實(shí)用二次函數(shù)的心得體會(huì)(案例19篇)

字號(hào):

    寫心得體會(huì)可以幫助我們更好地理解自己的經(jīng)歷,從中獲取經(jīng)驗(yàn)教訓(xùn),并為未來(lái)的發(fā)展提供指導(dǎo)。最后,在寫心得體會(huì)時(shí),要積極開(kāi)放心態(tài),勇于表達(dá)個(gè)人的觀點(diǎn)和感受,做到真實(shí)、自信。這些心得體會(huì)范文展示了作者的真實(shí)感悟和心路歷程,或許能夠引發(fā)你對(duì)自己的思考和反思。
    二次函數(shù)的心得體會(huì)篇一
    11月18日,我在九年三班上了《2.1二次函數(shù)所描述的關(guān)系》這節(jié)課,結(jié)合一些聽(tīng)課老師的建議,現(xiàn)。
    總結(jié)。
    1.對(duì)二次函數(shù)的學(xué)習(xí),本節(jié)課通過(guò)豐富的現(xiàn)實(shí)背景和學(xué)生感興趣的問(wèn)題出發(fā),以多媒體演示圖片的形式使學(xué)生感受二次函數(shù)的意義,感受數(shù)學(xué)的廣泛聯(lián)系和應(yīng)用價(jià)值。對(duì)二次函數(shù)的學(xué)習(xí),通過(guò)學(xué)生的探究性活動(dòng),通過(guò)學(xué)生之間的合作與交流,通過(guò)分析實(shí)際問(wèn)題,如探究面積問(wèn)題,利息問(wèn)題、觀察表格找規(guī)律及用關(guān)系式表示這些關(guān)系的過(guò)程,引出二次函數(shù)的概念,使學(xué)生感受二次函數(shù)與生活的密切聯(lián)系。
    2.在新知鞏固環(huán)節(jié),我精心設(shè)計(jì)了具有代表性和易錯(cuò)題型的問(wèn)題,鞏固應(yīng)用了本節(jié)的新知,課堂達(dá)到了較好的教學(xué)效果。
    3.在合作討論的環(huán)節(jié)中,銀行利率問(wèn)題中文字?jǐn)⑹霾粔驀?yán)密,兩年后的利息一句產(chǎn)生分歧,應(yīng)該改成第二年的利息。
    4.在課堂時(shí)間的安排上不算太合理,有一道能力提升的問(wèn)題沒(méi)講??傊ㄟ^(guò)本節(jié)課,讓我真正意識(shí)到:對(duì)于每節(jié)課的教學(xué)不能僅僅憑經(jīng)驗(yàn)設(shè)計(jì)。在每節(jié)課的課前,一定要進(jìn)行精心的預(yù)設(shè)。在課堂中,同時(shí)要結(jié)合課堂的實(shí)際效果和學(xué)生的情況注意靈活處理課堂生成。課堂上在進(jìn)行分組教學(xué)時(shí),提前預(yù)設(shè)好教學(xué)時(shí)間,在每節(jié)課上,既要放的開(kāi),同時(shí)又要注意在適當(dāng)?shù)臅r(shí)機(jī)收回,以保證每節(jié)教學(xué)基本任務(wù)完成。
    二次函數(shù)的心得體會(huì)篇二
    二次函數(shù)的應(yīng)用是在學(xué)習(xí)二次函數(shù)的圖像與性質(zhì)后,檢驗(yàn)學(xué)生應(yīng)用所學(xué)知識(shí)解決實(shí)際問(wèn)題能力的一個(gè)綜合考查,它是本章的難點(diǎn)。新的課程標(biāo)準(zhǔn)要求學(xué)生能通過(guò)對(duì)實(shí)際問(wèn)題的情境的分析確定二次函數(shù)的表達(dá)式,體會(huì)其意義,能根據(jù)圖像的性質(zhì)解決簡(jiǎn)單的實(shí)際問(wèn)題,而最大值問(wèn)題是生活中利用二次函數(shù)知識(shí)解決最常見(jiàn)、最有實(shí)際應(yīng)用價(jià)值的問(wèn)題,它生活背景豐富,學(xué)生比較感興趣。本節(jié)課通過(guò)學(xué)習(xí)求水流的最高點(diǎn)問(wèn)題,引導(dǎo)學(xué)生將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)模型,利用數(shù)學(xué)建模的思想去解決和函數(shù)有關(guān)的應(yīng)用問(wèn)題。此部分內(nèi)容是學(xué)習(xí)一次函數(shù)及其應(yīng)用后的鞏固與延伸,又為高中乃至以后學(xué)習(xí)更多函數(shù)打下堅(jiān)實(shí)的基礎(chǔ)。
    由于本節(jié)課是二次函數(shù)的應(yīng)用問(wèn)題,重在通過(guò)學(xué)習(xí)總結(jié)解決問(wèn)題的方法,故而本節(jié)課以“啟發(fā)探究式”為主線開(kāi)展教學(xué)活動(dòng),以學(xué)生動(dòng)手動(dòng)腦探究為主,充分調(diào)動(dòng)學(xué)生學(xué)習(xí)積極性和主動(dòng)性,突出學(xué)生的主體地位,達(dá)到“不但使學(xué)生學(xué)會(huì),而且使學(xué)生會(huì)學(xué)”的目的。
    不足之處:《數(shù)學(xué)課程標(biāo)準(zhǔn)》提出:教師不僅是學(xué)生的引導(dǎo)者,也是學(xué)生的合作者。教學(xué)中,要讓學(xué)生通過(guò)自主討論、交流,來(lái)探究學(xué)習(xí)中碰到的問(wèn)題、難題,教師從中點(diǎn)撥、引導(dǎo),并和學(xué)生一起學(xué)習(xí)探討。在本節(jié)課的教學(xué)中,教師引導(dǎo)學(xué)生較多,沒(méi)有完全放開(kāi)讓學(xué)生自主探究學(xué)習(xí),獲得新知;學(xué)生在數(shù)學(xué)學(xué)習(xí)中還是有較強(qiáng)的依賴性,教師要有意培養(yǎng)學(xué)生自主學(xué)習(xí)的能力。
    教師要想在開(kāi)放的課堂上具有靈活駕馭的能力,就需要在備課時(shí)盡量考慮周到,既要備教材,又要備學(xué)生,更需要教師具有豐富的科學(xué)文化知識(shí),這樣才能使我們的學(xué)生在輕松活躍的課堂上找到學(xué)習(xí)的樂(lè)趣與興趣。
    二次函數(shù)的心得體會(huì)篇三
    在高中數(shù)學(xué)教學(xué)中,二次函數(shù)是一個(gè)十分重要的內(nèi)容,因?yàn)樗谏钪杏兄鴱V泛的應(yīng)用。其中一項(xiàng)常見(jiàn)的應(yīng)用就是在測(cè)量中。通過(guò)實(shí)驗(yàn)數(shù)據(jù),我們可以得到一個(gè)二次函數(shù)的模型,從而對(duì)實(shí)驗(yàn)數(shù)據(jù)進(jìn)行預(yù)測(cè)和分析。在我學(xué)習(xí)二次函數(shù)的過(guò)程中,也有幸進(jìn)行了一些測(cè)量實(shí)驗(yàn),并對(duì)二次函數(shù)的應(yīng)用有了更深刻的體會(huì)。
    第二段:實(shí)驗(yàn)過(guò)程。
    實(shí)驗(yàn)過(guò)程中,我選擇了拋物線的測(cè)量,通過(guò)測(cè)量物體的高度、時(shí)間和落地點(diǎn)坐標(biāo),我們可以得到一個(gè)二次函數(shù)的模型,從而計(jì)算出物體的初始速度、最大高度等一系列數(shù)據(jù)。在測(cè)量過(guò)程中,我們需要非常仔細(xì)地進(jìn)行實(shí)驗(yàn),例如保證實(shí)驗(yàn)地點(diǎn)平整、避免風(fēng)的影響等。同時(shí)還需要使用專業(yè)的測(cè)量設(shè)備,例如光電門、計(jì)時(shí)器等。
    第三段:實(shí)驗(yàn)數(shù)據(jù)。
    通過(guò)實(shí)驗(yàn)得到的數(shù)據(jù),我們可以將其代入二次函數(shù)的模型中,從而得出真實(shí)的情況。通過(guò)這些數(shù)據(jù),我們可以進(jìn)行更多的分析,例如繪制出物體的拋物線軌跡圖、比較不同物體的拋物線圖形、計(jì)算出物理量等。這些數(shù)據(jù)不僅可以用于學(xué)術(shù)研究,也可以應(yīng)用到實(shí)際生活中,例如建造各種結(jié)構(gòu)或者選購(gòu)適當(dāng)?shù)墓ぞ叩取?BR>    二次函數(shù)在生活中有著廣泛的應(yīng)用。例如在物理學(xué)中,我們經(jīng)常使用二次函數(shù)來(lái)計(jì)算物體的運(yùn)動(dòng)情況;在經(jīng)濟(jì)學(xué)中,我們可以利用二次函數(shù)來(lái)研究產(chǎn)品銷量與銷售價(jià)格的關(guān)系等。二次函數(shù)也常常被應(yīng)用到工程設(shè)計(jì)中,因?yàn)樗梢院芎玫乇硎颈姸辔锢砹康年P(guān)系。這些應(yīng)用都需要我們深入理解二次函數(shù),從而得出更為準(zhǔn)確和實(shí)用的數(shù)據(jù)。
    第五段:結(jié)論。
    二次函數(shù)測(cè)量實(shí)驗(yàn)不僅需要我們對(duì)數(shù)學(xué)知識(shí)的掌握,還需要我們有耐心和細(xì)心地分析實(shí)驗(yàn)數(shù)據(jù)。通過(guò)實(shí)驗(yàn),我們可以更深刻地理解二次函數(shù),掌握其應(yīng)用技巧,并將其運(yùn)用到更多領(lǐng)域中。在今后學(xué)習(xí)過(guò)程中,我們應(yīng)該對(duì)二次函數(shù)的知識(shí)保持持續(xù)關(guān)注和深入學(xué)習(xí),從而更好地理解它的神奇之處。
