對任意銳角,它的對邊與斜邊的比值是固定值的事實.
教學過程:
一、復習舊知、引入新課。
【引入】操場里有一個旗桿,老師讓小明去測量旗桿高度。(演示學校操場上的國旗圖片)。
小明站在離旗桿底部10米遠處,目測旗桿的頂部,視線與水平線的夾角為34度,并已知目高為1米.然后他很快就算出旗桿的高度了。
你想知道小明怎樣算出的嗎?
下面我們大家一起來學習銳角三角函數中的第一種:銳角的正弦。
二、探索新知、分類應用。
【活動一】問題的引入。
函數的奇偶性教案人教版篇十一
11.如圖,圖中的曲線表示小華星期天騎自行車外出離家的距離與時間的關系,小華八點離開家,十四點回到家,根據這個曲線圖,請回答下列問題:
(1)到達離家最遠的地方是幾點?離家多遠?
(2)何時開始第一次休息?休息多長時間?
(3)小華在往返全程中,在什么時間范圍內平均速度最快?最快速度是多少?
(4)小華何時離家21千米?(寫出計算過程)。
函數的奇偶性教案人教版篇十二
理解函數的奇偶性及其幾何意義。
【過程與方法】。
利用指數函數的圖像和性質,及單調性來解決問題。
【情感態(tài)度與價值觀】。
體會指數函數是一類重要的函數模型,激發(fā)學生學習數學的興趣。
【重點】。
【難點】。
(一)導入新課。
取一張紙,在其上畫出平面直角坐標系,并在第一象限任畫一可作為函數圖象的圖形,然后按如下操作并回答相應問題:
答案:(1)可以作為某個函數y=f(x)的圖象,并且它的圖象關于y軸對稱;
(二)新課教學。
(1)偶函數(evenfunction)。
(學生活動):仿照偶函數的定義給出奇函數的定義。
(2)奇函數(oddfunction)。
注意:
1函數是奇函數或是偶函數稱為函數的奇偶性,函數的奇偶性是函數的整體性質;
2由函數的奇偶性定義可知,函數具有奇偶性的一個必要條件是,對于定義域內的任意一個x,則-x也一定是定義域內的一個自變量(即定義域關于原點對稱)。
2、具有奇偶性的函數的圖象的特征。
偶函數的圖象關于y軸對稱;
奇函數的圖象關于原點對稱。
3、典型例題。
例1.(教材p36例3)應用函數奇偶性定義說明兩個觀察思考中的四個函數的奇偶性(本例由學生討論,師生共同總結具體方法步驟)。
解:(略)。
總結:利用定義判斷函數奇偶性的格式步驟:
1首先確定函數的定義域,并判斷其定義域是否關于原點對稱;
2確定f(-x)與f(x)的關系;
3作出相應結論:
若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數;
若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數。
(三)鞏固提高。
1、教材p46習題1.3b組每1題。
解:(略)。
(教材p41思考題)。
規(guī)律:
偶函數的圖象關于y軸對稱;
奇函數的圖象關于原點對稱。
說明:這也可以作為判斷函數奇偶性的依據。
(四)小結作業(yè)。
課本p46習題1.3(a組)第9、10題,b組第2題。
三、規(guī)律:
偶函數的圖象關于y軸對稱;
奇函數的`圖象關于原點對稱。
函數的奇偶性教案人教版篇十三
本課的內容是人教版八年級上冊第14章第2節(jié)第2課時,就是課本115到116頁的內容。在許多方面與正比例函數的圖象和性質有著緊密聯(lián)系,是本章中的重點。本節(jié)課安排在正比例函數的圖象與一次函數的概念之后。通過這一節(jié)課的學習使學生掌握一次函數圖象的畫法和一次函數的性質。它既是正比例函數的圖象和性質的拓展,又是今后繼續(xù)學習“用函數觀點看方程(組)與不等式”的基礎,在本章中起著承上啟下的作用。本節(jié)教學內容還是學生進一步學習“數形結合”這一數學思想方法的很好素材。作為一種數學模型,一次函數在日常生活中也有著極其廣泛的應用。
(二)說教學目標
基于以上的教材分析,結合新課程標準的新理念,確立如下教學目標:
知識技能:
1、理解直線y=kx+b與y=kx之間的位置關系;
2、會利用兩個合適的點畫出一次函數的圖象;
3、掌握一次函數的性質.
數學思考:
2、通過一次函數的圖象總結函數的性質,體驗數形結合法的應用,培養(yǎng)推理及抽象思維能力。
情感態(tài)度:
2、在探究一次函數的圖象和性質的活動中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神。
(三)說教學重點難點
教學重點:一次函數的圖象和性質。
教學難點:由一次函數的圖象歸納得出一次函數的性質及對性質的理解。
函數的奇偶性教案人教版篇十四
教學目標:了解奇偶性的含義,會判斷函數的奇偶性。能證明一些簡單函數的奇偶性。弄清函數圖象對稱性與函數奇偶性的關系。
難點:函數圖象對稱性與函數奇偶性的關系。
一、復習引入。
(1)奇函數。
(2)偶函數。
(3)與圖象對稱性的關系。
(4)說明(定義域的要求)。
二、例題分析。
例1、判斷下列函數是否為偶函數或奇函數。
例2、證明函數在r上是奇函數。
三、隨堂練習。
1、函數()。
是奇函數但不是偶函數是偶函數但不是奇函數。
既是奇函數又是偶函數既不是奇函數又不是偶函數。
2、下列4個判斷中,正確的是_______.
(1)既是奇函數又是偶函數;
(2)是奇函數;
(3)是偶函數;
(4)是非奇非偶函數。
3、函數的圖象是否關于某直線對稱?它是否為偶函數?
函數的奇偶性教案人教版篇十五
知識梳理:
1、軸對稱圖形:
2中心對稱圖形:
1、畫出函數,與的圖像;并觀察兩個函數圖像的對稱性。
2、求出,時的函數值,寫出。
結論:
(1)、強調定義中任意二字,奇偶性是函數在定義域上的整體性質。
(2)、奇函數偶函數的定義域關于原點對稱。
5、奇函數與偶函數圖像的對稱性:
如果一個函數是奇函數,則這個函數的圖像是以坐標原點為對稱中心的__________。反之,如果一個函數的圖像是以坐標原點為對稱中心的中心對稱圖形,則這個函數是___________。
如果一個函數是偶函數,則這個函數的圖像是以軸為對稱軸的__________。反之,如果一個函數的圖像是關于軸對稱,則這個函數是___________。
(1)(2)(3)。
(4)(5)。
練習:教材第49頁,練習a第1題。
總結:根據例題,你能給出用定義判斷函數奇偶性的步驟?
題型二:利用奇偶性求函數解析式。
例2:若f(x)是定義在r上的奇函數,當x0時,f(x)=x(1-x),求當時f(x)的解析式。
練習:若f(x)是定義在r上的奇函數,當x0時,f(x)=x|x-2|,求當x0時f(x)的解析式。
已知定義在實數集上的奇函數滿足:當x0時,,求的表達式。
題型三:利用奇偶性作函數圖像。
例3研究函數的性質并作出它的圖像。
練習:教材第49練習a第3,4,5題,練習b第1,2題。
當堂檢測。
1已知是定義在r上的奇函數,則(d)。
a.b.c.d.
2如果偶函數在區(qū)間上是減函數,且最大值為7,那么在區(qū)間上是(b)。
a.增函數且最小值為-7b.增函數且最大值為7。
c.減函數且最小值為-7d.減函數且最大值為7。
3函數是定義在區(qū)間上的偶函數,且,則下列各式一定成立的是(c)。
a.b.c.d.
4已知函數為奇函數,若,則-1。
5若是偶函數,則的單調增區(qū)間是。
6下列函數中不是偶函數的是(d)。
abcd。
7設f(x)是r上的偶函數,切在上單調遞減,則f(-2),f(-),f(3)的大小關系是(a)。
abf(-)f(-2)f(3)cf(-)。
8奇函數的圖像必經過點(c)。
a(a,f(-a))b(-a,f(a))c(-a,-f(a))d(a,f())。
9已知函數為偶函數,其圖像與x軸有四個交點,則方程f(x)=0的所有實根之和是(a)。
a0b1c2d4。
11若f(x)在上是奇函數,且f(3)_f(-1)。
12、解答題。
已知函數在區(qū)間d上是奇函數,函數在區(qū)間d上是偶函數,求證:是奇函數。
已知分段函數是奇函數,當時的解析式為,求這個函數在區(qū)間上的解析表達式。
函數的奇偶性教案人教版篇十六
正比例函數的概念.
2.內容解析。
一次函數是最基本的初等函數,是初中函數學習的重要內容,正比例函數是特殊的一次函數,也是初中學生接觸到的第一種函數,要通過對正比例函數內容的學習,為后續(xù)類比學習一般一次函數打好基礎,了解研究函數的基本套路和方法,積累研究一般一次函數乃至其他各種函數的基本經驗.
對正比例函數概念的學習,既要借助具體的函數進一步加深對函數概念的理解,即實際問題的兩個變量中,當一個變量變化時,另一個變量隨著它的變化而變化,而且對于這個變量的每一個確定的值,另一個變量都有唯一確定的值與之對應,這是理解正比例函數的核心;也要加強對正比例函數基本特征的認識,即根據實際問題構建的函數模型中,函數和自變量每一對對應值的比值是一定的,等于比例系數,反映在函數解析式上,這些函數都是常數與自變量的積的形式,這是正比例函數的基本特征.
本節(jié)課主要是通過對生活中大量實際問題的分析,寫出變量間的函數關系式,觀察比較概括出這些函數關系式具有的共同特征,根據共同特征抽象出正比例函數的基本模型,歸納得出正比例函數的概念,再用正比例函數的概念對具體函數進行辨析,對實際事例進行分析,根據已知條件寫出正比例函數的解析式.
基于以上分析,確定本節(jié)課的教學重點:正比例函數的概念.
二、目標和目標解析。
1.目標。
(1)經歷正比例函數概念的形成過程,理解正比例函數的概念;。
(2)能根據已知條件確定正比例函數的解析式,體會函數建模思想.
2.目標解析。
達成目標(1)的標志是:通過對實際問題的分析,知道自變量和對應函數成正比例的特征,能概括抽象出正比例函數的概念.
達成目標(2)的標志是:能根據實際問題中的已知條件確定變量間的正比例函數關系式,將實際問題抽象為函數模型,體會函數建模思想.
