教案的修改和完善是一個動態(tài)的過程,需要不斷反思和調(diào)整,以提高教學質(zhì)量。教案應該有明確的教學步驟和時間安排,讓教學過程有序進行。以下是一些教學設(shè)計專家對教案編寫的思考和建議,供大家參考。
數(shù)學高一教案篇一
學習是一個潛移默化、厚積薄發(fā)的過程。編輯老師編輯了高一數(shù)學教案:數(shù)列,希望對您有所幫助!
1.使學生理解數(shù)列的概念,了解數(shù)列通項公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項.
(1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項是由其項數(shù)唯一確定的.
(2)了解數(shù)列的各種表示方法,理解通項公式是數(shù)列第項與項數(shù)的關(guān)系式,能根據(jù)通項公式寫出數(shù)列的前幾項,并能根據(jù)給出的一個數(shù)列的前幾項寫出該數(shù)列的一個通項公式.
(3)已知一個數(shù)列的遞推公式及前若干項,便確定了數(shù)列,能用代入法寫出數(shù)列的前幾項.
2.通過對一列數(shù)的觀察、歸納,寫出符合條件的一個通項公式,培養(yǎng)學生的觀察能力和抽象概括能力.
3.通過由求的過程,培養(yǎng)學生嚴謹?shù)目茖W態(tài)度及良好的思維習慣.
(1)為激發(fā)學生學習數(shù)列的興趣,體會數(shù)列知識在實際生活中的作用,可由實際問題引入,從中抽象出數(shù)列要研究的問題,使學生對所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還有物品堆放個數(shù)的計算等.
(2)數(shù)列中蘊含的函數(shù)思想是研究數(shù)列的指導思想,應及早引導學生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系.在教學中強調(diào)數(shù)列的項是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列.函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項公式法.由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(或幾項)有關(guān)系,從而數(shù)列就有其特殊的表示法——遞推公式法.
(3)由數(shù)列的通項公式寫出數(shù)列的前幾項是簡單的代入法,教師應精心設(shè)計例題,使這一例題為寫通項公式作一些準備,尤其是對程度差的學生,應多舉幾個例子,讓學生觀察歸納通項公式與各項的結(jié)構(gòu)關(guān)系,盡量為寫通項公式提供幫助.
(4)由數(shù)列的'前幾項寫出數(shù)列的一個通項公式使學生學習中的一個難點,要幫助學生分析各項中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動等),由學生歸納一些規(guī)律性的結(jié)論,如正負相間用來調(diào)整等.如果學生一時不能寫出通項公式,可讓學生依據(jù)前幾項的規(guī)律,猜想該數(shù)列的下一項或下幾項的值,以便尋求項與項數(shù)的關(guān)系.
(5)對每個數(shù)列都有求和問題,所以在本節(jié)課應補充數(shù)列前項和的概念,用表示的問題是重點問題,可先提出一個具體問題讓學生分析與的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴格的推理證明(強調(diào)的表達式是分段的);之后再到特殊問題的解決,舉例時要兼顧結(jié)果可合并及不可合并的情況.
(6)給出一些簡單數(shù)列的通項公式,可以求其最大項或最小項,又是函數(shù)思想與方法的體現(xiàn),對程度好的學生應提出這一問題,學生運用函數(shù)知識是可以解決的.
上述提供的高一數(shù)學教案:數(shù)列希望能夠符合大家的實際需要!
數(shù)學高一教案篇二
教學目標:理解集合的概念;掌握集合的三種表示方法,理解集合中元素的三性及元素與集合的關(guān)系;掌握有關(guān)符號及術(shù)語。
教學過程:
一、閱讀下列語句:
1)全體自然數(shù)0,1,2,3,4,5,
2)代數(shù)式.
3)拋物線上所有的點
4)今年本校高一(1)(或(2))班的全體學生
5)本校實驗室的所有天平
6)本班級全體高個子同學
7)著名的科學家
上述每組語句所描述的對象是否是確定的?
二、1)集合:
2)集合的元素:
3)集合按元素的個數(shù)分,可分為1)__________2)_________
三、集合中元素的'三個性質(zhì):
四、元素與集合的關(guān)系:1)____________2)____________
五、特殊數(shù)集專用記號:
4)有理數(shù)集______5)實數(shù)集_____6)空集____
六、集合的表示方法:
1)
2)
3)
七、例題講解:
例1、中三個元素可構(gòu)成某一個三角形的三邊長,那么此三角形一定不是()
a,直角三角形b,銳角三角形c,鈍角三角形d,等腰三角形
例2、用適當?shù)姆椒ū硎鞠铝屑?,然后說出它們是有限集還是無限集?
1)地球上的四大洋構(gòu)成的集合;
2)函數(shù)的全體值的集合;
3)函數(shù)的全體自變量的集合;
4)方程組解的集合;
5)方程解的集合;
6)不等式的解的集合;
7)所有大于0且小于10的奇數(shù)組成的集合;
8)所有正偶數(shù)組成的集合;
例3、用符號或填空:
1)______q,0_____n,_____z,0_____
2)______,_____
3)3_____,
4)設(shè),,則
例4、用列舉法表示下列集合;
1.
2.
3.
4.
例5、用描述法表示下列集合
1.所有被3整除的數(shù)
2.圖中陰影部分點(含邊界)的坐標的集合
課堂練習:
例7、已知:,若中元素至多只有一個,求的取值范圍。
思考題:數(shù)集a滿足:若,則,證明1):若2,則集合中還有另外兩個元素;2)若則集合a不可能是單元素集合。
小結(jié):
作業(yè)班級姓名學號
1.下列集合中,表示同一個集合的是()
a.m=,n=b.m=,n=
c.m=,n=d.m=,n=
2.m=,x=,y=,,.則()
a.b.c.d.
3.方程組的解集是____________________.
4.在(1)難解的題目,(2)方程在實數(shù)集內(nèi)的解,(3)直角坐標平面內(nèi)第四象限的一些點,(4)很多多項式。能夠組成集合的序號是________________.
5.設(shè)集合a=,b=,
c=,d=,e=。
其中有限集的個數(shù)是____________.
6.設(shè),則集合中所有元素的和為
7.設(shè)x,y,z都是非零實數(shù),則用列舉法將所有可能的值組成的集合表示為
8.已知f(x)=x2-ax+b,(a,br),a=,b=,
若a=,試用列舉法表示集合b=
9.把下列集合用另一種方法表示出來:
(1)(2)
(3)(4)
10.設(shè)a,b為整數(shù),把形如a+b的一切數(shù)構(gòu)成的集合記為m,設(shè),試判斷x+y,x-y,xy是否屬于m,說明理由。
11.已知集合a=
(1)若a中只有一個元素,求a的值,并求出這個元素;
(2)若a中至多只有一個元素,求a的取值集合。
12.若-3,求實數(shù)a的值。
【總結(jié)】20xx年已經(jīng)到來,新的一年數(shù)學網(wǎng)會為您整理更多更好的文章,希望本文:集合含義及其表示能給您帶來幫助!
數(shù)學高一教案篇三
:
設(shè)計
.
突出重點.培養(yǎng)能力.
三、課堂練習
教材第13頁練習1、2、3、4.
【助練習】第13頁練習4(1)中用一個方向的斜平行線段表示,用另一方向的平行線段表示如圖:
凡有陰影部分即為所求.
四、小結(jié)
提綱式(略).再一次突出交集和并集兩個概念中“且”,“或”的含義的不同.
五、作業(yè)
習題1至8.
筆練結(jié)合板書.
傾聽.修改練習.掌握方法.
觀察.思考.傾聽.理解.記憶.
傾聽.理解.記憶.
回憶、再現(xiàn)內(nèi)容.
落實
介紹解題技能技巧.
內(nèi)容條理化.
課堂教學設(shè)計說明
2.反演律可根據(jù)學生實際酌情使用.
數(shù)學高一教案篇四
1、鞏固集合、子、交、并、補的概念、性質(zhì)和記號及它們之間的關(guān)系。
2、了解集合的運算包含了集合表示法之間的轉(zhuǎn)化及數(shù)學解題的`一般思想。
3、了解集合元素個數(shù)問題的討論說明。
通過提問匯總練習提煉的形式來發(fā)掘?qū)W生學習方法。
培養(yǎng)學生系統(tǒng)化及創(chuàng)造性的思維。
[教學重點、難點]:會正確應用其概念和性質(zhì)做題[教具]:多媒體、實物投影儀。
[教學方法]:講練結(jié)合法。
[授課類型]:復習課。
[課時安排]:1課時。
[教學過程]:集合部分匯總。
本單元主要介紹了以下三個問題:
1,集合的含義與特征。
2,集合的表示與轉(zhuǎn)化。
3,集合的基本運算。
一,集合的含義與表示(含分類)。
1,具有共同特征的對象的全體,稱一個集合。
2,集合按元素的個數(shù)分為:有限集和無窮集兩類。
數(shù)學高一教案篇五
1、掌握雙曲線的范圍、對稱性、頂點、漸近線、離心率等幾何性質(zhì)。
2、掌握標準方程中的幾何意義。
3、能利用上述知識進行相關(guān)的論證、計算、作雙曲線的草圖以及解決簡單的實際問題。
1、焦點在x軸上,虛軸長為12,離心率為的雙曲線的標準方程為、
2、頂點間的距離為6,漸近線方程為的雙曲線的標準方程為、
3、雙曲線的漸進線方程為、
探究1、類比橢圓的幾何性質(zhì)寫出雙曲線的幾何性質(zhì),畫出草圖并,說出它們的不同、
探究2、雙曲線與其漸近線具有怎樣的關(guān)系、
例1根據(jù)以下條件,分別求出雙曲線的標準方程、
(1)過點,離心率、
(2)、是雙曲線的左、右焦點,是雙曲線上一點,且,,離心率為、
例3(理)求離心率為,且過點的雙曲線標準方程、
2、橢圓的離心率為,則雙曲線的離心率為、
3、雙曲線的漸進線方程是,則雙曲線的離心率等于=、
數(shù)學高一教案篇六
學習是一個潛移默化、厚積薄發(fā)的過程。編輯老師編輯了高一數(shù)學教案:數(shù)列,希望對您有所幫助!
教學目標。
1、使學生理解數(shù)列的概念,了解數(shù)列通項公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項。
(1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項是由其項數(shù)唯一確定的。
(2)了解數(shù)列的各種表示方法,理解通項公式是數(shù)列第項與項數(shù)的關(guān)系式,能根據(jù)通項公式寫出數(shù)列的前幾項,并能根據(jù)給出的一個數(shù)列的前幾項寫出該數(shù)列的一個通項公式。
(3)已知一個數(shù)列的遞推公式及前若干項,便確定了數(shù)列,能用代入法寫出數(shù)列的前幾項。
2、通過對一列數(shù)的觀察、歸納,寫出符合條件的一個通項公式,培養(yǎng)學生的觀察能力和抽象概括能力。
3、通過由求的過程,培養(yǎng)學生嚴謹?shù)目茖W態(tài)度及良好的思維習慣。
教學建議。
(1)為激發(fā)學生學習數(shù)列的興趣,體會數(shù)列知識在實際生活中的作用,可由實際問題引入,從中抽象出數(shù)列要研究的問題,使學生對所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還有物品堆放個數(shù)的計算等。
(2)數(shù)列中蘊含的函數(shù)思想是研究數(shù)列的指導思想,應及早引導學生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系。在教學中強調(diào)數(shù)列的項是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列。函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項公式法。由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(或幾項)有關(guān)系,從而數(shù)列就有其特殊的表示法——遞推公式法。
(3)由數(shù)列的通項公式寫出數(shù)列的前幾項是簡單的代入法,教師應精心設(shè)計例題,使這一例題為寫通項公式作一些準備,尤其是對程度差的學生,應多舉幾個例子,讓學生觀察歸納通項公式與各項的結(jié)構(gòu)關(guān)系,盡量為寫通項公式提供幫助。
(4)由數(shù)列的前幾項寫出數(shù)列的一個通項公式使學生學習中的一個難點,要幫助學生分析各項中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動等),由學生歸納一些規(guī)律性的結(jié)論,如正負相間用來調(diào)整等。如果學生一時不能寫出通項公式,可讓學生依據(jù)前幾項的規(guī)律,猜想該數(shù)列的下一項或下幾項的值,以便尋求項與項數(shù)的關(guān)系。
(5)對每個數(shù)列都有求和問題,所以在本節(jié)課應補充數(shù)列前項和的概念,用表示的問題是重點問題,可先提出一個具體問題讓學生分析與的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴格的推理證明(強調(diào)的表達式是分段的);之后再到特殊問題的解決,舉例時要兼顧結(jié)果可合并及不可合并的情況。
(6)給出一些簡單數(shù)列的通項公式,可以求其最大項或最小項,又是函數(shù)思想與方法的體現(xiàn),對程度好的學生應提出這一問題,學生運用函數(shù)知識是可以解決的。
上述提供的高一數(shù)學教案:數(shù)列希望能夠符合大家的實際需要!