    二次函數(shù)的心得體會(huì)篇四
    二次函數(shù)是中學(xué)數(shù)學(xué)中的重要內(nèi)容,也是高考數(shù)學(xué)中的必考內(nèi)容之一。作為學(xué)生,我們?cè)趥淇歼^(guò)程中應(yīng)該如何有效地掌握和應(yīng)用二次函數(shù)呢?在這篇文章中,我將分享一些我在備考二次函數(shù)過(guò)程中的心得體會(huì)。
    第二段:理解二次函數(shù)的定義及性質(zhì)。
    在二次函數(shù)備考中,首先需要掌握的是二次函數(shù)的定義和基本性質(zhì)。二次函數(shù)的標(biāo)準(zhǔn)形式為$f(x)=ax^2+bx+c$,其中$a\neq0$。二次函數(shù)的圖像是一個(gè)拋物線,其開(kāi)口方向由$a$的正負(fù)號(hào)決定。在掌握了二次函數(shù)的定義之后,我們需要學(xué)習(xí)二次函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、極值、對(duì)稱軸、零點(diǎn)和圖像的方程等。
    第三段:掌握二次函數(shù)的變形和運(yùn)用。
    掌握二次函數(shù)的變形是備考成功的關(guān)鍵之一。在二次函數(shù)的變形中,常見(jiàn)的有平移、伸縮、翻轉(zhuǎn)等變化,它們都會(huì)影響到函數(shù)的圖像和性質(zhì)。因此,我們需要掌握這些變形的規(guī)律和方法,以便于在實(shí)踐中準(zhǔn)確地運(yùn)用。
    第四段:熟練掌握二次函數(shù)的解析式。
    掌握二次函數(shù)的解析式也是備考二次函數(shù)的重點(diǎn)之一。在練習(xí)中,我們需要熟練地運(yùn)用解析式,解決各種與二次函數(shù)相關(guān)的問(wèn)題,如求函數(shù)的零點(diǎn)、極值、對(duì)稱軸等,這些問(wèn)題在高考中也是常見(jiàn)的考點(diǎn)。
    第五段:多做例題,加深理解。
    在備考過(guò)程中,多做例題是加深理解的重要方法。通過(guò)做例題,我們可以運(yùn)用所學(xué)知識(shí),增強(qiáng)對(duì)二次函數(shù)的理解和掌握。在做題過(guò)程中,我們還要注意歸納總結(jié),找出問(wèn)題的規(guī)律和解題方法,加深對(duì)二次函數(shù)的認(rèn)識(shí)。
    結(jié)語(yǔ):
    通過(guò)以上幾點(diǎn),我們可以有效地備考二次函數(shù),掌握并鞏固相關(guān)知識(shí)點(diǎn)。我們需要注重理論學(xué)習(xí),掌握二次函數(shù)的定義和基本性質(zhì),熟練掌握二次函數(shù)的解析式,并且通過(guò)練習(xí)加深對(duì)二次函數(shù)的理解和掌握。相信在備考過(guò)程中,只要我們持之以恒地學(xué)習(xí)和練習(xí),就一定能夠取得良好的成績(jī)。
    二次函數(shù)的心得體會(huì)篇五
    學(xué)習(xí)二次函數(shù)是高中數(shù)學(xué)中重要的一部分,在考試中也經(jīng)常會(huì)出現(xiàn)。備考二次函數(shù)時(shí),除了掌握基本的概念、性質(zhì)和應(yīng)用外,還需要有科學(xué)的復(fù)習(xí)方法和策略。在備考的過(guò)程中,我總結(jié)了一些心得體會(huì),現(xiàn)在和大家分享一下。
    第二段:理清基本概念。
    學(xué)習(xí)任何一門學(xué)科,理清基本概念是很重要的。對(duì)于二次函數(shù)來(lái)說(shuō),必須掌握基本概念,如二次函數(shù)的定義、圖像、特征、性質(zhì)等。在復(fù)習(xí)中,可以先通過(guò)例題來(lái)理解和掌握這些概念,再通過(guò)練習(xí)題來(lái)提高運(yùn)用的能力。同時(shí),在整個(gè)學(xué)習(xí)過(guò)程中,也要注重對(duì)不同概念的聯(lián)系和區(qū)別進(jìn)行理解和掌握,以便更加深入地理解二次函數(shù)。
    第三段:熟練掌握變形公式。
    在學(xué)習(xí)二次函數(shù)時(shí),不可避免地需要掌握各種變形公式。這些公式可以幫助我們?cè)诮忸}中靈活運(yùn)用,提高效率。比如平移、伸縮、反演等公式,要熟練掌握它們的求法和應(yīng)用場(chǎng)景。同時(shí),還要注意不同變形公式之間的關(guān)聯(lián),這對(duì)于把復(fù)雜的應(yīng)用題簡(jiǎn)化和解題起到了很大的幫助作用。
    第四段:強(qiáng)化應(yīng)用場(chǎng)景。
    二次函數(shù)在生活和工作中都有廣泛的應(yīng)用場(chǎng)景,比如建模、優(yōu)化等。因此,在復(fù)習(xí)時(shí),還要注重在各種場(chǎng)景中進(jìn)行強(qiáng)化練習(xí)。這樣可以幫助我們更好地理解二次函數(shù)在實(shí)踐中的應(yīng)用,提高應(yīng)用題的解題能力。同時(shí),也可以從不同場(chǎng)景中找到不同的解題思路,使自己的思維更加靈活多變。
    第五段:總結(jié)。
    備考二次函數(shù)不是一朝一夕的事情,需要有計(jì)劃、有方法地去復(fù)習(xí)和提高。在整個(gè)復(fù)習(xí)的過(guò)程中,應(yīng)注重基本概念的理解、變形公式的熟練掌握、應(yīng)用場(chǎng)景的強(qiáng)化練習(xí)。只有通過(guò)不斷的努力和實(shí)際的練習(xí),才能真正掌握這個(gè)知識(shí)點(diǎn),并在考試中得到更好的成績(jī)。同時(shí),在復(fù)習(xí)的過(guò)程中,也要注意適當(dāng)?shù)男菹⒑驼{(diào)整,保持好心態(tài)和積極的狀態(tài)。
    二次函數(shù)的心得體會(huì)篇六
    第二十六章《二次函數(shù)》是學(xué)生學(xué)習(xí)了正比例函數(shù)、一次函數(shù)和反比例函數(shù)以后,進(jìn)一步學(xué)習(xí)函數(shù)知識(shí),是函數(shù)知識(shí)螺旋發(fā)展的一個(gè)重要環(huán)節(jié)。二次函數(shù)是描述變量之間關(guān)系的重要的數(shù)學(xué)模型,它既是其他學(xué)科研究時(shí)所采用的重要方法之一,也是某些單變量最優(yōu)化問(wèn)題的數(shù)學(xué)模型。和一次函數(shù)、反比例函數(shù)一樣,二次函數(shù)也是一種非?;镜某醯群瘮?shù),對(duì)二次函數(shù)的研究將為學(xué)生進(jìn)一步學(xué)習(xí)函數(shù)、體會(huì)函數(shù)的思想奠定基礎(chǔ)和積累經(jīng)驗(yàn)。
    下面是我通過(guò)本單元的的教學(xué)后的的幾點(diǎn)反思:“二次函數(shù)概念”教學(xué)反思。
    關(guān)于“二次函數(shù)概念”教后做如下反思:我的成功之處是:教學(xué)時(shí),通過(guò)實(shí)例引入二次函數(shù)的概念,讓學(xué)生明確二次函數(shù)是一種常見(jiàn)的函數(shù),應(yīng)用非常廣泛,它是客觀地反映現(xiàn)實(shí)世界中變量之間的數(shù)量關(guān)系和變化規(guī)律的一種非常重要的數(shù)學(xué)模型。通過(guò)學(xué)習(xí)求一些簡(jiǎn)單的實(shí)際問(wèn)題中二次函數(shù)的解析式和它的定義域;大部分學(xué)生重視了二次函數(shù)概念的形成和建構(gòu),在概念的學(xué)習(xí)過(guò)程中,讓學(xué)生體驗(yàn)從問(wèn)題出發(fā)到列二次函數(shù)解析式的過(guò)程,體驗(yàn)用函數(shù)思想去描述、研究變量之間變化規(guī)律的意義。絕大多數(shù)學(xué)生理解了二次函數(shù)的概念;掌握了二次函數(shù)的一般表達(dá)式以及二次項(xiàng)和二次項(xiàng)的系數(shù)、一次項(xiàng)和一次項(xiàng)的系數(shù)及常數(shù)項(xiàng)。
    關(guān)于“二次函數(shù)的圖象和性質(zhì)”教后做如下反思:我的成功之處是:在教學(xué)中我采用了體驗(yàn)探究的教學(xué)方式,在教師的配合引導(dǎo)下,讓學(xué)生自己動(dòng)手作圖,觀察、歸納出二次函數(shù)的性質(zhì),體驗(yàn)知識(shí)的形成過(guò)程,力求體現(xiàn)"主體參與、自主探索、合作交流、指導(dǎo)引探"的教學(xué)理念。
    通過(guò)引導(dǎo)學(xué)生在坐標(biāo)紙上畫出二次函數(shù)y=ax2的圖象。畫圖的過(guò)程包括列表、描點(diǎn)、連線。列表過(guò)程是我引導(dǎo)學(xué)生取點(diǎn)的,其間我引導(dǎo)學(xué)生要明確取點(diǎn)注意的事項(xiàng),比如代表性、易操作性。學(xué)生在我的引導(dǎo)下順利地畫出了函數(shù)的圖象。緊接著我讓學(xué)生觀察圖像自主探討當(dāng)a0時(shí)函數(shù)y=ax2的性質(zhì)。當(dāng)a。
    y=a(x-h)。
