在寫心得體會(huì)的過(guò)程中,我們可以發(fā)現(xiàn)自己在某些方面的不足和需要改進(jìn)之處。在撰寫心得體會(huì)時(shí),我們應(yīng)該首先明確總結(jié)的主題和目的。小編搜集整理了一些優(yōu)秀的心得體會(huì)范文,希望能夠給大家?guī)?lái)一些思考和啟示。
三角形的內(nèi)角和聽(tīng)課心得體會(huì)篇一
作為數(shù)學(xué)中重要的基礎(chǔ)概念之一,三角形內(nèi)角一直是中學(xué)數(shù)學(xué)中不可忽視的重要知識(shí)點(diǎn)。通過(guò)學(xué)習(xí)三角形內(nèi)角的概念、性質(zhì)以及計(jì)算方法,我深感受益匪淺。在學(xué)習(xí)過(guò)程中,我不僅掌握了三角形內(nèi)角和的計(jì)算方法,還加深了對(duì)三角形及其性質(zhì)的理解和應(yīng)用。下面我將分享我在學(xué)習(xí)三角形內(nèi)角和時(shí)的心得體會(huì)。
首先,在學(xué)習(xí)三角形內(nèi)角和的過(guò)程中,我深刻體驗(yàn)到了數(shù)學(xué)的邏輯性和巧妙性。根據(jù)三角形內(nèi)角和定理,三角形內(nèi)角和等于180度。但是,在這個(gè)定理背后是經(jīng)過(guò)推導(dǎo)和推論得來(lái)的,這就需要我們善于觀察和歸納。通過(guò)學(xué)習(xí)和思考,我逐漸理解了這個(gè)規(guī)律,并能夠熟練運(yùn)用。這種邏輯的思考方式讓我備受啟發(fā),提高了我的思維能力。
其次,學(xué)習(xí)三角形內(nèi)角和還有助于培養(yǎng)我的抽象思維能力。三角形是一個(gè)抽象的概念,它可以根據(jù)角的大小來(lái)分類,如銳角三角形、直角三角形和鈍角三角形。而在計(jì)算三角形內(nèi)角和時(shí),我們需要根據(jù)題目中給出的條件來(lái)推導(dǎo)并計(jì)算。在這個(gè)過(guò)程中,我學(xué)會(huì)了從具體的實(shí)例中抽象出概念和規(guī)律,這對(duì)我培養(yǎng)了抽象思維能力有很大的幫助。
進(jìn)一步地,學(xué)習(xí)三角形內(nèi)角和讓我體會(huì)到數(shù)學(xué)的實(shí)用性和應(yīng)用性。在實(shí)際生活中,我們經(jīng)常需要通過(guò)測(cè)量或計(jì)算來(lái)求解角度。而學(xué)習(xí)三角形內(nèi)角和可以幫助我們更好地理解和解決這類問(wèn)題。例如,在測(cè)量角的大小時(shí),我們可以通過(guò)計(jì)算相鄰的兩個(gè)角的和,以及已知角度,來(lái)求解未知角度。這種實(shí)用性的應(yīng)用讓我對(duì)學(xué)習(xí)數(shù)學(xué)更加有信心,也更多了一份對(duì)數(shù)學(xué)的興趣。
最后,通過(guò)學(xué)習(xí)三角形內(nèi)角和,我對(duì)三角形及其性質(zhì)有了更深入的理解。通過(guò)計(jì)算三角形內(nèi)角和,我們可以判斷三角形的類型和性質(zhì)。例如,如果一個(gè)三角形的內(nèi)角和等于180度,則可以判斷該三角形是一個(gè)平面三角形;又如,一個(gè)三角形有一個(gè)內(nèi)角等于90度,則可判斷該三角形是一個(gè)直角三角形。這種對(duì)三角形性質(zhì)的理解不僅幫助我更好地記憶和運(yùn)用知識(shí),同時(shí)也提高了我的幾何思維能力。
總之,學(xué)習(xí)三角形內(nèi)角和讓我深刻感受到了數(shù)學(xué)的邏輯性和巧妙性,培養(yǎng)了我的抽象思維能力,加深了對(duì)數(shù)學(xué)實(shí)用性和應(yīng)用性的理解,以及提高了對(duì)三角形及其性質(zhì)的認(rèn)知。這種學(xué)習(xí)體會(huì)將會(huì)伴隨我未來(lái)的學(xué)習(xí)和工作,成為我數(shù)學(xué)思維的熏陶和啟發(fā)。
三角形的內(nèi)角和聽(tīng)課心得體會(huì)篇二
首先,我們來(lái)了解一下三角形內(nèi)角和的概念。三角形內(nèi)角和指的是一個(gè)三角形內(nèi)的三個(gè)角的角度之和。也就是說(shuō),無(wú)論一個(gè)三角形的大小和形狀如何,其內(nèi)角和的總和是不變的。對(duì)于這個(gè)概念,我們需要進(jìn)行一些證明,并從中得出一些體會(huì)。
一、首先是證明三角形內(nèi)角和的公式:我們可以將一個(gè)任意的三角形劃分為兩個(gè)三角形,這樣就可以得到2個(gè)內(nèi)角和相等的三角形。根據(jù)這兩個(gè)三角形的性質(zhì),它們的內(nèi)角和分別為180度。因此,原先的三角形的內(nèi)角和等于2個(gè)相同的三角形內(nèi)角和之和,即2×180度。因此,三角形的內(nèi)角和公式為:180度×(n-2),其中n為三角形的邊數(shù)。這是三角形內(nèi)角和的公式,也就意味著,無(wú)論三角形的大小和形狀如何,其內(nèi)角和的總和是不變的。
二、接下來(lái),我想談?wù)勥@個(gè)公式所蘊(yùn)含的性質(zhì)。這個(gè)公式表明了任意一個(gè)三角形內(nèi)角和都是一個(gè)定值,這意味著我們?cè)谔幚砼c三角形有關(guān)的問(wèn)題時(shí),我們可以依據(jù)這個(gè)公式來(lái)計(jì)算。同時(shí),我們也可以通過(guò)這個(gè)定值來(lái)判斷三角形是否存在。如果我們知道三角形的任意兩個(gè)角的度數(shù),我們就可以通過(guò)計(jì)算得出第三個(gè)角的度數(shù),如果這個(gè)度數(shù)滿足三角形內(nèi)角和公式,那么這個(gè)三角形就是存在的??傊@個(gè)公式為我們解決與三角形相關(guān)的問(wèn)題提供了一個(gè)非常有效的工具。
三、其次,我們來(lái)看一下三角形內(nèi)角和的一些特殊情況。如果我們將一個(gè)三角形變形成一條直線,那么這條直線上的角的度數(shù)之和顯然是180度。這也就是說(shuō),當(dāng)一個(gè)三角形的一個(gè)角的度數(shù)等于另外兩個(gè)角的度數(shù)之和時(shí),這個(gè)三角形就成為了直角三角形。這個(gè)特殊情況提示我們,任何一個(gè)角的度數(shù)都不能超過(guò)180度,超過(guò)這個(gè)范圍就不再是三角形。
四、此外,我們還要關(guān)注三角形內(nèi)角和的一個(gè)重要性質(zhì)。在一個(gè)任意的三角形中,最大的內(nèi)角所對(duì)應(yīng)的邊是最長(zhǎng)的,而最小的內(nèi)角所對(duì)應(yīng)的邊則是最短的。這提示我們,我們可以通過(guò)測(cè)量三角形的三個(gè)角的度數(shù)來(lái)判斷三角形的大小和形狀。如果一個(gè)三角形的度數(shù)都相等,那么這是一個(gè)等邊三角形。如果只有兩個(gè)角度相等,那么這是一個(gè)等腰三角形。通過(guò)這些性質(zhì),我們可以進(jìn)行更復(fù)雜的三角形的處理。
五、最后,我想強(qiáng)調(diào)一個(gè)重點(diǎn),那就是,我們需要掌握三角形內(nèi)角和公式的證明過(guò)程。如果我們只是僅僅記住了這個(gè)公式,但是不理解其意義和原理,那么我們將很難理解和解決與三角形相關(guān)的問(wèn)題。因此,在我們學(xué)習(xí)三角形內(nèi)角和公式的過(guò)程中,我們需要認(rèn)真學(xué)習(xí)其證明過(guò)程,并從中理解和掌握重要的原理和性質(zhì)。只有這樣,我們才能夠真正掌握這個(gè)公式,以及它所包含的深刻含義。
三角形的內(nèi)角和聽(tīng)課心得體會(huì)篇三
三角形是初中數(shù)學(xué)中必不可少的重點(diǎn)知識(shí),而三角形內(nèi)角和也是重中之重的一部分。此次,我學(xué)習(xí)了三角形內(nèi)角和的證明方式,深刻認(rèn)識(shí)到這一部分的重要性,并從中獲得了一些有益的體驗(yàn)和心得。本文將探討我在學(xué)習(xí)過(guò)程中所獲得的這些經(jīng)驗(yàn)和感悟。
第二段:學(xué)習(xí)過(guò)程。
在學(xué)習(xí)三角形內(nèi)角和的證明中,我首先認(rèn)識(shí)到三角形是一個(gè)基本的平面圖形,由三條邊和三個(gè)內(nèi)角組成。內(nèi)角和是三角形重要的數(shù)學(xué)性質(zhì)之一,通常用于計(jì)算未知角度。在諸如三角函數(shù)等各種初等函數(shù)中都會(huì)涉及到三角形的內(nèi)角和。因此,通過(guò)證明三角形內(nèi)角和定理,我們可以更好地掌握數(shù)學(xué)知識(shí),并有效地推斷出三角形的各種性質(zhì)。
第三段:證明方法。
在證明三角形內(nèi)角和定理的過(guò)程中,有多種不同的證明方法。我們可以使用幾何證明法、數(shù)學(xué)歸納證明法等方法,使得三角形內(nèi)角和定理的成立更為顯然。三角形內(nèi)角和定理說(shuō)的是:任何一個(gè)三角形的三個(gè)內(nèi)角的和始終為180度,這個(gè)證明可以用許多方法來(lái)證明,在證明過(guò)程中要盡可能使用簡(jiǎn)單明了的方法,以便于理解。
第四段:學(xué)習(xí)收獲。
通過(guò)學(xué)習(xí),我認(rèn)識(shí)到證明三角形內(nèi)角和的定理是非常有益的,可以幫助我們牢固掌握三角函數(shù)中的基本概念,進(jìn)一步提高數(shù)學(xué)水平。同時(shí),學(xué)習(xí)三角形內(nèi)角和定理可以讓我們進(jìn)一步認(rèn)識(shí)到證明在數(shù)學(xué)中所扮演的重要作用,提高我們的邏輯思維能力和數(shù)學(xué)推理能力,從而更加深入地理解數(shù)學(xué)的各種概念和定理。
第五段:總結(jié)。
學(xué)習(xí)三角形內(nèi)角和,不僅可以幫助我們更好地掌握三角函數(shù)中的基本概念,提高我們的數(shù)學(xué)水平,還可以提高我們解決問(wèn)題和推理的能力。在學(xué)習(xí)三角形內(nèi)角和定理的過(guò)程中,我們需要理解三角形的性質(zhì)和相關(guān)幾何知識(shí),并學(xué)習(xí)不同的證明方法。只有通過(guò)不斷的練習(xí)和努力,我們才能夠更好地掌握三角形內(nèi)角和定理以及更多的數(shù)學(xué)知識(shí),實(shí)現(xiàn)數(shù)學(xué)優(yōu)秀成績(jī)的突破。
三角形的內(nèi)角和聽(tīng)課心得體會(huì)篇四
在整個(gè)教學(xué)設(shè)計(jì)上謝老師充分體現(xiàn)“以學(xué)生發(fā)展為本”教育理念,將教學(xué)思路擬定為“談話激趣設(shè)疑導(dǎo)入——猜想——驗(yàn)證{自主探究}——鞏固內(nèi)化——拓展延伸”,努力構(gòu)建探索型的課堂教學(xué)模式。具體體現(xiàn)在以下幾點(diǎn):
1、善用激趣設(shè)疑導(dǎo)入:教學(xué)的藝術(shù)不在于傳授知識(shí),而在于喚醒、激發(fā)和鼓勵(lì)。剛開始上課,謝老師用選王大會(huì)設(shè)懸念,三種類型的角在激烈的爭(zhēng)執(zhí),到的誰(shuí)的內(nèi)角和大呢?這樣,在很短的時(shí)間內(nèi)最大限度的激發(fā)學(xué)生探究數(shù)學(xué)的愿望和興趣,而且也很自然地揭示了課題。
2、巧用猜想:學(xué)生有了探索的愿望和興趣,可是不能沒(méi)有目標(biāo)的去探索,那樣只會(huì)事倍功半,甚至沒(méi)有結(jié)果,這時(shí)謝老師就提到到底三角形的內(nèi)角和是不是180度呢,我們總不能口說(shuō)無(wú)憑吧?使后邊的探索和驗(yàn)證活動(dòng)有了明確的目標(biāo)。
3、善用驗(yàn)證{自主探索}:學(xué)生形成統(tǒng)一的猜想{即三角形的內(nèi)角和等于180度}后,謝老師就把課堂大量的時(shí)間和空間留給學(xué)生,讓他們開展有針對(duì)性的數(shù)學(xué)探究活動(dòng){即驗(yàn)證三角形的內(nèi)角和是否是180度?},在活動(dòng)中,把放和引有機(jī)的結(jié)合,鼓勵(lì)學(xué)生積極開動(dòng)腦筋,從不同的途徑探索解決問(wèn)題的方法。不但讓每個(gè)學(xué)生自主參與驗(yàn)證活動(dòng),而且使學(xué)生在經(jīng)歷觀察、操作、分析、推理和想象活動(dòng)過(guò)程中解決問(wèn)題,發(fā)展空間觀念和論證推理能力。具體過(guò)程為:量一量——拼一拼——看一看。
4、善于引導(dǎo)鞏固內(nèi)化:俗話說(shuō)的好:“熟能生巧”。數(shù)學(xué)離不開練習(xí),要掌握知識(shí),形成技能技巧,一定要通過(guò)練習(xí)。養(yǎng)成良好的思維品質(zhì)也要通過(guò)一定的思考練習(xí),課程標(biāo)準(zhǔn)提倡練習(xí)的有效性。對(duì)此,謝老師非常注意將數(shù)學(xué)的思考融入不同層次的練習(xí)之中,很好的發(fā)揮練習(xí)的作用,如第一關(guān)牛刀小試:給出一個(gè)三角形的兩個(gè)角度,學(xué)生求第三個(gè)角,從中培養(yǎng)學(xué)生應(yīng)用意識(shí)和解決問(wèn)題的能力;第三關(guān)過(guò)關(guān)斬將:讓學(xué)生判斷有兩個(gè)小三角形拼成的三角形的內(nèi)角和的度數(shù),使學(xué)生在圖形變化的過(guò)程中掌握知識(shí),培養(yǎng)思維的靈活性,從中發(fā)展學(xué)生的空間觀念和空間想象能力。這些練習(xí)設(shè)計(jì)目的明確,針對(duì)性強(qiáng),使學(xué)生不但鞏固了知識(shí),更重要的是數(shù)學(xué)思維得到不斷的發(fā)展。
5、有一定的拓展創(chuàng)新:數(shù)學(xué)具有嚴(yán)密的邏輯性和抽象性。而學(xué)生學(xué)習(xí)內(nèi)容的呈現(xiàn)是從簡(jiǎn)單到復(fù)雜,思維方式是從具體到抽象的一個(gè)循序漸進(jìn)的過(guò)程,前面學(xué)習(xí)的知識(shí)往往是后面進(jìn)一步學(xué)習(xí)的基礎(chǔ)。要培養(yǎng)學(xué)生思維的靈活性,可以先讓學(xué)生學(xué)會(huì)對(duì)知識(shí)的遷移。本課最后,謝老師設(shè)計(jì)了這樣一道題目:學(xué)了三角形的內(nèi)角和后,你知道四邊形的內(nèi)角和是多少度嗎?這道題通過(guò)對(duì)本節(jié)課所學(xué)知識(shí)的遷移就可以完成,既能對(duì)學(xué)生進(jìn)行思維訓(xùn)練,又能培養(yǎng)學(xué)生應(yīng)用知識(shí)的能力,更能培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新精神。
總之,本節(jié)課教學(xué)活動(dòng)中謝老師充分體現(xiàn)以下特點(diǎn):以學(xué)生發(fā)展為本,以學(xué)生為主體,思維為主線的思想;充分關(guān)注學(xué)生的自主探究與合作交流;練習(xí)體現(xiàn)了層次性,知識(shí)技能得于落實(shí)和發(fā)展。是一節(jié)非常成功的課。
三角形的內(nèi)角和聽(tīng)課心得體會(huì)篇五
一堂好課不應(yīng)是自始至終的高潮和精彩,也不必是高科技現(xiàn)代教育技術(shù)的集中展示。一堂好課不是看它的熱鬧程度,而在于學(xué)生從中得到了什么,它留給人們的應(yīng)是思考、啟示和回味。2月19日上午,在沈家門第一小學(xué),我有幸聆聽(tīng)了趙斌娜老師執(zhí)教的《三角形的內(nèi)角和》一課,這就是一堂好課。
趙老師營(yíng)造了寬松和諧的課堂氣氛,讓學(xué)生能主動(dòng)參與學(xué)習(xí)活動(dòng),既關(guān)注了學(xué)生的個(gè)人差異和不同的學(xué)習(xí)需求,又注重了學(xué)生的個(gè)體感悟,強(qiáng)調(diào)情感體驗(yàn)的過(guò)程。確立了學(xué)生在課堂教學(xué)中的主體地位,使學(xué)生在學(xué)習(xí)過(guò)程中既調(diào)動(dòng)了積極性,又激發(fā)了學(xué)生的主體意識(shí)和進(jìn)取精神。學(xué)生在自主、合作、探究的學(xué)習(xí)方式中互相激勵(lì),取長(zhǎng)補(bǔ)短,能團(tuán)結(jié)協(xié)作,最終形成了相應(yīng)能力;同時(shí)培養(yǎng)了學(xué)生刻苦鉆研,事實(shí)求是的態(tài)度。
