教資勾股定理教案(實(shí)用18篇)

字號(hào):

    教案應(yīng)具備清晰的結(jié)構(gòu)和明確的教學(xué)目標(biāo),以及恰當(dāng)?shù)脑u(píng)估手段。教案的編寫要注重多種教學(xué)手段的合理運(yùn)用。以下是一些精心編寫的教案示例,供大家參考和借鑒。
    教資勾股定理教案篇一
    教學(xué)方法葉圣陶說(shuō)過(guò)“教師之為教,不在全盤授予,而在相機(jī)誘導(dǎo)。”因此教師利用幾何直觀提出問(wèn)題,引導(dǎo)學(xué)生由淺入深的探索,設(shè)計(jì)實(shí)驗(yàn)讓學(xué)生進(jìn)行驗(yàn)證,感悟其中所蘊(yùn)涵的思想方法。
    學(xué)法指導(dǎo)為把學(xué)習(xí)的主動(dòng)權(quán)還給學(xué)生,教師鼓勵(lì)學(xué)生采用動(dòng)手實(shí)踐,自主探索、合作交流的學(xué)習(xí)方法,讓學(xué)生親自感知體驗(yàn)知識(shí)的形成過(guò)程。
    教資勾股定理教案篇二
    1、通過(guò)拼圖,用面積的方法說(shuō)明勾股定理的正確性.
    2、通過(guò)實(shí)例應(yīng)用勾股定理,培養(yǎng)學(xué)生的知識(shí)應(yīng)用技能.
    1.用面積的方法說(shuō)明勾股定理的正確.
    2.勾股定理的應(yīng)用.
    勾股定理的應(yīng)用.
    一、學(xué)前準(zhǔn)備:
    1、閱讀課本第46頁(yè)到第47頁(yè),完成下列問(wèn)題:
    2、剪四個(gè)完全相同的直角三角形,然后將它們拼成如圖所示的'圖形。大正方形的面積可以表示為_________________________,又可以表示為__________________________.對(duì)比兩種表示方法,看看能不能得到勾股定理的結(jié)論。用上面得到的完全相同的四個(gè)直角三角形,還可以拼成如下圖所示的圖形,與上面的方法類似,也能說(shuō)明勾股定理是正確的方法(請(qǐng)逐一說(shuō)明)
    二、合作探究:
    (一)自學(xué)、相信自己:
    (二)思索、交流:
    (三)應(yīng)用、探究:
    (四)鞏固練習(xí):
    1、如圖,64、400分別為所在正方形的面積,則圖中字
    母a所代表的正方形面積是_________。
    三.學(xué)習(xí)體會(huì):
    本節(jié)課我們進(jìn)一步認(rèn)識(shí)了勾股定理,并用兩種方法證明了這個(gè)定理,在應(yīng)用此定理解決問(wèn)題時(shí),應(yīng)注意只有直角三角形的三邊才有這樣的關(guān)系,如果不是直角三角形應(yīng)該構(gòu)造直角三角形來(lái)解決。
    2②圖
    四.自我測(cè)試:
    五.自我提高:
    教資勾股定理教案篇三
    學(xué)會(huì)觀察圖形,勇于探索圖形間的關(guān)系,培養(yǎng)學(xué)生的空間觀念。
    2、過(guò)程與方法。
    (1)經(jīng)歷一般規(guī)律的探索過(guò)程,發(fā)展學(xué)生的抽象思維能力。
    (2)在將實(shí)際問(wèn)題抽象成幾何圖形過(guò)程中,提高分析問(wèn)題、解決問(wèn)題的能力及滲透數(shù)學(xué)建模的思想。
    3、情感態(tài)度與價(jià)值觀。
    (1)通過(guò)有趣的問(wèn)題提高學(xué)習(xí)數(shù)學(xué)的興趣。
    (2)在解決實(shí)際問(wèn)題的過(guò)程中,體驗(yàn)數(shù)學(xué)學(xué)習(xí)的實(shí)用性。
    教學(xué)重點(diǎn):
    探索、發(fā)現(xiàn)事物中隱含的勾股定理及其逆及理,并用它們解決生活實(shí)際問(wèn)題。
    教學(xué)難點(diǎn):
    利用數(shù)學(xué)中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實(shí)際問(wèn)題。
    教學(xué)準(zhǔn)備:
    多媒體。
    教學(xué)過(guò)程:
    第一環(huán)節(jié):創(chuàng)設(shè)情境,引入新課(3分鐘,學(xué)生觀察、猜想)。
    情景:
    第二環(huán)節(jié):合作探究(15分鐘,學(xué)生分組合作探究)。
    學(xué)生分為4人活動(dòng)小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計(jì)算方法,通過(guò)具體計(jì)算,總結(jié)出最短路線。讓學(xué)生發(fā)現(xiàn):沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究?jī)牲c(diǎn)連線最短問(wèn)題,引導(dǎo)學(xué)生體會(huì)利用數(shù)學(xué)解決實(shí)際問(wèn)題的方法:建立數(shù)學(xué)模型,構(gòu)圖,計(jì)算。
    第三環(huán)節(jié):做一做(7分鐘,學(xué)生合作探究)。
    教材23頁(yè)。
    李叔叔想要檢測(cè)雕塑底座正面的ad邊和bc邊是否分別垂直于底邊ab,但他隨身只帶了卷尺。
    (1)你能替他想辦法完成任務(wù)嗎?
    第四環(huán)節(jié):鞏固練習(xí)(10分鐘,學(xué)生獨(dú)立完成)。
    2.如圖,臺(tái)階a處的螞蟻要爬到b處搬運(yùn)食物,它怎么走最近?并求出最近距離。
    第五環(huán)節(jié)課堂小結(jié)(3分鐘,師生問(wèn)答)。
    內(nèi)容:如何利用勾股定理及逆定理解決最短路程問(wèn)題?