    2、y=a(x-h)2+c的圖像,絕大多數(shù)學(xué)生很快掌握了圖形平移的規(guī)律,理解了平移后圖像的性質(zhì)。達(dá)到了學(xué)習(xí)目標(biāo)中的要求。
    不足之處表現(xiàn)在:
    1、課堂上講的太多。讓學(xué)生自主觀察總結(jié)的機(jī)會(huì)少,學(xué)生還是被動(dòng)的接受。
    2、學(xué)生作圖能力差。簡(jiǎn)單的列表、描點(diǎn)、連線。學(xué)生做起來(lái)就比較困難。作圖中單位長(zhǎng)度不準(zhǔn)確,描點(diǎn)不正確,連線時(shí)不會(huì)用光滑的曲線,而是畫出很難看的圖形。
    3、合作學(xué)習(xí)的有效性不夠。對(duì)于老師提出的問(wèn)題,各組匯報(bào)討論結(jié)果的效果不明顯。說(shuō)明自主、探究、合作的學(xué)習(xí)方式?jīng)]有落到實(shí)處,沒(méi)能培養(yǎng)學(xué)生的創(chuàng)新能力。
    4、少數(shù)學(xué)生二次函數(shù)圖像平移變換能力差。不會(huì)進(jìn)行二次函數(shù)圖像的平移變換。
    關(guān)于“求二次函數(shù)解析式”教后做如下反思:我的成功之處是:教學(xué)中,我設(shè)計(jì)從求一次函數(shù)的解析式入手,引出求二次函數(shù)一般解析式的方法。學(xué)生把已知點(diǎn)代入二次函數(shù)的一般解析式,很快就得出了三元一次方程組,學(xué)生很快就理解了求二次函數(shù)一般解析式的方法。接著我改變條件,給出拋物線的頂點(diǎn)坐標(biāo)和經(jīng)過(guò)拋物線的一個(gè)點(diǎn),引導(dǎo)學(xué)生設(shè)頂點(diǎn)式的二次函數(shù)解析式,學(xué)生在老師的點(diǎn)撥下,將已知點(diǎn)代入,很快球出了頂點(diǎn)式的二次函數(shù)解析式。接下來(lái),我又引導(dǎo)學(xué)生觀察拋物線與x軸的交點(diǎn),啟發(fā)學(xué)生設(shè)交點(diǎn)式解析式,學(xué)生很快就學(xué)會(huì)了用交點(diǎn)式求二次函數(shù)解析式的方法。在整個(gè)教學(xué)中,教學(xué)內(nèi)容、教學(xué)環(huán)節(jié)、教學(xué)方法的設(shè)計(jì)都算完美,在教學(xué)目標(biāo)的制定和教學(xué)重點(diǎn)、難點(diǎn)的把握上也很準(zhǔn)確,調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性和主動(dòng)性,所以教學(xué)非常流暢,效果不錯(cuò),目標(biāo)的達(dá)成度較高。
    不足之處表現(xiàn)在:
    1、學(xué)生對(duì)新學(xué)知識(shí)理解了,但一部分學(xué)生不會(huì)解三元一次方程組。
    2、少數(shù)學(xué)生對(duì)求頂點(diǎn)式和交點(diǎn)式的二次函數(shù)解析式有困難。
    3、由于對(duì)學(xué)生估計(jì)不足,引導(dǎo)學(xué)生探究三種不同形式的函數(shù)解析式的方法用時(shí)較多,導(dǎo)致教學(xué)時(shí)間緊張。
    關(guān)于“二次函數(shù)應(yīng)用題”教后做如下反思:我的成功之處是:一開(kāi)始我引導(dǎo)學(xué)生回憶二次函數(shù)的三種不同形式的解析式,即一般式、頂點(diǎn)式、交點(diǎn)式,并說(shuō)出它們各自的性質(zhì)如拋物線的開(kāi)口方向,對(duì)稱軸,頂點(diǎn)坐標(biāo),最大最小值,函數(shù)在對(duì)稱軸兩側(cè)的增減性。然后出示問(wèn)題,對(duì)于這個(gè)問(wèn)題,不少學(xué)生表情凝重,目光迷惘,思路不暢,不知從何處下手。我反復(fù)引導(dǎo)學(xué)生建立平面直角坐標(biāo)系,分析解決問(wèn)題的方法。學(xué)生從直角坐標(biāo)系中發(fā)現(xiàn)了拋物線上的點(diǎn),我進(jìn)一步引導(dǎo)學(xué)生找拋物線的頂點(diǎn)坐標(biāo),在老師的引導(dǎo)下,學(xué)生設(shè)出了二次函數(shù)的解析式,并將找到的已知點(diǎn)代入,求出了二次函數(shù)的解析式。接著我引導(dǎo)學(xué)生就同一問(wèn)題建立不同的直角坐標(biāo)系,再去找拋物線上的已知點(diǎn),這是學(xué)生找到了已知點(diǎn),就能判斷用哪種解析式,試著求出函數(shù)的解析式。接下來(lái),再出示例題,引導(dǎo)學(xué)生分析解答。學(xué)生從上面的解題過(guò)程中得到了啟示,學(xué)到了解題方法。教學(xué)中,我從學(xué)生的實(shí)際出發(fā),幫助學(xué)生解決學(xué)習(xí)中的困難,啟發(fā)和引導(dǎo)學(xué)生觀察二次函數(shù)圖像,對(duì)圖像進(jìn)行分析,得出解決問(wèn)題的方案。所以教學(xué)方法的設(shè)計(jì)較完美,并且教學(xué)重點(diǎn)、難點(diǎn)把握的較準(zhǔn)確,同時(shí)調(diào)動(dòng)大多數(shù)學(xué)生學(xué)習(xí)的積極性和主動(dòng)性,所以較好的達(dá)到教學(xué)目標(biāo)。
    不足之處表現(xiàn)在:
    1、少數(shù)學(xué)生對(duì)于建立平面直角坐標(biāo)系有困難。不會(huì)根據(jù)拋物線正確建立坐標(biāo)系。
    2、少數(shù)學(xué)生不會(huì)分析題意,不能正確列式求出二次函數(shù)的解析式。
    3、學(xué)生對(duì)一些常規(guī)知識(shí)的缺失突出的暴露出來(lái)。如利用三點(diǎn)坐標(biāo)求二次函數(shù)解析式,學(xué)生解三元一次方程組感到困難等。
    4、少數(shù)學(xué)生不會(huì)將二次函數(shù)的一般式配方轉(zhuǎn)化為頂點(diǎn)式;不會(huì)利用頂點(diǎn)式求函數(shù)的最大值或最小值。
    總之,本單元的教學(xué),雖取得了一些成績(jī)。但也暴露出了許多問(wèn)題。今后在教學(xué)中我一定吸取教訓(xùn),努力改正自己的不足,提高自己的教學(xué)上水平。
    二次函數(shù)的心得體會(huì)篇七
    二次函數(shù)是數(shù)學(xué)中的一門重要的內(nèi)容,由于其應(yīng)用廣泛,所以在學(xué)習(xí)中也是需要加以重視的。在對(duì)二次函數(shù)進(jìn)行復(fù)習(xí)的過(guò)程中,我深切體會(huì)到了二次函數(shù)的性質(zhì)和應(yīng)用的重要性。以下將就此展開(kāi),以此作為一次全面的復(fù)習(xí)心得體會(huì)。
    第一段:復(fù)習(xí)的初衷和方法。
    對(duì)二次函數(shù)的復(fù)習(xí)是因?yàn)榧磳⒌絹?lái)的考試,而在復(fù)習(xí)的過(guò)程中我發(fā)現(xiàn)了很多之前未曾注意到的細(xì)節(jié)。我選擇了查看以往的課堂筆記,復(fù)習(xí)相關(guān)的知識(shí)點(diǎn),做了一些習(xí)題和例題,并且結(jié)合了一些實(shí)際問(wèn)題進(jìn)行了思考。通過(guò)這樣的方式進(jìn)行復(fù)習(xí),我不僅鞏固了基礎(chǔ)知識(shí),還對(duì)二次函數(shù)的性質(zhì)和應(yīng)用有了更深入的了解。
    在復(fù)習(xí)的過(guò)程中,我重點(diǎn)關(guān)注了二次函數(shù)的性質(zhì),包括定義域、值域和單調(diào)性等。通過(guò)大量的例題演算,我發(fā)現(xiàn)二次函數(shù)的定義域和值域都與二次函數(shù)的開(kāi)口方向和平移有關(guān)。而在研究二次函數(shù)的單調(diào)性時(shí),我發(fā)現(xiàn)二次函數(shù)在某個(gè)范圍內(nèi)可能是增函數(shù),而在另一個(gè)范圍內(nèi)卻是減函數(shù)。這些性質(zhì)的理解對(duì)于解決實(shí)際問(wèn)題中的建模和求解非常重要。
    第三段:二次函數(shù)的應(yīng)用。
    在學(xué)習(xí)中,我發(fā)現(xiàn)了二次函數(shù)在實(shí)際生活中的廣泛應(yīng)用。例如,在物理學(xué)中,自由落體運(yùn)動(dòng)的高度和時(shí)間之間的關(guān)系可以用二次函數(shù)來(lái)描述;在經(jīng)濟(jì)學(xué)中,利潤(rùn)和產(chǎn)量之間的關(guān)系也可以用二次函數(shù)來(lái)表示。這些實(shí)際問(wèn)題的建模和求解都需要我們對(duì)二次函數(shù)的性質(zhì)有深刻的理解,以便找到最優(yōu)解或者預(yù)測(cè)未來(lái)的趨勢(shì)。
    第四段:解二次方程。
    二次函數(shù)的一個(gè)重要應(yīng)用是解二次方程。在復(fù)習(xí)中,我重新溫習(xí)了求解一元二次方程的方法,包括配方、因式分解和求根公式。同時(shí),我還探究了一元二次方程的根與系數(shù)之間的關(guān)系。通過(guò)這些練習(xí),我對(duì)于解二次方程和二次函數(shù)之間的聯(lián)系有了更深刻的理解,同時(shí)也提高了解決實(shí)際問(wèn)題時(shí)的應(yīng)用能力。