三、教學問題診斷分析。
正比例函數是是初中學生接觸到的第一種初等函數,由于函數概念比較抽象,學生對函數基本概念理解未必深刻,在對實際問題進行分析過程中,需進一步強化對函數概念的理解:即實際問題的兩個變量中,當一個變量變化時,另一個變量隨著它的變化而變化,而且對于這個變量的每一個確定的值,另一個變量都有唯一確定的值與之對應;對正比例函數概念的理解關鍵是對正比例函數基本特征的認識,要通過大量實例分析,寫出變量間的函數關系式,觀察比較發(fā)現這些函數具有的共同特征,即函數與自變量的每一對對應值的比值一定,都等于自變量前的常數,這些函數都是常數與自變量的積的形式,再根據共同特征抽象出正比例函數的基本模型,歸納得出正比例函數的概念.對正比例函數基本特征的認識和正比例函數概念的抽象歸納過程學生有一定難度.
因此本節(jié)課的教學難點是:對正比例函數基本特征的認識和正比例函數概念的抽象歸納過程.
四、教學過程設計。
1.情境引入,初步感知。
引言。
上一節(jié)我們已經學習了關于函數的最基礎的知識,知道了變量與函數、函數的圖象及函數的三種表示方法,從這節(jié)課開始,我們將重點研究一種最基本的具體函數——一次函數,本節(jié)課先研究特殊的一次函數——正比例函數.
問題12011年開始運營的京滬高速鐵路全長1318km.設列車的平均速度為300km/h.考慮以下問題:
師生活動:教師引導學生分析問題中的數量關系,這是典型的行程問題,數量關系是學生熟悉的“路程=速度×時間”.
設計意圖:讓學生真切感受數學與實際的聯(lián)系,即數學理論來源于實際又服務于實際.幫助學生逐步提高將實際問題抽象為函數模型的能力,初步體會函數建模思想.
設計意圖:由于自變量t是列車運行時間,作為實際問題,自變量的取值是受限制的,應對其取值范圍作出說明.
對問題(2)的分析解答過程讓學生回答下列問題:
追問1這個問題中兩個變量之間的對應關系是函數關系嗎?如果是,試說明理由.
設計意圖:讓學生感受量與量之間的函數關系,體會函數關系蘊涵在實際問題中,激發(fā)學生探究興趣.對理由的說明學生可能有障礙,此時教師要引導學生回顧函數概念的學習過程,用函數的概念來回答:問題中的兩個變量,當其中的變量t變化時,另一個變量y隨著t的變化而變化,并且對于變量t的每一個?定的值,另一個變量y都有唯一確定的值與之對應.
追問2請你寫出y與t之間的函數解析式,并分析解析式在結構上是什么形式?
追問3對于自變量t和函數y的每一對對應值,y與t的比值,
函數的奇偶性教案人教版篇十七
【過程與方法】。
利用指數函數的圖像和性質,及單調性來解決問題。
【情感態(tài)度與價值觀】。
體會指數函數是一類重要的函數模型,激發(fā)學生學習數學的興趣。
【重點】。
【難點】。
(一)導入新課。
取一張紙,在其上畫出平面直角坐標系,并在第一象限任畫一可作為函數圖象的圖形,然后按如下操作并回答相應問題:
答案:(1)可以作為某個函數y=f(x)的圖象,并且它的圖象關于y軸對稱;。
(二)新課教學。
(1)偶函數(evenfunction)。
(學生活動):仿照偶函數的定義給出奇函數的定義。
(2)奇函數(oddfunction)。
注意:
1函數是奇函數或是偶函數稱為函數的奇偶性,函數的奇偶性是函數的整體性質;。
2由函數的奇偶性定義可知,函數具有奇偶性的一個必要條件是,對于定義域內的任意一個x,則-x也一定是定義域內的一個自變量(即定義域關于原點對稱)。
2.具有奇偶性的函數的圖象的特征。
偶函數的圖象關于y軸對稱;。
奇函數的圖象關于原點對稱。
3.典型例題。
例1.(教材p36例3)應用函數奇偶性定義說明兩個觀察思考中的四個函數的奇偶性(本例由學生討論,師生共同總結具體方法步驟)。
解:(略)。
總結:利用定義判斷函數奇偶性的格式步驟:
1首先確定函數的定義域,并判斷其定義域是否關于原點對稱;。
2確定f(-x)與f(x)的關系;。
3作出相應結論:
若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數;。
若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數。
(三)鞏固提高。
1.教材p46習題1.3b組每1題。
解:(略)。
(教材p41思考題)。
規(guī)律:
偶函數的圖象關于y軸對稱;。
奇函數的圖象關于原點對稱。
(四)小結作業(yè)。
課本p46習題1.3(a組)第9、10題,b組第2題。
三、規(guī)律:
偶函數的圖象關于y軸對稱;。
奇函數的`圖象關于原點對稱。
函數的奇偶性教案人教版篇十八
1、了解函數的單調性和奇偶性的概念,掌握有關證明和判斷的基本方法。
(1)了解并區(qū)分增函數,減函數,單調性,單調區(qū)間,奇函數,偶函數等概念。
(2)能從數和形兩個角度認識單調性和奇偶性。
(3)能借助圖象判斷一些函數的單調性,能利用定義證明某些函數的單調性;能用定義判斷某些函數的奇偶性,并能利用奇偶性簡化一些函數圖象的繪制過程。
2、通過函數單調性的證明,提高學生在代數方面的推理論證能力;通過函數奇偶性概念的形成過程,培養(yǎng)學生的觀察,歸納,抽象的能力,同時滲透數形結合,從特殊到一般的數學思想。
3、通過對函數單調性和奇偶性的理論研究,增學生對數學美的體驗,培養(yǎng)樂于求索的精神,形成科學,嚴謹的研究態(tài)度。
一、知識結構。
(1)函數單調性的概念。包括增函數、減函數的定義,單調區(qū)間的概念函數的單調性的判定方法,函數單調性與函數圖像的關系。
(2)函數奇偶性的概念。包括奇函數、偶函數的定義,函數奇偶性的判定方法,奇函數、偶函數的圖像。
二、重點難點分析。
(1)本節(jié)教學的重點是函數的單調性,奇偶性概念的形成與認識。教學的難點是領悟函數單調性,奇偶性的本質,掌握單調性的證明。
(2)函數的單調性這一性質學生在初中所學函數中曾經了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現在要求把它上升到理論的高度,用準確的數學語言去刻畫它。這種由形到數的翻譯,從直觀到抽象的轉變對高一的學生來說是比較困難的,因此要在概念的形成上重點下功夫。單調性的證明是學生在函數內容中首次接觸到的代數論證內容,學生在代數論證推理方面的能力是比較弱的,許多學生甚至還搞不清什么是代數證明,也沒有意識到它的重要性,所以單調性的證明自然就是教學中的難點。
三、教法建議。
(1)函數單調性概念引入時,可以先從學生熟悉的一次函數,,二次函數。反比例函數圖象出發(fā),回憶圖象的增減性,從這點感性認識出發(fā),通過問題逐步向抽象的定義靠攏。如可以設計這樣的問題:圖象怎么就升上去了?可以從點的坐標的角度,也可以從自變量與函數值的關系的角度來解釋,引導學生發(fā)現自變量與函數值的的變化規(guī)律,再把這種規(guī)律用數學語言表示出來。在這個過程當中對一些關鍵的詞語(某個區(qū)間,任意,都有)的理解與必要性的認識就可以融入其中,將概念的形成與認識結合起來。
(2)函數單調性證明的步驟是嚴格規(guī)定的,要讓學生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時,讓學生明確變換的目標,到什么程度就可以斷號,在例題的選擇上應有不同的變換目標為選題的標準,以便幫助學生總結規(guī)律。
函數的奇偶性概念引入時,可設計一個課件,以的圖象為例,讓自變量互為相反數,觀察對應的函數值的變化規(guī)律,先從具體數值開始,逐漸讓在數軸上動起來,觀察任意性,再讓學生把看到的用數學表達式寫出來。經歷了這樣的過程,再得到等式時,就比較容易體會它代表的是無數多個等式,是個恒等式。關于定義域關于原點對稱的問題,也可借助課件將函數圖象進行多次改動,幫助學生發(fā)現定義域的對稱性,同時還可以借助圖象(如)說明定義域關于原點對稱只是函數具備奇偶性的必要條件而不是充分條件。
函數的奇偶性教案人教版篇十九
活動1:觀察:
展示學生作圖作品(書p28例2),強調列表及圖象上的點的對應關系。
課前一兩分鐘對學生上交的作圖作品進行快速篩選,進量多選出一部分,課上多肯定多表揚多鼓勵。再從中選取一兩幅優(yōu)秀的作品上課為示例。
目的有四:
2、課上展示學生作品本身就是對學生完成作業(yè)情況的肯定,這又恰好給予了學生足夠的成功感和榮譽感,這便增加了學生學習數學的信心,樂意學習數學,激發(fā)了學習熱情,聽課更加專心。
3、學生經歷畫圖象進而感悟它的形狀及與正比例函數圖象的異同,為后面的發(fā)現規(guī)律作了準備。
4、令教師對學生有了更深層次的了解,能更好地把握課堂。
(二)嘗試探索、體驗新知:
活動1、觀察探索:
比較兩個函數圖象的相同點與不同點?
第一步;根據你的觀察結果回答問題。(書中原問題1、2、3)
目的:這樣在學生已經知道正比例函數的圖象是一條直線的基礎上,通過對應描點法來畫出了圖象,讓學生通過操作體驗感悟兩者之間的關系,問題變得直觀形象,學生們非常容易地完成平移。
目的:這樣通過啟發(fā)學生視覺見到的兩點,即與坐標軸的交點{(0,b),和(-b/k,0)兩點};此交點的求法(學生易從填表中的數據發(fā)現),再反之引導學生抓住這兩點畫圖象。就此題體驗一次函數圖象的兩點確定;同時也教會了學生用兩點法畫一次函數圖象。
活動2:知識再體驗:在同一直角坐標系中畫出四個k值不同的一次函數圖象,并觀察分析。
目的:進一步鞏固兩點作圖法,為探究一次函數的性質作準備。
活動3:展示“上下坡”材料,解決象限問題。(多媒體展示)
目的:讓學生觸發(fā)漫畫中“上下坡”的情景,引導思考k、b對圖象的影響——設置化抽象為形象,化枯燥為生動,同時學生對這種直觀的知識易接受,易理解,記憶深刻。從而突出了重點,攻破了難點。
活動4:師生互動(師生角色互換),提高拓展。(多媒體展出內容)
目的:通過這種師生互動角色轉換形式,不但能盡快烘起課堂氣憤,而且復習了本課的重點內容,對一次函數的性質理解的更透徹。
(三)課堂小結
引導學生回憶所學知識。通過這節(jié)課的學習你得到什么啟示和收獲?談談你的感受.