    第六環(huán)節(jié):布置作業(yè)(2分鐘,學(xué)生分別記錄)。
    作業(yè):1.課本習(xí)題1.5第1,2,3題.。
    要求:a組(學(xué)優(yōu)生):1、2、3。
    b組(中等生):1、2。
    c組(后三分之一生):1。
    教資勾股定理教案篇四
    【知識(shí)與技能】
    理解并掌握勾股定理的逆定理,會(huì)應(yīng)用定理判定直角三角形;理解勾股定理與勾股定理逆定理的區(qū)別與聯(lián)系;理解原命題和逆命題的概念,知道二者的關(guān)系及二者真假性的關(guān)系。
    【過(guò)程與方法】
    經(jīng)歷得出猜想、推理證明的過(guò)程,提升自主探究、分析問(wèn)題、解決問(wèn)題的能力。
    【情感、態(tài)度與價(jià)值觀】
    體會(huì)事物之間的聯(lián)系,感受幾何的魅力。
    【重點(diǎn)】勾股定理的逆定理及其證明。
    【難點(diǎn)】勾股定理的逆定理的證明。
    (一)導(dǎo)入新課
    復(fù)習(xí)勾股定理,分清其題設(shè)和結(jié)論。
    提問(wèn)學(xué)生畫直角三角形的方法(可用尺類工具),然后要求不能用繩子以外的工具。
    出示古埃及人利用等長(zhǎng)的3、4、5個(gè)繩結(jié)間距畫直角三角形的方法,以其中蘊(yùn)含何道理為切入點(diǎn)引出課題。
    (二)講解新知
    請(qǐng)學(xué)生思考3,4,5之間的關(guān)系,結(jié)合勾股定理的學(xué)習(xí)經(jīng)驗(yàn)明確
    出示數(shù)據(jù)2.5cm,6cm,6.5cm,請(qǐng)學(xué)生計(jì)算驗(yàn)證數(shù)據(jù)滿足上述平方和關(guān)系,并畫出相應(yīng)邊長(zhǎng)的三角形檢驗(yàn)是否為直角三角形。
    學(xué)生活動(dòng):同桌兩人一組,將三邊換成其他滿足上述平方和關(guān)系的數(shù)據(jù),如4cm,7.5cm,8.5cm,畫出相應(yīng)邊長(zhǎng)的三角形檢驗(yàn)是否為直角三角形。
    教資勾股定理教案篇五
    1、知識(shí)與技能目標(biāo)
    學(xué)會(huì)觀察圖形,勇于探索圖形間的關(guān)系,培養(yǎng)學(xué)生的空間觀念。
    2、過(guò)程與方法
    (1)經(jīng)歷一般規(guī)律的探索過(guò)程,發(fā)展學(xué)生的抽象思維能力。
    (2)在將實(shí)際問(wèn)題抽象成幾何圖形過(guò)程中,提高分析問(wèn)題、解決問(wèn)題的能力及滲透數(shù)學(xué)建模的思想。
    3、情感態(tài)度與價(jià)值觀
    (1)通過(guò)有趣的問(wèn)題提高學(xué)習(xí)數(shù)學(xué)的興趣。
    (2)在解決實(shí)際問(wèn)題的過(guò)程中,體驗(yàn)數(shù)學(xué)學(xué)習(xí)的實(shí)用性。
    教學(xué)重點(diǎn):
    探索、發(fā)現(xiàn)事物中隱含的勾股定理及其逆及理,并用它們解決生活實(shí)際問(wèn)題。
    教學(xué)難點(diǎn):
    利用數(shù)學(xué)中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實(shí)際問(wèn)題。
    教學(xué)準(zhǔn)備:
    多媒體
    教學(xué)過(guò)程:
    第一環(huán)節(jié):創(chuàng)設(shè)情境,引入新課(3分鐘,學(xué)生觀察、猜想)
    情景:
    第二環(huán)節(jié):合作探究(15分鐘,學(xué)生分組合作探究)
    學(xué)生分為4人活動(dòng)小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計(jì)算方法,通過(guò)具體計(jì)算,總結(jié)出最短路線。讓學(xué)生發(fā)現(xiàn):沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究?jī)牲c(diǎn)連線最短問(wèn)題,引導(dǎo)學(xué)生體會(huì)利用數(shù)學(xué)解決實(shí)際問(wèn)題的方法:建立數(shù)學(xué)模型,構(gòu)圖,計(jì)算。
    第三環(huán)節(jié):做一做(7分鐘,學(xué)生合作探究)
    教材23頁(yè)
    李叔叔想要檢測(cè)雕塑底座正面的ad邊和bc邊是否分別垂直于底邊ab,但他隨身只帶了卷尺。
    (1)你能替他想辦法完成任務(wù)嗎?
    第四環(huán)節(jié):鞏固練習(xí)(10分鐘,學(xué)生獨(dú)立完成)
    2.如圖,臺(tái)階a處的螞蟻要爬到b處搬運(yùn)食物,它怎么走最近?并求出最近距離。
    第五環(huán)節(jié)課堂小結(jié)(3分鐘,師生問(wèn)答)
    內(nèi)容:如何利用勾股定理及逆定理解決最短路程問(wèn)題?
    第六環(huán)節(jié):布置作業(yè)(2分鐘,學(xué)生分別記錄)
    作業(yè):1.課本習(xí)題1.5第1,2,3題.
