解讀是對文學(xué)、電影等作品進行深入理解和闡釋的過程,它可以幫助我們抓住作品的核心思想??偨Y(jié)的過程應(yīng)當(dāng)全面客觀地反映自己在某段時間內(nèi)的表現(xiàn)和收獲。在寫總結(jié)之前,先參考一下以下小編整理的總結(jié)范文,相信可以給您提供一些寫作上的靈感。
對高等數(shù)學(xué)的體會篇一
1.極限思想:是一種漸進變化的數(shù)學(xué)思想。利用有限描述無限,由近似到精確的一種過程。極限思想是高等數(shù)學(xué)必不可少的一種重要方法,是高等數(shù)學(xué)與初等數(shù)學(xué)的本質(zhì)區(qū)別。利用極限思想方法解決了許多初等數(shù)學(xué)無法解決的問題,例如,求瞬時速度、曲線弧長、曲邊形面積、曲面體體積等問題。
2.函數(shù)思想:是通過構(gòu)造函數(shù),利用函數(shù)的概念、圖象和性質(zhì)去分析問題、轉(zhuǎn)化問題和解決問題的思想方法。中學(xué)數(shù)學(xué)和大學(xué)數(shù)學(xué)中都有用到函數(shù)思想,而大學(xué)中是將函數(shù)進一步深化,更復(fù)雜一些,例如,函數(shù)的極限、連續(xù)性、極值等。
3.化歸思想:化歸思想的中心是轉(zhuǎn)化。原則是陌生問題熟悉化,復(fù)雜問題簡單化,抽象問題具體化,命題形式的轉(zhuǎn)化,引入輔助元素等。
4.數(shù)形結(jié)合思想:數(shù)學(xué)是以數(shù)和形為主干,劃分為代數(shù)和幾何兩個方向,而數(shù)和形又常常結(jié)合在一起,內(nèi)容上相互聯(lián)系,方法上相互滲透,并在一定條件下相互轉(zhuǎn)化。例如,平面向量的數(shù)量關(guān)系、解析幾何中曲線與方程的關(guān)系等。
5.邏輯思想:邏輯思想依賴于嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)推理。推理是多樣的,其中歸納和類比是兩種應(yīng)用極廣的推理。
a.歸納推理的過程:“發(fā)現(xiàn)問題”-“觀察問題”-“歸納問題”-“推廣問題”-“猜想”-“證明猜想”,例如,在某些證明中所使用的數(shù)學(xué)歸納法等。
b.類比:是根據(jù)兩個或兩類對象有部分屬性相同,推出它們的其它屬性也相同。類比方法有不同的類型:概念間的類比、形式間的類比、有限與無限間的類比等。
對高等數(shù)學(xué)的體會篇二
作為一門數(shù)學(xué)專業(yè)的必修課程,高等數(shù)學(xué)對學(xué)生來說并不易于掌握,需要在學(xué)習(xí)中不斷地消化吸收。而吳昊,則是一位對高等數(shù)學(xué)有深入研究,并且在教學(xué)中取得了較好成績的老師。因此,我們會特別關(guān)注吳昊的高等數(shù)學(xué)心得體會,從中汲取經(jīng)驗,提高學(xué)習(xí)效率。
第二段:心得體會一:高等數(shù)學(xué)需要系統(tǒng)性學(xué)習(xí)
吳昊表示,高等數(shù)學(xué)知識體系龐雜,而且知識之間的聯(lián)系非常緊密。因此,學(xué)生需要先從系統(tǒng)性入手,掌握高等數(shù)學(xué)的整體框架和學(xué)習(xí)路線。在學(xué)習(xí)中要注意先后順序,不能掉以輕心,否則就會遇到迷失方向的情況。
第三段:心得體會二:掌握基礎(chǔ)知識是關(guān)鍵
