學會與他人溝通交流,建立良好的人際關系??偨Y的語言要簡練明了,避免啰嗦和重復,注意語法和表達的準確性??偨Y是在一段時間內對學習和工作生活等表現(xiàn)加以總結和概括的一種書面材料,它可以促使我們思考,我想我們需要寫一份總結了吧。如何提高學習效率,提升學習成績?那么我們該如何寫一篇較為完美的總結呢?以下是專家為大家整理的職場技能提升指南,歡迎大家閱讀。
函數(shù)建模教學設計篇一
2、教學目標的確定及依據(jù)。
根據(jù)教學大綱要求,結合教材,考慮到學生已有的認知結構心理特征,我制定了如下的教學目標:
(1)知識目標:理解對數(shù)函數(shù)的意義;掌握對數(shù)函數(shù)的圖像與性質;初步學會用。
(2)能力目標:滲透類比、數(shù)形結合、分類討論等數(shù)學思想方法,培養(yǎng)學生觀察、
分析、歸納等邏輯思維能力.。
(3)情感目標:通過指數(shù)函數(shù)和對數(shù)函數(shù)在圖像與性質上的對比,使學生欣賞數(shù)。
學的精確和美妙之處,調動學生學習數(shù)學的積極性.。
3、教學重點與難點。
難點:對數(shù)函數(shù)性質中對于在a1與01兩種情況函數(shù)值的不同變化.。
學生在整個教學過程中始終是認知的主體和發(fā)展的主體,教師作為學生學習的指導者,應充分地調動學生學習的積極性和主動性,有效地滲透數(shù)學思想方法.根據(jù)這樣的原則和所要完成的教學目標,對于本節(jié)課我主要考慮了以下兩個方面:
1、教學方法:
(1)啟發(fā)引導學生實驗、觀察、聯(lián)想、思考、分析、歸納;
(2)采用“從特殊到一般”、“從具體到抽象”的方法;
(3)滲透類比、數(shù)形結合、分類討論等數(shù)學思想方法.。
2、教學手段:
計算機多媒體輔助教學.。
“授之以魚,不如授之以漁”,方法的掌握,思想的形成,才能使學生受益終身.本節(jié)課注重調動學生積極思考、主動探索,盡可能地增加學生參與教學活動的時間和空間,我進行了以下學法指導:
(1)類比學習:與指數(shù)函數(shù)類比學習對數(shù)函數(shù)的圖像與性質.。
(2)探究定向性學習:學生在教師建立的情境下,通過思考、分析、操作、探索,
(3)主動合作式學習:學生在歸納得出對數(shù)函數(shù)的圖像與性質時,通過小組討論,
使問題得以圓滿解決.。
1、溫故知新。
設計意圖:既復習了指數(shù)函數(shù)和反函數(shù)的有關知識,又與本節(jié)內容有密切關系,
有利于引出新課.為學生理解新知清除了障礙,有意識地培養(yǎng)學生。
分析問題的能力.。
2、探求新知。
函數(shù)建模教學設計篇二
時,函數(shù)值變化情況的區(qū)分.(3)指數(shù)函數(shù)是學生完全陌生的一類函數(shù),對于這樣的函數(shù)應怎樣進行較為系統(tǒng)的理論研究是學生面臨的重要問題,所以從指數(shù)函數(shù)的研究過程中得到相應的結論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學中要特別讓學生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究.二.學情分析:學生在學習了函數(shù)概念和函數(shù)性質基礎上對函數(shù)有了初步認識,但我所教班時平行班,學生學習興趣不濃,積極性高,針對這種情況,教學時要總層層設問降低難度,用幾何畫板直觀演示提高學生學習積極性,時學生主動學習。
三.教學目標:
知識與技能:理解指數(shù)函數(shù)的概念,掌握指數(shù)函數(shù)的圖象和性質,培養(yǎng)學生實際應用函數(shù)的能力。
過程與方法:通過觀察圖象,分析、歸納、總結、自主建構指數(shù)函數(shù)的性質。領會數(shù)形結合的數(shù)學思想方法,培養(yǎng)學生發(fā)現(xiàn)、分析、解決問題的能力。
情感態(tài)度與價值觀:在指數(shù)函數(shù)的學習過程中,體驗數(shù)學的科學價值和應用價值,培養(yǎng)學生善于觀察、勇于探索的良好習慣和嚴謹?shù)目茖W態(tài)度。
投影儀。
六.教學方法。
啟發(fā)討論研究式。
七.教學過程。
(一)創(chuàng)設情景。
學生回答:y與x之間的關系式,可以表示為y=2x。
問題2:一種放射性物質不斷衰變?yōu)槠渌镔|,每經過一年剩留的質量約是原來的84%.求出這種物質的剩留量隨時間(單位:年)變化的函數(shù)關系.設最初的質量為1,時間變量用x表示,剩留量用y表示。
學生回答:y與x之間的關系式,可以表示為y=0.84x。
(二)導入新課。
引導學生觀察,兩個函數(shù)中,底數(shù)是常數(shù),指數(shù)是自變量。設計意圖:充實實例,突出底數(shù)a的取值范圍,讓學生體會到數(shù)學來源于生產生活實際。函數(shù)y=2x、y=0.84x分別以01的數(shù)為底,加深對定義的感性認識,為順利引出指數(shù)函數(shù)定義作鋪墊。
一般地,函數(shù)是r。
叫做指數(shù)函數(shù),其中x是自變量,函數(shù)的定義域的含義:
”如果不這樣規(guī)定會出現(xiàn)什么情況?問題:指數(shù)函數(shù)定義中,為什么規(guī)定“設計意圖:教師首先提出問題:為什么要規(guī)定底數(shù)大于0且不等于1呢?這是本節(jié)的一個難點,為突破難點,采取學生自由討論的形式,達到互相啟發(fā),補充,活躍氣氛,激發(fā)興趣的目的。
對于底數(shù)的分類,可將問題分解為:
(1)若a。
則在實數(shù)范圍內相應的函數(shù)值不存在)都無意義)。
在這里要注意生生之間、師生之間的對話。
設計意圖:認識清楚底數(shù)a的特殊規(guī)定,才能深刻理解指數(shù)函數(shù)的定義域是r;并為學習對數(shù)函數(shù),認識指數(shù)與對數(shù)函數(shù)關系打基礎。
教師還要提醒學生指數(shù)函數(shù)的定義是形式定義,必須在形式上一模一樣才行,然后把問題引向深入。
1:指出下列函數(shù)那些是指數(shù)函數(shù):
在同一平面直角坐標系內畫出下列指數(shù)函數(shù)的圖象。
畫函數(shù)圖象的步驟:列表、描點、連線思考如何列表取值?教師與學生共同作出。
圖像。
時函數(shù)值變化的不同情況,學生往往容易混淆,這是教學中的一個難點。為此,必須利用圖像,數(shù)形結合。教師親自板演,學生親自在課前準備好的坐標系里畫圖,而不是采用幾何畫板直接得到圖像,目的是使學生更加信服,加深印象,并為以后畫圖解題,采用數(shù)形結合思想方法打下基礎。
利用幾何畫板演示函數(shù)特征。由特殊到一般,得出指數(shù)函數(shù)。
的圖象,觀察分析圖像的共同。
的圖象特征,進一步得出圖象性質:
教師組織學生結合圖像討論指數(shù)函數(shù)的性質。
設計意圖:這是本節(jié)課的重點和難點,要充分調動學生的積極性、主動性,發(fā)揮他們的潛能,盡量由學生自主得出性質,以便能夠更深刻的記憶、更熟練的運用。
特別地,函數(shù)值的分布情況如下:
設計意圖:再次強調指數(shù)函數(shù)的單調性與底數(shù)a的關系,并具體分析了函數(shù)值的分布情況,深刻理解指數(shù)函數(shù)值域情況。3.簡單應用(板書)。
1.利用指數(shù)函數(shù)單調性比大小.(板書)。
一類函數(shù)研究完它的概念,圖象和性質后,最重要的是利用它解決一些簡單的問題.首先我們來看下面的問題.
例1.比較下列各組數(shù)的大小。
(1)與;(2)與;。
(3)與1.(板書)。
首先讓學生觀察兩個數(shù)的特點,有什么相同?由學生指出它們底數(shù)相同,指數(shù)不同.再追問根據(jù)這個特點,用什么方法來比較它們的大小呢?讓學生聯(lián)想指數(shù)函數(shù),提出構造函數(shù)的方法,即把這兩個數(shù)看作某個函數(shù)的函數(shù)值,利用它的單調性比較大小.然后以第(1)題為例,給出解答過程.
函數(shù)建模教學設計篇三
1.本節(jié)課改變了以往常見的函數(shù)研究方法,讓學生從不同的角度去研究函數(shù),對函數(shù)進行一個全方位的研究,不僅僅是通過對比總結得到指數(shù)函數(shù)的性質,更重要的是讓學生體會到對函數(shù)的研究方法,以便能將其遷移到其他函數(shù)的研究中去,教師可以真正做到“授之以漁”而非“授之以魚”。
2.教學中借助信息技術可以彌補傳統(tǒng)教學在直觀感、立體感和動態(tài)感方面的不足,可以很容易的化解教學難點、突破教學重點、提高課堂效率,本課使用幾何畫板可以動態(tài)地演示出指數(shù)函數(shù)的底數(shù)的動態(tài)過程,讓學生直觀觀察底數(shù)對指數(shù)函數(shù)單調性的影響。
函數(shù)建模教學設計篇四
對數(shù)函數(shù)的教學共分兩個部分完成。第一部分為對數(shù)函數(shù)的定義,圖像及性質;第二部分為對數(shù)函數(shù)的應用。對數(shù)函數(shù)是在學習對數(shù)概念的基礎上學習對數(shù)函數(shù)的概念和性質,通過學習對數(shù)函數(shù)的定義,圖像及性質,可以進一步深化學生對函數(shù)概念的理解與認識,使學生得到較系統(tǒng)的函數(shù)知識和研究函數(shù)的方法,并且為學習對數(shù)函數(shù)以及對數(shù)函數(shù)的應用作好準備。
在教學過程中,我類比指數(shù)函數(shù)圖象和性質的研究,研究了對數(shù)函數(shù)圖象和性質。同學們課堂上能積極主動參與獲得性質的過程。我用了三節(jié)課就對數(shù)函數(shù)的圖象和性質,圖象和性質的應用進行講解。但是從作業(yè)和課堂效果看來。同學們沒有指數(shù)函數(shù)的性質和圖象掌握的好。特反思如下:
1、學生對對數(shù)函數(shù)概念的理解及對數(shù)的運算不過關。學生在做這些運算時有時不能靈活運用公式例如換底公式,有時學生會想當然地自己“發(fā)明”公式。導致部分題目出現(xiàn)運算錯誤或不會。
2、在利用對數(shù)函數(shù)的單調性比較兩個對數(shù)式的大小書寫格式不規(guī)范,因此在解題的過程中就把真數(shù)和底數(shù)混亂了,這說明同學們用函數(shù)的觀點解決問題的思想方法還沒形成。
3、在解有關求定義域的問題時,學生不能很好的掌握底數(shù)a的取值范圍以及真數(shù)必修大于0.
4、同學們對對數(shù)與指數(shù)的互化不是很熟練。導致有關指數(shù)與對數(shù)互化題目出現(xiàn)錯誤。尤其是解決有關對數(shù)和指數(shù)混合式子的有關計算時困難很大,問題最多。還有在解決有關對數(shù)型函數(shù)定義域問題時,更不會用對數(shù)函數(shù)的單調性去解決。
以上這些原因我通過認真的反思,同時參考學生提出的意見,決定講兩節(jié)習題課,針對學生存在的共性問題解決,找出他們的盲點,同時加強練習力度。從練習中發(fā)現(xiàn)問題,再通過系統(tǒng)講解,直到絕大部分學生理解掌握為止。
函數(shù)建模教學設計篇五
結合課程標準的要求,參照教材的安排,考慮到學生已有的認知結構、心理特征,我制定了如下教學目標:
(1)通過具體實例,直觀了解對數(shù)函數(shù)模型所刻畫的數(shù)量關系,初步理解對數(shù)函數(shù)的概念,體會對數(shù)函數(shù)是一類重要的函數(shù)模型。
(2)能畫出具體對數(shù)函數(shù)的圖象,學生通過自己動手作圖,分組討論對數(shù)函數(shù)的性質,提高動手能力、合作學習能力以及分析解決問題的能力。
難點:難點是探究底數(shù)對對數(shù)函數(shù)圖象及性質變化的影響。
二、學生學習情況分析。
剛從初中升入高一的學生,仍保留著初中生許多學習特點,能力發(fā)展正處于形象思維向抽象思維轉折階段,但更注重形象思維。由于函數(shù)概念十分抽象,又以對數(shù)運算為基礎,同時,初中函數(shù)教學要求降低,初中生運算能力有所下降,這雙重問題增加了對數(shù)函數(shù)教學的難度。尤其作為對數(shù)函數(shù)的第一課時,教師在教學中要控制難度,關注學生學習過程的體驗。
三、設計思想。
本節(jié)課以建構主義基本理論為指導,以新課標基本理念為依據(jù)進行設計的,針對學生現(xiàn)有的認知水平,對數(shù)函數(shù)的教學首先要挖掘其知識背景貼近學生實際,讓學生充分體驗到數(shù)學的應用價值;其次,激發(fā)學生的學習熱情,引導他們找到學習對數(shù)函數(shù)的思路(類比學習指數(shù)函數(shù)的思路),然后把學習的主動權交給學生,為他們提供自主探究、合作交流的機會,改以前滿堂教的方式為讓學生滿堂學,讓學生學會學習。
四、教學基本流程:
五、教學過程:
根據(jù)新課標的要求我將本節(jié)課分為五個環(huán)節(jié):創(chuàng)設情境,形成概念。
(一)創(chuàng)設情境,形成概念。
本節(jié)課我是從課本中給出的“考古實例”和學生熟悉的“細胞分裂”實例這樣兩個材料引出對數(shù)函數(shù)的概念,讓學生熟悉它的知識背景,初步感受對數(shù)函數(shù)是刻畫現(xiàn)實世界的又一重要數(shù)學模型。這樣處理,對數(shù)函數(shù)顯得不抽象,學生容易接受,降低了新課教學的起點。我的引入材料是這樣的:1.請同學們認真閱讀材料,解決材料中提出的問題:材料1:考古實例(材料1給出后面的觀察提供必要的感性材料)材料2:細胞分裂實例。
過程,既化解難點,又為第一問引導學生有目的用生成細胞個數(shù)x表示出細胞分裂次數(shù)y,緊接著問學生:這是一個函數(shù)嗎?將知識遷移到函數(shù)的定義,即對于任意一個y是否都有唯一的x與之相對應,為了幫助學生理解,可以借助指數(shù)函數(shù)圖像加以解釋,從而得到x=log2y是一個函數(shù),但它又和我們平時所見過的函數(shù)形式不一樣,我們習慣上用x來表示自變量,y表示函數(shù),所以將其改寫成y=log2x,這樣的函數(shù)稱之為對數(shù)函數(shù),引出本節(jié)課題。
2.這兩個函數(shù)有什么共同特征?(引導學生觀察這兩個函數(shù)的特征)有了學習指數(shù)函數(shù)的經驗,再結合以上兩個實例,學生不難歸納總結出對數(shù)函數(shù)的一般定義。
3.給出對數(shù)函數(shù)的定義(提煉出對數(shù)函數(shù)的概念,明確對數(shù)函數(shù)的結構特征)想一想:字母a、x、y的含義及取值范圍。
1.你能類比指數(shù)函數(shù)的研究思路,說說對數(shù)函數(shù)的研究思路嗎?