    要求:a組(學(xué)優(yōu)生):1、2、3
    b組(中等生):1、2
    c組(后三分之一生):1
    教資勾股定理教案篇六
    了解勾股定理的一些證明方法,會(huì)簡(jiǎn)單應(yīng)用勾股定理解決問(wèn)題
    在充分觀察、歸納、猜想的基礎(chǔ)上,探究勾股定理,在探究的過(guò)程中,發(fā)展合情推理,體會(huì)數(shù)形結(jié)合、從特殊到一般等數(shù)學(xué)思想。
    通過(guò)對(duì)我國(guó)古代研究勾股定理的成就介紹,培養(yǎng)學(xué)生的民族自豪感。
    1、創(chuàng)設(shè)情境
    師生活動(dòng):教師引導(dǎo)學(xué)生尋找圖形中的直角三角形和正方形等,并引導(dǎo)學(xué)生發(fā)現(xiàn)直角三角形的全等關(guān)系,指出通過(guò)今天的學(xué)習(xí),就能理解會(huì)徽?qǐng)D案的含義。
    設(shè)計(jì)意圖:本節(jié)課是本章的起始課,重視引言教學(xué),從國(guó)際數(shù)學(xué)家大會(huì)的會(huì)徽說(shuō)起,設(shè)置懸念,引入課題。
    2、探究勾股定理
    觀看洋蔥數(shù)學(xué)中關(guān)于勾股定理引入的視頻,讓我們一起走進(jìn)神奇的數(shù)學(xué)世界
    追問(wèn):由這三個(gè)正方形的邊長(zhǎng)構(gòu)成的等腰直角三角形三條邊長(zhǎng)之間又有怎么樣的關(guān)系?
    師生活動(dòng):教師引導(dǎo)學(xué)生發(fā)現(xiàn)正方形的面積等于邊長(zhǎng)的平方,歸納出:等腰直角三角形兩條直角邊的平方和等于斜邊的平方。
    設(shè)計(jì)意圖:從最特殊的等腰直角三角形入手,便于學(xué)生觀察得到結(jié)論
    問(wèn)題3:數(shù)學(xué)研究遵循從特殊到一般的數(shù)學(xué)思想,既然我們得到了等腰直角三角形三邊的這種特殊的數(shù)量關(guān)系,那我們不妨大膽猜測(cè)在一般的直角三角形(在下圖的方格紙中,每個(gè)方格的面積是1)中,這種特殊的數(shù)量關(guān)系也同樣成立。
    師生活動(dòng):學(xué)生獨(dú)立思考后小組討論,難點(diǎn)是如何證明求以斜邊為邊長(zhǎng)的正方形的面積,可由師生共同總結(jié)得出可以通過(guò)割、補(bǔ)兩種方法,求出其面積。
    教資勾股定理教案篇七
    從知識(shí)結(jié)構(gòu)上看,勾股定理揭示了直角三角形三條邊之間的數(shù)量關(guān)系,為后續(xù)學(xué)習(xí)解直角三角形提供重要的理論依據(jù),在現(xiàn)實(shí)生活中有著廣泛的應(yīng)用。
    從學(xué)生認(rèn)知結(jié)構(gòu)上看,它把形的特征轉(zhuǎn)化成數(shù)量關(guān)系,架起了幾何與代數(shù)之間的橋梁;
    勾股定理又是對(duì)學(xué)生進(jìn)行愛國(guó)主義教育的良好素材,因此具有相當(dāng)重要的地位和作用。
    根據(jù)數(shù)學(xué)新課程標(biāo)準(zhǔn)以及八年級(jí)學(xué)生的認(rèn)知水平我確定如下學(xué)習(xí)目標(biāo):知識(shí)技能、數(shù)學(xué)思考、問(wèn)題解決、情感態(tài)度。其中【情感態(tài)度】方面,以我國(guó)數(shù)學(xué)文化為主線,激發(fā)學(xué)生熱愛祖國(guó)悠久文化的情感。
    (二)重點(diǎn)與難點(diǎn)
    為變被動(dòng)接受為主動(dòng)探究,我確定本節(jié)課的重點(diǎn)為:勾股定理的探索過(guò)程。限于八年級(jí)學(xué)生的思維水平,我將面積法(拼圖法)發(fā)現(xiàn)勾股定理確定為本節(jié)課的難點(diǎn),我將引導(dǎo)學(xué)生動(dòng)手實(shí)驗(yàn)突出重點(diǎn),合作交流突破難點(diǎn)。
    教資勾股定理教案篇八
    教學(xué)目標(biāo)1.在探索平行四邊形的判別條件中,理解并掌握用邊、對(duì)角線來(lái)判定平行四邊形的方法.
    2.會(huì)綜合運(yùn)用平行四邊形的判定方法和性質(zhì)來(lái)解決問(wèn)題
    教學(xué)重點(diǎn):平行四邊形的判定方法及應(yīng)用
    教學(xué)難點(diǎn):平行四邊形的判定定理與性質(zhì)定理的靈活應(yīng)用
    引
    二.探
    閱讀教材p44至p45
    利用手中的學(xué)具——硬紙板條,通過(guò)觀察、測(cè)量、猜想、驗(yàn)證、探索構(gòu)成平行四邊形的條件,思考并探討:
    (1)你能適當(dāng)選擇手中的硬紙板條搭建一個(gè)平行四邊形嗎?
    (2)你怎樣驗(yàn)證你搭建的四邊形一定是平行四邊形?
    (3)你能說(shuō)出你的做法及其道理嗎?
    (4)能否將你的探索結(jié)論作為平行四邊形的一種判別方法?你能用文字語(yǔ)言表述出來(lái)嗎?
    (5)你還能找出其他方法嗎?