數(shù)學高一教案篇七
學習是一個潛移默化、厚積薄發(fā)的過程。編輯老師編輯了:數(shù)列,希望對您有所幫助!
1.使學生理解數(shù)列的概念,了解數(shù)列通項公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項.
(1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項是由其項數(shù)唯一確定的.
(2)了解數(shù)列的各種表示方法,理解通項公式是數(shù)列第項與項數(shù)的關(guān)系式,能根據(jù)通項公式寫出數(shù)列的前幾項,并能根據(jù)給出的一個數(shù)列的前幾項寫出該數(shù)列的一個通項公式.
(3)已知一個數(shù)列的遞推公式及前若干項,便確定了數(shù)列,能用代入法寫出數(shù)列的前幾項.
2.通過對一列數(shù)的觀察、歸納,寫出符合條件的一個通項公式,培養(yǎng)學生的觀察能力和抽象概括能力.
3.通過由求的過程,培養(yǎng)學生嚴謹?shù)目茖W態(tài)度及良好的思維習慣.
(1)為激發(fā)學生學習數(shù)列的興趣,體會數(shù)列知識在實際生活中的作用,可由實際問題引入,從中抽象出數(shù)列要研究的問題,使學生對所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還有物品堆放個數(shù)的.計算等.
(2)數(shù)列中蘊含的函數(shù)思想是研究數(shù)列的指導思想,應及早引導學生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系.在教學中強調(diào)數(shù)列的項是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列.函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項公式法.由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(或幾項)有關(guān)系,從而數(shù)列就有其特殊的表示法——遞推公式法.
(3)由數(shù)列的通項公式寫出數(shù)列的前幾項是簡單的代入法,教師應精心設(shè)計例題,使這一例題為寫通項公式作一些準備,尤其是對程度差的學生,應多舉幾個例子,讓學生觀察歸納通項公式與各項的結(jié)構(gòu)關(guān)系,盡量為寫通項公式提供幫助.
(4)由數(shù)列的前幾項寫出數(shù)列的一個通項公式使學生學習中的一個難點,要幫助學生分析各項中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動等),由學生歸納一些規(guī)律性的結(jié)論,如正負相間用來調(diào)整等.如果學生一時不能寫出通項公式,可讓學生依據(jù)前幾項的規(guī)律,猜想該數(shù)列的下一項或下幾項的值,以便尋求項與項數(shù)的關(guān)系.
(5)對每個數(shù)列都有求和問題,所以在本節(jié)課應補充數(shù)列前項和的概念,用表示的問題是重點問題,可先提出一個具體問題讓學生分析與的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴格的推理證明(強調(diào)的表達式是分段的);之后再到特殊問題的解決,舉例時要兼顧結(jié)果可合并及不可合并的情況.
(6)給出一些簡單數(shù)列的通項公式,可以求其最大項或最小項,又是函數(shù)思想與方法的體現(xiàn),對程度好的學生應提出這一問題,學生運用函數(shù)知識是可以解決的.
上述提供的:數(shù)列希望能夠符合大家的實際需要!
數(shù)學高一教案篇八
教學目標:
(1)知識與技能:了解集合的含義,理解并掌握元素與集合的“屬于”關(guān)系、集合中元素的三個特性,識記數(shù)學中一些常用的的數(shù)集及其記法,能選擇自然語言、列舉法和描述法表示集合。
(2)過程與方法:從圓、線段的垂直平分線的定義引出“集合”一詞,通過探討一系列的例子形成集合的概念,舉例剖析集合中元素的三個特性,探討元素與集合的關(guān)系,比較用自然語言、列舉法和描述法表示集合。
(3)情感態(tài)度與價值觀:感受集合語言的意義和作用,培養(yǎng)合作交流、勤于思考、積極探討的精神,發(fā)展用嚴密謹慎的集合語言描述問題的習慣。
教學重難點:
(1)重點:了解集合的含義與表示、集合中元素的特性。
(2)難點:區(qū)別集合與元素的概念及其相應的符號,理解集合與元素的關(guān)系,表示具體的集合時,如何從列舉法與描述法中做出選擇。
教學過程:
[設(shè)計意圖]引出“集合”一詞。
【問題2】同學們知道什么是集合嗎?請大家思考討論課本第2頁的思考題。
[設(shè)計意圖]探討并形成集合的含義。
【問題3】請同學們舉出認為是集合的例子。
[設(shè)計意圖]點評學生舉出的例子,剖析并強調(diào)集合中元素的三大特性:確定性、互異性、無序性。
[設(shè)計意圖]區(qū)別表示集合與元素的的符號,介紹集合中一些常用的的數(shù)集及其記法。理解集合與元素的關(guān)系。
[設(shè)計意圖]引出并介紹列舉法。
【問題6】例1的講解。同學們能用列舉法表示不等式x—73的解集嗎?
【問題7】例2的講解。請同學們思考課本第6頁的思考題。
[設(shè)計意圖]幫助學生在表示具體的集合時,如何從列舉法與描述法中做出選擇。
【問題8】請同學們總結(jié)這節(jié)課我們主要學習了那些內(nèi)容?有什么學習體會?
[設(shè)計意圖]學習小結(jié)。對本節(jié)課所學知識進行回顧。
布置作業(yè)。
數(shù)學高一教案篇九
拿到試卷后可以先快速瀏覽一下所有題目,根據(jù)積累的考試經(jīng)驗,大致估計一下每部分應該分配的時間。對于能夠很快做出來的.題目,一定要拿到應得的分數(shù)。
二、確定每部分的答題時間
1、考試時占用了很多時間卻一點也沒有做出來的題目。對于這類題目,你以后考試時就應該盡量減少時間,或者放棄,等以后學習進階了再嘗試著做。
2、考試時花了過多的時間才做出來的題目。對于這類題目,你以后平時做題時要盡量加快速度,或者通過“反復訓練”等提高反應速度,這樣,你下次考試時能用較少的時間做出來。
三、碰到難題時
1、你可以先用“直覺”最快的找到解題思路;
2、如果“直覺”不管用,你可以聯(lián)想以前做過的類似的題目,從而找到解題思路;
3、如果這樣也不行,你可以猜測一下這道題目可能涉及到的知識點和解題技巧。
4、對于花了一定時間仍然不能做出來的題目,要勇于放棄。
四、卷面整潔、字跡清楚、注意小節(jié)
做到卷面整潔、字跡清楚,把標點、符號、解題步驟等小的地方盡量做好,不要丟掉應得的每一分。
數(shù)學高一教案篇十
1、掌握雙曲線的范圍、對稱性、頂點、漸近線、離心率等幾何性質(zhì)
2、掌握標準方程中的幾何意義
3、能利用上述知識進行相關(guān)的論證、計算、作雙曲線的草圖以及解決簡單的實際問題
1、焦點在x軸上,虛軸長為12,離心率為的雙曲線的標準方程為、
2、頂點間的距離為6,漸近線方程為的雙曲線的標準方程為、
3、雙曲線的漸進線方程為、
4、設(shè)分別是雙曲線的半焦距和離心率,則雙曲線的一個頂點到它的一條漸近線的距離是、
探究1、類比橢圓的幾何性質(zhì)寫出雙曲線的幾何性質(zhì),畫出草圖并,說出它們的不同、
探究2、雙曲線與其漸近線具有怎樣的關(guān)系、
練習:已知雙曲線經(jīng)過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標準方程是、
例1根據(jù)以下條件,分別求出雙曲線的標準方程、
(1)過點,離心率、
(2)、是雙曲線的左、右焦點,是雙曲線上一點,且,,離心率為、
例3(理)求離心率為,且過點的雙曲線標準方程、
2、橢圓的離心率為,則雙曲線的離心率為、
3、雙曲線的漸進線方程是,則雙曲線的離心率等于=、
4、設(shè)雙曲線的半焦距為,直線過、兩點,且原點到直線的距離為,求雙曲線的離心率、
將本文的word文檔下載到電腦,方便收藏和打印
推薦度:
點擊下載文檔
搜索文檔
數(shù)學高一教案篇十一
對數(shù)函數(shù)(第二課時)是20__人教版高一數(shù)學(上冊)第二章第八節(jié)第二課時的內(nèi)容,本小節(jié)涉及對數(shù)函數(shù)相關(guān)知識,分三個課時,這里是第二課時復習鞏固對數(shù)函數(shù)圖像及性質(zhì),并用此解決三類對數(shù)比大小問題,是對已學內(nèi)容(指數(shù)函數(shù)、指數(shù)比大小、對數(shù)函數(shù))的延續(xù)和發(fā)展,同時也體現(xiàn)了數(shù)學的實用性,為后續(xù)學習起到奠定知識基礎(chǔ)、滲透方法的作用,因此本節(jié)內(nèi)容起到了一種承上啟下的作用。
二、教學目標
根據(jù)教學大綱的要求以及本節(jié)課的地位與作用,結(jié)合高一學生的認知特點確定教學目標如下:
學習目標:
1、復習鞏固對數(shù)函數(shù)的圖像及性質(zhì)
2、運用對數(shù)函數(shù)的性質(zhì)比較兩個數(shù)的大小
能力目標:
1、培養(yǎng)學生運用圖形解決問題的意識即數(shù)形結(jié)合能力
2、學生運用已學知識,已有經(jīng)驗解決新問題的能力
3、探索出方法,有條理闡述自己觀點的能力
德育目標:
培養(yǎng)學生勤于思考、獨立思考、合作交流等良好的個性品質(zhì)
三、教材的重點及難點
教學中將在以下2個環(huán)節(jié)中突出教學重點:
1、利用學生預習后的心得交流,資源共享,互補不足
2、通過適當?shù)木毩暎訌妼忸}方法的掌握及原理的理解
教學中會在以下3個方面突破教學難點:
1、教師調(diào)整角色,讓學生成為學習的主人,教師在其中起引導作用即可。
2、小組合作探索新問題時,注重生生合作、師生互動,適時用語言鼓勵學生,增強學生參與討論的自信。
3、本節(jié)課采用多媒體輔助教學,節(jié)省時間,加快課程進度,增強了直觀形象性。
四、學生學情分析
長處:高一學生經(jīng)過幾年的數(shù)學學習,已具備一定的數(shù)學素養(yǎng),對于已學知識或用過的數(shù)學思想、方法有一定的應用能力及應用意識,對于本節(jié)課而言,從知識上說,對數(shù)函數(shù)的圖像和性質(zhì)剛剛學過,本節(jié)課是知識的應用,從數(shù)學能力上說,指數(shù)比大小問題的解題思想和方法在這可借鑒,另外數(shù)形結(jié)合能力、小結(jié)概括能力、特殊到一般歸納能力已具備一點。
學生可能遇到的困難:本節(jié)課從教學內(nèi)容上來看,第三類對數(shù)比大小是課本以外補充的內(nèi)容,沒有預習心得,讓學生在課堂中快速通過合作探究來完成解題思路的構(gòu)建,有一定的挑戰(zhàn)性,從學生能力上來看,探索出方法,有條理闡述自己觀點的能力還需加強鍛煉,知識之間的聯(lián)系認識上還顯不足。
五、教法特點