目的:總結回顧學習內容,有助于學生養(yǎng)成整理知識的習慣;有助于學生在剛剛理解了新知識的基礎上,及時把知識系統(tǒng)化、條理化。
(四)作業(yè)布置
加強“教、學”反思,進一步提高“教與學”效果。
四、說板書設計
采用了如下板書,要點突出,簡明清晰。
一次函數
正比例函數圖像的畫法:確定兩點為(0,0)和(1,k)一次函數選擇的兩點為:(0,k)和(-b\k,0)
五、說課后小結
函數的奇偶性教案人教版篇二十
一次函數解析式的求法一般是采用待定系法,對于學生而言,如何理解這種方法是解決這一問題的關鍵。
為了解決這個問題,我舉了這樣一個例子:已知直線y=kx+b經過點(1,2)和點(-2,3)試求這個函數關系式?學生們很容易想到列方程組解決這個問題,我卻提出了一個比較簡單的問題,為什么你要選擇列方程組解決這個問題,你的目的是什么?我教的那個班的學生沉默了好久,是啊,對于學生來說,他們習慣于如何做題,卻從不想為什么采用這種方法,這種方法的出發(fā)點是什么?經過一段時間的思考,有的學生終于答出了這個問題:他們說這是為了確定k,b的值,只要k,b的值確定了,那么一次函數解析式就確定下來了。而實際他們回答的恰恰是待定系數法的精髓,學生們只有能理解到這一點才能領會到待定系數法的精髓。進而我總結,如果知道一次函數圖象上個點就能確定它的解析式。如上例是顯而易見的兩點。
接著我給出另一個例題:已知一次函數圖象過點(1,-2),且與直線y=3x+2交y軸于同一點,試求該函數的解析式。這個題一個點顯而易見,另一個點是隱含的,學生們開始找到一個明線,通過分析找到了另一個暗線,最終大家一致認為兩點確定一條直線,想求一次函數的解析式,只要找到兩個點的坐標就行。
最后我出了一個例題:一個一次函數的圖象,與直線y=2x+1的交點m的橫坐標為2,與直線y=-x+2的交點n的縱坐標為1,求這個一次函數的解析式。學生們發(fā)現沒有一條明線,全是暗線,但只要理解找兩個點求一次函數解析式,看似難的問題就會迎刃而解。如果學生能理解透這三道其實是一類題,他們就會利用待定系數法求一次函數解析式了。
函數的奇偶性教案人教版篇一
一.多媒體使用的思考:
1.用:充分考慮多媒體的必用性和實用性,如實例引入,借助一些圖片,讓學生更形象的看到對稱。例題展現、問題展現,節(jié)約了教師黑板抄題的時間,提高了課堂效率。當然本節(jié)課不需要動畫展示,如果需要有動畫演示的可以做在課件上,把一些無法言傳的內容呈現在課件上才能真正體現多媒體之“用”。
2.不用:如果要把課件帶入每一節(jié)新授課,那么在制作課件的時候就要效率高,有一些內容就不用放入課件,如:例題的解題過程和在黑板上必須呈現的內容不用再搬到課件上去,否則學生也不知道該看黑板還是課件,增大了學生學習負擔,降低了學習效率。所以我在課件制作中,注重內容與黑板板書不重疊。
在多媒體應用上,我們要注重區(qū)分什么該用,什么不該用以確實提高課堂效率。
設計教學設計的過程中,充分考慮課程標準和教材的要求來確定教學目標,把握學生的學習水平,在教學中給學生充分思考的時間和空間,尊重學生的思想方法,點評優(yōu)化學生的學習收獲,充分調動學生探究的積極性,培養(yǎng)學生學習的興趣。在教學中不變的是先進的教學理念和合理的教學設計。放手給學生們自主學和研究就是我們應該大膽做的。從學生的角度設計教學,才能體現以學生為本!
三.做到重點突出和難點突破。
如何重點突出和難點突破是教學技術、教學專業(yè)上挑戰(zhàn),我們在上每一節(jié)課面對這些問題時都必須精心設計,那樣的課堂才能高效,學生才會喜歡。
在本節(jié)課中重點之一是函數奇偶性概念的理解,從實例引入,讓學生感到本節(jié)課研究的必要性與趣味性,從圖像對稱的本質讓學生給出概念,老師總結,再讓學生回頭感悟,有利于學生真正理解概念和應用概念。如何理解0再定義域內時,奇函數在0處的值為0時本節(jié)課難點之一,從一條辨析題到處問題,在研究問題,自然!同時激發(fā)了學生探究的欲望,學得深刻。
總之,要上好每一節(jié)課才能真正鍛煉老師的教學素養(yǎng)、技術,才能真正提高咱們的教學理念。
函數的奇偶性教案人教版篇二
【過程與方法】。
利用指數函數的圖像和性質,及單調性來解決問題.
【情感態(tài)度與價值觀】。
體會指數函數是一類重要的函數模型,激發(fā)學生學習數學的興趣.
二、教學重難點。
【重點】。
【難點】。
三、教學過程。
(一)導入新課。
取一張紙,在其上畫出平面直角坐標系,并在第一象限任畫一可作為函數圖象的圖形,然后按如下操作并回答相應問題:
答案:(1)可以作為某個函數y=f(x)的圖象,并且它的圖象關于y軸對稱;。
(2)若點(x,f(x))在函數圖象上,則相應的點(-x,f(x))也在函數圖象上,即函數圖象上橫坐標互為相反數的點,它們的縱坐標一定相等.
(二)新課教學。
像上面實踐操作1中的圖象關于y軸對稱的函數即是偶函數,操作2中的圖象關于原點對稱的函數即是奇函數.
(1)偶函數(evenfunction)。
一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數.
(學生活動):仿照偶函數的定義給出奇函數的定義。
(2)奇函數(oddfunction)。
一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做奇函數.
注意:
1函數是奇函數或是偶函數稱為函數的奇偶性,函數的奇偶性是函數的整體性質;。
2由函數的奇偶性定義可知,函數具有奇偶性的'一個必要條件是,對于定義域內的任意一個x,則-x也一定是定義域內的一個自變量(即定義域關于原點對稱).
偶函數的圖象關于y軸對稱;。
奇函數的圖象關于原點對稱.
3.典型例題。
例1.(教材p36例3)應用函數奇偶性定義說明兩個觀察思考中的四個函數的奇偶性.(本例由學生討論,師生共同總結具體方法步驟)。
解:(略)。
1首先確定函數的定義域,并判斷其定義域是否關于原點對稱;。
2確定f(-x)與f(x)的關系;。
3作出相應結論:
若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數.
(三)鞏固提高。
1.教材p46習題1.3b組每1題。
解:(略)。
說明:函數具有奇偶性的一個必要條件是,定義域關于原點對稱,所以判斷函數的奇偶性應應首先判斷函數的定義域是否關于原點對稱,若不是即可斷定函數是非奇非偶函數.
(教材p41思考題)。
規(guī)律:
偶函數的圖象關于y軸對稱;。
奇函數的圖象關于原點對稱.
(四)小結作業(yè)。
本節(jié)主要學習了函數的奇偶性,判斷函數的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數的奇偶性時,必須注意首先判斷函數的定義域是否關于原點對稱.單調性與奇偶性的綜合應用是本節(jié)的一個難點,需要學生結合函數的圖象充分理解好單調性和奇偶性這兩個性質.
課本p46習題1.3(a組)第9、10題,b組第2題.
四、板書設計。
一、偶函數:一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數.
二、奇函數:一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做奇函數.
三、規(guī)律:
偶函數的圖象關于y軸對稱;。
奇函數的圖象關于原點對稱.
函數的奇偶性教案人教版篇三
在本節(jié)課教學過程中,我讓學生通過圖象直觀獲得函數奇偶性的認識,然后利用表格探究數量變化特征,通過代數運算,驗證發(fā)現的數量特征對定義域中的”任意”值都成立,最后在這個基礎上建立奇偶函數的概念。
在本節(jié)課的教學中我還要注意到以下幾個方面的問題:
1.幻燈片的設計。
幻燈片的使用在一定程度上很好的輔助我的教學活動,但是數學學科中應注意到幻燈片的設計,在出現某些字或者數字時應直接出現,而不要設計成動畫的形式,以免學生分散注意力。
2.學生練習。
在教學過程中應多注意學生的活動,由單一的問答式轉化為多方位的`考察,可以采用學生板演或者把學生練習投影到屏幕上讓全班學生糾正等方式,更好的考察學生掌握情況。
3.例題書寫。
在數學教學中我們都要對例題的解題過程進行講解,并書寫解題過程,以便讓學生更好的模仿。在書寫解題過程或定義時要認真板書,保證字跡清楚,便于學生仿照。
4.語言組織。
在講授過程中還要注意到說話語速,語言組織等講授技巧,應該用平緩的語氣講授,語言描述要簡練易懂,不能拖泥帶水。
5.教學環(huán)節(jié)的完整。
在授課過程中要注意到教學環(huán)節(jié)設計,我們的教學過程有復習引入、講授新課、例題講解、學生練習、課時小結、布置作業(yè)等幾個重要的環(huán)節(jié),有時候可能因為緊張等各種因素往往忽略小細節(jié),遺漏其中的某一環(huán)節(jié),造成教學設計不完善。在以后的教學過程中要注意這些環(huán)節(jié)。
6.教案設計的完整。
在本節(jié)課教學中我因為考慮到有幻燈片而沒有在教案中設計“板書設計”這個環(huán)節(jié),但是在授課過程中又用到了板書,所以一定要設計“板書設計”,以保證教案的完整性。
以上是我對這節(jié)課以后的教學反思,還有很多地方做的還不完善,我要在以后的教學中努力改進這些錯誤,以便更好的適應教學,努力使自己的教學更上一層樓。
函數的奇偶性教案人教版篇四
1。了解函數的單調性和奇偶性的概念,掌握有關證明和判斷的基本方法。
(1)了解并區(qū)分增函數,減函數,單調性,單調區(qū)間,奇函數,偶函數等概念。
(2)能從數和形兩個角度認識單調性和奇偶性。
(3)能借助圖象判斷一些函數的單調性,能利用定義證明某些函數的單調性;能用定義判斷某些函數的奇偶性,并能利用奇偶性簡化一些函數圖象的繪制過程。
2。通過函數單調性的證明,提高學生在代數方面的推理論證能力;通過函數奇偶性概念的形成過程,培養(yǎng)學生的觀察,歸納,抽象的能力,同時滲透數形結合,從特殊到一般的數學思想。
3。通過對函數單調性和奇偶性的理論研究,增學生對數學美的體驗,培養(yǎng)樂于求索的精神,形成科學,嚴謹的研究態(tài)度。
一、知識結構。
(1)函數單調性的概念。包括增函數、減函數的定義,單調區(qū)間的概念函數的單調性的判定方法,函數單調性與函數圖像的關系。
(2)函數奇偶性的概念。包括奇函數、偶函數的定義,函數奇偶性的判定方法,奇函數、偶函數的圖像。
二、重點難點分析。