教學(xué)過(guò)程是一堂課關(guān)鍵中的關(guān)鍵,新課標(biāo)提出數(shù)學(xué)教學(xué)是數(shù)學(xué)活動(dòng)的教學(xué),而數(shù)學(xué)活動(dòng)應(yīng)是學(xué)生自己建構(gòu)知識(shí)的活動(dòng)。教師讓學(xué)生“在參與中體驗(yàn),在活動(dòng)中發(fā)展”。本節(jié)課有操作活動(dòng)、自主探索與合作交流、應(yīng)用活動(dòng)三個(gè)方面,下面我重點(diǎn)談?wù)劜僮骰顒?dòng)。
1、在實(shí)踐材料上下了工夫。
操作實(shí)踐的材料是精心選擇的,老師為學(xué)生準(zhǔn)備了用卡紙制作的形狀、大小、顏色不同的三角形各幾個(gè),這樣學(xué)生在操作時(shí)候,便于選擇、測(cè)量、拼擺、觀察、思考問(wèn)題,而且這些三角形顏色醒目、比較大,學(xué)生應(yīng)用起來(lái)很得手,操作的材料和學(xué)生的動(dòng)手實(shí)踐配合恰當(dāng)。
2、找準(zhǔn)時(shí)機(jī)讓學(xué)生進(jìn)行實(shí)踐操作。
本節(jié)課安排了兩次操作活動(dòng):一是在得出三角形內(nèi)角和規(guī)律前進(jìn)行實(shí)踐操作,促使學(xué)生在實(shí)踐操作中探究新知識(shí);二是在初步得出規(guī)律之后,讓學(xué)生通過(guò)實(shí)踐操作來(lái)驗(yàn)證新知識(shí)。幫助學(xué)生清楚地認(rèn)識(shí)到第一次出現(xiàn)內(nèi)角和偏差的原因是測(cè)量誤差造成的。給學(xué)生提供的這兩次動(dòng)手實(shí)踐的機(jī)會(huì),不僅提高了操作的效果,更重要的使“聽(tīng)數(shù)學(xué)”變?yōu)椤白鰯?shù)學(xué)”。促使學(xué)生在“做數(shù)學(xué)”的過(guò)程中對(duì)所學(xué)知識(shí)產(chǎn)生了深刻的體驗(yàn),從中感悟和理解到新知識(shí)的形成和發(fā)展,體會(huì)了數(shù)學(xué)學(xué)習(xí)的過(guò)程與方法,獲得數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn)。
3、把實(shí)踐操作和數(shù)學(xué)思維結(jié)合起來(lái)。
學(xué)生通過(guò)實(shí)踐操作獲得的認(rèn)識(shí)是一種感性的認(rèn)識(shí),是外在的直觀的印象。在本節(jié)課中趙老師在學(xué)生實(shí)踐操作的基礎(chǔ)上引導(dǎo)學(xué)生把動(dòng)手實(shí)踐和數(shù)學(xué)思維結(jié)合起來(lái),先讓學(xué)生思考出可以用量、撕和拼的方法來(lái)推導(dǎo)三角形內(nèi)角和的度數(shù),接著引導(dǎo)學(xué)生說(shuō)出量的方法,最后讓學(xué)生實(shí)際測(cè)量。采取邊說(shuō)邊操作,邊討論邊操作的方式,讓手、腦、口并用,在操作和直觀教學(xué)的基礎(chǔ)上及時(shí)對(duì)三角形內(nèi)角和規(guī)律進(jìn)行抽象概括。做到邊動(dòng)手,邊思考。同時(shí)學(xué)生獲得了一種數(shù)學(xué)思想和方法,學(xué)會(huì)了解決一些類似的一系列的問(wèn)題,提高了實(shí)踐動(dòng)手的有效性。
三角形的內(nèi)角和聽(tīng)課心得體會(huì)篇六
三角形作為幾何學(xué)中的基本圖形之一,具有豐富的性質(zhì)和定理。在學(xué)習(xí)中證明三角形的一些相關(guān)定理過(guò)程中,我有幸參加了一堂生動(dòng)有趣的證明課程,深刻感受到了數(shù)學(xué)證明的魅力。這次聽(tīng)課讓我對(duì)數(shù)學(xué)的理解更加深入,同時(shí)也培養(yǎng)了我邏輯思維和分析問(wèn)題的能力。
首先,課程的開始引人入勝,老師分享了一些與三角形相關(guān)的有趣事例和實(shí)際應(yīng)用,使得大家對(duì)于學(xué)習(xí)的內(nèi)容產(chǎn)生了濃厚的興趣。老師講述了古希臘的數(shù)學(xué)家畢達(dá)哥拉斯的故事,他發(fā)現(xiàn)了一個(gè)重要的定理——畢達(dá)哥拉斯定理,即直角三角形的兩條直角邊的平方和等于斜邊的平方。這個(gè)定理不僅為數(shù)學(xué)研究提供了基礎(chǔ),也為實(shí)際生活中的測(cè)量和構(gòu)造提供了方便。老師還提到了有關(guān)三角形的實(shí)際應(yīng)用,如建筑工程中的角度測(cè)量,航海中的航線計(jì)算等。這些實(shí)例的講述讓我對(duì)于三角形證明的學(xué)習(xí)有了更直觀的認(rèn)識(shí)。
接著,課程以三角形的性質(zhì)和定理為主線,詳細(xì)介紹了一些經(jīng)典的三角形定理。我印象最為深刻的是三角形的角平分線定理。老師首先講述了這個(gè)定理的原理和推論,然后以實(shí)際的例子進(jìn)行了具體運(yùn)用,這讓我真正理解了定理的含義和應(yīng)用。通過(guò)證明了這一定理,我逐漸認(rèn)識(shí)到數(shù)學(xué)證明的嚴(yán)謹(jǐn)性和邏輯性,深刻體會(huì)到了數(shù)學(xué)證明的美妙之處。
在課程的過(guò)程中,老師還鼓勵(lì)同學(xué)們積極參與,提問(wèn)和回答問(wèn)題。通過(guò)與同學(xué)們的互動(dòng),我學(xué)到了很多我以前沒(méi)有了解到的知識(shí)。同學(xué)們紛紛分享了自己的思考和觀點(diǎn),從不同的角度來(lái)解釋和理解問(wèn)題,這為我提供了新的思路和思考方式。我也積極向老師請(qǐng)教一些疑惑,老師耐心解答并鼓勵(lì)我多思考多探索。這樣的交流讓我在學(xué)習(xí)中不再感覺(jué)孤立,而是能夠充分發(fā)揮自己的思維和創(chuàng)造力。
最后,課程以綜合練習(xí)的形式結(jié)束。老師提供了一些需要進(jìn)行證明的三角形問(wèn)題,讓我們自己動(dòng)手去解決。這種讓學(xué)生主動(dòng)參與的方式,激發(fā)了我們的求知欲和學(xué)習(xí)興趣。雖然在解題的過(guò)程中會(huì)遇到一些困難,但通過(guò)自己的思考和嘗試,我逐漸找到了解決問(wèn)題的方法。解決問(wèn)題的過(guò)程不僅培養(yǎng)了我的邏輯思維和分析問(wèn)題的能力,也讓我對(duì)于數(shù)學(xué)證明的過(guò)程和方法有了更深入的理解。
通過(guò)這次課程,我對(duì)于三角形的證明有了更加全面和深入的認(rèn)識(shí)。我明白了數(shù)學(xué)證明的重要性,它不僅是數(shù)學(xué)學(xué)習(xí)中的一種方法,更是一個(gè)鍛煉思維和培養(yǎng)邏輯能力的過(guò)程。在以后的學(xué)習(xí)中,我會(huì)將這些知識(shí)應(yīng)用到實(shí)際問(wèn)題中,不斷提高自己的數(shù)學(xué)能力。同時(shí),我也會(huì)更加注重?cái)?shù)學(xué)證明的學(xué)習(xí),進(jìn)一步拓寬自己的視野,培養(yǎng)自己的數(shù)學(xué)思維。通過(guò)不斷努力和學(xué)習(xí),我相信自己一定能夠在數(shù)學(xué)領(lǐng)域取得更大的成就。
三角形的內(nèi)角和聽(tīng)課心得體會(huì)篇七
三角形的內(nèi)角和是北師大版四年級(jí)下冊(cè)第二單元的內(nèi)容。三角形的內(nèi)角和是三角形的一個(gè)重要性質(zhì),學(xué)好它有助于學(xué)生理解三角形內(nèi)角之間的關(guān)系,也是進(jìn)一步學(xué)習(xí)幾何的基礎(chǔ)。
本節(jié)課是在學(xué)生學(xué)過(guò)角的度量、三角形的特征和分類等知識(shí)的基礎(chǔ)上進(jìn)行教學(xué)的,學(xué)生已經(jīng)具備一定的關(guān)于三角形的認(rèn)識(shí)的直接經(jīng)驗(yàn),也已具備了一些相應(yīng)的三角形知識(shí)和技能,這為感受、理解、抽象三角形的內(nèi)角和的規(guī)律,打下了堅(jiān)實(shí)的基礎(chǔ)。
因此,我確定本節(jié)課的教學(xué)目標(biāo)是:
知識(shí)與技能:通過(guò)測(cè)量、撕拼、折疊等方法,探索和發(fā)現(xiàn)三角形三個(gè)內(nèi)角的和等于180。知道三角形兩個(gè)角的度數(shù),能求出第三個(gè)角的度數(shù)。能應(yīng)用三角形內(nèi)角和的性質(zhì)解決一些簡(jiǎn)單的問(wèn)題。
發(fā)展學(xué)生動(dòng)手操作、觀察比較和抽象概括的能力。
情感、態(tài)度與價(jià)值觀:體驗(yàn)數(shù)學(xué)活動(dòng)的探索樂(lè)趣,體會(huì)研究數(shù)學(xué)問(wèn)題的思想方法。
學(xué)生經(jīng)歷探究三角形內(nèi)角和的全過(guò)程并歸納概括三角形內(nèi)角和等于180。
三角形內(nèi)角和的探索與驗(yàn)證,對(duì)不同探究方法的指導(dǎo)和學(xué)生對(duì)規(guī)律的靈活應(yīng)用。
整個(gè)教學(xué)將體現(xiàn)以人為本,先放后扶的教學(xué)策略。放,不是漫無(wú)目的的放,而是為學(xué)生提供足夠的探究規(guī)律的材料和時(shí)間,放手讓學(xué)生自主學(xué)習(xí),合作探究;扶,則是根據(jù)學(xué)生的不同探究方法和出現(xiàn)的錯(cuò)誤,給予恰當(dāng)指導(dǎo),引導(dǎo)學(xué)生歸納概括出規(guī)律。
《課程標(biāo)準(zhǔn)》明確指出:要結(jié)合有關(guān)內(nèi)容的教學(xué),引導(dǎo)學(xué)生進(jìn)行觀察、操作、猜想,培養(yǎng)學(xué)生初步的思維能力。四年級(jí)學(xué)生經(jīng)過(guò)第一學(xué)段以及本單元的學(xué)習(xí),已經(jīng)掌握了三角形的分類,比較熟悉平角等有關(guān)知識(shí);具備了初步的動(dòng)手操作、主動(dòng)探究的能力,他們正處于由形象思維向抽象思維過(guò)渡的階段。因此,本節(jié)課,我將重點(diǎn)引導(dǎo)學(xué)生從猜測(cè)――驗(yàn)證展開學(xué)習(xí)活動(dòng),讓學(xué)生感受這種重要的數(shù)學(xué)思維方式。在教學(xué)中,學(xué)生通過(guò)測(cè)量、拼折、驗(yàn)證等方式確定三角形內(nèi)角的度數(shù)和。這樣,既培養(yǎng)了觀察能力和歸納概括能力,又體現(xiàn)了動(dòng)手實(shí)踐、合作交流,自主探索的學(xué)習(xí)方式,同時(shí)也培養(yǎng)了探索能力和創(chuàng)新精神。
基于以上分析,我以猜測(cè)、驗(yàn)證、結(jié)論和應(yīng)用四個(gè)活動(dòng)環(huán)節(jié)為主線,讓學(xué)生通過(guò)自主探究學(xué)習(xí)進(jìn)行數(shù)學(xué)的思考過(guò)程,積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)。
通過(guò)出示一個(gè)角形,讓學(xué)生說(shuō)知道三角形的知識(shí)來(lái)引出三角形的內(nèi)角的概念,讓學(xué)生自由猜測(cè),三角形內(nèi)角和是多少?引出課題,以疑激思。
動(dòng)手實(shí)踐,自主探究,是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式,新課程的一個(gè)重要理念就是提倡學(xué)生做數(shù)學(xué)用親身體驗(yàn)的方式來(lái)經(jīng)歷數(shù)學(xué),探究數(shù)學(xué),這要求老師首先為學(xué)生提供充分的研究材料,以及充裕的時(shí)間,保證學(xué)生能真正地試驗(yàn),操作和探索。
這一環(huán)節(jié)我設(shè)計(jì)為以下三步:
1、操作感知。
組織學(xué)生通過(guò)算一算初步感知三角形的內(nèi)角和。根據(jù)學(xué)生特點(diǎn),為了節(jié)約學(xué)生上課的時(shí)間,作為預(yù)習(xí)作業(yè),我提前讓學(xué)生在家里自制鈍角、銳角、直角三角形,并測(cè)量出每個(gè)角的度數(shù),寫在三角形對(duì)應(yīng)的角上,也填在書上的表格里。這時(shí)直接讓學(xué)生計(jì)算,學(xué)生匯報(bào)計(jì)算結(jié)果,不同的學(xué)生可能會(huì)有不同的結(jié)果,有可能大于180或小于180甚至等于180,只要相對(duì)合理(允許一點(diǎn)誤差)都給與肯定。這時(shí)可引導(dǎo)學(xué)生得出結(jié)論(強(qiáng)調(diào)在排除測(cè)量誤差的前提下):三角形的內(nèi)角和是180度。在這一過(guò)程中,學(xué)生有困惑,有疑問(wèn),而正是這些困惑激發(fā)了學(xué)生更強(qiáng)的探究欲望,正是這些疑問(wèn),使得合作成為學(xué)生的內(nèi)在需要。
2、小組合作。
針對(duì)探究過(guò)程中不同思維能力的學(xué)生,要做到因材施教。對(duì)于得出結(jié)論的學(xué)生要鼓勵(lì)他們思考新的方法,對(duì)于無(wú)法下手的學(xué)生,要啟發(fā)他們知道三角形的內(nèi)角和,我們可以把角合起來(lái)看是多少?能用什么方法將三個(gè)角合起來(lái)。在探究學(xué)習(xí)中,老師只是起一個(gè)引導(dǎo)者的作用,引導(dǎo)學(xué)生不斷地深入探究,盡可能用多種合理的方法,驗(yàn)證結(jié)論。
3、交流反饋,得出結(jié)論。
學(xué)生完成探究活動(dòng)之后,在有親身體驗(yàn)的基礎(chǔ)上,我將選擇不同方法的代表,在展示平臺(tái)上展示自己的探究過(guò)程,并說(shuō)說(shuō)自己是怎樣想的。我關(guān)注的不是學(xué)生最后論證的結(jié)果,而是學(xué)生思維的過(guò)程。學(xué)生可能通過(guò):拼一拼、折一折、畫一畫的方法,驗(yàn)證得出三角形的內(nèi)角和是180度,并通過(guò)觀察對(duì)比各組所用的三角形,是不同類型的而且大小不同的,發(fā)現(xiàn)這一規(guī)律是具有普遍性的,對(duì)于任意三角形都是適用。在學(xué)生探究之后,我用課件重新演示了3種方法,讓學(xué)生有一個(gè)系統(tǒng)的知識(shí)體系。
揭示規(guī)律之后,學(xué)生要掌握知識(shí),形成技能技巧,就要通過(guò)解答實(shí)際問(wèn)題的練習(xí)來(lái)鞏固內(nèi)化。根據(jù)學(xué)生能力的不同,我將練習(xí)分為以下3個(gè)層次。
1、基礎(chǔ)練習(xí)。要求學(xué)生利用三角形內(nèi)角和是180度在三角形內(nèi)已知兩個(gè)角,求第三個(gè)角。由于學(xué)生空間思維能力的局限,我將先出示有具體圖形的題目,再出示文字?jǐn)⑹鲱}。在這之間指導(dǎo)學(xué)生注意一題多解。
2、提高練習(xí)。如已知一個(gè)直角三角形的一個(gè)角的度數(shù),求另一個(gè)角的度數(shù);已知一個(gè)等腰三角形的頂角或底角的度數(shù),求底角或頂角的度數(shù)。
3、拓展練習(xí)。針對(duì)不同思維能力的學(xué)生,我設(shè)計(jì)的思考題是要求學(xué)生應(yīng)用三角形內(nèi)角和是180的規(guī)律,求多邊形的內(nèi)角和。我的目的不僅僅是為了讓學(xué)生去求解多邊形的內(nèi)角和,更重要的是為了讓學(xué)生靈活應(yīng)用知識(shí)點(diǎn),培養(yǎng)學(xué)生的空間思維能力。
這樣安排可以兼顧不同能力的學(xué)生,在保證基本教學(xué)要求的同時(shí),盡量滿足學(xué)生的學(xué)習(xí)需要,啟發(fā)學(xué)生的思維活動(dòng)。
本節(jié)課通過(guò)這樣的設(shè)計(jì),學(xué)生全身心投入到數(shù)學(xué)探究互動(dòng)中去,學(xué)生不僅學(xué)到科學(xué)探究的方法,而體驗(yàn)到探索的甘苦,領(lǐng)略成功的喜悅,學(xué)生在探索中學(xué)習(xí),在探索中發(fā)現(xiàn),在探索中成長(zhǎng),最終實(shí)現(xiàn)可持續(xù)性發(fā)展。
猜測(cè)驗(yàn)證結(jié)論應(yīng)用。
三角形的內(nèi)角和聽(tīng)課心得體會(huì)篇八
大家好!
