最新數(shù)學(xué)思想方法心得大全(21篇)

字號:

    總結(jié)是一個很好的反思和總結(jié)過去的機會,可以讓我們更好地規(guī)劃未來的發(fā)展方向。在總結(jié)中,我們可以借鑒他人的經(jīng)驗和方法,以提高自己的總結(jié)能力。以下是一些時間管理的實用方法,希望能幫助大家合理安排時間。
    數(shù)學(xué)思想方法心得篇一
    (一)引導(dǎo)學(xué)生做到數(shù)形有機結(jié)合
    數(shù)形結(jié)合是將抽象與具體相融合的過程,在這一過程中能夠有效實現(xiàn)數(shù)與形的優(yōu)勢互補,將二者之間的本質(zhì)聯(lián)系凸顯出來。如在學(xué)習(xí)《圓的面積》一節(jié)時,之前學(xué)生已對圓有了基本認識,因此,在教學(xué)如何計算圓的面積時,教師可先引導(dǎo)學(xué)生猜想圓的面積同什么要素有關(guān)。為了讓學(xué)生有更為直觀的感受,教師還可要求學(xué)生自己在練習(xí)本上分別畫出半徑是3cm、4cm和5cm的圓。然后,再詢問學(xué)生,這三個圓的大小不一樣,那它們的面積大小是什么關(guān)系呢?是等于還是半徑越小的面積越大,或是半徑越大圓的面積越大?學(xué)生在思考了一下后大都認為半徑為5cm的那個圓最大,半徑是3cm的圓的面積最小。在有了這樣的認識后,學(xué)生就會在頭腦中形成圓的'面積同半徑有關(guān)這樣一個認識,之后教師就可據(jù)此引導(dǎo)學(xué)生如何求得圓的面積。綜上所述,在引入圓的面積之前,我先讓學(xué)生對圓同半徑之間的關(guān)系有了一個清晰的了解,為了達到這個目的采取的是讓學(xué)生自己動手將頭腦中抽象的東西通過圖形展示出來并結(jié)合具體的數(shù)字印證出來的方法。這種數(shù)形結(jié)合的思想方法能夠使問題直觀化,將學(xué)生學(xué)習(xí)的積極性和主動性調(diào)動起來,提高了課堂教學(xué)質(zhì)量。
    (二)學(xué)會轉(zhuǎn)化,化難為易
    轉(zhuǎn)化的思想就是用聯(lián)系、運動和發(fā)展的觀點去看問題,通過變換問題的形式,把未解決的或復(fù)雜的問題歸結(jié)到已經(jīng)能解決的或簡單的問題中,從而獲得對原問題的解決,因此轉(zhuǎn)化的思想方法也叫劃歸的思想方法。在數(shù)學(xué)教學(xué)中轉(zhuǎn)化的思想方法隨處可見,特別是在解題時,我們可根據(jù)已知條件將問題轉(zhuǎn)化,從另一個角度進行思考將難化易。如在講完《圓的周長》這一節(jié)后,課后習(xí)題中有一道題是將長方形和正方形同圓結(jié)合起來,讓學(xué)生在已知半徑的情況下分別求出圓、長方形和正方形的周長。我將這道題中的一個小題做了改編,讓學(xué)生在已知正方形周長的情況下去求圓的周長。圓位于正方形內(nèi),二者是相切的關(guān)系,這就要求學(xué)生能夠根據(jù)正方形的周長求出正方形的邊長,而正方形的邊長就是圓的直徑,再套用周長c=d的公式就能求得圓的周長。這套題目要求學(xué)生能根據(jù)已知條件對問題進行轉(zhuǎn)化,從而創(chuàng)造出更多的已知條件。在這個過程中,學(xué)生一方面將新舊知識聯(lián)系了起來,另一方面也擴散了思維,對于學(xué)生學(xué)習(xí)能力和解決問題能力的提升有積極的促進作用。
    (三)及時做到歸納、總結(jié)
    及時地歸納和總結(jié)既能夠使知識更加系統(tǒng)化,又便于學(xué)生更好地發(fā)現(xiàn)各個知識點之間的聯(lián)系與區(qū)別,對于鞏固學(xué)生知識具有十分重要的作用。在數(shù)學(xué)中歸納的思想方法指通過對特殊示例、題材的觀察和分析,攝取非本質(zhì)的、次要的要素,從中發(fā)現(xiàn)事物的本質(zhì)聯(lián)系,并概括普遍性的結(jié)論。在講完《圓》這一節(jié)后,我會及時要求學(xué)生將跟圓有關(guān)的知識總結(jié)出來,并在總結(jié)的同時思考自己在這一部分的學(xué)習(xí)中哪里還沒有真正掌握,哪里還存在欠缺。此外,我還要求學(xué)生將自己之前做過的練習(xí)題也做一個總結(jié),甚至是再多做一遍??偨Y(jié)知識點有利于學(xué)生做好知識的鞏固與梳理工作,練習(xí)題的歸納則是讓學(xué)生對于不同題目的不同解題思路和技巧有一個更明確的認識。而學(xué)生在總結(jié)的過程中能不斷提升自己的概括能力,這也是數(shù)學(xué)思想方法滲入到學(xué)生思維中的一個良好的表現(xiàn)與結(jié)果。
    數(shù)學(xué)思想方法心得篇二
    為了幫助小學(xué)數(shù)學(xué)教師轉(zhuǎn)變數(shù)學(xué)教育觀念,提高對數(shù)學(xué)思想方法的理解和運用水平,進而提高數(shù)學(xué)專業(yè)素養(yǎng),本書主編王永春于出版了專著《小學(xué)數(shù)學(xué)與數(shù)學(xué)思想方法》,該書一經(jīng)出版,便受到廣大小學(xué)數(shù)學(xué)教師的歡迎,參與學(xué)習(xí)活動的老師們把自己的讀書心得寫出來,在教學(xué)中去實踐自己的學(xué)習(xí)收獲,主編王永春把這些鮮活的學(xué)習(xí)體會和寶貴的教學(xué)經(jīng)驗案例結(jié)集出版,形成了本書,讓更多的老師分享通俗而深刻的理論解讀和接地氣的實踐經(jīng)驗。
    本書作者王永春,作為人民教育出版社小學(xué)數(shù)學(xué)編輯室主任,長期從事小學(xué)數(shù)學(xué)教材的編寫工作,致力于課程、教材的研究,對小學(xué)數(shù)學(xué)思想方法有深入的思考和探索?;趯μ岣呓逃|(zhì)量、落實教育目標的強烈責任感,作者撰寫了系列文章,就有關(guān)數(shù)學(xué)思想方法在小學(xué)教學(xué)中的應(yīng)用作了專門的論述。在此基礎(chǔ)上,形成了本書。
    本書是《小學(xué)數(shù)學(xué)與數(shù)學(xué)思想方法》一書的讀后感,是一線教師對數(shù)學(xué)思想方法的解讀和教學(xué)案例的研究。因此本書的內(nèi)容結(jié)構(gòu)和目錄與《小學(xué)數(shù)學(xué)與數(shù)學(xué)思想方法》的內(nèi)容結(jié)構(gòu)和目錄是基本相對應(yīng)的,其中第1章到第五章的目錄與《小學(xué)數(shù)學(xué)與數(shù)學(xué)思想方法》相對應(yīng),第六章教學(xué)案例部分,考慮到各年級案例分布不均,沒有按照冊數(shù)分節(jié),把一、二年級分為第1節(jié),三、四年級分為第二節(jié),五年級分為第三節(jié),六年級分為第四節(jié)。對學(xué)生來說,數(shù)學(xué)思想方法不同于一般的概念和技能,概念與技能通??梢酝ㄟ^短期的訓(xùn)練便能掌握,而數(shù)學(xué)思想方法則需要通過教師長期的滲透和影響才能夠形成。教師應(yīng)在每堂課的教學(xué)中適時、適當?shù)伢w現(xiàn)思想方法的教學(xué)目標,使學(xué)生在潛移默化中日積月累,通過提高數(shù)學(xué)素養(yǎng)達到學(xué)好數(shù)學(xué)的目的。
    數(shù)學(xué)思想方法不同于一般的概念和技能,后者一般通過短期的訓(xùn)練便能掌握,而數(shù)學(xué)思想方法需要通過在教學(xué)中長期地滲透和影響才能夠形成。古語云“泰山不讓土壤,故能成其大;河海不擇細流,故能就其深?!苯處煈?yīng)在每堂課的教學(xué)中適時、適當?shù)伢w現(xiàn)思想方法的教學(xué)目標,使學(xué)生在潛移默化中日積月累,通過提高數(shù)學(xué)素養(yǎng)達到學(xué)好數(shù)學(xué)的目的。希望數(shù)學(xué)思想方法的教學(xué)能夠像春雨一樣,滋潤著學(xué)生的心田。
    數(shù)學(xué)思想方法心得篇三
    特殊與一般的數(shù)學(xué)思想:對于在一般情況下難以求解的問題,可運用特殊化思想,通過取特殊值、特殊圖形等,找到解題的規(guī)律和方法,進而推廣到一般,從而使問題順利求解。常見情形為:用字母表示數(shù);特殊值的應(yīng)用;特殊圖形的應(yīng)用;用特殊化方法探求結(jié)論;用一般規(guī)律解題等。
    整體的數(shù)學(xué)思想:所謂整體思想,就是當我們遇到問題時,不著眼于問題的各個部分,而是有意識地放大考慮問題的視角,將所需要解決的問題看作一個整體,通過研究問題的整體形式、整體結(jié)構(gòu)、整體與局部的內(nèi)在聯(lián)系來解決問題的思想。用整體思想解題時,是把一些彼此獨立,但實質(zhì)上又相互緊密聯(lián)系的量作為整體來處理,一定要善于把握求值或求解的問題的內(nèi)在結(jié)構(gòu)、數(shù)與形之間的內(nèi)在結(jié)構(gòu),要敏銳地洞察問題的本質(zhì),有時也不要放棄直覺的作用,把注意力和著眼點放在問題的整體上。常見的情形為:整體代入;整式約簡;整體求和與求積;整體換元與設(shè)元;整體變形與補形;整體改造與合并;整體構(gòu)造與操作等。分類討論的數(shù)學(xué)思想:也稱分情況討論,當一個數(shù)學(xué)問題在一定的題設(shè)下,其結(jié)論并不唯一時,我們就需要對這一問題進行必要的分類。將一個數(shù)學(xué)問題根據(jù)題設(shè)分為有限的若干種情況,在每一種情況中分別求解,最后再將各種情況下得到的答案進行歸納綜合。分類討論是根據(jù)問題的不同情況分類求解,它體現(xiàn)了化整為零和積零為整的思想與歸類整理的方法。運用分類討論思想解題的關(guān)鍵是如何正確的進行分類,即確定分類的標準。分類討論的原則是:(1)完全性原則,就是說分類后各子類別涵蓋的范圍之和,應(yīng)當是原被分對象所涵蓋的范圍,即分類不能遺漏;(2)互斥性原則,就是說分類后各子類別涵蓋的范圍之間,彼此互相獨立,不應(yīng)重疊或部分重疊,即分類不能重復(fù);(3)統(tǒng)一性原則,就是說在同一次分類中,只能按所確定的一個標準進行分類,即分類標準統(tǒng)一。分類的方法是:明確討論的對象,確定對象的全體,確立分類標準,正確進行分類,逐步進行討論,獲取階段性結(jié)果,歸納小結(jié),綜合得出結(jié)論。常見的情形為:由字母系數(shù)引起的討論;由絕對值引起的討論;由點、線的運動變化引起的討論;由圖形引起的討論;由邊、點的不確定引起的討論;存在特殊情形而引起的討論;應(yīng)用問題中的分類討論等。
    轉(zhuǎn)化的數(shù)學(xué)思想:將未知解法或難以解決的問題,通過觀察、分析、聯(lián)想、類比等思維過程,選擇恰當?shù)姆椒ㄟM行變換,化歸為在已知知識范圍內(nèi)已經(jīng)解決或容易解決的問題。解題的過程實際就是轉(zhuǎn)化的過程。常見的情形為:高次轉(zhuǎn)化為低次、多元轉(zhuǎn)化為一元、式子轉(zhuǎn)化為方程、次元轉(zhuǎn)化為主元、正面轉(zhuǎn)化為反面、分散轉(zhuǎn)化為集中、未知轉(zhuǎn)化為已知、動轉(zhuǎn)化為靜、部分轉(zhuǎn)化為整體、還有一般與特殊、數(shù)與形、相等與不等之間的相互轉(zhuǎn)化。
    數(shù)形結(jié)合的數(shù)學(xué)思想:數(shù)與形是數(shù)學(xué)教學(xué)研究對象的兩個側(cè)面,把數(shù)量關(guān)系和空間形式結(jié)合起來去分析問題、解決問題,就是數(shù)形結(jié)合思想。數(shù)、式能反映圖形的準確性,圖形能增強數(shù)、式的直觀性,“數(shù)形結(jié)合”可以調(diào)動和促進學(xué)生形象思維和抽象思維的協(xié)調(diào)發(fā)展,溝通數(shù)學(xué)知識之間的聯(lián)系,從復(fù)雜的數(shù)量關(guān)系中凸顯最本質(zhì)的特征。數(shù)形結(jié)合是研究數(shù)學(xué)問題的有效途徑和重要策略,它體現(xiàn)了數(shù)學(xué)的和諧美、統(tǒng)一美。華羅庚先生曾用“數(shù)缺形時少直覺,形少數(shù)時難入微”作高度的概括。常見的情形為:利用數(shù)軸、函數(shù)的圖象和性質(zhì)、幾何模型、方程與不等式以及數(shù)式特征可以將代數(shù)問題轉(zhuǎn)化為集合問題;利用代數(shù)計算、幾何圖形特征可以將幾何問題轉(zhuǎn)化為代數(shù)問題;利用三角知識解決幾何問題;利用統(tǒng)計圖表讓統(tǒng)計數(shù)據(jù)更形象更直觀等。
    函數(shù)與方程的思想:函數(shù)的思想就是利用運動與變化的觀點、集合與對應(yīng)的思想,去分析和研究數(shù)學(xué)中的等量關(guān)系,建立和構(gòu)造函數(shù)關(guān)系,再運用函數(shù)的圖象和性質(zhì)去分析問題,達到轉(zhuǎn)化問題的目的,從而使問題獲得解決。方程的思想就是從問題的數(shù)量關(guān)系入手,運用數(shù)學(xué)語言將問題中的條件轉(zhuǎn)化為數(shù)學(xué)模型——方程或方程組,通過解方程或方程組,或者運用方程的性質(zhì)去分析、轉(zhuǎn)化問題,使問題獲得解決。函數(shù)與方程的思想實際是就是一種模型化的思想。常見的情形為:數(shù)字問題、面積問題、幾何問題方程化;應(yīng)用函數(shù)思想解方程問題、不等問題、幾何問題、實際問題;利用方程作判斷;構(gòu)建方程模型探求實際問題;應(yīng)用函數(shù)設(shè)計方案和探求面積等。
    常用數(shù)學(xué)方法如:配方法、消元法、換元法、待定系數(shù)法、構(gòu)造法、主元法、面積法、類比法、參數(shù)法、降次法、圖表法、估算法、分析法、綜合法、拼湊法、割補法、反證法、倒數(shù)法、同一法等。
    數(shù)學(xué)思想方法心得篇四
    新課標明確提出開展數(shù)學(xué)思想方法的教學(xué)要求,旨在引導(dǎo)學(xué)生去把握數(shù)學(xué)知識結(jié)構(gòu)的.核心和靈魂,其重要意義顯而易見.數(shù)學(xué)思想方法是從數(shù)學(xué)內(nèi)容中提煉出來的數(shù)學(xué)學(xué)科的精髓,是將數(shù)學(xué)知識轉(zhuǎn)化為數(shù)學(xué)能力的橋梁.
