對于每個人來說,總結都是一種重要的思維和反思方式。寫一份完美的總結需要首先梳理好自己的思路。想要寫一篇卓越的總結?這里有一些有用的寫作建議。
小學數(shù)學倍數(shù)與因數(shù)教學設計篇一
理解因數(shù)和倍數(shù)的意義以及兩者之間相互依存的關系,掌握找一個數(shù)的因數(shù)和倍數(shù)的方法,發(fā)現(xiàn)一個數(shù)的倍數(shù)、因數(shù)中最大的數(shù)、最小的數(shù),及因數(shù)和倍數(shù)個數(shù)方面的特征。
(二)過程與方法。
通過整數(shù)的乘除運算認識因數(shù)和倍數(shù)的意義,自主探索和總結出求一個數(shù)的因數(shù)和倍數(shù)的方法。
(三)情感態(tài)度和價值觀。
在探索的過程中體會數(shù)學知識之間的內(nèi)在聯(lián)系,在解決問題的過程中培養(yǎng)學生思維的有序性和條理性。
教學重點:理解因數(shù)和倍數(shù)的含義。
教學難點:自主探索有序地找一個數(shù)的因數(shù)和倍數(shù)的方法。
教學課件。
(一)理解因數(shù)和倍數(shù)的意義。
教學例1:
1.觀察算式的特點,進行分類。
(1)仔細觀察算式的特點,你能把這些算式分類嗎?
(2)交流學生的分類情況。(預設:學生會根據(jù)算式的計算結果分成兩類)。
第一類是被除數(shù)、除數(shù)、商都是整數(shù);第二類是被除數(shù)、除數(shù)都是整數(shù),而商不是整數(shù)。
2.明確因數(shù)和倍數(shù)的意義。
(1)同學們,在整數(shù)除法中,如果商是整數(shù)而沒有余數(shù),我們就說被除數(shù)是除數(shù)的倍數(shù),除數(shù)是被除數(shù)的因數(shù)。例如,12÷2=6,我們就說12是2的倍數(shù),2是12的因數(shù)。12÷6=2,我們就說12是6的倍數(shù),6是12的因數(shù)。
(2)在第一類算式中找一個算式,說一說,誰是誰的因數(shù)?誰是誰的倍數(shù)?
(3)強調(diào)一點:為了方便,在研究倍數(shù)與因數(shù)的時候,我們所說的數(shù)指的是自然數(shù)(一般不包括0)。
【設計意圖】引導學生從“整數(shù)的除法算式”中認識因數(shù)和倍數(shù)的意義,簡潔明了,同時為學習因數(shù)和倍數(shù)的依存關系進行有效鋪墊。
3.理解因數(shù)和倍數(shù)的依存關系。
(1)獨立完成教材第5頁“做一做”。
(2)我們能不能說“4是因數(shù)”“24是倍數(shù)”呢?表述時應該注意什么?
【設計意圖】引導學生在理解的基礎上進行正確表述:因數(shù)和倍數(shù)是相互依存的,不是單獨存在的。我們不能說4是因數(shù),24是倍數(shù),而應該說4是24的因數(shù),24是4的倍數(shù)。
4.理解一個數(shù)的“因數(shù)”和乘法算式中的“因數(shù)”的區(qū)別以及一個數(shù)的“倍數(shù)”與“倍”的區(qū)別。
(1)今天學的一個數(shù)的“因數(shù)”與以前乘法算式中的“因數(shù)”有什么區(qū)別呢?
課件出示:
乘法算式中的“因數(shù)”是相對于“積”而言的,可以是整數(shù),也可以是小數(shù)、分數(shù);而一個數(shù)的“因數(shù)”是相對于“倍數(shù)”而言的,它只能是整數(shù)。
(2)今天學的“倍數(shù)”與以前的“倍”又有什么不同呢?
“倍數(shù)”是相對于“因數(shù)”而言的,只適用于整數(shù);而“倍”適用于小數(shù)、分數(shù)、整數(shù)。
(3)交流匯報。
【設計意圖】“一個數(shù)的因數(shù)和倍數(shù)”與學生已學過的乘法算式中的“因數(shù)”以及“倍”的概念既有聯(lián)系又有區(qū)別,學生比較容易混淆,這也是學習一個數(shù)的“因數(shù)”和“倍數(shù)”意義的難點。通過觀察、對比、交流,引導學生發(fā)現(xiàn)一個數(shù)的“因數(shù)”和乘法算式中的“因數(shù)”的區(qū)別以及一個數(shù)的“倍數(shù)”與“倍”的區(qū)別。
(二)找一個數(shù)的因數(shù)。
教學例2:
1.探究找18的因數(shù)的方法。
(1)18的因數(shù)有哪些?你是怎么找的?
(2)交流方法。
預設:方法一:根據(jù)因數(shù)和倍數(shù)的意義,通過除法算式找18的因數(shù)。
因為18÷1=18,所以1和18是18的因數(shù)。
因為18÷2=9,所以2和9是18的因數(shù)。
因為18÷3=6,所以3和6是18的因數(shù)。
方法二:根據(jù)尋找哪兩個整數(shù)相乘的積是18,尋找18的因數(shù)。
因為1×18=18,所以1和18是18的因數(shù)。
因為2×9=18,所以2和9是18的因數(shù)。
因為3×6=18,所以3和6是18的因數(shù)。
2.明確18的因數(shù)的表示方法。
(1)我們怎樣來表示18的因數(shù)有哪些呢?怎樣表示簡潔明了?
(2)交流方法。
預設:列舉法,18的因數(shù)有:1,2,3,6,9,18。
3.練習找一個數(shù)的因數(shù)。
(1)你能找出30的因數(shù)有哪些嗎?36的因數(shù)呢?
(2)怎樣找才能不遺漏、不重復地找出一個數(shù)的所有因數(shù)?
【設計意圖】讓學生通過自主探索、交流,獲得找一個數(shù)的因數(shù)的不同方法,在練習中體會“一對一對”有序地找一個數(shù)的因數(shù),避免遺漏或重復。初步感受一個數(shù)的因數(shù)的個數(shù)是有限的,以及“最大因數(shù)、最小因數(shù)”的特征。
(三)找一個數(shù)的倍數(shù)。
教學例3:
1.探究找2的倍數(shù)的方法。
(1)2的倍數(shù)有哪些?你是怎么找的?
(2)交流方法。
預設:方法一:利用除法算式找2的倍數(shù)。
因為2÷2=1,所以2是2的倍數(shù)。
因為4÷2=2,所以4是2的倍數(shù)。
因為6÷2=3,所以6是2的倍數(shù)。
方法二:利用乘法算式找2的倍數(shù)。
因為2×1=2,所以2是2的倍數(shù)。
因為2×2=4,所以4是2的倍數(shù)。
因為2×3=6,所以6是2的倍數(shù)?!?。
(3)2的倍數(shù)能寫完嗎?你能繼續(xù)找嗎?寫不完怎么辦?
(4)根據(jù)前面的經(jīng)驗,試著表示出2的倍數(shù)有哪些?(預設:列舉法、圖示法)。
2.練習找一個數(shù)的倍數(shù)。
你能找出3的倍數(shù)有哪些嗎?5的倍數(shù)呢?
【設計意圖】在理解“倍數(shù)”的基礎上,讓學生進一步體會有序思考的必要性。初步感受一個數(shù)的倍數(shù)的個數(shù)是無限的,以及“最小倍數(shù)”的特征。
1.從前面找因數(shù)和倍數(shù)的過程中,你有什么發(fā)現(xiàn)?
2.討論交流。
3.歸納總結。
預設:一個數(shù)的因數(shù)的個數(shù)是有限的,最小的因數(shù)是1,最大的因數(shù)是它本身;一個數(shù)的倍數(shù)的個數(shù)是無限的,沒有最大的倍數(shù),最小的倍數(shù)是它本身。1是所有非零自然數(shù)的因數(shù)。
(五)鞏固練習。
1.課件出示教材第7頁練習二第1題。
(1)想一想,怎樣找不會遺漏、不會重復?
(2)哪些數(shù)既是36的因數(shù),也是60的因數(shù)?
【設計意圖】通過練習,讓學生再次體會“1是所有非零自然數(shù)的因數(shù)”“一個數(shù)最大的因數(shù)是它本身”和“一個數(shù)的因數(shù)的個數(shù)是有限的”。同時,滲透兩個數(shù)的“公因數(shù)”的意義。
2.課件出示教材第7頁練習二第3題。
(1)學生獨立完成,交流答案。
(2)思考:5的倍數(shù)有什么特征?
【設計意圖】滲透5的倍數(shù)的特征。
3.課件出示教材第7頁練習二第5題。
(1)學生獨立完成,交流答案。
(2)你能改正錯誤的說法嗎?
(六)全課總結,交流收獲。
這節(jié)課我們學了哪些知識?你有什么收獲?
小學數(shù)學倍數(shù)與因數(shù)教學設計篇二
教學目標:
1、通過操作活動得出相應的乘除法算式,幫助學生理解倍數(shù)和因數(shù)的意義;探索求個數(shù)的倍數(shù)和因數(shù)的方法,發(fā)現(xiàn)一個數(shù)倍數(shù)和因數(shù)的某些特征。
2、在探索一個數(shù)的倍數(shù)和因數(shù)的過程中培養(yǎng)學生觀察、分析、概括能力,培養(yǎng)有序思考能力。
3、通過倍數(shù)和因數(shù)之間的互相依存關系使學生感受數(shù)學知識的內(nèi)在聯(lián)系,體會到數(shù)學內(nèi)容的奇妙、有趣。
教學重點:理解倍數(shù)和因數(shù)的意義。
教學難點:探索求一個數(shù)的倍數(shù)和因數(shù)的方法。
教學準備:每桌準各12個一樣大小的正方形,每人準備一張自己學號的卡片。
設計理念:通過竟猜、操作、比一比誰寫得多,找朋友等形式多樣的活動激發(fā)學生持續(xù)的學習興趣;學生通過獨立思考、合作文流進行自主探索;教師引導學生掌握數(shù)學思考的方法。
教學過程:
1、讓學生進行智力競猜春暖花香的季節(jié),公園里許多人在劃船,一條船上有兩個父親兩個兒子,但總共只有3個人,這是怎么回事呢?(部分學生能猜出三個人分別是孫子、爸爸、和爺爺)
2、孫子、爸爸、爺爺?shù)拿址謩e是韓韓,韓有才、韓廣發(fā)。請學生以韓有才為中心介紹下三個人的關系。學生可能會說出韓有才.是爸爸,韓有才是兒子的語句,這時引導學生說出誰是誰的爸爸誰是準的兒子。
3、上述父子關系是一種互相依存的關系,在表述時一定要完整。并向?qū)W生說明自然數(shù)中某兩個數(shù)之間也有這種類似的依存關系倍數(shù)和因數(shù)。
設計說明:智力競猜走學生喜歡的形式,因為每個學生都有爭強好勝之心,競猜有兩個作用,一是激發(fā)學生的學習興趣,二是以此引出相互依存的關系,為理解倍數(shù)和因數(shù)的相互依存關系作鋪墊。
1、師:智慧從手指問流出,通過操作我們能發(fā)現(xiàn)許多的知識。請同桌同學拿出課前準備的12個同樣大小的正方形,試一試能擺出幾個不同的長方形,并思考一下其中蘊涵著哪些不同的乘除法算式。
2、請學生匯報不同的擺法,以及相應的乘除法算式。(乘法算式和除法算式分開寫)再向?qū)W生說明:如果一個圖形經(jīng)過旋轉后和另一個圖形一樣,我們就認為這兩個圖形是一樣的,讓學生特重復的圖形和算式去掉。(板書三十乘法算式,和幾十相應的除法算式)
設計說明;讓學生寫出蘊涵的乘除法算式符合學生的知識基礎,學生有的可能用乘法表示,也有的可能用除法表示;讓學生將旋轉后相同的去掉,這是一次簡化,很多學生并不知道,需要指導,這樣可以使學生認識到事物的本質(zhì)。
3、讓學生一起看乘法算式43=12,向?qū)W生指出:12是4的倍數(shù),12也是3的倍數(shù),4是12的因數(shù),3也是12的因數(shù)。
4、先請一個學生站起來說一說.然后同桌的同學再互相說一說。
5、讓學生仿照說出62=12和121=12中哪個數(shù)是哪個數(shù)的倍數(shù),哪個數(shù)是哪個數(shù)的因數(shù)。
6、學生相互出一道乘法算式,并說一說誰是誰的倍數(shù),誰是誰的因數(shù)。學生可能會出現(xiàn)0( )=0的情況,借此向?qū)W生說明我們研究因敷和倍數(shù)一般指不是0的自然數(shù)。
設計說明:倍數(shù)和因數(shù)是全新的概念,需要教師的傳授、講解,需要學生的適當記憶重復、仿照。當然,要使學生真正理解還必須舉一反三,通過互相舉例可以逐步完善學生對倍數(shù)和因數(shù)的認識,同時使學生明確倍數(shù)和因數(shù)的研究范圍。
7、以43=12與123=4為例,向?qū)W生說明后面的除法算式是由前面的乘法算式得到的,根據(jù)這個除法算式可以說誰是誰的倍數(shù),誰是誰的因數(shù),說好后再讓學生試一試其他幾個除法算式中的關系。
8、練習:根據(jù)下面的算式,說說哪個數(shù)是哪個數(shù)的因數(shù),哪個數(shù)是哪個數(shù)的倍數(shù)
54=20 357=5 3+4=7
(1)學生回答后引發(fā)學生思考:能不能說20是倍數(shù),4是因數(shù)。使學生進一步理解倍數(shù)是兩個數(shù)之間的一種相互依存的關系,必須說哪個是哪個的倍數(shù),因數(shù)也同樣如此。
(2)通過3+4=7使學生進一步理解倍數(shù)和因數(shù)都是建立在乘法或除法的基礎之上的。
設計說明:乘法和除法是一種互逆的關系,在學習中應該溝通它們之間的聯(lián)系;通過三道練習可以鞏固剛剛獲得的對倍數(shù)和因數(shù)的認識,將融會貫通落到實處。
1、找一個數(shù)的因數(shù)。
(1)聯(lián)系板書的乘除法算式觀察思考12的因數(shù)有哪些,井想辦法找出15的所有因數(shù)。
(2)學生獨立思考,明白根據(jù)一個乘法(除法)算式可以找出15的兩個因數(shù),在學生充分交流的基礎上引導學生有條理的一對一對說出15的因數(shù)。
(3)用一對一對的方法找出36的所有因數(shù)??赡苡械膶W生根據(jù)乘法算式找的,也有的學生是根據(jù)除法算式找的,都應該給予肯定。
(4)引導學生觀察12、15、36的因數(shù),說一說有什么發(fā)現(xiàn)。一個數(shù)的因數(shù)個數(shù)是有限的,其中最小的因數(shù)都是1,最大的都是它本身。