今天我說(shuō)課的題目是《三角形的內(nèi)角》,我將從如下方面作出說(shuō)明。
(一)教學(xué)內(nèi)容的地位
本節(jié)課是在研究了三角形的有關(guān)概念和學(xué)生在對(duì) “三角形的內(nèi)角和等于1800 ”有感性認(rèn)識(shí)的基礎(chǔ)上,對(duì)該定理進(jìn)行推理論證。它是進(jìn)一步研究三角形及其它圖形的重要基礎(chǔ),更是研究 多邊形問(wèn)題轉(zhuǎn)化的關(guān)鍵點(diǎn);此外,在它的證明中第一次引入了輔助線,而輔助線又是解決幾何問(wèn)題的一種重要工具,因此本節(jié)是本章的一個(gè)重點(diǎn)。
(二)教學(xué)重點(diǎn)、難點(diǎn):
三角形內(nèi)角和等于180度,是三角形的一條重要性質(zhì),有著廣泛的應(yīng)用。雖然學(xué)生在小學(xué)已經(jīng)知道這一結(jié)論,但沒(méi)有從理論的角度進(jìn)行推理論證,因此三角形內(nèi)角和等于180度的證明及應(yīng)用是本節(jié)課的重點(diǎn)。
另外,由于學(xué)生還沒(méi)有正 式學(xué)習(xí)幾何證明,而三角形內(nèi)角和等于180度的證明難度又較大,因此證明三角形內(nèi)角和等于180度也是本節(jié)課的難點(diǎn)。
突破難點(diǎn)的關(guān)鍵:讓學(xué)生通過(guò)動(dòng)手實(shí)踐獲得感性認(rèn)識(shí),將實(shí)物圖形抽象轉(zhuǎn)化為幾何圖形得出所需輔助線。
基于以上分析和數(shù)學(xué)課程標(biāo)準(zhǔn)的要求,我制定了本節(jié)課的教學(xué)目標(biāo),下面我從以下三個(gè)方面進(jìn)行說(shuō)明。
(一)知識(shí)與技能目標(biāo):
會(huì)用平行線的性質(zhì)與平角的定義證明三角形的內(nèi)角和等于1800,能用三角形內(nèi)角和等于180度進(jìn)行角度計(jì)算和簡(jiǎn)單推理,并初步學(xué)會(huì)利用輔助線解決問(wèn)題,體會(huì)轉(zhuǎn)化思想在解決問(wèn)題中的應(yīng)用。
(二)過(guò)程與方法目標(biāo):
經(jīng)歷拼圖試驗(yàn)、合作交流、推理論證的過(guò)程,體現(xiàn)在“做中學(xué)”,發(fā)展學(xué)生的合 情推理能力和邏輯思維能力。
(三)情感、態(tài)度價(jià)值觀目標(biāo):
通過(guò)操作、交流、探究、表述、推理等活動(dòng)培養(yǎng)學(xué)生的合作精神,體會(huì)數(shù)學(xué)知識(shí)內(nèi)在的聯(lián)系與嚴(yán)謹(jǐn)性,鼓勵(lì)學(xué)生大膽質(zhì)疑,敢于提出不同見(jiàn)解,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣。
七年級(jí)學(xué)生的特點(diǎn)是模仿力強(qiáng),喜歡動(dòng)手,思維活躍,但思維往往依賴于直觀具體的形象,而學(xué)生在小學(xué)已通過(guò)量、拼、折等實(shí)驗(yàn)的方法得出了三角形內(nèi)角和等于180度這一結(jié)論,只是沒(méi)有從理論的角度去研究它,學(xué)生現(xiàn)在已具備了簡(jiǎn)單說(shuō)理的能力,同時(shí)已學(xué)習(xí)了平行線的性質(zhì)和判定及平角的定義,這就為學(xué)生自主探究,動(dòng)手實(shí)驗(yàn),討論交流、嘗試證明做好了準(zhǔn)備。
根據(jù)新課程標(biāo)準(zhǔn)的要求,學(xué)習(xí)活動(dòng)應(yīng)體現(xiàn)學(xué)生身心發(fā)展特點(diǎn),應(yīng)有利于引導(dǎo)學(xué)生主動(dòng)探索和發(fā)現(xiàn),因此,我采用了動(dòng)手操作— 觀察實(shí)驗(yàn)—猜想論證的探究式教學(xué)方法,整個(gè)探究學(xué)習(xí)的過(guò)程充滿了師生之間,生生之間的交流和互動(dòng),體 現(xiàn)了教師是教學(xué)活動(dòng)的組織者、引導(dǎo)者、合作 者,學(xué)生才是學(xué)習(xí)的主體。并教給學(xué)生通過(guò)動(dòng)手實(shí)驗(yàn)、觀察思考、抽象概括從而獲得知識(shí)的學(xué)習(xí)方法,培養(yǎng)他們利用舊知識(shí)獲取新知識(shí)的能力。
我結(jié)合七年級(jí)學(xué)生的年齡特點(diǎn),采用了“1.情景激趣 引出課題”的環(huán)節(jié)引入課題,這樣可以激發(fā)學(xué)生學(xué)習(xí)興趣和求知欲,為探索新知識(shí)創(chuàng)造一個(gè)最佳的心理和認(rèn)知環(huán)境。讓學(xué)生說(shuō)明三角形內(nèi)角和是180度,是本節(jié)課的重點(diǎn)、難點(diǎn),為此我設(shè)計(jì)了“2.自主探索 動(dòng)手實(shí)驗(yàn) ”“3.討論交流 嘗試證明”以下兩個(gè)環(huán)節(jié)。 定理的掌握必須要有訓(xùn)練作為依托,因此我設(shè)計(jì)了“4.應(yīng)用新知 鞏固提高。為了培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,在競(jìng)爭(zhēng)中體驗(yàn)成功的快樂(lè)。我設(shè)計(jì)了“5. ‘漁技’大比拼”這4道習(xí)題既含蓋了方程的思想又包括了整體的思想,還讓學(xué)生提前感受到了反證法的方法,有利于學(xué)生掌握重要的數(shù)學(xué)思想方法?;仡櫴谷擞洃浬羁蹋此即偃诉M(jìn)步。在“6.暢談體會(huì) 課外延伸 ”這一環(huán)節(jié)我選擇從三個(gè)方面,讓學(xué)生進(jìn)行 回顧反思和作業(yè)補(bǔ)充。我認(rèn)為學(xué)生要從一堂課中得到收獲不僅僅是知識(shí)上的,更重要的是讓他們通過(guò)這種方式,獲取比知 識(shí)本身更重要的東西,那就是數(shù)學(xué)方法,數(shù)學(xué)能力以及對(duì)數(shù)學(xué)的積極情感。
本節(jié)課的設(shè)計(jì)從學(xué)生已有的知識(shí)經(jīng)驗(yàn)出發(fā),遵循學(xué)生的認(rèn)知規(guī)律,將實(shí)物拼圖與說(shuō)理論證有機(jī)結(jié)合,在動(dòng)手操作,合情推理的基礎(chǔ)上進(jìn)行嚴(yán)密的推理論證,使學(xué)生對(duì)知識(shí)的認(rèn)識(shí)從感性逐步上升到理性。以問(wèn)題為載體,在探究解決問(wèn)題策略的過(guò)程中學(xué)會(huì)知識(shí)、感悟方法、訓(xùn)練思維、發(fā)展能力,練習(xí)的設(shè)計(jì)起點(diǎn)低、范圍廣、有梯度,以滿足不同程度學(xué)生的需要。樹立大數(shù)學(xué)觀 ,把課堂探究 活動(dòng)延伸到課外,在課與課之間,新舊知識(shí)之間,數(shù)學(xué)與生活之間搭建橋梁,為學(xué)生長(zhǎng)遠(yuǎn)的發(fā)展奠基。
本節(jié)課的教學(xué)在一種輕松愉快的氛圍中完成,大部分學(xué)生能參與活動(dòng)中,突出了重點(diǎn) ,突破了難點(diǎn)。完成了教學(xué)任務(wù)。取得了較好的教學(xué)效果。練習(xí)除注重基礎(chǔ)外 并進(jìn)行了延伸。拓寬了學(xué)生思維的空間。美中不足的是,還有少部分學(xué)習(xí)基礎(chǔ)較差的學(xué)生可能沒(méi)有在參與活動(dòng)中去思考,收獲不大。
新課程的教學(xué)評(píng)價(jià)對(duì)老師和學(xué)生都提出了新的要求 :因此整個(gè)教學(xué)過(guò)程中我對(duì)學(xué)生的如下方面作出了多元化的關(guān)注:1、關(guān)注學(xué)生探索結(jié)論、分析思路和方法的過(guò)程。2、關(guān)注學(xué)生說(shuō)理的能力和水平。3、關(guān)注學(xué)生參與教學(xué)活動(dòng)的程度。以期待人人都能學(xué)有 所得,不同的學(xué)生在課堂上得到不同的發(fā)展。
以上是我對(duì)這節(jié)課的初淺認(rèn)識(shí),希望得能到各位專家、各位老師的指導(dǎo),謝謝大家!
三角形的內(nèi)角和聽(tīng)課心得體會(huì)篇九
一、說(shuō)課內(nèi)容:北師大版義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教材小學(xué)數(shù)學(xué)四年級(jí)下冊(cè)第二單元第三節(jié)----《三角形的內(nèi)角和》一課。
二、教材分析:
在這一環(huán)節(jié)我要闡述四方面的內(nèi)容:
1、三角形的內(nèi)角和”是三角形的一個(gè)重要性質(zhì),是“空間與圖形”領(lǐng)域的重要內(nèi)容之一,學(xué)好它有助于學(xué)生理解三角形內(nèi)角之間的關(guān)系,教材呈現(xiàn)教學(xué)內(nèi)容時(shí),安排了一系列的實(shí)驗(yàn)操作活動(dòng)。讓學(xué)生通過(guò)探索,發(fā)現(xiàn)三角形的內(nèi)角和是180度。
2、學(xué)情分析:
學(xué)生已經(jīng)知道了三角形的概念、分類,熟悉了各角的特點(diǎn),掌握了量角的方法。也可能有部分學(xué)生知道了三角形內(nèi)角和是180°的結(jié)論。
3、教學(xué)目標(biāo):
a、讓學(xué)生親自動(dòng)手,發(fā)現(xiàn),證實(shí)三角形的內(nèi)角和等于180度。并能初步運(yùn)用這一性質(zhì)解決有一些實(shí)際問(wèn)題。
b、在經(jīng)歷“觀察、測(cè)量、撕拼、折疊”的驗(yàn)證的過(guò)程中培養(yǎng)學(xué)生觀察能力,歸納能力、合作能力和創(chuàng)造能力。
4、教學(xué)重難點(diǎn):
經(jīng)歷三角形的內(nèi)角和是180度這一知識(shí)的形成,發(fā)展和應(yīng)用的全過(guò)程。
5、教學(xué)難點(diǎn):
讓學(xué)生用不同方法驗(yàn)證三角形的內(nèi)角和是180度。
三、教學(xué)準(zhǔn)備:
在備課過(guò)程中,我閱讀了農(nóng)遠(yuǎn)光盤中多位名師的教學(xué)案例來(lái)完善自己的教學(xué)設(shè)計(jì),并收集了農(nóng)遠(yuǎn)光盤中的多媒體課件,用課件適時(shí)播放。
四、教法分析
為了使教學(xué)目標(biāo)得以落實(shí),談?wù)劚菊n的教法和學(xué)法。新課程標(biāo)準(zhǔn)強(qiáng)調(diào)“教學(xué)要從學(xué)生已有的經(jīng)驗(yàn)出發(fā),讓學(xué)生親身經(jīng)歷將實(shí)際問(wèn)題抽象成數(shù)學(xué)模型并進(jìn)行解釋與應(yīng)用的過(guò)程。要激發(fā)學(xué)生的學(xué)習(xí)積極性,向?qū)W生提供充分從事數(shù)學(xué)活動(dòng)的機(jī)會(huì),讓他們積極主動(dòng)地探索,解決數(shù)學(xué)問(wèn)題,發(fā)現(xiàn)數(shù)學(xué)規(guī)律,獲得數(shù)學(xué)經(jīng)驗(yàn);而教師只是學(xué)生學(xué)習(xí)的組織者、引導(dǎo)者和合作者。我采用了趣味教學(xué)法、情境教學(xué)法、引導(dǎo)發(fā)現(xiàn)法、合作探究法和直觀演示法。
五、學(xué)法分析
在學(xué)法指導(dǎo)上,我把學(xué)習(xí)的主動(dòng)權(quán)交給學(xué)生,引導(dǎo)學(xué)生通過(guò)動(dòng)手、動(dòng)腦、動(dòng)口,積極參與知識(shí)形成的全過(guò)程。體現(xiàn)了學(xué)生動(dòng)手實(shí)踐、合作交流,自主探索的學(xué)習(xí)方式。
六:教學(xué)流程:
(一)猜迷激趣,復(fù)習(xí)舊知。,
興趣是最好的老師,開課我出示了一則謎語(yǔ)。調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性。
形狀是似座山,穩(wěn)定性能堅(jiān)。三竿首尾連,學(xué)問(wèn)不簡(jiǎn)單。(打一平面圖形)
由謎底又得出了一個(gè)對(duì)三角形你們有哪些了解的問(wèn)題,喚醒學(xué)生頭腦中有關(guān)三角形的知識(shí),同時(shí)很自然引出對(duì)“三角形內(nèi)角和”一詞的講解,為后面的探索奠定基礎(chǔ)。
(二)創(chuàng)設(shè)情境,巧引新知(課件出示)
(三)驗(yàn)證猜想,主動(dòng)探究。
本環(huán)節(jié)是學(xué)生獲取知識(shí)、提高能力的一個(gè)重要過(guò)程。我有目的、有意識(shí)的引導(dǎo)學(xué)生主動(dòng)參與實(shí)踐活動(dòng)、經(jīng)歷知識(shí)的形成過(guò)程。
“你能運(yùn)用已有的知識(shí)和身邊的學(xué)具想辦法驗(yàn)證你的猜想嗎?”學(xué)生思考片刻后,我出示學(xué)習(xí)提綱:
a、先獨(dú)立思考,你想怎樣驗(yàn)證?
b、再小組合作探究,運(yùn)用多種方法驗(yàn)證。
c、最后匯報(bào),展示你的驗(yàn)證方法。
1.量角求和
這個(gè)驗(yàn)證方法應(yīng)是全班同學(xué)都能想到的,因此,在這一環(huán)節(jié)我設(shè)計(jì)了小組活動(dòng)的形式。讓小組成員在練習(xí)本上任意地畫幾個(gè)三角形進(jìn)行測(cè)量并記錄。學(xué)生通過(guò)畫、量、算,最后發(fā)現(xiàn)三角形的三個(gè)內(nèi)角和都是180度。
2.拼角求和
通過(guò)討論,有的小組可能會(huì)想到把三個(gè)角撕開,再拼在一起,剛好拼成了一個(gè)平角,由于學(xué)生在以前學(xué)過(guò)平角是180度,很快就發(fā)現(xiàn)這三個(gè)三角形的內(nèi)角和都是180度。為了讓全班學(xué)生能夠真切,清晰地看到撕拼的過(guò)程,我利用了多媒體課件進(jìn)行了演示。(課件出示)課件播放后學(xué)生一目了然,攻克了本課的一個(gè)教學(xué)重點(diǎn)。
3.折角求和
有的小組還可能想到把三個(gè)角折在一起,也剛好形成一個(gè)平角。但如何折才能夠使三個(gè)內(nèi)角剛好組成平角呢?這一驗(yàn)證方法是本課教學(xué)的一個(gè)難點(diǎn)。
在學(xué)生展示完驗(yàn)證方法后,我又讓每位學(xué)生選擇自己喜歡的方法,再去驗(yàn)證剛才的發(fā)現(xiàn)。最后歸納出結(jié)論:所有三角形的內(nèi)角和都是180度。
(四)應(yīng)用新知,解決問(wèn)題。
數(shù)學(xué)離不開練習(xí)。本節(jié)課我把圖像、動(dòng)畫等引入課件,使練習(xí)的內(nèi)容具有簡(jiǎn)單的背景與情節(jié),使學(xué)生對(duì)解題產(chǎn)生了濃厚的興趣。
我設(shè)計(jì)了四個(gè)層次的練習(xí):有序而多樣。
1)基本練習(xí):讓學(xué)生通過(guò)這一習(xí)題,掌握求未知角的一般方法。
2)實(shí)踐運(yùn)用:這一習(xí)題的設(shè)計(jì)是為了讓學(xué)生知道生活中到處都有數(shù)學(xué),數(shù)學(xué)能解決生活實(shí)際問(wèn)題,真切體驗(yàn)到學(xué)的是有價(jià)值的數(shù)學(xué)。
3)鞏固提高:使學(xué)生了解在間接條件下求未知角的方法。
4)拓展延伸。讓學(xué)生體會(huì)到數(shù)學(xué)中輔助線的橋梁作用,在潛移默化中滲透一個(gè)重要數(shù)學(xué)思想―――轉(zhuǎn)化,為以后學(xué)習(xí)數(shù)學(xué)打下堅(jiān)實(shí)的基礎(chǔ)。
(五)全課小結(jié)完善新知
1、這節(jié)課我們學(xué)到了什么知識(shí)?2、你有什么收獲?
通過(guò)學(xué)生談這節(jié)課的收獲,對(duì)所學(xué)知識(shí)和學(xué)習(xí)方法進(jìn)行系統(tǒng)的整理歸納。
(六)板書設(shè)計(jì)
三角形的內(nèi)角和
量角撕拼折角拼圖
三角形的內(nèi)角和是180度。
六、說(shuō)效果預(yù)測(cè):
本課中,學(xué)生通過(guò)動(dòng)手操作,測(cè)量、撕拼、折疊等實(shí)驗(yàn)活動(dòng),得到的不僅是三角形內(nèi)角和的知識(shí),也使學(xué)生學(xué)到了怎么由已知探究未知的思維方式與方法,培養(yǎng)了他們主動(dòng)探索的精神。促進(jìn)學(xué)生良好思維品質(zhì)的形成,達(dá)到預(yù)想的教學(xué)目的。使學(xué)生在探索中學(xué)習(xí),在探索中發(fā)現(xiàn),在探索中成長(zhǎng)!
三角形的內(nèi)角和聽(tīng)課心得體會(huì)篇十
《三角形的內(nèi)角和》是九年制義務(wù)教育人教版四年級(jí)下冊(cè)第五章《三角形》的第二節(jié)內(nèi)容,本節(jié)課是在學(xué)生學(xué)習(xí)了與三角形有關(guān)的概念、邊、角之間的關(guān)系的基礎(chǔ)上,讓學(xué)生動(dòng)手操作,通過(guò)一些活動(dòng)得出“三角形的內(nèi)角和等于180°”成立的理由,由淺入深,循序漸進(jìn),引導(dǎo)學(xué)生觀察、猜測(cè)、實(shí)驗(yàn),總結(jié)。逐步培養(yǎng)學(xué)生的邏輯推理能力。
“問(wèn)題的提出往往比解答問(wèn)題更重要”,其實(shí)三角形內(nèi)角和是多少?大部分的學(xué)生已經(jīng)知道了這一知識(shí),所以很輕松地就可以答出。但是只是“知其然而不知其所以然”,所以我特別重視問(wèn)題的提出,再讓學(xué)生各抒已見(jiàn),暢所欲言,鼓勵(lì)學(xué)生傾聽(tīng)他人的方法。
本課的重點(diǎn)就是要讓學(xué)生知道“知其然還要知其所以然”,所以在第二環(huán)節(jié)里。鼓勵(lì)學(xué)生親自動(dòng)手操作驗(yàn)證猜想。為此,我設(shè)計(jì)了大量的操作活動(dòng):畫一畫、量一量、剪一剪、折一折、拼一拼、撕一撕等,我沒(méi)有限定了具體的操作環(huán)節(jié),但為了節(jié)省時(shí)間,讓學(xué)生分組活動(dòng),感覺(jué)更利于我的目標(biāo)落實(shí)。但在分組活動(dòng)中,我更注意解決學(xué)生活動(dòng)中遇到了問(wèn)題的解決,比如說(shuō)畫,老師走入學(xué)生中指導(dǎo)要領(lǐng),因此學(xué)生交上來(lái)畫的作品也非常的漂亮。學(xué)生觀察能力得到了培養(yǎng)。再比如說(shuō)折,有的學(xué)生就是折不好,因?yàn)槟堑谝徽塾幸欢ǖ碾y度,它不僅要頂點(diǎn)和邊的重合,其實(shí)還要折痕和邊的平行,這個(gè)認(rèn)識(shí)并不是每個(gè)學(xué)生都能達(dá)到的。教師也要走上前去點(diǎn)撥一下。再比如撕,如果事先沒(méi)有標(biāo)好具體的角,撕后就找不到要拼的角了……所以在限定的操作活動(dòng)中,既體現(xiàn)了老師的“扶”又體現(xiàn)了老師的“放”。做到了“扶”而不死,“伴”而有度,“放”而不亂。我還制作了動(dòng)畫課件,更直觀的展示了活動(dòng)過(guò)程,生動(dòng)又形象,吸引學(xué)生的注意力。使學(xué)生感受到每種活動(dòng)的特點(diǎn),這對(duì)他認(rèn)識(shí)能力的提高是有幫助的。在此環(huán)節(jié)增加了學(xué)生的合作探究精神培養(yǎng)。
在歸納總結(jié)環(huán)節(jié),有意識(shí)地培養(yǎng)學(xué)生的說(shuō)理能力,邏輯推理能力,增強(qiáng)了語(yǔ)言表達(dá)能力。
最后通過(guò)習(xí)題鞏固三角形內(nèi)角和知識(shí),培養(yǎng)學(xué)生思維的廣闊性,為了強(qiáng)化學(xué)生對(duì)這節(jié)課的掌握,我除了設(shè)計(jì)了一些基本的已知三角形二個(gè)內(nèi)角求第三個(gè)角的練習(xí)題外,還設(shè)計(jì)了幾道習(xí)題,第一道是已知一個(gè)三角形有二個(gè)銳角,你能判斷出是什么三角形嗎?通過(guò)這一問(wèn)題的思考,使學(xué)生明白,任意三角形都有二個(gè)銳角,因此直角三角形的定義是有一個(gè)角是直角的三角形叫直角三角形;鈍角三角形的定義是有一個(gè)鈍角的三角形叫鈍角三角形;而銳角三角形則必須是三個(gè)角都是銳角的三角形才是銳角三角形的道理。這道題有助于幫助學(xué)生解決三角形按角分的定義的理解。第二道題是一個(gè)三角形最大角是60°,它是什么三角形?通過(guò)對(duì)此題的研究,使學(xué)生發(fā)現(xiàn)判斷是什么三角形主要看最大角的大小,如果最大角是銳角,也可以判斷是銳角三角形。同時(shí)加深了學(xué)生對(duì)等邊三角形的特點(diǎn)的認(rèn)識(shí)和理解。第三題我拓展延伸到三角形外角,第四題我設(shè)計(jì)了多邊形的內(nèi)角和的探究。
三角形的內(nèi)角和聽(tīng)課心得體會(huì)篇十一
通過(guò)猜想、驗(yàn)證,了解三角形的內(nèi)角和是180度。在學(xué)習(xí)的.過(guò)程中進(jìn)一步激發(fā)學(xué)生探索數(shù)學(xué)規(guī)律的興趣,初步感知計(jì)算多邊形內(nèi)角和的公式。
三角形的內(nèi)角和課前準(zhǔn)備電腦課件、學(xué)具卡片。
出示三角尺中的一個(gè),提問(wèn):誰(shuí)來(lái)說(shuō)說(shuō)三角尺上的三個(gè)角分別是多少度?
引導(dǎo)學(xué)生說(shuō)出90度、60度、30度。
出示另一個(gè)三角尺,引導(dǎo)學(xué)生分別說(shuō)出三個(gè)角的度數(shù):90度、45度、45度。
提問(wèn):請(qǐng)同學(xué)們?nèi)芜x一個(gè)三角尺,算出他們?nèi)齻€(gè)角一共多少度?