    從探究中得到:
    平行四邊形判定方法1兩組對(duì)邊分別相等的四邊形是平行四邊形。
    平行四邊形判定方法2對(duì)角線互相平分的四邊形是平行四邊形。
    證一證
    平行四邊形判定方法1兩組對(duì)邊分別相等的四邊形是平行四邊形。
    證明:(畫出圖形)
    平行四邊形判定方法2一組對(duì)邊平行且相等的四邊形是平行四邊形。
    證明:(畫出圖形)
    三.結(jié)
    兩組對(duì)邊分別相等的四邊形是平行四邊形。
    對(duì)角線互相平分的四邊形是平行四邊形。
    四.用
    教資勾股定理教案篇九
    一、學(xué)情分析:
    知識(shí)技能基礎(chǔ):學(xué)生在小學(xué)已經(jīng)學(xué)過(guò)分?jǐn)?shù)的乘除法,掌握了分?jǐn)?shù)的乘除法法則,在學(xué)習(xí)分式的乘除法法則時(shí)可通過(guò)與分?jǐn)?shù)的乘除法法則進(jìn)行類比學(xué)習(xí)。在前面學(xué)習(xí)了整式乘法和因式分解,為分式的運(yùn)算和結(jié)果的化簡(jiǎn)奠定基礎(chǔ)。
    能力基礎(chǔ):在過(guò)去的數(shù)學(xué)學(xué)習(xí)過(guò)程中,學(xué)生已初步具備觀察、分析、歸納的能力和類比的學(xué)習(xí)方法。
    二、教學(xué)目標(biāo):
    知識(shí)目標(biāo):1、分式的乘除運(yùn)算法則
    2、會(huì)進(jìn)行簡(jiǎn)單的分式的乘除法運(yùn)算
    能力目標(biāo):1、類比分?jǐn)?shù)的乘除運(yùn)算法則,探索分式的乘除運(yùn)算法則。
    2、能解決一些與分式有關(guān)的簡(jiǎn)單的實(shí)際問(wèn)題。
    情感目標(biāo):1、通過(guò)師生討論、交流,培養(yǎng)學(xué)生合作探究的意識(shí)和能力。
    2、培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和應(yīng)用意識(shí)。
    三、教學(xué)重點(diǎn)、難點(diǎn)
    重點(diǎn):分式乘除法的法則及應(yīng)用
    難點(diǎn):分子、分母是多項(xiàng)式的分式的乘除法的運(yùn)算
    三、教學(xué)過(guò)程:
    第一環(huán)節(jié)復(fù)習(xí)舊知識(shí)
    復(fù)習(xí)小學(xué)學(xué)的分?jǐn)?shù)乘除法法則,
    活動(dòng)目的:
    復(fù)習(xí)小學(xué)學(xué)過(guò)的分?jǐn)?shù)的乘除法運(yùn)算,為學(xué)習(xí)分式乘除法的法則做準(zhǔn)備。
    第二環(huán)節(jié)引入新課
    活動(dòng)內(nèi)容
    你能總結(jié)分式乘除法的法則嗎?與同伴交流。
    分式的乘除法的法則:
    兩個(gè)分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母;
    兩個(gè)分式相除,把除式的分子和分母顛倒位置后再與被除式相乘.
    活動(dòng)目的:
    讓學(xué)生觀察運(yùn)算,通過(guò)小組討論交流,并與分?jǐn)?shù)的乘除法的法則類比,讓學(xué)生自己總結(jié)出分式的乘除法的法則。
    第三環(huán)節(jié)知識(shí)運(yùn)用
    活動(dòng)內(nèi)容
    例題1:
    (1)(2)例題2
    (1)(2)活動(dòng)目的:
    通過(guò)例題講解,使學(xué)生會(huì)根據(jù)法則,理解每一步的算理,從而進(jìn)行簡(jiǎn)單的分式的乘除法運(yùn)算,并能解決一些與分式有關(guān)的簡(jiǎn)單的實(shí)際問(wèn)題,增強(qiáng)學(xué)生代數(shù)推理的能力與應(yīng)用意識(shí)。需要給學(xué)生強(qiáng)調(diào)的是分式運(yùn)算的結(jié)果通常要化成最簡(jiǎn)分式或整式,對(duì)于這一點(diǎn),很多學(xué)生在開始學(xué)習(xí)分式計(jì)算時(shí)往往沒(méi)有注意到結(jié)果要化簡(jiǎn)。
    第四環(huán)節(jié)走進(jìn)中考
    (2012.漳州)第五環(huán)節(jié)課時(shí)小結(jié)
    活動(dòng)內(nèi)容:
    1.分式的乘除法的法則
    2.分式運(yùn)算的結(jié)果通常要化成最簡(jiǎn)分式或整式.
    3.學(xué)會(huì)類比的數(shù)學(xué)方法
    第六環(huán)節(jié)當(dāng)堂檢測(cè)
    教資勾股定理教案篇十
    1、知識(shí)目標(biāo):
    (2)會(huì)應(yīng)用勾股定理的逆定理判定一個(gè)三角形是否為直角三角形;
    (3)知道什么叫勾股數(shù),記住一些覺見的勾股數(shù).
    2、能力目標(biāo):
    (1)通過(guò)勾股定理與其逆定理的比較,提高學(xué)生的辨析能力;
    (2)通過(guò)勾股定理及以前的知識(shí)聯(lián)合起來(lái)綜合運(yùn)用,提高綜合運(yùn)用知識(shí)的能力.
    3、情感目標(biāo):
    (1)通過(guò)自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識(shí)的感受;
    (2)通過(guò)知識(shí)的縱橫遷移感受數(shù)學(xué)的辯證特征.。
    教學(xué)用具:直尺,微機(jī)。
    教學(xué)方法:以學(xué)生為主體的討論探索法。
    教資勾股定理教案篇十一
    教學(xué)目標(biāo):
    1、知識(shí)與技能目標(biāo):理解和掌握勾股定理的內(nèi)容,能夠靈活運(yùn)用勾股定理進(jìn)行計(jì)算,并解決一些簡(jiǎn)單的實(shí)際問(wèn)題。
    2、過(guò)程與方法目標(biāo):通過(guò)觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學(xué)生動(dòng)手操作、合作交流、邏輯推理的能力。
    3、情感、態(tài)度與價(jià)值觀目標(biāo):了解中國(guó)古代的數(shù)學(xué)成就,激發(fā)學(xué)生愛國(guó)熱情;學(xué)生通過(guò)自己的努力探索出結(jié)論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時(shí)體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡幾何。
    教學(xué)重點(diǎn):
    引導(dǎo)學(xué)生經(jīng)歷探索及驗(yàn)證勾股定理的過(guò)程,并能運(yùn)用勾股定理解決一些簡(jiǎn)單的實(shí)際問(wèn)題。
    教學(xué)難點(diǎn):
    用面積法方法證明勾股定理
    課前準(zhǔn)備:
    多媒體ppt,相關(guān)圖片
    教學(xué)過(guò)程:
    (一)情境導(dǎo)入
    1、多媒體課件放映圖片欣賞:勾股定理數(shù)形圖,1955年希臘發(fā)行的一枚紀(jì)念郵票,美麗的勾股樹,國(guó)際數(shù)學(xué)大會(huì)會(huì)標(biāo)等。通過(guò)圖形欣賞,感受數(shù)學(xué)之美,感受勾股定理的文化價(jià)值。
    已知一直角三角形的兩邊,如何求第三邊?