設計說明:先安排學生找一個數(shù)的因數(shù)可以使學生利用操作得到的算式進行,觀察,這樣比較自然,而且為于找一個數(shù)的因數(shù)指明了方向。學生交流時突出了方法的多樣性,既可以根據(jù)乘法算式想,也可以根據(jù)除法算式想,交流后引導學生一對一對的找是必要的,它可以培養(yǎng)學生的有序思考。最后引導學生觀察。使學生自主發(fā)現(xiàn)、歸納出一個數(shù)的因數(shù)的某些特征。
2、找一個數(shù)的倍數(shù)。
(1)讓學生找3的倍數(shù),比一比誰找得多。
(2)學生匯報后,引導學生有序思考,并得出3的倍數(shù)可以用3乘連續(xù)的自然數(shù)1、2、3,3的倍數(shù)的個數(shù)是無限的,所以寫3的`倍數(shù)時要借助省略號表示結果。
(3)找出2的倍數(shù)和5的倍數(shù),并引導學生觀察3、2、5的倍數(shù)情況,說一說有什么發(fā)現(xiàn)。一個數(shù)的倍數(shù)個數(shù)是無限的,其中最小的倍數(shù)是它本身,沒有最大的倍數(shù)。
設計說明:讓學生比一比誰找的倍數(shù)多,可以使學生產(chǎn)生認知沖突,認識到一個數(shù)的倍數(shù)個數(shù)是無限的,在學生匯報后同樣需要引導學生的有序思考,需要引導學生自主發(fā)現(xiàn)、歸納一個數(shù)倍數(shù)的特征。
1、想想做做的第l題。學生表述后強調(diào)哪個是哪個的倍數(shù)(或因數(shù))。
設計說明:第l題是基礎練習.可以鞏固對倍數(shù)和因數(shù)的認識,2、3兩題聯(lián)系實際,使學生感悟到其中蘊藏著求一個數(shù)倍數(shù)和因數(shù)的方法,以及倍數(shù)和因數(shù)的某些特征。第4題通過游戲活動進一步激發(fā)學生持續(xù)的學習熱情,而且可以綜合應用求倍數(shù)和因數(shù)的方法,再次認識到倍數(shù)和因數(shù)的某些特征。
1、通過這節(jié)課的學習你有什么收獲?向你的同伴介紹一下。
2、生活中許多現(xiàn)象與我們學習的倍數(shù)和因數(shù)的知識有關,課后同學們可以利用今天所學的知識探索一下1小時等于60分的好處。通過探索使學生明白由于60的因數(shù)是兩位數(shù)中最多的,可以方便計算。
設計說明:向同伴介紹自己的收獲可以將課堂中學到的知識進行自我梳理,同時通過探索1小時等于60分的好處,可以鞏固倍數(shù)和因數(shù)的相關知識,溝通知識間的聯(lián)系,拓展學生的知識面,使學生認識到數(shù)學知識的應用價值。
小學數(shù)學倍數(shù)與因數(shù)教學設計篇三
一、教材分析:
我說課的內(nèi)容是:人教版五年級下冊第88~90頁的《最小公倍數(shù)》一課,最小公倍數(shù)是在學生掌握了倍數(shù)、因數(shù)和公因數(shù)概念的基礎上進行教學的,主要是為了以后學習通分做準備。在生活實際中也存在它自身的的意義和作用,這節(jié)課是一節(jié)以概念為本的教學。教材的編寫意圖是使抽象的數(shù)學知識與生活實際相聯(lián)系,建立概念;用自己想到的方法嘗試求兩個數(shù)的最小公倍數(shù),體現(xiàn)算法的多樣化。
二、學情分析:
在不同的學校、班級進行前測,直接讓不同認知水平的學生,用模擬的小長方形墻磚鋪成正方形。在動手操作中,由于受密鋪的影響,橫拼豎擺,不但耗時過長,而且很難有效的構建公倍數(shù)內(nèi)在的結構關系。因此在設計操作環(huán)節(jié)時,我搭建“腳手架”。通過構建公倍數(shù)內(nèi)在的結構關系和構建公倍數(shù)體系兩個環(huán)節(jié)進行有效教學。成功搭建起教學內(nèi)容與學生求知心理之間的橋梁。
三、教學目標:
(1)建立公倍數(shù)與最小公倍數(shù)的概念,會用集合圖表示。掌握求100以內(nèi)兩個數(shù)最小公倍數(shù)的方法。
(2)通過動手操作、獨立思考、合作探究、合作交流等方式,建立公倍數(shù)和最小公倍數(shù)的概念,培養(yǎng)發(fā)現(xiàn)問題、解決問題的能力。
(3)學會用數(shù)學的眼光觀察生活、思考問題。積極參與到對數(shù)學問題的探究活動中。真真切切地體驗到學習數(shù)學的快樂和價值。
四、教學準備:
游戲卡片一套,模擬墻壁的平面圖、模擬長方形墻磚多套,作業(yè)紙多張和多媒體課件一套。
五、教法和學法:
加點理念課堂上我采用嘗試教學法和啟發(fā)教學法。
學生通過動手操作、獨立思考、合作探究、合作交流等方法進行學習。
六、教學過程:
這節(jié)課我按照下面五個環(huán)節(jié)進行教學:初步感知,建立表象;動手操作,建立概念;自主探究,歸納方法;實際應用,回歸生活;全課總結,延伸課外。
(一)、初步感知,建立表象。
首先我從游戲中引入,我把枯燥的倍數(shù)復習設計成“搶倍數(shù)的.游戲”。讓學生初步感悟公倍數(shù)。(預設5-6分鐘)。
具體操作:
首先我手里拿著數(shù)字卡片,給學生說,今天老師給大家?guī)硪粋€風靡我們?nèi)嗟挠螒颉獡尡稊?shù)游戲。面對全體同學講一下規(guī)則:找兩個同學上來,一個負責搶3的倍數(shù),一個負責搶2的倍數(shù)。老師把卡片放到黑板上,過了搶的時間老師會把卡片收起來。最后搶的多的同學獲勝。
然后把全班分成兩大組,要求每組快速派一名代表上來,
當兩名學生上臺進行游戲,其他學生做裁判共同參與。
接下來游戲,當?shù)?張卡片出來的時候,兩個同學會同時搶6這個數(shù)字。如果沒有出現(xiàn)搶的局面。我會再出示12這個數(shù)字。學生很容易發(fā)現(xiàn)并說出:數(shù)字6是決定游戲勝負的關鍵,因為6既是2的倍數(shù),又是3的倍數(shù)。
緊跟著追問:“為什么都來搶6這張卡片”。先讓這兩個代表說說,再讓其他同學說說。
然后揭示出公倍數(shù)的概念。6既是2的倍數(shù),又是3的倍數(shù),也就是說6是3和2公有的倍數(shù),我們把6叫做3和2的公倍數(shù).(板書公倍數(shù)及概念。)。
引導學生想想:那你還知道哪個數(shù)是3和2的公倍數(shù)?
學生答出12、18、24等數(shù),并用這些數(shù)完整的表述出公倍數(shù)的概念。
及時表揚說的對,說的完整的同學。多讓幾個同學說說,并讓同桌說說,強化公倍數(shù)的概念。
(二)、動手操作,建立概念。
這一大環(huán)節(jié)是深刻理解公倍數(shù),建立最小公倍數(shù)的重點內(nèi)容,為此我分兩個層次進行教學。
(1)固定的正方形邊長,選擇長方形墻磚。(預設6-7分)。
首先在前面通過游戲感悟公倍數(shù)的基礎上,過渡到生活中。讓學生體驗公倍數(shù)能在生活中幫我們做什么。
(出示生活情境,課件顯示。)。
當學生明白題意后,要求學生利用模擬的長方形墻磚和墻壁正方形平面圖,
分小組活動進行動手操作。學生通過擺一擺,畫一畫,得到不同的方案。
在匯報方案時,學生都會選擇長3分米,寬2分米的墻磚。讓學生說說自己的想法。適時進行追問:“正方形墻面墻壁的邊長所用墻磚的長和寬有什么關系?”
讓學生自主發(fā)現(xiàn):按照要求進行,所鋪成的正方形邊長必須是小長方形長和寬的公倍數(shù)這一結論。
這個時候多讓幾個學生說說這一結論。
其次我再追問:“大家為什么都不選擇長5分米,寬3分米的墻磚?”
學生很容易答出,因為12不是5和3的公倍數(shù)。
最后我作課堂小結:“看來所鋪正方形墻壁的邊長必須是長方形墻磚長3分米,寬2分米的公倍數(shù)?!?BR> (2)用固定的長方形墻磚,鋪多個的正方形。(預設6-7分)。
從上個環(huán)節(jié)直接過渡到問題中。“同學們,真了不起,通過動手操作,獲得很有價值的發(fā)現(xiàn)。(課件出示情境)用這種長3分米寬2分米的長方形墻磚,整塊整塊的鋪,還可以鋪成邊長是多少分米的正方形?”
小學數(shù)學倍數(shù)與因數(shù)教學設計篇四
教學目標:
1、理解質(zhì)數(shù)和合數(shù)的概念,并能判斷一個數(shù)是質(zhì)數(shù)還是合數(shù),會把自然數(shù)按約數(shù)的個數(shù)進行分類。
2、培養(yǎng)學生自主探索、獨立思考、合作交流的能力。
3、培養(yǎng)學生敢于探索科學之謎的精神,充分展示數(shù)學自身的魅力。
教學重點:
1、理解掌握質(zhì)數(shù)、合數(shù)的概念。
2、初步學會準確判斷一個數(shù)是質(zhì)數(shù)還是合數(shù)。教學難點:區(qū)分奇數(shù)、質(zhì)數(shù)、偶數(shù)、合數(shù)。
教學過程:
一、探究發(fā)現(xiàn),總結概念:
1、師:(出示三個同樣的小正方形)每個正方形的邊長為1,用這樣的三個正方形拼成一個長方形,你能拼出幾個不同的長方形?學生獨立思考,然后全班交流。
2、師:這樣的四個小正方形能拼出幾個不同的長方形?學生各自獨立思考,想像后舉手回答。
3、師:同學們再想一下,如果有12個這樣的小正方形,你能拼出幾個不同的長方形?師:我看到許多同學不用畫就已經(jīng)知道了。(指名說一說)。
學生幾乎是異口同聲地說:會越多。
師:確定嗎?(引導學生展開討論。)。
5、師:同學們,用小正方形拼長方形,有時只能拼出一種,有時拼出的長方形不止一種。你覺得當小正方形的個數(shù)是什么數(shù)的時候,只能拼一種?什么情況下拼得的長方形不止一種?并舉例說明。
先讓學生小組討論,然后全班交流,師根據(jù)學生的回答板書。
師:同學們,像上面這些數(shù)(板書的3、13、7、5、11等數(shù)),在數(shù)學上我們把它們叫做質(zhì)數(shù),下面的這些數(shù)(4、6、8、9、10、12、14、15等數(shù))我們把它們叫做合數(shù)。那究竟什么樣的數(shù)叫質(zhì)數(shù),什么樣的數(shù)叫合數(shù)呢?學生獨立思考后,在小組內(nèi)進行交流,然后再全班交流。
引導學生總結質(zhì)數(shù)和合數(shù)的概念,結合學生回答,教師板書:(略)。
6、讓學生舉例說說哪些數(shù)是質(zhì)數(shù),哪些數(shù)是合數(shù),并說出理由。
7、師:那你們認為“1”是什么數(shù)?讓學生獨立思考,后展開討論。
二、動手操作,制質(zhì)數(shù)表。
1、師出示:73。讓學生思考著它是不是質(zhì)數(shù)。
師:要想馬上知道73是什么數(shù)還真不容易。如果有質(zhì)數(shù)表可查就方便了。(同學們都說“是呀”。)師:這表從哪來呢?(教師出示百以內(nèi)數(shù)表)這上面是1到100這100個數(shù),它不是質(zhì)數(shù)表,你們能不能想辦法找出100以內(nèi)的質(zhì)數(shù),制成質(zhì)數(shù)表?誰來說說自己的想法?(讓學生充分發(fā)表自己的想法。)。
2、讓學生動手制作質(zhì)數(shù)表。
3、集體交流方法。
三、練習鞏固:完成練習四第。
1、2題。
四、課題小結:
這節(jié)課你在激烈的討論中有什么收獲?
將本文的word文檔下載到電腦,方便收藏和打印。
小學數(shù)學倍數(shù)與因數(shù)教學設計篇五
(1)教材的地位和前后關系:在學習本單元之前,學生已經(jīng)認識了百以內(nèi)、千以內(nèi)、萬以內(nèi)、億以內(nèi)以及一些整億的數(shù)。但這只是對數(shù)字的淺在認識,為學生進一步學習公倍數(shù)和公因數(shù),以及分數(shù)的約分、通分和四則運算奠定基礎。
(2)教學目標:
知識、技能目標:
1.讓學生理解倍數(shù)和因數(shù)的意義,掌握找一個數(shù)的倍數(shù)和因數(shù)的方法,發(fā)現(xiàn)一個數(shù)的倍數(shù)、因數(shù)中最大的數(shù)、最小的數(shù)及其個數(shù)方面的特征。
情感、價值目標:
2.讓學生初步意識到可以從一個新的角度來研究非零自然數(shù)的特征及其相互關系,培養(yǎng)學生的觀察、分析和抽象概括能力,體會教學內(nèi)容的奇妙、有趣,產(chǎn)生對數(shù)學的好奇心。
(3)教學重點:
理解倍數(shù)和因數(shù)的含義與方法。
(4)教學難點:
首先從學生的操作入手,由淺入深,利用學生對乘法運算以及長方形的長、寬和面積關系的已有認識,在操作中引出倍數(shù)和因數(shù)的概念。
其次以學生討論、交流、相互評價,促成學生對找一個數(shù)的倍數(shù)、一個數(shù)的因數(shù)的方法進行優(yōu)化處理,提升、鞏固學生方法表達的完整性、有效性,避免學生只掌握了方法的理解,而不能全面的正確的表達。
(1)合作交流、揭示主題。
用12個大小完全相同的小正方形,進行不同的擺法展示,為了避免簡單的操作,引導學生通過算式來想他是怎么擺的。組織交流,引出算式與概念鑒定。
(2)教學概念、正反促成。
利用橫里讀、豎里讀,形成了比較系統(tǒng)的知識概念,并及時出示整個前提:是在不含0的自然數(shù),讓學生自己舉例,示范說、相互說,最后以教師舉學生不容易想到了例子:4×4=16,18÷6=3,促成學生不僅從乘法的角度去思考,而且也可以從除法的角度進行,也為后面找一個數(shù)的因數(shù)的方法做好伏筆。
(3)設疑,置疑,激發(fā)學生的反思力度。
在教學找一個數(shù)的倍數(shù)時,“才說到12、18是3的倍數(shù)(板書:3的倍數(shù)),3的倍數(shù)是不是只有12、18這兩個數(shù)呢?”組織交流:3的倍數(shù)有哪些呢?同學互評,交流形成自己的學習成果,提高形成了知識的整體性教學,加大了探索的力度,提高了思維的難度,“分鐘內(nèi)你們寫完了嗎?如果再給半分鐘呢?為什么?”