新課程強調(diào)教師要調(diào)整自己的角色,改變傳統(tǒng)的教育方式,在教育方式上,以學生為中心,讓學生成為學習的主人,教師在其中起引導作用即可?;诖?,本節(jié)課遵循此原則重點采用問題探究和啟發(fā)引導式的教學方法。從預習交流心得出發(fā),到探索新問題,再到題后的回顧總結(jié),一切以學生為中心,處處體現(xiàn)學生的主體地位,讓學生多說、多分析、多思考、多總結(jié),引導學生運用自己的語言闡述觀點,加強理解,在生生合作,師生互動中解決問題,為提高學生分析問題、解決問題能力打下基礎(chǔ)。本節(jié)課采用多媒體輔助教學,節(jié)省時間,加快課程進度,增強了直觀形象性。
六、教學過程分析
1、課件展示本節(jié)課學習目標
設(shè)計意圖:明確任務,激發(fā)興趣
2、溫故知新(已填表形式復習對數(shù)函數(shù)的圖像和性質(zhì))
設(shè)計意圖:復習已學知識和方法,為學生形成知識間的聯(lián)系和框架建立平臺,并為下一步的應用打下基礎(chǔ)。
3、預習后心得交流
1)同底對數(shù)比大小
2)既不同底數(shù),也不同真數(shù)的對數(shù)比大小
設(shè)計意圖:通過學生的預習,自己總結(jié)方法及此方法適用的題型,有條理的闡述自己的學習心得,老師只需起引導作用,引導學生從題目表面上升到題目的實質(zhì),從而找到解決問題的有效方法。
4、合作探究——同真異底型的對數(shù)比大小
以例3為例,學生分組合作探究解題方法,預計兩種:一是利用換底公式將此類型轉(zhuǎn)化為同底異真型,利用之前總結(jié)的方法解決此問題。二是利用具體對數(shù)的大小關(guān)系探究出不同底對數(shù)函數(shù)在同一直角坐標系中的圖像,以此來解決此類型比大小問題。
設(shè)計意圖:這一部分是本節(jié)課的難點,探究中充分發(fā)揮學生的主動性,培養(yǎng)主動學習的意識,同時也鍛煉學生各方面能力的很好機會,為以后的探究學習積累經(jīng)驗和方法,充分體現(xiàn)“授之以魚,不如授之以漁”的教學理念。另外數(shù)學問題的解決僅僅只是一半,更重要的是解題之后的回顧,即反思,如果沒有了反思,他們就錯過了解題的一次重要而有效益的方面。因此,本題解決后,讓學生反思明白,要想利用性質(zhì)解決問題,關(guān)鍵要做到“腦中有圖”,以“形”促“數(shù)”。
5、小結(jié)
6、思考題
以20__高考題為例,讓學生學以致用,增強數(shù)學學習興趣。
7、作業(yè)
包括兩個方面:
1、書寫作業(yè)
2、下節(jié)課前的預習作業(yè)
七、教學效果分析
通過本節(jié)課的教學實例來看,這種通過課本內(nèi)容預習,而后課堂交流學習成果的方法效果不錯,既能很好的完成教學任務,又能充分發(fā)揮學生學習的主動性。在自主探究時,學生分組討論過程中,我參與小組討論,對有能力的小組,在探究出一種方法后,可鼓勵完成更多的方法探究,對于能力較弱的小組,可給予適當?shù)奶崾荆箤W生都能動起來,課堂都有所收獲,增強學生自信。另外,對于學生的總結(jié)回答,可能會比較慢,我一定會耐心聽,及時鼓勵,給予學生微笑和語言的鼓勵,效果很好。在小結(jié)環(huán)節(jié)中,對于高一學生自己小結(jié)的方法,是我一直的教學嘗試,由于只訓練了半學期,學生只能達到小結(jié)知識的程度,在以后的訓練中還會加入數(shù)學思想、數(shù)學方法的小結(jié)內(nèi)容,使這些數(shù)學名詞讓學生不再覺得抽象,而是變成具體的,可操作的、具體的解題工具。
數(shù)學高一教案篇十二
(2)利用平面直角坐標系解決直線與圓的位置關(guān)系;
(3)會用“數(shù)形結(jié)合”的數(shù)學思想解決問題.。
直線與圓的方程的應用.。
一、復習引入:
問題1:如何判斷直線與圓的位置關(guān)系?
問題2:如何判斷圓與圓的位置關(guān)系?
二、新課教學:
例1.(課本例4)圖4。2-5是某圓拱形橋的示意圖。這個圓的圓拱跨度ab=20m,拱高op=4m,建造時每間隔4m需要用一根支柱支撐,求支柱的高度(精確到0.01m).
小結(jié)方法:用坐標法解決實際應用題的步驟:
第二步:通過代數(shù)運算,解決代數(shù)問題;
第三步:將代數(shù)運算結(jié)果“翻譯”成實際結(jié)論,.。
例2.(課本例5)已知內(nèi)接于圓的四邊形的對角線互相垂直,求證圓心到一邊的距離等于這條邊所對邊長的一半.
小結(jié)方法:用坐標法解決幾何問題的步驟:
第二步:通過代數(shù)運算,解決代數(shù)問題;
第三步:將代數(shù)運算結(jié)果“翻譯”成幾何結(jié)論.。
課堂練習:課本練習第2,3,4題;。
課后作業(yè):課本習題4.2a組第8,11題.b組第1題。
數(shù)學高一教案篇十三
1、鞏固集合、子、交、并、補的概念、性質(zhì)和記號及它們之間的關(guān)系
2、了解集合的運算包含了集合表示法之間的轉(zhuǎn)化及數(shù)學解題的一般思想
3、了解集合元素個數(shù)問題的討論說明
通過提問匯總練習提煉的形式來發(fā)掘?qū)W生學習方法
培養(yǎng)學生系統(tǒng)化及創(chuàng)造性的思維
[教學重點、難點]:會正確應用其概念和性質(zhì)做題 [教 具]:多媒體、實物投影儀
[教學方法]:講練結(jié)合法
[授課類型]:復習課
[課時安排]:1課時
[教學過程]:集合部分匯總
本單元主要介紹了以下三個問題:
1,集合的含義與特征
2,集合的表示與轉(zhuǎn)化
3,集合的基本運算
一,集合的含義與表示(含分類)
1,具有共同特征的對象的全體,稱一個集合
2,集合按元素的個數(shù)分為:有限集和無窮集兩類
數(shù)學高一教案篇十四
(1)通過實物操作,增強學生的直觀感知。
(2)能根據(jù)幾何結(jié)構(gòu)特征對空間物體進行分類。
(3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構(gòu)特征。
(4)會表示有關(guān)于幾何體以及柱、錐、臺的分類。
(1)讓學生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結(jié)構(gòu)特征。
(2)讓學生觀察、討論、歸納、概括所學的知識。
(1)使學生感受空間幾何體存在于現(xiàn)實生活周圍,增強學生學習的積極性,同時提高學生的觀察能力。
(2)培養(yǎng)學生的空間想象能力和抽象括能力。
重點:讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。 難點:柱、錐、臺、球的結(jié)構(gòu)特征的概括。
(1)學法:觀察、思考、交流、討論、概括。
(2)實物模型、投影儀 四、教學思路
1、教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導學生回憶,舉例和相互交流。教師對學生的活動及時給予評價。
2、所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結(jié)構(gòu)特征的空間物體),你能通過觀察。根據(jù)某種標準對這些空間物體進行分類嗎?這是我們所要學習的內(nèi)容。
1、引導學生觀察物體、思考、交流、討論,對物體進行分類,分辯棱柱、圓柱、棱錐。
3、組織學生分組討論,每小組選出一名同學發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。
(1)有兩個面互相平行;
(2)其余各面都是平行四邊形;
(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
4、教師與學生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。
5、提出問題:各種這樣的棱柱,主要有什么不同?可不可以根據(jù)不同對棱柱分類?
6、以類似的方法,讓學生思考、討論、概括出棱錐、棱臺的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。
7、讓學生觀察圓柱,并實物模型演示,如何得到圓柱,從而概括出圓標的概念以及相關(guān)的概念及圓柱的表示。
8、引導學生以類似的方法思考圓錐、圓臺、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實物模型演示引導學生思考、討論、概括。
9、教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。
1、有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)
2、棱柱的何兩個平面都可以作為棱柱的底面嗎?
3、課本p8,習題1.1 a組第1題。
5、棱臺與棱柱、棱錐有什么關(guān)系?圓臺與圓柱、圓錐呢?
由學生整理學習了哪些內(nèi)容 六、布置作業(yè)
課本p8 練習題1.1 b組第1題
課外練習 課本p8 習題1.1 b組第2題
數(shù)學高一教案篇十五
三維目標的具體內(nèi)容和層次劃分
請闡述數(shù)學課堂教學三維目標的具體內(nèi)容和層次劃分
所謂三維目標是是指:“知識與技能”,“過程和方法”、“情感、態(tài)度、價值觀”。
知識與技能:既是課堂教學的出發(fā)點,又是課堂教學的歸宿。我們在教學過程中,需要學生掌握什么,哪些些問題需要重點掌握,哪些只需簡單理解;技能是會與不會的問題。屬顯性范疇,具有可測性,大都采用定量分析與評價、知識與技能是傳統(tǒng)教學合理的內(nèi)核,是我國傳統(tǒng)教育教學的優(yōu)勢,應該從傳統(tǒng)教學中繼承與發(fā)揚。新課改不是不要雙基,而是不要過度的強調(diào)雙基,而舍棄弱化其它有價值的東西,導致非全面、不和藹的發(fā)展。
過程與方法:既是課堂教學的目標之一,又是課堂教學的操作系統(tǒng)?!斑^程和方法”維度的目標立足于讓學生會學,新課程倡導對學與教的過程的體驗、方法的選擇,是在知識與能力目標基礎(chǔ)上對教學目標的進一步開發(fā)。過程與方法是一個體驗的過程、發(fā)現(xiàn)的過程,不但可以讓學生體驗到科學發(fā)展的過程,我們更多地要讓學生掌握過程,不一定要統(tǒng)一的結(jié)果。
情感、態(tài)度與價值觀:既是課堂教學的目標之一,又是課堂教學的動力系統(tǒng)?!扒楦?、態(tài)度和價值觀”,目標立足于讓學生樂學,新課程倡導對學與教的情感體驗、態(tài)度形成、價值觀的體現(xiàn),是在知識與能力、過程與方法目標基礎(chǔ)上對教學目標深層次的開拓,只有學生充分的認識到他們肩負的責任,就能夠激發(fā)起他們的學習熱情,他們才會有濃厚的學習興趣,才能學有所成,將來回報社會。
三維目標不是三個目標,也不是三種目標,是一個問題的三個方面。三維目標是三位一體不可分割的,他們是相輔相成的,相互促進的。
數(shù)學高一教案篇十六
重難點分析
本節(jié)的重點是二次根式的化簡.本章自始至終圍繞著二次根式的化簡與計算進行,而二次根式的化簡不但涉及到前面學習過的算術(shù)平方根、二次根式等概念與二次根式的運算性質(zhì),還要牽涉到絕對值以及各種非負數(shù)、因式分解等知識,在應用中常常需要對字母進行分類討論.
本節(jié)的難點是正確理解與應用公式.這個公式的表達形式對學生來說,比較生疏,而實際運用時,則要牽涉到對字母取值范圍的討論,學生往往容易出現(xiàn)錯誤.