    學(xué)習(xí)了今天的這節(jié)課后,同學(xué)們就會(huì)有辦法解決了
    (二)學(xué)習(xí)新課
    教資勾股定理教案篇十二
    思路點(diǎn)撥:要求甲、乙兩人的距離,就要確定甲、乙兩人在平面的位置關(guān)系,由于甲往東、乙往北,所以甲所走的路線與乙所走的路線互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求出甲、乙兩人的距離.(13千米)
    教資勾股定理教案篇十三
    隨著社會(huì)的發(fā)展,新課程改革的不斷深入,數(shù)學(xué)課已不僅是一些數(shù)學(xué)知識(shí)的學(xué)習(xí),更重要的是體現(xiàn)知識(shí)的認(rèn)知發(fā)展過(guò)程。教育的目的是培養(yǎng)具有獨(dú)立思考能力、具有實(shí)踐精神和創(chuàng)新能力的人。一堂好課應(yīng)該是學(xué)生最大限度參與的課?!稊?shù)學(xué)課程標(biāo)準(zhǔn)》中指出學(xué)生的數(shù)學(xué)學(xué)習(xí)應(yīng)當(dāng)是現(xiàn)實(shí)的、有意義的、富有挑戰(zhàn)性的,內(nèi)容要有利與學(xué)生主動(dòng)進(jìn)行觀察、實(shí)驗(yàn)、猜想、驗(yàn)證、推理與交流。內(nèi)容的呈現(xiàn)應(yīng)采取不同的表達(dá)方式,以滿足多樣化的學(xué)習(xí)需求。數(shù)學(xué)活動(dòng)不能單純的依賴模仿與記憶,動(dòng)手實(shí)踐、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。
    八年級(jí)數(shù)學(xué)勾股定理教案(教材、學(xué)情分析與處理)
    本節(jié)知識(shí)是在學(xué)生掌握了直角三角形的三個(gè)性質(zhì):直角三角形兩銳角互余和30°所對(duì)的直角邊等于斜邊的一半以及在直角三角形中,如果一條直角邊等于斜邊的一半,那么這條直角邊所對(duì)的角為30°的基礎(chǔ)上展開的。勾股定理是直角三角形的一個(gè)非常重要的性質(zhì),它揭示了一個(gè)直角三角形三邊的數(shù)量關(guān)系,可解決直角三角形的許多有關(guān)的計(jì)算,是初三解直角三角形的主要依據(jù)之一,中考中的四邊形和圓等綜合題中也經(jīng)常出現(xiàn)。貫穿了整個(gè)幾何學(xué)習(xí),更是數(shù)形結(jié)合的重要典范。更重要的是學(xué)生在探索定理的過(guò)程中,無(wú)論是課前準(zhǔn)備和課上交流以及課下活動(dòng)都讓學(xué)生充分感受到學(xué)習(xí)、思考的重要性,與人合作的重要性以及數(shù)學(xué)在實(shí)際生活中的重要作用,是進(jìn)行愛國(guó)教育的重要題材!
    本節(jié)課的教育對(duì)象是初二下的學(xué)生,共性是思維活躍,參與意識(shí)較強(qiáng)。而且一般家庭都有電腦,對(duì)教師布置的網(wǎng)上作業(yè)也頗感興趣,并能制作簡(jiǎn)單課件。形成了一定的數(shù)學(xué)學(xué)習(xí)習(xí)慣。
    教資勾股定理教案篇十四
    勾股定理是平面幾何有關(guān)度量的最基本定理,它從邊的角度進(jìn)一步刻畫了直角三角形的特點(diǎn)。學(xué)習(xí)勾股定理極其逆定理是進(jìn)一步認(rèn)識(shí)和理解直角三角形的需要,也是后續(xù)有關(guān)幾何度量運(yùn)算和代數(shù)學(xué)習(xí)的必然基礎(chǔ)?!缎掳鏀?shù)學(xué)課程標(biāo)準(zhǔn)》對(duì)勾股定理教學(xué)內(nèi)容的要求是:
    1、在研究圖形性質(zhì)和運(yùn)動(dòng)等過(guò)程中,進(jìn)一步發(fā)展空間觀念;
    2、在多種形式的數(shù)學(xué)活動(dòng)中,發(fā)展合情推理能力;
    3、經(jīng)歷從不同角度分析問(wèn)題和解決問(wèn)題的方法的過(guò)程,體驗(yàn)解決問(wèn)題方法的多樣性;
    4、探索勾股定理及其逆定理,并能運(yùn)用它們解決一些簡(jiǎn)單的實(shí)際問(wèn)題。
    本節(jié)課的教學(xué)目標(biāo)是:
    1、能正確運(yùn)用勾股定理及其逆定理解決簡(jiǎn)單的實(shí)際問(wèn)題。
    教學(xué)重點(diǎn)和難點(diǎn):
    應(yīng)用勾股定理及其逆定理解決實(shí)際問(wèn)題是重點(diǎn)。
    把實(shí)際問(wèn)題化歸成數(shù)學(xué)模型是難點(diǎn)。