引導學生回顧指數(shù)函數(shù)的研究思路,強調數(shù)形結合,強調函數(shù)圖象在研究性質中的作用。
關于如何得到對數(shù)函數(shù)圖像我的想法是這樣的:一方面描點法畫圖是學生需要掌握的一類重要的畫圖方法,而且讓學生去親身經歷畫出對數(shù)函數(shù)圖像的過程,這樣記憶會更深刻,所以我決定將課堂交給學生,讓他們自主探究,然后通過實物投影全班同學一起交流,對學生們的共同問題集中解決。2.在同一坐標系中作出下列對數(shù)函數(shù)的圖象:
(1)(2)(3)(4)。
我們估計學生可能遇到的困難是對數(shù)運算,所以我們坐標紙上附了列表(列表的用意:多描點,使圖像更準確;便于底數(shù)分部規(guī)律、對稱性等的發(fā)現(xiàn).)請完成x,y的對應值表,并用描點法畫出函數(shù)圖像.
函數(shù)建模教學設計篇六
1、教材的地位和作用: 函數(shù)是高中數(shù)學學習的重點和難點,函數(shù)的貫穿于整個高中數(shù)學之中。本節(jié)課是學生在已掌握了函數(shù)的一般性質和簡單的指數(shù)運算的基礎上,進一步研究指數(shù)函數(shù),以及指數(shù)函數(shù)的圖像與性質,同時也為今后研究對數(shù)函數(shù)以及等比數(shù)列的性質打下堅實的基礎。因此,本節(jié)課的內容十分重要,它對知識起到了承上啟下的作用。
2、教學的重點和難點:根據(jù)這一節(jié)課的內容特點以及學生的實際情況,我將本節(jié)課教學重點定為指數(shù)函數(shù)的圖像、性質及其運用,本節(jié)課的難點是指數(shù)函數(shù)圖像和性質的發(fā)現(xiàn)過程,及指數(shù)函數(shù)圖像與底的關系。
基于對教材的理解和分析,我制定了以下的教學目標
1、知識目標(直接性目標):理解指數(shù)函數(shù)的定義,掌握指數(shù)函數(shù)的圖像、性質及其簡單應用。
2、能力目標(發(fā)展性目標):通過教學培養(yǎng)學生觀察、分析、歸納等思維能力,體會數(shù)形結合和分類討論,增強學生識圖用圖的能力。
3、情感目標(可持續(xù)性目標): 通過學習,使學生學會認識事物的特殊性與一般性之間的關系,培養(yǎng)學生勇于提問,善于探索的思維品質。
1、教學策略:首先從實際問題出發(fā),激發(fā)學生的學習興趣。第二步,學生歸納指數(shù)的圖像和性質。第三步,典型例題分析,加深學生對指數(shù)函數(shù)的理解。
2、教學: 貫徹引導發(fā)現(xiàn)式教學原則,在教學中既注重知識的直觀素材和背景材料,又要激活相關知識和引導學生思考、探究、創(chuàng)設有趣的問題。
3、教法分析:根據(jù)教學內容和學生的狀況, 本節(jié)課我采用引導發(fā)現(xiàn)式的教學方法并充分利用多媒體輔助教學。
函數(shù)建模教學設計篇七
對數(shù)函數(shù)(第二課時)是2006人教版高一數(shù)學(上冊)第二章第八節(jié)第二課時的內容,本小節(jié)涉及對數(shù)函數(shù)相關知識,分三個課時,這里是第二課時復習鞏固對數(shù)函數(shù)圖像及性質,并用此解決三類對數(shù)比大小問題,是對已學內容(指數(shù)函數(shù)、指數(shù)比大小、對數(shù)函數(shù))的延續(xù)和發(fā)展,同時也體現(xiàn)了數(shù)學的實用性,為后續(xù)學習起到奠定知識基礎、滲透方法的作用,因此本節(jié)內容起到了一種承上啟下的作用.
根據(jù)教學大綱的要求以及本節(jié)課的地位與作用,結合高一學生的認知特點確定教學目標如下:
學習目標:
2、運用對數(shù)函數(shù)的性質比較兩個數(shù)的大小。
能力目標:
1、培養(yǎng)學生運用圖形解決問題的意識即數(shù)形結合能力。
2、學生運用已學知識,已有經驗解決新問題的能力。
3、探索出方法,有條理闡述自己觀點的能力。
德育目標:
培養(yǎng)學生勤于思考、獨立思考、合作交流等良好的個性品質。
教學中將在以下2個環(huán)節(jié)中突出教學重點:
1、利用學生預習后的心得交流,資源共享,互補不足。
2、通過適當?shù)木毩?,加強對解題方法的掌握及原理的理解。
教學中會在以下3個方面突破教學難點:
1、教師調整角色,讓學生成為學習的主人,教師在其中起引導作用即可。
2、小組合作探索新問題時,注重生生合作、師生互動,適時用語言鼓勵學生,增強學生參與討論的自信。
3、本節(jié)課采用多媒體輔助教學,節(jié)省時間,加快課程進度,增強了直觀形象性。
長處:高一學生經過幾年的數(shù)學學習,已具備一定的數(shù)學素養(yǎng),對于已學知識或用過的數(shù)學思想、方法有一定的應用能力及應用意識,對于本節(jié)課而言,從知識上說,對數(shù)函數(shù)的圖像和性質剛剛學過,本節(jié)課是知識的應用,從數(shù)學能力上說,指數(shù)比大小問題的解題思想和方法在這可借鑒,另外數(shù)形結合能力、小結概括能力、特殊到一般歸納能力已具備一點。
學生可能遇到的困難:本節(jié)課從教學內容上來看,第三類對數(shù)比大小是課本以外補充的內容,沒有預習心得,讓學生在課堂中快速通過合作探究來完成解題思路的構建,有一定的挑戰(zhàn)性,從學生能力上來看,探索出方法,有條理闡述自己觀點的能力還需加強鍛煉,知識之間的聯(lián)系認識上還顯不足。
新課程強調教師要調整自己的角色,改變傳統(tǒng)的教育方式,在教育方式上,以學生為中心,讓學生成為學習的主人,教師在其中起引導作用即可?;诖耍竟?jié)課遵循此原則重點采用問題探究和啟發(fā)引導式的教學方法。從預習交流心得出發(fā),到探索新問題,再到題后的回顧總結,一切以學生為中心,處處體現(xiàn)學生的主體地位,讓學生多說、多分析、多思考、多總結,引導學生運用自己的語言闡述觀點,加強理解,在生生合作,師生互動中解決問題,為提高學生分析問題、解決問題能力打下基礎。本節(jié)課采用多媒體輔助教學,節(jié)省時間,加快課程進度,增強了直觀形象性。
1、課件展示本節(jié)課學習目標。
設計意圖:明確任務,激發(fā)興趣。
2、溫故知新(已填表形式復習對數(shù)函數(shù)的圖像和性質)。
設計意圖:復習已學知識和方法,為學生形成知識間的聯(lián)系和框架建立平臺,并為下一步的應用打下基礎。
3、預習后心得交流。
1)同底對數(shù)比大小。
2)既不同底數(shù),也不同真數(shù)的對數(shù)比大小。
設計意圖:通過學生的預習,自己總結方法及此方法適用的題型,有條理的闡述自己的學習心得,老師只需起引導作用,引導學生從題目表面上升到題目的實質,從而找到解決問題的有效方法。
4、合作探究——同真異底型的對數(shù)比大小。
以例3為例,學生分組合作探究解題方法,預計兩種:一是利用換底公式將此類型轉化為同底異真型,利用之前總結的方法解決此問題。二是利用具體對數(shù)的大小關系探究出不同底對數(shù)函數(shù)在同一直角坐標系中的圖像,以此來解決此類型比大小問題。
設計意圖:這一部分是本節(jié)課的難點,探究中充分發(fā)揮學生的主動性,培養(yǎng)主動學習的意識,同時也鍛煉學生各方面能力的很好機會,為以后的探究學習積累經驗和方法,充分體現(xiàn)“授之以魚,不如授之以漁”的教學理念。另外數(shù)學問題的解決僅僅只是一半,更重要的是解題之后的回顧,即反思,如果沒有了反思,他們就錯過了解題的一次重要而有效益的方面。因此,本題解決后,讓學生反思明白,要想利用性質解決問題,關鍵要做到“腦中有圖”,以“形”促“數(shù)”。
5、小結。
6、思考題。
以2009高考題為例,讓學生學以致用,增強數(shù)學學習興趣。
7、作業(yè)。
包括兩個方面:
1、書寫作業(yè)。
2、下節(jié)課前的預習作業(yè)。
通過本節(jié)課的教學實例來看,這種通過課本內容預習,而后課堂交流學習成果的方法效果不錯,既能很好的完成教學任務,又能充分發(fā)揮學生學習的主動性。在自主探究時,學生分組討論過程中,我參與小組討論,對有能力的小組,在探究出一種方法后,可鼓勵完成更多的方法探究,對于能力較弱的小組,可給予適當?shù)奶崾?,使學生都能動起來,課堂都有所收獲,增強學生自信。另外,對于學生的總結回答,可能會比較慢,我一定會耐心聽,及時鼓勵,給予學生微笑和語言的鼓勵,效果很好。在小結環(huán)節(jié)中,對于高一學生自己小結的方法,是我一直的教學嘗試,由于只訓練了半學期,學生只能達到小結知識的程度,在以后的訓練中還會加入數(shù)學思想、數(shù)學方法的小結內容,使這些數(shù)學名詞讓學生不再覺得抽象,而是變成具體的,可操作的、具體的解題工具。
函數(shù)建模教學設計篇八
指數(shù)函數(shù)的教學共分兩個課時完成。第一課時為指數(shù)函數(shù)的定義,圖像及性質;第二課時為指數(shù)函數(shù)的應用。指數(shù)函數(shù)第一課時是在學習指數(shù)概念的基礎上學習指數(shù)函數(shù)的概念和性質,通過學習指數(shù)函數(shù)的定義,圖像及性質,可以進一步深化學生對函數(shù)概念的理解與認識,使學生得到較系統(tǒng)的函數(shù)知識和研究函數(shù)的方法,并且為學習對數(shù)函數(shù)作好準備。
1.知識目標:掌握指數(shù)函數(shù)的概念,圖像和性質
2.能力目標:通過數(shù)形結合,利用圖像來認識,掌握函數(shù)的性質,增強學生分析問題,解決問題的能力。
3.德育目標:對學生進行辯證唯物主義思想的教育,使學生學會認識事物的特殊性與一般性之間的關系,培養(yǎng)學生善于探索的思維品質。
(三
1、重點:指數(shù)函數(shù)的定義、性質和圖象
2、難點:指數(shù)函數(shù)的定義理解,指數(shù)函數(shù)的圖象特征及指數(shù)函數(shù)的性質。
3、關鍵:能正確描繪指數(shù)函數(shù)的圖象
(三)
在講解指數(shù)函數(shù)的定義前,復習有關指數(shù)知識及簡單運算,然后由實例引入指數(shù)函數(shù)的概念,因為手工繪圖復雜且不夠精確,并且是本節(jié)課的教學關鍵,教學中,我借助電腦手段,通過描點作圖,觀察圖像,引導學生說出圖像特征及變化規(guī)律,并從而得出指數(shù)函數(shù)的性質,提高學生的形數(shù)結合的能力。
一.
1,學情分析:大部分學生數(shù)學基礎較差,理解能力,運算能力,思維能力等方面參差不齊;同時學生學好數(shù)學的自信心不強,學習積極性不高。
2, 學法指導:針對這種情況,在教學中,我注意面向全體,發(fā)揮學生的主體性,引導學生積極地觀察問題,分析問題,激發(fā)學生的求知欲和學習積極性,指導學生積極思維、主動獲取知識,養(yǎng)成良好的學習方法。并逐步學會獨立提出問題、解決問題。總之,調動學生的非智力因素來促進智力因素的發(fā)展,引導學生積極開動腦筋,思考問題和解決問題,從而發(fā)揚鉆研精神、勇于探索創(chuàng)新。
函數(shù)建模教學設計篇九
2.結合具體的冪函數(shù)的圖象,了解它們的變化情況及性質
3.在探討冪函數(shù)性質的過程中,體會由特殊到一般及數(shù)形結合的數(shù)學思想方法
冪函數(shù)的圖象和性質
畫冪函數(shù)的圖象并由圖象概括其性質
教學內容問題、任務師生活動設計意圖
1.某種蔬菜每千克1元,若購買千克,需要支付元是函數(shù)嗎?
2.正方形的邊長為,那么它的面積是的函數(shù)嗎?
3.立方體的邊長為,那么它的體積是的函數(shù)嗎?
4.正方形的面積為,那么它的邊長是的函數(shù)嗎?
5.某人內騎車 內行進了1,那么他騎車的平均速度是函數(shù)嗎?
6.這五個函數(shù)有什么共同特征?
7.給出冪函數(shù)的定義
8.下列函數(shù)是冪函數(shù)嗎?
9.冪函數(shù)的定義和指數(shù)函數(shù)的定義有什么區(qū)別?
10. 已知冪函數(shù)的圖象過點(4, ),求這個函數(shù)的解析式?
11. 觀察冪函數(shù)的圖象
12.作函數(shù)的圖象。
13. 作函數(shù)的圖象。
14.作函數(shù)的圖象。
15.根據(jù)所作函數(shù)的圖象,分別討論這些函數(shù)的性質。
16.你能證明冪函數(shù)在[0,+ 上是增函數(shù)嗎?