    第五段:進(jìn)一步提高。
    二次函數(shù)的復(fù)習(xí)不僅是為了考試,更重要的是希望能夠深入理解其性質(zhì)和應(yīng)用。在今后的學(xué)習(xí)中,我還要繼續(xù)加強(qiáng)對(duì)二次函數(shù)的掌握,同時(shí)加強(qiáng)與實(shí)際問(wèn)題的結(jié)合,培養(yǎng)自己的應(yīng)用能力。此外,我還計(jì)劃進(jìn)一步深入研究其他高級(jí)數(shù)學(xué)知識(shí),以不斷提高自己的數(shù)學(xué)水平。
    通過(guò)對(duì)二次函數(shù)的復(fù)習(xí),我不僅對(duì)二次函數(shù)的性質(zhì)和應(yīng)用有了更深入的認(rèn)識(shí),而且意識(shí)到了數(shù)學(xué)知識(shí)的重要性。掌握好二次函數(shù)的知識(shí)將有助于解決實(shí)際問(wèn)題和提高自己的思維能力。我會(huì)在今后的學(xué)習(xí)中持之以恒,在數(shù)學(xué)學(xué)習(xí)方面更進(jìn)一步,同時(shí)也將通過(guò)數(shù)學(xué)來(lái)提升我的綜合素質(zhì)。
    二次函數(shù)的心得體會(huì)篇八
    近日,我在數(shù)學(xué)課上進(jìn)行了二次函數(shù)的復(fù)習(xí),通過(guò)這一過(guò)程,我深深體會(huì)到了二次函數(shù)的重要性和應(yīng)用價(jià)值。以下是我對(duì)此的心得體會(huì)。
    在復(fù)習(xí)過(guò)程中,我首先意識(shí)到了二次函數(shù)在現(xiàn)實(shí)中的廣泛應(yīng)用。二次函數(shù)可以描述物理學(xué)、經(jīng)濟(jì)學(xué)、生物學(xué)等各個(gè)領(lǐng)域的現(xiàn)象。例如,在物理學(xué)中,拋物線的軌跡就可以由二次函數(shù)來(lái)描述。另外,數(shù)學(xué)模型也常常采用二次函數(shù)來(lái)分析和預(yù)測(cè)實(shí)際問(wèn)題的發(fā)展趨勢(shì)。因此,了解和掌握二次函數(shù)的知識(shí)對(duì)我們理解和處理各種實(shí)際問(wèn)題具有重要意義。
    其次,我對(duì)二次函數(shù)的圖像和性質(zhì)有了更深入的認(rèn)識(shí)。通過(guò)畫圖和求解方程,我發(fā)現(xiàn)二次函數(shù)的圖像是一個(gè)拋物線。這個(gè)拋物線在坐標(biāo)軸上的交點(diǎn)稱為零點(diǎn),也就是方程的解。而頂點(diǎn)則是拋物線的最高點(diǎn)(對(duì)于開(kāi)口向上的拋物線)或最低點(diǎn)(對(duì)于開(kāi)口向下的拋物線)。了解這些性質(zhì)有助于我們更方便地分析和解決問(wèn)題,比如在最值求解或方程解析方面。
    進(jìn)一步地,我也深入研究了二次函數(shù)的預(yù)測(cè)和建模。通過(guò)給定一些歷史數(shù)據(jù),我們可以使用二次函數(shù)來(lái)預(yù)測(cè)未來(lái)的趨勢(shì)和結(jié)果。例如,在經(jīng)濟(jì)學(xué)中,我們可以利用二次函數(shù)來(lái)預(yù)測(cè)某個(gè)市場(chǎng)的發(fā)展趨勢(shì),幫助企業(yè)做出更準(zhǔn)確的決策。此外,二次函數(shù)還可以用于優(yōu)化問(wèn)題的建模,比如求解最值問(wèn)題。通過(guò)對(duì)二次函數(shù)進(jìn)行求導(dǎo),我們可以得到函數(shù)的最值點(diǎn),從而可以找到問(wèn)題的最優(yōu)解。
    最后,我認(rèn)識(shí)到二次函數(shù)對(duì)于我們的數(shù)學(xué)思維能力和解決問(wèn)題的能力的培養(yǎng)具有重要意義。在學(xué)習(xí)二次函數(shù)的過(guò)程中,我們需要通過(guò)觀察和分析,運(yùn)用數(shù)學(xué)知識(shí)來(lái)解決問(wèn)題。這種思維方式的培養(yǎng),不僅可以幫助我們更好地理解和掌握二次函數(shù),還可以提升我們的數(shù)學(xué)思維能力,培養(yǎng)良好的邏輯思維和問(wèn)題解決能力。這對(duì)于我們未來(lái)的學(xué)習(xí)和工作都十分重要。
    通過(guò)本次二次函數(shù)的復(fù)習(xí),我對(duì)二次函數(shù)的重要性和應(yīng)用價(jià)值有了更深入的理解。在實(shí)際生活中,我們不僅要關(guān)注數(shù)學(xué)知識(shí)的學(xué)習(xí)和應(yīng)用,更要培養(yǎng)好的數(shù)學(xué)思維能力和解決問(wèn)題的能力。只有這樣,我們才能更好地應(yīng)對(duì)未來(lái)的挑戰(zhàn),發(fā)現(xiàn)數(shù)學(xué)背后的美妙和智慧。
    二次函數(shù)的心得體會(huì)篇九
    標(biāo)簽:。
    教學(xué)反思:。
    今天,領(lǐng)著學(xué)生復(fù)習(xí)了二次函數(shù)的知識(shí)。本節(jié)知識(shí)是中考考點(diǎn)之一,往往與其他知識(shí)綜合在一起作為中考?jí)狠S題,因此要求學(xué)生重點(diǎn)掌握的有以下幾個(gè)內(nèi)容:
    2、二次函數(shù)的實(shí)際應(yīng)用。
    在復(fù)習(xí)與練習(xí)的過(guò)程中,我發(fā)現(xiàn)學(xué)生存在著這樣幾個(gè)問(wèn)題。
    1、某些記憶性的知識(shí)沒(méi)記住。
    3、學(xué)生的識(shí)圖能力、讀題能力與分析問(wèn)題解決問(wèn)題的能力較弱。
    4、解題過(guò)程寫得不全面,丟三落四的現(xiàn)象嚴(yán)重。
    針對(duì)上述問(wèn)題,需要采取的措施與方法是:
    1、根據(jù)實(shí)際情況,對(duì)于中考升學(xué)有希望的學(xué)生利用課余時(shí)間做好他們的思。
    想工作。并對(duì)他們進(jìn)行面對(duì)面的單獨(dú)輔導(dǎo),增強(qiáng)他們的自信心,以此來(lái)提高他們的數(shù)學(xué)成績(jī)。
    2、結(jié)合自己的學(xué)習(xí)經(jīng)驗(yàn)對(duì)他們進(jìn)行學(xué)法指導(dǎo)和解題技巧的指導(dǎo)。
    3、根據(jù)不同的學(xué)生情況,搜集典型題讓他們單獨(dú)做,并給予及時(shí)的輔導(dǎo)與。
    矯正。
    4、與其它任課教師聯(lián)手一起想對(duì)策,指導(dǎo)學(xué)生讀題的方法與分析問(wèn)題,解。
    決問(wèn)題的方法。
    5、無(wú)論是做練習(xí)還是考試之前,都告訴學(xué)生要認(rèn)真仔細(xì)的讀題,從圖形中。
    獲取信息。
    二次函數(shù)的心得體會(huì)篇十
    "def函數(shù)心得體會(huì)"
    在編程中,函數(shù)是非常重要的工具之一。函數(shù)可以將一段代碼封裝起來(lái),使得代碼更加的模塊化和可復(fù)用。在學(xué)習(xí)使用函數(shù)過(guò)程中,我總結(jié)出了一些心得體會(huì)。
    首先,定義函數(shù)時(shí),需要考慮函數(shù)的功能和輸入輸出。一個(gè)好的函數(shù)應(yīng)該有一個(gè)清晰的目標(biāo),并能夠完成特定的任務(wù)。在定義函數(shù)時(shí),我們需要明確函數(shù)需要接收的參數(shù)和返回的值。通過(guò)合理地定義輸入輸出,可以使函數(shù)更加通用和靈活。有時(shí)候,我們可能還需要在函數(shù)中添加一些默認(rèn)參數(shù),使得函數(shù)對(duì)于不同情況下的調(diào)用都能適應(yīng)。
    其次,函數(shù)的可讀性和可維護(hù)性是非常重要的。在編寫函數(shù)時(shí),我們應(yīng)該遵循良好的編程規(guī)范,使用有意義的函數(shù)和變量名,并添加適當(dāng)?shù)淖⑨尯驼f(shuō)明。這樣可以使得其他開(kāi)發(fā)人員更好地理解我們的代碼,并且在維護(hù)和修改代碼時(shí)也更加方便。另外,函數(shù)應(yīng)該盡量做到單一職責(zé)原則,即每個(gè)函數(shù)只完成一個(gè)任務(wù)。這樣可以使得函數(shù)更加簡(jiǎn)潔明了,也更容易被復(fù)用和組合。
    第三,函數(shù)的代碼塊應(yīng)該盡量簡(jiǎn)潔和高效。我們可以使用一些代碼優(yōu)化技巧來(lái)提高函數(shù)的執(zhí)行效率。比如,盡量避免使用不必要的循環(huán)和條件判斷語(yǔ)句,合理使用緩存和計(jì)算優(yōu)化等。另外,我們還可以通過(guò)函數(shù)的內(nèi)聯(lián)和內(nèi)置函數(shù)的使用來(lái)減少函數(shù)的調(diào)用開(kāi)銷。這些優(yōu)化技巧雖然可能會(huì)犧牲一些代碼的可讀性,但在一些對(duì)性能要求較高的場(chǎng)景下是非常有必要的。