(1)本節(jié)教學的重點是函數的單調性,奇偶性概念的形成與認識。教學的難點是領悟函數單調性,奇偶性的本質,掌握單調性的證明。
(2)函數的單調性這一性質學生在初中所學函數中曾經了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現在要求把它上升到理論的高度,用準確的數學語言去刻畫它。這種由形到數的翻譯,從直觀到抽象的轉變對高一的學生來說是比較困難的,因此要在概念的形成上重點下功夫。單調性的證明是學生在函數內容中首次接觸到的代數論證內容,學生在代數論證推理方面的能力是比較弱的,許多學生甚至還搞不清什么是代數證明,也沒有意識到它的重要性,所以單調性的證明自然就是教學中的'難點。
三、教法建議。
(1)函數單調性概念引入時,可以先從學生熟悉的一次函數,,二次函數。反比例函數圖象出發(fā),回憶圖象的增減性,從這點感性認識出發(fā),通過問題逐步向抽象的定義靠攏。如可以設計這樣的問題:圖象怎么就升上去了?可以從點的坐標的角度,也可以從自變量與函數值的關系的角度來解釋,引導學生發(fā)現自變量與函數值的的變化規(guī)律,再把這種規(guī)律用數學語言表示出來。在這個過程當中對一些關鍵的詞語(某個區(qū)間,任意,都有)的理解與必要性的認識就可以融入其中,將概念的形成與認識結合起來。
(2)函數單調性證明的步驟是嚴格規(guī)定的,要讓學生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時,讓學生明確變換的目標,到什么程度就可以斷號,在例題的選擇上應有不同的變換目標為選題的標準,以便幫助學生總結規(guī)律。
函數的奇偶性概念引入時,可設計一個課件,以的圖象為例,讓自變量互為相反數,觀察對應的函數值的變化規(guī)律,先從具體數值開始,逐漸讓在數軸上動起來,觀察任意性,再讓學生把看到的用數學表達式寫出來。經歷了這樣的過程,再得到等式時,就比較容易體會它代表的是無數多個等式,是個恒等式。關于定義域關于原點對稱的問題,也可借助課件將函數圖象進行多次改動,幫助學生發(fā)現定義域的對稱性,同時還可以借助圖象(如)說明定義域關于原點對稱只是函數具備奇偶性的必要條件而不是充分條件。
函數的奇偶性教案人教版篇五
本節(jié)課的主要學習內容是理解函數的奇偶性的概念,掌握利用定義和圖象判斷函數的奇偶性,以及函數奇偶性的幾個性質。
函數的奇偶性是函數中的一個重要內容,它不僅與現實生活中的對稱性密切相關,而且為后面學習冪函數、指數函數、對數函數的性質打下了堅實的基礎。因此本節(jié)課的內容是至關重要的,它對知識起到了承上啟下的作用。
(二)重點、難點。
1、本課時的教學重點是:函數的奇偶性及其幾何意義。
2、本課時的教學難點是:判斷函數的奇偶性的方法與格式。
(三)教學目標。
1、知識與技能:使學生理解函數奇偶性的概念,初步掌握判斷函數奇偶性的方法;
2、方法與過程:引導學生通過觀察、歸納、抽象、概括,自主建構奇函數、偶函數等概念;能運用函數奇偶性概念解決簡單的問題;使學生領會數形結合思想方法,培養(yǎng)學生發(fā)現問題、分析問題和解決問題的能力。
3、情感態(tài)度與價值觀:在奇偶性概念形成過程中,使學生體會數學的科學價值和應用價值,培養(yǎng)學生善于觀察、勇于探索的良好習慣和嚴謹的科學態(tài)度。
二、教法、學法分析。
1、教學方法:啟發(fā)引導式。
結合本章實際,教材簡單易懂,重在應用、解決實際問題,本節(jié)課準備采用“引導發(fā)現法”進行教學,引導發(fā)現法可激發(fā)學生學習的積極性和創(chuàng)造性,分享到探索知識的方法和樂趣,在解決問題的過程中,體驗成功與失敗,從而逐步建立完善的認知結構。使用多媒體輔助教學,突出了知識的產生過程,又增加了課堂的趣味性。
2、學法指導:引導學生采用自主探索與互相協(xié)作相結合的學習方式。讓每一位學生都能參與研究,并最終學會學習。
三、教輔手段。
四、教學過程。
為了達到預期的教學目標,我對整個教學過程進行了系統(tǒng)地規(guī)劃,設計了五個主要的教學程序:設疑導入,觀圖激趣。指導觀察,形成概念。學生探索、發(fā)展思維。知識應用,鞏固提高。歸納小結,布置作業(yè)。
(一)設疑導入,觀圖激趣。
讓學生感受生活中的美:展示圖片蝴蝶,雪花。
學生舉例生活中的對稱現象。
折紙:取一張紙,在其上畫出直角坐標系,并在第一象限任畫一函數的圖象,以y軸為折痕將紙對折,并在紙的背面(即第二象限)畫出第一象限內圖形的痕跡,然后將紙展開,觀察坐標系中的圖形。
問題:將第一象限和第二象限的圖形看成一個整體,觀察圖象上相應的點的坐標有什么特點。
以y軸為折痕將紙對折,然后以x軸為折痕將紙對折,在紙的背面(即第三象限)畫出第二象限內圖象的.痕跡,然后將紙展開。觀察坐標喜之中的圖形:
問題:將第一象限和第三象限的圖形看成一個整體,觀察圖象上相應的點的坐標有什么特點。
(二)指導觀察,形成概念。
這節(jié)課我們首先從兩類對稱:軸對稱和中心對稱展開研究。
思考:請同學們作出函數y=x2的圖象,并觀察這兩個函數圖象的對稱性如何。
給出圖象,然后問學生初中是怎樣判斷圖象關于軸對稱呢此時提出研究方向:今天我們將從數值角度研究圖象的這種特征體現在自變量與函數值之間有何規(guī)律。
借助課件演示,學生會回答自變量互為相反數,函數值相等。接著再讓學生分別計算f(1),f(-1),f(2),f(-2),學生很快會得到f(-1)=f(1),f(-2)=f(2),進而提出在定義域內是否對所有的x,都有類似的情況借助課件演示,學生會得出結論,f(-x)=f(x),從而引導學生先把它們具體化,再用數學符號表示。
思考:由于對任一x,必須有一-x與之對應,因此函數的定義域有什么特征。
引導學生發(fā)現函數的定義域一定關于原點對稱。根據以上特點,請學生用完整的語言敘述定義,同時給出板書:
(1)函數f(x)的定義域為a,且關于原點對稱,如果有f(-x)=f(x),則稱f(x)為偶函數。
提出新問題:函數圖象關于原點對稱,它的自變量與函數值之間的數值規(guī)律是什么呢。
學生可類比剛才的方法,很快得出結論,再讓學生給出奇函數的定義:
強調注意點:“定義域關于原點對稱”的條件必不可少。
接著再探究函數奇偶性的判斷方法,根據前面所授知識,歸納步驟:
(1)求出函數的定義域,并判斷是否關于原點對稱。
(2)驗證f(-x)=f(x)或f(-x)=-f(x)3)得出結論。
給出例題,加深理解:
例1,利用定義,判斷下列函數的奇偶性:
(1)f(x)=x2+1。
(2)f(x)=x3-x。
(3)f(x)=x4-3x2-1。
(4)f(x)=1/x3+1。
提出新問題:在例1中的函數中有奇函數,也有偶函數,但象(4)這樣的是什么函數呢?
得到注意點:既不是奇函數也不是偶函數的稱為非奇非偶函數。
接著進行課堂鞏固,強調非奇非偶函數的原因有兩種,一是定義域不關于原點對稱,二是定義域雖關于原點對稱,但不滿足f(-x)=f(x)或f(-x)=-f(x)。
然后根據前面引入知識中,繼續(xù)探究函數奇偶性的第二種判斷方法:圖象法:
給出例2:書p63例3,再進行當堂鞏固,
1。書p65ex2。
y=x4;y=x-1;y=x;y=x-2;y=x5;y=x-3。
歸納:對形如:y=xn的函數,若n為偶數則它為偶函數,若n為奇數,則它為奇函數。
(三)學生探索,發(fā)展思維。
思考:1,函數y=2是什么函數。
2,函數y=0有是什么函數。
(四)布置作業(yè):課本p39習題1、3(a組)第6題,b組第3。
五、板書設計。
函數的奇偶性教案人教版篇六
本節(jié)課的教學模式是采用循序漸進,由簡單的問題引入,然后在教師的引導下,探索結論,最后,在教師的指導下,對所學的實際結論進行學生的實際應用。
一、這種教學模式的教學程序是:
(一)實際練習引入課題,并能去發(fā)現生活中的相關信息,引起學生的興趣。
(二)看圖,具體引入函數進行觀察探索,包括圖像觀察,自變量的變化,函數值的變化規(guī)律。
(三)明確這是函數的一種性質,明確定義,并強調定義中的注意事項,怎樣理解定義中的規(guī)定。
(四)教師具體以例題進行示范,學生們領會對函數奇偶性的`認識,并怎樣進行判斷。
(五)同學們在領會的基礎上,進行實際訓練,達到對知識的理解和應用。
二、這種教學模式的優(yōu)勢是:循序漸進,學生能夠實際參與,在教學中體現和諧,教師的導和學生的練保證教學的效果。
這種教學模式的缺點與解決方法是:
還缺乏對學生更高層次的參與的調動,尤其是職業(yè)中學中部分在初中已經放棄學習的同學的參與問題。對配套練習要進一步細化,要對每一個知識點都要精心設計相應知識點的訓練,圖像的認識上,要加大同學們對生活的感知和相關軟件的使用,并能在電腦上實際體驗函數圖像的對稱情況。
函數的奇偶性教案人教版篇七
今天我說課的課題是高中數學人教a版必修一第一章第三節(jié)函數的基本性質中的函數的奇偶性,下面我將從教材分析,教法、學法分析,教學過程,教輔手段,板書設計等方面對本課時的教學設計進行說明。
(一)教材特點、教材的地位與作用。
本節(jié)課的主要學習內容是理解函數的奇偶性的概念,掌握利用定義和圖象判斷函數的奇偶性,以及函數奇偶性的幾個性質。
函數的奇偶性是函數中的一個重要內容,它不僅與現實生活中的對稱性密切相關,而且為后面學習冪函數、指數函數、對數函數的性質打下了堅實的基礎。因此本節(jié)課的內容是至關重要的,它對知識起到了承上啟下的作用。
(二)重點、難點。
1、本課時的教學重點是:函數的奇偶性及其幾何意義。
2、本課時的教學難點是:判斷函數的奇偶性的方法與格式。
(三)教學目標。
1、知識與技能:使學生理解函數奇偶性的概念,初步掌握判斷函數奇偶性的方法;
2、方法與過程:引導學生通過觀察、歸納、抽象、概括,自主建構奇函數、偶函數等概念;能運用函數奇偶性概念解決簡單的問題;使學生領會數形結合思想方法,培養(yǎng)學生發(fā)現問題、分析問題和解決問題的能力。
3、情感態(tài)度與價值觀:在奇偶性概念形成過程中,使學生體會數學的科學價值和應用價值,培養(yǎng)學生善于觀察、勇于探索的良好習慣和嚴謹的科學態(tài)度。
1.教學方法:啟發(fā)引導式。
結合本章實際,教材簡單易懂,重在應用、解決實際問題,本節(jié)課準備采用"引導發(fā)現法"進行教學,引導發(fā)現法可激發(fā)學生學習的積極性和創(chuàng)造性,分享到探索知識的方法和樂趣,在解決問題的過程中,體驗成功與失敗,從而逐步建立完善的認知結構.使用多媒體輔助教學,突出了知識的產生過程,又增加了課堂的趣味性.