高等數(shù)學(xué)中的每一個概念,都是建立在基礎(chǔ)之上的。如果基礎(chǔ)學(xué)習(xí)不扎實,那么后期的學(xué)習(xí)也無從談起。因此,吳昊建議學(xué)生在學(xué)習(xí)高等數(shù)學(xué)之前,先重視基礎(chǔ)概念的學(xué)習(xí),鞏固數(shù)學(xué)的基礎(chǔ)知識,才能更好地理解和掌握高等數(shù)學(xué)。
第四段:心得體會三:靈活運用解題思路
高等數(shù)學(xué)中的問題并不單一,其解題方法也需要靈活變通。吳昊提醒學(xué)生,在學(xué)習(xí)高等數(shù)學(xué)時,不能僅僅停留在概念和公式的記憶,而應(yīng)該注重解決具體問題的能力。在解題過程中,應(yīng)該運用多種思路,靈活變換解題方法,從而提高解題的效率和準(zhǔn)確性。
第五段:結(jié)尾及總結(jié)
高等數(shù)學(xué)在數(shù)學(xué)專業(yè)中占據(jù)著重要的地位,不僅有助于理論的研究,還能為工程應(yīng)用提供數(shù)學(xué)依據(jù)。吳昊的高等數(shù)學(xué)心得體會不僅是學(xué)生能夠?qū)W好高等數(shù)學(xué)的經(jīng)驗之談,也能幫助教師對高等數(shù)學(xué)教學(xué)的優(yōu)化。通過吳昊的經(jīng)驗與體會,我們可以更加準(zhǔn)確地把握高等數(shù)學(xué)的學(xué)習(xí)方向,提高學(xué)習(xí)效率,做好學(xué)科的拓展與深化。
對高等數(shù)學(xué)的體會篇三
經(jīng)濟學(xué)是考察社會經(jīng)濟現(xiàn)象、行為及其規(guī)律的學(xué)科,而計量經(jīng)濟學(xué)則是揭示經(jīng)濟學(xué)理論所考察的社會經(jīng)濟現(xiàn)象之間的數(shù)量規(guī)律。計量經(jīng)濟學(xué)的學(xué)習(xí)與應(yīng)用能力,關(guān)鍵取決于能否運用經(jīng)濟學(xué)的思維方式觀察理解經(jīng)濟現(xiàn)象,能否構(gòu)建恰當(dāng)?shù)慕?jīng)濟模型,能否準(zhǔn)確進行參數(shù)估計與模型檢驗,使研究結(jié)論客觀反映經(jīng)濟規(guī)律,進而為政策決策提供有意義的參考。目前,雖然計量經(jīng)濟學(xué)已被列為高等院校經(jīng)管類各專業(yè)的重要課程,但我國計量經(jīng)濟學(xué)教學(xué)與研究與發(fā)達國家相比還有較大差距,進一步培養(yǎng)好計量經(jīng)濟學(xué)人才任重道遠。為更好提升學(xué)生學(xué)習(xí)和應(yīng)用能力,應(yīng)著重從以下方面入手進行計量經(jīng)濟學(xué)人才的培養(yǎng)。
(一)有助于培養(yǎng)學(xué)生觀察與分析經(jīng)濟現(xiàn)象的能力
計量經(jīng)濟學(xué)重在培養(yǎng)學(xué)生基于經(jīng)濟學(xué)理論觀察社會經(jīng)濟現(xiàn)象,勇于提出問題。譬如,在研究通貨膨脹時,學(xué)生應(yīng)回顧成本推動型、需求拉動型等通脹形成機制,思考這些理論能否解釋現(xiàn)實。以始于2009年下半年的通貨膨脹為例,顯然,每個人都經(jīng)歷與感知到了該輪通貨膨脹對自身的影響,企業(yè)家感覺到原材料上漲,居民感覺到菜價上漲,學(xué)生發(fā)現(xiàn)食堂飯菜價格上升。對于計量經(jīng)濟學(xué)的學(xué)生來說,首先要思考此輪通脹的原因與貨幣供給過多是否相關(guān),進而要思考此輪通脹與過去通脹是否存在相同特征。教師要將這些問題引入課堂,適時引導(dǎo)學(xué)生思考與研究社會經(jīng)濟現(xiàn)象,這實質(zhì)就是培養(yǎng)學(xué)生學(xué)習(xí)與研究計量經(jīng)濟學(xué)的能力。