    第四,函數(shù)的異常處理是必不可少的。在函數(shù)中,我們應(yīng)該對(duì)可能出現(xiàn)的異常情況進(jìn)行預(yù)判,避免程序崩潰或出現(xiàn)錯(cuò)誤結(jié)果。我們可以使用try-except語(yǔ)句來(lái)捕獲異常,并進(jìn)行相應(yīng)的處理。在異常處理時(shí),我們應(yīng)該采取適當(dāng)?shù)拇胧热巛敵鲥e(cuò)誤信息、重試或者回滾等。合理的異常處理可以使我們的代碼更加健壯和穩(wěn)定。
    最后,我們還需要理解和使用一些高級(jí)的函數(shù)概念。比如,遞歸函數(shù)可以通過(guò)函數(shù)自身調(diào)用來(lái)解決一些需要重復(fù)執(zhí)行的問(wèn)題。在遞歸函數(shù)中,我們需要明確遞歸的終止條件,并保證遞歸過(guò)程的正確性和高效性。另外,我們還可以學(xué)習(xí)和使用一些高階函數(shù)的技巧。高階函數(shù)可以將其他函數(shù)作為參數(shù)或者返回值,使得代碼更加靈活和可擴(kuò)展。
    總之,函數(shù)是編程中非常重要的部分,合理地使用函數(shù)可以使我們的代碼更加模塊化和可復(fù)用。通過(guò)定期地回顧和總結(jié),我相信在函數(shù)的使用上會(huì)有更多的心得體會(huì),也會(huì)寫出更加優(yōu)秀的代碼。
    二次函數(shù)的心得體會(huì)篇十一
    2、會(huì)用二次函數(shù)的圖象與性質(zhì)解決問(wèn)題;
    學(xué)習(xí)難點(diǎn):二次函數(shù)的性質(zhì)與圖像的應(yīng)用;
    函數(shù)函數(shù)。
    圖象a0a0。
    性質(zhì)。
    例2:
    (1)已知函數(shù)n在區(qū)間上為增函數(shù),求a的范圍;
    (2)已知函數(shù)n的單調(diào)區(qū)間是(0,1),求a;
    例3:求二次函數(shù)n在區(qū)間[0,3]上的最大值和最小值;
    變式:
    (1)已知m在[t,t+1]上的最小值為g(t),求g(t)的表達(dá)式。
    (2)已知m在區(qū)間[0,1]內(nèi)有最大值-5,求a。
    (略)。
    二次函數(shù)的心得體會(huì)篇十二
    學(xué)習(xí)目標(biāo):
    1、能夠分析和表示變量間的二次函數(shù)關(guān)系,并解決用二次函數(shù)所表示的問(wèn)題。
    2、用三種方式表示變量間二次函數(shù)關(guān)系,從不同側(cè)面對(duì)函數(shù)性質(zhì)進(jìn)行研究。
    3、通過(guò)解決用二次函數(shù)所表示的問(wèn)題,培養(yǎng)學(xué)生的運(yùn)用能力。
    學(xué)習(xí)重點(diǎn):
    能夠分析和表示變量之間的二次函數(shù)關(guān)系,并解決用二次函數(shù)所表示的問(wèn)題。
    能夠根據(jù)二次函數(shù)的不同表示方式,從不同的側(cè)面對(duì)函數(shù)性質(zhì)進(jìn)行研究。
    學(xué)習(xí)難點(diǎn):
    能夠分析和表示變量之間的二次函數(shù)關(guān)系,并解決用二次函數(shù)所表示的問(wèn)題。
    學(xué)習(xí)過(guò)程:
    一、學(xué)前準(zhǔn)備。
    函數(shù)的三種表示方式,即表格、表達(dá)式、圖象法,我們都不陌生,比如在商店的廣告牌上這樣寫著:一種豆子的售價(jià)與購(gòu)買數(shù)量之間的關(guān)系如下:
    x(千克)00。511。522。53。
    y(元)0123456。
    二、探究活動(dòng)。
    (一)合作探究:
    交流完成:
    (1)一邊長(zhǎng)為xcm,則另一邊長(zhǎng)為cm,所以面積為:用函數(shù)表達(dá)式表示:=________________________________。
    (2)表格表示:
    123456789。
    10—。
    (3)畫出圖象。
    (二)議一議。
    (1)在上述問(wèn)題中,自變量x的取值范圍是什么?
    (2)當(dāng)x取何值時(shí),長(zhǎng)方形的面積最大?它的最大面積是多少?你是怎樣得到的?請(qǐng)你描述一下y隨x的變化而變化的情況。
    點(diǎn)撥:自變量x的取值范圍即是使函數(shù)有意義的自變量的取值范圍。請(qǐng)大家互相交流。
    (1)因?yàn)閤是邊長(zhǎng),所以x應(yīng)取數(shù),即x0,又另一邊長(zhǎng)(10—x)也應(yīng)大于,即10—x0,所以x10,這兩個(gè)條件應(yīng)該同時(shí)滿足,所以x的取值范圍是。
    (2)當(dāng)x取何值時(shí),長(zhǎng)方形的面積最大,就是求自變量取何值時(shí),函數(shù)有最大值,所以要把二次函數(shù)y=—x2+10x化成頂點(diǎn)式。當(dāng)x=—時(shí),函數(shù)y有最大值y最大=。當(dāng)x=時(shí),長(zhǎng)方形的面積最大,最大面積是25cm2。
    可以通過(guò)觀察圖象得知。也可以代入頂點(diǎn)坐標(biāo)公式中求得。。
    (三)做一做:學(xué)生獨(dú)立思考完成p62,p63的函數(shù)表達(dá)式,表格,圖象問(wèn)題。
    (1)用函數(shù)表達(dá)式表示:y=________。
    (2)用表格表示:
    (3)用圖象表示:
    三、學(xué)習(xí)體會(huì)。
    本節(jié)課你有哪些收獲?你還有哪些疑問(wèn)?
    四、自我測(cè)試。
    1、把長(zhǎng)1。6米的鐵絲圍成長(zhǎng)方形abcd,設(shè)寬為x(m),面積為y(m2)。則當(dāng)最大時(shí),所取的值是()。
    a0。5b0。4c0。3d0。6。
    2、兩個(gè)數(shù)的和為6,這兩個(gè)數(shù)的積最大可能達(dá)到多少?利用圖象描述乘積與因數(shù)之間的關(guān)系。
    二次函數(shù)的心得體會(huì)篇十三
    讓學(xué)生經(jīng)歷根據(jù)不同的條件,利用待定系數(shù)法求二次函數(shù)的函數(shù)關(guān)系式。
    :各種隱含條件的挖掘。
    :引導(dǎo)發(fā)現(xiàn)法。
    (一)診斷補(bǔ)償,情景引入:
    (先讓學(xué)生復(fù)習(xí),然后提問(wèn),并做進(jìn)一步診斷)。
    (二)問(wèn)題導(dǎo)航,探究釋疑:
    (三)精講提煉,揭示本質(zhì):
    分析如圖,以ab的垂直平分線為y軸,以過(guò)點(diǎn)o的y軸的垂線為x軸,建立了直角坐標(biāo)系。這時(shí),涵洞所在的拋物線的頂點(diǎn)在原點(diǎn),對(duì)稱軸是y軸,開(kāi)口向下,所以可設(shè)它的函數(shù)關(guān)系式是。此時(shí)只需拋物線上的一個(gè)點(diǎn)就能求出拋物線的函數(shù)關(guān)系式。
    解由題意,得點(diǎn)b的坐標(biāo)為(0。8,-2。4),
    又因?yàn)辄c(diǎn)b在拋物線上,將它的坐標(biāo)代入,得所以因此,函數(shù)關(guān)系式是。
    例2、根據(jù)下列條件,分別求出對(duì)應(yīng)的二次函數(shù)的關(guān)系式。
    (1)已知二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)a(0,-1)、b(1,0)、c(-1,2);
    (2)已知拋物線的頂點(diǎn)為(1,-3),且與y軸交于點(diǎn)(0,1);
    (3)已知拋物線與x軸交于點(diǎn)m(-3,0)(5,0)且與y軸交于點(diǎn)(0,-3);
    (4)已知拋物線的頂點(diǎn)為(3,-2),且與x軸兩交點(diǎn)間的距離為4。
    分析(1)根據(jù)二次函數(shù)的圖象經(jīng)過(guò)三個(gè)已知點(diǎn),可設(shè)函數(shù)關(guān)系式為的形式;(2)根據(jù)已知拋物線的頂點(diǎn)坐標(biāo),可設(shè)函數(shù)關(guān)系式為,再根據(jù)拋物線與y軸的交點(diǎn)可求出a的值;(3)根據(jù)拋物線與x軸的兩個(gè)交點(diǎn)的坐標(biāo),可設(shè)函數(shù)關(guān)系式為,再根據(jù)拋物線與y軸的交點(diǎn)可求出a的值;(4)根據(jù)已知拋物線的頂點(diǎn)坐標(biāo)(3,-2),可設(shè)函數(shù)關(guān)系式為,同時(shí)可知拋物線的對(duì)稱軸為x=3,再由與x軸兩交點(diǎn)間的距離為4,可得拋物線與x軸的兩個(gè)交點(diǎn)為(1,0)和(5,0),任選一個(gè)代入,即可求出a的值。
    解這個(gè)方程組,得a=2,b=-1。
    (2)因?yàn)閽佄锞€的頂點(diǎn)為(1,-3),所以設(shè)二此函數(shù)的關(guān)系式為,又由于拋物線與y軸交于點(diǎn)(0,1),可以得到解得。
    (3)因?yàn)閽佄锞€與x軸交于點(diǎn)m(-3,0)、(5,0),