2.學法指導:引導學生采用自主探索與互相協(xié)作相結合的學習方式。讓每一位學生都能參與研究,并最終學會學習.
為了達到預期的教學目標,我對整個教學過程進行了系統(tǒng)地規(guī)劃,設計了五個主要的教學程序:設疑導入,觀圖激趣。指導觀察,形成概念。學生探索、發(fā)展思維。知識應用,鞏固提高。歸納小結,布置作業(yè)。
(一)設疑導入,觀圖激趣。
讓學生感受生活中的美:展示圖片蝴蝶,雪花。
學生舉例生活中的對稱現象。
折紙:取一張紙,在其上畫出直角坐標系,并在第一象限任畫一函數的圖象,以y軸為折痕將紙對折,并在紙的背面(即第二象限)畫出第一象限內圖形的痕跡,然后將紙展開,觀察坐標系中的'圖形。
問題:將第一象限和第二象限的圖形看成一個整體,觀察圖象上相應的點的坐標有什么特點。
以y軸為折痕將紙對折,然后以x軸為折痕將紙對折,在紙的背面(即第三象限)畫出第二象限內圖象的痕跡,然后將紙展開.觀察坐標喜之中的圖形:
問題:將第一象限和第三象限的圖形看成一個整體,觀察圖象上相應的點的坐標有什么特點。
(二)指導觀察,形成概念。
這節(jié)課我們首先從兩類對稱:軸對稱和中心對稱展開研究.
思考:請同學們作出函數y=x2的圖象,并觀察這兩個函數圖象的對稱性如何。
借助課件演示,學生會回答自變量互為相反數,函數值相等.接著再讓學生分別計算f(1),f(-1),f(2),f(-2),學生很快會得到f(-1)=f(1),f(-2)=f(2),進而提出在定義域內是否對所有的x,都有類似的情況借助課件演示,學生會得出結論,f(-x)=f(x),從而引導學生先把它們具體化,再用數學符號表示.
思考:由于對任一x,必須有一-x與之對應,因此函數的定義域有什么特征。
引導學生發(fā)現函數的定義域一定關于原點對稱.根據以上特點,請學生用完整的語言敘述定義,同時給出板書:
提出新問題:函數圖象關于原點對稱,它的自變量與函數值之間的數值規(guī)律是什么呢(同時打出y=1/x的圖象讓學生觀察研究)。
學生可類比剛才的方法,很快得出結論,再讓學生給出奇函數的定義:
強調注意點:"定義域關于原點對稱"的條件必不可少.
接著再探究函數奇偶性的判斷方法,根據前面所授知識,歸納步驟:
(1)求出函數的定義域,并判斷是否關于原點對稱。
(2)驗證f(-x)=f(x)或f(-x)=-f(x)3)得出結論。
給出例題,加深理解:
例1,利用定義,判斷下列函數的奇偶性:
(1)f(x)=x2+1。
(2)f(x)=x3-x。
(3)f(x)=x4-3x2-1。
(4)f(x)=1/x3+1。
提出新問題:在例1中的函數中有奇函數,也有偶函數,但象(4)這樣的是什么函數呢?
得到注意點:既不是奇函數也不是偶函數的稱為非奇非偶函數。
接著進行課堂鞏固,強調非奇非偶函數的原因有兩種,一是定義域不關于原點對稱,二是定義域雖關于原點對稱,但不滿足f(-x)=f(x)或f(-x)=-f(x)。
然后根據前面引入知識中,繼續(xù)探究函數奇偶性的第二種判斷方法:圖象法:
函數f(x)是奇函數=圖象關于原點對稱。
函數f(x)是偶函數=圖象關于y軸對稱。
給出例2:書p63例3,再進行當堂鞏固,
1,書p65ex2。
y=x4;y=x-1;y=x;y=x-2;y=x5;y=x-3。
歸納:對形如:y=xn的函數,若n為偶數則它為偶函數,若n為奇數,則它為奇函數。
(三)學生探索,發(fā)展思維。
思考:
2,函數y=0有是什么函數。
(四)布置作業(yè)。
課本p39習題1.3(a組)第6題,b組第3。
函數的奇偶性教案人教版篇八
《函數的奇偶性》這節(jié)課采用的是我校712課堂模式,主要給老師們展示教學環(huán)節(jié)。
在《函數的奇偶性》這節(jié)課教學過程中,我讓學生通過圖象直觀獲得函數奇偶性的認識,然后利用表格探究數量變化特征,通過代數運算,驗證發(fā)現的數量特征對定義域中的”任意”值都成立,最后在這個基礎上建立奇偶函數的概念。
在本節(jié)課的教學中我還要注意到以下幾個方面的問題:
1、幻燈片的設計。
幻燈片的使用在一定程度上很好的輔助我的教學活動,但是數學學科中應注意到幻燈片的設計,在出現某些字或者數字時應直接出現,而不要設計成動畫的形式,以免學生分散注意力。
2、學生練習。
在教學過程中應多注意學生的活動,由單一的問答式轉化為多方位的考察,可以采用學生板演或者把學生練習投影到屏幕上讓全班學生糾正等方式,更好的考察學生掌握情況。
3、例題書寫。
在數學教學中我們都要對例題的解題過程進行講解,并書寫解題過程,以便讓學生更好的模仿。在書寫解題過程或定義時要認真板書,保證字跡清楚,便于學生仿照。
4、語言組織。
在講授過程中還要注意到說話語速,語言組織等講授技巧,應該用平緩的語氣講授,語言描述要簡練易懂,不能拖泥帶水。
5、教學環(huán)節(jié)的完整。
在授課過程中要注意到教學環(huán)節(jié)設計,我們的教學過程有復習引入、講授新課、例題講解、學生練習、課時小結、布置作業(yè)等幾個重要的環(huán)節(jié),有時候可能因為緊張等各種因素往往忽略小細節(jié),遺漏其中的某一環(huán)節(jié),造成教學設計不完善。在以后的教學過程中要注意這些環(huán)節(jié)。
6、教案設計的完整。
在本節(jié)課教學中我因為考慮到有幻燈片而沒有在教案中設計“板書設計”這個環(huán)節(jié),但是在授課過程中又用到了板書,所以一定要設計“板書設計”,以保證教案的完整性。
以上是我對這節(jié)課以后的教學反思,還有很多地方做的還不完善,我要在以后的教學中努力改進這些錯誤,以便更好的適應教學,努力使自己的教學更上一層樓。
函數的奇偶性教案人教版篇九
【知識目標】:使學生從形與數兩方面理解函數單調性的概念,學會利用函數圖像理解和研究函數的性質,初步掌握利用函數圖象和單調性定義判斷、證明函數單調性的方法.
【能力目標】通過對函數單調性定義的探究,滲透數形結合數學思想方法,培養(yǎng)學生觀察、歸納、抽象的能力和語言表達能力;通過對函數單調性的證明,提高學生的推理論證能力.
【教學難點】歸納抽象函數單調性的定義以及根據定義證明函數的單調性.由于判斷或證明函數的單調性,常常要綜合運用一些知識(如不等式、因式分解、配方及數形結合的思想方法等)所以判斷或證明函數的單調性是本節(jié)課的難點.
【教材分析】函數的單調性是函數的重要性質之一,它把自變量的變化方向和函數值的變化方向定性的聯(lián)系在一起,所以本節(jié)課在教材中的作用如下(1)函數的單調性起著承前啟后的作用。一方面,初中數學的許多內容在解決函數的某些問題中得到了充分運用,函數的單調性與前一節(jié)內容函數的概念和圖像知識的延續(xù)有密切的聯(lián)系;函數的單調性一節(jié)中的知識是它和后面的函數奇偶性,合稱為函數的簡單性質,是今后研究指數函數、對數函數、冪函數及其他函數單調性的理論基礎。
(2)函數的單調性是培養(yǎng)學生數學能力的良好題材,這節(jié)課通過對具體函數圖像的歸納和抽象,概括出函數在某個區(qū)間上是增函數或減函數的準確定義,明確指出函數的增減性是相對于某個區(qū)間來說的。教材中判斷函數的增減性,既有從圖像上進行觀察的直觀方法,又有根據其定義進行邏輯推理的嚴格證明方法,最后將兩種方法統(tǒng)一起來,形成根據觀察圖像得出猜想結論,進而用推理證明猜想的體系。同時還要綜合利用前面的知識解決函數單調性的一些問題,有利于學生數學能力的提高。
(3)函數的單調性有著廣泛的實際應用。在解決函數值域、定義域、不等式、比較兩數大小等具體問題中均需用到函數的單調性;同時在這一節(jié)中利用函數圖象來研究函數性質的'數形結合思想將貫穿于我們整個數學教學。因此“函數的單調性”在中學數學內容里占有十分重要的地位。它體現了函數的變化趨勢和變化特點,在利用函數觀點解決問題中起著十分重要的作用,為培養(yǎng)創(chuàng)新意識和實踐能力提供了重要方式和途徑。
【學情分析】從學生的知識上看,學生已經學過一次函數,二次函數,反比例函數等簡單函數,函數的概念及函數的表示,能畫出一些簡單函數的圖像,從圖像的直觀變化,學生能粗略的得到函數增減性的定義,所以引入函數的單調性的定義應該是順理成章的。從學生現有的學習能力看,通過初中對函數的認識與實驗,學生已具備了一定的觀察事物的能力,積累了一些研究問題的經驗,在一定程度上具備了抽象、概括的能力和語言轉換能力。從學生的心理學習心理上看,學生頭腦中雖有一些函數性質的實物實例,但并沒有上升為“概念”的水平,如何“定性”“定量”地描述函數性質是學生關注的問題,也是學習的重點問題。函數的單調性是學生從已經學習的函數中比較容易發(fā)現的一個性質,學生也容易產生共鳴,通過對比產生頓悟,渴望獲得這種學習的積極心向是學生學好本節(jié)課的情感基礎。但是如何運用數學符號將自然語言的描述提升為形式化的定義,學生接受起來比較困難?在教學中要多引導,讓學生真正的理解函數單調性的定義。
【教學方法】教師是教學的主體、學生是學習的主體,通過雙主體的教學模式方法:啟發(fā)式教學法——以設問和疑問層層引導,激發(fā)學生,啟發(fā)學生積極思考,逐步從常識走向科學,將感性認識提升到理性認識,培養(yǎng)和發(fā)展學生的抽象思維能力。探究教學法——引導學生去疑;鼓勵學生去探;激勵學生去思,培養(yǎng)學生的創(chuàng)造性思維和批判精神。合作學習——通過組織小組討論達到探究、歸納的目的?!窘虒W手段】計算機、投影儀.