    根據(jù)新課標(biāo)提出的“要從學(xué)生已有的生活經(jīng)驗(yàn)出發(fā),讓學(xué)生親身經(jīng)歷將實(shí)際問(wèn)題抽象成數(shù)學(xué)模型并進(jìn)行解釋和運(yùn)用的同時(shí),在思維能力情感態(tài)度和價(jià)值觀等方面得到進(jìn)步和發(fā)展”的理念,我想盡量給學(xué)生創(chuàng)設(shè)豐富的實(shí)際問(wèn)題情境,使教學(xué)活動(dòng)充滿趣味性和吸引力,讓他們?cè)谧灾魈骄?,合作交流中分析?wèn)題,建立數(shù)學(xué)模型,利用勾股定理及其逆定理解決問(wèn)題。在教學(xué)過(guò)程中,采用一題多變的形式拓寬學(xué)生視野,訓(xùn)練學(xué)生思維的靈活性,滲透化歸的思想以及分類討論思想,方程思想等,使學(xué)生在獲得知識(shí)的同時(shí)提高能力。
    在教學(xué)設(shè)計(jì)中,盡量考慮到不同學(xué)習(xí)水平的學(xué)生,注意知識(shí)由易到難的層次性,在課堂上,要照顧到接受較慢的學(xué)生。使不同學(xué)生有不同的收獲和發(fā)展。
    本節(jié)課設(shè)計(jì)了七個(gè)環(huán)《勾股定理的應(yīng)用》教學(xué)設(shè)計(jì)節(jié)、第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):變式訓(xùn)練;第四環(huán)節(jié):議一議;第五環(huán)節(jié):做一做;第六環(huán)節(jié):交流小結(jié);第七環(huán)節(jié):布置作業(yè)。
    第一環(huán)節(jié):情境引入。
    情景1:復(fù)習(xí)提問(wèn):勾股定理的語(yǔ)言表述以及幾何語(yǔ)言表達(dá)?
    設(shè)計(jì)意圖:溫習(xí)舊知識(shí),規(guī)范語(yǔ)言及數(shù)學(xué)表達(dá),體現(xiàn)。
    設(shè)計(jì)意圖:既靈活考察學(xué)生對(duì)勾股定理的理解,又增加了趣味性,還能考察學(xué)生三角形三邊關(guān)系。
    第二環(huán)節(jié):合作探究(圓柱體表面路程最短問(wèn)題)。
    情景3:課本引例(螞蟻怎樣走最近)。
    第三環(huán)節(jié):變式訓(xùn)練(由圓柱體表面路程最短問(wèn)題逐步變?yōu)殚L(zhǎng)方體表面的距離最短問(wèn)題)。
    設(shè)計(jì)意圖:將問(wèn)題的條件稍做改變,讓學(xué)生嘗試獨(dú)立解決,拓展學(xué)生視野,又加深他們對(duì)知識(shí)的理解和鞏固。再將圓柱問(wèn)題變?yōu)檎襟w長(zhǎng)方體問(wèn)題,學(xué)生有了之前的經(jīng)驗(yàn),自然而然的將立體轉(zhuǎn)化為平面,利用勾股定理解決,此處長(zhǎng)方體問(wèn)題中學(xué)生會(huì)有不同的做法,正好透分類討論思想。
    第四環(huán)節(jié):議一議。
    內(nèi)容:李叔叔想要檢測(cè)雕塑底座正面的ad邊和bc邊是否分別垂直于底邊ab,但他隨身只帶了卷尺:
    (1)你能替他想辦法完成任務(wù)嗎?
    設(shè)計(jì)意圖:
    第五環(huán)節(jié):方程與勾股定理。
    在我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》中記載了一道有趣的問(wèn)題,這個(gè)問(wèn)題的意思是:有一個(gè)水池,水面是一個(gè)邊長(zhǎng)為10尺的正方形,在水池的中央有一根新生的蘆葦,它高出水面1尺,如果把這根蘆葦垂直拉向岸邊,它的頂端恰好到達(dá)岸邊的水面,請(qǐng)問(wèn)這個(gè)水池的深度和這根蘆葦?shù)拈L(zhǎng)度各是多少尺?《意圖:學(xué)生可以進(jìn)一步了解勾股定理的悠久歷史和廣泛應(yīng)用,了解我國(guó)古代人民的聰明才智;學(xué)會(huì)運(yùn)用方程的思想借助勾股定理解決實(shí)際問(wèn)題。
    第六環(huán)節(jié):交流小結(jié)內(nèi)容:師生相互交流總結(jié):
    1、解決實(shí)際問(wèn)題的方法是建立數(shù)學(xué)模型求解、
    2、在尋求最短路徑時(shí),往往把空間問(wèn)題平面化,利用勾股定理及其逆定理解決實(shí)際問(wèn)題、
    3、在直角三角形中,已知一條邊和另外兩條邊的關(guān)系,借助方程可以求出另外兩條邊。
    第七環(huán)作業(yè)設(shè)計(jì):
    第一道題難度較小,大部分學(xué)生可以獨(dú)立完成,第二道題有較大難度,可以交流討論完成。
    教資勾股定理教案篇十五
    課標(biāo)內(nèi)容:1、初步了解半導(dǎo)體的一些特點(diǎn),了解半導(dǎo)體材料的發(fā)展對(duì)社會(huì)的影響。2、初步了解超導(dǎo)體的一些特點(diǎn),了解超導(dǎo)體對(duì)人類生活和社會(huì)發(fā)展可能帶來(lái)的影響。3、通過(guò)實(shí)驗(yàn)探究電流、電壓和電阻的關(guān)系,理解歐姆定律,并能進(jìn)行簡(jiǎn)單計(jì)算。