17.從整體上把握冪函數(shù)的圖象。
作業(yè)p79習題1、2、3
師:投影展示問題,引導學生根據(jù)函數(shù)的定義進行分析。
生:根據(jù)函數(shù)定義思考并回答。
師:板書這5個函數(shù)表達式。
師生:從形式上分析:是指數(shù)冪的形式,其中底數(shù)是自變量,指數(shù)是常數(shù)。
師:板書定義。
生:根據(jù)冪函數(shù)的形式進行辨別。
生:對比指數(shù)函數(shù)的定義,指出區(qū)別。
師生:用待定系數(shù)法共同完成。
師:幾何畫板展示冪函數(shù)圖象,隨著指數(shù) 的改變,冪函數(shù)圖象的形態(tài)和位置都發(fā)生改變。
生:觀察指數(shù)的變化和圖象的變化
師:冪函數(shù)的圖象因指數(shù) 不同而形態(tài)各異,遠比指數(shù)函數(shù)的.圖象復雜。但我們可以通過討論其中有代表性的幾個函數(shù)來了解冪函數(shù)的圖象特征。生:在同一坐標系中作出三個函數(shù)的圖象。
師:巡視指導。
師:用幾何畫板作出三個函數(shù)的圖象。
生:對照檢查,注意所作圖象的特征。
師:提示橫坐標取值: 。巡視學生作圖情況。
生:列表,并描點作圖。
師:投影函數(shù)圖象。
師:指導作圖:取橫坐標0。
生:作圖。
師:投影圖象。
師:引導學生根據(jù)函數(shù)的圖象,指出函數(shù)的性質。
生:指出函數(shù)性質并完成課本第78頁表格。
生:嘗試證明。
師生:共同完成證明。
師:幾何畫板動態(tài)展示冪函數(shù)在第一象限的圖象,引導學生觀察圖象的變化。師生共同歸納圖象的主要特征:在 上:減函數(shù) :猛增:增函數(shù) :緩增通過實際問題,引入冪函數(shù)。由特殊到一般的提練、概括。形式定義,注意辨別。對比,加深印象,避免與指數(shù)函數(shù)混淆。進一步加強理解冪函數(shù)定義。對冪函數(shù)的圖象作整體感知,了解冪函數(shù)的圖象和性質與指數(shù) 關系密切。三個函數(shù)都是初中學過的,描三個點作出簡圖,把握圖象的主要特征。數(shù)形結合。
函數(shù)建模教學設計篇十
教學目標:
2、能較熟練地運用指數(shù)函數(shù)的性質解決指數(shù)函數(shù)的平移問題。
教學重點:
教學難點:
教學過程:
一、情境創(chuàng)設。
二、數(shù)學應用與建構。
例1、解不等式:
小結:解關于指數(shù)的不等式與判斷幾個指數(shù)值的大小一樣,是指數(shù)性質的運用,關鍵是底數(shù)所在的范圍。
例2、說明下列函數(shù)的圖象與指數(shù)函數(shù)y=2x的圖象的關系,并畫出它們的`示意圖。
小結:指數(shù)函數(shù)的平移規(guī)律:y=f(x)左右平移,y=f(x+k)(當k0時,向左平移,反之向右平移),上下平移y=f(x)+h(當h0時,向上平移,反之向下平移)。
練習:
(1)將函數(shù)f(x)=3x的圖象向右平移3個單位,再向下平移2個單位,可以得到函數(shù)x的圖象。
(2)將函數(shù)f(x)=3x的圖象向右平移2個單位,再向上平移3個單位,可以得到函數(shù)y的圖象。
(3)將函數(shù)圖象先向左平移2個單位,再向下平移1個單位所得函數(shù)的解析式是。
(4)對任意的a0且a1,函數(shù)y=a2x1的圖象恒過的定點的坐標是(),函數(shù)y=a2x—1的圖象恒過的定點的坐標是()。
小結:指數(shù)函數(shù)的定點往往是解決問題的突破口!定點與單調性相結合,就可以構造出函數(shù)的簡圖,從而許多問題就可以找到解決的突破口。
(5)如何利用函數(shù)f(x)=2x的圖象,作出函數(shù)y=2x和y=2|x2|的圖象?
(6)如何利用函數(shù)f(x)=2x的圖象,作出函數(shù)y=|2x—1|的圖象?
小結:函數(shù)圖象的對稱變換規(guī)律。
例3、已知函數(shù)y=f(x)是定義在r上的奇函數(shù),且x0時,f(x)=1—2x,試畫出此函數(shù)的圖象。
例4、求函數(shù)的最小值以及取得最小值時的x值。
小結:復合函數(shù)常常需要換元來求解其最值。
練習:
(1)函數(shù)y=ax在[0,1]上的最大值與最小值的和為3,則a等于();。
(2)函數(shù)y=2x的值域為();。
(4)當x0時,函數(shù)f(x)=(a2—1)x的值總大于1,求實數(shù)a的取值范圍。
三、小結。
四、作業(yè):
課本p55—6、7。
五、課后探究。
(1)函數(shù)f(x)的定義域為(0,1),則函數(shù)f(x)的定義域為?
(2)對于任意的x1,x2r,若函數(shù)f(x)=2x,試比較函數(shù)的大小。
函數(shù)建模教學設計篇十一
指數(shù)函數(shù)是學生在學習了函數(shù)基本概念和性質以后接觸到得第一個具體函數(shù),所以在這部分的教學安排上,我更注意學生思維習慣的養(yǎng)成,特作如下思考:
1、設計應從哪些方面,哪些角度去探索一個具體函數(shù),我在這部分設置了三個環(huán)節(jié)。
(1)由具體的折紙的例子引出指數(shù)函數(shù)。
設計意圖:貼近學生的生活實際,便于動手操作與觀察。讓學生充分感受我們生活中大量存在指數(shù)函數(shù)模型,從而便于學生接受指數(shù)函數(shù)的形式,突破符號語言的障礙。
(2)通過研究幾個特殊的底數(shù)的指數(shù)函數(shù)得到一般指數(shù)函數(shù)的規(guī)律。符合學生由特殊到一般的,由具體到抽象的學習認知規(guī)律。
(3)通過多媒體手段,用計算機作出底數(shù)a變換的圖像,讓學生更直觀、深刻的感受指數(shù)函數(shù)的圖像及性質。
通過引入定義剖析辨析運用,這個由特殊到一般的過程揭示了概念的內涵和外延;而后在教師的點撥下,學生作圖觀察探究交流概括運用,使學生在動手操作、動眼觀察、動腦思考、合作探究中達到對知識的發(fā)現(xiàn)和接受,同時滲透了分類討論、數(shù)形結合的思想,提高了學生學習數(shù)學概念、性質和方法的能力,養(yǎng)成了良好的學習習慣。
2、課堂練習前后呼應,各有側重。
通過問題呈現(xiàn),變式教學,不但突出了重點內容,把知識加固、挖深。使教學目標得以實現(xiàn)。而且注重知識的延續(xù)性,為以后的學習奠定了基礎。
3、教學過程設計為六個環(huán)節(jié):
1、情景設置,形成概念2、發(fā)現(xiàn)問題,深化概念。
3、深入探究圖像,加深理解性質。
4、強化訓練,落實掌握。
5、小結歸納,拓展深化。
6、布置作業(yè),延伸課堂。各個環(huán)節(jié)層層深入,環(huán)環(huán)相扣,充分體現(xiàn)了在教師的'指導下,師生、生生之間的交流互動,使學生親身經歷知識的形成和發(fā)展過程。
4、通過學案教學為抓手,讓學生先學。
老師在課前充分了解了學情,以學定教,進行二次備課,抓住學生的學習困難,站在學生學的角度設計教學。
5、學生真思考,學生的真探究,才是保障教學目標得以實現(xiàn)的前提。
在教學中,教師通過教學設計要以給學生充分的思維空間、推理運算空間和交流學習空間,努力創(chuàng)設一個“活動化的課堂”才可能真正喚起學生的生命主體意識,引領他們走上自主構建知識意義的發(fā)展路徑。
函數(shù)建模教學設計篇十二
《同角三角函數(shù)關系式》是人教版高中新教材必修4第一章第二節(jié)的第二課。本節(jié)內容是同角三角函數(shù)關系式的運用,三種題型“知值求值”“弦化切”“函數(shù)思想的應用”。
二、學生情況分析。
本課時研究的是同角三角函數(shù)關系式的運用、逆用及變形,因此在教學過程中要發(fā)展學生的已有認知,發(fā)揮知識遷移。
知識目標:
1、掌握同角三角函數(shù)關系式的運用、逆用及變形;
2、掌握同角三角函數(shù)關系式的三種題型。
能力目標:
滲透分類討論思想、方程思想。
情感、態(tài)度、價值觀目標:
發(fā)展學生研究問題、解決問題的能力。
四、教學重難點。
重點:
同角三角函數(shù)關系式的運用、逆用及變形;
難點:
2、靈活運用公式做運算。
五、教學方法與策略。
教學中注意用新課程理念處理教材,采用學生自主探索、動手實踐、合作交流、師生互動,教師發(fā)揮組織者、引導者、合作者的作用,引導學生主體參與、揭示本質、經歷過程。根據(jù)本節(jié)課內容、高一學生認知特點,本節(jié)課采用“啟發(fā)探索、講練結合”的方法組織教學。
函數(shù)建模教學設計篇十三
一次函數(shù)圖像,是北師大八年級上冊的內容。教學這一節(jié)時,我沒有按照課本的講解。我著這樣安排的,先講正比例函數(shù)的圖像和性質,用一課時,今天我就是講這一節(jié)。
先介紹函數(shù)的圖像、畫法。再畫正比例函數(shù)的圖像,引出正比例函數(shù)是經過原點的直線。接著介紹怎樣作正比例函數(shù)的圖像。用這種方法,作幾個正比例函數(shù)的圖像,總結規(guī)律。接著練習。
練習之后我備課時又有一個性質要介紹,由于時間的關系,沒有講解,就下課了!
反思:1、課堂中前段時間留給學生的時間長,沒完成課前準備的教學任務。
2、本節(jié)課講到第三個性質。
3、練習題要精而且少,難易適中。
4、注意課前準備,上課注意語言。函數(shù)教學反思反比例函數(shù)教學反思。
將本文的word文檔下載到電腦,方便收藏和打印。
函數(shù)建模教學設計篇十四
一、說課內容:
九年級數(shù)學下冊第27章第一節(jié)的二次函數(shù)的概念及相關習題(華東師范大學出版社)。
二、教材分析:
1、教材的地位和作用。
這節(jié)課是在學生已經學習了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎上,來學習二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個具體的函數(shù),也是最重要的,在歷年來的中考題中占有較大比例。同時,二次函數(shù)和以前學過的一元二次方程、一元二次不等式有著密切的聯(lián)系。進一步學習二次函數(shù)將為它們的解法提供新的方法和途徑,并使學生更為深刻的理解數(shù)形結合的重要思想。而本節(jié)課的二次函數(shù)的概念是學習二次函數(shù)的基礎,是為后來學習二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個教材中具有承上啟下的重要作用。
2、教學目標和要求:
(1)知識與技能:使學生理解二次函數(shù)的概念,掌握根據(jù)實際問題列出二次函數(shù)關系式的方法,并了解如何根據(jù)實際問題確定自變量的取值范圍。
(2)過程與方法:復習舊知,通過實際問題的引入,經歷二次函數(shù)概念的探索過程,提高學生解決問題的能力.
(3)情感、態(tài)度與價值觀:通過觀察、操作、交流歸納等數(shù)學活動加深對二次函數(shù)概念的理解,發(fā)展學生的數(shù)學思維,增強學好數(shù)學的愿望與信心.
3、教學重點:對二次函數(shù)概念的理解。
4、教學難點:抽象出實際問題中的二次函數(shù)關系。
1、從創(chuàng)設情境入手,通過知識再現(xiàn),孕伏教學過程。
2、從學生活動出發(fā),通過以舊引新,順勢教學過程。
3、利用探索、研究手段,通過思維深入,領悟教學過程。
四、教學過程:
(一)復習提問。
1.什么叫函數(shù)?我們之前學過了那些函數(shù)?
(一次函數(shù),正比例函數(shù),反比例函數(shù))。
2.它們的形式是怎樣的?
(y=kx+b,ky=kx,ky=,k0)。
【設計意圖】復習這些問題是為了幫助學生弄清自變量、函數(shù)、常量等概念,加深對函數(shù)定義的理解.強調k0的條件,以備與二次函數(shù)中的a進行比較.
(二)引入新課。
函數(shù)是研究兩個變量在某變化過程中的相互關系,我們已學過正比例函數(shù),反比例函數(shù)和一次函數(shù)。看下面三個例子中兩個變量之間存在怎樣的關系。
例1、(1)圓的半徑是r(cm)時,面積與半徑之間的關系是什么?
解:s=0)。
解:y=x(20/2-x)=x(10-x)=-x2+10x(0。
解:y=100(1+x)2。
=100(x2+2x+1)。
=100x2+200x+100(0。
教師提問:以上三個例子所列出的函數(shù)與一次函數(shù)有何相同點與不同點?
(三)講解新課。
以上函數(shù)不同于我們所學過的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。
二次函數(shù)的定義:形如y=ax2+bx+c(a0,a,b,c為常數(shù))的函數(shù)叫做二次函數(shù)。
1、強調形如,即由形來定義函數(shù)名稱。二次函數(shù)即y是關于x的二次多項式(關于的x代數(shù)式一定要是整式)。
2、在y=ax2+bx+c中自變量是x,它的取值范圍是一切實數(shù)。但在實際問題中,自變量的取值范圍是使實際問題有意義的值。(如例1中要求r0)。
3、為什么二次函數(shù)定義中要求a?
(若a=0,ax2+bx+c就不是關于x的二次多項式了)。
4、在例3中,二次函數(shù)y=100x2+200x+100中,a=100,b=200,c=100.
5、b和c是否可以為零?
由例1可知,b和c均可為零.
若b=0,則y=ax2+c;。
若c=0,則y=ax2+bx;。
若b=c=0,則y=ax2.
注明:以上三種形式都是二次函數(shù)的特殊形式,而y=ax2+bx+c是二次函數(shù)的一般形式.
判斷:下列函數(shù)中哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a、b、c.
(1)y=3(x-1)2+1(2)s=3-2t2。
(3)y=(x+3)2-x2(4)s=10r2。
(5)y=22+2x(6)y=x4+2x2+1(可指出y是關于x2的二次函數(shù))。
(四)鞏固練習。
1.已知一個直角三角形的兩條直角邊長的和是10cm。
(1)當它的一條直角邊的長為4.5cm時,求這個直角三角形的面積;。
(2)設這個直角三角形的面積為scm2,其中一條直角邊為xcm,求s關。
于x的函數(shù)關系式。
【設計意圖】此題由具體數(shù)據(jù)逐步過渡到用字母表示關系式,讓學生經歷由具體到抽象的過程,從而降低學生學習的難度。
2.已知正方體的棱長為xcm,它的表面積為scm2,體積為vcm3。
(1)分別寫出s與x,v與x之間的函數(shù)關系式子;。
(2)這兩個函數(shù)中,那個是x的二次函數(shù)?