    作者:朱毅作者單位:四川省榮縣富北學(xué)校,四川,榮縣,643100刊名:讀寫算(教育教學(xué)研究)英文刊名:duyuxie年,卷(期):“”(7)分類號:關(guān)鍵詞:
    數(shù)學(xué)思想方法心得篇五
    (一)滲透如數(shù)學(xué)思想的概念顯得較為模糊
    因為在小學(xué)教學(xué)階段,教師教授的數(shù)學(xué)知識都是比較簡單的,因此數(shù)學(xué)思想自然也就會顯得比較模糊,在小學(xué)數(shù)學(xué)課堂教學(xué)相關(guān)工作進行的過程中,從事數(shù)學(xué)教學(xué)相關(guān)工作的教師,想要將數(shù)學(xué)思想滲透到較為模糊的概念中是比較困難的,在日常教學(xué)相關(guān)工作進行的過程中,一般情況之下都是不會予以數(shù)學(xué)思想教學(xué)工作充分的總是的,單單是將數(shù)學(xué)教學(xué)當成是基礎(chǔ)性數(shù)學(xué)知識教學(xué)工作,僅僅在教學(xué)相關(guān)工作進行的過程中傳授給學(xué)生一些解答問題的方式方法,基本上是不會在數(shù)學(xué)思想的層面上對學(xué)生進行引導(dǎo)的,從而在此基礎(chǔ)之上想要使得數(shù)學(xué)思想和小學(xué)數(shù)學(xué)教學(xué)有機的相互融合在一起就變得比較困難。
    (二)學(xué)生在學(xué)習(xí)數(shù)學(xué)的過程中基本上不會做出反思
    小學(xué)生正處于的是形象思維為主的這樣一個階段,在學(xué)習(xí)數(shù)學(xué)知識的過程中并沒有形成較為明確的認識和觀點,從而在此基礎(chǔ)之上想要對某些抽象的數(shù)學(xué)概念形成明確的了解就會變得比較困難,因此在學(xué)習(xí)數(shù)學(xué)的過程中一般情況之下都是停留在最為基礎(chǔ)的模仿式學(xué)習(xí)階段中的,依據(jù)教學(xué)教學(xué)流程展開模仿式數(shù)學(xué)學(xué)習(xí),在此基礎(chǔ)之上學(xué)生形成的認識觀點自然也是較為模糊的,進而在模仿式學(xué)習(xí)的基礎(chǔ)上,想要在學(xué)習(xí)工作完成之后對數(shù)學(xué)學(xué)習(xí)做出反思也就是一件比較困難的事情。
    (三)對知識進行總結(jié)和整理的意識是較為薄弱的
    小學(xué)數(shù)學(xué)教學(xué)階段中包含的知識點是十分瑣碎的,當教師開展教學(xué)相關(guān)工作的過程中想要將各個知識點串聯(lián)起來也就是一件比較困難的事情,當教師開展課堂教學(xué)相關(guān)工作的過程中,一般情況之下僅僅會在復(fù)習(xí)的時候開展知識點梳理工作,在日常課堂教學(xué)相關(guān)工作進行的過程中,一般情況之下都是不會向?qū)W生闡述各個知識點之間呈現(xiàn)出來的相互關(guān)系的,學(xué)生在日常學(xué)習(xí)的過程中自然也就難以積累下來豐富的經(jīng)驗及解決模式,因此教師想要使得課堂教學(xué)相關(guān)工作的效率得到一定程度的提升自然也就比較困難。
    2滲透到教學(xué)中的方法
    1.在研究探索知識的過程中,著重于將數(shù)學(xué)思想方法滲透到學(xué)習(xí)中
    教師應(yīng)該加強在學(xué)生學(xué)習(xí)過程中教學(xué)的力度,一定要凸顯出數(shù)學(xué)知識中一些定理、公式、性質(zhì)等得來的探究過程,進而使同學(xué)們把過程轉(zhuǎn)換成解決問題的思想和方法。知識形成并發(fā)展的過程中應(yīng)穿針引線地將數(shù)學(xué)思想方法滲入其中,讓學(xué)生能夠掌握簡單的基礎(chǔ)知識,也能體會深層數(shù)學(xué)原理、性質(zhì)的探索過程,形成良好的解題思路,使學(xué)生在數(shù)學(xué)方面的造詣達到一個新的高度。教師在授課過程中,要引導(dǎo)學(xué)生自覺地對數(shù)學(xué)知識、方法進行探究、學(xué)習(xí),主動追溯知識的探索過程,感悟數(shù)學(xué)知識,將數(shù)學(xué)思想方法與數(shù)學(xué)知識的學(xué)習(xí)融會貫通,使其在數(shù)學(xué)方面達到質(zhì)的飛躍。
    2.在解題和講解例題的過程中滲透數(shù)學(xué)思想方法
    在授課中,教師講解例題并且舉一反三,每解決一個問題和例題就為學(xué)生歸納總結(jié)出一種方法,久而久之,學(xué)生就會形成新的解題思路、學(xué)會新的解題方法。對于初中這個階段來講,許多典型例題被設(shè)計出來,許多出色的題目也出現(xiàn)在每年中考題中,老師有效地挑選具有啟示性和創(chuàng)造性的題目進行訓(xùn)練,再將數(shù)學(xué)思想和教學(xué)方法展示在對這些問題的講解和探究中,可以培養(yǎng)學(xué)生的解題能力。
    3.按時總結(jié),漸進地消化數(shù)學(xué)思想方法
    在初中的數(shù)學(xué)知識體系中蘊含著數(shù)學(xué)思想,不同的數(shù)學(xué)思想通常蘊藏于一個內(nèi)容中,而同一個數(shù)學(xué)思想方法又常常被運用于許多不同的基礎(chǔ)知識中,教師在對一道題目進行分析后,要清晰地向?qū)W生展示出教師在解決這道題時的思路以及解決這道題需要哪些我們原先學(xué)習(xí)的知識以及解題方法。與此同時,要引導(dǎo)學(xué)生對新方法、新思路的思考,鍛煉其發(fā)散性思維。老師通過“一題多解”及舉一反三等方式及時鞏固,使學(xué)生慢慢內(nèi)化這些數(shù)學(xué)思想、解題思路等。
    3解題滲透數(shù)學(xué)思想方法
    (1)注意分析探求解題思路時數(shù)學(xué)思想方法的運用。解題的過程就是在數(shù)學(xué)思想方法的指導(dǎo)下,合理聯(lián)想提取相關(guān)知識,調(diào)用一定數(shù)學(xué)方法加工、處理題設(shè)條件及知識,逐步縮小題設(shè)與題干之間的差異的過程。解題思想的尋求就自然是運用數(shù)學(xué)思想方法分析、解決問題的過程。
    (2)注意數(shù)學(xué)思想方法在解決典型問題中的運用。如解題中求二面角大小最常用的方法之一就是:根據(jù)已知條件,在二面角內(nèi)尋找或作出過一個面內(nèi)一點到另一個面上的垂線,過這點再作二面角的棱的垂線,然后連結(jié)兩個垂足。這樣平面角即為所得的直角三角形的一銳角。這個通法就是在立體問題化平面的轉(zhuǎn)化思想的指導(dǎo)下求得的,其中三垂線定理在構(gòu)圖中的運用,也是分析、聯(lián)想等數(shù)學(xué)思維方法運用之所得。
    (3)用數(shù)學(xué)思想指導(dǎo)知識、方法的靈活運用,進行一題多解的練習(xí),培養(yǎng)思維的發(fā)散性、靈活性、敏捷性;對習(xí)題靈活變通、引伸推廣,培養(yǎng)思維的深刻性、抽象性;組織引導(dǎo)對解法的簡捷性的反思評估,不斷優(yōu)化思維品質(zhì),培養(yǎng)思維的嚴謹性,批判性。對同一數(shù)學(xué)問題的多角度的審視引發(fā)的不同聯(lián)想,是一題多解的思維本源。豐富合理的聯(lián)想,是對知識的深刻理解,及類比、轉(zhuǎn)化、數(shù)形結(jié)合、函數(shù)與方程等數(shù)學(xué)思想運用的必然。數(shù)學(xué)方法、數(shù)學(xué)思想的自覺運用往往使我們運算簡捷、邏輯嚴密,是提高數(shù)學(xué)能力的必由之路。
    4提高課堂教學(xué)效率
    重視備課,明確教學(xué)目標
    如果說數(shù)學(xué)是一門藝術(shù),那么備好課是搞好藝術(shù)的基本條件。不經(jīng)武裝的戰(zhàn)士上戰(zhàn)場,只能束手就擒;沒有充分準備的教師上講臺,充其量是“信口開河”,決談不上駕馭課堂的能力,作為教師,傳授知識是我們的責任,出色的備課也是我們實行責任的前提。那怎么去用心備課呢?在此我只談?wù)勛约旱母形颍菏紫?,選好合適的起點,起點就是新知識在原有知識基礎(chǔ)上的生長點。起點要合適,采有利于促進知識遷移,學(xué)生才能學(xué),才肯學(xué)。起點過低,學(xué)生沒興趣,不愿學(xué);起點過高,學(xué)生又聽不懂,不能學(xué)。