    l經(jīng)歷改變電路中電流大小的各種嘗試,初步體會(huì)改變電流大小的兩類途徑。l初步形成電阻的概念,知道電阻是表示導(dǎo)體對(duì)電流阻礙作用的物理量。會(huì)讀寫電阻的單位。l經(jīng)歷探究影響電阻大小因素的活動(dòng),會(huì)用“轉(zhuǎn)化”的思想尋找比較電阻大小的.正確方法;會(huì)有意識(shí)地用“變量控制”的思想去尋找合適的導(dǎo)線、設(shè)計(jì)恰當(dāng)?shù)碾娐?、統(tǒng)籌規(guī)劃合理的實(shí)驗(yàn)步驟。l進(jìn)一步體會(huì)變量控制法并能認(rèn)同教材中有關(guān)變量控制的介紹。l知道影響金屬電阻大小的因素,了解長(zhǎng)度、橫截面積與電阻大小的定性關(guān)系,體會(huì)到電阻的大小由導(dǎo)體自身決定,直到電阻是導(dǎo)體的一種屬性。l初步了解半導(dǎo)體的一些特點(diǎn),了解半導(dǎo)體材料的發(fā)展對(duì)社會(huì)的影響。
    文件大?。?5k文件格式:rar下載地址:擊本地免費(fèi)下載地址。
    教資勾股定理教案篇十六
    教材分析:勾股定理是直角三角形的重要性質(zhì),它把三角形有一個(gè)直角的"形"的特點(diǎn),轉(zhuǎn)化為三邊之間的"數(shù)"的關(guān)系,它是數(shù)形結(jié)合的典范。它可以解決許多直角三角形中的計(jì)算問(wèn)題,它是直角三角形特有的性質(zhì),是初中數(shù)學(xué)教學(xué)內(nèi)容重點(diǎn)之一。本節(jié)課的重點(diǎn)是發(fā)現(xiàn)勾股定理,難點(diǎn)是說(shuō)明勾股定理的正確性。
    學(xué)生分析:
    1、考慮到三角尺學(xué)生天天在用,較為熟悉,但真正能仔細(xì)研究過(guò)三角尺的同學(xué)并不多,通過(guò)這樣的情景設(shè)計(jì),能非常簡(jiǎn)單地將學(xué)生的注意力引向本節(jié)課的本質(zhì)。
    2、以與勾股定理有關(guān)的人文歷史知識(shí)為背景展開對(duì)直角三角形三邊關(guān)系的討論,能激發(fā)學(xué)生的學(xué)習(xí)興趣。
    設(shè)計(jì)理念:本教案以學(xué)生手中舞動(dòng)的三角尺為知識(shí)背景展開,以勾股定理在古今中外的發(fā)展史為主線貫穿課堂始終,讓學(xué)生對(duì)勾股定理的發(fā)展過(guò)程有所了解,讓他們感受勾股定理的豐富文化內(nèi)涵,體驗(yàn)勾股定理的探索和運(yùn)用過(guò)程,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,特別是通過(guò)向?qū)W生介紹我國(guó)古代在勾股定理研究和運(yùn)用方面的成就,激發(fā)學(xué)生熱愛祖國(guó),熱愛祖國(guó)悠久文化的思想感情,培養(yǎng)他們的民族自豪感和探究創(chuàng)新的精神。
    教學(xué)目標(biāo):
    1、經(jīng)歷用面積割、補(bǔ)法探索勾股定理的過(guò)程,培養(yǎng)學(xué)生主動(dòng)探究意識(shí),發(fā)展合理推理能力,體現(xiàn)數(shù)形結(jié)合思想。
    2、經(jīng)歷用多種割、補(bǔ)圖形的方法驗(yàn)證勾股定理的過(guò)程,發(fā)展用數(shù)學(xué)的眼光觀察現(xiàn)實(shí)世界和有條理地思考能力以及語(yǔ)言表達(dá)能力等,感受勾股定理的文化價(jià)值。
    3、培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和愛國(guó)熱情。
    4、欣賞設(shè)計(jì)圖形美。
    教學(xué)準(zhǔn)備階段:
    學(xué)生準(zhǔn)備:正方形網(wǎng)格紙若干,全等的直角三角形紙片若干,彩筆、直角三角尺、鉛筆等。
    老師準(zhǔn)備:畢達(dá)哥拉斯、趙爽、劉徽等證明勾股定理的圖片以及其它有關(guān)人物歷史資料等投影圖片。
    (一)引入
    同學(xué)們,當(dāng)你每天手握三角尺繪制自己的宏偉藍(lán)圖時(shí),你是否想過(guò):他們的邊有什么關(guān)系呢?今天我們來(lái)探索這一小秘密。(板書課題:探索直角三角形三邊關(guān)系)
    (二)實(shí)驗(yàn)探究
    設(shè)網(wǎng)格正方形的邊長(zhǎng)為1,直角三角形的直角邊分別為a、b ,斜邊為c ,觀察并計(jì)算每個(gè)正方形的面積,以四人小組為單位填寫下表:
    (討論難點(diǎn):以斜邊為邊的正方形的面積找法)
    交流后得出一般結(jié)論: (用關(guān)于a、b、c的式子表示)
    (三)探索所得結(jié)論的正確性
    當(dāng)直角三角形的直角邊分別為a 、b,斜邊為c時(shí), 是否一定成立?