【設計意圖】簡單的實際問題,學生會很容易列出函數(shù)關系式,也很容易分辨出哪個是二次函數(shù)。通過簡單題目的練習,讓學生體驗到成功的歡愉,激發(fā)他們學習數(shù)學的興趣,建立學好數(shù)學的信心。
五、評價分析。
本節(jié)的一個知識點就是二次函數(shù)的概念,教學中教師不能直接給出,而要讓學生自己在分析、揭示實際問題的數(shù)量關系并把實際問題轉化為數(shù)學模型的過程中,使學生感受函數(shù)是刻畫現(xiàn)實世界數(shù)量關系的有效模型,增加對二次函數(shù)的感性認識,側重點通過兩個實際問題的探究引導學生自己歸納出這種新的函數(shù)二次函數(shù),進一步感受數(shù)學在生活中的廣泛應用。對于最大面積問題,可給學生留為課下探究問題,發(fā)展學生的發(fā)散思維,方法不拘一格,只要合理均應鼓勵。
函數(shù)建模教學設計篇十五
3、能夠根據(jù)二次函數(shù)的不同表示方式,從不同的側面對函數(shù)性質進行研究
重點:用三種方式表示變量之間二次函數(shù)關系
難點:根據(jù)二次函數(shù)的不同表示方式,從不同的側面對函數(shù)性質進行研究
一、從學生原有的認知結構提出問題
這節(jié)課,我們來學習二次函數(shù)的三種表達方式。
二、師生共同研究形成概念
1、用函數(shù)表達式表示
做一做書本p56矩形的周長與邊長、面積的關系
鼓勵學生間的互相交流,一定要讓學生理解周長與邊長、面積的關系。
比較全面、完整、簡單地表示出變量之間的關系
2、用表格表示
做一做書本p56填表
由于運算量比較大,學生的運算能力又一般,因此,建議把這個表格的一部分數(shù)據(jù)先給出來,讓學生完成未完成的部分空格。
表格表示可以清楚、直接地表示出變量之間的數(shù)值對應關系
3、用圖象表示
議一議書本p56議一議
關于自變量的問題,學生往往比較難理解,講解時,可適當多花時間講解。
可以直觀地表示出函數(shù)的變化過程和變化趨勢
做一做書本p57
4、三種方法對比
議一議書本p58議一議
函數(shù)的表格表示可以清楚、直接地表示出變量之間的數(shù)值對應關系;函數(shù)的圖象表示可以直觀地表示出函數(shù)的變化過程和變化趨勢;函數(shù)的表達式可以比較全面、完整、簡單地表示出變量之間的關系。這三種表示方式積壓自有各自的優(yōu)點,它們服務于不同的需要。
在對三種表示方式進行比較時,學生的看法可能多種多樣。只要他們的想法有一定的道理,教師就應予以肯定和鼓勵。
函數(shù)建模教學設計篇十六
正比例函數(shù)是本章的重點內容,是學生在初中階段第一次接觸的函數(shù),這部分內容的學習是在學生已經學習了變量和函數(shù)的概念及圖像的基礎之上進行的。它是對前面所學知識的應用,又為后面學習做好鋪墊。因此,本節(jié)課的知識起到了承上啟下的作用。
學情分析。
學習本節(jié)課之前,學生已經學習了變量和函數(shù)等知識。在描點法的學習中初步感受了通過描點法畫出圖象,并感知其增感性的過程,為本節(jié)課新知識的學習做好準備,所以本節(jié)課的學習問題不大。
教學目標。
知識技能:1、初步理解正比例函數(shù)的概念及其圖象的特征。2、能畫出正比例函數(shù)的圖象。3、能夠判斷兩個變量是否構成正比例函數(shù)關系。
數(shù)學思考:1、通過“燕鷗飛行路程問題”的研究,體會建立函數(shù)模型的.思想。2、通過正比例函數(shù)圖像的學習和探究,感知數(shù)行結合思想。
解決問題:1、能夠要求運用“列表法”和“兩點法”作正比率函數(shù)的圖象。2、會利用正比例函數(shù)解決簡單的數(shù)學問題。
情感態(tài)度:1、結合描點作圖,培養(yǎng)學生認真、細心、嚴謹?shù)膶W習態(tài)度和學習習慣。2、通過正比率函數(shù)概念的引入,使學生進一步認識數(shù)學是由于人們需要而產生的,與現(xiàn)實世界密切相關。同時滲透熱愛自然和生活的教育。
教學重點和難點。
重點:正比率函數(shù)的概念。
難點:正比率函數(shù)的性質。
函數(shù)建模教學設計篇十七
1.理解指數(shù)函數(shù)的定義,初步掌握指數(shù)函數(shù)的圖象,性質及其簡單應用.
2.通過指數(shù)函數(shù)的圖象和性質的學習,培養(yǎng)學生觀察,分析,歸納的能力,進一步體會數(shù)形結合的思想方法.
3.通過對指數(shù)函數(shù)的研究,使學生能把握函數(shù)研究的基本方法,激發(fā)學生的學習興趣.
教學重點和難點。
難點是認識底數(shù)對函數(shù)值影響的認識.
教學用具。
投影儀。
教學方法。
啟發(fā)討論研究式。
教學過程。
一.引入新課。
我們前面學習了指數(shù)運算,在此基礎上,今天我們要來研究一類新的常見函數(shù)-------指數(shù)函數(shù).
這類函數(shù)之所以重點介紹的原因就是它是實際生活中的一種需要.比如我們看下面的'問題:。
由學生回答:與之間的關系式,可以表示為.
問題2:有一根1米長的繩子,第一次剪去繩長一半,第二次再剪去剩余繩子的一半,……剪了次后繩子剩余的長度為米,試寫出與之間的函數(shù)關系.
由學生回答:.
在以上兩個實例中我們可以看到這兩個函數(shù)與我們前面研究的函數(shù)有所區(qū)別,從形式上冪的形式,且自變量均在指數(shù)的位置上,那么就把形如這樣的函數(shù)稱為指數(shù)函數(shù).
1.定義:形如的函數(shù)稱為指數(shù)函數(shù).(板書)。
教師在給出定義之后再對定義作幾點說明.
2.幾點說明(板書)。
(1)關于對的規(guī)定:。
教師首先提出問題:為什么要規(guī)定底數(shù)大于0且不等于1呢?(若學生感到有困難,可將問題分解為若會有什么問題?如,此時,等在實數(shù)范圍內相應的函數(shù)值不存在.
若對于都無意義,若則無論取何值,它總是1,對它沒有研究的必要.為了避免上述各種情況的發(fā)生,所以規(guī)定且.
教師引導學生回顧指數(shù)范圍,發(fā)現(xiàn)指數(shù)可以取有理數(shù).此時教師可指出,其實當指數(shù)為無理數(shù)時,也是一個確定的實數(shù),對于無理指數(shù)冪,學過的有理指數(shù)冪的性質和運算法則它都適用,所以將指數(shù)范圍擴充為實數(shù)范圍,所以指數(shù)函數(shù)的定義域為.擴充的另一個原因是因為使她它更具代表更有應用價值.
剛才分別認識了指數(shù)函數(shù)中底數(shù),指數(shù)的要求,下面我們從整體的角度來認識一下,根據(jù)定義我們知道什么樣的函數(shù)是指數(shù)函數(shù),請看下面函數(shù)是否是指數(shù)函數(shù).
(1),(2),(3)。
(4),(5).
學生回答并說明理由,教師根據(jù)情況作點評,指出只有(1)和(3)是指數(shù)函數(shù),其中(3)可以寫成,也是指數(shù)圖象.
最后提醒學生指數(shù)函數(shù)的定義是形式定義,就必須在形式上一摸一樣才行,然后把問題引向深入,有了定義域和初步研究的函數(shù)的性質,此時研究的關鍵在于畫出它的圖象,再細致歸納性質.
3.歸納性質。
作圖的用什么方法.用列表描點發(fā)現(xiàn),教師準備明確性質,再由學生回答.
函數(shù)。
1.定義域:。
2.值域:。
3.奇偶性:既不是奇函數(shù)也不是偶函數(shù)。
4.截距:在軸上沒有,在軸上為1.
對于性質1和2可以兩條合在一起說,并追問起什么作用.(確定圖象存在的大致位置)對第3條還應會證明.對于單調性,我建議找一些特殊點.,先看一看,再下定論.對最后一條也是指導函數(shù)圖象畫圖的依據(jù).(圖象位于軸上方,且與軸不相交.)。
在此基礎上,教師可指導學生列表,描點了.取點時還要提醒學生由于不具備對稱性,故的值應有正有負,且由于單調性不清,所取點的個數(shù)不能太少.
此處教師可利用計算機列表描點,給出十組數(shù)據(jù),而學生自己列表描點,至少六組數(shù)據(jù).連點成線時,一定提醒學生圖象的變化趨勢(當越小,圖象越靠近軸,越大,圖象上升的越快),并連出光滑曲線.
二.圖象與性質(板書)。
1.圖象的畫法:性質指導下的列表描點法.
2.草圖:。
當畫完第一個圖象之后,可問學生是否需要再畫第二個?它是否具有代表性?(教師可提示底數(shù)的條件是且,取值可分為兩段)讓學生明白需再畫第二個,不妨取為例.
此時畫它的圖象的方法應讓學生來選擇,應讓學生意識到列表描點不是唯一的方法,而圖象變換的方法更為簡單.即=與圖象之間關于軸對稱,而此時的圖象已經有了,具備了變換的條件.讓學生自己做對稱,教師借助計算機畫圖,在同一坐標系下得到的圖象.
最后問學生是否需要再畫.(可能有兩種可能性,若學生認為無需再畫,則追問其原因并要求其說出性質,若認為還需畫,則教師可利用計算機再畫出如的圖象一起比較,再找共性)。
由于圖象是形的特征,所以先從幾何角度看它們有什么特征.教師可列一個表,如下:。
以上內容學生說不齊的,教師可適當提出觀察角度讓學生去描述,然后再讓學生將幾何的特征,翻譯為函數(shù)的性質,即從代數(shù)角度的描述,將表中另一部分填滿.
填好后,讓學生仿照此例再列一個的表,將相應的內容填好.為進一步整理性質,教師可提出從另一個角度來分類,整理函數(shù)的性質.
3.性質.
(1)無論為何值,指數(shù)函數(shù)都有定義域為,值域為,都過點.
(2)時,在定義域內為增函數(shù),時,為減函數(shù).
(3)時,,時,.
總結之后,特別提醒學生記住函數(shù)的圖象,有了圖,從圖中就可以能讀出性質.
三.簡單應用(板書)。
1.利用指數(shù)函數(shù)單調性比大小.(板書)。
一類函數(shù)研究完它的概念,圖象和性質后,最重要的是利用它解決一些簡單的問題.首先我們來看下面的問題.
例1.比較下列各組數(shù)的大小。
(1)與;(2)與;。
(3)與1.(板書)。
首先讓學生觀察兩個數(shù)的特點,有什么相同?由學生指出它們底數(shù)相同,指數(shù)不同.再追問根據(jù)這個特點,用什么方法來比較它們的大小呢?讓學生聯(lián)想指數(shù)函數(shù),提出構造函數(shù)的方法,即把這兩個數(shù)看作某個函數(shù)的函數(shù)值,利用它的單調性比較大小.然后以第(1)題為例,給出解答過程.
解:在上是增函數(shù),且。
(板書)。
教師最后再強調過程必須寫清三句話:。
(1)構造函數(shù)并指明函數(shù)的單調區(qū)間及相應的單調性.
(2)自變量的大小比較.
(3)函數(shù)值的大小比較.
后兩個題的過程略.要求學生仿照第(1)題敘述過程.
例2.比較下列各組數(shù)的大小。
(1)與;(2)與;。
(3)與.(板書)。
先讓學生觀察例2中各組數(shù)與例1中的區(qū)別,再思考解決的方法.引導學生發(fā)現(xiàn)對(1)來說可以寫成,這樣就可以轉化成同底的問題,再用例1的方法解決,對(2)來說可以寫成,也可轉化成同底的,而(3)前面的方法就不適用了,考慮新的轉化方法,由學生思考解決.(教師可提示學生指數(shù)函數(shù)的函數(shù)值與1有關,可以用1來起橋梁作用)。
最后由學生說出1,1,.
解決后由教師小結比較大小的方法。
(1)構造函數(shù)的方法:數(shù)的特征是同底不同指(包括可轉化為同底的)。
(2)搭橋比較法:用特殊的數(shù)1或0.
三.鞏固練習。
練習:比較下列各組數(shù)的大小(板書)。
(1)與(2)與;。
(3)與;(4)與.解答過程略。
四.小結。
3.簡單應用。
五.板書設計。
探究活動。
答案:有兩個交點.
答案:15天的合同可以簽,而30天的合同不能簽.