(二)有助于培養(yǎng)學(xué)生研究社會經(jīng)濟現(xiàn)象的能力
計量經(jīng)濟學(xué)教學(xué)是引導(dǎo)學(xué)生應(yīng)用經(jīng)濟學(xué)理論理解經(jīng)濟問題的過程。由于社會經(jīng)濟現(xiàn)象的形成機制非常復(fù)雜,對同一經(jīng)濟現(xiàn)象經(jīng)濟學(xué)家存在不同的看法。經(jīng)濟學(xué)理論和計量經(jīng)濟學(xué)方法發(fā)展日新月異,這種快速的知識更新使得師生需要不斷學(xué)習(xí)與研究。此外,經(jīng)濟現(xiàn)象本身也伴隨經(jīng)濟體制、運行機制與經(jīng)濟結(jié)構(gòu)的變化而發(fā)生復(fù)雜變化,對這些日益復(fù)雜的現(xiàn)實經(jīng)濟現(xiàn)象的深入考察,也考驗著我們運用計量經(jīng)濟模型的能力。因此,深刻理解經(jīng)濟現(xiàn)象及其背后的機制,重在能否正確應(yīng)用計量經(jīng)濟學(xué)。仍以通脹現(xiàn)象為例,學(xué)生可能首先聯(lián)想到的是貨幣需求函數(shù),此時,教師可以引導(dǎo)學(xué)生比較分析消費價格指數(shù)(cpi)與廣義貨幣(m2)的時間序列數(shù)據(jù)。通過觀察,m2增速于2009年起快速下降,但與此同時,通脹卻表現(xiàn)出持續(xù)上漲的態(tài)勢。該現(xiàn)象提醒我們,若以非線性貨幣需求函數(shù)建模,則可以揭示通脹與貨幣需求間的復(fù)雜關(guān)系。為此,適時引導(dǎo)學(xué)生針對我國特定的數(shù)據(jù),探索性研究通脹與貨幣需求間的復(fù)雜關(guān)系,能夠培養(yǎng)其學(xué)習(xí)與解決問題的能力。
(三)有助于培養(yǎng)學(xué)生研究計量經(jīng)濟理論的能力
高等教育的重要落腳點是開發(fā)學(xué)生創(chuàng)新能力。在計量經(jīng)濟學(xué)學(xué)習(xí)中,學(xué)生的創(chuàng)新能力體現(xiàn)于能否發(fā)展計量經(jīng)濟學(xué)理論。比如,通過引導(dǎo)學(xué)生觀察通脹現(xiàn)象,逐步提出以下問題:如何檢驗通貨膨脹與m2是否是平穩(wěn)序列?這兩個變量是否存在協(xié)整關(guān)系?該關(guān)系是否具有非對稱、非線性的特征?怎樣檢驗與估計非對稱、非線性的長期均衡關(guān)系?要回答以上問題,必須學(xué)習(xí)與發(fā)展計量理論,這需要我們拓展既有非平穩(wěn)時間序列分析的理論與方法。因此,在研究中準(zhǔn)確理解與應(yīng)用相關(guān)理論與方法,特別是針對數(shù)據(jù)特征拓展計量理論,是培養(yǎng)與提升學(xué)生學(xué)習(xí)與應(yīng)用能力的重點。
二、計量經(jīng)濟學(xué)教學(xué)實踐改革路徑