    所以設(shè)二此函數(shù)的關(guān)系式為。
    又由于拋物線與y軸交于點(diǎn)(0,3),可以得到解得。
    (4)根據(jù)前面的分析,本題已轉(zhuǎn)化為與(2)相同的題型請(qǐng)同學(xué)們自己完成。
    (四)題組訓(xùn)練,拓展遷移:
    1、根據(jù)下列條件,分別求出對(duì)應(yīng)的二次函數(shù)的關(guān)系式。
    (1)已知二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)(0,2)、(1,1)、(3,5);
    (2)已知拋物線的頂點(diǎn)為(-1,2),且過(guò)點(diǎn)(2,1);
    (3)已知拋物線與x軸交于點(diǎn)m(-1,0)、(2,0),且經(jīng)過(guò)點(diǎn)(1,2)。
    2、二次函數(shù)圖象的對(duì)稱軸是x=-1,與y軸交點(diǎn)的縱坐標(biāo)是–6,且經(jīng)過(guò)點(diǎn)(2,10),求此二次函數(shù)的關(guān)系式。
    (五)交流評(píng)價(jià),深化知識(shí):
    確定二此函數(shù)的關(guān)系式的一般方法是待定系數(shù)法,在選擇把二次函數(shù)的關(guān)系式設(shè)成什么形式時(shí),可根據(jù)題目中的條件靈活選擇,以簡(jiǎn)單為原則。二次函數(shù)的關(guān)系式可設(shè)如下三種形式:(1)一般式:,給出三點(diǎn)坐標(biāo)可利用此式來(lái)求。
    (2)頂點(diǎn)式:,給出兩點(diǎn),且其中一點(diǎn)為頂點(diǎn)時(shí)可利用此式來(lái)求。
    (3)交點(diǎn)式:,給出三點(diǎn),其中兩點(diǎn)為與x軸的兩個(gè)交點(diǎn)、時(shí)可利用此式來(lái)求。
    本課課外作業(yè)1。已知二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)a(-1,12)、b(2,-3),
    (2)用配方法把(1)所得的函數(shù)關(guān)系式化成的形式,并求出該拋物線的頂點(diǎn)坐標(biāo)和對(duì)稱軸。
    二次函數(shù)的心得體會(huì)篇十四
    本節(jié)內(nèi)容是人民教育出版社出版的九年級(jí)《數(shù)學(xué)》下第26章第一節(jié)第二課時(shí)的內(nèi)容。在此之前,學(xué)生已學(xué)習(xí)了二次函數(shù)的概念,對(duì)于函數(shù)的積累知識(shí)有一次函數(shù)和反比例函數(shù)。本節(jié)內(nèi)容是對(duì)二次函數(shù)圖像及其性質(zhì)的學(xué)習(xí),是后續(xù)研究二次函數(shù)圖像的變換的基礎(chǔ)。二次函數(shù)在初中函數(shù)的教學(xué)中有重要地位,它不僅是初中代數(shù)內(nèi)容的引申,也是初中數(shù)學(xué)教學(xué)的重點(diǎn)和難點(diǎn)之一,更為高中學(xué)習(xí)一元二次不等式和圓錐曲線奠定基礎(chǔ)。
    本節(jié)課中的教學(xué)重點(diǎn)利用描點(diǎn)法畫出二次函數(shù)的圖像,建構(gòu)符合學(xué)生認(rèn)知結(jié)構(gòu)的知識(shí)體系,教學(xué)難點(diǎn)是運(yùn)用數(shù)形結(jié)合的思想描述函數(shù),根據(jù)解析式判斷函數(shù)的開(kāi)口方向、對(duì)稱軸、頂點(diǎn)坐標(biāo)?;谝陨蠈?duì)教材的認(rèn)識(shí),根據(jù)數(shù)學(xué)課程標(biāo)準(zhǔn),考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)與心理特征,制定如下的教學(xué)目標(biāo)。
    2.說(shuō)目標(biāo)。
    【知識(shí)與能力】:
    會(huì)用描點(diǎn)法畫出函數(shù)y=ax2的圖象。
    知道拋物線的有關(guān)概念。
    會(huì)根據(jù)公式確定拋物線的頂點(diǎn)坐標(biāo)、開(kāi)口方向、對(duì)稱軸以及拋物線與坐標(biāo)軸的交點(diǎn)坐標(biāo)。
    【過(guò)程與方法】:
    1、通過(guò)二次函數(shù)的教學(xué)進(jìn)一步體會(huì)研究函數(shù)的一般方法,加深對(duì)于數(shù)形結(jié)合思想的認(rèn)識(shí)。
    2.綜合運(yùn)用所學(xué)知識(shí)、方法去解決數(shù)學(xué)問(wèn)題,培養(yǎng)學(xué)生提出、分析、解決、歸納問(wèn)題的數(shù)學(xué)能力,改善學(xué)生的數(shù)學(xué)思維品質(zhì)。
    【情感與態(tài)度目標(biāo)】:
    在數(shù)學(xué)教學(xué)中滲透美的教育,讓學(xué)生感受二次函數(shù)圖像的對(duì)2。
    稱之美,激發(fā)學(xué)生的學(xué)習(xí)興趣。認(rèn)識(shí)到數(shù)學(xué)源于生活,用于生活的辯證觀點(diǎn)。
    3.說(shuō)教學(xué)方法。
    教法選擇與教學(xué)手段:基于本節(jié)課的特點(diǎn)是學(xué)習(xí)新知及其綜合運(yùn)用,應(yīng)著重采用復(fù)習(xí)與總結(jié)的教學(xué)方法與手段,先從一次函數(shù)、反比例函數(shù)的圖像復(fù)習(xí)入手,通過(guò)提問(wèn)思考、歸納總結(jié)、綜合運(yùn)用等形式對(duì)二次函數(shù)圖像及其性質(zhì)進(jìn)行有針對(duì)性的、系統(tǒng)性的教學(xué)。教學(xué)的模式為學(xué)生思考,討論,教師分析,演示、師生共同總結(jié)歸納。
    利用白板的動(dòng)態(tài)畫板功能,畫出不同的二次函數(shù)圖像,進(jìn)行分析比較和歸納。
    學(xué)法指導(dǎo):讓學(xué)生從問(wèn)題中質(zhì)疑、嘗試、歸納、總結(jié)、運(yùn)用,培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題、研究問(wèn)題和解決問(wèn)題的能力。
    最后,我來(lái)具體談一談本節(jié)課的教學(xué)過(guò)程。
    4.說(shuō)教學(xué)過(guò)程。
    (一)為對(duì)二次函數(shù)圖像及其性質(zhì)的相關(guān)知識(shí)進(jìn)行重構(gòu)做準(zhǔn)備。通過(guò)回憶復(fù)習(xí)一次函數(shù)和反比例函數(shù)圖像及其性質(zhì)等相關(guān)知識(shí)引入新課。利用描點(diǎn)法畫出二次函數(shù)的圖象,總結(jié)規(guī)律,會(huì)根據(jù)公式確定拋物線的頂點(diǎn)坐標(biāo)、開(kāi)口方向、對(duì)稱軸。說(shuō)出a為何值時(shí)y隨x增大而增大(增大而減?。龑?dǎo)學(xué)生掌握用描點(diǎn)法畫出二次函數(shù)的圖象,能從圖象上認(rèn)識(shí)二次函數(shù)的性質(zhì)。運(yùn)用聯(lián)想、概括方法對(duì)二次函數(shù)圖像及其性質(zhì)的相關(guān)知識(shí)進(jìn)行梳理,領(lǐng)悟數(shù)形結(jié)合的思想方法,發(fā)展學(xué)生的化歸遷移的數(shù)學(xué)思維,培養(yǎng)學(xué)生的轉(zhuǎn)化能力。
    (二)通過(guò)對(duì)二次函數(shù)圖像及其性質(zhì)的學(xué)習(xí),采用學(xué)生思考,教師分析,解題小結(jié)三個(gè)環(huán)節(jié)構(gòu)成的練習(xí)題講解模式,鞏固二次函數(shù)圖像及其性質(zhì)的基本題目的一般解題方法,并進(jìn)一步研究二次函數(shù)圖像及其性質(zhì)的應(yīng)用。
    (三)反思概括,方法總結(jié)。
    總結(jié)本節(jié)課的知識(shí)點(diǎn)、重點(diǎn)和難點(diǎn),著重理解二次函數(shù)圖像及其性質(zhì)的相關(guān)知識(shí)和基本解題方法,領(lǐng)悟數(shù)形結(jié)合的數(shù)學(xué)思想方法,學(xué)會(huì)用化歸思想,解決實(shí)際問(wèn)題。培養(yǎng)學(xué)生由題及法,由法及類的數(shù)學(xué)總結(jié)歸納方法。
    (四)作業(yè)。
    課后通過(guò)練習(xí)來(lái)鞏固本節(jié)課所復(fù)習(xí)的知識(shí)點(diǎn)、重點(diǎn)和難點(diǎn),強(qiáng)化教學(xué)目標(biāo)。
    各位老師,以上所說(shuō)只是我預(yù)設(shè)的一種方案,但課堂上是千變?nèi)f化的,會(huì)隨著學(xué)生和教師的靈性發(fā)揮而隨機(jī)生成的,預(yù)設(shè)效果如何,最終還有待于課堂教學(xué)實(shí)踐的檢驗(yàn)。本說(shuō)課一定存在諸多不足,懇請(qǐng)各位老師提出寶貴意見(jiàn),謝謝!