    其次,明確重點,每一堂課都要有一個重點,而整堂的教學(xué)都是圍繞著這個重點來逐步展開的。為了讓學(xué)生明確本堂課的重點、難點,教師在備課時,應(yīng)該在課本上做標記。重點往往是新知識的起點和主體部分。備課時要突出重點。一節(jié)課內(nèi),首先要在時間上保證重點內(nèi)容重點講,要緊緊圍繞重點,以它為中心,輔以知識講練,引導(dǎo)啟發(fā)學(xué)生加強對重點內(nèi)容的理解,做到心中有重點,講中出重點,才能使整個一堂課有個靈魂。最后,注重聯(lián)系,即新舊知識的聯(lián)系。數(shù)學(xué)知識本身系統(tǒng)性很強,章節(jié)、例題、習(xí)題中都有密切的聯(lián)系,要真正搞懂新舊知識的交點,才能把知識融會貫通,溝通知識間的縱橫聯(lián)系,形成知識網(wǎng)絡(luò),學(xué)生才能舉一反三,更有利于靈活地運用知識。作為教師,切記備課的重要性,一切的一切都要從備課開始,出色的備課是成功課堂教學(xué)的前提。
    重視教學(xué)方法的作用,加強學(xué)法的指導(dǎo)
    曾經(jīng)看過這么一句話,說的是“未來的文盲不再是不識字的人,而是沒有學(xué)會怎樣學(xué)習(xí)的人”。這充分說明了學(xué)習(xí)方法的重要性,它是獲取知識的金鑰匙。學(xué)生一旦掌握了學(xué)習(xí)方法,就能自己打開知識寶庫的大門。所以我們應(yīng)該改進課堂教學(xué),運用正確的教學(xué)方法去指導(dǎo)學(xué)生的學(xué)法,傳授給學(xué)生的不僅僅是知識,更重要的是學(xué)習(xí)方法。同時每一節(jié)課都有每一節(jié)課的知識點,都有需要掌握的重點內(nèi)容。教師能隨著教學(xué)內(nèi)容的變化,教學(xué)對象的變化,教學(xué)設(shè)備的變化,靈活應(yīng)用教學(xué)方法。我們可以結(jié)合課堂內(nèi)容,靈活采用談話、讀書指導(dǎo)、作業(yè)、練習(xí)等多種教學(xué)方法。有時,在一堂課上,要同時使用多種教學(xué)方法。俗話說:“教無定法,貴要得法”。只要能激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生的學(xué)習(xí)積極性,有助于學(xué)生思維能力的培養(yǎng),有利于所學(xué)知識的掌握和運用,都是好的教學(xué)方法。教會學(xué)生的學(xué)習(xí)方法,是我們作為教師的責任。
    綜上所述,學(xué)好數(shù)學(xué)對學(xué)生將來的發(fā)展起到至關(guān)重要的作用,作為教師,我們要認真?zhèn)湔n,全身心的投入課堂,創(chuàng)造最佳的課堂氣氛和環(huán)境,充分調(diào)動學(xué)生的內(nèi)在積極因素,激發(fā)求知欲,千方百計使學(xué)生的注意力高度集中,同時還應(yīng)該不斷地努力提高自己的能力,在有限的時間內(nèi),將知識最大化的傳授給學(xué)生,提高課堂教學(xué)效率。
    數(shù)學(xué)思想方法心得篇六
    一、集合的思想方法
    把一組對象放在一起,作為討論的范圍,這是人類早期就有的思想方法,繼而把一定程度抽象了的思維對象,如數(shù)學(xué)上的點、數(shù)、式放在一起作為研究對象,這種思想就是集合思想。集合思想作為一種思想,在小學(xué)數(shù)學(xué)中就有所體現(xiàn)。在小學(xué)數(shù)學(xué)中,集合概念是通過畫集合圖的辦法來滲透的。
    如用圓圈圖(韋恩圖)向?qū)W生直觀的滲透集合概念。讓他們感知圈內(nèi)的物體具有某種共同的屬性,可以看作一個整體,這個整體就是一個集合。利用圖形間的關(guān)系則可向?qū)W生滲透集合之間的關(guān)系,如長方形集合包含正方形集合,平行四邊形集合包含長方形集合,四邊形集合又包含平行四邊行集合等。
    二、對應(yīng)的思想方法
    對應(yīng)是人的思維對兩個集合間問題聯(lián)系的把握,是現(xiàn)代數(shù)學(xué)的一個最基本的概念。小學(xué)數(shù)學(xué)教學(xué)中主要利用虛線、實線、箭頭、計數(shù)器等圖形將元素與元素、實物與實物、數(shù)與算式、量與量聯(lián)系起來,滲透對應(yīng)思想。
    如人教版一年級上冊教材中,分別將小兔和磚頭、小豬和木頭、小白兔和蘿卜、蘋果和梨一一對應(yīng)后,進行多少的比較學(xué)習(xí),向?qū)W生滲透了事物間的對應(yīng)關(guān)系,為學(xué)生解決問題提供了思想方法。
    三、數(shù)形結(jié)合的思想方法
    數(shù)與形是數(shù)學(xué)教學(xué)研究對象的兩個側(cè)面,把數(shù)量關(guān)系和空間形式結(jié)合起來去分析問題、解決問題,就是數(shù)形結(jié)合思想?!皵?shù)形結(jié)合”可以借助簡單的圖形、符號和文字所作的示意圖,促進學(xué)生形象思維和抽象思維的協(xié)調(diào)發(fā)展,溝通數(shù)學(xué)知識之間的聯(lián)系,從復(fù)雜的數(shù)量關(guān)系中凸顯最本質(zhì)的特征。它是小學(xué)數(shù)學(xué)教材編排的重要原則,也是小學(xué)數(shù)學(xué)教材的一個重要特點,更是解決問題時常用的.方法。
    例如,我們常用畫線段圖的方法來解答應(yīng)用題,這是用圖形來代替數(shù)量關(guān)系的一種方法。我們又可以通過代數(shù)方法來研究幾何圖形的周長、面積、體積等,這些都體現(xiàn)了數(shù)形結(jié)合的思想。
    四、函數(shù)的思想方法
    恩格斯說:“數(shù)學(xué)中的轉(zhuǎn)折點是笛卡兒的變數(shù)。有了變數(shù),運動進入了數(shù)學(xué),有了變數(shù),辯證法進入了數(shù)學(xué),有了變數(shù),微分和積分也就立刻成為必要的了?!蔽覀冎溃\動、變化是客觀事物的本質(zhì)屬性。函數(shù)思想的可貴之處正在于它是運動、變化的觀點去反映客觀事物數(shù)量間的相互聯(lián)系和內(nèi)在規(guī)律的。學(xué)生對函數(shù)概念的理解有一個過程。在小學(xué)數(shù)學(xué)教學(xué)中,教師在處理一些問題時就要做到心中有函數(shù)思想,注意滲透函數(shù)思想。
    函數(shù)思想在人教版一年級上冊教材中就有滲透。如讓學(xué)生觀察《20以內(nèi)進位加法表》,發(fā)現(xiàn)加數(shù)的變化引起的和的變化的規(guī)律等,都較好的滲透了函數(shù)的思想,其目的都在于幫助學(xué)生形成初步的函數(shù)概念。
    這就是我們精心為大家準備的小升初學(xué)習(xí)數(shù)學(xué)思想方法,希望對大家有用!更多小升初復(fù)習(xí)資料及相關(guān)資訊,盡在數(shù)學(xué)網(wǎng),請大家及時關(guān)注!
    數(shù)學(xué)思想方法心得篇七
    復(fù)習(xí)備考需要足夠數(shù)量的習(xí)題,只有針對性訓(xùn)練才能在中考得以正常發(fā)揮,只有每天動筆適當?shù)淖鲂┝?xí)題才能保持思維的連貫性。但僅僅做題還是遠遠不夠,需要解題后的反思與總結(jié)。在反思中才能進一步看透問題的本質(zhì),體會命題的意圖。在總結(jié)的過程中也才能優(yōu)化解題的思路,探索處理問題規(guī)律,形成有自己特色的經(jīng)驗。
    在復(fù)習(xí)中既要注重數(shù)學(xué)概念、法則、定理等基礎(chǔ)知識的梳理,更要關(guān)注解題后的反思與總結(jié),領(lǐng)會解題中蘊含的數(shù)學(xué)思想方法,并通過不斷積累逐漸的納入自己已有的知識體系。在反思總結(jié)中可以從兩方面考慮:一是宏觀層面,如每復(fù)習(xí)一塊內(nèi)容后可以從主要知識考點、考點之間的聯(lián)系等去反思;二是微觀層面,如解題后的可以對所解題的結(jié)構(gòu)是否理解清楚,解題過程中運用了哪些基礎(chǔ)知識和基本技能?哪些步驟易出錯?原因何在?如何防止?也可以對解題的方法進行評價找出最優(yōu)的解法,考慮解題中運用了哪些思維方式、數(shù)學(xué)思想方法?想法是如何分析出來的?有無規(guī)律可循?也可以對解題步驟進行分析,抓住解題的關(guān)鍵。如解題的難點在哪?我是如何突破的?能否用其他方法也得到同樣結(jié)果?其方法的優(yōu)劣所在?若能把反思與總結(jié)當作一個經(jīng)常性、自覺性的學(xué)習(xí)行為,就會在不斷地積累和總結(jié)基本的數(shù)學(xué)活動經(jīng)驗中,提高數(shù)學(xué)知識的運用能力。
    ......
    函數(shù)思想,是指用函數(shù)的概念和性質(zhì)去分析問題、轉(zhuǎn)化問題和解決問題。方程思想,是從問題中的數(shù)量關(guān)系入手,運用數(shù)學(xué)語言將問題中的條件轉(zhuǎn)化為數(shù)學(xué)模型(方程、不......