現(xiàn)代計量經(jīng)濟學(xué)的主要內(nèi)容有:單位根檢驗與基于非平穩(wěn)變量的建模技術(shù);描述經(jīng)濟現(xiàn)象復(fù)雜動態(tài)性的模型;使用面板數(shù)據(jù)建立的模型。這些理論與方法與之前的經(jīng)典計量經(jīng)濟學(xué)相比存在較大區(qū)別,為使教學(xué)與現(xiàn)代計量經(jīng)濟學(xué)的發(fā)展相適應(yīng),許多教師從教材改革、教學(xué)方法創(chuàng)新、突出實驗教學(xué)等角度思考了計量經(jīng)濟學(xué)的教學(xué)方法改革?;谂囵B(yǎng)學(xué)生能力這一角度,借鑒以往教學(xué)改革的有益建議,結(jié)合我國計量經(jīng)濟學(xué)教學(xué)的現(xiàn)實狀況,在計量經(jīng)濟學(xué)教學(xué)實踐中,嘗試從以下方面踐行教學(xué)活動。
(一)立足引導(dǎo)與啟發(fā)
首先要清晰講授相關(guān)概念、理論和方法,梳理知識之間的內(nèi)在聯(lián)系,適時對學(xué)生提出問題,培養(yǎng)其智能。例如,在講解參數(shù)估計量的線性無偏最小方差性質(zhì)中,應(yīng)分析估計量是被解釋變量的線性樣本組合,從而引導(dǎo)學(xué)生認(rèn)識估計量的本質(zhì),在理解估計量為一個隨機變量的基礎(chǔ)上,提出其是否服從特定的分布,最終引導(dǎo)學(xué)生理解估計量的方差以及對備選估計量的方差分析比較?;诠烙嬃康挠行?,再講解漸進無偏與漸進最優(yōu)估計量。接下來,適時展示線性無偏最小方差估計量的仿真結(jié)果,以此引導(dǎo)學(xué)生理解基本的計量經(jīng)濟理論,把引導(dǎo)學(xué)生學(xué)習(xí)和“教會學(xué)生學(xué)習(xí)”一體化。
(二)貫穿“理論、方法和應(yīng)用”三位一體
在教學(xué)中因勢利導(dǎo),從經(jīng)典計量經(jīng)濟學(xué)適當(dāng)拓展到現(xiàn)代計量經(jīng)濟學(xué),并據(jù)此闡釋計量經(jīng)濟學(xué)的相關(guān)理論,注重學(xué)生的學(xué)習(xí)反應(yīng),清晰介紹相關(guān)前沿理論。培養(yǎng)學(xué)生學(xué)習(xí)與應(yīng)用計量經(jīng)濟學(xué)的能力重在:一要闡釋回歸分析的產(chǎn)生背景及其內(nèi)涵;二是要培養(yǎng)學(xué)生根據(jù)我國數(shù)據(jù)構(gòu)建計量模型的能力;三是要根據(jù)學(xué)生的實際情況對講授內(nèi)容進行延伸。計量經(jīng)濟學(xué)前沿的理論與方法集中在文獻中,應(yīng)根據(jù)學(xué)生的知識基礎(chǔ)與結(jié)構(gòu)從教材延伸至文獻中。比如,在講授異方差時,適時引出arch模型及其應(yīng)用;在講授面板模型時,適時延伸到動態(tài)面板模型與廣義矩估計,并結(jié)合我國各省市城鎮(zhèn)居民收入的面板數(shù)據(jù),介紹動態(tài)面板模型和廣義矩估計的分析思路。這種適時適度地引申新的知識,不但使學(xué)生深入理解基礎(chǔ)概念,還啟發(fā)學(xué)生拓展知識進行應(yīng)用研究。
(三)充分利用蒙特卡洛仿真技術(shù)