“教學找一個數(shù)的因數(shù)”以談話導入,形成知識相互的聯(lián)系與區(qū)別,
“談話:必須說清誰是誰的倍數(shù),誰是誰的因數(shù)。所以6可能是某些數(shù)的倍數(shù),也可能是某些數(shù)的因數(shù),那我們就來找一個數(shù)的因數(shù)。你能找出36所有的因數(shù)嗎?”
(5)討論互評,自主學習。
放手讓學生學習找一個數(shù)的因數(shù),從無序到有序,從自尋到互學,請學生板書,
學生評價,“提問:你是用什么方法找到一個數(shù)的因數(shù),可以介紹給大家嗎?還有其他方法嗎?”
1×36=3636÷1=36。
2×18=3636÷2=18。
3×12=3636÷3=12。
4×9=3636÷4=9。
6×6=3636÷6=6。
(6)自主不失指導,掌握不失總結。
如:提問:5為什么不是36的因數(shù)?(因為36÷5不能整除,有余數(shù))。
小結:不能被這個數(shù)整除的數(shù)就不是這個數(shù)的因數(shù)。
小結:我們即可以從乘法算式,也可以從除法算式找到一個數(shù)的因數(shù)。
提問:那對于一個數(shù)的因數(shù)從36的因數(shù)、15的因數(shù)這兩個例子又有什么發(fā)現(xiàn)?
總結:對于一個數(shù)的倍數(shù)和因數(shù),它們是不同的,但通過乘法算式、除法算式又是相互依存的、相互聯(lián)系的。
可根據(jù)情況自行設計。
小學數(shù)學倍數(shù)與因數(shù)教學設計篇六
本節(jié)課基本能實現(xiàn)預期的教學目標,讓學生準確的理解“公倍數(shù)”與“最小公倍數(shù)”的概念和意義,也能夠在學習方法上進行恰當?shù)闹笇?。在鉆研教材、把握目標的基礎上,充分利用材料組織教學,讓學生深入淺出的進行學習課本的知識,教學過程也充分注意到了讓學生獨立思考、動手操作、自主探究知識,體現(xiàn)了“以生為主”的教學理念。
從作業(yè)的情況來看,學生對于用集合圈表示的方法學生錯誤很多,書寫的要求要更規(guī)范一些。
二
本節(jié)課我發(fā)現(xiàn)對特殊方法求幾個數(shù)的最小公倍數(shù),倍數(shù)關系的學生掌握得快,但用乘積找最小公倍數(shù)的規(guī)律(特點),給學生思考交流的時間有些少,學生找到的`特點有局限性,老師也沒有及時給予提示。比如:當是奇數(shù)和偶數(shù)時,最小公倍數(shù)不一定就是這兩數(shù)的乘積。如6和9的最小公倍數(shù)是18而不是54。這一特點是偶然現(xiàn)象不是普遍規(guī)律??梢龑W生對四組數(shù)字再比較,引導發(fā)現(xiàn)他們因數(shù)的特征(公因數(shù)只有1)使學生形成準確的認識。造成這一失誤的原因一方面是由于時間的緊,另一方面擔心復習公因數(shù)會影響新知識的學習。其三是對教材的鉆研不夠,自己對這一部分知識把握也不準。其次,由于在時間的控制上不恰當,后面部分任務還沒有完成。
小學數(shù)學倍數(shù)與因數(shù)教學設計篇七
1.使學生認識倍數(shù)和因數(shù),能判斷兩個自然數(shù)間的因數(shù)和倍數(shù)關系;學會找一個數(shù)的因數(shù)和倍數(shù)的方法,能按順序找出100以內(nèi)自然數(shù)的所有因數(shù),10以內(nèi)自然數(shù)的所有倍數(shù);了解一個數(shù)的因數(shù)、倍數(shù)的特點。
2.使學生經(jīng)歷探索求一個數(shù)的因數(shù)或倍數(shù)的方法、一個數(shù)的因數(shù)和倍數(shù)特點的過程,體會數(shù)學知識、方法的內(nèi)在聯(lián)系,能有條理地展開思考,培養(yǎng)觀察、比較,以及分析、推理和抽象、概括等思維能力,發(fā)展數(shù)感。
3.使學生主動參與操作、思考、探索等活動,獲得解決問題的成功感受,樹立學好數(shù)學的信心,養(yǎng)成樂于思考、勇于探究等良好品質(zhì)。
小黑板、準備12個同樣大的正方形學具。
一、操作引入,認識意義。
1.操作交流。
引導:你能用12個小正方形拼成一個長方形嗎?請同桌兩人合作拼一拼,看看每排擺幾個,擺了幾排,想想有幾種拼法,用算式把你的拼法表示出來。學生操作,用算式表示,教師巡視。
交流:你有哪些拼法?請你說一說,并交流你表示的算式。
結合學生交流,呈現(xiàn)不同拼法,分別板書出積是12的三道乘法算式(包括可以板書除法算式)。
2.認識意義。
(2)啟發(fā):現(xiàn)在讓你看另外兩個算式,你能說一說哪個是哪個的因數(shù),哪個是哪個的倍數(shù)嗎?同桌互相說說看。
(3)小結:從上面可以看出,在整數(shù)乘法算式里,兩個乘數(shù)都是積的因數(shù),積是兩個乘數(shù)的倍數(shù)。它們之間的關系是相互依存的。這就是我們今天學習的新內(nèi)容:因數(shù)和倍數(shù)。(板書課題)在研究因數(shù)和倍數(shù)時,所說的數(shù)一般指不是o的自然數(shù)。
小學數(shù)學倍數(shù)與因數(shù)教學設計篇八
不管多大的數(shù)相加其最基本的原則都是20以內(nèi)的加法原則,20以內(nèi)進位加法的速算口訣為:幾加九進十減一、幾加八進十減二、幾加七進十減三、幾加六進十減四。由于加法具有交換律,所以我們只需要記住這幾句就可以了,在100以內(nèi)的加法中,先觀察兩個各位數(shù)字,找出他們中間較大的數(shù),按口訣進行計算可以很快的算出答案。
“湊整”先算法。
例題1.24+44+56。
=24+(44+56)。
=24+100=124。
解題思路:因為44+56=100是個整百的數(shù),所以先把它們的和計算出來,這樣再加別的數(shù)會比較簡單。
例題2.53+36+47。
=(53+47)+36。
=100+36=136。
解題思路:因為53+47=100是個整百數(shù),所以先把+47帶著符號搬家,搬到+36前面,然后再把53+47的和算出來。
養(yǎng)成良好的計算習慣。
養(yǎng)成良好的計算習慣,是提高孩子計算能力切實有效的辦法。幫助孩子養(yǎng)成以下良好計算習,應該做到“一看、二想、三計算”的認真計算習慣。
計算是一件非常嚴肅認真的事情,來不得半點馬虎,但恰恰有孩子沒有良好學習習慣,拿到計算題后,沒有看清數(shù)字,沒有弄清運算順序,就盲目的算起來。
小學數(shù)學倍數(shù)與因數(shù)教學設計篇九
教學內(nèi)容:
義務教育課程標準小學數(shù)學五年級下冊第二章《因數(shù)和倍數(shù)》第1節(jié)例1(教材第13頁)及練習二的第2題,第四題的前部分。
教材分析:
本節(jié)教學是在學生學習掌握了因數(shù)和倍數(shù)兩個概念的基礎上,在教師的引導下,讓學生運用乘法算式及除法中的整除自主嘗試、探究“求一個數(shù)的因數(shù)”的方法。同時,通過多種形式的訓練,使學生能熟練找全一個數(shù)的因數(shù)。另外,通過引導學生用集合的形式表示一個數(shù)的因數(shù),一方面給學生滲透集合思想,更重要的是為后面教學求兩個數(shù)的公因數(shù)做準備。
教學目標:
2、逐步培養(yǎng)學生從個別到全體、從具體到一般的抽象歸納的思想方法。
教學重點:
探究求一個數(shù)的因數(shù)的方法及規(guī)律特點。
教學難點:
用求一個數(shù)的因數(shù)的方法熟練找全一個數(shù)的因數(shù)。
教具準備:
投影儀、小黑板、卡片。
教學課時:一課時。
教學設想:
運用嘗試教學法,從學生已有的知識經(jīng)驗出發(fā),通過教師引導、學生自學例1,自主嘗試、探究求一個數(shù)的因數(shù)的方法方法,并能運用所獲得的方法、經(jīng)驗找全一個數(shù)的因數(shù)。
教學過程:
一、復習舊知。
師:同學們,前面學習了因數(shù)和倍數(shù)的概念,老師很想考考你們學得怎么樣,可以嗎?
生:(預設)可以!
師:出示小黑板。
1、利用因數(shù)和倍數(shù)的相互依存關系說一說下面各組數(shù)的相互關系。
21和7,2×7=14,30÷6=5。
2、判斷。
(1)12是倍數(shù),2是因數(shù)。()。
(2)1是14的因數(shù),14是1的倍數(shù)。()。
(3)因為6×0.5=3,所以,6和0.5是3的因數(shù),3是6和0.5的倍數(shù)。()。
教師根據(jù)學生完成練習的情況對學生進行恰當?shù)谋頁P激勵,同時進入新課教學:……。
二、新課教學。
過程一:嘗試訓練。
(一)出示問題。
師:同學們,老師有一個新問題,想請大家?guī)椭鉀Q,行嗎?
生:行!(預設)。
嘗試題:14的因數(shù)有哪幾個?
(二)學生解決問題,教師巡視并根據(jù)實際適時輔導學困生。
(三)信息反饋。
板書:
1×14。
14,2×7。
14÷2。
14的因數(shù)有:1,2,7,14。
過程二:自學課本(p13例1)。
(一)學生自學例1。
教師提出自學要求(投影):
1、18有哪些因數(shù)?
2、文中的小朋友是怎樣找出18的因數(shù)的?他們找完了嗎?如果沒有,請幫助他們完成。
3、你還有別的找法嗎?請試一試,并用自己喜歡的方式寫出18所有的因數(shù)。
(二)信息反饋。
1、反饋自學要求情況;
板書:
1×18。
182×9。
3×6。
18的因數(shù)有1,2,3,6,9,18。
還可以這樣表示:18的因數(shù)。
2、知識對比,探索發(fā)現(xiàn)規(guī)律。
(1)師:同學們,根據(jù)求14和18的因數(shù)時獲得的體驗,再思考下面問題:
投影出示問題:
思考一:你用什么方法找出?
(2)學生思考,教師適時引導。
(3)同桌交流思考結果。
(4)師生互動??偨Y方法、點出課題。
求一個數(shù)的因數(shù)的方法:用乘法計算或除法計算(整除)。
過程三:嘗試練習。
(一)用小黑板出示練習題。
1、找出30的因數(shù)有哪些?36的因數(shù)有哪些?
(二)信息反饋:師生互動總結特點。
板書:
一個數(shù)的因數(shù)的個數(shù)是有限的。它的最小因數(shù)是1,的因數(shù)是它本身。
三、課堂作業(yè)。
練習二第2題和第4題前半部分。
四、課堂延伸。
猜一猜:(卡片)只有一個因數(shù)的數(shù)是誰?
五、課堂小結。
師:今天你學會了求一個數(shù)的因數(shù)的方法嗎?你知道一個數(shù)的因數(shù)特點嗎?