    數(shù)學(xué)思想方法心得篇八
    《新課程標準》在總目標中提出:通過義務(wù)教育階段的數(shù)學(xué)學(xué)習(xí),學(xué)生能獲得適應(yīng)社會生活和進一步發(fā)展所必須的數(shù)學(xué)知識、基本技能、基本思想、基本活動經(jīng)驗。這句話對于我們新教師來已經(jīng)是爛熟于心,但對于這句話真正理解的少之又少,讀了王永春老師的《小學(xué)數(shù)學(xué)思想與數(shù)學(xué)思想方法》之后,對這句話才有了真正的認識?!笆谌艘贼~不如授人以漁”,對于學(xué)生而言,數(shù)學(xué)知識在其次,數(shù)學(xué)方法才是最重要的,在這本書中,王老師為我們總結(jié)了小學(xué)數(shù)學(xué)知識中蘊含的數(shù)學(xué)思想,這讓我們在日常教學(xué)中可以結(jié)合所教知識很清楚地知道這些知識中蘊含了哪些數(shù)學(xué)思想方法,為我們的教學(xué)提供了指導(dǎo)和幫助。
    這學(xué)期我任三年級數(shù)學(xué),三年級上冊中的主要思想有:第3單元“測量”中學(xué)習(xí)的長度單位:分米(dm)、毫米(mm)、千米(km)是符號化思想的應(yīng)用;第7單元“長方形和正方形”中有些習(xí)題如本書中第25頁的“案例2”應(yīng)用了分類思想;第9單元“數(shù)學(xué)廣角――集合”中學(xué)習(xí)的重復(fù)問題是集合思想的應(yīng)用;第8單元“分數(shù)的初步認識”中學(xué)生用一張正方形白紙可以折出不同的形狀表示它的1/4。在學(xué)生充分展示后,我們可以引導(dǎo)學(xué)生發(fā)現(xiàn)雖然形狀、大小不同,但都是把一張正方形白紙平均成4份,每份是它的1/4。這個教學(xué)過程中有變中有不變的思想的應(yīng)用。第8單元“分數(shù)的初步認識”中把一個圓形平均分,分的份數(shù)越多,分數(shù)越小,如果一直分下去,可以對應(yīng)寫出無限多個分數(shù)。
    生活本身是一個巨大的數(shù)學(xué)課堂,生活中客觀存在著大量有價值的數(shù)學(xué)現(xiàn)象。指導(dǎo)學(xué)生運用數(shù)學(xué)知識寫日記,能促使學(xué)生主動地用數(shù)學(xué)的眼光去觀察生活,去思考生活問題,讓生活問題數(shù)學(xué)化。在教學(xué)中注重培養(yǎng)孩子運用數(shù)學(xué)的意識,增強學(xué)生運用知識解決實際問題的能力。由此可見,數(shù)學(xué)并不是靠老師教會的,而是在教師的指導(dǎo)下,靠學(xué)生自己學(xué)會的。在教學(xué)中教師要給學(xué)生創(chuàng)造情景、提供機會,給學(xué)生充足的時間和空間,讓學(xué)生主動探究新知,在探究中發(fā)現(xiàn)規(guī)律、歸納規(guī)律。因此,我們在課堂教學(xué)中,多留些時間給學(xué)生,讓他們動手操作;多留些時間給學(xué)生,自己的`意見;多留些時間給學(xué)生,讓他們質(zhì)疑問難。保證充分的時間和空間,讓學(xué)生再課內(nèi)交流、討論、質(zhì)疑。
    這本書教給了我們一種教學(xué)理念,教會了我們一種教學(xué)方法。讀書更是一種好的學(xué)習(xí)手段,它將帶領(lǐng)我們不斷更新、與時俱進,成為一名學(xué)生喜歡的、有專業(yè)素養(yǎng)的好老師。
    數(shù)學(xué)思想方法心得篇九
    一、注重引導(dǎo),抓住學(xué)習(xí)關(guān)鍵
    二、要正確處理本課程的自身邏輯系統(tǒng)與相關(guān)課程的關(guān)系
    初數(shù)研究課在研究初等數(shù)學(xué)問題時,大多采用專題討論的方法,都有一套完整的體系。如果過分強調(diào)自身完整的邏輯系統(tǒng),容易導(dǎo)致不同學(xué)科、不同課程的內(nèi)客及方法有很多重復(fù)和交叉。
    如數(shù)與初等數(shù)論中的相關(guān)內(nèi)容,解析式的恒等變形,方程、不等式的解法與證明,幾何證題法與證題術(shù)排列、組合及數(shù)列的一些解題方法等。如果不處理好它們之間的關(guān)系,只是簡單地追求各門課程自身體系的完整,既不利于學(xué)生整體數(shù)學(xué)思想的建立,又制約了他們數(shù)學(xué)綜合運用能力的提高,同時占用了很多的課時,所以,對于相關(guān)課程中己作詳盡討論過的知識及理論,應(yīng)作為工具來應(yīng)用,避免一些不必要的重復(fù)。
    三、變被動式學(xué)習(xí)為主動式學(xué)習(xí)
    1.知識系統(tǒng)的探究
    初數(shù)研究課涉及大量的理論,教師講、學(xué)生聽的傳統(tǒng)教學(xué)模式既占用課時多,又難以體現(xiàn)學(xué)生的主體性。因此對理論性較強的內(nèi)容,教師可以先提出一些切題的問題作為一堂課的鍥子,留待后面逐個解決。這些問題將整個教學(xué)內(nèi)容串起來,起到提綱摯領(lǐng)的作用,使學(xué)生明確學(xué)習(xí)目標,集中學(xué)習(xí)資源(如本課程及相關(guān)課程的教村及參考書)有針對性地去探究問題,然后教師組織學(xué)生對探究的結(jié)果進行歸納整理,形成較完整的知識體系。當然一個問題的解訣并非探究的終結(jié),在探究過程中教師與學(xué)生都可以提出一些新問題,延續(xù)學(xué)生探究的熱情,在合作交流的民主和諧的氛圍里,盡可能地讓學(xué)生走向自由探究。
    2.解題方法的探究
    從學(xué)生的認知角度未說,解題過程是獨立的發(fā)現(xiàn)、探索與積極思考的過程,這種探索過程中所形成的意識和思維,就是真正的創(chuàng)造與發(fā)現(xiàn)。應(yīng)該說,解題教學(xué)是中學(xué)數(shù)學(xué)教學(xué)的主要任務(wù)之一,設(shè)置初數(shù)研究課程的目的之一,就是結(jié)合中學(xué)實際對解題作專門的訓(xùn)練。
    3.條件與結(jié)論的探究
    對一個問題的條件或結(jié)論進行探究是對問題深入研究的重要組成部分,也是初數(shù)研究課程中具有挑戰(zhàn)性的任務(wù)之一,引導(dǎo)學(xué)生從不同角度、不同層面來看問題,對學(xué)生的發(fā)散思維及創(chuàng)造思維的培養(yǎng),都能起到良好的推動作用。
    隨著教學(xué)改革的深化,教學(xué)思想方法不僅要在理論上做研究探討,更重要的是需要在實踐中不斷地創(chuàng)造與完善,才能使教學(xué)取得較好的效果。
    [數(shù)學(xué)思想方法心得體會]
    數(shù)學(xué)思想方法心得篇十
    為什么我看這個數(shù)學(xué)思維方法幾頁就覺得很受益,有觸動。因為以前自己數(shù)學(xué)能學(xué)好感覺只是天然的選擇,下意識的動作,在這里能找到原理,讓你的行為有理論依據(jù),更加明晰思維方法的重要性。自己就是受益于這些思維方法,但卻沒意識到,看了書才恍然大悟。很多習(xí)以為常,想當然的事情明白了這樣設(shè)計的道理了。比如為啥設(shè)計小學(xué)五年級六年級。為什么三四年級、初中一年級會是檻。區(qū)別主要是抽象能力的發(fā)展不同。思維在低年級作用不是特別大。差距顯現(xiàn)不出來。從作者的言外之意也可以看到數(shù)學(xué)思維方法是最重要的東西,但卻不是課堂教學(xué)的常態(tài)目標,只是教學(xué)的附屬品,滲透出來的,有人悟性高,捕獲的多,發(fā)展的好。有人不敏感,攫取的少。差距就出來了。
    但不管從數(shù)學(xué)教育從業(yè)者還是我們個人的經(jīng)歷來說,數(shù)學(xué)思維方法都是最基本的。屬于對數(shù)學(xué)本質(zhì)的認識,理性的認識。
    奧數(shù)就是為了訓(xùn)練數(shù)學(xué)思維方法啊。但是真假奧數(shù)不一樣,假奧數(shù)就是教給你套路,記住就好。
    我自己數(shù)學(xué)學(xué)習(xí)也是原發(fā)性的。沒人指導(dǎo),沒人培訓(xùn)。不過有人指點肯定會更輕松,或者能更進一步。
    我們常說語文學(xué)習(xí),詞匯是理解力的基礎(chǔ)。在數(shù)學(xué)中,概念是數(shù)學(xué)學(xué)習(xí)的基礎(chǔ),是抽象思維的基礎(chǔ)和基本形式。概念大概等同于中文閱讀里的抽象詞匯,不過概念是有相關(guān)系統(tǒng)的東西。說這個是為了說明我們平時說的打好基礎(chǔ)再拓展。到底什么是基礎(chǔ)。基礎(chǔ)就是概念與概念之間的關(guān)系構(gòu)成的知識結(jié)構(gòu)。
    所以也自然明白日常我們說的“拓展”是什么。拓展就是在理解概念之間關(guān)系的知識結(jié)構(gòu)基礎(chǔ)上,利用思想方法、模型思想、推理思想等學(xué)習(xí)數(shù)學(xué),解決問題。
    數(shù)學(xué)思想方法心得篇十一
    一、初中數(shù)學(xué)思想方法教學(xué)的重要性
    長期以來,傳統(tǒng)的數(shù)學(xué)教學(xué)中,只注重知識的傳授,卻忽視知識形成過程中的數(shù)學(xué)思想方法的現(xiàn)象非常普遍,它嚴重影響了學(xué)生思維發(fā)展和能力培養(yǎng)。隨著教育改革的不斷深入,越來越多的教育工作者,特別是一線的教師們充分認識到:中學(xué)數(shù)學(xué)教學(xué),一方面要傳授數(shù)學(xué)知識,使學(xué)生掌握必備數(shù)學(xué)基礎(chǔ)知識;另一方面,更要通過數(shù)學(xué)知識這個載體,挖掘其中蘊含的數(shù)學(xué)思想方法,更好地理解數(shù)學(xué),掌握數(shù)學(xué),形成正確的數(shù)學(xué)觀和一定的數(shù)學(xué)意識。事實上,單純的知識教學(xué),只顯見于學(xué)生知識的積累,是會遺忘甚至于消失的,而方法的掌握,思想的形成,才能使學(xué)生受益終生,正所謂“授之以魚,不如授之以漁”。不管他們將來從事什么職業(yè)和工作,數(shù)學(xué)思想方法,作為一種解決問題的思維策略,都將隨時隨地有意無意地發(fā)揮作用。
    二、初中數(shù)學(xué)思想方法的主要內(nèi)容
    初中數(shù)學(xué)中蘊含的數(shù)學(xué)思想方法很多,最基本最主要的有:轉(zhuǎn)化的思想方法,數(shù)形結(jié)合的思想方法,分類討論的思想方法,函數(shù)與方程的思想方法等。(一)轉(zhuǎn)化的思想方法。轉(zhuǎn)化的思想方法是人們將需要解決的問題,通過某種轉(zhuǎn)化手段,歸結(jié)為另一種相對容易解決的或已經(jīng)有解決方法的問題,從而使原來的問題得到解決。初中數(shù)學(xué)處處都體現(xiàn)出轉(zhuǎn)化的思想方法,例如:在解二元一次方程組中,我們一般都通過代入消元法和加減消元法將它轉(zhuǎn)化為一元一次方程,而在解一元二次方程時,可以通過配方法因成分解法直接開平方法,將它化為一元一次方程來解等。它們都是化未知為已知,體現(xiàn)轉(zhuǎn)化的數(shù)學(xué)思想,又如解方程,我們用換元法來解,也體現(xiàn)轉(zhuǎn)化的數(shù)學(xué)思想。在幾何中很多計算題也同樣體現(xiàn)著轉(zhuǎn)化的數(shù)學(xué)思想。(二)數(shù)形結(jié)合的思想方法。數(shù)學(xué)是研究現(xiàn)實空間形式和數(shù)量關(guān)系的科學(xué),因而研究總是圍繞著數(shù)與形進行的?!皵?shù)”就是代數(shù)式、函數(shù)、不等式等表達式“,形”就是圖形、圖像、曲線等。數(shù)形結(jié)合就是抓住數(shù)與形之間的本質(zhì)上的聯(lián)系,以形直觀地表達數(shù),以數(shù)精確地研究形?!皵?shù)無形時不直觀,形無數(shù)時難入微。”數(shù)形結(jié)合是研究數(shù)學(xué)問題的重要思想方法。初中數(shù)學(xué)中,通過數(shù)軸,將數(shù)與點對應(yīng),通過直角坐標系,將函數(shù)與圖像對應(yīng),用數(shù)形結(jié)合的思想方法學(xué)習(xí)了相反數(shù)的'概念、絕對值的概念,有理數(shù)大小比較的法則,研究了函數(shù)的性質(zhì)等。特別學(xué)習(xí)一次函數(shù)、二次函數(shù)更進一步地把直線和一次函數(shù)聯(lián)系著,任向一條直線對著一個不同一次函數(shù)表達式,不同的拋物線對著不同的二次函數(shù)表達式,而用數(shù)形結(jié)合的思想,可以利用二次函數(shù)或二次函數(shù)的圖象簡單的解出一元一次不等式和一元二次不等式和方程,更好地通過形象思維,過渡到抽象思維。大大減輕了學(xué)習(xí)的難度,也會增強學(xué)生學(xué)習(xí)的興趣。