教法建議
1.性質(zhì)的引入方法很多,以下2種比較常用:
(1)設(shè)計問題引導啟發(fā):由設(shè)計的問題
1)、、各等于什么?
2)、、各等于什么?
啟發(fā)、引導學生猜想出
(2)從算術(shù)平方根的意義引入.
2.性質(zhì)的鞏固有兩個方面需要注意:
(1)注意與性質(zhì)進行對比,可出幾道類型不同的題進行比較;
(2)學生初次接觸這種形式的表示方式,在教學時要注意細分層次加以鞏固,如單個數(shù)字,單個字母,單項式,可進行因式分解的多項式,等等.
(第1課時)
1.掌握二次根式的性質(zhì)
2.能夠利用二次根式的性質(zhì)化簡二次根式
3.通過本節(jié)的學習滲透分類討論的數(shù)學思想和方法
對比、歸納、總結(jié)
1.重點:理解并掌握二次根式的性質(zhì)
2.難點:理解式子中的可以取任意實數(shù),并能根據(jù)字母的取值范圍正確地化簡有關(guān)的二次根式.
1課時
五、教b具學具準備
投影儀、膠片、多媒體
復習對比,歸納整理,應用提高,以學生活動為主
一、導入新課
我們知道,式子()表示非負數(shù)的算術(shù)平方根.
問:式子的意義是什么?被開方數(shù)中的表示的是什么數(shù)?
答:式子表示非負數(shù)的算術(shù)平方根,即,且,從而可以取任意實數(shù).
二、新課
計算下列各題,并回答以下問題:
(1);(2);(3);
1.各小題中被開方數(shù)的冪的底數(shù)都是什么數(shù)?
2.各小題的結(jié)果和相應的被開方數(shù)的冪的底數(shù)有什么關(guān)系?
3.用字母表示被開方數(shù)的冪的底數(shù),將有怎樣的結(jié)論?并用語言敘述你的結(jié)論.
數(shù)學高一教案篇十七
本學期將完成數(shù)學必修1和數(shù)學必修4(人教a版)兩本教材的的學習,教學輔助材料有《同步金太陽導學》。
認真深入地學習《新課程標準》,研讀教材。明確教學目的,把握教學目標,把準教學標高。注意到新教材的特點親和力問題性思想性聯(lián)系性,注意對基本概念的理解、基本規(guī)律的掌握、基本方法的應用上多下功夫,轉(zhuǎn)變教學觀念,螺旋上升地安排核心數(shù)學概念和重要數(shù)學思想,加強數(shù)學思想方法的滲透與概括。在課堂教學中要以學生為主,注重師生互動,對基本的知識點要落實到位,新教材對教學中有疑問的地方要在備課組中多加討論和研究,特別是有關(guān)概念課的教學,一定要講清概念的發(fā)生、發(fā)展、內(nèi)涵、外延,不要模棱兩可。
1.處理好初高中銜接問題。初中內(nèi)容的不適當刪減、降低要求,導致學生雙基無法達到高中教學要求;高中不顧學生的基礎(chǔ),任意拔高教學要求,繁瑣的、高難度的運算充斥課堂。對初中沒學而高中又要求掌握的內(nèi)容(具體內(nèi)容見附錄)。
2.準確把握教學要求,循序漸進地教學。不搞一步到位刪減的內(nèi)容不要隨意補充;不要擅自調(diào)整內(nèi)容順序;教輔材料不能作為教學的依據(jù);把更多的注意力放在核心概念、基本數(shù)學思想方法上;追求通性通法,不追求特技。
3.適當使用信息技術(shù)。新課程主張多媒體教學。在教材中很容易發(fā)現(xiàn)新課改對信息技術(shù)在數(shù)學教學上的應用,并在配備的光盤中提供了相當數(shù)量的課件,有利于學生更全面的吸收知識,提高課堂注意力和學習的興趣。但我還是認為,多媒體知識教學的輔助手段,選不選用多媒體要看教學內(nèi)容。尤其是數(shù)學這門學科,有些直觀的內(nèi)容用多媒體還是不錯的,但有的內(nèi)容諸如讓學生思考體會的問題不是很適合多媒體教學的。根據(jù)學習內(nèi)容需要選擇恰當?shù)男畔⒓夹g(shù)工具和使用科學型計算器;提倡適當使用各種數(shù)學軟件。
4.充分發(fā)揮集體備課的作用。利用每周一次的集體備課,認真討論本周的教學得失,研究下周所教內(nèi)容的重難點,安排周練的內(nèi)容。要根據(jù)實際情況,有針對性地組編訓練題,做到每周一次綜合訓練(同步或滾雪球式的保溫訓練),一次微型補差訓練,要搞好單元過關(guān)訓練。選題要注意基礎(chǔ),強化通法,針對性強,避免對資料上的訓練題全套照搬使用。要重視對數(shù)學尖子生的培養(yǎng),力爭在數(shù)學競賽中取得好成績。
5.在重視智力因素的同時必須關(guān)注非智力因素。應認識到非智力因素在學生全面發(fā)展和數(shù)學學習過程中所起的重要作用,并內(nèi)化為自覺的行為,切實培養(yǎng)學生學習數(shù)學的興趣和良好的個性品質(zhì)。
數(shù)學高一教案篇十八
(1)了解含有“或”、“且”、“非”復合命題的概念及其構(gòu)成形式;
(2)理解邏輯聯(lián)結(jié)詞“或”“且”“非”的含義;
(3)能用邏輯聯(lián)結(jié)詞和簡單命題構(gòu)成不同形式的復合命題;
(4)能識別復合命題中所用的邏輯聯(lián)結(jié)詞及其聯(lián)結(jié)的簡單命題;
(5)會用真值表判斷相應的復合命題的真假;
(6)在知識學習的基礎(chǔ)上,培養(yǎng)學生簡單推理的技能.
重點是判斷復合命題真假的方法;難點是對“或”的含義的理解.
1.新課導入
初一平面幾何中曾學過命題,請同學們舉一個命題的例子.(板書:命題.)
(從初中接觸過的“命題”入手,提出問題,進而學習邏輯的有關(guān)知識.)
學生舉例:平行四邊形的對角線互相平. ……(1)
兩直線平行,同位角相等.…………(2)
教師提問:“……相等的角是對頂角”是不是命題?……(3)
(同學議論結(jié)果,答案是肯定的.)
教師提問:什么是命題?
(學生進行回憶、思考.)
概念總結(jié):對一件事情作出了判斷的語句叫做命題.
(教師肯定了同學的回答,并作板書.)
(教師利用投影片,和學生討論以下問題.)
例1 判斷以下各語句是不是命題,若是,判斷其真假:
2.講授新課
(片刻后請同學舉手回答,一共講了四個問題.師生一道歸納如下.)
(1)什么叫做命題?
可以判斷真假的語句叫做命題.
(2)介紹邏輯聯(lián)結(jié)詞“或”、“且”、“非”.
命題可分為簡單命題和復合命題.
(4)命題的表示:用p ,q ,r ,s ,……來表示.
(教師根據(jù)學生回答的情況作補充和強調(diào),特別是對復合命題的概念作出分析和展開.)
對于給出“若p 則q ”形式的復合命題,應能找到條件p 和結(jié)論q .
3.鞏固新課
(1)5 ;
(2)0.5非整數(shù);
(3)內(nèi)錯角相等,兩直線平行;
(4)菱形的對角線互相垂直且平分;
(5)平行線不相交;
(6)若ab=0 ,則a=0 .
(讓學生有充分的時間進行辨析.教材中對“若…則…”不作要求,教師可以根據(jù)學生的情況作些補充.)
數(shù)學高一教案篇十九
使學生在九年義務教育數(shù)學課程的基礎(chǔ)上,進一步提高作為未來公民所必要的數(shù)學素養(yǎng),以滿足個人發(fā)展與社會進步的需要。具體目標如下。
1.獲得必要的數(shù)學基礎(chǔ)知識和基本技能,理解基本的數(shù)學概念、數(shù)學結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應用,體會其中所蘊涵的數(shù)學思想和方法,以及它們在后續(xù)學習中的作用。通過不同形式的自主學習、探究活動,體驗數(shù)學發(fā)現(xiàn)和創(chuàng)造的歷程。
2.提高空間想像、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本能力。
3.提高數(shù)學地提出、分析和解決問題(包括簡單的實際問題)的能力,數(shù)學表達和交流的能力,發(fā)展獨立獲取數(shù)學知識的能力。
4.發(fā)展數(shù)學應用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學模式進行思考和作出判斷。
5.提高學習數(shù)學的興趣,樹立學好數(shù)學的信心,形成鍥而不舍的鉆研精神和科學態(tài)度。 6.具有一定的數(shù)學視野,逐步認識數(shù)學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數(shù)學的理性精神,體會數(shù)學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
我們所使用的教材是人教版《普通高中課程標準實驗教科書數(shù)學(a版)》,它在堅持我國數(shù)學教育優(yōu)良傳統(tǒng)的前提下,認真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性,時代性,典型性和可接受性等到,具有如下特點:
1.親和力:以生動活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學習激情。
2.問題性:以恰時恰點的問題引導數(shù)學活動,培養(yǎng)問題意識,孕育創(chuàng)新精神。
3.科學性與思想性:通過不同數(shù)學內(nèi)容的聯(lián)系與啟發(fā),強調(diào)類比,推廣,特殊化,化歸等思想方法的運用,學習數(shù)學地思考問題的方式,提高數(shù)學思維能力,培育理性精神。
4.時代性與應用性:以具有時代性和現(xiàn)實感的素材創(chuàng)設(shè)情境,加強數(shù)學活動,發(fā)展應用意識。
1. 選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學生熟悉的素材,用生動活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學的概念和結(jié)論,數(shù)學的思想和方法,以及數(shù)學應用的學習情境,使學生產(chǎn)生對數(shù)學的親切感,引發(fā)學生看個究竟的沖動,以達到培養(yǎng)其興趣的目的。
2. 通過觀察,思考,探究等欄目,引發(fā)學生的思考和探索活動,切實改進學生的學習方式。
3. 在教學中強調(diào)類比,推廣,特殊化,化歸等數(shù)學思想方法,盡可能養(yǎng)成其邏輯思維的習慣。
兩個班一個普高一個職高,學習情況良好,但學生自覺性差,自我控制能力弱,因此在教學中需時時提醒學生,培養(yǎng)其自覺性。班級存在的最大問題是計算能力太差,學生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學中,重點在于培養(yǎng)學生的計算能力,同時要進一步提高其思維能力。同時,由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時適機補充一些內(nèi)容。因此時間上可能仍然吃緊。同時,其底子薄弱,因此在教學時只能注重基礎(chǔ)再基礎(chǔ),爭取每一堂課落實一個知識點,掌握一個知識點。
1、激發(fā)學生的學習興趣。由數(shù)學活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學生的學習信心,提高學習興趣,在主觀作用下上升和進步。
2、注意從實例出發(fā),從感性提高到理性;注意運用對比的方法,反復比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的`知識出發(fā),啟發(fā)學生思考。
3、加強培養(yǎng)學生的邏輯思維能力就解決實際問題的能力,以及培養(yǎng)提高學生的自學能力,養(yǎng)成善于分析問題的習慣,進行辨證唯物主義教育。
4、抓住公式的推導和內(nèi)在聯(lián)系;加強復習檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學生分析問題的能力。
5、自始至終貫徹教學四環(huán)節(jié),針對不同的教材內(nèi)容選擇不同教法。
6、重視數(shù)學應用意識及應用能力的培養(yǎng)。
俗話說的好,好的教學計劃是教學成功的一半,作為一名優(yōu)異的教師,做好一定的教學計劃很有必要。
總結(jié):制定教學計劃的主要目的是為了全面了解學生的數(shù)學學習歷程,激勵學生的學習和改進教師的教學。希望上面的,能受到大家的歡迎!