學(xué)生計(jì)算后指名回答。
師:三角尺三個(gè)角的和是180度。
提問(wèn):是不是任一個(gè)三角形三個(gè)角的和都是180度呢?請(qǐng)同學(xué)們?cè)谧詡浔旧先萎嬕粋€(gè)三角形,量出它們?nèi)齻€(gè)角分別是多少度,再求出它們的和,然后小組內(nèi)交流。
學(xué)生小組活動(dòng),教師了解學(xué)生情況,個(gè)別同學(xué)加以輔導(dǎo)。
全班交流:讓學(xué)生分別說(shuō)出三個(gè)角的度數(shù)以及它們的和。
提問(wèn):你發(fā)現(xiàn)了什么?
:任何一個(gè)三角形三個(gè)角的和都是180度。利用三角形的這一性質(zhì),我們可以解決許多問(wèn)題。
要求學(xué)生先計(jì)算,再用量角器量,最后比較結(jié)果是否相同?讓學(xué)生說(shuō)說(shuō)計(jì)算的方法。
教師說(shuō)明:即使結(jié)果不完全一樣,是因?yàn)闇y(cè)量的結(jié)果存在誤差,我們還是以
計(jì)算的結(jié)果為準(zhǔn)。
完成想想做做的題目。
三角形的內(nèi)角和聽(tīng)課心得體會(huì)篇十二
一、構(gòu)建新的課堂教學(xué)模式。
傳統(tǒng)的教學(xué)往往只重視對(duì)結(jié)論的記憶和模仿,而這節(jié)課老師把學(xué)生的學(xué)習(xí)定位在自主建構(gòu)知識(shí)的基礎(chǔ)上,建立了“猜想——驗(yàn)證——?dú)w納——運(yùn)用”的教學(xué)模式。
二、培養(yǎng)學(xué)生勇于猜想,大膽創(chuàng)新的精神。
教學(xué)中老師遵循的基本教學(xué)原則是激勵(lì)學(xué)生展開積極的思維活動(dòng)。先創(chuàng)設(shè)猜角的游戲情景,讓學(xué)生對(duì)三角形的三個(gè)角的度數(shù)關(guān)系產(chǎn)生好奇,引發(fā)學(xué)生的探究欲望。
三、為學(xué)生提供了大量數(shù)學(xué)活動(dòng)的機(jī)會(huì),讓學(xué)生真正成為學(xué)習(xí)的主人。
“給學(xué)生一些權(quán)利,讓他們自己選擇;讓他們自己去鍛煉;給學(xué)生一些問(wèn)題,讓他們自己去探索;給學(xué)生一片空間,讓學(xué)生自己飛翔?!边@正是課堂教學(xué)改革中學(xué)生的主體性的表現(xiàn)。所以在這節(jié)課中老師樹立了數(shù)學(xué)教學(xué)為學(xué)生服務(wù),創(chuàng)設(shè)有助于學(xué)生自主學(xué)習(xí),合作交流的機(jī)會(huì),通過(guò)想辦法求三角形的內(nèi)角和這一核心問(wèn)題,引發(fā)學(xué)生去思考,去探究。這樣學(xué)生的潛能的以激活,思維展開了想象,能力得以發(fā)展。
四、給學(xué)生一個(gè)開放探究的學(xué)習(xí)空間。
培養(yǎng)學(xué)生的問(wèn)題意識(shí)是數(shù)學(xué)課堂教學(xué)的核心問(wèn)題,所以課堂上學(xué)生的學(xué)習(xí)過(guò)程就是解決問(wèn)題的過(guò)程,當(dāng)一個(gè)問(wèn)題解決完后又引發(fā)出新的問(wèn)題,使學(xué)生體會(huì)到成功的喜悅,使數(shù)學(xué)課堂充滿挑戰(zhàn)。所以課堂上老師沒(méi)有因?qū)W生發(fā)現(xiàn)三角形內(nèi)角和是180度而罷休,然后用一個(gè)大的三角形剪成兩個(gè)小的,用兩個(gè)小的拼成大的內(nèi)角和延伸,使學(xué)生悟出規(guī)律,這樣學(xué)生帶著問(wèn)題在課后向更高的學(xué)習(xí)目標(biāo)繼續(xù)探索,一追求更大的成功。
一堂好課不應(yīng)是自始至終的高潮和精彩,也不必是高科技現(xiàn)代教育技術(shù)的集中展示。一堂好課不是看它的熱鬧程度,而在于學(xué)生從中得到了什么,它留給人們的應(yīng)是思考、啟示和回味。
將本文的word文檔下載到電腦,方便收藏和打印。
三角形的內(nèi)角和聽(tīng)課心得體會(huì)篇十三
在整個(gè)教學(xué)設(shè)計(jì)上謝老師充分體現(xiàn)“以學(xué)生發(fā)展為本”教育理念,將教學(xué)思路擬定為“談話激趣設(shè)疑導(dǎo)入——猜想——驗(yàn)證——鞏固內(nèi)化——拓展延伸”,努力構(gòu)建探索型的課堂教學(xué)模式。具體體現(xiàn)在以下幾點(diǎn):
1、善用激趣設(shè)疑導(dǎo)入:教學(xué)的藝術(shù)不在于傳授知識(shí),而在于喚醒、激發(fā)和鼓勵(lì)。剛開始上課,謝老師用選王大會(huì)設(shè)懸念,三種類型的角在激烈的爭(zhēng)執(zhí),到的誰(shuí)的內(nèi)角和大呢?這樣,在很短的時(shí)間內(nèi)最大限度的激發(fā)學(xué)生探究數(shù)學(xué)的愿望和興趣,而且也很自然地揭示了課題。
2、巧用猜想:學(xué)生有了探索的愿望和興趣,可是不能沒(méi)有目標(biāo)的去探索,那樣只會(huì)事倍功半,甚至沒(méi)有結(jié)果,這時(shí)謝老師就提到到底三角形的內(nèi)角和是不是180度呢,我們總不能口說(shuō)無(wú)憑吧?使后邊的探索和驗(yàn)證活動(dòng)有了明確的目標(biāo)。
3、善用驗(yàn)證:學(xué)生形成統(tǒng)一的猜想{即三角形的內(nèi)角和等于180度}后,謝老師就把課堂大量的時(shí)間和空間留給學(xué)生,讓他們開展有針對(duì)性的數(shù)學(xué)探究活動(dòng),在活動(dòng)中,把放和引有機(jī)的結(jié)合,鼓勵(lì)學(xué)生積極開動(dòng)腦筋,從不同的途徑探索解決問(wèn)題的方法。不但讓每個(gè)學(xué)生自主參與驗(yàn)證活動(dòng),而且使學(xué)生在經(jīng)歷觀察、操作、分析、推理和想象活動(dòng)過(guò)程中解決問(wèn)題,發(fā)展空間觀念和論證推理能力。具體過(guò)程為:量一量——拼一拼——看一看。
4、善于引導(dǎo)鞏固內(nèi)化:俗話說(shuō)的好:“熟能生巧”。數(shù)學(xué)離不開練習(xí),要掌握知識(shí),形成技能技巧,一定要通過(guò)練習(xí)。養(yǎng)成良好的思維品質(zhì)也要通過(guò)一定的思考練習(xí),課程標(biāo)準(zhǔn)提倡練習(xí)的有效性。對(duì)此,謝老師非常注意將數(shù)學(xué)的思考融入不同層次的練習(xí)之中,很好的發(fā)揮練習(xí)的作用,如第一關(guān)牛刀小試:給出一個(gè)三角形的兩個(gè)角度,學(xué)生求第三個(gè)角,從中培養(yǎng)學(xué)生應(yīng)用意識(shí)和解決問(wèn)題的能力;第三關(guān)過(guò)關(guān)斬將:讓學(xué)生判斷有兩個(gè)小三角形拼成的三角形的內(nèi)角和的度數(shù),使學(xué)生在圖形變化的過(guò)程中掌握知識(shí),培養(yǎng)思維的靈活性,從中發(fā)展學(xué)生的空間觀念和空間想象能力。這些練習(xí)設(shè)計(jì)目的明確,針對(duì)性強(qiáng),使學(xué)生不但鞏固了知識(shí),更重要的是數(shù)學(xué)思維得到不斷的發(fā)展。
5、有一定的拓展創(chuàng)新:數(shù)學(xué)具有嚴(yán)密的邏輯性和抽象性。而學(xué)生學(xué)習(xí)內(nèi)容的呈現(xiàn)是從簡(jiǎn)單到復(fù)雜,思維方式是從具體到抽象的一個(gè)循序漸進(jìn)的過(guò)程,前面學(xué)習(xí)的知識(shí)往往是后面進(jìn)一步學(xué)習(xí)的基礎(chǔ)。要培養(yǎng)學(xué)生思維的靈活性,可以先讓學(xué)生學(xué)會(huì)對(duì)知識(shí)的遷移。本課最后,謝老師設(shè)計(jì)了這樣一道題目:學(xué)了三角形的內(nèi)角和后,你知道四邊形的內(nèi)角和是多少度嗎?這道題通過(guò)對(duì)本節(jié)課所學(xué)知識(shí)的遷移就可以完成,既能對(duì)學(xué)生進(jìn)行思維訓(xùn)練,又能培養(yǎng)學(xué)生應(yīng)用知識(shí)的能力,更能培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新精神。
總之,本節(jié)課教學(xué)活動(dòng)中謝老師充分體現(xiàn)以下特點(diǎn):以學(xué)生發(fā)展為本,以學(xué)生為主體,思維為主線的思想;充分關(guān)注學(xué)生的自主探究與合作交流;練習(xí)體現(xiàn)了層次性,知識(shí)技能得于落實(shí)和發(fā)展。是一節(jié)非常成功的課。
三角形的內(nèi)角和聽(tīng)課心得體會(huì)篇十四
一、構(gòu)建新的課堂教學(xué)模式。
傳統(tǒng)的教學(xué)往往只重視對(duì)結(jié)論的記憶和模仿,而這節(jié)課老師把學(xué)生的學(xué)習(xí)定位在自主建構(gòu)知識(shí)的.基礎(chǔ)上,建立了“猜想——驗(yàn)證——?dú)w納——運(yùn)用”的教學(xué)模式。
二、培養(yǎng)學(xué)生勇于猜想,大膽創(chuàng)新的精神。
教學(xué)中趙老師遵循的基本教學(xué)原則是激勵(lì)學(xué)生展開積極的思維活動(dòng).先創(chuàng)設(shè)猜角的游戲情景,讓學(xué)生對(duì)三角形的三個(gè)角的度數(shù)關(guān)系產(chǎn)生好奇,引發(fā)學(xué)生的探究欲望.
三、為學(xué)生提供了大量數(shù)學(xué)活動(dòng)的機(jī)會(huì),讓學(xué)生真正成為學(xué)習(xí)的主人。
“給學(xué)生一些權(quán)利,讓他們自己選擇;讓他們自己去鍛煉;給學(xué)生一些問(wèn)題,讓他們自己去探索;給學(xué)生一片空間,讓學(xué)生自己飛翔.”這正是課堂教學(xué)改革中學(xué)生的主體性的表現(xiàn)。所以在這節(jié)課中趙老師樹立了數(shù)學(xué)教學(xué)為學(xué)生服務(wù),創(chuàng)設(shè)有助于學(xué)生自主學(xué)習(xí),合作交流的機(jī)會(huì),通過(guò)想辦法求三角形的內(nèi)角和這一核心問(wèn)題,引發(fā)學(xué)生去思考,去探究.這樣學(xué)生的潛能的以激活,思維展開了想象,能力得以發(fā)展.
四、給學(xué)生一個(gè)開放探究的學(xué)習(xí)空間.
培養(yǎng)學(xué)生的問(wèn)題意識(shí)是數(shù)學(xué)課堂教學(xué)的核心問(wèn)題,所以課堂上學(xué)生的學(xué)習(xí)過(guò)程就是解決問(wèn)題的過(guò)程,當(dāng)一個(gè)問(wèn)題解決完后又引發(fā)出新的問(wèn)題,使學(xué)生體會(huì)到成功的喜悅,使數(shù)學(xué)課堂充滿挑戰(zhàn).所以課堂上老師沒(méi)有因?qū)W生發(fā)現(xiàn)三角形內(nèi)角和是180度而罷休,然后用一個(gè)大的三角形剪成兩個(gè)小的,用兩個(gè)小的拼成大的內(nèi)角和延伸,使學(xué)生悟出規(guī)律,這樣學(xué)生帶著問(wèn)題在課后向更高的學(xué)習(xí)目標(biāo)繼續(xù)探索,一追求更大的成功。
一堂好課不應(yīng)是自始至終的高潮和精彩,也不必是高科技現(xiàn)代教育技術(shù)的集中展示。一堂好課不是看它的熱鬧程度,而在于學(xué)生從中得到了什么,它留給人們的應(yīng)是思考、啟示和回味。
三角形的內(nèi)角和聽(tīng)課心得體會(huì)篇十五
“三角形的內(nèi)角和”是人教版小學(xué)數(shù)學(xué)四年級(jí)下冊(cè)第五單元第四節(jié)的內(nèi)容,“三角形的內(nèi)角和”是三角形的一個(gè)重要性質(zhì)。本課教學(xué)內(nèi)容不算多,學(xué)生只需要翻看課本就會(huì)知道三角形的內(nèi)角和是180°,但是陳麗老師并沒(méi)有讓學(xué)生這樣做?!皵?shù)學(xué)學(xué)習(xí)的過(guò)程實(shí)際上是數(shù)學(xué)活動(dòng)的過(guò)程”。課程標(biāo)準(zhǔn)要求我們“將課堂還給學(xué)生,讓課堂煥發(fā)生命的活力”,要求我們“努力營(yíng)造學(xué)生在教學(xué)活動(dòng)中獨(dú)立自主學(xué)習(xí)的時(shí)間和空間,使他們成為課堂教學(xué)中重要的參與者與創(chuàng)造者,落實(shí)學(xué)生的主體地位,促進(jìn)學(xué)生的自主學(xué)習(xí)和探究。”在教學(xué)中,陳老師力求探究,將教學(xué)思路擬定為“創(chuàng)設(shè)情境,激趣引題——自主合作,探究新知——交流釋疑,歸納總結(jié)——拓展應(yīng)用,反思升華”四個(gè)環(huán)節(jié),努力構(gòu)建探究型的課堂教學(xué)模式。具體體現(xiàn)在以下幾個(gè)方面:
課一開始,陳老師創(chuàng)設(shè)了一個(gè)實(shí)踐操作的活動(dòng)情境:讓學(xué)生畫一個(gè)含有兩個(gè)直角的三角形。很顯然三角形是畫不出來(lái)的,學(xué)生同樣也不知道畫不出來(lái)。簡(jiǎn)單的活動(dòng)激活了學(xué)生的思維,讓他們產(chǎn)生了問(wèn)題:是不是三角形的角有些什么秘密呢?這樣,在很短的時(shí)間內(nèi)最大限度的激發(fā)學(xué)生探究數(shù)學(xué)的愿望和興趣,而且也很自然地揭示了課題。
在教學(xué)中,陳老師巧妙運(yùn)用“猜想、驗(yàn)證”的方式引導(dǎo)學(xué)生進(jìn)行自主學(xué)習(xí)和探究活動(dòng)。學(xué)生大膽猜想三角形的內(nèi)角和是180°,讓學(xué)生對(duì)問(wèn)題形成了統(tǒng)一的認(rèn)識(shí),使后邊的探索和驗(yàn)證活動(dòng)有了明確的目標(biāo)。這個(gè)時(shí)候,陳老師就把課堂大量的時(shí)間和空間留給學(xué)生,在學(xué)生交流探究設(shè)想和打算采用的方法后,放手讓每個(gè)同學(xué)自主參與驗(yàn)證活動(dòng),在經(jīng)歷觀察、操作、分析、推理和想象活動(dòng)過(guò)程中解決問(wèn)題,同時(shí)發(fā)展空間觀念和論證推理能力。驗(yàn)證的具體過(guò)程為:量角求和——撕角拼一拼——折角拼一拼。拼角的方法具有一般性,結(jié)論的形成不缺乏科學(xué)性。這個(gè)環(huán)節(jié)的設(shè)計(jì)更重要的是變“聽(tīng)數(shù)學(xué)”為“做數(shù)學(xué)”,讓學(xué)生在“做中學(xué)”。
學(xué)生在活動(dòng)中體驗(yàn),在交流中消除疑惑,獲得新知。這節(jié)課生與生、生與師的交流不僅僅停留在知識(shí)的層面上,陳老師還引導(dǎo)學(xué)生對(duì)獲得知識(shí)所用的方法進(jìn)行了總結(jié),加強(qiáng)了學(xué)法指導(dǎo)。
課程標(biāo)準(zhǔn)提倡練習(xí)的'有效性。本節(jié)課的練習(xí)設(shè)計(jì)陳老師非常注意將數(shù)學(xué)的思考融入不同層次的練習(xí)之中,很好的發(fā)揮練習(xí)的作用。兩個(gè)小三角形拼成一個(gè)較大的三角形互動(dòng)練習(xí)讓學(xué)生進(jìn)一步理解任意三角形的內(nèi)角和都是180°;后面的練習(xí)設(shè)計(jì)從圖形到文字,由一般到特殊;“開心一刻”更是把學(xué)生帶到無(wú)窮的學(xué)習(xí)樂(lè)趣之中。這些練習(xí)設(shè)計(jì)目的明確,針對(duì)性強(qiáng),使學(xué)生不但鞏固了知識(shí),更重要的是數(shù)學(xué)思維得到不斷的發(fā)展。
兩點(diǎn)建議:
2、學(xué)生的猜想結(jié)果都是180°,這時(shí)老師是否可以反問(wèn):你們是怎樣知道的?便于學(xué)生的學(xué)習(xí)活動(dòng)更流暢的進(jìn)入下一個(gè)環(huán)節(jié)。
總之,我個(gè)人認(rèn)為陳老師對(duì)“四步教學(xué)法”模式的把握是成功的,學(xué)生在這種課堂教學(xué)模式下的學(xué)習(xí)是自主的,是活動(dòng)的,也是快樂(lè)的。
三角形的內(nèi)角和聽(tīng)課心得體會(huì)篇十六
“三角形的內(nèi)角和”是人教版小學(xué)四年級(jí)下冊(cè)第五單元第四節(jié)的內(nèi)容?!叭切蔚膬?nèi)角和”是三角形的一個(gè)重要性質(zhì),是“空間與圖形”領(lǐng)域的重要內(nèi)容之一,學(xué)好它有助于學(xué)生理解三角形內(nèi)角之間的關(guān)系,也是進(jìn)一步學(xué)習(xí)幾何的基礎(chǔ)。經(jīng)過(guò)第一學(xué)段以及本單元的學(xué)習(xí),學(xué)生已經(jīng)具備一定的關(guān)于三角形的認(rèn)識(shí)的直接經(jīng)驗(yàn),已具備了一些相應(yīng)的三角形知識(shí)和技能,這為感受、理解、抽象“三角形的內(nèi)角和”的概念,打下了堅(jiān)實(shí)的基礎(chǔ)。