生:……。
板書設計:
求一個數(shù)的因數(shù)的方法。
1×14。
142×7方法:用乘法計算或除法計算(整除)。
14÷2。
14的因數(shù)有:1,2,7,14。
1×18。
182×9。
3×6。
18的因數(shù)有:1,2,3,6,9,18特點:一個數(shù)的因數(shù)的個數(shù)是有限的。
還可以表示為:
它的最小因數(shù)是1,的因數(shù)是它本身。
小學數(shù)學倍數(shù)與因數(shù)教學設計篇十
《因數(shù)和倍數(shù)》是一節(jié)數(shù)學概念課,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。這部分內(nèi)容學生初次接觸,對于學生來說是比較難掌握的內(nèi)容。
數(shù)學課程標準“以人為本”的理念決定著數(shù)學教學目標的指向:適應并促進學生的發(fā)展。根據(jù)本節(jié)課知識的特點和學生的認知規(guī)律,我采用了角色轉換、數(shù)形結合、合作學習等發(fā)展性教學手段進行教學,在教學中我注重體現(xiàn)以學生為主體的新理念,努力為學生的探究發(fā)現(xiàn)提供足夠的空間。在課堂中,我主要圍繞以下幾方面來進行教學:
(1)捕捉生活與數(shù)學之間的聯(lián)系,幫助學生理解因數(shù)倍數(shù)相互依存的關系。
因數(shù)和倍數(shù)是揭示兩個整數(shù)之間的一種相互依存關系,在課前談話中我利用一個腦筋急轉彎,滲透相互依存的關系。?通過生活中人與人之間的關系,遷移到數(shù)學中的數(shù)和數(shù)之間的關系,這樣設計自然又貼切,既讓學生感受到了數(shù)學與生活的聯(lián)系,初步學會從數(shù)學的角度去觀察事物、思考問題,激發(fā)了對數(shù)學的興趣,又潛移默化地幫助學生理解了因數(shù)倍數(shù)之間的相互依存關系。在教學中,也達到了預期的效果,學生對因數(shù)和倍數(shù)相互依存的關系理解的比較深刻。
(2)角色轉換,讓學生親身體驗數(shù)和數(shù)之間的聯(lián)系。
因數(shù)和倍數(shù)這節(jié)課研究的是數(shù)和數(shù)之間的關系,知識內(nèi)容比較抽象。因而,我采用了“擬人化”的教學手段,每人一張數(shù)字卡片,學生和老師都變成了數(shù)學王國里的一名成員。當學生想回答問題時都會高高地舉起自己的號碼,整節(jié)課學生都沉浸在自己的角色體驗中,學生都把自己當成了一個數(shù)。通過對自己一個數(shù)的認識,舉一反三,從而理解了數(shù)與數(shù)之間的因數(shù)和倍數(shù)關系,既充分激發(fā)了學生的學習興趣,又十分有效地突破了教學難點。
(3)數(shù)形結合,讓學生帶著已有知識走進數(shù)學課堂。
“數(shù)形結合”是一種重要的數(shù)學思想。對教師來說則是一種教學策略,是一種發(fā)展性課堂教學手段;對學生來說又是一種學習方法。如果長期滲透,運用恰當,則使學生形成良好的數(shù)學意識和思想,長期穩(wěn)固地作用于學生的數(shù)學學習生涯中。開課教師引導學生進行空間想象。
(4)重組教材,根據(jù)學生的實際情況,多種形式探究找因數(shù)倍數(shù)的方法。
教材上,探究因數(shù)這部分的例題比較少,只有一個:找18的因數(shù)。根據(jù)學生的實際情況,我進行了重組教材,先讓學生根據(jù)乘法算式“一對對”地找出15的因數(shù),在此基礎上再讓學生探究18的因數(shù)。通過“質(zhì)疑”:有什么辦法能保證既找全又不遺漏呢?讓學生思考并發(fā)現(xiàn):按照一定的順序一對對的找因數(shù),能既找全又不遺漏。進而又借助體態(tài)語言——打手勢,讓學生說出20和24的因數(shù),達到了鞏固練習的目的。這樣設計由易到難,由淺入深,符合了學生的認知規(guī)律。而在探究倍數(shù)時,我則大膽的放手,讓學生自主探索找一個數(shù)倍數(shù)的方法,給學生提供了廣闊的思維空間。這樣通過多種形式的教學,既激發(fā)了學生的學習興趣,又極大地提高了課堂教學的實效性。
(5)趣味活動,擴大學生思維的空間,培養(yǎng)學生發(fā)散思維的能力。
只有讓學生親身感受到數(shù)學知識內(nèi)在的智取因素,數(shù)學學習的無窮魅力才能深深地打動學生。這節(jié)課的練習設計緊緊把握概念的內(nèi)涵與外延,設計有效練習,拓展知識空間。譬如:讓學生用所學知識介紹自己,通過數(shù)字卡片找自己的因數(shù)和倍數(shù)朋友等等。學生拿著自己的數(shù)字卡片上臺找自己的朋友,讓臺下學生判斷自己的學號是不是這個數(shù)的因數(shù)或倍數(shù),如果臺下學生的學號是這個數(shù)的因數(shù)或倍數(shù)就站到前面。由于答案不唯一,學生思考問題的空間很大,這樣既培養(yǎng)了學生的發(fā)散思維能力,又使學生享受到了數(shù)學思維的快樂。但由于我缺乏時間觀念,這部分時間太倉促,沒有展開練習,學生沒有盡興,也沒有達到充分地練習效果。
因數(shù)和倍數(shù)教學反思。
《倍數(shù)和因數(shù)》這一內(nèi)容與原來教材比有了很大的不同,老教材中是先建立整除的概念,再在此基礎上認識因數(shù)倍數(shù),而現(xiàn)在是在未認識整除的情況下直接認識倍數(shù)和因數(shù)的。數(shù)學中的“起始概念”一般比較難教,這部分內(nèi)容學生初次接觸,對于學生來說是比較難掌握的內(nèi)容。首先是名稱比較抽象,在現(xiàn)實生活中又不經(jīng)常接觸,對這樣的概念教學,要想讓學生真正理解、掌握、判斷,需要一個長期的消化理解的過程。
這節(jié)課我在教學中充分體現(xiàn)以學生為主體,為學生的探究發(fā)現(xiàn)提供足夠的時空和適當?shù)闹笇?,同時,也為提高課堂教學的有效性,我在本課的教學中體現(xiàn)了自主化、活動化、合作化和情意化,具體做到了以下幾點:
(一)?操作實踐,舉例內(nèi)化,認識倍數(shù)和因數(shù)。
(二)自主探究,意義建構,找倍數(shù)和因數(shù)。
整個教學過程中力求體現(xiàn)學生是學習的主體,教師只是教學活動的組織者、指導者、參與者。整節(jié)課中,教師始終為學生創(chuàng)造寬松的學習氛圍,讓學生自主探索,學習理解倍數(shù)和因數(shù)的意義,探索并掌握找一個數(shù)的倍數(shù)和因數(shù)的方法,引導學生在充分的動口、動手、動腦中自主獲取知識。
新課程提出了合作學習的學習方式,教學中的多次合作不僅能讓學生在合作中發(fā)表意見,參與討論,獲得知識,發(fā)現(xiàn)特征,而且還很好地培養(yǎng)了學生的合作學習能力,初步形成合作與競爭的意識。
(三)變式拓展,實踐應用---—促進智能內(nèi)化。
練習的設計不僅緊緊圍繞教學重點,而且注意到了練習的層次性,趣味性。在游戲中,師生互動,激活了學生的情感,學生的思維不斷活躍起來,學生不僅參與率高,而且還較好地鞏固了新知。課上,我能注重自始至終關注學生學習興趣、學習熱情、學習自信等情感因素的培養(yǎng),并及時讓學生感受到學習成功的喜悅,享受數(shù)學,感悟文化魅力。
由于這節(jié)是概念課,因此有不少東西是由老師告知的,但并不意味著學生完全被動地接受。教學之前我知道這節(jié)課時間會很緊,所以在備課的時候,我認真鉆研了教材,仔細分析了教案,看哪些地方時間安排的可以少一些,所以我在第一部分認識因數(shù)和倍數(shù)這一環(huán)節(jié)里縮短出示時間,直接出示,,實際效果我認為是比較理想的。課上還應該及時運用多媒體將學生找的因數(shù)呈現(xiàn)出來,引導學生歸納總結自己的發(fā)現(xiàn):最小的因數(shù)是1,最大的因數(shù)是它本身。教師應該及時跟上個性化的語言評價,激活學生的情感,將學生的思維不斷活躍起來。
小學數(shù)學倍數(shù)與因數(shù)教學設計篇十一
本課內(nèi)容是學生四年級學習的延續(xù),在四年級(下冊)教材里,學生已經(jīng)建立了倍數(shù)和因數(shù)的概念,會找10以內(nèi)自然數(shù)的倍數(shù),100以內(nèi)自然數(shù)的因數(shù)。這課教學公倍數(shù)和最小公倍數(shù),要學生理解公倍數(shù)和最小公倍數(shù)的意義,學會找兩個數(shù)的公倍數(shù)和最小公倍數(shù)的方法,為后面學習公因數(shù)、最大公因數(shù)的意義,會求公因數(shù)、最大公因數(shù)的方法,進行通分、約分和分數(shù)四則計算作充分全面的準備。作為全新的課改內(nèi)容,本課教材編排與舊教材相比,改革的力度較大,體現(xiàn)了濃郁的課改氣息,具體體現(xiàn)在以下幾方面:
1、潤物細無聲:
在解決實際問題中理解概念。用長3厘米寬2厘米的小長方形去鋪邊長分別是6厘米、8厘米的正方形,哪個能正好鋪滿?教材以學生喜歡的操作情景入手,激發(fā)學生探索的欲望,在探索中生成問題:怎樣的正方形肯定能正好鋪滿?怎樣的不行?像這樣能正好鋪滿的正方形還能找到嗎?引發(fā)學生深入探索,在充分探索觀察的基礎上發(fā)現(xiàn):能正好鋪滿的正方形的邊長正好既是小長方形長的倍數(shù),又是寬的倍數(shù)。這時引入公倍數(shù)的概念自然是水到渠成,學生覺得很自然、親切,覺得解決的問題是有價值的,公倍數(shù)的概念也是現(xiàn)實的、有意義的鮮活概念。
2、多樣呈精彩:
在找兩個數(shù)的公倍數(shù)和最小公倍數(shù)的時候,采用全開放的方式,放大學生思維空間讓學生自由探索,以小組交流形成思維碰撞,呈現(xiàn)多彩的智慧。以評價促方法的對比,以評價促思維的深入,以評價促探索精神的提升,學生自然自得其樂,收獲多多。
3、適度顯睿智:
在練習部分,教材能尊重學生的思維差異,能尊重學生的心理需求,讓學生選用喜歡的方法去解決問題,這是適度體現(xiàn)的其一。其二對求兩個數(shù)的公倍數(shù)、最小公倍數(shù),教材拋棄了短除法的方法,而只要學生找10以內(nèi)數(shù)的公倍數(shù)、最小公倍數(shù),降低了學習要求,更符合學生實際。
小學數(shù)學倍數(shù)與因數(shù)教學設計篇十二
課本p81的學習內(nèi)容和練習十五的練習。
1、使學生加深對公因數(shù)和最大公因數(shù)意義的理解,掌握求兩個數(shù)最大公因數(shù)的方法。
2、能在練習的過程中發(fā)現(xiàn)求兩數(shù)最大公因數(shù)的兩種特殊情況。
3、體現(xiàn)算法的多樣化和個性化,培養(yǎng)學生獨立思考和合作學習的能力。
掌握找兩個數(shù)的最大公因數(shù)的方法。
掌握兩種特殊情況下求兩個數(shù)最大公因數(shù)的方法。
師:同學們還記得什么是公因數(shù),什么是最大公因數(shù)嗎?請你根據(jù)已知的信息,快速找出15和20的公因數(shù)與最大公因數(shù)。
15的因數(shù):1,3,5,15。
20的因數(shù):1,2,4,5,10,20。
15和20的公因數(shù)有(),最大公因數(shù)是()。
(指名口答加課件訂正)。
師:在接下來要學習的分數(shù)計算和一些解決實際問題中,我們經(jīng)常要用到最大公因數(shù)的知識。所以今天我們就一起來學習怎樣求最大公因數(shù)。
(板書:求最大公因數(shù))。
師:昨天同學們都進行了預習,你們找到求最大公因數(shù)的方法了嗎?請在小組內(nèi)交流一下。
師:請一位同學來匯報一下你是怎樣求18和27的最大公因數(shù)的?
生:可以先分別找出18和27的因數(shù),再找出它們的公因數(shù),其中最大的就是最大公因數(shù)。
18的因數(shù):1,2,3,6,9,18。
27的因數(shù):1,3,9,27。
18和27的最大公因數(shù)是9。
師:這種方法先寫出兩個數(shù)的因數(shù),再找出它們的公有因數(shù),其中最大的就是最大公因數(shù)。所以我們在寫出兩個數(shù)的因數(shù)后,應該寫上這樣一句話:18和27最大公因數(shù)是9。
除了這種方法,同學們還會其他方法嗎?請同學拿著學案紙上臺投影展示匯報。
預設。
(1)課本第二種。
18的因數(shù):1,2,3,6,9,18。
其中1、3、9也是27的因數(shù),所以1、3、9是18和27的公因數(shù),9是它們的最大公因數(shù)。
師:這種方法先找出18的因數(shù),再看這些因數(shù)中誰是27的因數(shù),那它們就是18和27的公因數(shù),最大的一個自然就是最大公因數(shù)。能夠先找18的因數(shù),能不能先找27的因數(shù)呢?(能)。
師:(指著這種方法)我們只是想找出它們的最大公因數(shù),大家動腦筋思考一下,這種方法還能不能更簡化和優(yōu)化一些?(引導學生發(fā)現(xiàn),寫出18或27的因數(shù)后,從大到小看誰是另一個數(shù)的因數(shù),滿足的第一個就是最大公因數(shù))。
(2)其它的方法。
分解質(zhì)因數(shù)法和短除法根據(jù)實際情況靈活處理。
1、預習評價,糾錯鞏固。
師:通過剛才的學習,你掌握了求最公因數(shù)的方法了嗎?老師在課前收集了幾份預習作業(yè),你能發(fā)現(xiàn)這些練習的錯誤或做得不夠好的地方嗎?(投影展示典型錯例。)。
2、閱讀課本,提出質(zhì)疑。
師:現(xiàn)在請同學們再閱讀課本和反思剛才的學習過程,還有什么疑問嗎?(課前了解學案再做預設)。
3、方法歸納,點撥提升。
其實兩個數(shù)的公因數(shù)和它們的最大公因數(shù)之間也存在某種關系,你發(fā)現(xiàn)了嗎?(多請幾個學生來匯報他們的答案,并引導學生觀察例2的板書,以及學案上多個例子,發(fā)現(xiàn)公因數(shù)是最大公因數(shù)的因數(shù)。)。
師:所有公因數(shù)都是最大公因數(shù)的因數(shù)。我們可以利用這個發(fā)現(xiàn)快速地檢驗自己是否找對了公因數(shù)和最大公因數(shù)。(讓學生用例題和學案上1,2個例子來試試怎樣檢驗)。
師:回顧剛才大家介紹的多種求最大公因數(shù)的方法,其中這種做法(指著黑板)直接根據(jù)最大公因數(shù)的定義來找,屬于基本方法,每個同學都應該理解和掌握。在這種方法基礎上,同學們可以選擇自己喜歡和擅長的方法去求最大公因數(shù)。
師:現(xiàn)在老師馬上考考大家,你有信心做對嗎?
15和1230和45。
師:看來大家掌握得都不錯,都能做對。老師要提高難度,不僅要做對,還要找出規(guī)律。請完成課本p81做一做,完成后在小組里訂正和說一說自己的發(fā)現(xiàn)。
4和816和321和78和9。
(1)匯報最大公因數(shù)答案。
(2)說一說自己的發(fā)現(xiàn)。(多請幾個學生說說發(fā)現(xiàn),逐漸歸納成結論)。
師:當兩數(shù)成倍數(shù)關系時,較小的數(shù)就是它們的最大公因數(shù)。當兩數(shù)只有公因數(shù)1時(也就是大家在預習時在你知道嗎里面了解到的互質(zhì)數(shù)),它們的最大公因數(shù)也是1。
(3)教師小結。
師:像這樣能夠直接看出最大公因數(shù)的,就不用再從頭去找公因數(shù)了,也就是不用寫出計算過程,直接寫出誰和誰的最大公因數(shù)是幾就可以了。你們掌握了找最大公因數(shù)的兩種特殊情況了嗎?請迅速完成課本82頁第3題,直接填寫在書上。
(1)9和16的最大公因數(shù)是()。
a、1b、3c、4d、9。
(2)16和48的最大公因數(shù)是()。
a、4b、6c、8d、16。
(3)甲數(shù)是乙數(shù)的倍數(shù),甲、乙兩數(shù)的最大公因數(shù)是()。
a、1b、甲數(shù)c、乙數(shù)d、甲、乙兩數(shù)的積。
師:看來直接找兩個數(shù)的最大公因數(shù)并不能難倒大家,現(xiàn)在老師看看大家能不能運用知識來解決一些問題。
()()()()。
小學數(shù)學倍數(shù)與因數(shù)教學設計篇十三
1、分數(shù)的意義:把單位“1”平均分成若干份,表示這樣的一份或者幾份的數(shù),叫做分數(shù)。在分數(shù)里,表示把單位“1”平均分成多少份的數(shù),叫做分數(shù)的分母;表示取了多少份的數(shù),叫做分數(shù)的分子;其中的一份,叫做分數(shù)單位。
2、百分數(shù)的意義:表示一個數(shù)是另一個數(shù)的百分之幾的數(shù),叫做百分數(shù)。也叫百分率或百分比。百分數(shù)通常不寫成分數(shù)的形式,而用特定的“%”來表示。百分數(shù)一般只表示兩個數(shù)量關系之間的倍數(shù)關系,后面不能帶單位名稱。
3、百分數(shù)表示兩個數(shù)量之間的倍比關系,它的后面不能寫計量單位。
4、成數(shù):幾成就是十分之幾。
分數(shù)的種類。
按照分子、分母和整數(shù)部分的不同情況,可以分成:真分數(shù)、假分數(shù)、帶分數(shù)。
分數(shù)和除法的關系及分數(shù)的基本性質(zhì)。
1、除法是一種運算,有運算符號;分數(shù)是一種數(shù)。因此,一般應敘述為被除數(shù)相當于分子,而不能說成被除數(shù)就是分子。
2、由于分數(shù)和除法有密切的關系,根據(jù)除法中“商不變”的性質(zhì)可得出分數(shù)的基本性質(zhì)。
3、分數(shù)的分子和分母都乘以或者除以相同的數(shù)(0除外),分數(shù)的大小不變,這叫做分數(shù)的基本性質(zhì),它是約分和通分的依據(jù)。
小學數(shù)學倍數(shù)與因數(shù)教學設計篇一
理解因數(shù)和倍數(shù)的意義以及兩者之間相互依存的關系,掌握找一個數(shù)的因數(shù)和倍數(shù)的方法,發(fā)現(xiàn)一個數(shù)的倍數(shù)、因數(shù)中最大的數(shù)、最小的數(shù),及因數(shù)和倍數(shù)個數(shù)方面的特征。
(二)過程與方法。
通過整數(shù)的乘除運算認識因數(shù)和倍數(shù)的意義,自主探索和總結出求一個數(shù)的因數(shù)和倍數(shù)的方法。
(三)情感態(tài)度和價值觀。
在探索的過程中體會數(shù)學知識之間的內(nèi)在聯(lián)系,在解決問題的過程中培養(yǎng)學生思維的有序性和條理性。
教學重點:理解因數(shù)和倍數(shù)的含義。
教學難點:自主探索有序地找一個數(shù)的因數(shù)和倍數(shù)的方法。
教學課件。
(一)理解因數(shù)和倍數(shù)的意義。
教學例1:
1.觀察算式的特點,進行分類。
(1)仔細觀察算式的特點,你能把這些算式分類嗎?