數(shù)學高一教案篇一
學習是一個潛移默化、厚積薄發(fā)的過程。編輯老師編輯了高一數(shù)學教案:數(shù)列,希望對您有所幫助!
1.使學生理解數(shù)列的概念,了解數(shù)列通項公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項.
(1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項是由其項數(shù)唯一確定的.
(2)了解數(shù)列的各種表示方法,理解通項公式是數(shù)列第項與項數(shù)的關(guān)系式,能根據(jù)通項公式寫出數(shù)列的前幾項,并能根據(jù)給出的一個數(shù)列的前幾項寫出該數(shù)列的一個通項公式.
(3)已知一個數(shù)列的遞推公式及前若干項,便確定了數(shù)列,能用代入法寫出數(shù)列的前幾項.
2.通過對一列數(shù)的觀察、歸納,寫出符合條件的一個通項公式,培養(yǎng)學生的觀察能力和抽象概括能力.
3.通過由求的過程,培養(yǎng)學生嚴謹?shù)目茖W態(tài)度及良好的思維習慣.
(1)為激發(fā)學生學習數(shù)列的興趣,體會數(shù)列知識在實際生活中的作用,可由實際問題引入,從中抽象出數(shù)列要研究的問題,使學生對所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還有物品堆放個數(shù)的計算等.
(2)數(shù)列中蘊含的函數(shù)思想是研究數(shù)列的指導思想,應及早引導學生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系.在教學中強調(diào)數(shù)列的項是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列.函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項公式法.由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(或幾項)有關(guān)系,從而數(shù)列就有其特殊的表示法——遞推公式法.
(3)由數(shù)列的通項公式寫出數(shù)列的前幾項是簡單的代入法,教師應精心設(shè)計例題,使這一例題為寫通項公式作一些準備,尤其是對程度差的學生,應多舉幾個例子,讓學生觀察歸納通項公式與各項的結(jié)構(gòu)關(guān)系,盡量為寫通項公式提供幫助.
(4)由數(shù)列的'前幾項寫出數(shù)列的一個通項公式使學生學習中的一個難點,要幫助學生分析各項中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動等),由學生歸納一些規(guī)律性的結(jié)論,如正負相間用來調(diào)整等.如果學生一時不能寫出通項公式,可讓學生依據(jù)前幾項的規(guī)律,猜想該數(shù)列的下一項或下幾項的值,以便尋求項與項數(shù)的關(guān)系.
(5)對每個數(shù)列都有求和問題,所以在本節(jié)課應補充數(shù)列前項和的概念,用表示的問題是重點問題,可先提出一個具體問題讓學生分析與的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴格的推理證明(強調(diào)的表達式是分段的);之后再到特殊問題的解決,舉例時要兼顧結(jié)果可合并及不可合并的情況.
(6)給出一些簡單數(shù)列的通項公式,可以求其最大項或最小項,又是函數(shù)思想與方法的體現(xiàn),對程度好的學生應提出這一問題,學生運用函數(shù)知識是可以解決的.
上述提供的高一數(shù)學教案:數(shù)列希望能夠符合大家的實際需要!
數(shù)學高一教案篇二
教學目標:理解集合的概念;掌握集合的三種表示方法,理解集合中元素的三性及元素與集合的關(guān)系;掌握有關(guān)符號及術(shù)語。
教學過程:
一、閱讀下列語句:
1)全體自然數(shù)0,1,2,3,4,5,
2)代數(shù)式.
3)拋物線上所有的點
4)今年本校高一(1)(或(2))班的全體學生
5)本校實驗室的所有天平
6)本班級全體高個子同學
7)著名的科學家
上述每組語句所描述的對象是否是確定的?
二、1)集合:
2)集合的元素:
3)集合按元素的個數(shù)分,可分為1)__________2)_________
三、集合中元素的'三個性質(zhì):
四、元素與集合的關(guān)系:1)____________2)____________
五、特殊數(shù)集專用記號:
4)有理數(shù)集______5)實數(shù)集_____6)空集____
六、集合的表示方法:
1)
2)
3)
七、例題講解:
例1、中三個元素可構(gòu)成某一個三角形的三邊長,那么此三角形一定不是()
a,直角三角形b,銳角三角形c,鈍角三角形d,等腰三角形
例2、用適當?shù)姆椒ū硎鞠铝屑?,然后說出它們是有限集還是無限集?
1)地球上的四大洋構(gòu)成的集合;
2)函數(shù)的全體值的集合;
3)函數(shù)的全體自變量的集合;
4)方程組解的集合;
5)方程解的集合;
6)不等式的解的集合;
7)所有大于0且小于10的奇數(shù)組成的集合;
8)所有正偶數(shù)組成的集合;
例3、用符號或填空:
1)______q,0_____n,_____z,0_____
2)______,_____
3)3_____,
4)設(shè),,則
例4、用列舉法表示下列集合;
1.
2.
3.
4.
例5、用描述法表示下列集合
1.所有被3整除的數(shù)
2.圖中陰影部分點(含邊界)的坐標的集合
課堂練習:
例7、已知:,若中元素至多只有一個,求的取值范圍。
思考題:數(shù)集a滿足:若,則,證明1):若2,則集合中還有另外兩個元素;2)若則集合a不可能是單元素集合。
小結(jié):
作業(yè)班級姓名學號
1.下列集合中,表示同一個集合的是()
a.m=,n=b.m=,n=
c.m=,n=d.m=,n=
2.m=,x=,y=,,.則()
a.b.c.d.
3.方程組的解集是____________________.
4.在(1)難解的題目,(2)方程在實數(shù)集內(nèi)的解,(3)直角坐標平面內(nèi)第四象限的一些點,(4)很多多項式。能夠組成集合的序號是________________.
5.設(shè)集合a=,b=,
c=,d=,e=。
其中有限集的個數(shù)是____________.
6.設(shè),則集合中所有元素的和為
7.設(shè)x,y,z都是非零實數(shù),則用列舉法將所有可能的值組成的集合表示為
8.已知f(x)=x2-ax+b,(a,br),a=,b=,
若a=,試用列舉法表示集合b=
9.把下列集合用另一種方法表示出來:
(1)(2)
(3)(4)
10.設(shè)a,b為整數(shù),把形如a+b的一切數(shù)構(gòu)成的集合記為m,設(shè),試判斷x+y,x-y,xy是否屬于m,說明理由。
11.已知集合a=
(1)若a中只有一個元素,求a的值,并求出這個元素;
(2)若a中至多只有一個元素,求a的取值集合。
12.若-3,求實數(shù)a的值。
【總結(jié)】20xx年已經(jīng)到來,新的一年數(shù)學網(wǎng)會為您整理更多更好的文章,希望本文:集合含義及其表示能給您帶來幫助!
數(shù)學高一教案篇三
:
設(shè)計
.
突出重點.培養(yǎng)能力.
三、課堂練習
教材第13頁練習1、2、3、4.
【助練習】第13頁練習4(1)中用一個方向的斜平行線段表示,用另一方向的平行線段表示如圖:
凡有陰影部分即為所求.
四、小結(jié)
提綱式(略).再一次突出交集和并集兩個概念中“且”,“或”的含義的不同.
五、作業(yè)
習題1至8.
筆練結(jié)合板書.
傾聽.修改練習.掌握方法.
觀察.思考.傾聽.理解.記憶.
傾聽.理解.記憶.
回憶、再現(xiàn)內(nèi)容.
落實
介紹解題技能技巧.
內(nèi)容條理化.
課堂教學設(shè)計說明
2.反演律可根據(jù)學生實際酌情使用.
數(shù)學高一教案篇四
1、鞏固集合、子、交、并、補的概念、性質(zhì)和記號及它們之間的關(guān)系。
2、了解集合的運算包含了集合表示法之間的轉(zhuǎn)化及數(shù)學解題的`一般思想。
3、了解集合元素個數(shù)問題的討論說明。
通過提問匯總練習提煉的形式來發(fā)掘?qū)W生學習方法。
培養(yǎng)學生系統(tǒng)化及創(chuàng)造性的思維。
[教學重點、難點]:會正確應用其概念和性質(zhì)做題[教具]:多媒體、實物投影儀。
[教學方法]:講練結(jié)合法。
[授課類型]:復習課。
[課時安排]:1課時。
[教學過程]:集合部分匯總。
本單元主要介紹了以下三個問題:
1,集合的含義與特征。
2,集合的表示與轉(zhuǎn)化。
3,集合的基本運算。
一,集合的含義與表示(含分類)。
1,具有共同特征的對象的全體,稱一個集合。
2,集合按元素的個數(shù)分為:有限集和無窮集兩類。
數(shù)學高一教案篇五
1、掌握雙曲線的范圍、對稱性、頂點、漸近線、離心率等幾何性質(zhì)。
2、掌握標準方程中的幾何意義。
3、能利用上述知識進行相關(guān)的論證、計算、作雙曲線的草圖以及解決簡單的實際問題。
1、焦點在x軸上,虛軸長為12,離心率為的雙曲線的標準方程為、
2、頂點間的距離為6,漸近線方程為的雙曲線的標準方程為、
3、雙曲線的漸進線方程為、
探究1、類比橢圓的幾何性質(zhì)寫出雙曲線的幾何性質(zhì),畫出草圖并,說出它們的不同、
探究2、雙曲線與其漸近線具有怎樣的關(guān)系、
例1根據(jù)以下條件,分別求出雙曲線的標準方程、
(1)過點,離心率、
(2)、是雙曲線的左、右焦點,是雙曲線上一點,且,,離心率為、
例3(理)求離心率為,且過點的雙曲線標準方程、
2、橢圓的離心率為,則雙曲線的離心率為、
3、雙曲線的漸進線方程是,則雙曲線的離心率等于=、
數(shù)學高一教案篇六
學習是一個潛移默化、厚積薄發(fā)的過程。編輯老師編輯了高一數(shù)學教案:數(shù)列,希望對您有所幫助!
教學目標。
1、使學生理解數(shù)列的概念,了解數(shù)列通項公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項。
(1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項是由其項數(shù)唯一確定的。
(2)了解數(shù)列的各種表示方法,理解通項公式是數(shù)列第項與項數(shù)的關(guān)系式,能根據(jù)通項公式寫出數(shù)列的前幾項,并能根據(jù)給出的一個數(shù)列的前幾項寫出該數(shù)列的一個通項公式。
(3)已知一個數(shù)列的遞推公式及前若干項,便確定了數(shù)列,能用代入法寫出數(shù)列的前幾項。
2、通過對一列數(shù)的觀察、歸納,寫出符合條件的一個通項公式,培養(yǎng)學生的觀察能力和抽象概括能力。
3、通過由求的過程,培養(yǎng)學生嚴謹?shù)目茖W態(tài)度及良好的思維習慣。
教學建議。
(1)為激發(fā)學生學習數(shù)列的興趣,體會數(shù)列知識在實際生活中的作用,可由實際問題引入,從中抽象出數(shù)列要研究的問題,使學生對所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還有物品堆放個數(shù)的計算等。
(2)數(shù)列中蘊含的函數(shù)思想是研究數(shù)列的指導思想,應及早引導學生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系。在教學中強調(diào)數(shù)列的項是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列。函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項公式法。由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(或幾項)有關(guān)系,從而數(shù)列就有其特殊的表示法——遞推公式法。
(3)由數(shù)列的通項公式寫出數(shù)列的前幾項是簡單的代入法,教師應精心設(shè)計例題,使這一例題為寫通項公式作一些準備,尤其是對程度差的學生,應多舉幾個例子,讓學生觀察歸納通項公式與各項的結(jié)構(gòu)關(guān)系,盡量為寫通項公式提供幫助。
(4)由數(shù)列的前幾項寫出數(shù)列的一個通項公式使學生學習中的一個難點,要幫助學生分析各項中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動等),由學生歸納一些規(guī)律性的結(jié)論,如正負相間用來調(diào)整等。如果學生一時不能寫出通項公式,可讓學生依據(jù)前幾項的規(guī)律,猜想該數(shù)列的下一項或下幾項的值,以便尋求項與項數(shù)的關(guān)系。
(5)對每個數(shù)列都有求和問題,所以在本節(jié)課應補充數(shù)列前項和的概念,用表示的問題是重點問題,可先提出一個具體問題讓學生分析與的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴格的推理證明(強調(diào)的表達式是分段的);之后再到特殊問題的解決,舉例時要兼顧結(jié)果可合并及不可合并的情況。
(6)給出一些簡單數(shù)列的通項公式,可以求其最大項或最小項,又是函數(shù)思想與方法的體現(xiàn),對程度好的學生應提出這一問題,學生運用函數(shù)知識是可以解決的。
上述提供的高一數(shù)學教案:數(shù)列希望能夠符合大家的實際需要!