函數(shù)建模教學設計篇十八
教學過程中教師應通過情境創(chuàng)設激發(fā)學生的學習興趣,對函數(shù)與圖像的對應關系應讓學生動手去實踐,去發(fā)現(xiàn),對一次函數(shù)的圖象是一條直線應讓學生自己得出。在得出結論之后,讓學生能運用“兩點確定一條直線”,很快做出一次函數(shù)的圖像。在鞏固練習活動中,鼓勵學生積極思考,提高學生解決實際問題的能力。
根據(jù)學生狀況,教學設計也應做出相應的調整.如第一環(huán)節(jié):探究新知,固然可以激發(fā)學生興趣,但也可能容易讓學生關注代數(shù)表達式的尋求,甚至部分學生形成一定的認知障礙,因此該環(huán)節(jié)也可以直接開門見山,直切主題,如提出問題:一次函數(shù)的代數(shù)形式是y=kx+b,那么,一個一次函數(shù)對應的圖形具有什么特征呢?今天我們就研究一次函數(shù)對應的圖形特征—本節(jié)課是學生首次接觸利用數(shù)形結合的思想研究一次函數(shù)圖象和性質,對他們而言觀察對象、探索思路、研究方法都是陌生的,因而在教學過程中我通過問題情境的創(chuàng)設,激發(fā)學生的學習興趣,引導學生觀察一次函數(shù)的圖像,探討一次函數(shù)的簡單性質,逐步加深學生對一次函數(shù)及性質的認識。本節(jié)課的重點是要學生了解正比例函數(shù)的確定需要一個條件,一次函數(shù)的確定需要兩個條件,能由條件求出一些簡單的一次函數(shù)表達式,并能解決有關現(xiàn)實問題。本節(jié)課設計注重發(fā)展了學生的數(shù)形結合的思想方法及綜合分析解決問題的能力及應用意識的培養(yǎng),為后繼學習打下基礎。
由于這節(jié)課的知識容量較大,而且內容較難,我們所用的學案就能很好地幫助學生消化理解該知識,。在教學過程中,讓學生親自動手、動腦畫圖的方式,通過教師的引導,學生的交流、歸納等環(huán)節(jié)較成功地完成了教學目標,收到了較好的效果。但還存在著不盡人意的地方,由于課的內容容量較大,對于有些知識點,如“隨著x值的增大,y的值分別如何化?”,本應給學生更多的時間練習、討論,以幫助理解消化該知識,但由于時間緊,學生的這一活動開展的不充分。課堂氣氛不夠活躍,個別學生的主動性、積極性沒有充分調動起來。這是今后教學中應該注意的問題。
函數(shù)建模教學設計篇一
2、教學目標的確定及依據(jù)。
根據(jù)教學大綱要求,結合教材,考慮到學生已有的認知結構心理特征,我制定了如下的教學目標:
(1)知識目標:理解對數(shù)函數(shù)的意義;掌握對數(shù)函數(shù)的圖像與性質;初步學會用。
(2)能力目標:滲透類比、數(shù)形結合、分類討論等數(shù)學思想方法,培養(yǎng)學生觀察、
分析、歸納等邏輯思維能力.。
(3)情感目標:通過指數(shù)函數(shù)和對數(shù)函數(shù)在圖像與性質上的對比,使學生欣賞數(shù)。
學的精確和美妙之處,調動學生學習數(shù)學的積極性.。
3、教學重點與難點。
難點:對數(shù)函數(shù)性質中對于在a1與01兩種情況函數(shù)值的不同變化.。
學生在整個教學過程中始終是認知的主體和發(fā)展的主體,教師作為學生學習的指導者,應充分地調動學生學習的積極性和主動性,有效地滲透數(shù)學思想方法.根據(jù)這樣的原則和所要完成的教學目標,對于本節(jié)課我主要考慮了以下兩個方面:
1、教學方法:
(1)啟發(fā)引導學生實驗、觀察、聯(lián)想、思考、分析、歸納;
(2)采用“從特殊到一般”、“從具體到抽象”的方法;
(3)滲透類比、數(shù)形結合、分類討論等數(shù)學思想方法.。
2、教學手段:
計算機多媒體輔助教學.。
“授之以魚,不如授之以漁”,方法的掌握,思想的形成,才能使學生受益終身.本節(jié)課注重調動學生積極思考、主動探索,盡可能地增加學生參與教學活動的時間和空間,我進行了以下學法指導:
(1)類比學習:與指數(shù)函數(shù)類比學習對數(shù)函數(shù)的圖像與性質.。
(2)探究定向性學習:學生在教師建立的情境下,通過思考、分析、操作、探索,
(3)主動合作式學習:學生在歸納得出對數(shù)函數(shù)的圖像與性質時,通過小組討論,
使問題得以圓滿解決.。
1、溫故知新。
設計意圖:既復習了指數(shù)函數(shù)和反函數(shù)的有關知識,又與本節(jié)內容有密切關系,
有利于引出新課.為學生理解新知清除了障礙,有意識地培養(yǎng)學生。
分析問題的能力.。
2、探求新知。
函數(shù)建模教學設計篇二
時,函數(shù)值變化情況的區(qū)分.(3)指數(shù)函數(shù)是學生完全陌生的一類函數(shù),對于這樣的函數(shù)應怎樣進行較為系統(tǒng)的理論研究是學生面臨的重要問題,所以從指數(shù)函數(shù)的研究過程中得到相應的結論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學中要特別讓學生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究.二.學情分析:學生在學習了函數(shù)概念和函數(shù)性質基礎上對函數(shù)有了初步認識,但我所教班時平行班,學生學習興趣不濃,積極性高,針對這種情況,教學時要總層層設問降低難度,用幾何畫板直觀演示提高學生學習積極性,時學生主動學習。
三.教學目標:
知識與技能:理解指數(shù)函數(shù)的概念,掌握指數(shù)函數(shù)的圖象和性質,培養(yǎng)學生實際應用函數(shù)的能力。
過程與方法:通過觀察圖象,分析、歸納、總結、自主建構指數(shù)函數(shù)的性質。領會數(shù)形結合的數(shù)學思想方法,培養(yǎng)學生發(fā)現(xiàn)、分析、解決問題的能力。
情感態(tài)度與價值觀:在指數(shù)函數(shù)的學習過程中,體驗數(shù)學的科學價值和應用價值,培養(yǎng)學生善于觀察、勇于探索的良好習慣和嚴謹?shù)目茖W態(tài)度。
投影儀。
六.教學方法。
啟發(fā)討論研究式。
七.教學過程。
(一)創(chuàng)設情景。
學生回答:y與x之間的關系式,可以表示為y=2x。
問題2:一種放射性物質不斷衰變?yōu)槠渌镔|,每經過一年剩留的質量約是原來的84%.求出這種物質的剩留量隨時間(單位:年)變化的函數(shù)關系.設最初的質量為1,時間變量用x表示,剩留量用y表示。
學生回答:y與x之間的關系式,可以表示為y=0.84x。
(二)導入新課。
引導學生觀察,兩個函數(shù)中,底數(shù)是常數(shù),指數(shù)是自變量。設計意圖:充實實例,突出底數(shù)a的取值范圍,讓學生體會到數(shù)學來源于生產生活實際。函數(shù)y=2x、y=0.84x分別以01的數(shù)為底,加深對定義的感性認識,為順利引出指數(shù)函數(shù)定義作鋪墊。
一般地,函數(shù)是r。
叫做指數(shù)函數(shù),其中x是自變量,函數(shù)的定義域的含義:
”如果不這樣規(guī)定會出現(xiàn)什么情況?問題:指數(shù)函數(shù)定義中,為什么規(guī)定“設計意圖:教師首先提出問題:為什么要規(guī)定底數(shù)大于0且不等于1呢?這是本節(jié)的一個難點,為突破難點,采取學生自由討論的形式,達到互相啟發(fā),補充,活躍氣氛,激發(fā)興趣的目的。
對于底數(shù)的分類,可將問題分解為:
(1)若a。
則在實數(shù)范圍內相應的函數(shù)值不存在)都無意義)。
在這里要注意生生之間、師生之間的對話。
設計意圖:認識清楚底數(shù)a的特殊規(guī)定,才能深刻理解指數(shù)函數(shù)的定義域是r;并為學習對數(shù)函數(shù),認識指數(shù)與對數(shù)函數(shù)關系打基礎。
教師還要提醒學生指數(shù)函數(shù)的定義是形式定義,必須在形式上一模一樣才行,然后把問題引向深入。
1:指出下列函數(shù)那些是指數(shù)函數(shù):
在同一平面直角坐標系內畫出下列指數(shù)函數(shù)的圖象。
畫函數(shù)圖象的步驟:列表、描點、連線思考如何列表取值?教師與學生共同作出。
圖像。
時函數(shù)值變化的不同情況,學生往往容易混淆,這是教學中的一個難點。為此,必須利用圖像,數(shù)形結合。教師親自板演,學生親自在課前準備好的坐標系里畫圖,而不是采用幾何畫板直接得到圖像,目的是使學生更加信服,加深印象,并為以后畫圖解題,采用數(shù)形結合思想方法打下基礎。
利用幾何畫板演示函數(shù)特征。由特殊到一般,得出指數(shù)函數(shù)。
的圖象,觀察分析圖像的共同。
的圖象特征,進一步得出圖象性質:
教師組織學生結合圖像討論指數(shù)函數(shù)的性質。
設計意圖:這是本節(jié)課的重點和難點,要充分調動學生的積極性、主動性,發(fā)揮他們的潛能,盡量由學生自主得出性質,以便能夠更深刻的記憶、更熟練的運用。
特別地,函數(shù)值的分布情況如下:
設計意圖:再次強調指數(shù)函數(shù)的單調性與底數(shù)a的關系,并具體分析了函數(shù)值的分布情況,深刻理解指數(shù)函數(shù)值域情況。3.簡單應用(板書)。
1.利用指數(shù)函數(shù)單調性比大小.(板書)。
一類函數(shù)研究完它的概念,圖象和性質后,最重要的是利用它解決一些簡單的問題.首先我們來看下面的問題.
例1.比較下列各組數(shù)的大小。
(1)與;(2)與;。
(3)與1.(板書)。
首先讓學生觀察兩個數(shù)的特點,有什么相同?由學生指出它們底數(shù)相同,指數(shù)不同.再追問根據(jù)這個特點,用什么方法來比較它們的大小呢?讓學生聯(lián)想指數(shù)函數(shù),提出構造函數(shù)的方法,即把這兩個數(shù)看作某個函數(shù)的函數(shù)值,利用它的單調性比較大小.然后以第(1)題為例,給出解答過程.
函數(shù)建模教學設計篇三
1.本節(jié)課改變了以往常見的函數(shù)研究方法,讓學生從不同的角度去研究函數(shù),對函數(shù)進行一個全方位的研究,不僅僅是通過對比總結得到指數(shù)函數(shù)的性質,更重要的是讓學生體會到對函數(shù)的研究方法,以便能將其遷移到其他函數(shù)的研究中去,教師可以真正做到“授之以漁”而非“授之以魚”。
2.教學中借助信息技術可以彌補傳統(tǒng)教學在直觀感、立體感和動態(tài)感方面的不足,可以很容易的化解教學難點、突破教學重點、提高課堂效率,本課使用幾何畫板可以動態(tài)地演示出指數(shù)函數(shù)的底數(shù)的動態(tài)過程,讓學生直觀觀察底數(shù)對指數(shù)函數(shù)單調性的影響。
函數(shù)建模教學設計篇四
對數(shù)函數(shù)的教學共分兩個部分完成。第一部分為對數(shù)函數(shù)的定義,圖像及性質;第二部分為對數(shù)函數(shù)的應用。對數(shù)函數(shù)是在學習對數(shù)概念的基礎上學習對數(shù)函數(shù)的概念和性質,通過學習對數(shù)函數(shù)的定義,圖像及性質,可以進一步深化學生對函數(shù)概念的理解與認識,使學生得到較系統(tǒng)的函數(shù)知識和研究函數(shù)的方法,并且為學習對數(shù)函數(shù)以及對數(shù)函數(shù)的應用作好準備。
在教學過程中,我類比指數(shù)函數(shù)圖象和性質的研究,研究了對數(shù)函數(shù)圖象和性質。同學們課堂上能積極主動參與獲得性質的過程。我用了三節(jié)課就對數(shù)函數(shù)的圖象和性質,圖象和性質的應用進行講解。但是從作業(yè)和課堂效果看來。同學們沒有指數(shù)函數(shù)的性質和圖象掌握的好。特反思如下:
1、學生對對數(shù)函數(shù)概念的理解及對數(shù)的運算不過關。學生在做這些運算時有時不能靈活運用公式例如換底公式,有時學生會想當然地自己“發(fā)明”公式。導致部分題目出現(xiàn)運算錯誤或不會。
2、在利用對數(shù)函數(shù)的單調性比較兩個對數(shù)式的大小書寫格式不規(guī)范,因此在解題的過程中就把真數(shù)和底數(shù)混亂了,這說明同學們用函數(shù)的觀點解決問題的思想方法還沒形成。
3、在解有關求定義域的問題時,學生不能很好的掌握底數(shù)a的取值范圍以及真數(shù)必修大于0.
4、同學們對對數(shù)與指數(shù)的互化不是很熟練。導致有關指數(shù)與對數(shù)互化題目出現(xiàn)錯誤。尤其是解決有關對數(shù)和指數(shù)混合式子的有關計算時困難很大,問題最多。還有在解決有關對數(shù)型函數(shù)定義域問題時,更不會用對數(shù)函數(shù)的單調性去解決。
以上這些原因我通過認真的反思,同時參考學生提出的意見,決定講兩節(jié)習題課,針對學生存在的共性問題解決,找出他們的盲點,同時加強練習力度。從練習中發(fā)現(xiàn)問題,再通過系統(tǒng)講解,直到絕大部分學生理解掌握為止。
函數(shù)建模教學設計篇五
結合課程標準的要求,參照教材的安排,考慮到學生已有的認知結構、心理特征,我制定了如下教學目標:
(1)通過具體實例,直觀了解對數(shù)函數(shù)模型所刻畫的數(shù)量關系,初步理解對數(shù)函數(shù)的概念,體會對數(shù)函數(shù)是一類重要的函數(shù)模型。
(2)能畫出具體對數(shù)函數(shù)的圖象,學生通過自己動手作圖,分組討論對數(shù)函數(shù)的性質,提高動手能力、合作學習能力以及分析解決問題的能力。
難點:難點是探究底數(shù)對對數(shù)函數(shù)圖象及性質變化的影響。
二、學生學習情況分析。
剛從初中升入高一的學生,仍保留著初中生許多學習特點,能力發(fā)展正處于形象思維向抽象思維轉折階段,但更注重形象思維。由于函數(shù)概念十分抽象,又以對數(shù)運算為基礎,同時,初中函數(shù)教學要求降低,初中生運算能力有所下降,這雙重問題增加了對數(shù)函數(shù)教學的難度。尤其作為對數(shù)函數(shù)的第一課時,教師在教學中要控制難度,關注學生學習過程的體驗。
三、設計思想。
本節(jié)課以建構主義基本理論為指導,以新課標基本理念為依據(jù)進行設計的,針對學生現(xiàn)有的認知水平,對數(shù)函數(shù)的教學首先要挖掘其知識背景貼近學生實際,讓學生充分體驗到數(shù)學的應用價值;其次,激發(fā)學生的學習熱情,引導他們找到學習對數(shù)函數(shù)的思路(類比學習指數(shù)函數(shù)的思路),然后把學習的主動權交給學生,為他們提供自主探究、合作交流的機會,改以前滿堂教的方式為讓學生滿堂學,讓學生學會學習。
四、教學基本流程:
五、教學過程:
根據(jù)新課標的要求我將本節(jié)課分為五個環(huán)節(jié):創(chuàng)設情境,形成概念。
(一)創(chuàng)設情境,形成概念。
本節(jié)課我是從課本中給出的“考古實例”和學生熟悉的“細胞分裂”實例這樣兩個材料引出對數(shù)函數(shù)的概念,讓學生熟悉它的知識背景,初步感受對數(shù)函數(shù)是刻畫現(xiàn)實世界的又一重要數(shù)學模型。這樣處理,對數(shù)函數(shù)顯得不抽象,學生容易接受,降低了新課教學的起點。我的引入材料是這樣的:1.請同學們認真閱讀材料,解決材料中提出的問題:材料1:考古實例(材料1給出后面的觀察提供必要的感性材料)材料2:細胞分裂實例。
過程,既化解難點,又為第一問引導學生有目的用生成細胞個數(shù)x表示出細胞分裂次數(shù)y,緊接著問學生:這是一個函數(shù)嗎?將知識遷移到函數(shù)的定義,即對于任意一個y是否都有唯一的x與之相對應,為了幫助學生理解,可以借助指數(shù)函數(shù)圖像加以解釋,從而得到x=log2y是一個函數(shù),但它又和我們平時所見過的函數(shù)形式不一樣,我們習慣上用x來表示自變量,y表示函數(shù),所以將其改寫成y=log2x,這樣的函數(shù)稱之為對數(shù)函數(shù),引出本節(jié)課題。
2.這兩個函數(shù)有什么共同特征?(引導學生觀察這兩個函數(shù)的特征)有了學習指數(shù)函數(shù)的經驗,再結合以上兩個實例,學生不難歸納總結出對數(shù)函數(shù)的一般定義。
3.給出對數(shù)函數(shù)的定義(提煉出對數(shù)函數(shù)的概念,明確對數(shù)函數(shù)的結構特征)想一想:字母a、x、y的含義及取值范圍。
1.你能類比指數(shù)函數(shù)的研究思路,說說對數(shù)函數(shù)的研究思路嗎?