(2)交流學生的分類情況。(預設:學生會根據(jù)算式的計算結果分成兩類)。
第一類是被除數(shù)、除數(shù)、商都是整數(shù);第二類是被除數(shù)、除數(shù)都是整數(shù),而商不是整數(shù)。
2.明確因數(shù)和倍數(shù)的意義。
(1)同學們,在整數(shù)除法中,如果商是整數(shù)而沒有余數(shù),我們就說被除數(shù)是除數(shù)的倍數(shù),除數(shù)是被除數(shù)的因數(shù)。例如,12÷2=6,我們就說12是2的倍數(shù),2是12的因數(shù)。12÷6=2,我們就說12是6的倍數(shù),6是12的因數(shù)。
(2)在第一類算式中找一個算式,說一說,誰是誰的因數(shù)?誰是誰的倍數(shù)?
(3)強調(diào)一點:為了方便,在研究倍數(shù)與因數(shù)的時候,我們所說的數(shù)指的是自然數(shù)(一般不包括0)。
【設計意圖】引導學生從“整數(shù)的除法算式”中認識因數(shù)和倍數(shù)的意義,簡潔明了,同時為學習因數(shù)和倍數(shù)的依存關系進行有效鋪墊。
3.理解因數(shù)和倍數(shù)的依存關系。
(1)獨立完成教材第5頁“做一做”。
(2)我們能不能說“4是因數(shù)”“24是倍數(shù)”呢?表述時應該注意什么?
【設計意圖】引導學生在理解的基礎上進行正確表述:因數(shù)和倍數(shù)是相互依存的,不是單獨存在的。我們不能說4是因數(shù),24是倍數(shù),而應該說4是24的因數(shù),24是4的倍數(shù)。
4.理解一個數(shù)的“因數(shù)”和乘法算式中的“因數(shù)”的區(qū)別以及一個數(shù)的“倍數(shù)”與“倍”的區(qū)別。
(1)今天學的一個數(shù)的“因數(shù)”與以前乘法算式中的“因數(shù)”有什么區(qū)別呢?
課件出示:
乘法算式中的“因數(shù)”是相對于“積”而言的,可以是整數(shù),也可以是小數(shù)、分數(shù);而一個數(shù)的“因數(shù)”是相對于“倍數(shù)”而言的,它只能是整數(shù)。
(2)今天學的“倍數(shù)”與以前的“倍”又有什么不同呢?
“倍數(shù)”是相對于“因數(shù)”而言的,只適用于整數(shù);而“倍”適用于小數(shù)、分數(shù)、整數(shù)。
(3)交流匯報。
【設計意圖】“一個數(shù)的因數(shù)和倍數(shù)”與學生已學過的乘法算式中的“因數(shù)”以及“倍”的概念既有聯(lián)系又有區(qū)別,學生比較容易混淆,這也是學習一個數(shù)的“因數(shù)”和“倍數(shù)”意義的難點。通過觀察、對比、交流,引導學生發(fā)現(xiàn)一個數(shù)的“因數(shù)”和乘法算式中的“因數(shù)”的區(qū)別以及一個數(shù)的“倍數(shù)”與“倍”的區(qū)別。
(二)找一個數(shù)的因數(shù)。
教學例2:
1.探究找18的因數(shù)的方法。
(1)18的因數(shù)有哪些?你是怎么找的?
(2)交流方法。
預設:方法一:根據(jù)因數(shù)和倍數(shù)的意義,通過除法算式找18的因數(shù)。
因為18÷1=18,所以1和18是18的因數(shù)。
因為18÷2=9,所以2和9是18的因數(shù)。
因為18÷3=6,所以3和6是18的因數(shù)。
方法二:根據(jù)尋找哪兩個整數(shù)相乘的積是18,尋找18的因數(shù)。
因為1×18=18,所以1和18是18的因數(shù)。
因為2×9=18,所以2和9是18的因數(shù)。
因為3×6=18,所以3和6是18的因數(shù)。
2.明確18的因數(shù)的表示方法。
(1)我們怎樣來表示18的因數(shù)有哪些呢?怎樣表示簡潔明了?
(2)交流方法。
預設:列舉法,18的因數(shù)有:1,2,3,6,9,18。
3.練習找一個數(shù)的因數(shù)。
(1)你能找出30的因數(shù)有哪些嗎?36的因數(shù)呢?
(2)怎樣找才能不遺漏、不重復地找出一個數(shù)的所有因數(shù)?
【設計意圖】讓學生通過自主探索、交流,獲得找一個數(shù)的因數(shù)的不同方法,在練習中體會“一對一對”有序地找一個數(shù)的因數(shù),避免遺漏或重復。初步感受一個數(shù)的因數(shù)的個數(shù)是有限的,以及“最大因數(shù)、最小因數(shù)”的特征。
(三)找一個數(shù)的倍數(shù)。
教學例3:
1.探究找2的倍數(shù)的方法。
(1)2的倍數(shù)有哪些?你是怎么找的?
(2)交流方法。
預設:方法一:利用除法算式找2的倍數(shù)。
因為2÷2=1,所以2是2的倍數(shù)。
因為4÷2=2,所以4是2的倍數(shù)。
因為6÷2=3,所以6是2的倍數(shù)。
方法二:利用乘法算式找2的倍數(shù)。
因為2×1=2,所以2是2的倍數(shù)。
因為2×2=4,所以4是2的倍數(shù)。
因為2×3=6,所以6是2的倍數(shù)?!?。
(3)2的倍數(shù)能寫完嗎?你能繼續(xù)找嗎?寫不完怎么辦?
(4)根據(jù)前面的經(jīng)驗,試著表示出2的倍數(shù)有哪些?(預設:列舉法、圖示法)。
2.練習找一個數(shù)的倍數(shù)。
你能找出3的倍數(shù)有哪些嗎?5的倍數(shù)呢?
【設計意圖】在理解“倍數(shù)”的基礎上,讓學生進一步體會有序思考的必要性。初步感受一個數(shù)的倍數(shù)的個數(shù)是無限的,以及“最小倍數(shù)”的特征。
1.從前面找因數(shù)和倍數(shù)的過程中,你有什么發(fā)現(xiàn)?
2.討論交流。
3.歸納總結。
預設:一個數(shù)的因數(shù)的個數(shù)是有限的,最小的因數(shù)是1,最大的因數(shù)是它本身;一個數(shù)的倍數(shù)的個數(shù)是無限的,沒有最大的倍數(shù),最小的倍數(shù)是它本身。1是所有非零自然數(shù)的因數(shù)。
(五)鞏固練習。
1.課件出示教材第7頁練習二第1題。
(1)想一想,怎樣找不會遺漏、不會重復?
(2)哪些數(shù)既是36的因數(shù),也是60的因數(shù)?
【設計意圖】通過練習,讓學生再次體會“1是所有非零自然數(shù)的因數(shù)”“一個數(shù)最大的因數(shù)是它本身”和“一個數(shù)的因數(shù)的個數(shù)是有限的”。同時,滲透兩個數(shù)的“公因數(shù)”的意義。
2.課件出示教材第7頁練習二第3題。
(1)學生獨立完成,交流答案。
(2)思考:5的倍數(shù)有什么特征?
【設計意圖】滲透5的倍數(shù)的特征。
3.課件出示教材第7頁練習二第5題。
(1)學生獨立完成,交流答案。
(2)你能改正錯誤的說法嗎?
(六)全課總結,交流收獲。
這節(jié)課我們學了哪些知識?你有什么收獲?
小學數(shù)學倍數(shù)與因數(shù)教學設計篇二
教學目標:
1、通過操作活動得出相應的乘除法算式,幫助學生理解倍數(shù)和因數(shù)的意義;探索求個數(shù)的倍數(shù)和因數(shù)的方法,發(fā)現(xiàn)一個數(shù)倍數(shù)和因數(shù)的某些特征。
2、在探索一個數(shù)的倍數(shù)和因數(shù)的過程中培養(yǎng)學生觀察、分析、概括能力,培養(yǎng)有序思考能力。
3、通過倍數(shù)和因數(shù)之間的互相依存關系使學生感受數(shù)學知識的內(nèi)在聯(lián)系,體會到數(shù)學內(nèi)容的奇妙、有趣。
教學重點:理解倍數(shù)和因數(shù)的意義。
教學難點:探索求一個數(shù)的倍數(shù)和因數(shù)的方法。
教學準備:每桌準各12個一樣大小的正方形,每人準備一張自己學號的卡片。
設計理念:通過竟猜、操作、比一比誰寫得多,找朋友等形式多樣的活動激發(fā)學生持續(xù)的學習興趣;學生通過獨立思考、合作文流進行自主探索;教師引導學生掌握數(shù)學思考的方法。
教學過程:
1、讓學生進行智力競猜春暖花香的季節(jié),公園里許多人在劃船,一條船上有兩個父親兩個兒子,但總共只有3個人,這是怎么回事呢?(部分學生能猜出三個人分別是孫子、爸爸、和爺爺)
2、孫子、爸爸、爺爺?shù)拿址謩e是韓韓,韓有才、韓廣發(fā)。請學生以韓有才為中心介紹下三個人的關系。學生可能會說出韓有才.是爸爸,韓有才是兒子的語句,這時引導學生說出誰是誰的爸爸誰是準的兒子。
3、上述父子關系是一種互相依存的關系,在表述時一定要完整。并向?qū)W生說明自然數(shù)中某兩個數(shù)之間也有這種類似的依存關系倍數(shù)和因數(shù)。
設計說明:智力競猜走學生喜歡的形式,因為每個學生都有爭強好勝之心,競猜有兩個作用,一是激發(fā)學生的學習興趣,二是以此引出相互依存的關系,為理解倍數(shù)和因數(shù)的相互依存關系作鋪墊。
1、師:智慧從手指問流出,通過操作我們能發(fā)現(xiàn)許多的知識。請同桌同學拿出課前準備的12個同樣大小的正方形,試一試能擺出幾個不同的長方形,并思考一下其中蘊涵著哪些不同的乘除法算式。
2、請學生匯報不同的擺法,以及相應的乘除法算式。(乘法算式和除法算式分開寫)再向?qū)W生說明:如果一個圖形經(jīng)過旋轉后和另一個圖形一樣,我們就認為這兩個圖形是一樣的,讓學生特重復的圖形和算式去掉。(板書三十乘法算式,和幾十相應的除法算式)
設計說明;讓學生寫出蘊涵的乘除法算式符合學生的知識基礎,學生有的可能用乘法表示,也有的可能用除法表示;讓學生將旋轉后相同的去掉,這是一次簡化,很多學生并不知道,需要指導,這樣可以使學生認識到事物的本質(zhì)。
3、讓學生一起看乘法算式43=12,向?qū)W生指出:12是4的倍數(shù),12也是3的倍數(shù),4是12的因數(shù),3也是12的因數(shù)。
4、先請一個學生站起來說一說.然后同桌的同學再互相說一說。
5、讓學生仿照說出62=12和121=12中哪個數(shù)是哪個數(shù)的倍數(shù),哪個數(shù)是哪個數(shù)的因數(shù)。
6、學生相互出一道乘法算式,并說一說誰是誰的倍數(shù),誰是誰的因數(shù)。學生可能會出現(xiàn)0( )=0的情況,借此向?qū)W生說明我們研究因敷和倍數(shù)一般指不是0的自然數(shù)。
設計說明:倍數(shù)和因數(shù)是全新的概念,需要教師的傳授、講解,需要學生的適當記憶重復、仿照。當然,要使學生真正理解還必須舉一反三,通過互相舉例可以逐步完善學生對倍數(shù)和因數(shù)的認識,同時使學生明確倍數(shù)和因數(shù)的研究范圍。
7、以43=12與123=4為例,向?qū)W生說明后面的除法算式是由前面的乘法算式得到的,根據(jù)這個除法算式可以說誰是誰的倍數(shù),誰是誰的因數(shù),說好后再讓學生試一試其他幾個除法算式中的關系。
8、練習:根據(jù)下面的算式,說說哪個數(shù)是哪個數(shù)的因數(shù),哪個數(shù)是哪個數(shù)的倍數(shù)
54=20 357=5 3+4=7
(1)學生回答后引發(fā)學生思考:能不能說20是倍數(shù),4是因數(shù)。使學生進一步理解倍數(shù)是兩個數(shù)之間的一種相互依存的關系,必須說哪個是哪個的倍數(shù),因數(shù)也同樣如此。
(2)通過3+4=7使學生進一步理解倍數(shù)和因數(shù)都是建立在乘法或除法的基礎之上的。
設計說明:乘法和除法是一種互逆的關系,在學習中應該溝通它們之間的聯(lián)系;通過三道練習可以鞏固剛剛獲得的對倍數(shù)和因數(shù)的認識,將融會貫通落到實處。
1、找一個數(shù)的因數(shù)。
(1)聯(lián)系板書的乘除法算式觀察思考12的因數(shù)有哪些,井想辦法找出15的所有因數(shù)。
(2)學生獨立思考,明白根據(jù)一個乘法(除法)算式可以找出15的兩個因數(shù),在學生充分交流的基礎上引導學生有條理的一對一對說出15的因數(shù)。
(3)用一對一對的方法找出36的所有因數(shù)??赡苡械膶W生根據(jù)乘法算式找的,也有的學生是根據(jù)除法算式找的,都應該給予肯定。
(4)引導學生觀察12、15、36的因數(shù),說一說有什么發(fā)現(xiàn)。一個數(shù)的因數(shù)個數(shù)是有限的,其中最小的因數(shù)都是1,最大的都是它本身。
設計說明:先安排學生找一個數(shù)的因數(shù)可以使學生利用操作得到的算式進行,觀察,這樣比較自然,而且為于找一個數(shù)的因數(shù)指明了方向。學生交流時突出了方法的多樣性,既可以根據(jù)乘法算式想,也可以根據(jù)除法算式想,交流后引導學生一對一對的找是必要的,它可以培養(yǎng)學生的有序思考。最后引導學生觀察。使學生自主發(fā)現(xiàn)、歸納出一個數(shù)的因數(shù)的某些特征。
2、找一個數(shù)的倍數(shù)。
(1)讓學生找3的倍數(shù),比一比誰找得多。