【教學過程】一、創(chuàng)設情境,引入課題(利用電腦展示)1.如圖為某市一天內的氣溫變化圖:(1)觀察這個氣溫變化圖,說出氣溫在這一天內的變化情況.(2)怎樣用數學語言刻畫在這一天內“隨著時間的增大,氣溫逐漸升高或下降”這一特征?引導學生識圖,捕捉信息,啟發(fā)學生思考.問題:觀察圖形,能得到什么信息?預案:(1)當天的最高溫度、最低溫度以及何時達到;(2)在某時刻的溫度;(3)某些時段溫度升高,某些時段溫度降低.在生活中,我們關心很多數據的變化規(guī)律,了解這些數據的變化規(guī)律,是很有幫助的.問題:還能舉出生活中其他的數據變化情況嗎?預案:股票價格、水位變化、心電圖等等春蘭股份線性圖.水位變化圖歸納:用函數觀點看,其實就是隨著自變量的變化,函數值是變大還是變小.
〖設計意圖〗由生活情境引入新課,激發(fā)興趣.二、歸納探索,形成概念對于自變量變化時,函數值是變大還是變小,初中同學們就有了一定的認識,但是沒有嚴格的定義,今天我們的任務首先就是建立函數單調性的嚴格定義.1.借助圖象,直觀感知問題1:分別作出函數的圖象,并且觀察自變量變化時,函數值有什么變化規(guī)律?(學生自己動手畫,然后電腦顯示下圖)預案:生:函數在整個定義域內y隨x的增大而增大;函數在整個定義域內y隨x的增大而減小.師:函數的圖像變化規(guī)律生:在y軸的的左側y隨x的增大而減小.在y軸的的右側y隨x的增大而增大。師:我們學過區(qū)間的表示方法,如何用區(qū)間的概念來表述圖像的變化規(guī)律生:在上y隨x的增大而增大,在上y隨x的增大而減小.師:這樣表述就比較嚴密了,很好。由上面的討論可知,函數的單調性與自變量的范圍有關,一個函數并不一定在整個正義域內是單調函數,但在定義城的某個子集上可以是單調函數。(3)函數的圖像變化規(guī)律如何。
生:(1)定義域中的減函數。(2)在上y隨x的增大而減小,在上y隨x的增大而減小.師:對于兩種答案,哪一種是正確的,為什么?學生分組討論。從定義域,圖像的角度考慮,也可以舉反例引導學生進行分類描述(增函數、減函數).并引導學生用區(qū)間明確描述函數的單調性從而讓學生明確函數的單調性是對定義域內某個區(qū)間而言的,是函數的局部性質.
問題2:能不能根據自己的理解說說什么是增函數、減函數?預案:如果函數在某個區(qū)間上隨自變量x的增大,y也越來越大,我們說函數在該區(qū)間上為增函數;如果函數在某個區(qū)間上隨自變量x的增大,y越來越小,我們說函數在該區(qū)間上為減函數.教師指出:這種認識是從圖象的角度得到的,是對函數單調性的直觀,描述性的認識.
〖設計意圖〗從圖象直觀感知函數單調性,完成對函數單調性的第一次認識.2.探究規(guī)律,理性認識問題1:下圖是函數的圖象,能說出這個函數分別在哪個區(qū)間為增函數和減函數嗎?(電腦顯示,學生分組討論)學生的困難是難以確定分界點的確切位置.通過討論,使學生感受到用函數圖象判斷函數單調性雖然比較直觀,但有時不夠精確,需要結合解析式進行嚴密化、精確化的研究.
〖設計意圖〗使學生體會到用數量大小關系嚴格表述函數單調性的必要性.問題2:如何從解析式的角度說明在為增函數?預案:生:在給定區(qū)間內取兩個數,例如1和2,因為1222,所以在為增函數.生:僅僅兩個數的大小關系不能說明函數y=x2在區(qū)間[0,+∞)上為單調遞增函數,應該舉出無數個。由于很多學生不能分清“無數”和“所有”的區(qū)別,所以許多學生對學生2的說法表示贊同。
生:函數)無數個如(2)中的實數,顯然f(x)也隨x的增大而增大,是不是也可以說函數在區(qū)間上是增函數?可這與圖象矛盾啊?師:“無數個”能不能代表“所有”呢?比如:2、3、4、5……有無數個自然數都比大,那我們能不能說所有的自然數都比大呢?所以具體值取得再多,也不能代表所有的,思考如何體現區(qū)間上的所有值。引導學生利用字母表示數。生:任取且,因為,即,所以在為增函數.舊教材的定義在這里就可以歸納出來,但是人教b版新教材使用了自變量的增量和函數值的增量來表述,并為以后學習利用導數判斷函數的單調性做準備,所以需進一步引導學生利用增量來定義函數的單調性。
(5)仿(4)且,由圖象可知,即給自變量一個增量,,函數值的增量所以在為增函數。對于學生錯誤的回答,引導學生分別用圖形語言和文字語言進行辨析,使學生認識到問題的根源在于自變量不可能被窮舉,從而引導學生在給定的區(qū)間內任意取兩個自變量進一步尋求自變量的增量與函數值的增量之間的變化規(guī)律,判斷函數單調性。注意這里的“都有”是對應于“任意”的。
〖設計意圖〗把對單調性的認識由感性上升到理性認識的高度,完成對概念的第二次認識.事實上也給出了證明單調性的方法,為證明單調性做好鋪墊.3.抽象思維,形成概念問題:你能用準確的數學符號語言表述出增函數的定義嗎?師生共同探究,得出增函數嚴格的定義,然后學生類比得出減函數的定義.
(1)板書定義設函數的定義域為a,區(qū)間ma,如果取區(qū)間m中的任意兩個值,當改變量時,都有,那么就稱函數在區(qū)間m上是增函數,如圖(1)當改變量時,都有,那么就稱函數在區(qū)間m上是減函數,如圖(2)。
函數的奇偶性教案人教版篇十
教材分析:
本章包括銳角三角函數的概念(主要是正弦、余弦和正切的概念),以及利用銳角三角函數解直角三角形等內容。銳角三角函數為解直角三角形提供了有效的工具,解直角三角形在實際當中有著廣泛的應用,這也為銳角三角函數提供了與實際聯(lián)系的機會。研究銳角三角函數的直接基礎是相似三角形的一些結論,解直角三角形主要依賴銳角三角函數和勾股定理等內容,因此相似三角形和勾股定理等是學習本章的直接基礎。
本章內容與已學'相似三角形''勾股定理'等內容聯(lián)系緊密,并為高中數學中三角函數等知識的學習作好準備。
學情分析:
銳角三角函數的概念既是本章的難點,也是學習本章的關鍵。難點在于,銳角三角函數的概念反映了角度與數值之間對應的函數關系,這種角與數之間的對應關系,以及用含有幾個字母的符號sina、cosa、tana表示函數等,學生過去沒有接觸過,因此對學生來講有一定的難度。至于關鍵,因為只有正確掌握了銳角三角函數的概念,才能真正理解直角三角形中邊、角之間的關系,從而才能利用這些關系解直角三角形。
第一課時。
教學目標:
知識與技能:
1、通過探究使學生知道當直角三角形的銳角固定時,它的對邊與斜邊的比值都固定(即正弦值不變)這一事實。
2、能根據正弦概念正確進行計算。
3、經歷當直角三角形的銳角固定時,它的對邊與斜邊的比值是固定值這一事實,發(fā)展學生的形象思維,培養(yǎng)學生由特殊到一般的演繹推理能力。
過程與方法:
通過銳角三角函數的學習,進一步認識函數,體會函數的變化與對應的思想,逐步培養(yǎng)學生會觀察、比較、分析、概括等邏輯思維能力.
情感態(tài)度與價值觀:
引導學生探索、發(fā)現,以培養(yǎng)學生獨立思考、勇于創(chuàng)新的精神和良好的學習習慣.
重難點:
1.重點:理解認識正弦(sina)概念,通過探究使學生知道當銳角固定時,它的對邊與斜邊的比值是固定值這一事實.
2.難點與關鍵:引導學生比較、分析并得出:對任意銳角,它的對邊與斜邊的比值是固定值的事實.
教學過程:
一、復習舊知、引入新課。
【引入】操場里有一個旗桿,老師讓小明去測量旗桿高度。(演示學校操場上的國旗圖片)。
小明站在離旗桿底部10米遠處,目測旗桿的頂部,視線與水平線的夾角為34度,并已知目高為1米.然后他很快就算出旗桿的高度了。
你想知道小明怎樣算出的嗎?
下面我們大家一起來學習銳角三角函數中的第一種:銳角的正弦。
二、探索新知、分類應用。
【活動一】問題的引入。
函數的奇偶性教案人教版篇十一
11.如圖,圖中的曲線表示小華星期天騎自行車外出離家的距離與時間的關系,小華八點離開家,十四點回到家,根據這個曲線圖,請回答下列問題:
(1)到達離家最遠的地方是幾點?離家多遠?
(2)何時開始第一次休息?休息多長時間?
(3)小華在往返全程中,在什么時間范圍內平均速度最快?最快速度是多少?