在教學(xué)中李老師充分體現(xiàn)了新課程標(biāo)準(zhǔn)的基本理念:讓學(xué)生“人人學(xué)有價(jià)值的數(shù)學(xué)”。從學(xué)生已有的經(jīng)驗(yàn)出發(fā),讓學(xué)生親身經(jīng)歷將實(shí)際問(wèn)題抽象成數(shù)學(xué)模型并進(jìn)行解釋與應(yīng)用的過(guò)程。善于激發(fā)學(xué)生的學(xué)習(xí)積極性,向?qū)W生提供充分從事數(shù)學(xué)活動(dòng)的機(jī)會(huì),讓他們積極主動(dòng)地探索,解決數(shù)學(xué)問(wèn)題,發(fā)現(xiàn)數(shù)學(xué)規(guī)律,獲得數(shù)學(xué)經(jīng)驗(yàn);李老師善于做好學(xué)生學(xué)習(xí)的組織者、引導(dǎo)者和合作者,在全面參與和了解學(xué)生的學(xué)習(xí)過(guò)程中起著對(duì)學(xué)生進(jìn)行積極的評(píng)價(jià),關(guān)注他們的學(xué)習(xí)方法、學(xué)習(xí)水平和情感態(tài)度,促使學(xué)生向著預(yù)定的目標(biāo)發(fā)展的作用”。
三角形的內(nèi)角和聽(tīng)課心得體會(huì)篇一
作為數(shù)學(xué)中重要的基礎(chǔ)概念之一,三角形內(nèi)角一直是中學(xué)數(shù)學(xué)中不可忽視的重要知識(shí)點(diǎn)。通過(guò)學(xué)習(xí)三角形內(nèi)角的概念、性質(zhì)以及計(jì)算方法,我深感受益匪淺。在學(xué)習(xí)過(guò)程中,我不僅掌握了三角形內(nèi)角和的計(jì)算方法,還加深了對(duì)三角形及其性質(zhì)的理解和應(yīng)用。下面我將分享我在學(xué)習(xí)三角形內(nèi)角和時(shí)的心得體會(huì)。
首先,在學(xué)習(xí)三角形內(nèi)角和的過(guò)程中,我深刻體驗(yàn)到了數(shù)學(xué)的邏輯性和巧妙性。根據(jù)三角形內(nèi)角和定理,三角形內(nèi)角和等于180度。但是,在這個(gè)定理背后是經(jīng)過(guò)推導(dǎo)和推論得來(lái)的,這就需要我們善于觀察和歸納。通過(guò)學(xué)習(xí)和思考,我逐漸理解了這個(gè)規(guī)律,并能夠熟練運(yùn)用。這種邏輯的思考方式讓我備受啟發(fā),提高了我的思維能力。
其次,學(xué)習(xí)三角形內(nèi)角和還有助于培養(yǎng)我的抽象思維能力。三角形是一個(gè)抽象的概念,它可以根據(jù)角的大小來(lái)分類,如銳角三角形、直角三角形和鈍角三角形。而在計(jì)算三角形內(nèi)角和時(shí),我們需要根據(jù)題目中給出的條件來(lái)推導(dǎo)并計(jì)算。在這個(gè)過(guò)程中,我學(xué)會(huì)了從具體的實(shí)例中抽象出概念和規(guī)律,這對(duì)我培養(yǎng)了抽象思維能力有很大的幫助。
進(jìn)一步地,學(xué)習(xí)三角形內(nèi)角和讓我體會(huì)到數(shù)學(xué)的實(shí)用性和應(yīng)用性。在實(shí)際生活中,我們經(jīng)常需要通過(guò)測(cè)量或計(jì)算來(lái)求解角度。而學(xué)習(xí)三角形內(nèi)角和可以幫助我們更好地理解和解決這類問(wèn)題。例如,在測(cè)量角的大小時(shí),我們可以通過(guò)計(jì)算相鄰的兩個(gè)角的和,以及已知角度,來(lái)求解未知角度。這種實(shí)用性的應(yīng)用讓我對(duì)學(xué)習(xí)數(shù)學(xué)更加有信心,也更多了一份對(duì)數(shù)學(xué)的興趣。
最后,通過(guò)學(xué)習(xí)三角形內(nèi)角和,我對(duì)三角形及其性質(zhì)有了更深入的理解。通過(guò)計(jì)算三角形內(nèi)角和,我們可以判斷三角形的類型和性質(zhì)。例如,如果一個(gè)三角形的內(nèi)角和等于180度,則可以判斷該三角形是一個(gè)平面三角形;又如,一個(gè)三角形有一個(gè)內(nèi)角等于90度,則可判斷該三角形是一個(gè)直角三角形。這種對(duì)三角形性質(zhì)的理解不僅幫助我更好地記憶和運(yùn)用知識(shí),同時(shí)也提高了我的幾何思維能力。
總之,學(xué)習(xí)三角形內(nèi)角和讓我深刻感受到了數(shù)學(xué)的邏輯性和巧妙性,培養(yǎng)了我的抽象思維能力,加深了對(duì)數(shù)學(xué)實(shí)用性和應(yīng)用性的理解,以及提高了對(duì)三角形及其性質(zhì)的認(rèn)知。這種學(xué)習(xí)體會(huì)將會(huì)伴隨我未來(lái)的學(xué)習(xí)和工作,成為我數(shù)學(xué)思維的熏陶和啟發(fā)。
三角形的內(nèi)角和聽(tīng)課心得體會(huì)篇二
首先,我們來(lái)了解一下三角形內(nèi)角和的概念。三角形內(nèi)角和指的是一個(gè)三角形內(nèi)的三個(gè)角的角度之和。也就是說(shuō),無(wú)論一個(gè)三角形的大小和形狀如何,其內(nèi)角和的總和是不變的。對(duì)于這個(gè)概念,我們需要進(jìn)行一些證明,并從中得出一些體會(huì)。
一、首先是證明三角形內(nèi)角和的公式:我們可以將一個(gè)任意的三角形劃分為兩個(gè)三角形,這樣就可以得到2個(gè)內(nèi)角和相等的三角形。根據(jù)這兩個(gè)三角形的性質(zhì),它們的內(nèi)角和分別為180度。因此,原先的三角形的內(nèi)角和等于2個(gè)相同的三角形內(nèi)角和之和,即2×180度。因此,三角形的內(nèi)角和公式為:180度×(n-2),其中n為三角形的邊數(shù)。這是三角形內(nèi)角和的公式,也就意味著,無(wú)論三角形的大小和形狀如何,其內(nèi)角和的總和是不變的。
二、接下來(lái),我想談?wù)勥@個(gè)公式所蘊(yùn)含的性質(zhì)。這個(gè)公式表明了任意一個(gè)三角形內(nèi)角和都是一個(gè)定值,這意味著我們?cè)谔幚砼c三角形有關(guān)的問(wèn)題時(shí),我們可以依據(jù)這個(gè)公式來(lái)計(jì)算。同時(shí),我們也可以通過(guò)這個(gè)定值來(lái)判斷三角形是否存在。如果我們知道三角形的任意兩個(gè)角的度數(shù),我們就可以通過(guò)計(jì)算得出第三個(gè)角的度數(shù),如果這個(gè)度數(shù)滿足三角形內(nèi)角和公式,那么這個(gè)三角形就是存在的??傊@個(gè)公式為我們解決與三角形相關(guān)的問(wèn)題提供了一個(gè)非常有效的工具。
三、其次,我們來(lái)看一下三角形內(nèi)角和的一些特殊情況。如果我們將一個(gè)三角形變形成一條直線,那么這條直線上的角的度數(shù)之和顯然是180度。這也就是說(shuō),當(dāng)一個(gè)三角形的一個(gè)角的度數(shù)等于另外兩個(gè)角的度數(shù)之和時(shí),這個(gè)三角形就成為了直角三角形。這個(gè)特殊情況提示我們,任何一個(gè)角的度數(shù)都不能超過(guò)180度,超過(guò)這個(gè)范圍就不再是三角形。
四、此外,我們還要關(guān)注三角形內(nèi)角和的一個(gè)重要性質(zhì)。在一個(gè)任意的三角形中,最大的內(nèi)角所對(duì)應(yīng)的邊是最長(zhǎng)的,而最小的內(nèi)角所對(duì)應(yīng)的邊則是最短的。這提示我們,我們可以通過(guò)測(cè)量三角形的三個(gè)角的度數(shù)來(lái)判斷三角形的大小和形狀。如果一個(gè)三角形的度數(shù)都相等,那么這是一個(gè)等邊三角形。如果只有兩個(gè)角度相等,那么這是一個(gè)等腰三角形。通過(guò)這些性質(zhì),我們可以進(jìn)行更復(fù)雜的三角形的處理。
五、最后,我想強(qiáng)調(diào)一個(gè)重點(diǎn),那就是,我們需要掌握三角形內(nèi)角和公式的證明過(guò)程。如果我們只是僅僅記住了這個(gè)公式,但是不理解其意義和原理,那么我們將很難理解和解決與三角形相關(guān)的問(wèn)題。因此,在我們學(xué)習(xí)三角形內(nèi)角和公式的過(guò)程中,我們需要認(rèn)真學(xué)習(xí)其證明過(guò)程,并從中理解和掌握重要的原理和性質(zhì)。只有這樣,我們才能夠真正掌握這個(gè)公式,以及它所包含的深刻含義。
三角形的內(nèi)角和聽(tīng)課心得體會(huì)篇三
三角形是初中數(shù)學(xué)中必不可少的重點(diǎn)知識(shí),而三角形內(nèi)角和也是重中之重的一部分。此次,我學(xué)習(xí)了三角形內(nèi)角和的證明方式,深刻認(rèn)識(shí)到這一部分的重要性,并從中獲得了一些有益的體驗(yàn)和心得。本文將探討我在學(xué)習(xí)過(guò)程中所獲得的這些經(jīng)驗(yàn)和感悟。
第二段:學(xué)習(xí)過(guò)程。
在學(xué)習(xí)三角形內(nèi)角和的證明中,我首先認(rèn)識(shí)到三角形是一個(gè)基本的平面圖形,由三條邊和三個(gè)內(nèi)角組成。內(nèi)角和是三角形重要的數(shù)學(xué)性質(zhì)之一,通常用于計(jì)算未知角度。在諸如三角函數(shù)等各種初等函數(shù)中都會(huì)涉及到三角形的內(nèi)角和。因此,通過(guò)證明三角形內(nèi)角和定理,我們可以更好地掌握數(shù)學(xué)知識(shí),并有效地推斷出三角形的各種性質(zhì)。
第三段:證明方法。
在證明三角形內(nèi)角和定理的過(guò)程中,有多種不同的證明方法。我們可以使用幾何證明法、數(shù)學(xué)歸納證明法等方法,使得三角形內(nèi)角和定理的成立更為顯然。三角形內(nèi)角和定理說(shuō)的是:任何一個(gè)三角形的三個(gè)內(nèi)角的和始終為180度,這個(gè)證明可以用許多方法來(lái)證明,在證明過(guò)程中要盡可能使用簡(jiǎn)單明了的方法,以便于理解。
第四段:學(xué)習(xí)收獲。
通過(guò)學(xué)習(xí),我認(rèn)識(shí)到證明三角形內(nèi)角和的定理是非常有益的,可以幫助我們牢固掌握三角函數(shù)中的基本概念,進(jìn)一步提高數(shù)學(xué)水平。同時(shí),學(xué)習(xí)三角形內(nèi)角和定理可以讓我們進(jìn)一步認(rèn)識(shí)到證明在數(shù)學(xué)中所扮演的重要作用,提高我們的邏輯思維能力和數(shù)學(xué)推理能力,從而更加深入地理解數(shù)學(xué)的各種概念和定理。
第五段:總結(jié)。
學(xué)習(xí)三角形內(nèi)角和,不僅可以幫助我們更好地掌握三角函數(shù)中的基本概念,提高我們的數(shù)學(xué)水平,還可以提高我們解決問(wèn)題和推理的能力。在學(xué)習(xí)三角形內(nèi)角和定理的過(guò)程中,我們需要理解三角形的性質(zhì)和相關(guān)幾何知識(shí),并學(xué)習(xí)不同的證明方法。只有通過(guò)不斷的練習(xí)和努力,我們才能夠更好地掌握三角形內(nèi)角和定理以及更多的數(shù)學(xué)知識(shí),實(shí)現(xiàn)數(shù)學(xué)優(yōu)秀成績(jī)的突破。
三角形的內(nèi)角和聽(tīng)課心得體會(huì)篇四
在整個(gè)教學(xué)設(shè)計(jì)上謝老師充分體現(xiàn)“以學(xué)生發(fā)展為本”教育理念,將教學(xué)思路擬定為“談話激趣設(shè)疑導(dǎo)入——猜想——驗(yàn)證{自主探究}——鞏固內(nèi)化——拓展延伸”,努力構(gòu)建探索型的課堂教學(xué)模式。具體體現(xiàn)在以下幾點(diǎn):
1、善用激趣設(shè)疑導(dǎo)入:教學(xué)的藝術(shù)不在于傳授知識(shí),而在于喚醒、激發(fā)和鼓勵(lì)。剛開始上課,謝老師用選王大會(huì)設(shè)懸念,三種類型的角在激烈的爭(zhēng)執(zhí),到的誰(shuí)的內(nèi)角和大呢?這樣,在很短的時(shí)間內(nèi)最大限度的激發(fā)學(xué)生探究數(shù)學(xué)的愿望和興趣,而且也很自然地揭示了課題。
2、巧用猜想:學(xué)生有了探索的愿望和興趣,可是不能沒(méi)有目標(biāo)的去探索,那樣只會(huì)事倍功半,甚至沒(méi)有結(jié)果,這時(shí)謝老師就提到到底三角形的內(nèi)角和是不是180度呢,我們總不能口說(shuō)無(wú)憑吧?使后邊的探索和驗(yàn)證活動(dòng)有了明確的目標(biāo)。
3、善用驗(yàn)證{自主探索}:學(xué)生形成統(tǒng)一的猜想{即三角形的內(nèi)角和等于180度}后,謝老師就把課堂大量的時(shí)間和空間留給學(xué)生,讓他們開展有針對(duì)性的數(shù)學(xué)探究活動(dòng){即驗(yàn)證三角形的內(nèi)角和是否是180度?},在活動(dòng)中,把放和引有機(jī)的結(jié)合,鼓勵(lì)學(xué)生積極開動(dòng)腦筋,從不同的途徑探索解決問(wèn)題的方法。不但讓每個(gè)學(xué)生自主參與驗(yàn)證活動(dòng),而且使學(xué)生在經(jīng)歷觀察、操作、分析、推理和想象活動(dòng)過(guò)程中解決問(wèn)題,發(fā)展空間觀念和論證推理能力。具體過(guò)程為:量一量——拼一拼——看一看。
4、善于引導(dǎo)鞏固內(nèi)化:俗話說(shuō)的好:“熟能生巧”。數(shù)學(xué)離不開練習(xí),要掌握知識(shí),形成技能技巧,一定要通過(guò)練習(xí)。養(yǎng)成良好的思維品質(zhì)也要通過(guò)一定的思考練習(xí),課程標(biāo)準(zhǔn)提倡練習(xí)的有效性。對(duì)此,謝老師非常注意將數(shù)學(xué)的思考融入不同層次的練習(xí)之中,很好的發(fā)揮練習(xí)的作用,如第一關(guān)牛刀小試:給出一個(gè)三角形的兩個(gè)角度,學(xué)生求第三個(gè)角,從中培養(yǎng)學(xué)生應(yīng)用意識(shí)和解決問(wèn)題的能力;第三關(guān)過(guò)關(guān)斬將:讓學(xué)生判斷有兩個(gè)小三角形拼成的三角形的內(nèi)角和的度數(shù),使學(xué)生在圖形變化的過(guò)程中掌握知識(shí),培養(yǎng)思維的靈活性,從中發(fā)展學(xué)生的空間觀念和空間想象能力。這些練習(xí)設(shè)計(jì)目的明確,針對(duì)性強(qiáng),使學(xué)生不但鞏固了知識(shí),更重要的是數(shù)學(xué)思維得到不斷的發(fā)展。
5、有一定的拓展創(chuàng)新:數(shù)學(xué)具有嚴(yán)密的邏輯性和抽象性。而學(xué)生學(xué)習(xí)內(nèi)容的呈現(xiàn)是從簡(jiǎn)單到復(fù)雜,思維方式是從具體到抽象的一個(gè)循序漸進(jìn)的過(guò)程,前面學(xué)習(xí)的知識(shí)往往是后面進(jìn)一步學(xué)習(xí)的基礎(chǔ)。要培養(yǎng)學(xué)生思維的靈活性,可以先讓學(xué)生學(xué)會(huì)對(duì)知識(shí)的遷移。本課最后,謝老師設(shè)計(jì)了這樣一道題目:學(xué)了三角形的內(nèi)角和后,你知道四邊形的內(nèi)角和是多少度嗎?這道題通過(guò)對(duì)本節(jié)課所學(xué)知識(shí)的遷移就可以完成,既能對(duì)學(xué)生進(jìn)行思維訓(xùn)練,又能培養(yǎng)學(xué)生應(yīng)用知識(shí)的能力,更能培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新精神。
總之,本節(jié)課教學(xué)活動(dòng)中謝老師充分體現(xiàn)以下特點(diǎn):以學(xué)生發(fā)展為本,以學(xué)生為主體,思維為主線的思想;充分關(guān)注學(xué)生的自主探究與合作交流;練習(xí)體現(xiàn)了層次性,知識(shí)技能得于落實(shí)和發(fā)展。是一節(jié)非常成功的課。
三角形的內(nèi)角和聽(tīng)課心得體會(huì)篇五
一堂好課不應(yīng)是自始至終的高潮和精彩,也不必是高科技現(xiàn)代教育技術(shù)的集中展示。一堂好課不是看它的熱鬧程度,而在于學(xué)生從中得到了什么,它留給人們的應(yīng)是思考、啟示和回味。2月19日上午,在沈家門第一小學(xué),我有幸聆聽(tīng)了趙斌娜老師執(zhí)教的《三角形的內(nèi)角和》一課,這就是一堂好課。