引導學生回顧指數(shù)函數(shù)的研究思路,強調數(shù)形結合,強調函數(shù)圖象在研究性質中的作用。
關于如何得到對數(shù)函數(shù)圖像我的想法是這樣的:一方面描點法畫圖是學生需要掌握的一類重要的畫圖方法,而且讓學生去親身經歷畫出對數(shù)函數(shù)圖像的過程,這樣記憶會更深刻,所以我決定將課堂交給學生,讓他們自主探究,然后通過實物投影全班同學一起交流,對學生們的共同問題集中解決。2.在同一坐標系中作出下列對數(shù)函數(shù)的圖象:
(1)(2)(3)(4)。
我們估計學生可能遇到的困難是對數(shù)運算,所以我們坐標紙上附了列表(列表的用意:多描點,使圖像更準確;便于底數(shù)分部規(guī)律、對稱性等的發(fā)現(xiàn).)請完成x,y的對應值表,并用描點法畫出函數(shù)圖像.
函數(shù)建模教學設計篇六
1、教材的地位和作用: 函數(shù)是高中數(shù)學學習的重點和難點,函數(shù)的貫穿于整個高中數(shù)學之中。本節(jié)課是學生在已掌握了函數(shù)的一般性質和簡單的指數(shù)運算的基礎上,進一步研究指數(shù)函數(shù),以及指數(shù)函數(shù)的圖像與性質,同時也為今后研究對數(shù)函數(shù)以及等比數(shù)列的性質打下堅實的基礎。因此,本節(jié)課的內容十分重要,它對知識起到了承上啟下的作用。
2、教學的重點和難點:根據(jù)這一節(jié)課的內容特點以及學生的實際情況,我將本節(jié)課教學重點定為指數(shù)函數(shù)的圖像、性質及其運用,本節(jié)課的難點是指數(shù)函數(shù)圖像和性質的發(fā)現(xiàn)過程,及指數(shù)函數(shù)圖像與底的關系。
基于對教材的理解和分析,我制定了以下的教學目標
1、知識目標(直接性目標):理解指數(shù)函數(shù)的定義,掌握指數(shù)函數(shù)的圖像、性質及其簡單應用。
2、能力目標(發(fā)展性目標):通過教學培養(yǎng)學生觀察、分析、歸納等思維能力,體會數(shù)形結合和分類討論,增強學生識圖用圖的能力。
3、情感目標(可持續(xù)性目標): 通過學習,使學生學會認識事物的特殊性與一般性之間的關系,培養(yǎng)學生勇于提問,善于探索的思維品質。
1、教學策略:首先從實際問題出發(fā),激發(fā)學生的學習興趣。第二步,學生歸納指數(shù)的圖像和性質。第三步,典型例題分析,加深學生對指數(shù)函數(shù)的理解。
2、教學: 貫徹引導發(fā)現(xiàn)式教學原則,在教學中既注重知識的直觀素材和背景材料,又要激活相關知識和引導學生思考、探究、創(chuàng)設有趣的問題。
3、教法分析:根據(jù)教學內容和學生的狀況, 本節(jié)課我采用引導發(fā)現(xiàn)式的教學方法并充分利用多媒體輔助教學。
函數(shù)建模教學設計篇七
對數(shù)函數(shù)(第二課時)是2006人教版高一數(shù)學(上冊)第二章第八節(jié)第二課時的內容,本小節(jié)涉及對數(shù)函數(shù)相關知識,分三個課時,這里是第二課時復習鞏固對數(shù)函數(shù)圖像及性質,并用此解決三類對數(shù)比大小問題,是對已學內容(指數(shù)函數(shù)、指數(shù)比大小、對數(shù)函數(shù))的延續(xù)和發(fā)展,同時也體現(xiàn)了數(shù)學的實用性,為后續(xù)學習起到奠定知識基礎、滲透方法的作用,因此本節(jié)內容起到了一種承上啟下的作用.
根據(jù)教學大綱的要求以及本節(jié)課的地位與作用,結合高一學生的認知特點確定教學目標如下:
學習目標:
2、運用對數(shù)函數(shù)的性質比較兩個數(shù)的大小。
能力目標:
1、培養(yǎng)學生運用圖形解決問題的意識即數(shù)形結合能力。
2、學生運用已學知識,已有經驗解決新問題的能力。
3、探索出方法,有條理闡述自己觀點的能力。
德育目標:
培養(yǎng)學生勤于思考、獨立思考、合作交流等良好的個性品質。
教學中將在以下2個環(huán)節(jié)中突出教學重點:
1、利用學生預習后的心得交流,資源共享,互補不足。
2、通過適當?shù)木毩?,加強對解題方法的掌握及原理的理解。
教學中會在以下3個方面突破教學難點:
1、教師調整角色,讓學生成為學習的主人,教師在其中起引導作用即可。
2、小組合作探索新問題時,注重生生合作、師生互動,適時用語言鼓勵學生,增強學生參與討論的自信。
3、本節(jié)課采用多媒體輔助教學,節(jié)省時間,加快課程進度,增強了直觀形象性。
長處:高一學生經過幾年的數(shù)學學習,已具備一定的數(shù)學素養(yǎng),對于已學知識或用過的數(shù)學思想、方法有一定的應用能力及應用意識,對于本節(jié)課而言,從知識上說,對數(shù)函數(shù)的圖像和性質剛剛學過,本節(jié)課是知識的應用,從數(shù)學能力上說,指數(shù)比大小問題的解題思想和方法在這可借鑒,另外數(shù)形結合能力、小結概括能力、特殊到一般歸納能力已具備一點。
學生可能遇到的困難:本節(jié)課從教學內容上來看,第三類對數(shù)比大小是課本以外補充的內容,沒有預習心得,讓學生在課堂中快速通過合作探究來完成解題思路的構建,有一定的挑戰(zhàn)性,從學生能力上來看,探索出方法,有條理闡述自己觀點的能力還需加強鍛煉,知識之間的聯(lián)系認識上還顯不足。
新課程強調教師要調整自己的角色,改變傳統(tǒng)的教育方式,在教育方式上,以學生為中心,讓學生成為學習的主人,教師在其中起引導作用即可?;诖耍竟?jié)課遵循此原則重點采用問題探究和啟發(fā)引導式的教學方法。從預習交流心得出發(fā),到探索新問題,再到題后的回顧總結,一切以學生為中心,處處體現(xiàn)學生的主體地位,讓學生多說、多分析、多思考、多總結,引導學生運用自己的語言闡述觀點,加強理解,在生生合作,師生互動中解決問題,為提高學生分析問題、解決問題能力打下基礎。本節(jié)課采用多媒體輔助教學,節(jié)省時間,加快課程進度,增強了直觀形象性。
1、課件展示本節(jié)課學習目標。
設計意圖:明確任務,激發(fā)興趣。
2、溫故知新(已填表形式復習對數(shù)函數(shù)的圖像和性質)。
設計意圖:復習已學知識和方法,為學生形成知識間的聯(lián)系和框架建立平臺,并為下一步的應用打下基礎。
3、預習后心得交流。
1)同底對數(shù)比大小。
2)既不同底數(shù),也不同真數(shù)的對數(shù)比大小。
設計意圖:通過學生的預習,自己總結方法及此方法適用的題型,有條理的闡述自己的學習心得,老師只需起引導作用,引導學生從題目表面上升到題目的實質,從而找到解決問題的有效方法。
4、合作探究——同真異底型的對數(shù)比大小。
以例3為例,學生分組合作探究解題方法,預計兩種:一是利用換底公式將此類型轉化為同底異真型,利用之前總結的方法解決此問題。二是利用具體對數(shù)的大小關系探究出不同底對數(shù)函數(shù)在同一直角坐標系中的圖像,以此來解決此類型比大小問題。
設計意圖:這一部分是本節(jié)課的難點,探究中充分發(fā)揮學生的主動性,培養(yǎng)主動學習的意識,同時也鍛煉學生各方面能力的很好機會,為以后的探究學習積累經驗和方法,充分體現(xiàn)“授之以魚,不如授之以漁”的教學理念。另外數(shù)學問題的解決僅僅只是一半,更重要的是解題之后的回顧,即反思,如果沒有了反思,他們就錯過了解題的一次重要而有效益的方面。因此,本題解決后,讓學生反思明白,要想利用性質解決問題,關鍵要做到“腦中有圖”,以“形”促“數(shù)”。
5、小結。
6、思考題。
以2009高考題為例,讓學生學以致用,增強數(shù)學學習興趣。
7、作業(yè)。
包括兩個方面:
1、書寫作業(yè)。
2、下節(jié)課前的預習作業(yè)。
通過本節(jié)課的教學實例來看,這種通過課本內容預習,而后課堂交流學習成果的方法效果不錯,既能很好的完成教學任務,又能充分發(fā)揮學生學習的主動性。在自主探究時,學生分組討論過程中,我參與小組討論,對有能力的小組,在探究出一種方法后,可鼓勵完成更多的方法探究,對于能力較弱的小組,可給予適當?shù)奶崾?,使學生都能動起來,課堂都有所收獲,增強學生自信。另外,對于學生的總結回答,可能會比較慢,我一定會耐心聽,及時鼓勵,給予學生微笑和語言的鼓勵,效果很好。在小結環(huán)節(jié)中,對于高一學生自己小結的方法,是我一直的教學嘗試,由于只訓練了半學期,學生只能達到小結知識的程度,在以后的訓練中還會加入數(shù)學思想、數(shù)學方法的小結內容,使這些數(shù)學名詞讓學生不再覺得抽象,而是變成具體的,可操作的、具體的解題工具。
函數(shù)建模教學設計篇八
指數(shù)函數(shù)的教學共分兩個課時完成。第一課時為指數(shù)函數(shù)的定義,圖像及性質;第二課時為指數(shù)函數(shù)的應用。指數(shù)函數(shù)第一課時是在學習指數(shù)概念的基礎上學習指數(shù)函數(shù)的概念和性質,通過學習指數(shù)函數(shù)的定義,圖像及性質,可以進一步深化學生對函數(shù)概念的理解與認識,使學生得到較系統(tǒng)的函數(shù)知識和研究函數(shù)的方法,并且為學習對數(shù)函數(shù)作好準備。
1.知識目標:掌握指數(shù)函數(shù)的概念,圖像和性質
2.能力目標:通過數(shù)形結合,利用圖像來認識,掌握函數(shù)的性質,增強學生分析問題,解決問題的能力。
3.德育目標:對學生進行辯證唯物主義思想的教育,使學生學會認識事物的特殊性與一般性之間的關系,培養(yǎng)學生善于探索的思維品質。
(三
1、重點:指數(shù)函數(shù)的定義、性質和圖象
2、難點:指數(shù)函數(shù)的定義理解,指數(shù)函數(shù)的圖象特征及指數(shù)函數(shù)的性質。
3、關鍵:能正確描繪指數(shù)函數(shù)的圖象
(三)
在講解指數(shù)函數(shù)的定義前,復習有關指數(shù)知識及簡單運算,然后由實例引入指數(shù)函數(shù)的概念,因為手工繪圖復雜且不夠精確,并且是本節(jié)課的教學關鍵,教學中,我借助電腦手段,通過描點作圖,觀察圖像,引導學生說出圖像特征及變化規(guī)律,并從而得出指數(shù)函數(shù)的性質,提高學生的形數(shù)結合的能力。
一.
1,學情分析:大部分學生數(shù)學基礎較差,理解能力,運算能力,思維能力等方面參差不齊;同時學生學好數(shù)學的自信心不強,學習積極性不高。
2, 學法指導:針對這種情況,在教學中,我注意面向全體,發(fā)揮學生的主體性,引導學生積極地觀察問題,分析問題,激發(fā)學生的求知欲和學習積極性,指導學生積極思維、主動獲取知識,養(yǎng)成良好的學習方法。并逐步學會獨立提出問題、解決問題。總之,調動學生的非智力因素來促進智力因素的發(fā)展,引導學生積極開動腦筋,思考問題和解決問題,從而發(fā)揚鉆研精神、勇于探索創(chuàng)新。
函數(shù)建模教學設計篇九
2.結合具體的冪函數(shù)的圖象,了解它們的變化情況及性質
3.在探討冪函數(shù)性質的過程中,體會由特殊到一般及數(shù)形結合的數(shù)學思想方法
冪函數(shù)的圖象和性質
畫冪函數(shù)的圖象并由圖象概括其性質
教學內容問題、任務師生活動設計意圖
1.某種蔬菜每千克1元,若購買千克,需要支付元是函數(shù)嗎?
2.正方形的邊長為,那么它的面積是的函數(shù)嗎?
3.立方體的邊長為,那么它的體積是的函數(shù)嗎?
4.正方形的面積為,那么它的邊長是的函數(shù)嗎?
5.某人內騎車 內行進了1,那么他騎車的平均速度是函數(shù)嗎?
6.這五個函數(shù)有什么共同特征?
7.給出冪函數(shù)的定義
8.下列函數(shù)是冪函數(shù)嗎?
9.冪函數(shù)的定義和指數(shù)函數(shù)的定義有什么區(qū)別?
10. 已知冪函數(shù)的圖象過點(4, ),求這個函數(shù)的解析式?
11. 觀察冪函數(shù)的圖象
12.作函數(shù)的圖象。
13. 作函數(shù)的圖象。
14.作函數(shù)的圖象。
15.根據(jù)所作函數(shù)的圖象,分別討論這些函數(shù)的性質。
16.你能證明冪函數(shù)在[0,+ 上是增函數(shù)嗎?