    三、分類討論的思想方法
    分為不同種類的思想方法。分類是以比較為基礎(chǔ)的,它能揭示數(shù)學(xué)對象之間的內(nèi)在規(guī)律,有助于學(xué)生總結(jié)歸納數(shù)學(xué)知識,解決數(shù)學(xué)問題。初中數(shù)學(xué)從整體上看分為代數(shù)、幾何兩大類,采用不同方法進行研究,就是分類思想的體現(xiàn)。具體來說,實數(shù)的分類,方程的分類、三角形的分類,函數(shù)的分類等,都是分類思想的具體體現(xiàn)。在初中數(shù)學(xué)問題中,不管是代數(shù)問題或者是幾何問題,都體現(xiàn)著分類討論的數(shù)學(xué)思想方法。
    四、函數(shù)與方程的思想方法
    函數(shù)思想是客觀世界中事物運動變化,相互聯(lián)系,相互制約的普遍規(guī)律在數(shù)學(xué)中的反映,它的本質(zhì)是變量之間的對應(yīng)。用變化的觀點,把所研究的數(shù)量關(guān)系,用函數(shù)的形式表示出來的,然后用函數(shù)的性質(zhì)進行研究,使問題獲解,如果函數(shù)的形式是用解析式的方法表示出來的。在實中數(shù)學(xué)教材中,其它的思想方法都是隱藏在數(shù)學(xué)知識里,沒有單獨提出來,而函數(shù)與方程的思想方法,其內(nèi)容和名稱形式一致,單獨作為章節(jié)系統(tǒng)學(xué)習(xí)。
    數(shù)學(xué)思想方法心得篇十二
    高考試題重在考查對知識理解的準確性、深刻性,重在考查知識的綜合靈活運用。它著眼于知識點新穎巧妙的組合,試題新而不偏,活而不過難;著眼于對數(shù)學(xué)思想方法、數(shù)學(xué)能力的考查。尤其是近幾年的高考試題加大了對考生應(yīng)用能力的考查,高考《考試說明》中明確指出:“能綜合應(yīng)用所學(xué)數(shù)學(xué)知識、思想方法解決問題,包括解決在相關(guān)學(xué)科、生產(chǎn)生活中的數(shù)學(xué)問題……”、“有效地檢測考生對中學(xué)數(shù)學(xué)知識中所蘊涵的數(shù)學(xué)思想和方法的掌握程度……”。高考的這種積極導(dǎo)向,決定了我們的數(shù)學(xué)復(fù)習(xí)中必須以數(shù)學(xué)思想指導(dǎo)知識、方法的運用,整體把握各部分知識的內(nèi)在聯(lián)系。
    高考復(fù)習(xí)有別于新知識的教學(xué)。它是在學(xué)生基本掌握了中學(xué)數(shù)學(xué)知識體系、具備了一定的解題經(jīng)驗的基礎(chǔ)上的復(fù)課數(shù)學(xué),也是在學(xué)生基本認識了各種數(shù)學(xué)基本方法、思維方法及數(shù)學(xué)思想的基礎(chǔ)上的復(fù)課數(shù)學(xué)。其目的在于深化學(xué)生對基礎(chǔ)知識的理解,完善學(xué)生的知識結(jié)構(gòu),在綜合性強的練習(xí)中進一步形成基本技能,優(yōu)化思維品質(zhì),使學(xué)生在多次的練習(xí)中充分運用數(shù)學(xué)思想方法,提高數(shù)學(xué)能力。高考復(fù)習(xí)是學(xué)生發(fā)展數(shù)學(xué)思想,熟練掌握數(shù)學(xué)方法理想的難得的深化過程。
    數(shù)學(xué)思想方法心得篇十三
    中學(xué)數(shù)學(xué)內(nèi)容從總體上可以分為兩個層次:一個稱為基礎(chǔ)知識,另一個稱為深層知識.基礎(chǔ)知識包括概念、性質(zhì)、法則、公式、公理、定理等數(shù)學(xué)的基本知識和基本技能,深層知識主要指數(shù)學(xué)思想和數(shù)學(xué)方法。
    基礎(chǔ)知識是深層知識的基礎(chǔ),是教學(xué)大綱中明確規(guī)定的,教材中明確給出的,以及具有較強操作性的知識.學(xué)生只有通過對教材的學(xué)習(xí),在掌握和理解了一定的基礎(chǔ)知識后,才能進一步的學(xué)習(xí)和領(lǐng)悟相關(guān)的深層知識。
    那種只重視講授基礎(chǔ)知識,而不注重滲透數(shù)學(xué)思想、方法的復(fù)習(xí),是不完備的,它不利于對所學(xué)知識的真正理解和掌握,使學(xué)生的知識水平永遠停留在一個初級階段,難以提高;反之,如果單純強調(diào)數(shù)學(xué)思想和方法,而忽略基礎(chǔ)知識的教學(xué),就會使復(fù)習(xí)流于形式,成為無源之水,無本之木,學(xué)生也難以領(lǐng)略到深層知識的真諦.因此,數(shù)學(xué)思想、方法的復(fù)習(xí)應(yīng)與整個基礎(chǔ)知識的融為一體,使學(xué)生逐步掌握有關(guān)的深層知識,提高數(shù)學(xué)能力,形成良好的數(shù)學(xué)素質(zhì)。這也是數(shù)學(xué)思想方法復(fù)習(xí)的基本原則。
    數(shù)學(xué)思想方法心得篇十四
    數(shù)學(xué)關(guān)鍵就在一個悟字,所謂悟,就是開竅,如何開竅,就要求講師不要只講題目的做法,而是包括,是怎么想到要這么做的,以引導(dǎo)學(xué)生去理解,去悟,對于初等數(shù)學(xué),本人的看法是隨便怎么做,因為初等數(shù)學(xué)的試題必然有解,必然是可以通過所給條件經(jīng)過n多步驟推出來,不信可以試試,拿一道,先什么都不要管,只管把已知條件以全排列方式組合,以推出新的條件,再將所得條件組合,再推,直到最后推無可推,你會發(fā)現(xiàn)題目所求就在其中,甚至簡單的可能是離最終結(jié)論還有n步,復(fù)雜的估計也就是最終結(jié)論了,所以以高考為目的的初等數(shù)學(xué)題目是不經(jīng)做的,因為只要你做,就一定能做出來,而之所以很多學(xué)生覺得難,沒處著筆,不知道改該怎么做,很大一部分是因為懶,不愿動筆,而只是呆看,簡單的能看出來,復(fù)雜的是很難看出來的,如果說那種直接推導(dǎo)的辦法太耗時間,那么只能說是因為不熟練,一旦題目做多了,思維形成了,差不多就可以一眼看出來,頂多推兩步,就知道后面的怎么推了,從而省略了n多的分支,古往今來的題海戰(zhàn)術(shù)不是沒有依據(jù)的,熟能生巧,見得多了,做的多了,自然可以找到某種規(guī)律。
    初數(shù)研究課在研究初等數(shù)學(xué)問題時,大多采用專題討論的方法,都有一套完整的體系。如果過分強調(diào)自身完整的邏輯系統(tǒng),容易導(dǎo)致不同學(xué)科、不同課程的內(nèi)客及方法有很多重復(fù)和交叉。
    如數(shù)與初等數(shù)論中的相關(guān)內(nèi)容,解析式的恒等變形,方程、不等式的解法與證明,幾何證題法與證題術(shù)排列、組合及數(shù)列的一些解題方法等。如果不處理好它們之間的'關(guān)系,只是簡單地追求各門課程自身體系的完整,既不利于學(xué)生整體數(shù)學(xué)思想的建立,又制約了他們數(shù)學(xué)綜合運用能力的提高,同時占用了很多的課時,所以,對于相關(guān)課程中己作詳盡討論過的知識及理論,應(yīng)作為工具來應(yīng)用,避免一些不必要的重復(fù)。
    1.知識系統(tǒng)的探究
    初數(shù)研究課涉及大量的理論,教師講、學(xué)生聽的傳統(tǒng)教學(xué)模式既占用課時多,又難以體現(xiàn)學(xué)生的主體性。因此對理論性較強的內(nèi)容,教師可以先提出一些切題的問題作為一堂課的鍥子,留待后面逐個解決。這些問題將整個教學(xué)內(nèi)容串起來,起到提綱摯領(lǐng)的作用,使學(xué)生明確學(xué)習(xí)目標,集中學(xué)習(xí)資源(如本課程及相關(guān)課程的教村及參考書)有針對性地去探究問題,然后教師組織學(xué)生對探究的結(jié)果進行歸納整理,形成較完整的知識體系。當然一個問題的解訣并非探究的終結(jié),在探究過程中教師與學(xué)生都可以提出一些新問題,延續(xù)學(xué)生探究的熱情,在合作交流的民主和諧的氛圍里,盡可能地讓學(xué)生走向自由探究。
    2.解題方法的探究
    從學(xué)生的認知角度未說,解題過程是獨立的發(fā)現(xiàn)、探索與積極思考的過程,這種探索過程中所形成的意識和思維,就是真正的創(chuàng)造與發(fā)現(xiàn)。應(yīng)該說,解題教學(xué)是中學(xué)數(shù)學(xué)教學(xué)的主要任務(wù)之一,設(shè)置初數(shù)研究課程的目的之一,就是結(jié)合中學(xué)實際對解題作專門的訓(xùn)練。
    3.條件與結(jié)論的探究
    對一個問題的條件或結(jié)論進行探究是對問題深入研究的重要組成部分,也是初數(shù)研究課程中具有挑戰(zhàn)性的任務(wù)之一,引導(dǎo)學(xué)生從不同角度、不同層面來看問題,對學(xué)生的發(fā)散思維及創(chuàng)造思維的培養(yǎng),都能起到良好的推動作用。
    隨著教學(xué)改革的深化,教學(xué)思想方法不僅要在理論上做研究探討,更重要的是需要在實踐中不斷地創(chuàng)造與完善,才能使教學(xué)取得較好的效果。
    數(shù)學(xué)思想方法心得篇十五
    其實,這本書擱置在書架上已經(jīng)許久了,因為里面概念性的東西比較多,所以讀起來并不是那么趣味十足,之前讀了幾頁,便沒有再讀下去。
    之所以重讀這本書,緣于這幾天和學(xué)生一起收看《名師同步課堂》,在電視上做六年級數(shù)學(xué)直播課的是經(jīng)驗豐富的魯向前老師,我發(fā)現(xiàn)他在講課的時候,特別注重數(shù)學(xué)思想方法的滲透,在這方面正是我所欠缺的。
    魯老師在講解求體積的解決問題時,提到了把一個體積轉(zhuǎn)化成另一個體積,正方體熔鑄成圓柱體,小石子放入水中水面升高等等,體現(xiàn)了恒等變形的思想。
    魯老師特別提到一種數(shù)學(xué)思想方法,由圓柱體積的求法猜想并實驗證明圓錐體積的求法,體現(xiàn)了類比的思想方法。類比思想是指依據(jù)兩類數(shù)學(xué)對象的相似性,將已知的一類數(shù)學(xué)對象的性質(zhì)遷移到另一類數(shù)學(xué)對象上去的思想。
    經(jīng)常說教方法比教知識重要,作為一名數(shù)學(xué)老師,需要系統(tǒng)的了解數(shù)學(xué)思想方法。所以我便想到了書架上的這本書。說實話,讀這本書是有些枯燥的,而且如果你不動腦子去思考書中的問題的話,那你可能僅僅讀的就是字了。
    在《小學(xué)數(shù)學(xué)與數(shù)學(xué)思想方法》這本書的封皮上寫著:
    數(shù)學(xué)思想方法不同于一般的概念和技能,后者一般通過短期的訓(xùn)練便能掌握,數(shù)學(xué)思想方法的教學(xué)更應(yīng)該是一個通過長期的滲透和影響才能夠形成思想和方法的過程。教師應(yīng)在每堂課的教學(xué)中適時、適當?shù)伢w現(xiàn)思想方法的教學(xué)目標,使學(xué)生在潛移默化中日積月累,通過提高數(shù)學(xué)素養(yǎng)達到學(xué)好數(shù)學(xué)的目的。
    這本書分上下兩篇,上篇介紹各類思想方法,下篇介紹各類思想方法在每一冊教材中的體現(xiàn),這本書可以當成我們的一本工具書,在我們備課的時候,方便我們查閱。比如,在總結(jié)十以內(nèi)的加減法或者乘法口訣的推導(dǎo)過程中,都體現(xiàn)了函數(shù)思想,作為老師的我們,不必讓學(xué)生明確知道什么是函數(shù)思想,但是我們應(yīng)該明白這里面體現(xiàn)了函數(shù)思想,并且有意識地向?qū)W生滲透思想方法,讓學(xué)生在以后面對類似的問題,能夠聯(lián)想到這種思想方法去解決問題。
    僅僅花費兩三天的時間,匆匆讀完了這本書,書中的一些思想方法或者內(nèi)容,有些地方還不是太懂,需要慢慢去領(lǐng)悟,但是我知道,在以后備課,做教學(xué)設(shè)計時,一定要思考一個問題:這節(jié)課體現(xiàn)了哪些思想方法?我們應(yīng)該向?qū)W生滲透哪些思想方法?為學(xué)生考慮的再長遠一些。
    數(shù)學(xué)思想方法心得篇十六
    豆角是人們喜食的蔬菜之一,但如果吃了沒有煮熟炒熟的豆角會導(dǎo)致中毒。近期外地有豆角中毒事件頻繁發(fā)生。為此,記者近日采訪了市衛(wèi)生監(jiān)督所有關(guān)專家。
    據(jù)介紹,食用生豆角或未炒熟的豆角易引起中毒,是由于生豆角中含有兩種對人體有害的物質(zhì):溶血素和毒蛋白。這兩種毒素對胃腸道有強烈的刺激作用,一般食用未熟豆角十幾分鐘到4小時發(fā)病。輕者感到腹部不適、惡心、嘔吐、腹痛、腹瀉;嚴重者發(fā)生頭暈、頭痛、出冷汗、心慌、胸悶、四肢麻木等中毒癥狀,尤其是兒童。
    雖然豆角中的這兩種物質(zhì)對人體有毒,但它有自身的特點和弱點,即不耐高溫。所以,做菜時一定要把豆角充分加熱煮熟。兩種毒素在高溫中可被分解而破壞,尤其是集體食堂食用豆角菜時,應(yīng)作為食品衛(wèi)生來強調(diào)執(zhí)行。豆角兩頭及兩旁的絲要去除,因為這些部位的毒素含量較高。
    市衛(wèi)生監(jiān)督所專家提醒:一旦發(fā)生豆角中毒,輕癥者對癥治療,及時補充因頻繁嘔吐、腹瀉而丟失的水分。中度以上的中毒者及時送醫(yī)院救治。采取催吐、洗胃、利尿、導(dǎo)瀉、補液等多種方法治療,一般很快恢復(fù)正常,不會造成其他影響。集體中毒事件應(yīng)及時報告衛(wèi)生監(jiān)督部門。
    數(shù)學(xué)思想方法心得篇十七
    “讓讀書成為師生的習(xí)慣,讓書香浸潤全校師生的心靈”是莒南縣第一小學(xué)倡導(dǎo)師生閱讀的初衷。20xx年,學(xué)校提出了“六年影響一生”的辦學(xué)理念,著力打造內(nèi)涵發(fā)展的學(xué)校。作為師生成長發(fā)展的重要措施,學(xué)校啟動了“書香校園”的建設(shè)。學(xué)校試行“長短課結(jié)合”,開設(shè)大閱讀課,統(tǒng)一制定學(xué)生閱讀計劃,按班級人數(shù)購置《中國小學(xué)生基礎(chǔ)閱讀書目》等100種近萬冊圖書,周二至周五下午,在老師的指導(dǎo)下集體閱讀,保障了閱讀時間和效果。教師讀書交流會、師生讀書才藝展示、重陽節(jié)經(jīng)典誦讀活動、“書香伴我成長”主題教育活動、讀書征文活動等一系列形式多樣的讀書交流活動,豐富了廣大師生的讀書生活,使讀書成為一種享受,成為一種快樂!在國家倡導(dǎo)“全民閱讀”的大背景下,3月30日,學(xué)校舉行了“首屆讀書節(jié)”活動啟動儀式,拉開了學(xué)校讀書活動新的啟程。作為此次活動的重要組成部分,凝結(jié)了廣大教師在寒假中讀書的所感所想,是教師專業(yè)幸福成長的又一見證!
    讀了王永春老師的《小學(xué)數(shù)學(xué)與數(shù)學(xué)思想方法》,我對小學(xué)數(shù)學(xué)與數(shù)學(xué)思想方法有了更進一步的認識。下面是我梳理一些知識。
    數(shù)學(xué)思想是數(shù)學(xué)知識內(nèi)容的精髓,是對數(shù)學(xué)的本質(zhì)認識。是從某些具體的數(shù)學(xué)內(nèi)容和對數(shù)學(xué)的認識過程中提煉上升的.數(shù)學(xué)觀點,是構(gòu)建數(shù)學(xué)理論和用數(shù)學(xué)理論解決問題的指導(dǎo)思想。
    數(shù)學(xué)方法是指從數(shù)學(xué)角度提出問題、解決問題時所采用的各種方式和手段。數(shù)學(xué)思想和數(shù)學(xué)方法既有區(qū)別又有密切聯(lián)系。數(shù)學(xué)思想的理論和抽象程度要高一些,而數(shù)學(xué)方法的實踐性更強一些。人們實現(xiàn)數(shù)學(xué)思想往往要靠一定的數(shù)學(xué)方法;而人們選擇數(shù)學(xué)方法,又要以一定的數(shù)學(xué)思想為依據(jù)。因此,二者是有密切聯(lián)系的。我們把二者合稱為數(shù)學(xué)思想方法。
    數(shù)學(xué)思想方法是數(shù)學(xué)的靈魂,那么,要想學(xué)好數(shù)學(xué)、用好數(shù)學(xué),就要深入到數(shù)學(xué)的“靈魂深處”。
    1、有利于建立現(xiàn)代數(shù)學(xué)教育觀、落實新課程理念
    2、有利于提高教師專業(yè)素養(yǎng)、提高教學(xué)水平
    《標準(20xx版)》把數(shù)學(xué)基本思想作為“四基”之一之后,我面臨更大的挑戰(zhàn),一方面是關(guān)于數(shù)學(xué)思想方法的專業(yè)知識方面的欠缺,另一方面是課堂教學(xué)中應(yīng)該具備的數(shù)學(xué)思想方法的意識、經(jīng)驗、策略等的不足。
    3、有利于提高學(xué)生的思維水平。培養(yǎng)“四能”完善認知結(jié)構(gòu),指導(dǎo)學(xué)習(xí)遷移,促進思維發(fā)展。
    因此,在小學(xué)數(shù)學(xué)階段有意識的向?qū)W生滲透一些基本的數(shù)學(xué)想方法可以加深學(xué)生對數(shù)學(xué)概念、公式、法則、定律等知識的數(shù)學(xué)本質(zhì)的理解,提高學(xué)生發(fā)現(xiàn)問題、提出問題、分析問題和解決問題的能力及思維能力,也是小學(xué)數(shù)學(xué)進行素質(zhì)教育的真正內(nèi)涵之所在。同時,也能為初中數(shù)學(xué)的學(xué)習(xí)打下較好的基礎(chǔ)。
    1、重視思想方法目標的落實。
    2、在知識形成過程中體現(xiàn)數(shù)學(xué)思想方法。
    3、在知識的應(yīng)用過程中體現(xiàn)數(shù)學(xué)思想方法。
    4、在整理和復(fù)習(xí)、總復(fù)習(xí)中體現(xiàn)數(shù)學(xué)思想方法。
    5、潛移默化、明確呈現(xiàn)、長期堅持
    數(shù)學(xué)思想方法心得篇十八
    摘要:
    數(shù)學(xué)思想方法是數(shù)學(xué)知識的核心,是數(shù)學(xué)的精髓和靈魂,是研究數(shù)學(xué)理論和運用數(shù)學(xué)解決實際問題的指導(dǎo)思想。本文針對目前高職數(shù)學(xué)教學(xué)中存在的數(shù)學(xué)思想方法教學(xué)重視不夠以及教法上隨意性的現(xiàn)狀,提出通過加強數(shù)學(xué)史和基本數(shù)學(xué)思想方法的介紹,以及倡導(dǎo)“問題解決”的教學(xué)模式來提高學(xué)生的數(shù)學(xué)素養(yǎng)。
    關(guān)鍵詞:
    數(shù)學(xué)教學(xué);數(shù)學(xué)思想;數(shù)學(xué)教學(xué)改革
    數(shù)學(xué)思想是人腦對現(xiàn)實世界的空間形式和數(shù)量關(guān)系的本質(zhì)反映,是思維加工的產(chǎn)物,是人們對現(xiàn)實世界空間形式和數(shù)量關(guān)系的本質(zhì)認識。它隱藏在數(shù)學(xué)概念、公式、定理、方法的背后,反映了這些知識的共同本質(zhì)。它比一般的數(shù)學(xué)概念和數(shù)學(xué)方法具有更高的概括性和抽象性,因而更深刻、更本質(zhì)。數(shù)學(xué)思想方法是數(shù)學(xué)課程的重要目的,是發(fā)展學(xué)生智力和能力的關(guān)鍵所在,是培養(yǎng)學(xué)生數(shù)學(xué)創(chuàng)新意識的基礎(chǔ),也是一個人數(shù)學(xué)素養(yǎng)的重要組成部分。
    1目前數(shù)學(xué)思想方法教學(xué)的現(xiàn)狀
    1.1思想上不重視
    高職教育更加強調(diào)“專業(yè)教育”,對高職數(shù)學(xué)教育提出了“必須、夠用”的原則,這直接導(dǎo)致數(shù)學(xué)課時減少,內(nèi)容不得不被壓縮。這使得一些數(shù)學(xué)教師片面理解“為專業(yè)服務(wù)”的真實含義,教學(xué)中采用以知識為本位的教學(xué),只關(guān)注知識的教授本身,學(xué)生只是學(xué)到了各種題目的具體解法,并沒有掌握數(shù)學(xué)思想方法,解決問題的水平并沒有得到提高。在后續(xù)學(xué)習(xí)中,導(dǎo)致學(xué)生數(shù)學(xué)知識面偏窄,數(shù)學(xué)思想蒼白,眼界不廣,缺乏創(chuàng)造力,“后勁”不足。
    1.2教法上的隨意性
    現(xiàn)行教材主要以知識結(jié)構(gòu)作為編寫體系,數(shù)學(xué)思想散見于教材之中,這就決定了數(shù)學(xué)思想教學(xué)的主觀隨意性很大,其教學(xué)效果主要依賴于教師對數(shù)學(xué)思想的理解程度。雖然在目前的數(shù)學(xué)教學(xué)中非常強調(diào)能力的培養(yǎng),但在實際教學(xué)中往往只注重運算能力和邏輯推理能力的訓(xùn)練,一些重要的數(shù)學(xué)思想被淹沒在大量的計算、證明題之中,失去了應(yīng)有的魅力和價值。例如,導(dǎo)數(shù)思想是高等數(shù)學(xué)中的重要思想,但導(dǎo)數(shù)部分的內(nèi)容常被當作求導(dǎo)的技能技巧來訓(xùn)練,成為一種機械操作,使學(xué)生在專業(yè)工程技術(shù)、經(jīng)濟、電工學(xué)習(xí)中對影子價格、邊際函數(shù)、瞬時電流強度等感到困惑。
    2加強數(shù)學(xué)思想方法教學(xué)的意義
    2.1加強數(shù)學(xué)思想方法
    教學(xué)是素質(zhì)教育的需要高職數(shù)學(xué)教學(xué)的根本目的,就是提高學(xué)生的數(shù)學(xué)素質(zhì),使學(xué)生形成良好的數(shù)學(xué)觀念和數(shù)學(xué)意識,善于用數(shù)學(xué)思想方法去觀察、解釋、表述現(xiàn)實事物的數(shù)量關(guān)系、變化趨勢、空間形式和數(shù)據(jù)信息。可見,加強數(shù)學(xué)思想的教學(xué)是對學(xué)生進行素質(zhì)教育,全面培養(yǎng)新世紀合格人才的需要。