趙老師營(yíng)造了寬松和諧的課堂氣氛,讓學(xué)生能主動(dòng)參與學(xué)習(xí)活動(dòng),既關(guān)注了學(xué)生的個(gè)人差異和不同的學(xué)習(xí)需求,又注重了學(xué)生的個(gè)體感悟,強(qiáng)調(diào)情感體驗(yàn)的過(guò)程。確立了學(xué)生在課堂教學(xué)中的主體地位,使學(xué)生在學(xué)習(xí)過(guò)程中既調(diào)動(dòng)了積極性,又激發(fā)了學(xué)生的主體意識(shí)和進(jìn)取精神。學(xué)生在自主、合作、探究的學(xué)習(xí)方式中互相激勵(lì),取長(zhǎng)補(bǔ)短,能團(tuán)結(jié)協(xié)作,最終形成了相應(yīng)能力;同時(shí)培養(yǎng)了學(xué)生刻苦鉆研,事實(shí)求是的態(tài)度。
教學(xué)過(guò)程是一堂課關(guān)鍵中的關(guān)鍵,新課標(biāo)提出數(shù)學(xué)教學(xué)是數(shù)學(xué)活動(dòng)的教學(xué),而數(shù)學(xué)活動(dòng)應(yīng)是學(xué)生自己建構(gòu)知識(shí)的活動(dòng)。教師讓學(xué)生“在參與中體驗(yàn),在活動(dòng)中發(fā)展”。本節(jié)課有操作活動(dòng)、自主探索與合作交流、應(yīng)用活動(dòng)三個(gè)方面,下面我重點(diǎn)談?wù)劜僮骰顒?dòng)。
1、在實(shí)踐材料上下了工夫。
操作實(shí)踐的材料是精心選擇的,老師為學(xué)生準(zhǔn)備了用卡紙制作的形狀、大小、顏色不同的三角形各幾個(gè),這樣學(xué)生在操作時(shí)候,便于選擇、測(cè)量、拼擺、觀察、思考問(wèn)題,而且這些三角形顏色醒目、比較大,學(xué)生應(yīng)用起來(lái)很得手,操作的材料和學(xué)生的動(dòng)手實(shí)踐配合恰當(dāng)。
2、找準(zhǔn)時(shí)機(jī)讓學(xué)生進(jìn)行實(shí)踐操作。
本節(jié)課安排了兩次操作活動(dòng):一是在得出三角形內(nèi)角和規(guī)律前進(jìn)行實(shí)踐操作,促使學(xué)生在實(shí)踐操作中探究新知識(shí);二是在初步得出規(guī)律之后,讓學(xué)生通過(guò)實(shí)踐操作來(lái)驗(yàn)證新知識(shí)。幫助學(xué)生清楚地認(rèn)識(shí)到第一次出現(xiàn)內(nèi)角和偏差的原因是測(cè)量誤差造成的。給學(xué)生提供的這兩次動(dòng)手實(shí)踐的機(jī)會(huì),不僅提高了操作的效果,更重要的使“聽(tīng)數(shù)學(xué)”變?yōu)椤白鰯?shù)學(xué)”。促使學(xué)生在“做數(shù)學(xué)”的過(guò)程中對(duì)所學(xué)知識(shí)產(chǎn)生了深刻的體驗(yàn),從中感悟和理解到新知識(shí)的形成和發(fā)展,體會(huì)了數(shù)學(xué)學(xué)習(xí)的過(guò)程與方法,獲得數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn)。
3、把實(shí)踐操作和數(shù)學(xué)思維結(jié)合起來(lái)。
學(xué)生通過(guò)實(shí)踐操作獲得的認(rèn)識(shí)是一種感性的認(rèn)識(shí),是外在的直觀的印象。在本節(jié)課中趙老師在學(xué)生實(shí)踐操作的基礎(chǔ)上引導(dǎo)學(xué)生把動(dòng)手實(shí)踐和數(shù)學(xué)思維結(jié)合起來(lái),先讓學(xué)生思考出可以用量、撕和拼的方法來(lái)推導(dǎo)三角形內(nèi)角和的度數(shù),接著引導(dǎo)學(xué)生說(shuō)出量的方法,最后讓學(xué)生實(shí)際測(cè)量。采取邊說(shuō)邊操作,邊討論邊操作的方式,讓手、腦、口并用,在操作和直觀教學(xué)的基礎(chǔ)上及時(shí)對(duì)三角形內(nèi)角和規(guī)律進(jìn)行抽象概括。做到邊動(dòng)手,邊思考。同時(shí)學(xué)生獲得了一種數(shù)學(xué)思想和方法,學(xué)會(huì)了解決一些類似的一系列的問(wèn)題,提高了實(shí)踐動(dòng)手的有效性。
三角形的內(nèi)角和聽(tīng)課心得體會(huì)篇六
三角形作為幾何學(xué)中的基本圖形之一,具有豐富的性質(zhì)和定理。在學(xué)習(xí)中證明三角形的一些相關(guān)定理過(guò)程中,我有幸參加了一堂生動(dòng)有趣的證明課程,深刻感受到了數(shù)學(xué)證明的魅力。這次聽(tīng)課讓我對(duì)數(shù)學(xué)的理解更加深入,同時(shí)也培養(yǎng)了我邏輯思維和分析問(wèn)題的能力。
首先,課程的開始引人入勝,老師分享了一些與三角形相關(guān)的有趣事例和實(shí)際應(yīng)用,使得大家對(duì)于學(xué)習(xí)的內(nèi)容產(chǎn)生了濃厚的興趣。老師講述了古希臘的數(shù)學(xué)家畢達(dá)哥拉斯的故事,他發(fā)現(xiàn)了一個(gè)重要的定理——畢達(dá)哥拉斯定理,即直角三角形的兩條直角邊的平方和等于斜邊的平方。這個(gè)定理不僅為數(shù)學(xué)研究提供了基礎(chǔ),也為實(shí)際生活中的測(cè)量和構(gòu)造提供了方便。老師還提到了有關(guān)三角形的實(shí)際應(yīng)用,如建筑工程中的角度測(cè)量,航海中的航線計(jì)算等。這些實(shí)例的講述讓我對(duì)于三角形證明的學(xué)習(xí)有了更直觀的認(rèn)識(shí)。
接著,課程以三角形的性質(zhì)和定理為主線,詳細(xì)介紹了一些經(jīng)典的三角形定理。我印象最為深刻的是三角形的角平分線定理。老師首先講述了這個(gè)定理的原理和推論,然后以實(shí)際的例子進(jìn)行了具體運(yùn)用,這讓我真正理解了定理的含義和應(yīng)用。通過(guò)證明了這一定理,我逐漸認(rèn)識(shí)到數(shù)學(xué)證明的嚴(yán)謹(jǐn)性和邏輯性,深刻體會(huì)到了數(shù)學(xué)證明的美妙之處。
在課程的過(guò)程中,老師還鼓勵(lì)同學(xué)們積極參與,提問(wèn)和回答問(wèn)題。通過(guò)與同學(xué)們的互動(dòng),我學(xué)到了很多我以前沒(méi)有了解到的知識(shí)。同學(xué)們紛紛分享了自己的思考和觀點(diǎn),從不同的角度來(lái)解釋和理解問(wèn)題,這為我提供了新的思路和思考方式。我也積極向老師請(qǐng)教一些疑惑,老師耐心解答并鼓勵(lì)我多思考多探索。這樣的交流讓我在學(xué)習(xí)中不再感覺(jué)孤立,而是能夠充分發(fā)揮自己的思維和創(chuàng)造力。
最后,課程以綜合練習(xí)的形式結(jié)束。老師提供了一些需要進(jìn)行證明的三角形問(wèn)題,讓我們自己動(dòng)手去解決。這種讓學(xué)生主動(dòng)參與的方式,激發(fā)了我們的求知欲和學(xué)習(xí)興趣。雖然在解題的過(guò)程中會(huì)遇到一些困難,但通過(guò)自己的思考和嘗試,我逐漸找到了解決問(wèn)題的方法。解決問(wèn)題的過(guò)程不僅培養(yǎng)了我的邏輯思維和分析問(wèn)題的能力,也讓我對(duì)于數(shù)學(xué)證明的過(guò)程和方法有了更深入的理解。
通過(guò)這次課程,我對(duì)于三角形的證明有了更加全面和深入的認(rèn)識(shí)。我明白了數(shù)學(xué)證明的重要性,它不僅是數(shù)學(xué)學(xué)習(xí)中的一種方法,更是一個(gè)鍛煉思維和培養(yǎng)邏輯能力的過(guò)程。在以后的學(xué)習(xí)中,我會(huì)將這些知識(shí)應(yīng)用到實(shí)際問(wèn)題中,不斷提高自己的數(shù)學(xué)能力。同時(shí),我也會(huì)更加注重?cái)?shù)學(xué)證明的學(xué)習(xí),進(jìn)一步拓寬自己的視野,培養(yǎng)自己的數(shù)學(xué)思維。通過(guò)不斷努力和學(xué)習(xí),我相信自己一定能夠在數(shù)學(xué)領(lǐng)域取得更大的成就。
三角形的內(nèi)角和聽(tīng)課心得體會(huì)篇七
三角形的內(nèi)角和是北師大版四年級(jí)下冊(cè)第二單元的內(nèi)容。三角形的內(nèi)角和是三角形的一個(gè)重要性質(zhì),學(xué)好它有助于學(xué)生理解三角形內(nèi)角之間的關(guān)系,也是進(jìn)一步學(xué)習(xí)幾何的基礎(chǔ)。
本節(jié)課是在學(xué)生學(xué)過(guò)角的度量、三角形的特征和分類等知識(shí)的基礎(chǔ)上進(jìn)行教學(xué)的,學(xué)生已經(jīng)具備一定的關(guān)于三角形的認(rèn)識(shí)的直接經(jīng)驗(yàn),也已具備了一些相應(yīng)的三角形知識(shí)和技能,這為感受、理解、抽象三角形的內(nèi)角和的規(guī)律,打下了堅(jiān)實(shí)的基礎(chǔ)。
因此,我確定本節(jié)課的教學(xué)目標(biāo)是:
知識(shí)與技能:通過(guò)測(cè)量、撕拼、折疊等方法,探索和發(fā)現(xiàn)三角形三個(gè)內(nèi)角的和等于180。知道三角形兩個(gè)角的度數(shù),能求出第三個(gè)角的度數(shù)。能應(yīng)用三角形內(nèi)角和的性質(zhì)解決一些簡(jiǎn)單的問(wèn)題。
發(fā)展學(xué)生動(dòng)手操作、觀察比較和抽象概括的能力。
情感、態(tài)度與價(jià)值觀:體驗(yàn)數(shù)學(xué)活動(dòng)的探索樂(lè)趣,體會(huì)研究數(shù)學(xué)問(wèn)題的思想方法。
學(xué)生經(jīng)歷探究三角形內(nèi)角和的全過(guò)程并歸納概括三角形內(nèi)角和等于180。
三角形內(nèi)角和的探索與驗(yàn)證,對(duì)不同探究方法的指導(dǎo)和學(xué)生對(duì)規(guī)律的靈活應(yīng)用。
整個(gè)教學(xué)將體現(xiàn)以人為本,先放后扶的教學(xué)策略。放,不是漫無(wú)目的的放,而是為學(xué)生提供足夠的探究規(guī)律的材料和時(shí)間,放手讓學(xué)生自主學(xué)習(xí),合作探究;扶,則是根據(jù)學(xué)生的不同探究方法和出現(xiàn)的錯(cuò)誤,給予恰當(dāng)指導(dǎo),引導(dǎo)學(xué)生歸納概括出規(guī)律。
《課程標(biāo)準(zhǔn)》明確指出:要結(jié)合有關(guān)內(nèi)容的教學(xué),引導(dǎo)學(xué)生進(jìn)行觀察、操作、猜想,培養(yǎng)學(xué)生初步的思維能力。四年級(jí)學(xué)生經(jīng)過(guò)第一學(xué)段以及本單元的學(xué)習(xí),已經(jīng)掌握了三角形的分類,比較熟悉平角等有關(guān)知識(shí);具備了初步的動(dòng)手操作、主動(dòng)探究的能力,他們正處于由形象思維向抽象思維過(guò)渡的階段。因此,本節(jié)課,我將重點(diǎn)引導(dǎo)學(xué)生從猜測(cè)――驗(yàn)證展開學(xué)習(xí)活動(dòng),讓學(xué)生感受這種重要的數(shù)學(xué)思維方式。在教學(xué)中,學(xué)生通過(guò)測(cè)量、拼折、驗(yàn)證等方式確定三角形內(nèi)角的度數(shù)和。這樣,既培養(yǎng)了觀察能力和歸納概括能力,又體現(xiàn)了動(dòng)手實(shí)踐、合作交流,自主探索的學(xué)習(xí)方式,同時(shí)也培養(yǎng)了探索能力和創(chuàng)新精神。
基于以上分析,我以猜測(cè)、驗(yàn)證、結(jié)論和應(yīng)用四個(gè)活動(dòng)環(huán)節(jié)為主線,讓學(xué)生通過(guò)自主探究學(xué)習(xí)進(jìn)行數(shù)學(xué)的思考過(guò)程,積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)。
通過(guò)出示一個(gè)角形,讓學(xué)生說(shuō)知道三角形的知識(shí)來(lái)引出三角形的內(nèi)角的概念,讓學(xué)生自由猜測(cè),三角形內(nèi)角和是多少?引出課題,以疑激思。
動(dòng)手實(shí)踐,自主探究,是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式,新課程的一個(gè)重要理念就是提倡學(xué)生做數(shù)學(xué)用親身體驗(yàn)的方式來(lái)經(jīng)歷數(shù)學(xué),探究數(shù)學(xué),這要求老師首先為學(xué)生提供充分的研究材料,以及充裕的時(shí)間,保證學(xué)生能真正地試驗(yàn),操作和探索。
這一環(huán)節(jié)我設(shè)計(jì)為以下三步:
1、操作感知。
組織學(xué)生通過(guò)算一算初步感知三角形的內(nèi)角和。根據(jù)學(xué)生特點(diǎn),為了節(jié)約學(xué)生上課的時(shí)間,作為預(yù)習(xí)作業(yè),我提前讓學(xué)生在家里自制鈍角、銳角、直角三角形,并測(cè)量出每個(gè)角的度數(shù),寫在三角形對(duì)應(yīng)的角上,也填在書上的表格里。這時(shí)直接讓學(xué)生計(jì)算,學(xué)生匯報(bào)計(jì)算結(jié)果,不同的學(xué)生可能會(huì)有不同的結(jié)果,有可能大于180或小于180甚至等于180,只要相對(duì)合理(允許一點(diǎn)誤差)都給與肯定。這時(shí)可引導(dǎo)學(xué)生得出結(jié)論(強(qiáng)調(diào)在排除測(cè)量誤差的前提下):三角形的內(nèi)角和是180度。在這一過(guò)程中,學(xué)生有困惑,有疑問(wèn),而正是這些困惑激發(fā)了學(xué)生更強(qiáng)的探究欲望,正是這些疑問(wèn),使得合作成為學(xué)生的內(nèi)在需要。
2、小組合作。
針對(duì)探究過(guò)程中不同思維能力的學(xué)生,要做到因材施教。對(duì)于得出結(jié)論的學(xué)生要鼓勵(lì)他們思考新的方法,對(duì)于無(wú)法下手的學(xué)生,要啟發(fā)他們知道三角形的內(nèi)角和,我們可以把角合起來(lái)看是多少?能用什么方法將三個(gè)角合起來(lái)。在探究學(xué)習(xí)中,老師只是起一個(gè)引導(dǎo)者的作用,引導(dǎo)學(xué)生不斷地深入探究,盡可能用多種合理的方法,驗(yàn)證結(jié)論。
3、交流反饋,得出結(jié)論。
學(xué)生完成探究活動(dòng)之后,在有親身體驗(yàn)的基礎(chǔ)上,我將選擇不同方法的代表,在展示平臺(tái)上展示自己的探究過(guò)程,并說(shuō)說(shuō)自己是怎樣想的。我關(guān)注的不是學(xué)生最后論證的結(jié)果,而是學(xué)生思維的過(guò)程。學(xué)生可能通過(guò):拼一拼、折一折、畫一畫的方法,驗(yàn)證得出三角形的內(nèi)角和是180度,并通過(guò)觀察對(duì)比各組所用的三角形,是不同類型的而且大小不同的,發(fā)現(xiàn)這一規(guī)律是具有普遍性的,對(duì)于任意三角形都是適用。在學(xué)生探究之后,我用課件重新演示了3種方法,讓學(xué)生有一個(gè)系統(tǒng)的知識(shí)體系。
揭示規(guī)律之后,學(xué)生要掌握知識(shí),形成技能技巧,就要通過(guò)解答實(shí)際問(wèn)題的練習(xí)來(lái)鞏固內(nèi)化。根據(jù)學(xué)生能力的不同,我將練習(xí)分為以下3個(gè)層次。
1、基礎(chǔ)練習(xí)。要求學(xué)生利用三角形內(nèi)角和是180度在三角形內(nèi)已知兩個(gè)角,求第三個(gè)角。由于學(xué)生空間思維能力的局限,我將先出示有具體圖形的題目,再出示文字?jǐn)⑹鲱}。在這之間指導(dǎo)學(xué)生注意一題多解。
2、提高練習(xí)。如已知一個(gè)直角三角形的一個(gè)角的度數(shù),求另一個(gè)角的度數(shù);已知一個(gè)等腰三角形的頂角或底角的度數(shù),求底角或頂角的度數(shù)。
3、拓展練習(xí)。針對(duì)不同思維能力的學(xué)生,我設(shè)計(jì)的思考題是要求學(xué)生應(yīng)用三角形內(nèi)角和是180的規(guī)律,求多邊形的內(nèi)角和。我的目的不僅僅是為了讓學(xué)生去求解多邊形的內(nèi)角和,更重要的是為了讓學(xué)生靈活應(yīng)用知識(shí)點(diǎn),培養(yǎng)學(xué)生的空間思維能力。
這樣安排可以兼顧不同能力的學(xué)生,在保證基本教學(xué)要求的同時(shí),盡量滿足學(xué)生的學(xué)習(xí)需要,啟發(fā)學(xué)生的思維活動(dòng)。
本節(jié)課通過(guò)這樣的設(shè)計(jì),學(xué)生全身心投入到數(shù)學(xué)探究互動(dòng)中去,學(xué)生不僅學(xué)到科學(xué)探究的方法,而體驗(yàn)到探索的甘苦,領(lǐng)略成功的喜悅,學(xué)生在探索中學(xué)習(xí),在探索中發(fā)現(xiàn),在探索中成長(zhǎng),最終實(shí)現(xiàn)可持續(xù)性發(fā)展。
猜測(cè)驗(yàn)證結(jié)論應(yīng)用。
三角形的內(nèi)角和聽(tīng)課心得體會(huì)篇八
大家好!