(2)學生匯報后,引導學生有序思考,并得出3的倍數(shù)可以用3乘連續(xù)的自然數(shù)1、2、3,3的倍數(shù)的個數(shù)是無限的,所以寫3的`倍數(shù)時要借助省略號表示結果。
(3)找出2的倍數(shù)和5的倍數(shù),并引導學生觀察3、2、5的倍數(shù)情況,說一說有什么發(fā)現(xiàn)。一個數(shù)的倍數(shù)個數(shù)是無限的,其中最小的倍數(shù)是它本身,沒有最大的倍數(shù)。
設計說明:讓學生比一比誰找的倍數(shù)多,可以使學生產(chǎn)生認知沖突,認識到一個數(shù)的倍數(shù)個數(shù)是無限的,在學生匯報后同樣需要引導學生的有序思考,需要引導學生自主發(fā)現(xiàn)、歸納一個數(shù)倍數(shù)的特征。
1、想想做做的第l題。學生表述后強調(diào)哪個是哪個的倍數(shù)(或因數(shù))。
設計說明:第l題是基礎練習.可以鞏固對倍數(shù)和因數(shù)的認識,2、3兩題聯(lián)系實際,使學生感悟到其中蘊藏著求一個數(shù)倍數(shù)和因數(shù)的方法,以及倍數(shù)和因數(shù)的某些特征。第4題通過游戲活動進一步激發(fā)學生持續(xù)的學習熱情,而且可以綜合應用求倍數(shù)和因數(shù)的方法,再次認識到倍數(shù)和因數(shù)的某些特征。
1、通過這節(jié)課的學習你有什么收獲?向你的同伴介紹一下。
2、生活中許多現(xiàn)象與我們學習的倍數(shù)和因數(shù)的知識有關,課后同學們可以利用今天所學的知識探索一下1小時等于60分的好處。通過探索使學生明白由于60的因數(shù)是兩位數(shù)中最多的,可以方便計算。
設計說明:向同伴介紹自己的收獲可以將課堂中學到的知識進行自我梳理,同時通過探索1小時等于60分的好處,可以鞏固倍數(shù)和因數(shù)的相關知識,溝通知識間的聯(lián)系,拓展學生的知識面,使學生認識到數(shù)學知識的應用價值。
小學數(shù)學倍數(shù)與因數(shù)教學設計篇三
一、教材分析:
我說課的內(nèi)容是:人教版五年級下冊第88~90頁的《最小公倍數(shù)》一課,最小公倍數(shù)是在學生掌握了倍數(shù)、因數(shù)和公因數(shù)概念的基礎上進行教學的,主要是為了以后學習通分做準備。在生活實際中也存在它自身的的意義和作用,這節(jié)課是一節(jié)以概念為本的教學。教材的編寫意圖是使抽象的數(shù)學知識與生活實際相聯(lián)系,建立概念;用自己想到的方法嘗試求兩個數(shù)的最小公倍數(shù),體現(xiàn)算法的多樣化。
二、學情分析:
在不同的學校、班級進行前測,直接讓不同認知水平的學生,用模擬的小長方形墻磚鋪成正方形。在動手操作中,由于受密鋪的影響,橫拼豎擺,不但耗時過長,而且很難有效的構建公倍數(shù)內(nèi)在的結構關系。因此在設計操作環(huán)節(jié)時,我搭建“腳手架”。通過構建公倍數(shù)內(nèi)在的結構關系和構建公倍數(shù)體系兩個環(huán)節(jié)進行有效教學。成功搭建起教學內(nèi)容與學生求知心理之間的橋梁。
三、教學目標:
(1)建立公倍數(shù)與最小公倍數(shù)的概念,會用集合圖表示。掌握求100以內(nèi)兩個數(shù)最小公倍數(shù)的方法。
(2)通過動手操作、獨立思考、合作探究、合作交流等方式,建立公倍數(shù)和最小公倍數(shù)的概念,培養(yǎng)發(fā)現(xiàn)問題、解決問題的能力。
(3)學會用數(shù)學的眼光觀察生活、思考問題。積極參與到對數(shù)學問題的探究活動中。真真切切地體驗到學習數(shù)學的快樂和價值。
四、教學準備:
游戲卡片一套,模擬墻壁的平面圖、模擬長方形墻磚多套,作業(yè)紙多張和多媒體課件一套。
五、教法和學法:
加點理念課堂上我采用嘗試教學法和啟發(fā)教學法。
學生通過動手操作、獨立思考、合作探究、合作交流等方法進行學習。
六、教學過程:
這節(jié)課我按照下面五個環(huán)節(jié)進行教學:初步感知,建立表象;動手操作,建立概念;自主探究,歸納方法;實際應用,回歸生活;全課總結,延伸課外。
(一)、初步感知,建立表象。
首先我從游戲中引入,我把枯燥的倍數(shù)復習設計成“搶倍數(shù)的.游戲”。讓學生初步感悟公倍數(shù)。(預設5-6分鐘)。
具體操作:
首先我手里拿著數(shù)字卡片,給學生說,今天老師給大家?guī)硪粋€風靡我們?nèi)嗟挠螒颉獡尡稊?shù)游戲。面對全體同學講一下規(guī)則:找兩個同學上來,一個負責搶3的倍數(shù),一個負責搶2的倍數(shù)。老師把卡片放到黑板上,過了搶的時間老師會把卡片收起來。最后搶的多的同學獲勝。
然后把全班分成兩大組,要求每組快速派一名代表上來,
當兩名學生上臺進行游戲,其他學生做裁判共同參與。
接下來游戲,當?shù)?張卡片出來的時候,兩個同學會同時搶6這個數(shù)字。如果沒有出現(xiàn)搶的局面。我會再出示12這個數(shù)字。學生很容易發(fā)現(xiàn)并說出:數(shù)字6是決定游戲勝負的關鍵,因為6既是2的倍數(shù),又是3的倍數(shù)。
緊跟著追問:“為什么都來搶6這張卡片”。先讓這兩個代表說說,再讓其他同學說說。
然后揭示出公倍數(shù)的概念。6既是2的倍數(shù),又是3的倍數(shù),也就是說6是3和2公有的倍數(shù),我們把6叫做3和2的公倍數(shù).(板書公倍數(shù)及概念。)。
引導學生想想:那你還知道哪個數(shù)是3和2的公倍數(shù)?
學生答出12、18、24等數(shù),并用這些數(shù)完整的表述出公倍數(shù)的概念。
及時表揚說的對,說的完整的同學。多讓幾個同學說說,并讓同桌說說,強化公倍數(shù)的概念。
(二)、動手操作,建立概念。
這一大環(huán)節(jié)是深刻理解公倍數(shù),建立最小公倍數(shù)的重點內(nèi)容,為此我分兩個層次進行教學。
(1)固定的正方形邊長,選擇長方形墻磚。(預設6-7分)。
首先在前面通過游戲感悟公倍數(shù)的基礎上,過渡到生活中。讓學生體驗公倍數(shù)能在生活中幫我們做什么。
(出示生活情境,課件顯示。)。
當學生明白題意后,要求學生利用模擬的長方形墻磚和墻壁正方形平面圖,
分小組活動進行動手操作。學生通過擺一擺,畫一畫,得到不同的方案。
在匯報方案時,學生都會選擇長3分米,寬2分米的墻磚。讓學生說說自己的想法。適時進行追問:“正方形墻面墻壁的邊長所用墻磚的長和寬有什么關系?”
讓學生自主發(fā)現(xiàn):按照要求進行,所鋪成的正方形邊長必須是小長方形長和寬的公倍數(shù)這一結論。
這個時候多讓幾個學生說說這一結論。
其次我再追問:“大家為什么都不選擇長5分米,寬3分米的墻磚?”
學生很容易答出,因為12不是5和3的公倍數(shù)。
最后我作課堂小結:“看來所鋪正方形墻壁的邊長必須是長方形墻磚長3分米,寬2分米的公倍數(shù)?!?BR> (2)用固定的長方形墻磚,鋪多個的正方形。(預設6-7分)。
從上個環(huán)節(jié)直接過渡到問題中。“同學們,真了不起,通過動手操作,獲得很有價值的發(fā)現(xiàn)。(課件出示情境)用這種長3分米寬2分米的長方形墻磚,整塊整塊的鋪,還可以鋪成邊長是多少分米的正方形?”
小學數(shù)學倍數(shù)與因數(shù)教學設計篇四
教學目標:
1、理解質(zhì)數(shù)和合數(shù)的概念,并能判斷一個數(shù)是質(zhì)數(shù)還是合數(shù),會把自然數(shù)按約數(shù)的個數(shù)進行分類。
2、培養(yǎng)學生自主探索、獨立思考、合作交流的能力。
3、培養(yǎng)學生敢于探索科學之謎的精神,充分展示數(shù)學自身的魅力。
教學重點:
1、理解掌握質(zhì)數(shù)、合數(shù)的概念。
2、初步學會準確判斷一個數(shù)是質(zhì)數(shù)還是合數(shù)。教學難點:區(qū)分奇數(shù)、質(zhì)數(shù)、偶數(shù)、合數(shù)。
教學過程:
一、探究發(fā)現(xiàn),總結概念:
1、師:(出示三個同樣的小正方形)每個正方形的邊長為1,用這樣的三個正方形拼成一個長方形,你能拼出幾個不同的長方形?學生獨立思考,然后全班交流。
2、師:這樣的四個小正方形能拼出幾個不同的長方形?學生各自獨立思考,想像后舉手回答。
3、師:同學們再想一下,如果有12個這樣的小正方形,你能拼出幾個不同的長方形?師:我看到許多同學不用畫就已經(jīng)知道了。(指名說一說)。
學生幾乎是異口同聲地說:會越多。
師:確定嗎?(引導學生展開討論。)。
5、師:同學們,用小正方形拼長方形,有時只能拼出一種,有時拼出的長方形不止一種。你覺得當小正方形的個數(shù)是什么數(shù)的時候,只能拼一種?什么情況下拼得的長方形不止一種?并舉例說明。
先讓學生小組討論,然后全班交流,師根據(jù)學生的回答板書。
師:同學們,像上面這些數(shù)(板書的3、13、7、5、11等數(shù)),在數(shù)學上我們把它們叫做質(zhì)數(shù),下面的這些數(shù)(4、6、8、9、10、12、14、15等數(shù))我們把它們叫做合數(shù)。那究竟什么樣的數(shù)叫質(zhì)數(shù),什么樣的數(shù)叫合數(shù)呢?學生獨立思考后,在小組內(nèi)進行交流,然后再全班交流。
引導學生總結質(zhì)數(shù)和合數(shù)的概念,結合學生回答,教師板書:(略)。
6、讓學生舉例說說哪些數(shù)是質(zhì)數(shù),哪些數(shù)是合數(shù),并說出理由。
7、師:那你們認為“1”是什么數(shù)?讓學生獨立思考,后展開討論。
二、動手操作,制質(zhì)數(shù)表。
1、師出示:73。讓學生思考著它是不是質(zhì)數(shù)。
師:要想馬上知道73是什么數(shù)還真不容易。如果有質(zhì)數(shù)表可查就方便了。(同學們都說“是呀”。)師:這表從哪來呢?(教師出示百以內(nèi)數(shù)表)這上面是1到100這100個數(shù),它不是質(zhì)數(shù)表,你們能不能想辦法找出100以內(nèi)的質(zhì)數(shù),制成質(zhì)數(shù)表?誰來說說自己的想法?(讓學生充分發(fā)表自己的想法。)。
2、讓學生動手制作質(zhì)數(shù)表。
3、集體交流方法。
三、練習鞏固:完成練習四第。
1、2題。
四、課題小結:
這節(jié)課你在激烈的討論中有什么收獲?
將本文的word文檔下載到電腦,方便收藏和打印。
小學數(shù)學倍數(shù)與因數(shù)教學設計篇五
(1)教材的地位和前后關系:在學習本單元之前,學生已經(jīng)認識了百以內(nèi)、千以內(nèi)、萬以內(nèi)、億以內(nèi)以及一些整億的數(shù)。但這只是對數(shù)字的淺在認識,為學生進一步學習公倍數(shù)和公因數(shù),以及分數(shù)的約分、通分和四則運算奠定基礎。
(2)教學目標:
知識、技能目標:
1.讓學生理解倍數(shù)和因數(shù)的意義,掌握找一個數(shù)的倍數(shù)和因數(shù)的方法,發(fā)現(xiàn)一個數(shù)的倍數(shù)、因數(shù)中最大的數(shù)、最小的數(shù)及其個數(shù)方面的特征。
情感、價值目標:
2.讓學生初步意識到可以從一個新的角度來研究非零自然數(shù)的特征及其相互關系,培養(yǎng)學生的觀察、分析和抽象概括能力,體會教學內(nèi)容的奇妙、有趣,產(chǎn)生對數(shù)學的好奇心。
(3)教學重點:
理解倍數(shù)和因數(shù)的含義與方法。
(4)教學難點:
首先從學生的操作入手,由淺入深,利用學生對乘法運算以及長方形的長、寬和面積關系的已有認識,在操作中引出倍數(shù)和因數(shù)的概念。
其次以學生討論、交流、相互評價,促成學生對找一個數(shù)的倍數(shù)、一個數(shù)的因數(shù)的方法進行優(yōu)化處理,提升、鞏固學生方法表達的完整性、有效性,避免學生只掌握了方法的理解,而不能全面的正確的表達。
(1)合作交流、揭示主題。
用12個大小完全相同的小正方形,進行不同的擺法展示,為了避免簡單的操作,引導學生通過算式來想他是怎么擺的。組織交流,引出算式與概念鑒定。
(2)教學概念、正反促成。
利用橫里讀、豎里讀,形成了比較系統(tǒng)的知識概念,并及時出示整個前提:是在不含0的自然數(shù),讓學生自己舉例,示范說、相互說,最后以教師舉學生不容易想到了例子:4×4=16,18÷6=3,促成學生不僅從乘法的角度去思考,而且也可以從除法的角度進行,也為后面找一個數(shù)的因數(shù)的方法做好伏筆。
(3)設疑,置疑,激發(fā)學生的反思力度。
在教學找一個數(shù)的倍數(shù)時,“才說到12、18是3的倍數(shù)(板書:3的倍數(shù)),3的倍數(shù)是不是只有12、18這兩個數(shù)呢?”組織交流:3的倍數(shù)有哪些呢?同學互評,交流形成自己的學習成果,提高形成了知識的整體性教學,加大了探索的力度,提高了思維的難度,“分鐘內(nèi)你們寫完了嗎?如果再給半分鐘呢?為什么?”