數(shù)學高一教案篇七
學習是一個潛移默化、厚積薄發(fā)的過程。編輯老師編輯了:數(shù)列,希望對您有所幫助!
1.使學生理解數(shù)列的概念,了解數(shù)列通項公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項.
(1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項是由其項數(shù)唯一確定的.
(2)了解數(shù)列的各種表示方法,理解通項公式是數(shù)列第項與項數(shù)的關(guān)系式,能根據(jù)通項公式寫出數(shù)列的前幾項,并能根據(jù)給出的一個數(shù)列的前幾項寫出該數(shù)列的一個通項公式.
(3)已知一個數(shù)列的遞推公式及前若干項,便確定了數(shù)列,能用代入法寫出數(shù)列的前幾項.
2.通過對一列數(shù)的觀察、歸納,寫出符合條件的一個通項公式,培養(yǎng)學生的觀察能力和抽象概括能力.
3.通過由求的過程,培養(yǎng)學生嚴謹?shù)目茖W態(tài)度及良好的思維習慣.
(1)為激發(fā)學生學習數(shù)列的興趣,體會數(shù)列知識在實際生活中的作用,可由實際問題引入,從中抽象出數(shù)列要研究的問題,使學生對所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還有物品堆放個數(shù)的.計算等.
(2)數(shù)列中蘊含的函數(shù)思想是研究數(shù)列的指導思想,應及早引導學生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系.在教學中強調(diào)數(shù)列的項是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列.函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項公式法.由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(或幾項)有關(guān)系,從而數(shù)列就有其特殊的表示法——遞推公式法.
(3)由數(shù)列的通項公式寫出數(shù)列的前幾項是簡單的代入法,教師應精心設(shè)計例題,使這一例題為寫通項公式作一些準備,尤其是對程度差的學生,應多舉幾個例子,讓學生觀察歸納通項公式與各項的結(jié)構(gòu)關(guān)系,盡量為寫通項公式提供幫助.
(4)由數(shù)列的前幾項寫出數(shù)列的一個通項公式使學生學習中的一個難點,要幫助學生分析各項中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動等),由學生歸納一些規(guī)律性的結(jié)論,如正負相間用來調(diào)整等.如果學生一時不能寫出通項公式,可讓學生依據(jù)前幾項的規(guī)律,猜想該數(shù)列的下一項或下幾項的值,以便尋求項與項數(shù)的關(guān)系.
(5)對每個數(shù)列都有求和問題,所以在本節(jié)課應補充數(shù)列前項和的概念,用表示的問題是重點問題,可先提出一個具體問題讓學生分析與的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴格的推理證明(強調(diào)的表達式是分段的);之后再到特殊問題的解決,舉例時要兼顧結(jié)果可合并及不可合并的情況.
(6)給出一些簡單數(shù)列的通項公式,可以求其最大項或最小項,又是函數(shù)思想與方法的體現(xiàn),對程度好的學生應提出這一問題,學生運用函數(shù)知識是可以解決的.
上述提供的:數(shù)列希望能夠符合大家的實際需要!
數(shù)學高一教案篇八
教學目標:
(1)知識與技能:了解集合的含義,理解并掌握元素與集合的“屬于”關(guān)系、集合中元素的三個特性,識記數(shù)學中一些常用的的數(shù)集及其記法,能選擇自然語言、列舉法和描述法表示集合。
(2)過程與方法:從圓、線段的垂直平分線的定義引出“集合”一詞,通過探討一系列的例子形成集合的概念,舉例剖析集合中元素的三個特性,探討元素與集合的關(guān)系,比較用自然語言、列舉法和描述法表示集合。
(3)情感態(tài)度與價值觀:感受集合語言的意義和作用,培養(yǎng)合作交流、勤于思考、積極探討的精神,發(fā)展用嚴密謹慎的集合語言描述問題的習慣。
教學重難點:
(1)重點:了解集合的含義與表示、集合中元素的特性。
(2)難點:區(qū)別集合與元素的概念及其相應的符號,理解集合與元素的關(guān)系,表示具體的集合時,如何從列舉法與描述法中做出選擇。
教學過程:
[設(shè)計意圖]引出“集合”一詞。
【問題2】同學們知道什么是集合嗎?請大家思考討論課本第2頁的思考題。
[設(shè)計意圖]探討并形成集合的含義。
【問題3】請同學們舉出認為是集合的例子。
[設(shè)計意圖]點評學生舉出的例子,剖析并強調(diào)集合中元素的三大特性:確定性、互異性、無序性。
[設(shè)計意圖]區(qū)別表示集合與元素的的符號,介紹集合中一些常用的的數(shù)集及其記法。理解集合與元素的關(guān)系。
[設(shè)計意圖]引出并介紹列舉法。
【問題6】例1的講解。同學們能用列舉法表示不等式x—73的解集嗎?
【問題7】例2的講解。請同學們思考課本第6頁的思考題。
[設(shè)計意圖]幫助學生在表示具體的集合時,如何從列舉法與描述法中做出選擇。
【問題8】請同學們總結(jié)這節(jié)課我們主要學習了那些內(nèi)容?有什么學習體會?
[設(shè)計意圖]學習小結(jié)。對本節(jié)課所學知識進行回顧。
布置作業(yè)。
數(shù)學高一教案篇九
拿到試卷后可以先快速瀏覽一下所有題目,根據(jù)積累的考試經(jīng)驗,大致估計一下每部分應該分配的時間。對于能夠很快做出來的.題目,一定要拿到應得的分數(shù)。
二、確定每部分的答題時間
1、考試時占用了很多時間卻一點也沒有做出來的題目。對于這類題目,你以后考試時就應該盡量減少時間,或者放棄,等以后學習進階了再嘗試著做。
2、考試時花了過多的時間才做出來的題目。對于這類題目,你以后平時做題時要盡量加快速度,或者通過“反復訓練”等提高反應速度,這樣,你下次考試時能用較少的時間做出來。
三、碰到難題時
1、你可以先用“直覺”最快的找到解題思路;
2、如果“直覺”不管用,你可以聯(lián)想以前做過的類似的題目,從而找到解題思路;
3、如果這樣也不行,你可以猜測一下這道題目可能涉及到的知識點和解題技巧。
4、對于花了一定時間仍然不能做出來的題目,要勇于放棄。
四、卷面整潔、字跡清楚、注意小節(jié)
做到卷面整潔、字跡清楚,把標點、符號、解題步驟等小的地方盡量做好,不要丟掉應得的每一分。
數(shù)學高一教案篇十
1、掌握雙曲線的范圍、對稱性、頂點、漸近線、離心率等幾何性質(zhì)
2、掌握標準方程中的幾何意義
3、能利用上述知識進行相關(guān)的論證、計算、作雙曲線的草圖以及解決簡單的實際問題
1、焦點在x軸上,虛軸長為12,離心率為的雙曲線的標準方程為、
2、頂點間的距離為6,漸近線方程為的雙曲線的標準方程為、
3、雙曲線的漸進線方程為、
4、設(shè)分別是雙曲線的半焦距和離心率,則雙曲線的一個頂點到它的一條漸近線的距離是、
探究1、類比橢圓的幾何性質(zhì)寫出雙曲線的幾何性質(zhì),畫出草圖并,說出它們的不同、
探究2、雙曲線與其漸近線具有怎樣的關(guān)系、
練習:已知雙曲線經(jīng)過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標準方程是、
例1根據(jù)以下條件,分別求出雙曲線的標準方程、
(1)過點,離心率、
(2)、是雙曲線的左、右焦點,是雙曲線上一點,且,,離心率為、
例3(理)求離心率為,且過點的雙曲線標準方程、
2、橢圓的離心率為,則雙曲線的離心率為、
3、雙曲線的漸進線方程是,則雙曲線的離心率等于=、
4、設(shè)雙曲線的半焦距為,直線過、兩點,且原點到直線的距離為,求雙曲線的離心率、
將本文的word文檔下載到電腦,方便收藏和打印
推薦度:
點擊下載文檔
搜索文檔
數(shù)學高一教案篇十一
對數(shù)函數(shù)(第二課時)是20__人教版高一數(shù)學(上冊)第二章第八節(jié)第二課時的內(nèi)容,本小節(jié)涉及對數(shù)函數(shù)相關(guān)知識,分三個課時,這里是第二課時復習鞏固對數(shù)函數(shù)圖像及性質(zhì),并用此解決三類對數(shù)比大小問題,是對已學內(nèi)容(指數(shù)函數(shù)、指數(shù)比大小、對數(shù)函數(shù))的延續(xù)和發(fā)展,同時也體現(xiàn)了數(shù)學的實用性,為后續(xù)學習起到奠定知識基礎(chǔ)、滲透方法的作用,因此本節(jié)內(nèi)容起到了一種承上啟下的作用。
二、教學目標
根據(jù)教學大綱的要求以及本節(jié)課的地位與作用,結(jié)合高一學生的認知特點確定教學目標如下:
學習目標:
1、復習鞏固對數(shù)函數(shù)的圖像及性質(zhì)
2、運用對數(shù)函數(shù)的性質(zhì)比較兩個數(shù)的大小
能力目標:
1、培養(yǎng)學生運用圖形解決問題的意識即數(shù)形結(jié)合能力
2、學生運用已學知識,已有經(jīng)驗解決新問題的能力
3、探索出方法,有條理闡述自己觀點的能力
德育目標:
培養(yǎng)學生勤于思考、獨立思考、合作交流等良好的個性品質(zhì)
三、教材的重點及難點
教學中將在以下2個環(huán)節(jié)中突出教學重點:
1、利用學生預習后的心得交流,資源共享,互補不足
2、通過適當?shù)木毩暎訌妼忸}方法的掌握及原理的理解
教學中會在以下3個方面突破教學難點:
1、教師調(diào)整角色,讓學生成為學習的主人,教師在其中起引導作用即可。
2、小組合作探索新問題時,注重生生合作、師生互動,適時用語言鼓勵學生,增強學生參與討論的自信。
3、本節(jié)課采用多媒體輔助教學,節(jié)省時間,加快課程進度,增強了直觀形象性。
四、學生學情分析
長處:高一學生經(jīng)過幾年的數(shù)學學習,已具備一定的數(shù)學素養(yǎng),對于已學知識或用過的數(shù)學思想、方法有一定的應用能力及應用意識,對于本節(jié)課而言,從知識上說,對數(shù)函數(shù)的圖像和性質(zhì)剛剛學過,本節(jié)課是知識的應用,從數(shù)學能力上說,指數(shù)比大小問題的解題思想和方法在這可借鑒,另外數(shù)形結(jié)合能力、小結(jié)概括能力、特殊到一般歸納能力已具備一點。
學生可能遇到的困難:本節(jié)課從教學內(nèi)容上來看,第三類對數(shù)比大小是課本以外補充的內(nèi)容,沒有預習心得,讓學生在課堂中快速通過合作探究來完成解題思路的構(gòu)建,有一定的挑戰(zhàn)性,從學生能力上來看,探索出方法,有條理闡述自己觀點的能力還需加強鍛煉,知識之間的聯(lián)系認識上還顯不足。
五、教法特點