17.從整體上把握冪函數(shù)的圖象。
作業(yè)p79習題1、2、3
師:投影展示問題,引導學生根據(jù)函數(shù)的定義進行分析。
生:根據(jù)函數(shù)定義思考并回答。
師:板書這5個函數(shù)表達式。
師生:從形式上分析:是指數(shù)冪的形式,其中底數(shù)是自變量,指數(shù)是常數(shù)。
師:板書定義。
生:根據(jù)冪函數(shù)的形式進行辨別。
生:對比指數(shù)函數(shù)的定義,指出區(qū)別。
師生:用待定系數(shù)法共同完成。
師:幾何畫板展示冪函數(shù)圖象,隨著指數(shù) 的改變,冪函數(shù)圖象的形態(tài)和位置都發(fā)生改變。
生:觀察指數(shù)的變化和圖象的變化
師:冪函數(shù)的圖象因指數(shù) 不同而形態(tài)各異,遠比指數(shù)函數(shù)的.圖象復雜。但我們可以通過討論其中有代表性的幾個函數(shù)來了解冪函數(shù)的圖象特征。生:在同一坐標系中作出三個函數(shù)的圖象。
師:巡視指導。
師:用幾何畫板作出三個函數(shù)的圖象。
生:對照檢查,注意所作圖象的特征。
師:提示橫坐標取值: 。巡視學生作圖情況。
生:列表,并描點作圖。
師:投影函數(shù)圖象。
師:指導作圖:取橫坐標0。
生:作圖。
師:投影圖象。
師:引導學生根據(jù)函數(shù)的圖象,指出函數(shù)的性質。
生:指出函數(shù)性質并完成課本第78頁表格。
生:嘗試證明。
師生:共同完成證明。
師:幾何畫板動態(tài)展示冪函數(shù)在第一象限的圖象,引導學生觀察圖象的變化。師生共同歸納圖象的主要特征:在 上:減函數(shù) :猛增:增函數(shù) :緩增通過實際問題,引入冪函數(shù)。由特殊到一般的提練、概括。形式定義,注意辨別。對比,加深印象,避免與指數(shù)函數(shù)混淆。進一步加強理解冪函數(shù)定義。對冪函數(shù)的圖象作整體感知,了解冪函數(shù)的圖象和性質與指數(shù) 關系密切。三個函數(shù)都是初中學過的,描三個點作出簡圖,把握圖象的主要特征。數(shù)形結合。
函數(shù)建模教學設計篇十
教學目標:
2、能較熟練地運用指數(shù)函數(shù)的性質解決指數(shù)函數(shù)的平移問題。
教學重點:
教學難點:
教學過程:
一、情境創(chuàng)設。
二、數(shù)學應用與建構。
例1、解不等式:
小結:解關于指數(shù)的不等式與判斷幾個指數(shù)值的大小一樣,是指數(shù)性質的運用,關鍵是底數(shù)所在的范圍。
例2、說明下列函數(shù)的圖象與指數(shù)函數(shù)y=2x的圖象的關系,并畫出它們的`示意圖。
小結:指數(shù)函數(shù)的平移規(guī)律:y=f(x)左右平移,y=f(x+k)(當k0時,向左平移,反之向右平移),上下平移y=f(x)+h(當h0時,向上平移,反之向下平移)。
練習:
(1)將函數(shù)f(x)=3x的圖象向右平移3個單位,再向下平移2個單位,可以得到函數(shù)x的圖象。
(2)將函數(shù)f(x)=3x的圖象向右平移2個單位,再向上平移3個單位,可以得到函數(shù)y的圖象。
(3)將函數(shù)圖象先向左平移2個單位,再向下平移1個單位所得函數(shù)的解析式是。
(4)對任意的a0且a1,函數(shù)y=a2x1的圖象恒過的定點的坐標是(),函數(shù)y=a2x—1的圖象恒過的定點的坐標是()。
小結:指數(shù)函數(shù)的定點往往是解決問題的突破口!定點與單調性相結合,就可以構造出函數(shù)的簡圖,從而許多問題就可以找到解決的突破口。
(5)如何利用函數(shù)f(x)=2x的圖象,作出函數(shù)y=2x和y=2|x2|的圖象?
(6)如何利用函數(shù)f(x)=2x的圖象,作出函數(shù)y=|2x—1|的圖象?
小結:函數(shù)圖象的對稱變換規(guī)律。
例3、已知函數(shù)y=f(x)是定義在r上的奇函數(shù),且x0時,f(x)=1—2x,試畫出此函數(shù)的圖象。
例4、求函數(shù)的最小值以及取得最小值時的x值。
小結:復合函數(shù)常常需要換元來求解其最值。
練習:
(1)函數(shù)y=ax在[0,1]上的最大值與最小值的和為3,則a等于();。
(2)函數(shù)y=2x的值域為();。
(4)當x0時,函數(shù)f(x)=(a2—1)x的值總大于1,求實數(shù)a的取值范圍。
三、小結。
四、作業(yè):
課本p55—6、7。
五、課后探究。
(1)函數(shù)f(x)的定義域為(0,1),則函數(shù)f(x)的定義域為?
(2)對于任意的x1,x2r,若函數(shù)f(x)=2x,試比較函數(shù)的大小。
函數(shù)建模教學設計篇十一
指數(shù)函數(shù)是學生在學習了函數(shù)基本概念和性質以后接觸到得第一個具體函數(shù),所以在這部分的教學安排上,我更注意學生思維習慣的養(yǎng)成,特作如下思考:
1、設計應從哪些方面,哪些角度去探索一個具體函數(shù),我在這部分設置了三個環(huán)節(jié)。
(1)由具體的折紙的例子引出指數(shù)函數(shù)。
設計意圖:貼近學生的生活實際,便于動手操作與觀察。讓學生充分感受我們生活中大量存在指數(shù)函數(shù)模型,從而便于學生接受指數(shù)函數(shù)的形式,突破符號語言的障礙。
(2)通過研究幾個特殊的底數(shù)的指數(shù)函數(shù)得到一般指數(shù)函數(shù)的規(guī)律。符合學生由特殊到一般的,由具體到抽象的學習認知規(guī)律。
(3)通過多媒體手段,用計算機作出底數(shù)a變換的圖像,讓學生更直觀、深刻的感受指數(shù)函數(shù)的圖像及性質。
通過引入定義剖析辨析運用,這個由特殊到一般的過程揭示了概念的內涵和外延;而后在教師的點撥下,學生作圖觀察探究交流概括運用,使學生在動手操作、動眼觀察、動腦思考、合作探究中達到對知識的發(fā)現(xiàn)和接受,同時滲透了分類討論、數(shù)形結合的思想,提高了學生學習數(shù)學概念、性質和方法的能力,養(yǎng)成了良好的學習習慣。
2、課堂練習前后呼應,各有側重。
通過問題呈現(xiàn),變式教學,不但突出了重點內容,把知識加固、挖深。使教學目標得以實現(xiàn)。而且注重知識的延續(xù)性,為以后的學習奠定了基礎。
3、教學過程設計為六個環(huán)節(jié):
1、情景設置,形成概念2、發(fā)現(xiàn)問題,深化概念。
3、深入探究圖像,加深理解性質。
4、強化訓練,落實掌握。
5、小結歸納,拓展深化。
6、布置作業(yè),延伸課堂。各個環(huán)節(jié)層層深入,環(huán)環(huán)相扣,充分體現(xiàn)了在教師的'指導下,師生、生生之間的交流互動,使學生親身經歷知識的形成和發(fā)展過程。
4、通過學案教學為抓手,讓學生先學。
老師在課前充分了解了學情,以學定教,進行二次備課,抓住學生的學習困難,站在學生學的角度設計教學。
5、學生真思考,學生的真探究,才是保障教學目標得以實現(xiàn)的前提。
在教學中,教師通過教學設計要以給學生充分的思維空間、推理運算空間和交流學習空間,努力創(chuàng)設一個“活動化的課堂”才可能真正喚起學生的生命主體意識,引領他們走上自主構建知識意義的發(fā)展路徑。
函數(shù)建模教學設計篇十二
《同角三角函數(shù)關系式》是人教版高中新教材必修4第一章第二節(jié)的第二課。本節(jié)內容是同角三角函數(shù)關系式的運用,三種題型“知值求值”“弦化切”“函數(shù)思想的應用”。
二、學生情況分析。
本課時研究的是同角三角函數(shù)關系式的運用、逆用及變形,因此在教學過程中要發(fā)展學生的已有認知,發(fā)揮知識遷移。
知識目標:
1、掌握同角三角函數(shù)關系式的運用、逆用及變形;
2、掌握同角三角函數(shù)關系式的三種題型。
能力目標:
滲透分類討論思想、方程思想。
情感、態(tài)度、價值觀目標:
發(fā)展學生研究問題、解決問題的能力。
四、教學重難點。
重點:
同角三角函數(shù)關系式的運用、逆用及變形;
難點:
2、靈活運用公式做運算。
五、教學方法與策略。
教學中注意用新課程理念處理教材,采用學生自主探索、動手實踐、合作交流、師生互動,教師發(fā)揮組織者、引導者、合作者的作用,引導學生主體參與、揭示本質、經歷過程。根據(jù)本節(jié)課內容、高一學生認知特點,本節(jié)課采用“啟發(fā)探索、講練結合”的方法組織教學。
函數(shù)建模教學設計篇十三
一次函數(shù)圖像,是北師大八年級上冊的內容。教學這一節(jié)時,我沒有按照課本的講解。我著這樣安排的,先講正比例函數(shù)的圖像和性質,用一課時,今天我就是講這一節(jié)。
先介紹函數(shù)的圖像、畫法。再畫正比例函數(shù)的圖像,引出正比例函數(shù)是經過原點的直線。接著介紹怎樣作正比例函數(shù)的圖像。用這種方法,作幾個正比例函數(shù)的圖像,總結規(guī)律。接著練習。
練習之后我備課時又有一個性質要介紹,由于時間的關系,沒有講解,就下課了!
反思:1、課堂中前段時間留給學生的時間長,沒完成課前準備的教學任務。
2、本節(jié)課講到第三個性質。
3、練習題要精而且少,難易適中。
4、注意課前準備,上課注意語言。函數(shù)教學反思反比例函數(shù)教學反思。
將本文的word文檔下載到電腦,方便收藏和打印。
函數(shù)建模教學設計篇十四
一、說課內容:
九年級數(shù)學下冊第27章第一節(jié)的二次函數(shù)的概念及相關習題(華東師范大學出版社)。
二、教材分析:
1、教材的地位和作用。
這節(jié)課是在學生已經學習了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎上,來學習二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個具體的函數(shù),也是最重要的,在歷年來的中考題中占有較大比例。同時,二次函數(shù)和以前學過的一元二次方程、一元二次不等式有著密切的聯(lián)系。進一步學習二次函數(shù)將為它們的解法提供新的方法和途徑,并使學生更為深刻的理解數(shù)形結合的重要思想。而本節(jié)課的二次函數(shù)的概念是學習二次函數(shù)的基礎,是為后來學習二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個教材中具有承上啟下的重要作用。
2、教學目標和要求:
(1)知識與技能:使學生理解二次函數(shù)的概念,掌握根據(jù)實際問題列出二次函數(shù)關系式的方法,并了解如何根據(jù)實際問題確定自變量的取值范圍。
(2)過程與方法:復習舊知,通過實際問題的引入,經歷二次函數(shù)概念的探索過程,提高學生解決問題的能力.
(3)情感、態(tài)度與價值觀:通過觀察、操作、交流歸納等數(shù)學活動加深對二次函數(shù)概念的理解,發(fā)展學生的數(shù)學思維,增強學好數(shù)學的愿望與信心.
3、教學重點:對二次函數(shù)概念的理解。
4、教學難點:抽象出實際問題中的二次函數(shù)關系。
1、從創(chuàng)設情境入手,通過知識再現(xiàn),孕伏教學過程。
2、從學生活動出發(fā),通過以舊引新,順勢教學過程。
3、利用探索、研究手段,通過思維深入,領悟教學過程。
四、教學過程:
(一)復習提問。
1.什么叫函數(shù)?我們之前學過了那些函數(shù)?
(一次函數(shù),正比例函數(shù),反比例函數(shù))。
2.它們的形式是怎樣的?
(y=kx+b,ky=kx,ky=,k0)。
【設計意圖】復習這些問題是為了幫助學生弄清自變量、函數(shù)、常量等概念,加深對函數(shù)定義的理解.強調k0的條件,以備與二次函數(shù)中的a進行比較.
(二)引入新課。
函數(shù)是研究兩個變量在某變化過程中的相互關系,我們已學過正比例函數(shù),反比例函數(shù)和一次函數(shù)。看下面三個例子中兩個變量之間存在怎樣的關系。
例1、(1)圓的半徑是r(cm)時,面積與半徑之間的關系是什么?
解:s=0)。
解:y=x(20/2-x)=x(10-x)=-x2+10x(0。
解:y=100(1+x)2。
=100(x2+2x+1)。
=100x2+200x+100(0。
教師提問:以上三個例子所列出的函數(shù)與一次函數(shù)有何相同點與不同點?
(三)講解新課。
以上函數(shù)不同于我們所學過的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。
二次函數(shù)的定義:形如y=ax2+bx+c(a0,a,b,c為常數(shù))的函數(shù)叫做二次函數(shù)。
1、強調形如,即由形來定義函數(shù)名稱。二次函數(shù)即y是關于x的二次多項式(關于的x代數(shù)式一定要是整式)。
2、在y=ax2+bx+c中自變量是x,它的取值范圍是一切實數(shù)。但在實際問題中,自變量的取值范圍是使實際問題有意義的值。(如例1中要求r0)。
3、為什么二次函數(shù)定義中要求a?
(若a=0,ax2+bx+c就不是關于x的二次多項式了)。
4、在例3中,二次函數(shù)y=100x2+200x+100中,a=100,b=200,c=100.
5、b和c是否可以為零?
由例1可知,b和c均可為零.
若b=0,則y=ax2+c;。
若c=0,則y=ax2+bx;。
若b=c=0,則y=ax2.
注明:以上三種形式都是二次函數(shù)的特殊形式,而y=ax2+bx+c是二次函數(shù)的一般形式.
判斷:下列函數(shù)中哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a、b、c.
(1)y=3(x-1)2+1(2)s=3-2t2。
(3)y=(x+3)2-x2(4)s=10r2。
(5)y=22+2x(6)y=x4+2x2+1(可指出y是關于x2的二次函數(shù))。
(四)鞏固練習。
1.已知一個直角三角形的兩條直角邊長的和是10cm。
(1)當它的一條直角邊的長為4.5cm時,求這個直角三角形的面積;。
(2)設這個直角三角形的面積為scm2,其中一條直角邊為xcm,求s關。
于x的函數(shù)關系式。
【設計意圖】此題由具體數(shù)據(jù)逐步過渡到用字母表示關系式,讓學生經歷由具體到抽象的過程,從而降低學生學習的難度。
2.已知正方體的棱長為xcm,它的表面積為scm2,體積為vcm3。
(1)分別寫出s與x,v與x之間的函數(shù)關系式子;。
(2)這兩個函數(shù)中,那個是x的二次函數(shù)?