“教學找一個數(shù)的因數(shù)”以談話導入,形成知識相互的聯(lián)系與區(qū)別,
“談話:必須說清誰是誰的倍數(shù),誰是誰的因數(shù)。所以6可能是某些數(shù)的倍數(shù),也可能是某些數(shù)的因數(shù),那我們就來找一個數(shù)的因數(shù)。你能找出36所有的因數(shù)嗎?”
(5)討論互評,自主學習。
放手讓學生學習找一個數(shù)的因數(shù),從無序到有序,從自尋到互學,請學生板書,
學生評價,“提問:你是用什么方法找到一個數(shù)的因數(shù),可以介紹給大家嗎?還有其他方法嗎?”
1×36=3636÷1=36。
2×18=3636÷2=18。
3×12=3636÷3=12。
4×9=3636÷4=9。
6×6=3636÷6=6。
(6)自主不失指導,掌握不失總結。
如:提問:5為什么不是36的因數(shù)?(因為36÷5不能整除,有余數(shù))。
小結:不能被這個數(shù)整除的數(shù)就不是這個數(shù)的因數(shù)。
小結:我們即可以從乘法算式,也可以從除法算式找到一個數(shù)的因數(shù)。
提問:那對于一個數(shù)的因數(shù)從36的因數(shù)、15的因數(shù)這兩個例子又有什么發(fā)現(xiàn)?
總結:對于一個數(shù)的倍數(shù)和因數(shù),它們是不同的,但通過乘法算式、除法算式又是相互依存的、相互聯(lián)系的。
可根據(jù)情況自行設計。
小學數(shù)學倍數(shù)與因數(shù)教學設計篇六
本節(jié)課基本能實現(xiàn)預期的教學目標,讓學生準確的理解“公倍數(shù)”與“最小公倍數(shù)”的概念和意義,也能夠在學習方法上進行恰當?shù)闹笇?。在鉆研教材、把握目標的基礎上,充分利用材料組織教學,讓學生深入淺出的進行學習課本的知識,教學過程也充分注意到了讓學生獨立思考、動手操作、自主探究知識,體現(xiàn)了“以生為主”的教學理念。
從作業(yè)的情況來看,學生對于用集合圈表示的方法學生錯誤很多,書寫的要求要更規(guī)范一些。
二
本節(jié)課我發(fā)現(xiàn)對特殊方法求幾個數(shù)的最小公倍數(shù),倍數(shù)關系的學生掌握得快,但用乘積找最小公倍數(shù)的規(guī)律(特點),給學生思考交流的時間有些少,學生找到的`特點有局限性,老師也沒有及時給予提示。比如:當是奇數(shù)和偶數(shù)時,最小公倍數(shù)不一定就是這兩數(shù)的乘積。如6和9的最小公倍數(shù)是18而不是54。這一特點是偶然現(xiàn)象不是普遍規(guī)律??梢龑W生對四組數(shù)字再比較,引導發(fā)現(xiàn)他們因數(shù)的特征(公因數(shù)只有1)使學生形成準確的認識。造成這一失誤的原因一方面是由于時間的緊,另一方面擔心復習公因數(shù)會影響新知識的學習。其三是對教材的鉆研不夠,自己對這一部分知識把握也不準。其次,由于在時間的控制上不恰當,后面部分任務還沒有完成。
小學數(shù)學倍數(shù)與因數(shù)教學設計篇七
1.使學生認識倍數(shù)和因數(shù),能判斷兩個自然數(shù)間的因數(shù)和倍數(shù)關系;學會找一個數(shù)的因數(shù)和倍數(shù)的方法,能按順序找出100以內(nèi)自然數(shù)的所有因數(shù),10以內(nèi)自然數(shù)的所有倍數(shù);了解一個數(shù)的因數(shù)、倍數(shù)的特點。
2.使學生經(jīng)歷探索求一個數(shù)的因數(shù)或倍數(shù)的方法、一個數(shù)的因數(shù)和倍數(shù)特點的過程,體會數(shù)學知識、方法的內(nèi)在聯(lián)系,能有條理地展開思考,培養(yǎng)觀察、比較,以及分析、推理和抽象、概括等思維能力,發(fā)展數(shù)感。
3.使學生主動參與操作、思考、探索等活動,獲得解決問題的成功感受,樹立學好數(shù)學的信心,養(yǎng)成樂于思考、勇于探究等良好品質(zhì)。
小黑板、準備12個同樣大的正方形學具。
一、操作引入,認識意義。
1.操作交流。
引導:你能用12個小正方形拼成一個長方形嗎?請同桌兩人合作拼一拼,看看每排擺幾個,擺了幾排,想想有幾種拼法,用算式把你的拼法表示出來。學生操作,用算式表示,教師巡視。
交流:你有哪些拼法?請你說一說,并交流你表示的算式。
結合學生交流,呈現(xiàn)不同拼法,分別板書出積是12的三道乘法算式(包括可以板書除法算式)。
2.認識意義。
(2)啟發(fā):現(xiàn)在讓你看另外兩個算式,你能說一說哪個是哪個的因數(shù),哪個是哪個的倍數(shù)嗎?同桌互相說說看。
(3)小結:從上面可以看出,在整數(shù)乘法算式里,兩個乘數(shù)都是積的因數(shù),積是兩個乘數(shù)的倍數(shù)。它們之間的關系是相互依存的。這就是我們今天學習的新內(nèi)容:因數(shù)和倍數(shù)。(板書課題)在研究因數(shù)和倍數(shù)時,所說的數(shù)一般指不是o的自然數(shù)。
小學數(shù)學倍數(shù)與因數(shù)教學設計篇八
不管多大的數(shù)相加其最基本的原則都是20以內(nèi)的加法原則,20以內(nèi)進位加法的速算口訣為:幾加九進十減一、幾加八進十減二、幾加七進十減三、幾加六進十減四。由于加法具有交換律,所以我們只需要記住這幾句就可以了,在100以內(nèi)的加法中,先觀察兩個各位數(shù)字,找出他們中間較大的數(shù),按口訣進行計算可以很快的算出答案。
“湊整”先算法。
例題1.24+44+56。
=24+(44+56)。
=24+100=124。
解題思路:因為44+56=100是個整百的數(shù),所以先把它們的和計算出來,這樣再加別的數(shù)會比較簡單。
例題2.53+36+47。
=(53+47)+36。
=100+36=136。
解題思路:因為53+47=100是個整百數(shù),所以先把+47帶著符號搬家,搬到+36前面,然后再把53+47的和算出來。
養(yǎng)成良好的計算習慣。
養(yǎng)成良好的計算習慣,是提高孩子計算能力切實有效的辦法。幫助孩子養(yǎng)成以下良好計算習,應該做到“一看、二想、三計算”的認真計算習慣。
計算是一件非常嚴肅認真的事情,來不得半點馬虎,但恰恰有孩子沒有良好學習習慣,拿到計算題后,沒有看清數(shù)字,沒有弄清運算順序,就盲目的算起來。
小學數(shù)學倍數(shù)與因數(shù)教學設計篇九
教學內(nèi)容:
義務教育課程標準小學數(shù)學五年級下冊第二章《因數(shù)和倍數(shù)》第1節(jié)例1(教材第13頁)及練習二的第2題,第四題的前部分。
教材分析:
本節(jié)教學是在學生學習掌握了因數(shù)和倍數(shù)兩個概念的基礎上,在教師的引導下,讓學生運用乘法算式及除法中的整除自主嘗試、探究“求一個數(shù)的因數(shù)”的方法。同時,通過多種形式的訓練,使學生能熟練找全一個數(shù)的因數(shù)。另外,通過引導學生用集合的形式表示一個數(shù)的因數(shù),一方面給學生滲透集合思想,更重要的是為后面教學求兩個數(shù)的公因數(shù)做準備。
教學目標:
2、逐步培養(yǎng)學生從個別到全體、從具體到一般的抽象歸納的思想方法。
教學重點:
探究求一個數(shù)的因數(shù)的方法及規(guī)律特點。
教學難點:
用求一個數(shù)的因數(shù)的方法熟練找全一個數(shù)的因數(shù)。
教具準備:
投影儀、小黑板、卡片。
教學課時:一課時。
教學設想:
運用嘗試教學法,從學生已有的知識經(jīng)驗出發(fā),通過教師引導、學生自學例1,自主嘗試、探究求一個數(shù)的因數(shù)的方法方法,并能運用所獲得的方法、經(jīng)驗找全一個數(shù)的因數(shù)。
教學過程:
一、復習舊知。
師:同學們,前面學習了因數(shù)和倍數(shù)的概念,老師很想考考你們學得怎么樣,可以嗎?
生:(預設)可以!
師:出示小黑板。
1、利用因數(shù)和倍數(shù)的相互依存關系說一說下面各組數(shù)的相互關系。
21和7,2×7=14,30÷6=5。
2、判斷。
(1)12是倍數(shù),2是因數(shù)。()。
(2)1是14的因數(shù),14是1的倍數(shù)。()。
(3)因為6×0.5=3,所以,6和0.5是3的因數(shù),3是6和0.5的倍數(shù)。()。
教師根據(jù)學生完成練習的情況對學生進行恰當?shù)谋頁P激勵,同時進入新課教學:……。
二、新課教學。
過程一:嘗試訓練。
(一)出示問題。
師:同學們,老師有一個新問題,想請大家?guī)椭鉀Q,行嗎?
生:行!(預設)。
嘗試題:14的因數(shù)有哪幾個?
(二)學生解決問題,教師巡視并根據(jù)實際適時輔導學困生。
(三)信息反饋。
板書:
1×14。
14,2×7。
14÷2。
14的因數(shù)有:1,2,7,14。
過程二:自學課本(p13例1)。
(一)學生自學例1。
教師提出自學要求(投影):
1、18有哪些因數(shù)?
2、文中的小朋友是怎樣找出18的因數(shù)的?他們找完了嗎?如果沒有,請幫助他們完成。
3、你還有別的找法嗎?請試一試,并用自己喜歡的方式寫出18所有的因數(shù)。
(二)信息反饋。
1、反饋自學要求情況;
板書:
1×18。
182×9。
3×6。
18的因數(shù)有1,2,3,6,9,18。
還可以這樣表示:18的因數(shù)。
2、知識對比,探索發(fā)現(xiàn)規(guī)律。
(1)師:同學們,根據(jù)求14和18的因數(shù)時獲得的體驗,再思考下面問題:
投影出示問題:
思考一:你用什么方法找出?
(2)學生思考,教師適時引導。
(3)同桌交流思考結果。
(4)師生互動??偨Y方法、點出課題。
求一個數(shù)的因數(shù)的方法:用乘法計算或除法計算(整除)。
過程三:嘗試練習。
(一)用小黑板出示練習題。
1、找出30的因數(shù)有哪些?36的因數(shù)有哪些?
(二)信息反饋:師生互動總結特點。
板書:
一個數(shù)的因數(shù)的個數(shù)是有限的。它的最小因數(shù)是1,的因數(shù)是它本身。
三、課堂作業(yè)。
練習二第2題和第4題前半部分。
四、課堂延伸。
猜一猜:(卡片)只有一個因數(shù)的數(shù)是誰?
五、課堂小結。
師:今天你學會了求一個數(shù)的因數(shù)的方法嗎?你知道一個數(shù)的因數(shù)特點嗎?