針對學(xué)生對計量經(jīng)濟學(xué)理論望而生畏的現(xiàn)狀,我們利用蒙特卡洛仿真技術(shù),通過編程將計量經(jīng)濟學(xué)中晦澀難懂的估計與檢驗理論轉(zhuǎn)化為仿真結(jié)果,使得學(xué)生對抽象數(shù)學(xué)公式的模糊認(rèn)識,轉(zhuǎn)化為對仿真圖形直觀深入的理解。比如,線性無偏有效估計量的統(tǒng)計含義,既是參數(shù)估計中最基礎(chǔ)的知識,又是大多數(shù)學(xué)生難懂的部分。在教學(xué)中采用仿真實驗和仿真圖形,讓學(xué)生對抽象的計量理論產(chǎn)生直觀的認(rèn)識。又如,模型的誤設(shè)定(如隨機誤差項的異方差性)及其導(dǎo)致的相應(yīng)后果,是學(xué)習(xí)傳統(tǒng)線性計量模型基本假設(shè)的重點,由于需要較強的數(shù)理統(tǒng)計學(xué)基礎(chǔ),這部分內(nèi)容不但學(xué)生難理解,也是教師難以詮釋清楚的問題。通過仿真實驗結(jié)果能夠形象展示違背經(jīng)典計量經(jīng)濟假設(shè)下所導(dǎo)致的結(jié)果,促進學(xué)生對設(shè)定正確模型的重要意義產(chǎn)生深刻理解。這種仿真實驗的教學(xué)模式不僅避免數(shù)學(xué)方面繁雜的推導(dǎo)過程,防止學(xué)生對計量經(jīng)濟理論“望而生畏”,還培養(yǎng)了其創(chuàng)新性的學(xué)習(xí)與研究能力。
三、計量經(jīng)濟學(xué)教學(xué)創(chuàng)新策略
不斷創(chuàng)新教學(xué)方法,培養(yǎng)學(xué)生對計量經(jīng)濟學(xué)的學(xué)習(xí)興趣與解決問題的能力,是“學(xué)生主動學(xué)習(xí)”與“干中學(xué)”這種新型教學(xué)理念的出發(fā)點與落腳點。在教學(xué)實踐中,我們采用如下策略。
1.在課堂講授中有意識地提出問題,與學(xué)生互動,共同討論問題,適時延伸問題,將學(xué)生引入到對相關(guān)前沿文獻的學(xué)習(xí)。例如,為何采用標(biāo)準(zhǔn)差衡量估計量的精度?ols與廣義gmm的估計原理區(qū)別在哪?單位根檢驗統(tǒng)計量的概率分布為何區(qū)別于常規(guī)分布?通過不斷提出類似問題,與學(xué)生“互動式”討論并且解答問題,不僅可以啟發(fā)學(xué)生的思維向深度與廣度發(fā)展,還有助于激發(fā)其學(xué)習(xí)積極性。
2.在課堂教學(xué)中協(xié)調(diào)理論講授、案例分析、實驗教學(xué)之間的關(guān)系。課堂教學(xué)的核心是模型設(shè)定、參數(shù)估計與假設(shè)檢驗等,案例分析和實驗教學(xué)的目的在于幫助學(xué)生直觀理解理論和方法,并促進其學(xué)以致用,能夠進行經(jīng)濟學(xué)研究,但絕對不應(yīng)以軟件操作教學(xué)替代基礎(chǔ)理論的教學(xué)。在講解理論的基礎(chǔ)上,適時操作相關(guān)的計量經(jīng)濟學(xué)軟件,解釋軟件輸出結(jié)果,是實現(xiàn)理論教學(xué)和實驗教學(xué)融合的有效路徑。