【設計意圖】簡單的實際問題,學生會很容易列出函數(shù)關系式,也很容易分辨出哪個是二次函數(shù)。通過簡單題目的練習,讓學生體驗到成功的歡愉,激發(fā)他們學習數(shù)學的興趣,建立學好數(shù)學的信心。
五、評價分析。
本節(jié)的一個知識點就是二次函數(shù)的概念,教學中教師不能直接給出,而要讓學生自己在分析、揭示實際問題的數(shù)量關系并把實際問題轉化為數(shù)學模型的過程中,使學生感受函數(shù)是刻畫現(xiàn)實世界數(shù)量關系的有效模型,增加對二次函數(shù)的感性認識,側重點通過兩個實際問題的探究引導學生自己歸納出這種新的函數(shù)二次函數(shù),進一步感受數(shù)學在生活中的廣泛應用。對于最大面積問題,可給學生留為課下探究問題,發(fā)展學生的發(fā)散思維,方法不拘一格,只要合理均應鼓勵。
函數(shù)建模教學設計篇十五
3、能夠根據(jù)二次函數(shù)的不同表示方式,從不同的側面對函數(shù)性質進行研究
重點:用三種方式表示變量之間二次函數(shù)關系
難點:根據(jù)二次函數(shù)的不同表示方式,從不同的側面對函數(shù)性質進行研究
一、從學生原有的認知結構提出問題
這節(jié)課,我們來學習二次函數(shù)的三種表達方式。
二、師生共同研究形成概念
1、用函數(shù)表達式表示
做一做書本p56矩形的周長與邊長、面積的關系
鼓勵學生間的互相交流,一定要讓學生理解周長與邊長、面積的關系。
比較全面、完整、簡單地表示出變量之間的關系
2、用表格表示
做一做書本p56填表
由于運算量比較大,學生的運算能力又一般,因此,建議把這個表格的一部分數(shù)據(jù)先給出來,讓學生完成未完成的部分空格。
表格表示可以清楚、直接地表示出變量之間的數(shù)值對應關系
3、用圖象表示
議一議書本p56議一議
關于自變量的問題,學生往往比較難理解,講解時,可適當多花時間講解。
可以直觀地表示出函數(shù)的變化過程和變化趨勢
做一做書本p57
4、三種方法對比
議一議書本p58議一議
函數(shù)的表格表示可以清楚、直接地表示出變量之間的數(shù)值對應關系;函數(shù)的圖象表示可以直觀地表示出函數(shù)的變化過程和變化趨勢;函數(shù)的表達式可以比較全面、完整、簡單地表示出變量之間的關系。這三種表示方式積壓自有各自的優(yōu)點,它們服務于不同的需要。
在對三種表示方式進行比較時,學生的看法可能多種多樣。只要他們的想法有一定的道理,教師就應予以肯定和鼓勵。
函數(shù)建模教學設計篇十六
正比例函數(shù)是本章的重點內容,是學生在初中階段第一次接觸的函數(shù),這部分內容的學習是在學生已經學習了變量和函數(shù)的概念及圖像的基礎之上進行的。它是對前面所學知識的應用,又為后面學習做好鋪墊。因此,本節(jié)課的知識起到了承上啟下的作用。
學情分析。
學習本節(jié)課之前,學生已經學習了變量和函數(shù)等知識。在描點法的學習中初步感受了通過描點法畫出圖象,并感知其增感性的過程,為本節(jié)課新知識的學習做好準備,所以本節(jié)課的學習問題不大。
教學目標。
知識技能:1、初步理解正比例函數(shù)的概念及其圖象的特征。2、能畫出正比例函數(shù)的圖象。3、能夠判斷兩個變量是否構成正比例函數(shù)關系。
數(shù)學思考:1、通過“燕鷗飛行路程問題”的研究,體會建立函數(shù)模型的.思想。2、通過正比例函數(shù)圖像的學習和探究,感知數(shù)行結合思想。
解決問題:1、能夠要求運用“列表法”和“兩點法”作正比率函數(shù)的圖象。2、會利用正比例函數(shù)解決簡單的數(shù)學問題。
情感態(tài)度:1、結合描點作圖,培養(yǎng)學生認真、細心、嚴謹?shù)膶W習態(tài)度和學習習慣。2、通過正比率函數(shù)概念的引入,使學生進一步認識數(shù)學是由于人們需要而產生的,與現(xiàn)實世界密切相關。同時滲透熱愛自然和生活的教育。
教學重點和難點。
重點:正比率函數(shù)的概念。
難點:正比率函數(shù)的性質。
函數(shù)建模教學設計篇十七
1.理解指數(shù)函數(shù)的定義,初步掌握指數(shù)函數(shù)的圖象,性質及其簡單應用.
2.通過指數(shù)函數(shù)的圖象和性質的學習,培養(yǎng)學生觀察,分析,歸納的能力,進一步體會數(shù)形結合的思想方法.
3.通過對指數(shù)函數(shù)的研究,使學生能把握函數(shù)研究的基本方法,激發(fā)學生的學習興趣.
教學重點和難點。
難點是認識底數(shù)對函數(shù)值影響的認識.
教學用具。
投影儀。
教學方法。
啟發(fā)討論研究式。
教學過程。
一.引入新課。
我們前面學習了指數(shù)運算,在此基礎上,今天我們要來研究一類新的常見函數(shù)-------指數(shù)函數(shù).
這類函數(shù)之所以重點介紹的原因就是它是實際生活中的一種需要.比如我們看下面的'問題:。
由學生回答:與之間的關系式,可以表示為.
問題2:有一根1米長的繩子,第一次剪去繩長一半,第二次再剪去剩余繩子的一半,……剪了次后繩子剩余的長度為米,試寫出與之間的函數(shù)關系.
由學生回答:.
在以上兩個實例中我們可以看到這兩個函數(shù)與我們前面研究的函數(shù)有所區(qū)別,從形式上冪的形式,且自變量均在指數(shù)的位置上,那么就把形如這樣的函數(shù)稱為指數(shù)函數(shù).
1.定義:形如的函數(shù)稱為指數(shù)函數(shù).(板書)。
教師在給出定義之后再對定義作幾點說明.
2.幾點說明(板書)。
(1)關于對的規(guī)定:。
教師首先提出問題:為什么要規(guī)定底數(shù)大于0且不等于1呢?(若學生感到有困難,可將問題分解為若會有什么問題?如,此時,等在實數(shù)范圍內相應的函數(shù)值不存在.
若對于都無意義,若則無論取何值,它總是1,對它沒有研究的必要.為了避免上述各種情況的發(fā)生,所以規(guī)定且.
教師引導學生回顧指數(shù)范圍,發(fā)現(xiàn)指數(shù)可以取有理數(shù).此時教師可指出,其實當指數(shù)為無理數(shù)時,也是一個確定的實數(shù),對于無理指數(shù)冪,學過的有理指數(shù)冪的性質和運算法則它都適用,所以將指數(shù)范圍擴充為實數(shù)范圍,所以指數(shù)函數(shù)的定義域為.擴充的另一個原因是因為使她它更具代表更有應用價值.
剛才分別認識了指數(shù)函數(shù)中底數(shù),指數(shù)的要求,下面我們從整體的角度來認識一下,根據(jù)定義我們知道什么樣的函數(shù)是指數(shù)函數(shù),請看下面函數(shù)是否是指數(shù)函數(shù).
(1),(2),(3)。
(4),(5).
學生回答并說明理由,教師根據(jù)情況作點評,指出只有(1)和(3)是指數(shù)函數(shù),其中(3)可以寫成,也是指數(shù)圖象.
最后提醒學生指數(shù)函數(shù)的定義是形式定義,就必須在形式上一摸一樣才行,然后把問題引向深入,有了定義域和初步研究的函數(shù)的性質,此時研究的關鍵在于畫出它的圖象,再細致歸納性質.
3.歸納性質。
作圖的用什么方法.用列表描點發(fā)現(xiàn),教師準備明確性質,再由學生回答.
函數(shù)。
1.定義域:。
2.值域:。
3.奇偶性:既不是奇函數(shù)也不是偶函數(shù)。
4.截距:在軸上沒有,在軸上為1.
對于性質1和2可以兩條合在一起說,并追問起什么作用.(確定圖象存在的大致位置)對第3條還應會證明.對于單調性,我建議找一些特殊點.,先看一看,再下定論.對最后一條也是指導函數(shù)圖象畫圖的依據(jù).(圖象位于軸上方,且與軸不相交.)。
在此基礎上,教師可指導學生列表,描點了.取點時還要提醒學生由于不具備對稱性,故的值應有正有負,且由于單調性不清,所取點的個數(shù)不能太少.
此處教師可利用計算機列表描點,給出十組數(shù)據(jù),而學生自己列表描點,至少六組數(shù)據(jù).連點成線時,一定提醒學生圖象的變化趨勢(當越小,圖象越靠近軸,越大,圖象上升的越快),并連出光滑曲線.
二.圖象與性質(板書)。
1.圖象的畫法:性質指導下的列表描點法.
2.草圖:。
當畫完第一個圖象之后,可問學生是否需要再畫第二個?它是否具有代表性?(教師可提示底數(shù)的條件是且,取值可分為兩段)讓學生明白需再畫第二個,不妨取為例.
此時畫它的圖象的方法應讓學生來選擇,應讓學生意識到列表描點不是唯一的方法,而圖象變換的方法更為簡單.即=與圖象之間關于軸對稱,而此時的圖象已經有了,具備了變換的條件.讓學生自己做對稱,教師借助計算機畫圖,在同一坐標系下得到的圖象.
最后問學生是否需要再畫.(可能有兩種可能性,若學生認為無需再畫,則追問其原因并要求其說出性質,若認為還需畫,則教師可利用計算機再畫出如的圖象一起比較,再找共性)。
由于圖象是形的特征,所以先從幾何角度看它們有什么特征.教師可列一個表,如下:。
以上內容學生說不齊的,教師可適當提出觀察角度讓學生去描述,然后再讓學生將幾何的特征,翻譯為函數(shù)的性質,即從代數(shù)角度的描述,將表中另一部分填滿.
填好后,讓學生仿照此例再列一個的表,將相應的內容填好.為進一步整理性質,教師可提出從另一個角度來分類,整理函數(shù)的性質.
3.性質.
(1)無論為何值,指數(shù)函數(shù)都有定義域為,值域為,都過點.
(2)時,在定義域內為增函數(shù),時,為減函數(shù).
(3)時,,時,.
總結之后,特別提醒學生記住函數(shù)的圖象,有了圖,從圖中就可以能讀出性質.
三.簡單應用(板書)。
1.利用指數(shù)函數(shù)單調性比大小.(板書)。
一類函數(shù)研究完它的概念,圖象和性質后,最重要的是利用它解決一些簡單的問題.首先我們來看下面的問題.
例1.比較下列各組數(shù)的大小。
(1)與;(2)與;。
(3)與1.(板書)。
首先讓學生觀察兩個數(shù)的特點,有什么相同?由學生指出它們底數(shù)相同,指數(shù)不同.再追問根據(jù)這個特點,用什么方法來比較它們的大小呢?讓學生聯(lián)想指數(shù)函數(shù),提出構造函數(shù)的方法,即把這兩個數(shù)看作某個函數(shù)的函數(shù)值,利用它的單調性比較大小.然后以第(1)題為例,給出解答過程.
解:在上是增函數(shù),且。
(板書)。
教師最后再強調過程必須寫清三句話:。
(1)構造函數(shù)并指明函數(shù)的單調區(qū)間及相應的單調性.
(2)自變量的大小比較.
(3)函數(shù)值的大小比較.
后兩個題的過程略.要求學生仿照第(1)題敘述過程.
例2.比較下列各組數(shù)的大小。
(1)與;(2)與;。
(3)與.(板書)。
先讓學生觀察例2中各組數(shù)與例1中的區(qū)別,再思考解決的方法.引導學生發(fā)現(xiàn)對(1)來說可以寫成,這樣就可以轉化成同底的問題,再用例1的方法解決,對(2)來說可以寫成,也可轉化成同底的,而(3)前面的方法就不適用了,考慮新的轉化方法,由學生思考解決.(教師可提示學生指數(shù)函數(shù)的函數(shù)值與1有關,可以用1來起橋梁作用)。
最后由學生說出1,1,.
解決后由教師小結比較大小的方法。
(1)構造函數(shù)的方法:數(shù)的特征是同底不同指(包括可轉化為同底的)。
(2)搭橋比較法:用特殊的數(shù)1或0.
三.鞏固練習。
練習:比較下列各組數(shù)的大小(板書)。
(1)與(2)與;。
(3)與;(4)與.解答過程略。
四.小結。
3.簡單應用。
五.板書設計。
探究活動。
答案:有兩個交點.
答案:15天的合同可以簽,而30天的合同不能簽.
函數(shù)建模教學設計篇十八
教學過程中教師應通過情境創(chuàng)設激發(fā)學生的學習興趣,對函數(shù)與圖像的對應關系應讓學生動手去實踐,去發(fā)現(xiàn),對一次函數(shù)的圖象是一條直線應讓學生自己得出。在得出結論之后,讓學生能運用“兩點確定一條直線”,很快做出一次函數(shù)的圖像。在鞏固練習活動中,鼓勵學生積極思考,提高學生解決實際問題的能力。
根據(jù)學生狀況,教學設計也應做出相應的調整.如第一環(huán)節(jié):探究新知,固然可以激發(fā)學生興趣,但也可能容易讓學生關注代數(shù)表達式的尋求,甚至部分學生形成一定的認知障礙,因此該環(huán)節(jié)也可以直接開門見山,直切主題,如提出問題:一次函數(shù)的代數(shù)形式是y=kx+b,那么,一個一次函數(shù)對應的圖形具有什么特征呢?今天我們就研究一次函數(shù)對應的圖形特征—本節(jié)課是學生首次接觸利用數(shù)形結合的思想研究一次函數(shù)圖象和性質,對他們而言觀察對象、探索思路、研究方法都是陌生的,因而在教學過程中我通過問題情境的創(chuàng)設,激發(fā)學生的學習興趣,引導學生觀察一次函數(shù)的圖像,探討一次函數(shù)的簡單性質,逐步加深學生對一次函數(shù)及性質的認識。本節(jié)課的重點是要學生了解正比例函數(shù)的確定需要一個條件,一次函數(shù)的確定需要兩個條件,能由條件求出一些簡單的一次函數(shù)表達式,并能解決有關現(xiàn)實問題。本節(jié)課設計注重發(fā)展了學生的數(shù)形結合的思想方法及綜合分析解決問題的能力及應用意識的培養(yǎng),為后繼學習打下基礎。
由于這節(jié)課的知識容量較大,而且內容較難,我們所用的學案就能很好地幫助學生消化理解該知識,。在教學過程中,讓學生親自動手、動腦畫圖的方式,通過教師的引導,學生的交流、歸納等環(huán)節(jié)較成功地完成了教學目標,收到了較好的效果。但還存在著不盡人意的地方,由于課的內容容量較大,對于有些知識點,如“隨著x值的增大,y的值分別如何化?”,本應給學生更多的時間練習、討論,以幫助理解消化該知識,但由于時間緊,學生的這一活動開展的不充分。課堂氣氛不夠活躍,個別學生的主動性、積極性沒有充分調動起來。這是今后教學中應該注意的問題。