    二次函數(shù)的心得體會(huì)篇十五
    Javascript是一門廣泛應(yīng)用于網(wǎng)頁(yè)開(kāi)發(fā)和動(dòng)態(tài)網(wǎng)頁(yè)交互的腳本語(yǔ)言。在Javascript中,函數(shù)是關(guān)鍵的組成部分,可以幫助我們將代碼分解為可重復(fù)使用的塊,從而提高代碼的可讀性和可維護(hù)性。在我使用Javascript函數(shù)的過(guò)程中,我領(lǐng)悟到了一些心得體會(huì),接下來(lái)將分享給大家。
    首先,函數(shù)是代碼重構(gòu)的利器。當(dāng)我在編寫代碼時(shí),如果發(fā)現(xiàn)一段代碼在不同地方重復(fù)出現(xiàn),我會(huì)將其提取為一個(gè)函數(shù),從而避免出現(xiàn)重復(fù)代碼。通過(guò)使用函數(shù),我能夠?qū)⒁粋€(gè)復(fù)雜的問(wèn)題分解為多個(gè)小問(wèn)題,并分別使用不同的函數(shù)來(lái)處理。這樣一來(lái),不僅使代碼更加靈活,還能簡(jiǎn)化調(diào)試過(guò)程。函數(shù)的使用幫助我提高了代碼的重用性和可維護(hù)性。
    其次,函數(shù)提供了封裝的特性。在Javascript中,函數(shù)可以被看作是一個(gè)獨(dú)立的代碼單元,它們具有自己的輸入、處理和輸出。這種封裝的特性使得函數(shù)可以作為一個(gè)獨(dú)立的部分來(lái)處理復(fù)雜的問(wèn)題,提高了代碼的可讀性。在編寫函數(shù)時(shí),我會(huì)盡量使其功能單一,這樣不僅便于代碼的維護(hù)和測(cè)試,而且往往能夠提高函數(shù)的復(fù)用率。
    接下來(lái),函數(shù)可以作為回調(diào)函數(shù)使用?;卣{(diào)函數(shù)指的是將一個(gè)函數(shù)作為參數(shù)傳遞給另一個(gè)函數(shù),并在特定條件下執(zhí)行。在Javascript中,函數(shù)是一等公民,可以賦值給變量,也可以作為參數(shù)傳遞給其他函數(shù)。通過(guò)使用回調(diào)函數(shù),我能夠?qū)崿F(xiàn)代碼的異步執(zhí)行,如在Ajax請(qǐng)求中獲取數(shù)據(jù)后處理數(shù)據(jù)的回調(diào)函數(shù),或者在事件觸發(fā)后執(zhí)行相應(yīng)操作的回調(diào)函數(shù)。這種靈活的使用方式,使得代碼邏輯更加清晰,并且可以處理各種不同場(chǎng)景下的需求。
    最后,函數(shù)可以提高代碼的性能。在Javascript中,函數(shù)的調(diào)用和執(zhí)行都會(huì)占用一定的資源,所以函數(shù)的使用也需要注意性能方面的考慮。在編寫函數(shù)時(shí),我會(huì)盡量避免過(guò)多的嵌套,減少函數(shù)的調(diào)用次數(shù),從而提高代碼的運(yùn)行效率。此外,我還會(huì)使用函數(shù)參數(shù)來(lái)減少對(duì)外部變量的依賴,這可以提高函數(shù)的獨(dú)立性,并且減少不必要的變量引用。
    綜上所述,Javascript函數(shù)在網(wǎng)頁(yè)開(kāi)發(fā)中扮演了重要的角色。通過(guò)對(duì)函數(shù)的深入理解和靈活運(yùn)用,我們能夠更好地編寫可維護(hù)、高效的代碼。函數(shù)的重構(gòu)、封裝、回調(diào)和性能優(yōu)化等特性,都使得我們可以更加方便地編寫復(fù)雜的邏輯,提高代碼的可讀性和可維護(hù)性。隨著對(duì)函數(shù)的掌握和運(yùn)用的不斷提升,我相信我在Javascript開(kāi)發(fā)中的技術(shù)水平也會(huì)不斷提高。
    二次函數(shù)的心得體會(huì)篇十六
    函數(shù)是計(jì)算機(jī)編程中非常重要的一個(gè)知識(shí)點(diǎn),尤其在現(xiàn)代軟件領(lǐng)域中,函數(shù)更是無(wú)處不在。作為一名程序員,我們需要深入理解函數(shù)的概念,能夠靈活運(yùn)用函數(shù)來(lái)編寫高效的代碼。在大量的實(shí)踐中,我對(duì)函數(shù)有了一些心得體會(huì)。
    一、函數(shù)的概念
    函數(shù)是計(jì)算機(jī)編程的基本概念之一,它是一組語(yǔ)句的集合,通常用于完成一項(xiàng)特定的任務(wù)。函數(shù)可以接受輸入,處理數(shù)據(jù),執(zhí)行操作,最終返回輸出。利用函數(shù)可以將大型程序拆分成多個(gè)小型問(wèn)題,有助于代碼的可讀性和維護(hù)性。另外,函數(shù)還可以重復(fù)使用,避免重復(fù)編寫相同的代碼。在實(shí)際的編程中,理解函數(shù)的概念是十分關(guān)鍵的。
    二、函數(shù)的組成
    函數(shù)通常包含函數(shù)名、輸入?yún)?shù)、輸出參數(shù)和函數(shù)體。函數(shù)名是由程序員自行定義,用于調(diào)用函數(shù)的標(biāo)識(shí)符。輸入?yún)?shù)是函數(shù)需要接受的外部數(shù)據(jù),可以是零個(gè)或多個(gè)參數(shù)。輸出參數(shù)是函數(shù)最終返回的結(jié)果,用于外部調(diào)用使用。函數(shù)體包含了完成功能的代碼,通常使用花括號(hào)括起來(lái)。一個(gè)完整的函數(shù)由這四部分構(gòu)成,程序員需要根據(jù)實(shí)際需求進(jìn)行合理的構(gòu)建。理解函數(shù)的組成有助于我們更好地進(jìn)行函數(shù)的使用與編寫。
    三、函數(shù)的語(yǔ)法
    函數(shù)有自己的語(yǔ)法規(guī)則,我們?cè)诰帉懞瘮?shù)時(shí)需要遵循這些規(guī)則。函數(shù)的語(yǔ)法通常包括函數(shù)名稱、參數(shù)列表、指令塊和返回值。其中,函數(shù)名稱用于唯一標(biāo)識(shí)一個(gè)函數(shù),參數(shù)列表用于定義函數(shù)需要使用的輸入?yún)?shù),指令塊包含了完成功能的代碼,返回值用于將函數(shù)的結(jié)果返回給調(diào)用者。熟練掌握函數(shù)的語(yǔ)法規(guī)則可以幫助我們更好地完成編程工作。
    四、函數(shù)的應(yīng)用
    函數(shù)在編程中有著非常廣泛的應(yīng)用,它可以用于各種場(chǎng)景中。常見(jiàn)的應(yīng)用包括:簡(jiǎn)化程序結(jié)構(gòu)、提高代碼重用性、增加代碼可讀性、提升程序性能等。利用函數(shù),我們可以將程序拆分成多個(gè)小型問(wèn)題,每個(gè)問(wèn)題由一個(gè)函數(shù)來(lái)解決,減少代碼冗余,防止出現(xiàn)大量重復(fù)代碼。此外,對(duì)于特定的場(chǎng)景和需求,函數(shù)還可以實(shí)現(xiàn)一些高級(jí)功能,如遞歸、閉包等。
    五、總結(jié)
    函數(shù)是計(jì)算機(jī)編程中非常重要的一個(gè)概念,掌握函數(shù)的核心概念和實(shí)際應(yīng)用,對(duì)于編寫高效的程序非常有幫助。在編程學(xué)習(xí)的過(guò)程中,結(jié)合實(shí)際案例對(duì)函數(shù)的使用和理解加深,有利于我們更好地掌握函數(shù)的各方面應(yīng)用和技巧,提高自身的技能水平和編程能力。希望我的這些心得體會(huì)可以對(duì)大家有所幫助。
    二次函數(shù)的心得體會(huì)篇十七
    函數(shù),是計(jì)算機(jī)編程中的一個(gè)重要概念,它可以將一段代碼組織起來(lái),不僅實(shí)現(xiàn)代碼的重用,還可以提高代碼的可讀性和維護(hù)性。在學(xué)習(xí)函數(shù)的過(guò)程中,我感受到了很多,包括函數(shù)的定義、調(diào)用、參數(shù)傳遞等方面,也逐漸理解了函數(shù)對(duì)于編程的意義。下面我將分享一些自己的心得體會(huì)。
    第二段:函數(shù)定義
    在學(xué)習(xí)函數(shù)的過(guò)程中,最基礎(chǔ)的部分就是函數(shù)的定義。函數(shù)定義的格式一般是以關(guān)鍵字“def”開(kāi)頭,然后是函數(shù)名和括號(hào)中的參數(shù)列表,最后是一個(gè)冒號(hào)。在函數(shù)體中,我們可以編寫返回結(jié)果的代碼。除了語(yǔ)法格式之外,編寫函數(shù)的過(guò)程還需要掌握一些技巧,比如函數(shù)命名應(yīng)該具有清晰的功能標(biāo)識(shí),函數(shù)代碼應(yīng)該盡可能短小,不要寫太多的邏輯,使得代碼變得冗長(zhǎng)。
    第三段:函數(shù)調(diào)用
    定義函數(shù)只是一部分,更重要的是在合適的場(chǎng)合調(diào)用函數(shù)。調(diào)用函數(shù)時(shí),首先需要在代碼中添加函數(shù)調(diào)用的語(yǔ)句,語(yǔ)法格式一般是通過(guò)函數(shù)名和屬于該函數(shù)的參數(shù)來(lái)進(jìn)行調(diào)用。在調(diào)用函數(shù)的時(shí)候,需要注意參數(shù)的傳遞是否正確,特別是當(dāng)參數(shù)傳遞較多時(shí),更要注意參數(shù)的順序和個(gè)數(shù)是否匹配,否則會(huì)出現(xiàn)預(yù)期之外的結(jié)果。此外,對(duì)于函數(shù)的調(diào)用,要符合封裝的思想,不要將函數(shù)中的邏輯暴露到外部。
    第四段:參數(shù)傳遞
    函數(shù)調(diào)用過(guò)程中還有一個(gè)重要的概念就是參數(shù)傳遞。在函數(shù)定義中,我們可以在參數(shù)列表中定義形式參數(shù),而在函數(shù)調(diào)用時(shí),可以向形式參數(shù)傳遞實(shí)際參數(shù)。Python中有多種傳遞參數(shù)的方式,包括位置參數(shù)、默認(rèn)參數(shù)、可變位置參數(shù)、可變關(guān)鍵字參數(shù)。其中,函數(shù)的參數(shù)傳遞方式和傳遞的參數(shù)類型和數(shù)量對(duì)函數(shù)的調(diào)用結(jié)果影響很大,所以在編寫函數(shù)和調(diào)用函數(shù)時(shí),一定要特別注意參數(shù)傳遞的方式。
    第五段:函數(shù)的作用
    總體來(lái)講,函數(shù)是編程中非常重要的一個(gè)概念。函數(shù)的使用可以有效提高代碼的重用性、可讀性和維護(hù)性,同時(shí)也可以使程序更加模塊化,方便編寫和維護(hù)。和其他高級(jí)語(yǔ)言一樣,Python中的函數(shù)也有無(wú)數(shù)的應(yīng)用場(chǎng)景,例如在圖像處理、數(shù)據(jù)分析和人工智能等方面的應(yīng)用場(chǎng)景中都有廣泛的應(yīng)用。因此,在學(xué)習(xí)和使用函數(shù)的過(guò)程中,我們需要認(rèn)真思考函數(shù)的作用,弄清楚不同場(chǎng)景下函數(shù)的優(yōu)勢(shì)和不足,從而更好的運(yùn)用語(yǔ)言中的函數(shù)。
    結(jié)尾段:
    在Python中,函數(shù)是一種非常重要的編程概念,了解和掌握函數(shù)的定義、調(diào)用、參數(shù)傳遞和作用,可以讓我們編寫出更優(yōu)秀的程序。學(xué)習(xí)函數(shù)不僅需要掌握語(yǔ)法,更需要有實(shí)際的編程經(jīng)驗(yàn),不斷地去嘗試和總結(jié)。除此之外,我們還可以通過(guò)閱讀相關(guān)的代碼和文檔,以及與其他程序員交流和討論,擴(kuò)充我們對(duì)函數(shù)的認(rèn)知和理解。
    二次函數(shù)的心得體會(huì)篇十八
    在整個(gè)中學(xué)數(shù)學(xué)知識(shí)體系中,二次函數(shù)占據(jù)極其關(guān)鍵且重要的地位,二次函數(shù)不僅是中高考數(shù)學(xué)的重要考點(diǎn),也是線性數(shù)學(xué)知識(shí)的基礎(chǔ)。那老師應(yīng)該怎么教呢?今天,小編給大家?guī)?lái)初三數(shù)學(xué)二次函數(shù)教案教學(xué)方法。
    一、重視每一堂復(fù)習(xí)課數(shù)學(xué)復(fù)習(xí)課不比新課,講的都是已經(jīng)學(xué)過(guò)的東西,我想許多老師都和我有相同的體會(huì),那就是復(fù)習(xí)課比新課難上。
    四、要多了解學(xué)生。你對(duì)學(xué)生的了解更有助于你的教學(xué),特別是在初三總復(fù)習(xí)間斷,及時(shí)了解每個(gè)學(xué)生的復(fù)習(xí)情況有助于你更好的制定復(fù)習(xí)計(jì)劃和備下一堂課,也有利于你更好的改進(jìn)教學(xué)方法。
    二、立足課堂,提高效率:做到教師入題海,學(xué)生出題海.教師應(yīng)多做題、多研究近幾年的中考試題,并根據(jù)本班學(xué)生的實(shí)際情況,從眾多復(fù)習(xí)資料中,選擇適合本班學(xué)生的最佳練習(xí),也可通過(guò)對(duì)題目的重組。
    三、教師在設(shè)計(jì)教學(xué)目標(biāo)時(shí),要做到胸中有書,目中有人,讓每一節(jié)課都給學(xué)生留有時(shí)間,讓他們有獨(dú)立思考、合作探究交流的過(guò)程,最大限度的調(diào)動(dòng)學(xué)生的參與度,激發(fā)他們的學(xué)習(xí)興趣,達(dá)到最佳的復(fù)習(xí)效果.