(4)小華何時離家21千米?(寫出計算過程)。
函數的奇偶性教案人教版篇十二
理解函數的奇偶性及其幾何意義。
【過程與方法】。
利用指數函數的圖像和性質,及單調性來解決問題。
【情感態(tài)度與價值觀】。
體會指數函數是一類重要的函數模型,激發(fā)學生學習數學的興趣。
【重點】。
【難點】。
(一)導入新課。
取一張紙,在其上畫出平面直角坐標系,并在第一象限任畫一可作為函數圖象的圖形,然后按如下操作并回答相應問題:
答案:(1)可以作為某個函數y=f(x)的圖象,并且它的圖象關于y軸對稱;
(二)新課教學。
(1)偶函數(evenfunction)。
(學生活動):仿照偶函數的定義給出奇函數的定義。
(2)奇函數(oddfunction)。
注意:
1函數是奇函數或是偶函數稱為函數的奇偶性,函數的奇偶性是函數的整體性質;
2由函數的奇偶性定義可知,函數具有奇偶性的一個必要條件是,對于定義域內的任意一個x,則-x也一定是定義域內的一個自變量(即定義域關于原點對稱)。
2、具有奇偶性的函數的圖象的特征。
偶函數的圖象關于y軸對稱;
奇函數的圖象關于原點對稱。
3、典型例題。
例1.(教材p36例3)應用函數奇偶性定義說明兩個觀察思考中的四個函數的奇偶性(本例由學生討論,師生共同總結具體方法步驟)。
解:(略)。
總結:利用定義判斷函數奇偶性的格式步驟:
1首先確定函數的定義域,并判斷其定義域是否關于原點對稱;
2確定f(-x)與f(x)的關系;
3作出相應結論:
若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數;
若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數。
(三)鞏固提高。
1、教材p46習題1.3b組每1題。
解:(略)。
(教材p41思考題)。
規(guī)律:
偶函數的圖象關于y軸對稱;
奇函數的圖象關于原點對稱。
說明:這也可以作為判斷函數奇偶性的依據。
(四)小結作業(yè)。
課本p46習題1.3(a組)第9、10題,b組第2題。
三、規(guī)律:
偶函數的圖象關于y軸對稱;
奇函數的`圖象關于原點對稱。
函數的奇偶性教案人教版篇十三
本課的內容是人教版八年級上冊第14章第2節(jié)第2課時,就是課本115到116頁的內容。在許多方面與正比例函數的圖象和性質有著緊密聯(lián)系,是本章中的重點。本節(jié)課安排在正比例函數的圖象與一次函數的概念之后。通過這一節(jié)課的學習使學生掌握一次函數圖象的畫法和一次函數的性質。它既是正比例函數的圖象和性質的拓展,又是今后繼續(xù)學習“用函數觀點看方程(組)與不等式”的基礎,在本章中起著承上啟下的作用。本節(jié)教學內容還是學生進一步學習“數形結合”這一數學思想方法的很好素材。作為一種數學模型,一次函數在日常生活中也有著極其廣泛的應用。
(二)說教學目標
基于以上的教材分析,結合新課程標準的新理念,確立如下教學目標:
知識技能:
1、理解直線y=kx+b與y=kx之間的位置關系;
2、會利用兩個合適的點畫出一次函數的圖象;
3、掌握一次函數的性質.
數學思考:
2、通過一次函數的圖象總結函數的性質,體驗數形結合法的應用,培養(yǎng)推理及抽象思維能力。
情感態(tài)度:
2、在探究一次函數的圖象和性質的活動中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神。
(三)說教學重點難點
教學重點:一次函數的圖象和性質。
教學難點:由一次函數的圖象歸納得出一次函數的性質及對性質的理解。
函數的奇偶性教案人教版篇十四
教學目標:了解奇偶性的含義,會判斷函數的奇偶性。能證明一些簡單函數的奇偶性。弄清函數圖象對稱性與函數奇偶性的關系。
難點:函數圖象對稱性與函數奇偶性的關系。
一、復習引入。
(1)奇函數。
(2)偶函數。
(3)與圖象對稱性的關系。
(4)說明(定義域的要求)。
二、例題分析。
例1、判斷下列函數是否為偶函數或奇函數。
例2、證明函數在r上是奇函數。
三、隨堂練習。
1、函數()。
是奇函數但不是偶函數是偶函數但不是奇函數。
既是奇函數又是偶函數既不是奇函數又不是偶函數。
2、下列4個判斷中,正確的是_______.
(1)既是奇函數又是偶函數;
(2)是奇函數;
(3)是偶函數;
(4)是非奇非偶函數。
3、函數的圖象是否關于某直線對稱?它是否為偶函數?
函數的奇偶性教案人教版篇十五
知識梳理:
1、軸對稱圖形:
2中心對稱圖形:
1、畫出函數,與的圖像;并觀察兩個函數圖像的對稱性。
2、求出,時的函數值,寫出。
結論:
(1)、強調定義中任意二字,奇偶性是函數在定義域上的整體性質。
(2)、奇函數偶函數的定義域關于原點對稱。
5、奇函數與偶函數圖像的對稱性:
如果一個函數是奇函數,則這個函數的圖像是以坐標原點為對稱中心的__________。反之,如果一個函數的圖像是以坐標原點為對稱中心的中心對稱圖形,則這個函數是___________。
如果一個函數是偶函數,則這個函數的圖像是以軸為對稱軸的__________。反之,如果一個函數的圖像是關于軸對稱,則這個函數是___________。
(1)(2)(3)。
(4)(5)。
練習:教材第49頁,練習a第1題。
總結:根據例題,你能給出用定義判斷函數奇偶性的步驟?
題型二:利用奇偶性求函數解析式。
例2:若f(x)是定義在r上的奇函數,當x0時,f(x)=x(1-x),求當時f(x)的解析式。
練習:若f(x)是定義在r上的奇函數,當x0時,f(x)=x|x-2|,求當x0時f(x)的解析式。
已知定義在實數集上的奇函數滿足:當x0時,,求的表達式。
題型三:利用奇偶性作函數圖像。
例3研究函數的性質并作出它的圖像。
練習:教材第49練習a第3,4,5題,練習b第1,2題。
當堂檢測。
1已知是定義在r上的奇函數,則(d)。
a.b.c.d.
2如果偶函數在區(qū)間上是減函數,且最大值為7,那么在區(qū)間上是(b)。
a.增函數且最小值為-7b.增函數且最大值為7。
c.減函數且最小值為-7d.減函數且最大值為7。
3函數是定義在區(qū)間上的偶函數,且,則下列各式一定成立的是(c)。
a.b.c.d.
4已知函數為奇函數,若,則-1。
5若是偶函數,則的單調增區(qū)間是。
6下列函數中不是偶函數的是(d)。
abcd。
7設f(x)是r上的偶函數,切在上單調遞減,則f(-2),f(-),f(3)的大小關系是(a)。
abf(-)f(-2)f(3)cf(-)。
8奇函數的圖像必經過點(c)。
a(a,f(-a))b(-a,f(a))c(-a,-f(a))d(a,f())。
9已知函數為偶函數,其圖像與x軸有四個交點,則方程f(x)=0的所有實根之和是(a)。
a0b1c2d4。
11若f(x)在上是奇函數,且f(3)_f(-1)。
12、解答題。
已知函數在區(qū)間d上是奇函數,函數在區(qū)間d上是偶函數,求證:是奇函數。
已知分段函數是奇函數,當時的解析式為,求這個函數在區(qū)間上的解析表達式。
函數的奇偶性教案人教版篇十六
正比例函數的概念.
2.內容解析。
一次函數是最基本的初等函數,是初中函數學習的重要內容,正比例函數是特殊的一次函數,也是初中學生接觸到的第一種函數,要通過對正比例函數內容的學習,為后續(xù)類比學習一般一次函數打好基礎,了解研究函數的基本套路和方法,積累研究一般一次函數乃至其他各種函數的基本經驗.
對正比例函數概念的學習,既要借助具體的函數進一步加深對函數概念的理解,即實際問題的兩個變量中,當一個變量變化時,另一個變量隨著它的變化而變化,而且對于這個變量的每一個確定的值,另一個變量都有唯一確定的值與之對應,這是理解正比例函數的核心;也要加強對正比例函數基本特征的認識,即根據實際問題構建的函數模型中,函數和自變量每一對對應值的比值是一定的,等于比例系數,反映在函數解析式上,這些函數都是常數與自變量的積的形式,這是正比例函數的基本特征.
本節(jié)課主要是通過對生活中大量實際問題的分析,寫出變量間的函數關系式,觀察比較概括出這些函數關系式具有的共同特征,根據共同特征抽象出正比例函數的基本模型,歸納得出正比例函數的概念,再用正比例函數的概念對具體函數進行辨析,對實際事例進行分析,根據已知條件寫出正比例函數的解析式.
基于以上分析,確定本節(jié)課的教學重點:正比例函數的概念.
二、目標和目標解析。
1.目標。
(1)經歷正比例函數概念的形成過程,理解正比例函數的概念;。
(2)能根據已知條件確定正比例函數的解析式,體會函數建模思想.
2.目標解析。
達成目標(1)的標志是:通過對實際問題的分析,知道自變量和對應函數成正比例的特征,能概括抽象出正比例函數的概念.
達成目標(2)的標志是:能根據實際問題中的已知條件確定變量間的正比例函數關系式,將實際問題抽象為函數模型,體會函數建模思想.
三、教學問題診斷分析。
正比例函數是是初中學生接觸到的第一種初等函數,由于函數概念比較抽象,學生對函數基本概念理解未必深刻,在對實際問題進行分析過程中,需進一步強化對函數概念的理解:即實際問題的兩個變量中,當一個變量變化時,另一個變量隨著它的變化而變化,而且對于這個變量的每一個確定的值,另一個變量都有唯一確定的值與之對應;對正比例函數概念的理解關鍵是對正比例函數基本特征的認識,要通過大量實例分析,寫出變量間的函數關系式,觀察比較發(fā)現這些函數具有的共同特征,即函數與自變量的每一對對應值的比值一定,都等于自變量前的常數,這些函數都是常數與自變量的積的形式,再根據共同特征抽象出正比例函數的基本模型,歸納得出正比例函數的概念.對正比例函數基本特征的認識和正比例函數概念的抽象歸納過程學生有一定難度.
因此本節(jié)課的教學難點是:對正比例函數基本特征的認識和正比例函數概念的抽象歸納過程.
四、教學過程設計。
1.情境引入,初步感知。
引言。
上一節(jié)我們已經學習了關于函數的最基礎的知識,知道了變量與函數、函數的圖象及函數的三種表示方法,從這節(jié)課開始,我們將重點研究一種最基本的具體函數——一次函數,本節(jié)課先研究特殊的一次函數——正比例函數.
問題12011年開始運營的京滬高速鐵路全長1318km.設列車的平均速度為300km/h.考慮以下問題:
師生活動:教師引導學生分析問題中的數量關系,這是典型的行程問題,數量關系是學生熟悉的“路程=速度×時間”.
設計意圖:讓學生真切感受數學與實際的聯(lián)系,即數學理論來源于實際又服務于實際.幫助學生逐步提高將實際問題抽象為函數模型的能力,初步體會函數建模思想.
設計意圖:由于自變量t是列車運行時間,作為實際問題,自變量的取值是受限制的,應對其取值范圍作出說明.
對問題(2)的分析解答過程讓學生回答下列問題:
追問1這個問題中兩個變量之間的對應關系是函數關系嗎?如果是,試說明理由.
設計意圖:讓學生感受量與量之間的函數關系,體會函數關系蘊涵在實際問題中,激發(fā)學生探究興趣.對理由的說明學生可能有障礙,此時教師要引導學生回顧函數概念的學習過程,用函數的概念來回答:問題中的兩個變量,當其中的變量t變化時,另一個變量y隨著t的變化而變化,并且對于變量t的每一個?定的值,另一個變量y都有唯一確定的值與之對應.