    2.2加強數(shù)學(xué)思想方法
    教學(xué)是教學(xué)改革的新視角從教材的構(gòu)成體系來看,高職數(shù)學(xué)教材所涉及的數(shù)學(xué)知識點和數(shù)學(xué)思想?yún)R成了數(shù)學(xué)結(jié)構(gòu)系統(tǒng)的兩條“河流”。一條是由具體的知識構(gòu)成的易于被發(fā)現(xiàn)的“明河流”,它是構(gòu)成數(shù)學(xué)教材的“骨架”;另一條是由數(shù)學(xué)思想方法構(gòu)成的具有潛在價值的“暗河流”,它是構(gòu)成數(shù)學(xué)教材的“血脈”。有了數(shù)學(xué)思想,數(shù)學(xué)知識點才不再是孤立的、零散的東西,而是數(shù)學(xué)的內(nèi)在本質(zhì),是獲取數(shù)學(xué)知識、發(fā)展思維能力的動力工具。因此,我們的數(shù)學(xué)教學(xué)改革可以從這條“暗河流”入手,對學(xué)生進行思想觀念層次上的數(shù)學(xué)教育,這將是進行數(shù)學(xué)素質(zhì)教育的有效突破口。
    2.3加強數(shù)學(xué)思想方法
    教學(xué)是學(xué)生可持續(xù)發(fā)展的需要數(shù)學(xué)思想越來越多地被應(yīng)用于環(huán)境科學(xué)、自然科學(xué)、經(jīng)濟學(xué)、社會學(xué)、心理學(xué)和認知科學(xué)之中,加強數(shù)學(xué)思想的教學(xué),可以影響學(xué)生的整體素質(zhì),為學(xué)生今后的工作和學(xué)習(xí)奠定基礎(chǔ)。如定積分的思想廣泛地被應(yīng)用于自然科學(xué)和社會科學(xué)中。
    因此,21世紀的數(shù)學(xué)課程必須突破原有的結(jié)構(gòu),從舊的框架中走出來,突出數(shù)學(xué)思想這條主線,才有可能使學(xué)生知其然,更知其所以然,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的主動性和積極性,使之學(xué)到的知識“充滿活力”。
    3實施數(shù)學(xué)思想方法
    教學(xué)的對策數(shù)學(xué)思想方法蘊含于數(shù)學(xué)基礎(chǔ)知識中,相對來說,它是隱性的、抽象的。為了更好地完成數(shù)學(xué)思想方法的教學(xué),數(shù)學(xué)教師要具備較高的數(shù)學(xué)思想方法素養(yǎng)。認真學(xué)習(xí)、掌握數(shù)學(xué)思想方法的內(nèi)容和實質(zhì),明確數(shù)學(xué)思想方法在整個數(shù)學(xué)發(fā)展中的地位,努力把初等數(shù)學(xué)、高等數(shù)學(xué)和現(xiàn)代數(shù)學(xué)的基本思想方法有機地聯(lián)系起來。筆者認為可從以下三個方面入手,進行數(shù)學(xué)思想方法的教學(xué)。
    3.1要重視數(shù)學(xué)史和數(shù)學(xué)思想史的介紹
    數(shù)學(xué)史是一部追求真理的歷史,在追求真理的征途中,前人不斷探索、不斷完善,最終形成高度抽象嚴謹?shù)臄?shù)學(xué)概念,其中所蘊涵的數(shù)學(xué)思想和數(shù)學(xué)方法是絕好實例。在教學(xué)中應(yīng)交代清楚數(shù)學(xué)知識的背景和出處,使學(xué)生感受和了解原始創(chuàng)新過程。
    例如,在極限的概念教學(xué)中,通過介紹歷史上劉徽為求圓周率而產(chǎn)生的“割圓術(shù)”、阿基米德用“窮竭法”求出拋物線弓形的面積等數(shù)學(xué)問題引入概念,學(xué)生一般都能認識到極限是一種研究變量的變化趨勢的數(shù)學(xué)方法,它產(chǎn)生于求實際問題的精確解。這不僅激發(fā)了學(xué)生的學(xué)習(xí)興趣,而且對于隨后介紹數(shù)列極限的定義也大有益處。教師還可以由此給出懸念:同學(xué)們在學(xué)了定積分的應(yīng)用之后,可以證明阿基米德所作解答是正確的。
    3.2要倡導(dǎo)“問題解決”的教學(xué)模式
    數(shù)學(xué)中的概念、法則、性質(zhì)、公式、公理、定理通常稱為數(shù)學(xué)表層知識。數(shù)學(xué)教材主要記述的就是數(shù)學(xué)表層知識,深入分析這些表層知識,便可以發(fā)現(xiàn)蘊涵在其中的極為豐富的深層知識,這就是貫穿于其中的數(shù)學(xué)思想方法和模式等。數(shù)學(xué)深層知識是數(shù)學(xué)的本質(zhì)和精髓,掌握基本的數(shù)學(xué)思想方法能使數(shù)學(xué)更易于理解和記憶,是學(xué)會學(xué)習(xí)、發(fā)展創(chuàng)新的'前提。作為數(shù)學(xué)教師,在教學(xué)時不能就知識論知識,就書本論書本,應(yīng)引導(dǎo)學(xué)生去領(lǐng)悟內(nèi)容中蘊含的深邃思想和巧妙方法。
    3.2.1重視論證的結(jié)論
    從應(yīng)用的角度講,對于高職學(xué)生而言需要的往往不是論證的過程,而是它的結(jié)論。因此我們主張,在高等數(shù)學(xué)教學(xué)中,應(yīng)淡化嚴格的數(shù)學(xué)論證,強化幾何說明,重視直觀、形象的理解,但這并非是將定理的推證與公式的推導(dǎo)全盤舍棄。若是推證、推導(dǎo)中包含重要的數(shù)學(xué)思想和方法,教師應(yīng)引導(dǎo)學(xué)生大膽猜想,運用歸納法和類比的思想積極探索,力求形成“問題情境―建立模型―解釋、應(yīng)用與拓展”的基本教學(xué)模式,以大眾化、生活化的方式反映重要的現(xiàn)代數(shù)學(xué)觀念和數(shù)學(xué)思想方法。
    3.2.2展示思維的過程
    學(xué)生的思維往往是通過模仿教師的思路逐漸形成的,“讓學(xué)生看到思維的過程”是提高學(xué)生學(xué)習(xí)積極性、促進學(xué)生思維能力發(fā)展的有效措施。讓學(xué)生看到思維的過程,意在使學(xué)生能從教師的分析中懂得怎樣去變更問題、怎樣引入輔助問題、怎樣進行聯(lián)想類比、怎樣迂回障礙,使之柳暗花明,得到成功的喜悅,從而逐漸養(yǎng)成自覺思維的習(xí)慣。
    3.3要重點突出基本數(shù)學(xué)思想方法的介紹和傳授
    數(shù)學(xué)思想方法主要包括:化歸思想方法、數(shù)形結(jié)合思想方法、構(gòu)造思想方法、類比思想方法、極限的思想方法、積分的思想方法、歸納與猜想、函數(shù)與方程思想方法等等。高職數(shù)學(xué)教學(xué)中應(yīng)重點滲透以下兩種類型的數(shù)學(xué)思想方法:3.3.1宏觀型的數(shù)學(xué)思想方法如抽象概括、化歸、數(shù)學(xué)模型、數(shù)形結(jié)合,方程與函數(shù),積分等等。
    3.3.2邏輯型的數(shù)學(xué)思想方法
    如分類、類比,歸納,演繹,等等。
    4結(jié)論
    數(shù)學(xué)思想方法對數(shù)學(xué)的認識結(jié)構(gòu)起著重要的導(dǎo)向作用,是將知識轉(zhuǎn)化為能力的杠桿,由于數(shù)學(xué)思想方法比其它數(shù)學(xué)知識更抽象、更概括,學(xué)生一般難以在教材中獨立獲得,只有通過教師在教學(xué)中的引導(dǎo)和點撥,才能使學(xué)生真正感受到數(shù)學(xué)思想方法俯瞰全局、舉一反三、事半功倍的作用。
    總之,“授之以魚,不如授之以漁”,方法的掌握,思想的形成,才能使學(xué)生受益終身。
    參考文獻
    數(shù)學(xué)思想方法心得篇十九
    解:
    根據(jù)乘法原理,分兩步:
    第一步是把5對夫妻看作5個整體,進行排列有5×4×3×2×1=120種不同的排法,但是因為是圍成一個首尾相接的圈,就會產(chǎn)生5個5個重復(fù),因此實際排法只有120÷5=24種。
    綜合兩步,就有24×32=768種。
    解:
    5全排列5*4*3*2*1=120
    有兩個l所以120/2=60
    原來有一種正確的所以60-1=59
    答案為53秒
    可以這樣理解:“快車從追上慢車的車尾到完全超過慢車”就是快車車尾上的點追及慢車車頭的點,因此追及的路程應(yīng)該為兩個車長的和。
    答案為100米
    300÷(5-4.4)=500秒,表示追及時間
    5×500=2500米,表示甲追到乙時所行的路程
    2500÷300=8圈……100米,表示甲追及總路程為8圈還多100米,就是在原來起跑線的前方100米處相遇。
    5.一個人在鐵道邊,聽見遠處傳來的火車汽笛聲后,在經(jīng)過57秒火車經(jīng)過她前面,已知火車鳴笛時離他1360米,(軌道是直的),聲音每秒傳340米,求火車的速度(得出保留整數(shù))
    答案為22米/秒
    算式:1360÷(1360÷340+57)≈22米/秒
    關(guān)鍵理解:人在聽到聲音后57秒才車到,說明人聽到聲音時車已經(jīng)從發(fā)聲音的地方行出1360÷340=4秒的路程。也就是1360米一共用了4+57=61秒。
    6.獵犬發(fā)現(xiàn)在離它10米遠的前方有一只奔跑著的野兔,馬上緊追上去,獵犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的動作快,獵犬跑2步的時間,兔子卻能跑3步,問獵犬至少跑多少米才能追上兔子。
    正確的答案是獵犬至少跑60米才能追上。
    解:
    答案:18分鐘
    解:設(shè)全程為1,甲的速度為x乙的速度為y
    列式40x+40y=1
    x:y=5:4
    得x=1/72y=1/90
    走完全程甲需72分鐘,乙需90分鐘
    故得解
    答案是300千米。
    解:通過畫線段圖可知,兩個人第一次相遇時一共行了1個ab的路程,從開始到第二次相遇,一共又行了3個ab的路程,可以推算出甲、乙各自共所行的路程分別是第一次相遇前各自所走的路程的3倍。即甲共走的路程是120*3=360千米,從線段圖可以看出,甲一共走了全程的(1+1/5)。
    因此360÷(1+1/5)=300千米
    解:(1/6-1/8)÷2=1/48表示水速的分率
    2÷1/48=96千米表示總路程
    10.快車和慢車同時從甲乙兩地相對開出,快車每小時行33千米,相遇是已行了全程的七分之四,已知慢車行完全程需要8小時,求甲乙兩地的路程。
    解:
    相遇是已行了全程的七分之四表示甲乙的速度比是4:3
    時間比為3:4
    所以快車行全程的時間為8/4*3=6小時
    6*33=198千米
    解:
    把路程看成1,得到時間系數(shù)
    去時時間系數(shù):1/3÷12+2/3÷30
    返回時間系數(shù):3/5÷12+2/5÷30
    去時時間:1/2×(1/3÷12)÷1/75和1/2×(2/3÷30)1/75
    路程:12×〔1/2×(1/3÷12)÷1/75〕+30×〔1/2×(2/3÷30)1/75〕=37.5(千米)
    數(shù)學(xué)思想方法心得篇二十
    為什么我看這個《小學(xué)數(shù)學(xué)與數(shù)學(xué)思想方法》幾頁就覺得很受益,有觸動。因為以前自己數(shù)學(xué)能學(xué)好感覺只是天然的選擇,下意識的動作,在這里能找到原理,讓你的行為有理論依據(jù),更加明晰思維方法的重要性。自己就是受益于這些思維方法,但卻沒意識到,看了書才恍然大悟。很多習(xí)以為常,想當然的事情明白了這樣設(shè)計的道理了。比如為啥設(shè)計小學(xué)五年級六年級。為什么三四年級、初中一年級會是檻。區(qū)別主要是抽象能力的發(fā)展不同。思維在低年級作用不是特別大。差距顯現(xiàn)不出來。從作者的言外之意也可以看到數(shù)學(xué)思維方法是最重要的東西,但卻不是課堂教學(xué)的常態(tài)目標,只是教學(xué)的附屬品,滲透出來的,有人悟性高,捕獲的多,發(fā)展的好。有人不敏感,攫取的少。差距就出來了。