    四、激發(fā)興趣,提高質(zhì)量:興趣是學(xué)習(xí)最好的動(dòng)力,在上復(fù)習(xí)課時(shí)尤為重要.因此,我們?cè)谑谡n的過(guò)程中,在關(guān)注知識(shí)復(fù)習(xí)的同時(shí),也要關(guān)注學(xué)生的學(xué)習(xí)欲望和學(xué)習(xí)效果,要讓學(xué)生在學(xué)習(xí)的過(guò)程中體驗(yàn)成功的快感.這樣他們才會(huì)更有興趣的學(xué)習(xí)下去.
    1.質(zhì)疑問(wèn)難是學(xué)生自主學(xué)習(xí)的重要表現(xiàn),優(yōu)化課堂結(jié)構(gòu),激活學(xué)生的主體意識(shí),必須鼓勵(lì)學(xué)生質(zhì)疑問(wèn)難。教師要?jiǎng)?chuàng)造和諧融合的課堂氣氛,允許學(xué)生隨時(shí)“插嘴”、提問(wèn)、爭(zhēng)辯,甚至提出與教師不同的看法。
    2.二次函數(shù)是初中階段繼一次函數(shù)、反比例函數(shù)之后,學(xué)生要學(xué)習(xí)的最后一類重要的代數(shù)函數(shù),它也是描述現(xiàn)實(shí)世界變量之間關(guān)系的重要的數(shù)學(xué)模型。
    3.學(xué)生有疑而問(wèn)、質(zhì)疑問(wèn)難,是用心思考、自主學(xué)習(xí)、主動(dòng)探究的可貴表現(xiàn),理應(yīng)得到老師的熱情鼓勵(lì)和贊揚(yáng)?,F(xiàn)在對(duì)學(xué)生的隨時(shí)“插嘴”,提出的各種疑難問(wèn)題,應(yīng)抱歡迎、鼓勵(lì)的態(tài)度給與肯定,并做出正確的解釋。
    4.初中階段主要研究二次函數(shù)的概念、圖像和性質(zhì),用二次函數(shù)的觀點(diǎn)審視一元二次方程,用二次函數(shù)的相關(guān)知識(shí)分析和解決簡(jiǎn)單的實(shí)際問(wèn)題。
    1.教學(xué)案例、教學(xué)設(shè)計(jì)、教學(xué)實(shí)錄、教學(xué)敘事的區(qū)別:教學(xué)案例與教案:教案(教學(xué)設(shè)計(jì))是事先設(shè)想的教育教學(xué)思路,是對(duì)準(zhǔn)備實(shí)施的教育措施的簡(jiǎn)要說(shuō)明,反映的是教學(xué)預(yù)期;而教學(xué)案例則是對(duì)已發(fā)生的教育教學(xué)過(guò)程的描述,反映的是教學(xué)結(jié)果。
    2.教學(xué)案例與教學(xué)實(shí)錄:它們同樣是對(duì)教育教學(xué)情境的描述,但教學(xué)實(shí)錄是有聞必錄(事實(shí)判斷),而教學(xué)案例是根據(jù)目的和功能選擇內(nèi)容,并且必須有作者的反思(價(jià)值判斷)。
    4.教學(xué)案例必須從教學(xué)任務(wù)分析的目標(biāo)出發(fā),有意識(shí)地選擇有關(guān)信息,必須事先進(jìn)行實(shí)地作業(yè),因此日常教育敘事日志可以作為寫作教學(xué)案例的素材積累。
    二次函數(shù)的心得體會(huì)篇十九
    以“def函數(shù)心得體會(huì)”為主題的一篇連貫的五段式文章。
    第一段:引言
    在編程世界中,函數(shù)是一種重要的概念,可以將一段可重復(fù)使用的代碼封裝成一個(gè)獨(dú)立的模塊,這樣不僅可以提高代碼的復(fù)用性,還可以使程序結(jié)構(gòu)更加清晰。而在Python語(yǔ)言中,使用def關(guān)鍵字來(lái)定義函數(shù),這是一種簡(jiǎn)單而有效的方式。本文將分享我對(duì)于def函數(shù)的理解和心得體會(huì)。
    第二段:函數(shù)的定義和調(diào)用
    在使用def關(guān)鍵字定義函數(shù)時(shí),需要指定函數(shù)的名稱和參數(shù)。函數(shù)名稱可以自由選擇,而參數(shù)可以是零個(gè)或多個(gè),用于接收外部傳入的數(shù)據(jù)。調(diào)用函數(shù)時(shí),可以通過(guò)在函數(shù)名后加上括號(hào),并傳入對(duì)應(yīng)的參數(shù),來(lái)執(zhí)行函數(shù)體中的代碼,從而完成函數(shù)的功能。函數(shù)調(diào)用可以發(fā)生在程序的任何位置,方便了代碼的重用,提高了程序的模塊化。
    第三段:函數(shù)的返回值
    在函數(shù)的定義中,可以通過(guò)return語(yǔ)句來(lái)指定函數(shù)的返回值。返回值可以是一個(gè)具體的數(shù)據(jù),也可以是一個(gè)數(shù)據(jù)類型,甚至可以是另一個(gè)函數(shù)。通過(guò)返回值,函數(shù)可以將處理好的結(jié)果傳遞給調(diào)用它的地方,實(shí)現(xiàn)數(shù)據(jù)的交互與傳遞。在編寫函數(shù)時(shí),返回值的合理選擇,可以使函數(shù)的功能更加完善,提高代碼的復(fù)用性。
    第四段:函數(shù)的變量作用域
    在函數(shù)內(nèi)部定義的變量稱為局部變量,它們只能在函數(shù)內(nèi)部使用。而在函數(shù)外部定義的變量則稱為全局變量,可以在整個(gè)程序中使用。當(dāng)全局變量與局部變量同名時(shí),函數(shù)內(nèi)部的變量會(huì)屏蔽全局變量,只在函數(shù)內(nèi)部有效。而對(duì)于函數(shù)內(nèi)部來(lái)說(shuō),外部的變量是不可見(jiàn)的。在編寫函數(shù)時(shí),變量的作用域需要小心處理,以免產(chǎn)生意外的結(jié)果。
    第五段:總結(jié)和展望
    通過(guò)學(xué)習(xí)和使用def函數(shù),我深刻體會(huì)到函數(shù)的強(qiáng)大和重要性。函數(shù)可以將復(fù)雜的問(wèn)題分解為簡(jiǎn)單的模塊,提高代碼的可讀性和可維護(hù)性。同時(shí),合理設(shè)計(jì)函數(shù)的參數(shù)和返回值,可以使函數(shù)的功能更強(qiáng)大,代碼的復(fù)用性更高。在未來(lái)的學(xué)習(xí)和實(shí)踐中,我將不斷地積累經(jīng)驗(yàn),優(yōu)化函數(shù)的設(shè)計(jì),使其更加高效和簡(jiǎn)潔。
    通過(guò)以上五段式的文章結(jié)構(gòu),我可以完整地表達(dá)自己對(duì)于“def函數(shù)心得體會(huì)”的理解和體會(huì)。通過(guò)使用def函數(shù),我深刻感受到函數(shù)的功能和優(yōu)勢(shì),這對(duì)于提高程序的質(zhì)量和效率具有重要作用。希望這篇文章可以給讀者帶來(lái)一些啟發(fā)和幫助。