今天我說(shuō)課的題目是《三角形的內(nèi)角》,我將從如下方面作出說(shuō)明。
(一)教學(xué)內(nèi)容的地位
本節(jié)課是在研究了三角形的有關(guān)概念和學(xué)生在對(duì) “三角形的內(nèi)角和等于1800 ”有感性認(rèn)識(shí)的基礎(chǔ)上,對(duì)該定理進(jìn)行推理論證。它是進(jìn)一步研究三角形及其它圖形的重要基礎(chǔ),更是研究 多邊形問(wèn)題轉(zhuǎn)化的關(guān)鍵點(diǎn);此外,在它的證明中第一次引入了輔助線,而輔助線又是解決幾何問(wèn)題的一種重要工具,因此本節(jié)是本章的一個(gè)重點(diǎn)。
(二)教學(xué)重點(diǎn)、難點(diǎn):
三角形內(nèi)角和等于180度,是三角形的一條重要性質(zhì),有著廣泛的應(yīng)用。雖然學(xué)生在小學(xué)已經(jīng)知道這一結(jié)論,但沒(méi)有從理論的角度進(jìn)行推理論證,因此三角形內(nèi)角和等于180度的證明及應(yīng)用是本節(jié)課的重點(diǎn)。
另外,由于學(xué)生還沒(méi)有正 式學(xué)習(xí)幾何證明,而三角形內(nèi)角和等于180度的證明難度又較大,因此證明三角形內(nèi)角和等于180度也是本節(jié)課的難點(diǎn)。
突破難點(diǎn)的關(guān)鍵:讓學(xué)生通過(guò)動(dòng)手實(shí)踐獲得感性認(rèn)識(shí),將實(shí)物圖形抽象轉(zhuǎn)化為幾何圖形得出所需輔助線。
基于以上分析和數(shù)學(xué)課程標(biāo)準(zhǔn)的要求,我制定了本節(jié)課的教學(xué)目標(biāo),下面我從以下三個(gè)方面進(jìn)行說(shuō)明。
(一)知識(shí)與技能目標(biāo):
會(huì)用平行線的性質(zhì)與平角的定義證明三角形的內(nèi)角和等于1800,能用三角形內(nèi)角和等于180度進(jìn)行角度計(jì)算和簡(jiǎn)單推理,并初步學(xué)會(huì)利用輔助線解決問(wèn)題,體會(huì)轉(zhuǎn)化思想在解決問(wèn)題中的應(yīng)用。
(二)過(guò)程與方法目標(biāo):
經(jīng)歷拼圖試驗(yàn)、合作交流、推理論證的過(guò)程,體現(xiàn)在“做中學(xué)”,發(fā)展學(xué)生的合 情推理能力和邏輯思維能力。
(三)情感、態(tài)度價(jià)值觀目標(biāo):
通過(guò)操作、交流、探究、表述、推理等活動(dòng)培養(yǎng)學(xué)生的合作精神,體會(huì)數(shù)學(xué)知識(shí)內(nèi)在的聯(lián)系與嚴(yán)謹(jǐn)性,鼓勵(lì)學(xué)生大膽質(zhì)疑,敢于提出不同見(jiàn)解,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣。
七年級(jí)學(xué)生的特點(diǎn)是模仿力強(qiáng),喜歡動(dòng)手,思維活躍,但思維往往依賴于直觀具體的形象,而學(xué)生在小學(xué)已通過(guò)量、拼、折等實(shí)驗(yàn)的方法得出了三角形內(nèi)角和等于180度這一結(jié)論,只是沒(méi)有從理論的角度去研究它,學(xué)生現(xiàn)在已具備了簡(jiǎn)單說(shuō)理的能力,同時(shí)已學(xué)習(xí)了平行線的性質(zhì)和判定及平角的定義,這就為學(xué)生自主探究,動(dòng)手實(shí)驗(yàn),討論交流、嘗試證明做好了準(zhǔn)備。
根據(jù)新課程標(biāo)準(zhǔn)的要求,學(xué)習(xí)活動(dòng)應(yīng)體現(xiàn)學(xué)生身心發(fā)展特點(diǎn),應(yīng)有利于引導(dǎo)學(xué)生主動(dòng)探索和發(fā)現(xiàn),因此,我采用了動(dòng)手操作— 觀察實(shí)驗(yàn)—猜想論證的探究式教學(xué)方法,整個(gè)探究學(xué)習(xí)的過(guò)程充滿了師生之間,生生之間的交流和互動(dòng),體 現(xiàn)了教師是教學(xué)活動(dòng)的組織者、引導(dǎo)者、合作 者,學(xué)生才是學(xué)習(xí)的主體。并教給學(xué)生通過(guò)動(dòng)手實(shí)驗(yàn)、觀察思考、抽象概括從而獲得知識(shí)的學(xué)習(xí)方法,培養(yǎng)他們利用舊知識(shí)獲取新知識(shí)的能力。
我結(jié)合七年級(jí)學(xué)生的年齡特點(diǎn),采用了“1.情景激趣 引出課題”的環(huán)節(jié)引入課題,這樣可以激發(fā)學(xué)生學(xué)習(xí)興趣和求知欲,為探索新知識(shí)創(chuàng)造一個(gè)最佳的心理和認(rèn)知環(huán)境。讓學(xué)生說(shuō)明三角形內(nèi)角和是180度,是本節(jié)課的重點(diǎn)、難點(diǎn),為此我設(shè)計(jì)了“2.自主探索 動(dòng)手實(shí)驗(yàn) ”“3.討論交流 嘗試證明”以下兩個(gè)環(huán)節(jié)。 定理的掌握必須要有訓(xùn)練作為依托,因此我設(shè)計(jì)了“4.應(yīng)用新知 鞏固提高。為了培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,在競(jìng)爭(zhēng)中體驗(yàn)成功的快樂(lè)。我設(shè)計(jì)了“5. ‘漁技’大比拼”這4道習(xí)題既含蓋了方程的思想又包括了整體的思想,還讓學(xué)生提前感受到了反證法的方法,有利于學(xué)生掌握重要的數(shù)學(xué)思想方法?;仡櫴谷擞洃浬羁蹋此即偃诉M(jìn)步。在“6.暢談體會(huì) 課外延伸 ”這一環(huán)節(jié)我選擇從三個(gè)方面,讓學(xué)生進(jìn)行 回顧反思和作業(yè)補(bǔ)充。我認(rèn)為學(xué)生要從一堂課中得到收獲不僅僅是知識(shí)上的,更重要的是讓他們通過(guò)這種方式,獲取比知 識(shí)本身更重要的東西,那就是數(shù)學(xué)方法,數(shù)學(xué)能力以及對(duì)數(shù)學(xué)的積極情感。
本節(jié)課的設(shè)計(jì)從學(xué)生已有的知識(shí)經(jīng)驗(yàn)出發(fā),遵循學(xué)生的認(rèn)知規(guī)律,將實(shí)物拼圖與說(shuō)理論證有機(jī)結(jié)合,在動(dòng)手操作,合情推理的基礎(chǔ)上進(jìn)行嚴(yán)密的推理論證,使學(xué)生對(duì)知識(shí)的認(rèn)識(shí)從感性逐步上升到理性。以問(wèn)題為載體,在探究解決問(wèn)題策略的過(guò)程中學(xué)會(huì)知識(shí)、感悟方法、訓(xùn)練思維、發(fā)展能力,練習(xí)的設(shè)計(jì)起點(diǎn)低、范圍廣、有梯度,以滿足不同程度學(xué)生的需要。樹立大數(shù)學(xué)觀 ,把課堂探究 活動(dòng)延伸到課外,在課與課之間,新舊知識(shí)之間,數(shù)學(xué)與生活之間搭建橋梁,為學(xué)生長(zhǎng)遠(yuǎn)的發(fā)展奠基。
本節(jié)課的教學(xué)在一種輕松愉快的氛圍中完成,大部分學(xué)生能參與活動(dòng)中,突出了重點(diǎn) ,突破了難點(diǎn)。完成了教學(xué)任務(wù)。取得了較好的教學(xué)效果。練習(xí)除注重基礎(chǔ)外 并進(jìn)行了延伸。拓寬了學(xué)生思維的空間。美中不足的是,還有少部分學(xué)習(xí)基礎(chǔ)較差的學(xué)生可能沒(méi)有在參與活動(dòng)中去思考,收獲不大。
新課程的教學(xué)評(píng)價(jià)對(duì)老師和學(xué)生都提出了新的要求 :因此整個(gè)教學(xué)過(guò)程中我對(duì)學(xué)生的如下方面作出了多元化的關(guān)注:1、關(guān)注學(xué)生探索結(jié)論、分析思路和方法的過(guò)程。2、關(guān)注學(xué)生說(shuō)理的能力和水平。3、關(guān)注學(xué)生參與教學(xué)活動(dòng)的程度。以期待人人都能學(xué)有 所得,不同的學(xué)生在課堂上得到不同的發(fā)展。
以上是我對(duì)這節(jié)課的初淺認(rèn)識(shí),希望得能到各位專家、各位老師的指導(dǎo),謝謝大家!
三角形的內(nèi)角和聽(tīng)課心得體會(huì)篇九
一、說(shuō)課內(nèi)容:北師大版義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教材小學(xué)數(shù)學(xué)四年級(jí)下冊(cè)第二單元第三節(jié)----《三角形的內(nèi)角和》一課。
二、教材分析:
在這一環(huán)節(jié)我要闡述四方面的內(nèi)容:
1、三角形的內(nèi)角和”是三角形的一個(gè)重要性質(zhì),是“空間與圖形”領(lǐng)域的重要內(nèi)容之一,學(xué)好它有助于學(xué)生理解三角形內(nèi)角之間的關(guān)系,教材呈現(xiàn)教學(xué)內(nèi)容時(shí),安排了一系列的實(shí)驗(yàn)操作活動(dòng)。讓學(xué)生通過(guò)探索,發(fā)現(xiàn)三角形的內(nèi)角和是180度。
2、學(xué)情分析:
學(xué)生已經(jīng)知道了三角形的概念、分類,熟悉了各角的特點(diǎn),掌握了量角的方法。也可能有部分學(xué)生知道了三角形內(nèi)角和是180°的結(jié)論。
3、教學(xué)目標(biāo):
a、讓學(xué)生親自動(dòng)手,發(fā)現(xiàn),證實(shí)三角形的內(nèi)角和等于180度。并能初步運(yùn)用這一性質(zhì)解決有一些實(shí)際問(wèn)題。
b、在經(jīng)歷“觀察、測(cè)量、撕拼、折疊”的驗(yàn)證的過(guò)程中培養(yǎng)學(xué)生觀察能力,歸納能力、合作能力和創(chuàng)造能力。
4、教學(xué)重難點(diǎn):
經(jīng)歷三角形的內(nèi)角和是180度這一知識(shí)的形成,發(fā)展和應(yīng)用的全過(guò)程。
5、教學(xué)難點(diǎn):
讓學(xué)生用不同方法驗(yàn)證三角形的內(nèi)角和是180度。
三、教學(xué)準(zhǔn)備:
在備課過(guò)程中,我閱讀了農(nóng)遠(yuǎn)光盤中多位名師的教學(xué)案例來(lái)完善自己的教學(xué)設(shè)計(jì),并收集了農(nóng)遠(yuǎn)光盤中的多媒體課件,用課件適時(shí)播放。
四、教法分析
為了使教學(xué)目標(biāo)得以落實(shí),談?wù)劚菊n的教法和學(xué)法。新課程標(biāo)準(zhǔn)強(qiáng)調(diào)“教學(xué)要從學(xué)生已有的經(jīng)驗(yàn)出發(fā),讓學(xué)生親身經(jīng)歷將實(shí)際問(wèn)題抽象成數(shù)學(xué)模型并進(jìn)行解釋與應(yīng)用的過(guò)程。要激發(fā)學(xué)生的學(xué)習(xí)積極性,向?qū)W生提供充分從事數(shù)學(xué)活動(dòng)的機(jī)會(huì),讓他們積極主動(dòng)地探索,解決數(shù)學(xué)問(wèn)題,發(fā)現(xiàn)數(shù)學(xué)規(guī)律,獲得數(shù)學(xué)經(jīng)驗(yàn);而教師只是學(xué)生學(xué)習(xí)的組織者、引導(dǎo)者和合作者。我采用了趣味教學(xué)法、情境教學(xué)法、引導(dǎo)發(fā)現(xiàn)法、合作探究法和直觀演示法。
五、學(xué)法分析
在學(xué)法指導(dǎo)上,我把學(xué)習(xí)的主動(dòng)權(quán)交給學(xué)生,引導(dǎo)學(xué)生通過(guò)動(dòng)手、動(dòng)腦、動(dòng)口,積極參與知識(shí)形成的全過(guò)程。體現(xiàn)了學(xué)生動(dòng)手實(shí)踐、合作交流,自主探索的學(xué)習(xí)方式。
六:教學(xué)流程:
(一)猜迷激趣,復(fù)習(xí)舊知。,
興趣是最好的老師,開課我出示了一則謎語(yǔ)。調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性。
形狀是似座山,穩(wěn)定性能堅(jiān)。三竿首尾連,學(xué)問(wèn)不簡(jiǎn)單。(打一平面圖形)
由謎底又得出了一個(gè)對(duì)三角形你們有哪些了解的問(wèn)題,喚醒學(xué)生頭腦中有關(guān)三角形的知識(shí),同時(shí)很自然引出對(duì)“三角形內(nèi)角和”一詞的講解,為后面的探索奠定基礎(chǔ)。
(二)創(chuàng)設(shè)情境,巧引新知(課件出示)
(三)驗(yàn)證猜想,主動(dòng)探究。
本環(huán)節(jié)是學(xué)生獲取知識(shí)、提高能力的一個(gè)重要過(guò)程。我有目的、有意識(shí)的引導(dǎo)學(xué)生主動(dòng)參與實(shí)踐活動(dòng)、經(jīng)歷知識(shí)的形成過(guò)程。
“你能運(yùn)用已有的知識(shí)和身邊的學(xué)具想辦法驗(yàn)證你的猜想嗎?”學(xué)生思考片刻后,我出示學(xué)習(xí)提綱:
a、先獨(dú)立思考,你想怎樣驗(yàn)證?
b、再小組合作探究,運(yùn)用多種方法驗(yàn)證。
c、最后匯報(bào),展示你的驗(yàn)證方法。
1.量角求和
這個(gè)驗(yàn)證方法應(yīng)是全班同學(xué)都能想到的,因此,在這一環(huán)節(jié)我設(shè)計(jì)了小組活動(dòng)的形式。讓小組成員在練習(xí)本上任意地畫幾個(gè)三角形進(jìn)行測(cè)量并記錄。學(xué)生通過(guò)畫、量、算,最后發(fā)現(xiàn)三角形的三個(gè)內(nèi)角和都是180度。
2.拼角求和
通過(guò)討論,有的小組可能會(huì)想到把三個(gè)角撕開,再拼在一起,剛好拼成了一個(gè)平角,由于學(xué)生在以前學(xué)過(guò)平角是180度,很快就發(fā)現(xiàn)這三個(gè)三角形的內(nèi)角和都是180度。為了讓全班學(xué)生能夠真切,清晰地看到撕拼的過(guò)程,我利用了多媒體課件進(jìn)行了演示。(課件出示)課件播放后學(xué)生一目了然,攻克了本課的一個(gè)教學(xué)重點(diǎn)。
3.折角求和
有的小組還可能想到把三個(gè)角折在一起,也剛好形成一個(gè)平角。但如何折才能夠使三個(gè)內(nèi)角剛好組成平角呢?這一驗(yàn)證方法是本課教學(xué)的一個(gè)難點(diǎn)。
在學(xué)生展示完驗(yàn)證方法后,我又讓每位學(xué)生選擇自己喜歡的方法,再去驗(yàn)證剛才的發(fā)現(xiàn)。最后歸納出結(jié)論:所有三角形的內(nèi)角和都是180度。
(四)應(yīng)用新知,解決問(wèn)題。
數(shù)學(xué)離不開練習(xí)。本節(jié)課我把圖像、動(dòng)畫等引入課件,使練習(xí)的內(nèi)容具有簡(jiǎn)單的背景與情節(jié),使學(xué)生對(duì)解題產(chǎn)生了濃厚的興趣。
我設(shè)計(jì)了四個(gè)層次的練習(xí):有序而多樣。
1)基本練習(xí):讓學(xué)生通過(guò)這一習(xí)題,掌握求未知角的一般方法。
2)實(shí)踐運(yùn)用:這一習(xí)題的設(shè)計(jì)是為了讓學(xué)生知道生活中到處都有數(shù)學(xué),數(shù)學(xué)能解決生活實(shí)際問(wèn)題,真切體驗(yàn)到學(xué)的是有價(jià)值的數(shù)學(xué)。
3)鞏固提高:使學(xué)生了解在間接條件下求未知角的方法。
4)拓展延伸。讓學(xué)生體會(huì)到數(shù)學(xué)中輔助線的橋梁作用,在潛移默化中滲透一個(gè)重要數(shù)學(xué)思想―――轉(zhuǎn)化,為以后學(xué)習(xí)數(shù)學(xué)打下堅(jiān)實(shí)的基礎(chǔ)。
(五)全課小結(jié)完善新知
1、這節(jié)課我們學(xué)到了什么知識(shí)?2、你有什么收獲?
通過(guò)學(xué)生談這節(jié)課的收獲,對(duì)所學(xué)知識(shí)和學(xué)習(xí)方法進(jìn)行系統(tǒng)的整理歸納。
(六)板書設(shè)計(jì)
三角形的內(nèi)角和
量角撕拼折角拼圖
三角形的內(nèi)角和是180度。
六、說(shuō)效果預(yù)測(cè):
本課中,學(xué)生通過(guò)動(dòng)手操作,測(cè)量、撕拼、折疊等實(shí)驗(yàn)活動(dòng),得到的不僅是三角形內(nèi)角和的知識(shí),也使學(xué)生學(xué)到了怎么由已知探究未知的思維方式與方法,培養(yǎng)了他們主動(dòng)探索的精神。促進(jìn)學(xué)生良好思維品質(zhì)的形成,達(dá)到預(yù)想的教學(xué)目的。使學(xué)生在探索中學(xué)習(xí),在探索中發(fā)現(xiàn),在探索中成長(zhǎng)!
三角形的內(nèi)角和聽(tīng)課心得體會(huì)篇十
《三角形的內(nèi)角和》是九年制義務(wù)教育人教版四年級(jí)下冊(cè)第五章《三角形》的第二節(jié)內(nèi)容,本節(jié)課是在學(xué)生學(xué)習(xí)了與三角形有關(guān)的概念、邊、角之間的關(guān)系的基礎(chǔ)上,讓學(xué)生動(dòng)手操作,通過(guò)一些活動(dòng)得出“三角形的內(nèi)角和等于180°”成立的理由,由淺入深,循序漸進(jìn),引導(dǎo)學(xué)生觀察、猜測(cè)、實(shí)驗(yàn),總結(jié)。逐步培養(yǎng)學(xué)生的邏輯推理能力。
“問(wèn)題的提出往往比解答問(wèn)題更重要”,其實(shí)三角形內(nèi)角和是多少?大部分的學(xué)生已經(jīng)知道了這一知識(shí),所以很輕松地就可以答出。但是只是“知其然而不知其所以然”,所以我特別重視問(wèn)題的提出,再讓學(xué)生各抒已見(jiàn),暢所欲言,鼓勵(lì)學(xué)生傾聽(tīng)他人的方法。
本課的重點(diǎn)就是要讓學(xué)生知道“知其然還要知其所以然”,所以在第二環(huán)節(jié)里。鼓勵(lì)學(xué)生親自動(dòng)手操作驗(yàn)證猜想。為此,我設(shè)計(jì)了大量的操作活動(dòng):畫一畫、量一量、剪一剪、折一折、拼一拼、撕一撕等,我沒(méi)有限定了具體的操作環(huán)節(jié),但為了節(jié)省時(shí)間,讓學(xué)生分組活動(dòng),感覺(jué)更利于我的目標(biāo)落實(shí)。但在分組活動(dòng)中,我更注意解決學(xué)生活動(dòng)中遇到了問(wèn)題的解決,比如說(shuō)畫,老師走入學(xué)生中指導(dǎo)要領(lǐng),因此學(xué)生交上來(lái)畫的作品也非常的漂亮。學(xué)生觀察能力得到了培養(yǎng)。再比如說(shuō)折,有的學(xué)生就是折不好,因?yàn)槟堑谝徽塾幸欢ǖ碾y度,它不僅要頂點(diǎn)和邊的重合,其實(shí)還要折痕和邊的平行,這個(gè)認(rèn)識(shí)并不是每個(gè)學(xué)生都能達(dá)到的。教師也要走上前去點(diǎn)撥一下。再比如撕,如果事先沒(méi)有標(biāo)好具體的角,撕后就找不到要拼的角了……所以在限定的操作活動(dòng)中,既體現(xiàn)了老師的“扶”又體現(xiàn)了老師的“放”。做到了“扶”而不死,“伴”而有度,“放”而不亂。我還制作了動(dòng)畫課件,更直觀的展示了活動(dòng)過(guò)程,生動(dòng)又形象,吸引學(xué)生的注意力。使學(xué)生感受到每種活動(dòng)的特點(diǎn),這對(duì)他認(rèn)識(shí)能力的提高是有幫助的。在此環(huán)節(jié)增加了學(xué)生的合作探究精神培養(yǎng)。
在歸納總結(jié)環(huán)節(jié),有意識(shí)地培養(yǎng)學(xué)生的說(shuō)理能力,邏輯推理能力,增強(qiáng)了語(yǔ)言表達(dá)能力。
最后通過(guò)習(xí)題鞏固三角形內(nèi)角和知識(shí),培養(yǎng)學(xué)生思維的廣闊性,為了強(qiáng)化學(xué)生對(duì)這節(jié)課的掌握,我除了設(shè)計(jì)了一些基本的已知三角形二個(gè)內(nèi)角求第三個(gè)角的練習(xí)題外,還設(shè)計(jì)了幾道習(xí)題,第一道是已知一個(gè)三角形有二個(gè)銳角,你能判斷出是什么三角形嗎?通過(guò)這一問(wèn)題的思考,使學(xué)生明白,任意三角形都有二個(gè)銳角,因此直角三角形的定義是有一個(gè)角是直角的三角形叫直角三角形;鈍角三角形的定義是有一個(gè)鈍角的三角形叫鈍角三角形;而銳角三角形則必須是三個(gè)角都是銳角的三角形才是銳角三角形的道理。這道題有助于幫助學(xué)生解決三角形按角分的定義的理解。第二道題是一個(gè)三角形最大角是60°,它是什么三角形?通過(guò)對(duì)此題的研究,使學(xué)生發(fā)現(xiàn)判斷是什么三角形主要看最大角的大小,如果最大角是銳角,也可以判斷是銳角三角形。同時(shí)加深了學(xué)生對(duì)等邊三角形的特點(diǎn)的認(rèn)識(shí)和理解。第三題我拓展延伸到三角形外角,第四題我設(shè)計(jì)了多邊形的內(nèi)角和的探究。
三角形的內(nèi)角和聽(tīng)課心得體會(huì)篇十一
通過(guò)猜想、驗(yàn)證,了解三角形的內(nèi)角和是180度。在學(xué)習(xí)的.過(guò)程中進(jìn)一步激發(fā)學(xué)生探索數(shù)學(xué)規(guī)律的興趣,初步感知計(jì)算多邊形內(nèi)角和的公式。
三角形的內(nèi)角和課前準(zhǔn)備電腦課件、學(xué)具卡片。
出示三角尺中的一個(gè),提問(wèn):誰(shuí)來(lái)說(shuō)說(shuō)三角尺上的三個(gè)角分別是多少度?
引導(dǎo)學(xué)生說(shuō)出90度、60度、30度。
出示另一個(gè)三角尺,引導(dǎo)學(xué)生分別說(shuō)出三個(gè)角的度數(shù):90度、45度、45度。
提問(wèn):請(qǐng)同學(xué)們?nèi)芜x一個(gè)三角尺,算出他們?nèi)齻€(gè)角一共多少度?