生:……。
板書設計:
求一個數(shù)的因數(shù)的方法。
1×14。
142×7方法:用乘法計算或除法計算(整除)。
14÷2。
14的因數(shù)有:1,2,7,14。
1×18。
182×9。
3×6。
18的因數(shù)有:1,2,3,6,9,18特點:一個數(shù)的因數(shù)的個數(shù)是有限的。
還可以表示為:
它的最小因數(shù)是1,的因數(shù)是它本身。
小學數(shù)學倍數(shù)與因數(shù)教學設計篇十
《因數(shù)和倍數(shù)》是一節(jié)數(shù)學概念課,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。這部分內(nèi)容學生初次接觸,對于學生來說是比較難掌握的內(nèi)容。
數(shù)學課程標準“以人為本”的理念決定著數(shù)學教學目標的指向:適應并促進學生的發(fā)展。根據(jù)本節(jié)課知識的特點和學生的認知規(guī)律,我采用了角色轉換、數(shù)形結合、合作學習等發(fā)展性教學手段進行教學,在教學中我注重體現(xiàn)以學生為主體的新理念,努力為學生的探究發(fā)現(xiàn)提供足夠的空間。在課堂中,我主要圍繞以下幾方面來進行教學:
(1)捕捉生活與數(shù)學之間的聯(lián)系,幫助學生理解因數(shù)倍數(shù)相互依存的關系。
因數(shù)和倍數(shù)是揭示兩個整數(shù)之間的一種相互依存關系,在課前談話中我利用一個腦筋急轉彎,滲透相互依存的關系。?通過生活中人與人之間的關系,遷移到數(shù)學中的數(shù)和數(shù)之間的關系,這樣設計自然又貼切,既讓學生感受到了數(shù)學與生活的聯(lián)系,初步學會從數(shù)學的角度去觀察事物、思考問題,激發(fā)了對數(shù)學的興趣,又潛移默化地幫助學生理解了因數(shù)倍數(shù)之間的相互依存關系。在教學中,也達到了預期的效果,學生對因數(shù)和倍數(shù)相互依存的關系理解的比較深刻。
(2)角色轉換,讓學生親身體驗數(shù)和數(shù)之間的聯(lián)系。
因數(shù)和倍數(shù)這節(jié)課研究的是數(shù)和數(shù)之間的關系,知識內(nèi)容比較抽象。因而,我采用了“擬人化”的教學手段,每人一張數(shù)字卡片,學生和老師都變成了數(shù)學王國里的一名成員。當學生想回答問題時都會高高地舉起自己的號碼,整節(jié)課學生都沉浸在自己的角色體驗中,學生都把自己當成了一個數(shù)。通過對自己一個數(shù)的認識,舉一反三,從而理解了數(shù)與數(shù)之間的因數(shù)和倍數(shù)關系,既充分激發(fā)了學生的學習興趣,又十分有效地突破了教學難點。
(3)數(shù)形結合,讓學生帶著已有知識走進數(shù)學課堂。
“數(shù)形結合”是一種重要的數(shù)學思想。對教師來說則是一種教學策略,是一種發(fā)展性課堂教學手段;對學生來說又是一種學習方法。如果長期滲透,運用恰當,則使學生形成良好的數(shù)學意識和思想,長期穩(wěn)固地作用于學生的數(shù)學學習生涯中。開課教師引導學生進行空間想象。
(4)重組教材,根據(jù)學生的實際情況,多種形式探究找因數(shù)倍數(shù)的方法。
教材上,探究因數(shù)這部分的例題比較少,只有一個:找18的因數(shù)。根據(jù)學生的實際情況,我進行了重組教材,先讓學生根據(jù)乘法算式“一對對”地找出15的因數(shù),在此基礎上再讓學生探究18的因數(shù)。通過“質(zhì)疑”:有什么辦法能保證既找全又不遺漏呢?讓學生思考并發(fā)現(xiàn):按照一定的順序一對對的找因數(shù),能既找全又不遺漏。進而又借助體態(tài)語言——打手勢,讓學生說出20和24的因數(shù),達到了鞏固練習的目的。這樣設計由易到難,由淺入深,符合了學生的認知規(guī)律。而在探究倍數(shù)時,我則大膽的放手,讓學生自主探索找一個數(shù)倍數(shù)的方法,給學生提供了廣闊的思維空間。這樣通過多種形式的教學,既激發(fā)了學生的學習興趣,又極大地提高了課堂教學的實效性。
(5)趣味活動,擴大學生思維的空間,培養(yǎng)學生發(fā)散思維的能力。
只有讓學生親身感受到數(shù)學知識內(nèi)在的智取因素,數(shù)學學習的無窮魅力才能深深地打動學生。這節(jié)課的練習設計緊緊把握概念的內(nèi)涵與外延,設計有效練習,拓展知識空間。譬如:讓學生用所學知識介紹自己,通過數(shù)字卡片找自己的因數(shù)和倍數(shù)朋友等等。學生拿著自己的數(shù)字卡片上臺找自己的朋友,讓臺下學生判斷自己的學號是不是這個數(shù)的因數(shù)或倍數(shù),如果臺下學生的學號是這個數(shù)的因數(shù)或倍數(shù)就站到前面。由于答案不唯一,學生思考問題的空間很大,這樣既培養(yǎng)了學生的發(fā)散思維能力,又使學生享受到了數(shù)學思維的快樂。但由于我缺乏時間觀念,這部分時間太倉促,沒有展開練習,學生沒有盡興,也沒有達到充分地練習效果。
因數(shù)和倍數(shù)教學反思。
《倍數(shù)和因數(shù)》這一內(nèi)容與原來教材比有了很大的不同,老教材中是先建立整除的概念,再在此基礎上認識因數(shù)倍數(shù),而現(xiàn)在是在未認識整除的情況下直接認識倍數(shù)和因數(shù)的。數(shù)學中的“起始概念”一般比較難教,這部分內(nèi)容學生初次接觸,對于學生來說是比較難掌握的內(nèi)容。首先是名稱比較抽象,在現(xiàn)實生活中又不經(jīng)常接觸,對這樣的概念教學,要想讓學生真正理解、掌握、判斷,需要一個長期的消化理解的過程。
這節(jié)課我在教學中充分體現(xiàn)以學生為主體,為學生的探究發(fā)現(xiàn)提供足夠的時空和適當?shù)闹笇?,同時,也為提高課堂教學的有效性,我在本課的教學中體現(xiàn)了自主化、活動化、合作化和情意化,具體做到了以下幾點:
(一)?操作實踐,舉例內(nèi)化,認識倍數(shù)和因數(shù)。
(二)自主探究,意義建構,找倍數(shù)和因數(shù)。
整個教學過程中力求體現(xiàn)學生是學習的主體,教師只是教學活動的組織者、指導者、參與者。整節(jié)課中,教師始終為學生創(chuàng)造寬松的學習氛圍,讓學生自主探索,學習理解倍數(shù)和因數(shù)的意義,探索并掌握找一個數(shù)的倍數(shù)和因數(shù)的方法,引導學生在充分的動口、動手、動腦中自主獲取知識。
新課程提出了合作學習的學習方式,教學中的多次合作不僅能讓學生在合作中發(fā)表意見,參與討論,獲得知識,發(fā)現(xiàn)特征,而且還很好地培養(yǎng)了學生的合作學習能力,初步形成合作與競爭的意識。
(三)變式拓展,實踐應用---—促進智能內(nèi)化。
練習的設計不僅緊緊圍繞教學重點,而且注意到了練習的層次性,趣味性。在游戲中,師生互動,激活了學生的情感,學生的思維不斷活躍起來,學生不僅參與率高,而且還較好地鞏固了新知。課上,我能注重自始至終關注學生學習興趣、學習熱情、學習自信等情感因素的培養(yǎng),并及時讓學生感受到學習成功的喜悅,享受數(shù)學,感悟文化魅力。
由于這節(jié)是概念課,因此有不少東西是由老師告知的,但并不意味著學生完全被動地接受。教學之前我知道這節(jié)課時間會很緊,所以在備課的時候,我認真鉆研了教材,仔細分析了教案,看哪些地方時間安排的可以少一些,所以我在第一部分認識因數(shù)和倍數(shù)這一環(huán)節(jié)里縮短出示時間,直接出示,,實際效果我認為是比較理想的。課上還應該及時運用多媒體將學生找的因數(shù)呈現(xiàn)出來,引導學生歸納總結自己的發(fā)現(xiàn):最小的因數(shù)是1,最大的因數(shù)是它本身。教師應該及時跟上個性化的語言評價,激活學生的情感,將學生的思維不斷活躍起來。
小學數(shù)學倍數(shù)與因數(shù)教學設計篇十一
本課內(nèi)容是學生四年級學習的延續(xù),在四年級(下冊)教材里,學生已經(jīng)建立了倍數(shù)和因數(shù)的概念,會找10以內(nèi)自然數(shù)的倍數(shù),100以內(nèi)自然數(shù)的因數(shù)。這課教學公倍數(shù)和最小公倍數(shù),要學生理解公倍數(shù)和最小公倍數(shù)的意義,學會找兩個數(shù)的公倍數(shù)和最小公倍數(shù)的方法,為后面學習公因數(shù)、最大公因數(shù)的意義,會求公因數(shù)、最大公因數(shù)的方法,進行通分、約分和分數(shù)四則計算作充分全面的準備。作為全新的課改內(nèi)容,本課教材編排與舊教材相比,改革的力度較大,體現(xiàn)了濃郁的課改氣息,具體體現(xiàn)在以下幾方面:
1、潤物細無聲:
在解決實際問題中理解概念。用長3厘米寬2厘米的小長方形去鋪邊長分別是6厘米、8厘米的正方形,哪個能正好鋪滿?教材以學生喜歡的操作情景入手,激發(fā)學生探索的欲望,在探索中生成問題:怎樣的正方形肯定能正好鋪滿?怎樣的不行?像這樣能正好鋪滿的正方形還能找到嗎?引發(fā)學生深入探索,在充分探索觀察的基礎上發(fā)現(xiàn):能正好鋪滿的正方形的邊長正好既是小長方形長的倍數(shù),又是寬的倍數(shù)。這時引入公倍數(shù)的概念自然是水到渠成,學生覺得很自然、親切,覺得解決的問題是有價值的,公倍數(shù)的概念也是現(xiàn)實的、有意義的鮮活概念。
2、多樣呈精彩:
在找兩個數(shù)的公倍數(shù)和最小公倍數(shù)的時候,采用全開放的方式,放大學生思維空間讓學生自由探索,以小組交流形成思維碰撞,呈現(xiàn)多彩的智慧。以評價促方法的對比,以評價促思維的深入,以評價促探索精神的提升,學生自然自得其樂,收獲多多。
3、適度顯睿智:
在練習部分,教材能尊重學生的思維差異,能尊重學生的心理需求,讓學生選用喜歡的方法去解決問題,這是適度體現(xiàn)的其一。其二對求兩個數(shù)的公倍數(shù)、最小公倍數(shù),教材拋棄了短除法的方法,而只要學生找10以內(nèi)數(shù)的公倍數(shù)、最小公倍數(shù),降低了學習要求,更符合學生實際。
小學數(shù)學倍數(shù)與因數(shù)教學設計篇十二
課本p81的學習內(nèi)容和練習十五的練習。
1、使學生加深對公因數(shù)和最大公因數(shù)意義的理解,掌握求兩個數(shù)最大公因數(shù)的方法。
2、能在練習的過程中發(fā)現(xiàn)求兩數(shù)最大公因數(shù)的兩種特殊情況。
3、體現(xiàn)算法的多樣化和個性化,培養(yǎng)學生獨立思考和合作學習的能力。
掌握找兩個數(shù)的最大公因數(shù)的方法。
掌握兩種特殊情況下求兩個數(shù)最大公因數(shù)的方法。
師:同學們還記得什么是公因數(shù),什么是最大公因數(shù)嗎?請你根據(jù)已知的信息,快速找出15和20的公因數(shù)與最大公因數(shù)。
15的因數(shù):1,3,5,15。
20的因數(shù):1,2,4,5,10,20。
15和20的公因數(shù)有(),最大公因數(shù)是()。
(指名口答加課件訂正)。
師:在接下來要學習的分數(shù)計算和一些解決實際問題中,我們經(jīng)常要用到最大公因數(shù)的知識。所以今天我們就一起來學習怎樣求最大公因數(shù)。
(板書:求最大公因數(shù))。
師:昨天同學們都進行了預習,你們找到求最大公因數(shù)的方法了嗎?請在小組內(nèi)交流一下。
師:請一位同學來匯報一下你是怎樣求18和27的最大公因數(shù)的?
生:可以先分別找出18和27的因數(shù),再找出它們的公因數(shù),其中最大的就是最大公因數(shù)。
18的因數(shù):1,2,3,6,9,18。
27的因數(shù):1,3,9,27。
18和27的最大公因數(shù)是9。
師:這種方法先寫出兩個數(shù)的因數(shù),再找出它們的公有因數(shù),其中最大的就是最大公因數(shù)。所以我們在寫出兩個數(shù)的因數(shù)后,應該寫上這樣一句話:18和27最大公因數(shù)是9。
除了這種方法,同學們還會其他方法嗎?請同學拿著學案紙上臺投影展示匯報。
預設。
(1)課本第二種。
18的因數(shù):1,2,3,6,9,18。
其中1、3、9也是27的因數(shù),所以1、3、9是18和27的公因數(shù),9是它們的最大公因數(shù)。
師:這種方法先找出18的因數(shù),再看這些因數(shù)中誰是27的因數(shù),那它們就是18和27的公因數(shù),最大的一個自然就是最大公因數(shù)。能夠先找18的因數(shù),能不能先找27的因數(shù)呢?(能)。
師:(指著這種方法)我們只是想找出它們的最大公因數(shù),大家動腦筋思考一下,這種方法還能不能更簡化和優(yōu)化一些?(引導學生發(fā)現(xiàn),寫出18或27的因數(shù)后,從大到小看誰是另一個數(shù)的因數(shù),滿足的第一個就是最大公因數(shù))。
(2)其它的方法。
分解質(zhì)因數(shù)法和短除法根據(jù)實際情況靈活處理。
1、預習評價,糾錯鞏固。
師:通過剛才的學習,你掌握了求最公因數(shù)的方法了嗎?老師在課前收集了幾份預習作業(yè),你能發(fā)現(xiàn)這些練習的錯誤或做得不夠好的地方嗎?(投影展示典型錯例。)。
2、閱讀課本,提出質(zhì)疑。
師:現(xiàn)在請同學們再閱讀課本和反思剛才的學習過程,還有什么疑問嗎?(課前了解學案再做預設)。
3、方法歸納,點撥提升。
其實兩個數(shù)的公因數(shù)和它們的最大公因數(shù)之間也存在某種關系,你發(fā)現(xiàn)了嗎?(多請幾個學生來匯報他們的答案,并引導學生觀察例2的板書,以及學案上多個例子,發(fā)現(xiàn)公因數(shù)是最大公因數(shù)的因數(shù)。)。
師:所有公因數(shù)都是最大公因數(shù)的因數(shù)。我們可以利用這個發(fā)現(xiàn)快速地檢驗自己是否找對了公因數(shù)和最大公因數(shù)。(讓學生用例題和學案上1,2個例子來試試怎樣檢驗)。
師:回顧剛才大家介紹的多種求最大公因數(shù)的方法,其中這種做法(指著黑板)直接根據(jù)最大公因數(shù)的定義來找,屬于基本方法,每個同學都應該理解和掌握。在這種方法基礎上,同學們可以選擇自己喜歡和擅長的方法去求最大公因數(shù)。
師:現(xiàn)在老師馬上考考大家,你有信心做對嗎?
15和1230和45。
師:看來大家掌握得都不錯,都能做對。老師要提高難度,不僅要做對,還要找出規(guī)律。請完成課本p81做一做,完成后在小組里訂正和說一說自己的發(fā)現(xiàn)。
4和816和321和78和9。
(1)匯報最大公因數(shù)答案。
(2)說一說自己的發(fā)現(xiàn)。(多請幾個學生說說發(fā)現(xiàn),逐漸歸納成結論)。
師:當兩數(shù)成倍數(shù)關系時,較小的數(shù)就是它們的最大公因數(shù)。當兩數(shù)只有公因數(shù)1時(也就是大家在預習時在你知道嗎里面了解到的互質(zhì)數(shù)),它們的最大公因數(shù)也是1。
(3)教師小結。
師:像這樣能夠直接看出最大公因數(shù)的,就不用再從頭去找公因數(shù)了,也就是不用寫出計算過程,直接寫出誰和誰的最大公因數(shù)是幾就可以了。你們掌握了找最大公因數(shù)的兩種特殊情況了嗎?請迅速完成課本82頁第3題,直接填寫在書上。
(1)9和16的最大公因數(shù)是()。
a、1b、3c、4d、9。
(2)16和48的最大公因數(shù)是()。
a、4b、6c、8d、16。
(3)甲數(shù)是乙數(shù)的倍數(shù),甲、乙兩數(shù)的最大公因數(shù)是()。
a、1b、甲數(shù)c、乙數(shù)d、甲、乙兩數(shù)的積。
師:看來直接找兩個數(shù)的最大公因數(shù)并不能難倒大家,現(xiàn)在老師看看大家能不能運用知識來解決一些問題。
()()()()。
小學數(shù)學倍數(shù)與因數(shù)教學設計篇十三
1、分數(shù)的意義:把單位“1”平均分成若干份,表示這樣的一份或者幾份的數(shù),叫做分數(shù)。在分數(shù)里,表示把單位“1”平均分成多少份的數(shù),叫做分數(shù)的分母;表示取了多少份的數(shù),叫做分數(shù)的分子;其中的一份,叫做分數(shù)單位。
2、百分數(shù)的意義:表示一個數(shù)是另一個數(shù)的百分之幾的數(shù),叫做百分數(shù)。也叫百分率或百分比。百分數(shù)通常不寫成分數(shù)的形式,而用特定的“%”來表示。百分數(shù)一般只表示兩個數(shù)量關系之間的倍數(shù)關系,后面不能帶單位名稱。
3、百分數(shù)表示兩個數(shù)量之間的倍比關系,它的后面不能寫計量單位。
4、成數(shù):幾成就是十分之幾。
分數(shù)的種類。
按照分子、分母和整數(shù)部分的不同情況,可以分成:真分數(shù)、假分數(shù)、帶分數(shù)。
分數(shù)和除法的關系及分數(shù)的基本性質(zhì)。
1、除法是一種運算,有運算符號;分數(shù)是一種數(shù)。因此,一般應敘述為被除數(shù)相當于分子,而不能說成被除數(shù)就是分子。
2、由于分數(shù)和除法有密切的關系,根據(jù)除法中“商不變”的性質(zhì)可得出分數(shù)的基本性質(zhì)。
3、分數(shù)的分子和分母都乘以或者除以相同的數(shù)(0除外),分數(shù)的大小不變,這叫做分數(shù)的基本性質(zhì),它是約分和通分的依據(jù)。