追問2請你寫出y與t之間的函數解析式,并分析解析式在結構上是什么形式?
追問3對于自變量t和函數y的每一對對應值,y與t的比值,
函數的奇偶性教案人教版篇十七
【過程與方法】。
利用指數函數的圖像和性質,及單調性來解決問題。
【情感態(tài)度與價值觀】。
體會指數函數是一類重要的函數模型,激發(fā)學生學習數學的興趣。
【重點】。
【難點】。
(一)導入新課。
取一張紙,在其上畫出平面直角坐標系,并在第一象限任畫一可作為函數圖象的圖形,然后按如下操作并回答相應問題:
答案:(1)可以作為某個函數y=f(x)的圖象,并且它的圖象關于y軸對稱;。
(二)新課教學。
(1)偶函數(evenfunction)。
(學生活動):仿照偶函數的定義給出奇函數的定義。
(2)奇函數(oddfunction)。
注意:
1函數是奇函數或是偶函數稱為函數的奇偶性,函數的奇偶性是函數的整體性質;。
2由函數的奇偶性定義可知,函數具有奇偶性的一個必要條件是,對于定義域內的任意一個x,則-x也一定是定義域內的一個自變量(即定義域關于原點對稱)。
2.具有奇偶性的函數的圖象的特征。
偶函數的圖象關于y軸對稱;。
奇函數的圖象關于原點對稱。
3.典型例題。
例1.(教材p36例3)應用函數奇偶性定義說明兩個觀察思考中的四個函數的奇偶性(本例由學生討論,師生共同總結具體方法步驟)。
解:(略)。
總結:利用定義判斷函數奇偶性的格式步驟:
1首先確定函數的定義域,并判斷其定義域是否關于原點對稱;。
2確定f(-x)與f(x)的關系;。
3作出相應結論:
若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數;。
若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數。
(三)鞏固提高。
1.教材p46習題1.3b組每1題。
解:(略)。
(教材p41思考題)。
規(guī)律:
偶函數的圖象關于y軸對稱;。
奇函數的圖象關于原點對稱。
(四)小結作業(yè)。
課本p46習題1.3(a組)第9、10題,b組第2題。
三、規(guī)律:
偶函數的圖象關于y軸對稱;。
奇函數的`圖象關于原點對稱。
函數的奇偶性教案人教版篇十八
1、了解函數的單調性和奇偶性的概念,掌握有關證明和判斷的基本方法。
(1)了解并區(qū)分增函數,減函數,單調性,單調區(qū)間,奇函數,偶函數等概念。
(2)能從數和形兩個角度認識單調性和奇偶性。
(3)能借助圖象判斷一些函數的單調性,能利用定義證明某些函數的單調性;能用定義判斷某些函數的奇偶性,并能利用奇偶性簡化一些函數圖象的繪制過程。
2、通過函數單調性的證明,提高學生在代數方面的推理論證能力;通過函數奇偶性概念的形成過程,培養(yǎng)學生的觀察,歸納,抽象的能力,同時滲透數形結合,從特殊到一般的數學思想。
3、通過對函數單調性和奇偶性的理論研究,增學生對數學美的體驗,培養(yǎng)樂于求索的精神,形成科學,嚴謹的研究態(tài)度。
一、知識結構。
(1)函數單調性的概念。包括增函數、減函數的定義,單調區(qū)間的概念函數的單調性的判定方法,函數單調性與函數圖像的關系。
(2)函數奇偶性的概念。包括奇函數、偶函數的定義,函數奇偶性的判定方法,奇函數、偶函數的圖像。
二、重點難點分析。
(1)本節(jié)教學的重點是函數的單調性,奇偶性概念的形成與認識。教學的難點是領悟函數單調性,奇偶性的本質,掌握單調性的證明。
(2)函數的單調性這一性質學生在初中所學函數中曾經了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現在要求把它上升到理論的高度,用準確的數學語言去刻畫它。這種由形到數的翻譯,從直觀到抽象的轉變對高一的學生來說是比較困難的,因此要在概念的形成上重點下功夫。單調性的證明是學生在函數內容中首次接觸到的代數論證內容,學生在代數論證推理方面的能力是比較弱的,許多學生甚至還搞不清什么是代數證明,也沒有意識到它的重要性,所以單調性的證明自然就是教學中的難點。
三、教法建議。
(1)函數單調性概念引入時,可以先從學生熟悉的一次函數,,二次函數。反比例函數圖象出發(fā),回憶圖象的增減性,從這點感性認識出發(fā),通過問題逐步向抽象的定義靠攏。如可以設計這樣的問題:圖象怎么就升上去了?可以從點的坐標的角度,也可以從自變量與函數值的關系的角度來解釋,引導學生發(fā)現自變量與函數值的的變化規(guī)律,再把這種規(guī)律用數學語言表示出來。在這個過程當中對一些關鍵的詞語(某個區(qū)間,任意,都有)的理解與必要性的認識就可以融入其中,將概念的形成與認識結合起來。
(2)函數單調性證明的步驟是嚴格規(guī)定的,要讓學生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時,讓學生明確變換的目標,到什么程度就可以斷號,在例題的選擇上應有不同的變換目標為選題的標準,以便幫助學生總結規(guī)律。
函數的奇偶性概念引入時,可設計一個課件,以的圖象為例,讓自變量互為相反數,觀察對應的函數值的變化規(guī)律,先從具體數值開始,逐漸讓在數軸上動起來,觀察任意性,再讓學生把看到的用數學表達式寫出來。經歷了這樣的過程,再得到等式時,就比較容易體會它代表的是無數多個等式,是個恒等式。關于定義域關于原點對稱的問題,也可借助課件將函數圖象進行多次改動,幫助學生發(fā)現定義域的對稱性,同時還可以借助圖象(如)說明定義域關于原點對稱只是函數具備奇偶性的必要條件而不是充分條件。
函數的奇偶性教案人教版篇十九
活動1:觀察:
展示學生作圖作品(書p28例2),強調列表及圖象上的點的對應關系。
課前一兩分鐘對學生上交的作圖作品進行快速篩選,進量多選出一部分,課上多肯定多表揚多鼓勵。再從中選取一兩幅優(yōu)秀的作品上課為示例。
目的有四:
2、課上展示學生作品本身就是對學生完成作業(yè)情況的肯定,這又恰好給予了學生足夠的成功感和榮譽感,這便增加了學生學習數學的信心,樂意學習數學,激發(fā)了學習熱情,聽課更加專心。
3、學生經歷畫圖象進而感悟它的形狀及與正比例函數圖象的異同,為后面的發(fā)現規(guī)律作了準備。
4、令教師對學生有了更深層次的了解,能更好地把握課堂。
(二)嘗試探索、體驗新知:
活動1、觀察探索:
比較兩個函數圖象的相同點與不同點?
第一步;根據你的觀察結果回答問題。(書中原問題1、2、3)
目的:這樣在學生已經知道正比例函數的圖象是一條直線的基礎上,通過對應描點法來畫出了圖象,讓學生通過操作體驗感悟兩者之間的關系,問題變得直觀形象,學生們非常容易地完成平移。
目的:這樣通過啟發(fā)學生視覺見到的兩點,即與坐標軸的交點{(0,b),和(-b/k,0)兩點};此交點的求法(學生易從填表中的數據發(fā)現),再反之引導學生抓住這兩點畫圖象。就此題體驗一次函數圖象的兩點確定;同時也教會了學生用兩點法畫一次函數圖象。
活動2:知識再體驗:在同一直角坐標系中畫出四個k值不同的一次函數圖象,并觀察分析。
目的:進一步鞏固兩點作圖法,為探究一次函數的性質作準備。
活動3:展示“上下坡”材料,解決象限問題。(多媒體展示)
目的:讓學生觸發(fā)漫畫中“上下坡”的情景,引導思考k、b對圖象的影響——設置化抽象為形象,化枯燥為生動,同時學生對這種直觀的知識易接受,易理解,記憶深刻。從而突出了重點,攻破了難點。
活動4:師生互動(師生角色互換),提高拓展。(多媒體展出內容)
目的:通過這種師生互動角色轉換形式,不但能盡快烘起課堂氣憤,而且復習了本課的重點內容,對一次函數的性質理解的更透徹。
(三)課堂小結
引導學生回憶所學知識。通過這節(jié)課的學習你得到什么啟示和收獲?談談你的感受.
目的:總結回顧學習內容,有助于學生養(yǎng)成整理知識的習慣;有助于學生在剛剛理解了新知識的基礎上,及時把知識系統(tǒng)化、條理化。
(四)作業(yè)布置
加強“教、學”反思,進一步提高“教與學”效果。
四、說板書設計
采用了如下板書,要點突出,簡明清晰。
一次函數
正比例函數圖像的畫法:確定兩點為(0,0)和(1,k)一次函數選擇的兩點為:(0,k)和(-b\k,0)
五、說課后小結
函數的奇偶性教案人教版篇二十
一次函數解析式的求法一般是采用待定系法,對于學生而言,如何理解這種方法是解決這一問題的關鍵。
為了解決這個問題,我舉了這樣一個例子:已知直線y=kx+b經過點(1,2)和點(-2,3)試求這個函數關系式?學生們很容易想到列方程組解決這個問題,我卻提出了一個比較簡單的問題,為什么你要選擇列方程組解決這個問題,你的目的是什么?我教的那個班的學生沉默了好久,是啊,對于學生來說,他們習慣于如何做題,卻從不想為什么采用這種方法,這種方法的出發(fā)點是什么?經過一段時間的思考,有的學生終于答出了這個問題:他們說這是為了確定k,b的值,只要k,b的值確定了,那么一次函數解析式就確定下來了。而實際他們回答的恰恰是待定系數法的精髓,學生們只有能理解到這一點才能領會到待定系數法的精髓。進而我總結,如果知道一次函數圖象上個點就能確定它的解析式。如上例是顯而易見的兩點。
接著我給出另一個例題:已知一次函數圖象過點(1,-2),且與直線y=3x+2交y軸于同一點,試求該函數的解析式。這個題一個點顯而易見,另一個點是隱含的,學生們開始找到一個明線,通過分析找到了另一個暗線,最終大家一致認為兩點確定一條直線,想求一次函數的解析式,只要找到兩個點的坐標就行。
最后我出了一個例題:一個一次函數的圖象,與直線y=2x+1的交點m的橫坐標為2,與直線y=-x+2的交點n的縱坐標為1,求這個一次函數的解析式。學生們發(fā)現沒有一條明線,全是暗線,但只要理解找兩個點求一次函數解析式,看似難的問題就會迎刃而解。如果學生能理解透這三道其實是一類題,他們就會利用待定系數法求一次函數解析式了。