學(xué)生計(jì)算后指名回答。
師:三角尺三個(gè)角的和是180度。
提問(wèn):是不是任一個(gè)三角形三個(gè)角的和都是180度呢?請(qǐng)同學(xué)們?cè)谧詡浔旧先萎嬕粋€(gè)三角形,量出它們?nèi)齻€(gè)角分別是多少度,再求出它們的和,然后小組內(nèi)交流。
學(xué)生小組活動(dòng),教師了解學(xué)生情況,個(gè)別同學(xué)加以輔導(dǎo)。
全班交流:讓學(xué)生分別說(shuō)出三個(gè)角的度數(shù)以及它們的和。
提問(wèn):你發(fā)現(xiàn)了什么?
:任何一個(gè)三角形三個(gè)角的和都是180度。利用三角形的這一性質(zhì),我們可以解決許多問(wèn)題。
要求學(xué)生先計(jì)算,再用量角器量,最后比較結(jié)果是否相同?讓學(xué)生說(shuō)說(shuō)計(jì)算的方法。
教師說(shuō)明:即使結(jié)果不完全一樣,是因?yàn)闇y(cè)量的結(jié)果存在誤差,我們還是以
計(jì)算的結(jié)果為準(zhǔn)。
完成想想做做的題目。
三角形的內(nèi)角和聽(tīng)課心得體會(huì)篇十二
一、構(gòu)建新的課堂教學(xué)模式。
傳統(tǒng)的教學(xué)往往只重視對(duì)結(jié)論的記憶和模仿,而這節(jié)課老師把學(xué)生的學(xué)習(xí)定位在自主建構(gòu)知識(shí)的基礎(chǔ)上,建立了“猜想——驗(yàn)證——?dú)w納——運(yùn)用”的教學(xué)模式。
二、培養(yǎng)學(xué)生勇于猜想,大膽創(chuàng)新的精神。
教學(xué)中老師遵循的基本教學(xué)原則是激勵(lì)學(xué)生展開積極的思維活動(dòng)。先創(chuàng)設(shè)猜角的游戲情景,讓學(xué)生對(duì)三角形的三個(gè)角的度數(shù)關(guān)系產(chǎn)生好奇,引發(fā)學(xué)生的探究欲望。
三、為學(xué)生提供了大量數(shù)學(xué)活動(dòng)的機(jī)會(huì),讓學(xué)生真正成為學(xué)習(xí)的主人。
“給學(xué)生一些權(quán)利,讓他們自己選擇;讓他們自己去鍛煉;給學(xué)生一些問(wèn)題,讓他們自己去探索;給學(xué)生一片空間,讓學(xué)生自己飛翔?!边@正是課堂教學(xué)改革中學(xué)生的主體性的表現(xiàn)。所以在這節(jié)課中老師樹立了數(shù)學(xué)教學(xué)為學(xué)生服務(wù),創(chuàng)設(shè)有助于學(xué)生自主學(xué)習(xí),合作交流的機(jī)會(huì),通過(guò)想辦法求三角形的內(nèi)角和這一核心問(wèn)題,引發(fā)學(xué)生去思考,去探究。這樣學(xué)生的潛能的以激活,思維展開了想象,能力得以發(fā)展。
四、給學(xué)生一個(gè)開放探究的學(xué)習(xí)空間。
培養(yǎng)學(xué)生的問(wèn)題意識(shí)是數(shù)學(xué)課堂教學(xué)的核心問(wèn)題,所以課堂上學(xué)生的學(xué)習(xí)過(guò)程就是解決問(wèn)題的過(guò)程,當(dāng)一個(gè)問(wèn)題解決完后又引發(fā)出新的問(wèn)題,使學(xué)生體會(huì)到成功的喜悅,使數(shù)學(xué)課堂充滿挑戰(zhàn)。所以課堂上老師沒(méi)有因?qū)W生發(fā)現(xiàn)三角形內(nèi)角和是180度而罷休,然后用一個(gè)大的三角形剪成兩個(gè)小的,用兩個(gè)小的拼成大的內(nèi)角和延伸,使學(xué)生悟出規(guī)律,這樣學(xué)生帶著問(wèn)題在課后向更高的學(xué)習(xí)目標(biāo)繼續(xù)探索,一追求更大的成功。
一堂好課不應(yīng)是自始至終的高潮和精彩,也不必是高科技現(xiàn)代教育技術(shù)的集中展示。一堂好課不是看它的熱鬧程度,而在于學(xué)生從中得到了什么,它留給人們的應(yīng)是思考、啟示和回味。
將本文的word文檔下載到電腦,方便收藏和打印。
三角形的內(nèi)角和聽(tīng)課心得體會(huì)篇十三
在整個(gè)教學(xué)設(shè)計(jì)上謝老師充分體現(xiàn)“以學(xué)生發(fā)展為本”教育理念,將教學(xué)思路擬定為“談話激趣設(shè)疑導(dǎo)入——猜想——驗(yàn)證——鞏固內(nèi)化——拓展延伸”,努力構(gòu)建探索型的課堂教學(xué)模式。具體體現(xiàn)在以下幾點(diǎn):
1、善用激趣設(shè)疑導(dǎo)入:教學(xué)的藝術(shù)不在于傳授知識(shí),而在于喚醒、激發(fā)和鼓勵(lì)。剛開始上課,謝老師用選王大會(huì)設(shè)懸念,三種類型的角在激烈的爭(zhēng)執(zhí),到的誰(shuí)的內(nèi)角和大呢?這樣,在很短的時(shí)間內(nèi)最大限度的激發(fā)學(xué)生探究數(shù)學(xué)的愿望和興趣,而且也很自然地揭示了課題。
2、巧用猜想:學(xué)生有了探索的愿望和興趣,可是不能沒(méi)有目標(biāo)的去探索,那樣只會(huì)事倍功半,甚至沒(méi)有結(jié)果,這時(shí)謝老師就提到到底三角形的內(nèi)角和是不是180度呢,我們總不能口說(shuō)無(wú)憑吧?使后邊的探索和驗(yàn)證活動(dòng)有了明確的目標(biāo)。
3、善用驗(yàn)證:學(xué)生形成統(tǒng)一的猜想{即三角形的內(nèi)角和等于180度}后,謝老師就把課堂大量的時(shí)間和空間留給學(xué)生,讓他們開展有針對(duì)性的數(shù)學(xué)探究活動(dòng),在活動(dòng)中,把放和引有機(jī)的結(jié)合,鼓勵(lì)學(xué)生積極開動(dòng)腦筋,從不同的途徑探索解決問(wèn)題的方法。不但讓每個(gè)學(xué)生自主參與驗(yàn)證活動(dòng),而且使學(xué)生在經(jīng)歷觀察、操作、分析、推理和想象活動(dòng)過(guò)程中解決問(wèn)題,發(fā)展空間觀念和論證推理能力。具體過(guò)程為:量一量——拼一拼——看一看。
4、善于引導(dǎo)鞏固內(nèi)化:俗話說(shuō)的好:“熟能生巧”。數(shù)學(xué)離不開練習(xí),要掌握知識(shí),形成技能技巧,一定要通過(guò)練習(xí)。養(yǎng)成良好的思維品質(zhì)也要通過(guò)一定的思考練習(xí),課程標(biāo)準(zhǔn)提倡練習(xí)的有效性。對(duì)此,謝老師非常注意將數(shù)學(xué)的思考融入不同層次的練習(xí)之中,很好的發(fā)揮練習(xí)的作用,如第一關(guān)牛刀小試:給出一個(gè)三角形的兩個(gè)角度,學(xué)生求第三個(gè)角,從中培養(yǎng)學(xué)生應(yīng)用意識(shí)和解決問(wèn)題的能力;第三關(guān)過(guò)關(guān)斬將:讓學(xué)生判斷有兩個(gè)小三角形拼成的三角形的內(nèi)角和的度數(shù),使學(xué)生在圖形變化的過(guò)程中掌握知識(shí),培養(yǎng)思維的靈活性,從中發(fā)展學(xué)生的空間觀念和空間想象能力。這些練習(xí)設(shè)計(jì)目的明確,針對(duì)性強(qiáng),使學(xué)生不但鞏固了知識(shí),更重要的是數(shù)學(xué)思維得到不斷的發(fā)展。
5、有一定的拓展創(chuàng)新:數(shù)學(xué)具有嚴(yán)密的邏輯性和抽象性。而學(xué)生學(xué)習(xí)內(nèi)容的呈現(xiàn)是從簡(jiǎn)單到復(fù)雜,思維方式是從具體到抽象的一個(gè)循序漸進(jìn)的過(guò)程,前面學(xué)習(xí)的知識(shí)往往是后面進(jìn)一步學(xué)習(xí)的基礎(chǔ)。要培養(yǎng)學(xué)生思維的靈活性,可以先讓學(xué)生學(xué)會(huì)對(duì)知識(shí)的遷移。本課最后,謝老師設(shè)計(jì)了這樣一道題目:學(xué)了三角形的內(nèi)角和后,你知道四邊形的內(nèi)角和是多少度嗎?這道題通過(guò)對(duì)本節(jié)課所學(xué)知識(shí)的遷移就可以完成,既能對(duì)學(xué)生進(jìn)行思維訓(xùn)練,又能培養(yǎng)學(xué)生應(yīng)用知識(shí)的能力,更能培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新精神。
總之,本節(jié)課教學(xué)活動(dòng)中謝老師充分體現(xiàn)以下特點(diǎn):以學(xué)生發(fā)展為本,以學(xué)生為主體,思維為主線的思想;充分關(guān)注學(xué)生的自主探究與合作交流;練習(xí)體現(xiàn)了層次性,知識(shí)技能得于落實(shí)和發(fā)展。是一節(jié)非常成功的課。
三角形的內(nèi)角和聽(tīng)課心得體會(huì)篇十四
一、構(gòu)建新的課堂教學(xué)模式。
傳統(tǒng)的教學(xué)往往只重視對(duì)結(jié)論的記憶和模仿,而這節(jié)課老師把學(xué)生的學(xué)習(xí)定位在自主建構(gòu)知識(shí)的.基礎(chǔ)上,建立了“猜想——驗(yàn)證——?dú)w納——運(yùn)用”的教學(xué)模式。
二、培養(yǎng)學(xué)生勇于猜想,大膽創(chuàng)新的精神。
教學(xué)中趙老師遵循的基本教學(xué)原則是激勵(lì)學(xué)生展開積極的思維活動(dòng).先創(chuàng)設(shè)猜角的游戲情景,讓學(xué)生對(duì)三角形的三個(gè)角的度數(shù)關(guān)系產(chǎn)生好奇,引發(fā)學(xué)生的探究欲望.
三、為學(xué)生提供了大量數(shù)學(xué)活動(dòng)的機(jī)會(huì),讓學(xué)生真正成為學(xué)習(xí)的主人。
“給學(xué)生一些權(quán)利,讓他們自己選擇;讓他們自己去鍛煉;給學(xué)生一些問(wèn)題,讓他們自己去探索;給學(xué)生一片空間,讓學(xué)生自己飛翔.”這正是課堂教學(xué)改革中學(xué)生的主體性的表現(xiàn)。所以在這節(jié)課中趙老師樹立了數(shù)學(xué)教學(xué)為學(xué)生服務(wù),創(chuàng)設(shè)有助于學(xué)生自主學(xué)習(xí),合作交流的機(jī)會(huì),通過(guò)想辦法求三角形的內(nèi)角和這一核心問(wèn)題,引發(fā)學(xué)生去思考,去探究.這樣學(xué)生的潛能的以激活,思維展開了想象,能力得以發(fā)展.
四、給學(xué)生一個(gè)開放探究的學(xué)習(xí)空間.
培養(yǎng)學(xué)生的問(wèn)題意識(shí)是數(shù)學(xué)課堂教學(xué)的核心問(wèn)題,所以課堂上學(xué)生的學(xué)習(xí)過(guò)程就是解決問(wèn)題的過(guò)程,當(dāng)一個(gè)問(wèn)題解決完后又引發(fā)出新的問(wèn)題,使學(xué)生體會(huì)到成功的喜悅,使數(shù)學(xué)課堂充滿挑戰(zhàn).所以課堂上老師沒(méi)有因?qū)W生發(fā)現(xiàn)三角形內(nèi)角和是180度而罷休,然后用一個(gè)大的三角形剪成兩個(gè)小的,用兩個(gè)小的拼成大的內(nèi)角和延伸,使學(xué)生悟出規(guī)律,這樣學(xué)生帶著問(wèn)題在課后向更高的學(xué)習(xí)目標(biāo)繼續(xù)探索,一追求更大的成功。
一堂好課不應(yīng)是自始至終的高潮和精彩,也不必是高科技現(xiàn)代教育技術(shù)的集中展示。一堂好課不是看它的熱鬧程度,而在于學(xué)生從中得到了什么,它留給人們的應(yīng)是思考、啟示和回味。
三角形的內(nèi)角和聽(tīng)課心得體會(huì)篇十五
“三角形的內(nèi)角和”是人教版小學(xué)數(shù)學(xué)四年級(jí)下冊(cè)第五單元第四節(jié)的內(nèi)容,“三角形的內(nèi)角和”是三角形的一個(gè)重要性質(zhì)。本課教學(xué)內(nèi)容不算多,學(xué)生只需要翻看課本就會(huì)知道三角形的內(nèi)角和是180°,但是陳麗老師并沒(méi)有讓學(xué)生這樣做?!皵?shù)學(xué)學(xué)習(xí)的過(guò)程實(shí)際上是數(shù)學(xué)活動(dòng)的過(guò)程”。課程標(biāo)準(zhǔn)要求我們“將課堂還給學(xué)生,讓課堂煥發(fā)生命的活力”,要求我們“努力營(yíng)造學(xué)生在教學(xué)活動(dòng)中獨(dú)立自主學(xué)習(xí)的時(shí)間和空間,使他們成為課堂教學(xué)中重要的參與者與創(chuàng)造者,落實(shí)學(xué)生的主體地位,促進(jìn)學(xué)生的自主學(xué)習(xí)和探究。”在教學(xué)中,陳老師力求探究,將教學(xué)思路擬定為“創(chuàng)設(shè)情境,激趣引題——自主合作,探究新知——交流釋疑,歸納總結(jié)——拓展應(yīng)用,反思升華”四個(gè)環(huán)節(jié),努力構(gòu)建探究型的課堂教學(xué)模式。具體體現(xiàn)在以下幾個(gè)方面:
課一開始,陳老師創(chuàng)設(shè)了一個(gè)實(shí)踐操作的活動(dòng)情境:讓學(xué)生畫一個(gè)含有兩個(gè)直角的三角形。很顯然三角形是畫不出來(lái)的,學(xué)生同樣也不知道畫不出來(lái)。簡(jiǎn)單的活動(dòng)激活了學(xué)生的思維,讓他們產(chǎn)生了問(wèn)題:是不是三角形的角有些什么秘密呢?這樣,在很短的時(shí)間內(nèi)最大限度的激發(fā)學(xué)生探究數(shù)學(xué)的愿望和興趣,而且也很自然地揭示了課題。
在教學(xué)中,陳老師巧妙運(yùn)用“猜想、驗(yàn)證”的方式引導(dǎo)學(xué)生進(jìn)行自主學(xué)習(xí)和探究活動(dòng)。學(xué)生大膽猜想三角形的內(nèi)角和是180°,讓學(xué)生對(duì)問(wèn)題形成了統(tǒng)一的認(rèn)識(shí),使后邊的探索和驗(yàn)證活動(dòng)有了明確的目標(biāo)。這個(gè)時(shí)候,陳老師就把課堂大量的時(shí)間和空間留給學(xué)生,在學(xué)生交流探究設(shè)想和打算采用的方法后,放手讓每個(gè)同學(xué)自主參與驗(yàn)證活動(dòng),在經(jīng)歷觀察、操作、分析、推理和想象活動(dòng)過(guò)程中解決問(wèn)題,同時(shí)發(fā)展空間觀念和論證推理能力。驗(yàn)證的具體過(guò)程為:量角求和——撕角拼一拼——折角拼一拼。拼角的方法具有一般性,結(jié)論的形成不缺乏科學(xué)性。這個(gè)環(huán)節(jié)的設(shè)計(jì)更重要的是變“聽(tīng)數(shù)學(xué)”為“做數(shù)學(xué)”,讓學(xué)生在“做中學(xué)”。
學(xué)生在活動(dòng)中體驗(yàn),在交流中消除疑惑,獲得新知。這節(jié)課生與生、生與師的交流不僅僅停留在知識(shí)的層面上,陳老師還引導(dǎo)學(xué)生對(duì)獲得知識(shí)所用的方法進(jìn)行了總結(jié),加強(qiáng)了學(xué)法指導(dǎo)。
課程標(biāo)準(zhǔn)提倡練習(xí)的'有效性。本節(jié)課的練習(xí)設(shè)計(jì)陳老師非常注意將數(shù)學(xué)的思考融入不同層次的練習(xí)之中,很好的發(fā)揮練習(xí)的作用。兩個(gè)小三角形拼成一個(gè)較大的三角形互動(dòng)練習(xí)讓學(xué)生進(jìn)一步理解任意三角形的內(nèi)角和都是180°;后面的練習(xí)設(shè)計(jì)從圖形到文字,由一般到特殊;“開心一刻”更是把學(xué)生帶到無(wú)窮的學(xué)習(xí)樂(lè)趣之中。這些練習(xí)設(shè)計(jì)目的明確,針對(duì)性強(qiáng),使學(xué)生不但鞏固了知識(shí),更重要的是數(shù)學(xué)思維得到不斷的發(fā)展。
兩點(diǎn)建議:
2、學(xué)生的猜想結(jié)果都是180°,這時(shí)老師是否可以反問(wèn):你們是怎樣知道的?便于學(xué)生的學(xué)習(xí)活動(dòng)更流暢的進(jìn)入下一個(gè)環(huán)節(jié)。
總之,我個(gè)人認(rèn)為陳老師對(duì)“四步教學(xué)法”模式的把握是成功的,學(xué)生在這種課堂教學(xué)模式下的學(xué)習(xí)是自主的,是活動(dòng)的,也是快樂(lè)的。
三角形的內(nèi)角和聽(tīng)課心得體會(huì)篇十六
“三角形的內(nèi)角和”是人教版小學(xué)四年級(jí)下冊(cè)第五單元第四節(jié)的內(nèi)容?!叭切蔚膬?nèi)角和”是三角形的一個(gè)重要性質(zhì),是“空間與圖形”領(lǐng)域的重要內(nèi)容之一,學(xué)好它有助于學(xué)生理解三角形內(nèi)角之間的關(guān)系,也是進(jìn)一步學(xué)習(xí)幾何的基礎(chǔ)。經(jīng)過(guò)第一學(xué)段以及本單元的學(xué)習(xí),學(xué)生已經(jīng)具備一定的關(guān)于三角形的認(rèn)識(shí)的直接經(jīng)驗(yàn),已具備了一些相應(yīng)的三角形知識(shí)和技能,這為感受、理解、抽象“三角形的內(nèi)角和”的概念,打下了堅(jiān)實(shí)的基礎(chǔ)。
在教學(xué)中李老師充分體現(xiàn)了新課程標(biāo)準(zhǔn)的基本理念:讓學(xué)生“人人學(xué)有價(jià)值的數(shù)學(xué)”。從學(xué)生已有的經(jīng)驗(yàn)出發(fā),讓學(xué)生親身經(jīng)歷將實(shí)際問(wèn)題抽象成數(shù)學(xué)模型并進(jìn)行解釋與應(yīng)用的過(guò)程。善于激發(fā)學(xué)生的學(xué)習(xí)積極性,向?qū)W生提供充分從事數(shù)學(xué)活動(dòng)的機(jī)會(huì),讓他們積極主動(dòng)地探索,解決數(shù)學(xué)問(wèn)題,發(fā)現(xiàn)數(shù)學(xué)規(guī)律,獲得數(shù)學(xué)經(jīng)驗(yàn);李老師善于做好學(xué)生學(xué)習(xí)的組織者、引導(dǎo)者和合作者,在全面參與和了解學(xué)生的學(xué)習(xí)過(guò)程中起著對(duì)學(xué)生進(jìn)行積極的評(píng)價(jià),關(guān)注他們的學(xué)習(xí)方法、學(xué)習(xí)水平和情感態(tài)度,促使學(xué)生向著預(yù)定的目標(biāo)發(fā)展的作用”。