新課程強調(diào)教師要調(diào)整自己的角色,改變傳統(tǒng)的教育方式,在教育方式上,以學生為中心,讓學生成為學習的主人,教師在其中起引導作用即可?;诖?,本節(jié)課遵循此原則重點采用問題探究和啟發(fā)引導式的教學方法。從預習交流心得出發(fā),到探索新問題,再到題后的回顧總結(jié),一切以學生為中心,處處體現(xiàn)學生的主體地位,讓學生多說、多分析、多思考、多總結(jié),引導學生運用自己的語言闡述觀點,加強理解,在生生合作,師生互動中解決問題,為提高學生分析問題、解決問題能力打下基礎(chǔ)。本節(jié)課采用多媒體輔助教學,節(jié)省時間,加快課程進度,增強了直觀形象性。
六、教學過程分析
1、課件展示本節(jié)課學習目標
設(shè)計意圖:明確任務,激發(fā)興趣
2、溫故知新(已填表形式復習對數(shù)函數(shù)的圖像和性質(zhì))
設(shè)計意圖:復習已學知識和方法,為學生形成知識間的聯(lián)系和框架建立平臺,并為下一步的應用打下基礎(chǔ)。
3、預習后心得交流
1)同底對數(shù)比大小
2)既不同底數(shù),也不同真數(shù)的對數(shù)比大小
設(shè)計意圖:通過學生的預習,自己總結(jié)方法及此方法適用的題型,有條理的闡述自己的學習心得,老師只需起引導作用,引導學生從題目表面上升到題目的實質(zhì),從而找到解決問題的有效方法。
4、合作探究——同真異底型的對數(shù)比大小
以例3為例,學生分組合作探究解題方法,預計兩種:一是利用換底公式將此類型轉(zhuǎn)化為同底異真型,利用之前總結(jié)的方法解決此問題。二是利用具體對數(shù)的大小關(guān)系探究出不同底對數(shù)函數(shù)在同一直角坐標系中的圖像,以此來解決此類型比大小問題。
設(shè)計意圖:這一部分是本節(jié)課的難點,探究中充分發(fā)揮學生的主動性,培養(yǎng)主動學習的意識,同時也鍛煉學生各方面能力的很好機會,為以后的探究學習積累經(jīng)驗和方法,充分體現(xiàn)“授之以魚,不如授之以漁”的教學理念。另外數(shù)學問題的解決僅僅只是一半,更重要的是解題之后的回顧,即反思,如果沒有了反思,他們就錯過了解題的一次重要而有效益的方面。因此,本題解決后,讓學生反思明白,要想利用性質(zhì)解決問題,關(guān)鍵要做到“腦中有圖”,以“形”促“數(shù)”。
5、小結(jié)
6、思考題
以20__高考題為例,讓學生學以致用,增強數(shù)學學習興趣。
7、作業(yè)
包括兩個方面:
1、書寫作業(yè)
2、下節(jié)課前的預習作業(yè)
七、教學效果分析
通過本節(jié)課的教學實例來看,這種通過課本內(nèi)容預習,而后課堂交流學習成果的方法效果不錯,既能很好的完成教學任務,又能充分發(fā)揮學生學習的主動性。在自主探究時,學生分組討論過程中,我參與小組討論,對有能力的小組,在探究出一種方法后,可鼓勵完成更多的方法探究,對于能力較弱的小組,可給予適當?shù)奶崾荆箤W生都能動起來,課堂都有所收獲,增強學生自信。另外,對于學生的總結(jié)回答,可能會比較慢,我一定會耐心聽,及時鼓勵,給予學生微笑和語言的鼓勵,效果很好。在小結(jié)環(huán)節(jié)中,對于高一學生自己小結(jié)的方法,是我一直的教學嘗試,由于只訓練了半學期,學生只能達到小結(jié)知識的程度,在以后的訓練中還會加入數(shù)學思想、數(shù)學方法的小結(jié)內(nèi)容,使這些數(shù)學名詞讓學生不再覺得抽象,而是變成具體的,可操作的、具體的解題工具。
數(shù)學高一教案篇十二
(2)利用平面直角坐標系解決直線與圓的位置關(guān)系;
(3)會用“數(shù)形結(jié)合”的數(shù)學思想解決問題.。
直線與圓的方程的應用.。
一、復習引入:
問題1:如何判斷直線與圓的位置關(guān)系?
問題2:如何判斷圓與圓的位置關(guān)系?
二、新課教學:
例1.(課本例4)圖4。2-5是某圓拱形橋的示意圖。這個圓的圓拱跨度ab=20m,拱高op=4m,建造時每間隔4m需要用一根支柱支撐,求支柱的高度(精確到0.01m).
小結(jié)方法:用坐標法解決實際應用題的步驟:
第二步:通過代數(shù)運算,解決代數(shù)問題;
第三步:將代數(shù)運算結(jié)果“翻譯”成實際結(jié)論,.。
例2.(課本例5)已知內(nèi)接于圓的四邊形的對角線互相垂直,求證圓心到一邊的距離等于這條邊所對邊長的一半.
小結(jié)方法:用坐標法解決幾何問題的步驟:
第二步:通過代數(shù)運算,解決代數(shù)問題;
第三步:將代數(shù)運算結(jié)果“翻譯”成幾何結(jié)論.。
課堂練習:課本練習第2,3,4題;。
課后作業(yè):課本習題4.2a組第8,11題.b組第1題。
數(shù)學高一教案篇十三
1、鞏固集合、子、交、并、補的概念、性質(zhì)和記號及它們之間的關(guān)系
2、了解集合的運算包含了集合表示法之間的轉(zhuǎn)化及數(shù)學解題的一般思想
3、了解集合元素個數(shù)問題的討論說明
通過提問匯總練習提煉的形式來發(fā)掘?qū)W生學習方法
培養(yǎng)學生系統(tǒng)化及創(chuàng)造性的思維
[教學重點、難點]:會正確應用其概念和性質(zhì)做題 [教 具]:多媒體、實物投影儀
[教學方法]:講練結(jié)合法
[授課類型]:復習課
[課時安排]:1課時
[教學過程]:集合部分匯總
本單元主要介紹了以下三個問題:
1,集合的含義與特征
2,集合的表示與轉(zhuǎn)化
3,集合的基本運算
一,集合的含義與表示(含分類)
1,具有共同特征的對象的全體,稱一個集合
2,集合按元素的個數(shù)分為:有限集和無窮集兩類
數(shù)學高一教案篇十四
(1)通過實物操作,增強學生的直觀感知。
(2)能根據(jù)幾何結(jié)構(gòu)特征對空間物體進行分類。
(3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構(gòu)特征。
(4)會表示有關(guān)于幾何體以及柱、錐、臺的分類。
(1)讓學生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結(jié)構(gòu)特征。
(2)讓學生觀察、討論、歸納、概括所學的知識。
(1)使學生感受空間幾何體存在于現(xiàn)實生活周圍,增強學生學習的積極性,同時提高學生的觀察能力。
(2)培養(yǎng)學生的空間想象能力和抽象括能力。
重點:讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。 難點:柱、錐、臺、球的結(jié)構(gòu)特征的概括。
(1)學法:觀察、思考、交流、討論、概括。
(2)實物模型、投影儀 四、教學思路
1、教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導學生回憶,舉例和相互交流。教師對學生的活動及時給予評價。
2、所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結(jié)構(gòu)特征的空間物體),你能通過觀察。根據(jù)某種標準對這些空間物體進行分類嗎?這是我們所要學習的內(nèi)容。
1、引導學生觀察物體、思考、交流、討論,對物體進行分類,分辯棱柱、圓柱、棱錐。
3、組織學生分組討論,每小組選出一名同學發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。
(1)有兩個面互相平行;
(2)其余各面都是平行四邊形;
(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
4、教師與學生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。
5、提出問題:各種這樣的棱柱,主要有什么不同?可不可以根據(jù)不同對棱柱分類?
6、以類似的方法,讓學生思考、討論、概括出棱錐、棱臺的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。
7、讓學生觀察圓柱,并實物模型演示,如何得到圓柱,從而概括出圓標的概念以及相關(guān)的概念及圓柱的表示。
8、引導學生以類似的方法思考圓錐、圓臺、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實物模型演示引導學生思考、討論、概括。
9、教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。
1、有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)
2、棱柱的何兩個平面都可以作為棱柱的底面嗎?
3、課本p8,習題1.1 a組第1題。
5、棱臺與棱柱、棱錐有什么關(guān)系?圓臺與圓柱、圓錐呢?
由學生整理學習了哪些內(nèi)容 六、布置作業(yè)
課本p8 練習題1.1 b組第1題
課外練習 課本p8 習題1.1 b組第2題
數(shù)學高一教案篇十五
三維目標的具體內(nèi)容和層次劃分
請闡述數(shù)學課堂教學三維目標的具體內(nèi)容和層次劃分
所謂三維目標是是指:“知識與技能”,“過程和方法”、“情感、態(tài)度、價值觀”。
知識與技能:既是課堂教學的出發(fā)點,又是課堂教學的歸宿。我們在教學過程中,需要學生掌握什么,哪些些問題需要重點掌握,哪些只需簡單理解;技能是會與不會的問題。屬顯性范疇,具有可測性,大都采用定量分析與評價、知識與技能是傳統(tǒng)教學合理的內(nèi)核,是我國傳統(tǒng)教育教學的優(yōu)勢,應該從傳統(tǒng)教學中繼承與發(fā)揚。新課改不是不要雙基,而是不要過度的強調(diào)雙基,而舍棄弱化其它有價值的東西,導致非全面、不和藹的發(fā)展。
過程與方法:既是課堂教學的目標之一,又是課堂教學的操作系統(tǒng)?!斑^程和方法”維度的目標立足于讓學生會學,新課程倡導對學與教的過程的體驗、方法的選擇,是在知識與能力目標基礎(chǔ)上對教學目標的進一步開發(fā)。過程與方法是一個體驗的過程、發(fā)現(xiàn)的過程,不但可以讓學生體驗到科學發(fā)展的過程,我們更多地要讓學生掌握過程,不一定要統(tǒng)一的結(jié)果。
情感、態(tài)度與價值觀:既是課堂教學的目標之一,又是課堂教學的動力系統(tǒng)?!扒楦?、態(tài)度和價值觀”,目標立足于讓學生樂學,新課程倡導對學與教的情感體驗、態(tài)度形成、價值觀的體現(xiàn),是在知識與能力、過程與方法目標基礎(chǔ)上對教學目標深層次的開拓,只有學生充分的認識到他們肩負的責任,就能夠激發(fā)起他們的學習熱情,他們才會有濃厚的學習興趣,才能學有所成,將來回報社會。
三維目標不是三個目標,也不是三種目標,是一個問題的三個方面。三維目標是三位一體不可分割的,他們是相輔相成的,相互促進的。
數(shù)學高一教案篇十六
重難點分析
本節(jié)的重點是二次根式的化簡.本章自始至終圍繞著二次根式的化簡與計算進行,而二次根式的化簡不但涉及到前面學習過的算術(shù)平方根、二次根式等概念與二次根式的運算性質(zhì),還要牽涉到絕對值以及各種非負數(shù)、因式分解等知識,在應用中常常需要對字母進行分類討論.
本節(jié)的難點是正確理解與應用公式.這個公式的表達形式對學生來說,比較生疏,而實際運用時,則要牽涉到對字母取值范圍的討論,學生往往容易出現(xiàn)錯誤.