    1、指導(dǎo)學(xué)生運(yùn)用拼圖、或正方形網(wǎng)格紙構(gòu)造或設(shè)計(jì)合理分割(或補(bǔ)全)圖形,去探索本結(jié)論的正確性:(以四人小組為單位進(jìn)行)
    在學(xué)生所創(chuàng)作圖形中選擇有代表性的割、補(bǔ)圖,展示出來(lái)交流講解,并引導(dǎo)學(xué)生進(jìn)行說(shuō)理:
    如圖2(用補(bǔ)的方法說(shuō)明)
    師介紹:(出示圖片)畢達(dá)哥拉斯,公元前約500年左右,古西臘一位哲學(xué)家、數(shù)學(xué)家。一天,他應(yīng)邀到一位朋友家做客,他一進(jìn)朋友家門就被朋友家的豪華的方形大理石地磚的形狀深深吸引住了,于是他立刻找來(lái)尺子和筆又量又畫,他發(fā)現(xiàn)以每塊大理石地磚的相鄰兩直角邊向三角形外作正方形,它們的面積和等于以這塊大理石地磚的對(duì)角線為邊向形外作正方形的面積。于是他回到家里立刻對(duì)他的這一發(fā)現(xiàn)進(jìn)行了探究證明……,終獲成功。后來(lái)西方人們?yōu)榱思o(jì)念他的這一發(fā)現(xiàn),將這一定理命名為"畢達(dá)哥拉斯定理"。1952年,希臘政府為了紀(jì)念這位偉大的數(shù)學(xué)家,特別選用他設(shè)計(jì)的這種圖形為主圖發(fā)行了一枚紀(jì)念郵票。(見課本52頁(yè)彩圖2—1,欣賞圖片)
    如圖3(用割的方法去探索)
    師介紹: (出示圖片) 中國(guó)古代數(shù)學(xué)家們很早就發(fā)現(xiàn)并運(yùn)用這個(gè)結(jié)論。早在公元前2000年左右,大禹治水時(shí)期,就曾經(jīng)用過(guò)此方法測(cè)量土地的`等高差,公元前1100年左右,西周的數(shù)學(xué)家商高就曾用"勾三、股四、弦五"測(cè)量土地,他們對(duì)這一結(jié)論的運(yùn)用至少比古希臘人早500多年。公元200年左右,三國(guó)時(shí)期吳國(guó)數(shù)學(xué)家趙爽曾構(gòu)造此圖驗(yàn)證了這一結(jié)論的正確性。他的這個(gè)證明,可謂別具匠心,極富創(chuàng)新意識(shí),他用幾何圖形的割、來(lái)證明代數(shù)式之間的相等關(guān)系,既嚴(yán)密,又直觀,為中國(guó)古代以"形"證"數(shù)",形、數(shù)統(tǒng)一的獨(dú)特風(fēng)格樹立了一個(gè)典范。他是我國(guó)有記載以來(lái)第一個(gè)證明這一結(jié)論的數(shù)學(xué)家。我國(guó)數(shù)學(xué)家們?yōu)榱思o(jì)念我國(guó)在這方面的數(shù)學(xué)成就,將這一結(jié)論命名為"勾股定理"。(點(diǎn)題)
    20xx年,世界數(shù)學(xué)家大會(huì)在中國(guó)北京召開,當(dāng)時(shí)選用這個(gè)圖案作為會(huì)場(chǎng)主圖,它標(biāo)志著我國(guó)古代數(shù)學(xué)的輝煌成就。(見課本50頁(yè)彩圖,欣賞圖片)
    如圖4(構(gòu)造新圖形的方法去探索)
    本節(jié)課學(xué)習(xí)的勾股定理用語(yǔ)言敘說(shuō)為:
    1、繼續(xù)收集、整理有關(guān)勾股定理的證明方的探索問(wèn)題并交流。
    2、探索勾股定理的運(yùn)用。
    教資勾股定理教案篇十七
    本節(jié)課教學(xué)模式主要采用“互動(dòng)式”教學(xué)模式及“類比”的教學(xué)方法.通過(guò)前面所學(xué)的垂直平分線定理及其逆定理,做類比對(duì)象,讓學(xué)生自己提出問(wèn)題并解決問(wèn)題.在課堂教學(xué)中營(yíng)造輕松、活潑的課堂氣氛.通過(guò)師生互動(dòng)、生生互動(dòng)、學(xué)生與教材之間的互動(dòng),造成“情意共鳴,溝通信息,反饋流暢,思維活躍”,達(dá)到培養(yǎng)學(xué)生思維能力的目的.具體說(shuō)明如下:
    (1)讓學(xué)生主動(dòng)提出問(wèn)題
    (2)讓學(xué)生自己解決問(wèn)題
    (3)通過(guò)實(shí)際問(wèn)題的解決,培養(yǎng)學(xué)生的數(shù)學(xué)意識(shí).
    教資勾股定理教案篇十八
    (一)知識(shí)與技能目標(biāo):
    1、掌握勾股定理及其證明
    2、會(huì)利用勾股定理進(jìn)行直角三角形的簡(jiǎn)單計(jì)算。
    3、了解有關(guān)勾股定理的歷史知識(shí)
    (二)過(guò)程與方法目標(biāo)
    經(jīng)歷課前預(yù)習(xí)和課上觀察、分析、歸納、猜想、驗(yàn)證并運(yùn)用實(shí)踐的過(guò)程,了解數(shù)學(xué)知識(shí)的生成與發(fā)展過(guò)程。通過(guò)了解勾股定理的幾個(gè)著名證法(趙爽證法、歐幾里得證法等),使學(xué)生感受數(shù)學(xué)證明的靈活、優(yōu)美與精巧,感受勾股定理的豐富文化內(nèi)涵。使學(xué)生自主學(xué)習(xí)能力和分析問(wèn)題解決問(wèn)題的能力得到提高。培養(yǎng)與人合作的意識(shí)。
    (三)情感、態(tài)度和價(jià)值觀
    1、通過(guò)自主學(xué)習(xí)培養(yǎng)學(xué)生探究、發(fā)現(xiàn)問(wèn)題的能力,體驗(yàn)獲取數(shù)學(xué)知識(shí)的過(guò)程。
    2、通過(guò)小組合作、探索培養(yǎng)學(xué)生的團(tuán)隊(duì)精神,以及不畏艱難,實(shí)事求是的學(xué)習(xí)態(tài)度和嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)學(xué)習(xí)習(xí)慣。
    3、通過(guò)了解有關(guān)勾股定理的中西歷史知識(shí),激發(fā)學(xué)生的愛國(guó)熱情,培養(yǎng)學(xué)生的民族自豪感。