    但不管從數(shù)學(xué)教育從業(yè)者還是我們個人的經(jīng)歷來說,數(shù)學(xué)思維方法都是最基本的。屬于對數(shù)學(xué)本質(zhì)的認識,理性的認識。
    奧數(shù)就是為了訓(xùn)練數(shù)學(xué)思維方法啊。但是真假奧數(shù)不一樣,假奧數(shù)就是教給你套路,記住就好。
    我自己數(shù)學(xué)學(xué)習(xí)也是原發(fā)性的。沒人指導(dǎo),沒人培訓(xùn)。不過有人指點肯定會更輕松,或者能更進一步。
    我們常說語文學(xué)習(xí),詞匯是理解力的基礎(chǔ)。在數(shù)學(xué)中,概念是數(shù)學(xué)學(xué)習(xí)的基礎(chǔ),是抽象思維的基礎(chǔ)和基本形式。概念大概等同于中文閱讀里的抽象詞匯,不過概念是有相關(guān)系統(tǒng)的東西。說這個是為了說明我們平時說的打好基礎(chǔ)再拓展。到底什么是基礎(chǔ)?;A(chǔ)就是概念與概念之間的關(guān)系構(gòu)成的知識結(jié)構(gòu)。
    所以也自然明白日常我們說的“拓展”是什么。拓展就是在理解概念之間關(guān)系的知識結(jié)構(gòu)基礎(chǔ)上,利用思想方法、模型思想、推理思想等學(xué)習(xí)數(shù)學(xué),解決問題。
    數(shù)學(xué)思想方法心得篇二十一
    摘要:
    隨著新課改的實施,在數(shù)學(xué)課堂教學(xué)中有意識地進行數(shù)學(xué)思想方法的教學(xué)日益顯得重要。本文闡述了數(shù)學(xué)思想方法的涵義,指出了加強數(shù)學(xué)思想方法教學(xué)的重要性及如何在課堂教學(xué)中選準時機進行數(shù)學(xué)思想方法的教學(xué)。
    關(guān)鍵詞:數(shù)學(xué)思想方法滲透
    思想是對數(shù)學(xué)知識內(nèi)容的本質(zhì)認識,是對數(shù)學(xué)規(guī)律的理性認識。數(shù)學(xué)方法是在數(shù)學(xué)提出問題、研究問題和解決問題的過程中所采用的各種手段和途徑,思想是方法的升華,方法是思想的體現(xiàn)。沒有不含數(shù)學(xué)方法的數(shù)學(xué)思想,也沒有不以數(shù)學(xué)思想為指導(dǎo)的數(shù)學(xué)方法,因此我們通常把數(shù)學(xué)思想方法視為一個整體。
    縱觀數(shù)學(xué)教學(xué)的現(xiàn)狀,仍有一些數(shù)學(xué)課基本上還是在應(yīng)試教育的慣性下運行,課堂上就題論題,致使我們的孩子至今仍被困惑在無邊的題海之中。究竟怎樣走出題海,提高他們的數(shù)學(xué)能力,實現(xiàn)素質(zhì)教育的目標呢?這就要求我們要更新觀念,在數(shù)學(xué)教學(xué)中適時地滲透數(shù)學(xué)思想方法,所以在數(shù)學(xué)課堂教學(xué)中滲透數(shù)學(xué)思想方法的教學(xué)是新課改的要求。
    1、幾種常見的數(shù)學(xué)思想方法。
    (1)函數(shù)的思想。
    函數(shù)的思想就是用運動變化的觀點,分析和研究具體問題中的數(shù)量關(guān)系,建立函數(shù)關(guān)系,運用函數(shù)的.知識,使問題得到解決,諸如正比例、反比例概念中揭示的兩種相關(guān)聯(lián)的量之間的關(guān)系實質(zhì)上就是函數(shù)關(guān)系。
    (2)數(shù)形結(jié)合的思想。
    數(shù)形結(jié)合思想是通過數(shù)形間的對應(yīng)來研究解決問題的思想方法,數(shù)形結(jié)合的本質(zhì)是數(shù)量關(guān)系決定了幾何圖形的性質(zhì),幾何圖形的性質(zhì)又反映了數(shù)量關(guān)系。數(shù)形結(jié)合就是抓住數(shù)與形之間的內(nèi)在聯(lián)系,以“形”直觀地表達“數(shù)”,以“數(shù)”精確地研究“形”。我國著名數(shù)學(xué)家華羅庚曾對數(shù)形結(jié)合的作用進行了高度的概括:“數(shù)缺形時少直觀,形無數(shù)時難入微,數(shù)形結(jié)合百般好,割裂分家萬事休?!痹蹅兪煜さ牡芽栕鴺讼稻褪堑芽柾ㄟ^建立點與有序數(shù)組的對應(yīng),實現(xiàn)了“位置的量化”。
    (3)分類討論的思想。
    分類討論思想是根據(jù)數(shù)學(xué)對象的本質(zhì)屬性的相同點和不同點,將數(shù)學(xué)對象區(qū)分為不同種類的數(shù)學(xué)思想?!拔镆灶惥?,人以群分”,將事物進行分類,然后對劃分的每一類分別進行研究,這是深化研究對象必不可少的思想方法。
    (4)化歸思想。
    數(shù)學(xué)問題的解決是數(shù)學(xué)教學(xué)中一個重要的組成部分,在解決數(shù)學(xué)問題時我們不是對問題直接求解,而是將問題轉(zhuǎn)化變形,使之歸結(jié)為容易解決的問題,這就是化歸思想。例如“多邊形的內(nèi)角和”問題通過分解多邊形為三角形來解決,這都是化歸思想在實際問題中的具體體現(xiàn)。
    2、教學(xué)中滲透數(shù)學(xué)思想方法的有效途徑。
    (1)在知識的發(fā)生過程中,適時滲透數(shù)學(xué)思想方法。
    數(shù)學(xué)思想方法的教學(xué)必須通過具體的教學(xué)過程得以實現(xiàn),因此必須把握好教學(xué)過程進行數(shù)學(xué)思想方法教學(xué)的契機―――概念形成的過程、結(jié)論推倒的過程、方法思考的過程、規(guī)律揭示的過程,忽視和壓縮這些過程就必然失去滲透數(shù)學(xué)思想方法的良機。例如在加法教學(xué)時進行函數(shù)思想的滲透:2+3=5,把左端的3變成6、右端的5隨之變成8,把左端的3變成7右端的5隨之變成9,由此說明:一個加數(shù)不變時,和隨著另一個加數(shù)的變化而變化,對于另一個加數(shù)所取的每一個值,我們都可以算得和的唯一值與之對應(yīng),即一個加數(shù)不變時,和是另一個加數(shù)的函數(shù)。
    (2)在復(fù)習(xí)與小結(jié)中提煉、概括數(shù)學(xué)思想方法。
    小結(jié)與復(fù)習(xí)是數(shù)學(xué)教學(xué)的一個重要環(huán)節(jié)。數(shù)學(xué)的小結(jié)與復(fù)習(xí),不能僅停留在把已學(xué)的知識溫習(xí)記憶一遍的要求上,而要去努力思考新知識是怎樣產(chǎn)生、展開和證明的,因此在這個過程中,提供了發(fā)展和提高能力的極好機會,也是滲透數(shù)學(xué)思想方法的極好途徑。比如在學(xué)習(xí)一元二次不等式的解法時用“化歸、類比、分類、數(shù)形結(jié)合”等數(shù)學(xué)思想方法連接知識之間的關(guān)系,這樣就能優(yōu)化學(xué)生關(guān)于不等式解法的知識結(jié)構(gòu),促進學(xué)生知識結(jié)構(gòu)的不斷完善。
    (3)通過問題解決,突出和深化數(shù)學(xué)思想方法。
    楊振寧博士曾指出理科要講理,對數(shù)學(xué)來說就是要講清數(shù)學(xué)知識在產(chǎn)生和形成中及數(shù)學(xué)方法在挑選和演進中的思維活動過程,數(shù)學(xué)思想方法存在于數(shù)學(xué)問題的解決過程中,數(shù)學(xué)問題的步步轉(zhuǎn)化無不遵循數(shù)學(xué)思想方法的指導(dǎo),我們教師應(yīng)通過這種教學(xué)逐步引導(dǎo)學(xué)生科學(xué)地思考問題。如小學(xué)教材中為了說明“同樣多”、“多些”、“少些”的含義,利用在實物圖間畫線的辦法滲透對應(yīng)思想,以后在應(yīng)用題的教學(xué)中,可常利用畫線段圖建立數(shù)與形之間的對應(yīng)關(guān)系,使數(shù)量關(guān)系形象化。
    (4)引導(dǎo)學(xué)生進行反思,從中領(lǐng)悟數(shù)學(xué)思想方法。
    著名數(shù)學(xué)教育家弗賴登塔爾指出“:反思是數(shù)學(xué)思維活動的核心和動力?!币虼私處煈?yīng)該創(chuàng)設(shè)各種情境,為學(xué)生創(chuàng)造反思的機會,如解法是怎樣想出來的?關(guān)鍵是哪一步?通過解這個題我學(xué)到了什么?以后遇到這類題我能獨立解決嗎?如通過分數(shù)和百分數(shù)應(yīng)用題有規(guī)律的對比、反思,指導(dǎo)學(xué)生小結(jié)解答這類應(yīng)用題的關(guān)鍵,這時學(xué)生已意會到對應(yīng)思想和化歸思想,但這是學(xué)生自己提煉、概括出來的,因而具有更強的活力。
    3、數(shù)學(xué)思想方法教學(xué)中應(yīng)注意的問題。
    (1)教師要更新觀念縱觀數(shù)學(xué)教學(xué)的現(xiàn)狀。
    應(yīng)該看到確實有很多站在了波峰浪尖,但也仍有許多數(shù)學(xué)課基本上還是在應(yīng)試教育的慣性下運行,數(shù)學(xué)教育家李玉琪在《數(shù)學(xué)教育概論》一書中寫道:如果說“問題”是數(shù)學(xué)的“心臟”,“知識”是數(shù)學(xué)的“軀體”,“數(shù)學(xué)思想”無疑是數(shù)學(xué)的“靈魂”。我們教師要從思想上不斷提高對數(shù)學(xué)思想方法重要性的認識,在備課時要把掌握數(shù)學(xué)知識和挖掘數(shù)學(xué)思想方法同時納入教學(xué)目標,并在教案中設(shè)計好數(shù)學(xué)思想方法的教學(xué)內(nèi)容和教學(xué)過程,只有這樣才能使學(xué)生較好地形成數(shù)學(xué)能力,實現(xiàn)素質(zhì)教育的目標。
    (2)注意滲透數(shù)學(xué)思想方法的漸進性和長期性。
    數(shù)學(xué)思想方法是在啟發(fā)學(xué)生思維過程中逐步積累和形成的。在教學(xué)中,首先要特別強調(diào)解決問題以后的“反思”,因為在這個過程中提煉出來的數(shù)學(xué)思想方法對學(xué)生來說才是易于體會、易于接受的。其次,對學(xué)生進行數(shù)學(xué)思想方法的滲透不是一朝一夕就能見效的事,而需一個過程,數(shù)學(xué)思想方法蘊含在數(shù)學(xué)知識里,滲透在全部數(shù)學(xué)教學(xué)內(nèi)容中,這就要求我們教師在數(shù)學(xué)教學(xué)過程中要根據(jù)所講內(nèi)容與學(xué)生實際潛移默化地去影響學(xué)生,逐步提高學(xué)生解決問題的能力。
    總之,數(shù)學(xué)思想方法是數(shù)學(xué)的靈魂、是數(shù)學(xué)的精髓,我們老師只有在教學(xué)中長期滲透并靈活運用,方能“隨風(fēng)潛入夜,潤物細無聲”,讓學(xué)生在不知不覺中領(lǐng)會、掌握、自覺運用,從而形成能力,以利于終身學(xué)習(xí)和發(fā)展。
    參考文獻:
    [1]李玉琪。數(shù)學(xué)教育概論[m]。中國科學(xué)技術(shù)出版社,1994。
    [2]張景中。感受小學(xué)數(shù)學(xué)思想的力量[j]。人民教育,(18)。