教法建議
1.性質(zhì)的引入方法很多,以下2種比較常用:
(1)設(shè)計問題引導啟發(fā):由設(shè)計的問題
1)、、各等于什么?
2)、、各等于什么?
啟發(fā)、引導學生猜想出
(2)從算術(shù)平方根的意義引入.
2.性質(zhì)的鞏固有兩個方面需要注意:
(1)注意與性質(zhì)進行對比,可出幾道類型不同的題進行比較;
(2)學生初次接觸這種形式的表示方式,在教學時要注意細分層次加以鞏固,如單個數(shù)字,單個字母,單項式,可進行因式分解的多項式,等等.
(第1課時)
1.掌握二次根式的性質(zhì)
2.能夠利用二次根式的性質(zhì)化簡二次根式
3.通過本節(jié)的學習滲透分類討論的數(shù)學思想和方法
對比、歸納、總結(jié)
1.重點:理解并掌握二次根式的性質(zhì)
2.難點:理解式子中的可以取任意實數(shù),并能根據(jù)字母的取值范圍正確地化簡有關(guān)的二次根式.
1課時
五、教b具學具準備
投影儀、膠片、多媒體
復習對比,歸納整理,應用提高,以學生活動為主
一、導入新課
我們知道,式子()表示非負數(shù)的算術(shù)平方根.
問:式子的意義是什么?被開方數(shù)中的表示的是什么數(shù)?
答:式子表示非負數(shù)的算術(shù)平方根,即,且,從而可以取任意實數(shù).
二、新課
計算下列各題,并回答以下問題:
(1);(2);(3);
1.各小題中被開方數(shù)的冪的底數(shù)都是什么數(shù)?
2.各小題的結(jié)果和相應的被開方數(shù)的冪的底數(shù)有什么關(guān)系?
3.用字母表示被開方數(shù)的冪的底數(shù),將有怎樣的結(jié)論?并用語言敘述你的結(jié)論.
數(shù)學高一教案篇十七
本學期將完成數(shù)學必修1和數(shù)學必修4(人教a版)兩本教材的的學習,教學輔助材料有《同步金太陽導學》。
認真深入地學習《新課程標準》,研讀教材。明確教學目的,把握教學目標,把準教學標高。注意到新教材的特點親和力問題性思想性聯(lián)系性,注意對基本概念的理解、基本規(guī)律的掌握、基本方法的應用上多下功夫,轉(zhuǎn)變教學觀念,螺旋上升地安排核心數(shù)學概念和重要數(shù)學思想,加強數(shù)學思想方法的滲透與概括。在課堂教學中要以學生為主,注重師生互動,對基本的知識點要落實到位,新教材對教學中有疑問的地方要在備課組中多加討論和研究,特別是有關(guān)概念課的教學,一定要講清概念的發(fā)生、發(fā)展、內(nèi)涵、外延,不要模棱兩可。
1.處理好初高中銜接問題。初中內(nèi)容的不適當刪減、降低要求,導致學生雙基無法達到高中教學要求;高中不顧學生的基礎(chǔ),任意拔高教學要求,繁瑣的、高難度的運算充斥課堂。對初中沒學而高中又要求掌握的內(nèi)容(具體內(nèi)容見附錄)。
2.準確把握教學要求,循序漸進地教學。不搞一步到位刪減的內(nèi)容不要隨意補充;不要擅自調(diào)整內(nèi)容順序;教輔材料不能作為教學的依據(jù);把更多的注意力放在核心概念、基本數(shù)學思想方法上;追求通性通法,不追求特技。
3.適當使用信息技術(shù)。新課程主張多媒體教學。在教材中很容易發(fā)現(xiàn)新課改對信息技術(shù)在數(shù)學教學上的應用,并在配備的光盤中提供了相當數(shù)量的課件,有利于學生更全面的吸收知識,提高課堂注意力和學習的興趣。但我還是認為,多媒體知識教學的輔助手段,選不選用多媒體要看教學內(nèi)容。尤其是數(shù)學這門學科,有些直觀的內(nèi)容用多媒體還是不錯的,但有的內(nèi)容諸如讓學生思考體會的問題不是很適合多媒體教學的。根據(jù)學習內(nèi)容需要選擇恰當?shù)男畔⒓夹g(shù)工具和使用科學型計算器;提倡適當使用各種數(shù)學軟件。
4.充分發(fā)揮集體備課的作用。利用每周一次的集體備課,認真討論本周的教學得失,研究下周所教內(nèi)容的重難點,安排周練的內(nèi)容。要根據(jù)實際情況,有針對性地組編訓練題,做到每周一次綜合訓練(同步或滾雪球式的保溫訓練),一次微型補差訓練,要搞好單元過關(guān)訓練。選題要注意基礎(chǔ),強化通法,針對性強,避免對資料上的訓練題全套照搬使用。要重視對數(shù)學尖子生的培養(yǎng),力爭在數(shù)學競賽中取得好成績。
5.在重視智力因素的同時必須關(guān)注非智力因素。應認識到非智力因素在學生全面發(fā)展和數(shù)學學習過程中所起的重要作用,并內(nèi)化為自覺的行為,切實培養(yǎng)學生學習數(shù)學的興趣和良好的個性品質(zhì)。
數(shù)學高一教案篇十八
(1)了解含有“或”、“且”、“非”復合命題的概念及其構(gòu)成形式;
(2)理解邏輯聯(lián)結(jié)詞“或”“且”“非”的含義;
(3)能用邏輯聯(lián)結(jié)詞和簡單命題構(gòu)成不同形式的復合命題;
(4)能識別復合命題中所用的邏輯聯(lián)結(jié)詞及其聯(lián)結(jié)的簡單命題;
(5)會用真值表判斷相應的復合命題的真假;
(6)在知識學習的基礎(chǔ)上,培養(yǎng)學生簡單推理的技能.
重點是判斷復合命題真假的方法;難點是對“或”的含義的理解.
1.新課導入
初一平面幾何中曾學過命題,請同學們舉一個命題的例子.(板書:命題.)
(從初中接觸過的“命題”入手,提出問題,進而學習邏輯的有關(guān)知識.)
學生舉例:平行四邊形的對角線互相平. ……(1)
兩直線平行,同位角相等.…………(2)
教師提問:“……相等的角是對頂角”是不是命題?……(3)
(同學議論結(jié)果,答案是肯定的.)
教師提問:什么是命題?
(學生進行回憶、思考.)
概念總結(jié):對一件事情作出了判斷的語句叫做命題.
(教師肯定了同學的回答,并作板書.)
(教師利用投影片,和學生討論以下問題.)
例1 判斷以下各語句是不是命題,若是,判斷其真假:
2.講授新課
(片刻后請同學舉手回答,一共講了四個問題.師生一道歸納如下.)
(1)什么叫做命題?
可以判斷真假的語句叫做命題.
(2)介紹邏輯聯(lián)結(jié)詞“或”、“且”、“非”.
命題可分為簡單命題和復合命題.
(4)命題的表示:用p ,q ,r ,s ,……來表示.
(教師根據(jù)學生回答的情況作補充和強調(diào),特別是對復合命題的概念作出分析和展開.)
對于給出“若p 則q ”形式的復合命題,應能找到條件p 和結(jié)論q .
3.鞏固新課
(1)5 ;
(2)0.5非整數(shù);
(3)內(nèi)錯角相等,兩直線平行;
(4)菱形的對角線互相垂直且平分;
(5)平行線不相交;
(6)若ab=0 ,則a=0 .
(讓學生有充分的時間進行辨析.教材中對“若…則…”不作要求,教師可以根據(jù)學生的情況作些補充.)
數(shù)學高一教案篇十九
使學生在九年義務教育數(shù)學課程的基礎(chǔ)上,進一步提高作為未來公民所必要的數(shù)學素養(yǎng),以滿足個人發(fā)展與社會進步的需要。具體目標如下。
1.獲得必要的數(shù)學基礎(chǔ)知識和基本技能,理解基本的數(shù)學概念、數(shù)學結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應用,體會其中所蘊涵的數(shù)學思想和方法,以及它們在后續(xù)學習中的作用。通過不同形式的自主學習、探究活動,體驗數(shù)學發(fā)現(xiàn)和創(chuàng)造的歷程。
2.提高空間想像、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本能力。
3.提高數(shù)學地提出、分析和解決問題(包括簡單的實際問題)的能力,數(shù)學表達和交流的能力,發(fā)展獨立獲取數(shù)學知識的能力。
4.發(fā)展數(shù)學應用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學模式進行思考和作出判斷。
5.提高學習數(shù)學的興趣,樹立學好數(shù)學的信心,形成鍥而不舍的鉆研精神和科學態(tài)度。 6.具有一定的數(shù)學視野,逐步認識數(shù)學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數(shù)學的理性精神,體會數(shù)學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
我們所使用的教材是人教版《普通高中課程標準實驗教科書數(shù)學(a版)》,它在堅持我國數(shù)學教育優(yōu)良傳統(tǒng)的前提下,認真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性,時代性,典型性和可接受性等到,具有如下特點:
1.親和力:以生動活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學習激情。
2.問題性:以恰時恰點的問題引導數(shù)學活動,培養(yǎng)問題意識,孕育創(chuàng)新精神。
3.科學性與思想性:通過不同數(shù)學內(nèi)容的聯(lián)系與啟發(fā),強調(diào)類比,推廣,特殊化,化歸等思想方法的運用,學習數(shù)學地思考問題的方式,提高數(shù)學思維能力,培育理性精神。
4.時代性與應用性:以具有時代性和現(xiàn)實感的素材創(chuàng)設(shè)情境,加強數(shù)學活動,發(fā)展應用意識。
1. 選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學生熟悉的素材,用生動活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學的概念和結(jié)論,數(shù)學的思想和方法,以及數(shù)學應用的學習情境,使學生產(chǎn)生對數(shù)學的親切感,引發(fā)學生看個究竟的沖動,以達到培養(yǎng)其興趣的目的。
2. 通過觀察,思考,探究等欄目,引發(fā)學生的思考和探索活動,切實改進學生的學習方式。
3. 在教學中強調(diào)類比,推廣,特殊化,化歸等數(shù)學思想方法,盡可能養(yǎng)成其邏輯思維的習慣。
兩個班一個普高一個職高,學習情況良好,但學生自覺性差,自我控制能力弱,因此在教學中需時時提醒學生,培養(yǎng)其自覺性。班級存在的最大問題是計算能力太差,學生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學中,重點在于培養(yǎng)學生的計算能力,同時要進一步提高其思維能力。同時,由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時適機補充一些內(nèi)容。因此時間上可能仍然吃緊。同時,其底子薄弱,因此在教學時只能注重基礎(chǔ)再基礎(chǔ),爭取每一堂課落實一個知識點,掌握一個知識點。
1、激發(fā)學生的學習興趣。由數(shù)學活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學生的學習信心,提高學習興趣,在主觀作用下上升和進步。
2、注意從實例出發(fā),從感性提高到理性;注意運用對比的方法,反復比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的`知識出發(fā),啟發(fā)學生思考。
3、加強培養(yǎng)學生的邏輯思維能力就解決實際問題的能力,以及培養(yǎng)提高學生的自學能力,養(yǎng)成善于分析問題的習慣,進行辨證唯物主義教育。
4、抓住公式的推導和內(nèi)在聯(lián)系;加強復習檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學生分析問題的能力。
5、自始至終貫徹教學四環(huán)節(jié),針對不同的教材內(nèi)容選擇不同教法。
6、重視數(shù)學應用意識及應用能力的培養(yǎng)。
俗話說的好,好的教學計劃是教學成功的一半,作為一名優(yōu)異的教師,做好一定的教學計劃很有必要。
總結(jié):制定教學計劃的主要目的是為了全面了解學生的數(shù)學學習歷程,激勵學生的學習和改進教師的教學。希望上面的,能受到大家的歡迎!