3.通過案例與數(shù)據(jù)分析,建立恰當(dāng)?shù)挠嬃拷?jīng)濟學(xué)模型,引導(dǎo)學(xué)生靈活運用。不管是經(jīng)濟學(xué)理論,還是計量經(jīng)濟學(xué)的研究,經(jīng)濟現(xiàn)象及其背后的運行規(guī)律是學(xué)生關(guān)注的問題?;谖覈膶嶋H例子講授計量模型,容易激發(fā)學(xué)生對計量經(jīng)濟學(xué)的學(xué)習(xí)興趣,能夠有效促進學(xué)生應(yīng)用所學(xué)知識解決現(xiàn)實經(jīng)濟問題的能力。針對計量經(jīng)濟學(xué)“難教、難學(xué)、難懂”,上述教學(xué)方法體現(xiàn)“學(xué)生主動學(xué)習(xí)”和“干中學(xué)”等先進教學(xué)理論的精神實質(zhì),不僅使學(xué)生帶著濃厚的興趣學(xué)習(xí)計量經(jīng)濟學(xué),也開拓了其知識視野,培養(yǎng)學(xué)習(xí)、研究與應(yīng)用計量經(jīng)濟學(xué)的能力。
[高等數(shù)學(xué)經(jīng)濟學(xué)論文]
將本文的word文檔下載到電腦,方便收藏和打印
推薦度:
點擊下載文檔
搜索文檔
對高等數(shù)學(xué)的體會篇四
原本以為憑借小學(xué)到高中這十余年所總結(jié)出的數(shù)學(xué)學(xué)習(xí)方法,就能輕松應(yīng)對大學(xué)高等數(shù)學(xué)的學(xué)習(xí)。
然而,經(jīng)過一個多學(xué)期的學(xué)習(xí),我真正體會到高等數(shù)學(xué)的學(xué)習(xí)特點與以往所學(xué)習(xí)的數(shù)學(xué)大相徑庭。因此,我必須在學(xué)習(xí)過程中找到高等數(shù)學(xué)的獨特之處,總結(jié)出一套新的有效的方法,才能在高等數(shù)學(xué)的學(xué)習(xí)中做到游刃有余。
就我個人而言,我認(rèn)為高等數(shù)學(xué)有以下幾個顯著特點:
(1)識記的知識相對減少,理解的知識點相對增加;
(2)不僅要求會運用所學(xué)的知識解題,還要明白其來龍去脈;
(3)系實際多,對專業(yè)學(xué)習(xí)幫助大;
(4)教師授課速度快,課下復(fù)習(xí)與預(yù)習(xí)必不可少。
以前上數(shù)學(xué)課,老師在黑板上寫滿各種公式和結(jié)論,我便一邊在書上勾畫,一邊在筆記本上記錄。
然后像背單詞一樣,把一堆公式與結(jié)論死記硬背下來。
哪種類型的題目用哪個公式、哪條結(jié)論,老師都已一一總結(jié)出來,我只需要將其對號入座,便可將問題解答出來。
而現(xiàn)在,我不再有那么多需要識記的結(jié)論。
唯一需要記住的只是數(shù)目不多的一些定義、定理和推論。
老師也不會給出固定的解題套路。因為高等數(shù)學(xué)與中學(xué)數(shù)學(xué)不同,它更要求理解。只要充分理解了各個知識點,遇到題目可以自己分析出正確的解題思路。
所以,學(xué)習(xí)高等數(shù)學(xué),記憶的負(fù)擔(dān)輕了,但對思維的要求卻提高了。
每一次高數(shù)課,都是一次大腦的思維訓(xùn)練,都是一次提升理解力的好機會。
高等數(shù)學(xué)的學(xué)習(xí)目的不是為了應(yīng)付考試,因此,我們的學(xué)習(xí)不能停留在以解出答案為目標(biāo)。
我們必須知道解題過程中每一步的依據(jù)。正如我前面所提到的,中學(xué)時期學(xué)過的許多定理并不特別要求我們理解其結(jié)論的推導(dǎo)過程。
而高等數(shù)學(xué)課本中的每一個定理都有詳細的證明。
最初,我以為只要把定理內(nèi)容記住,能做題就行了。
然而,漸漸地,我發(fā)現(xiàn)如果沒有真正明白每個定理的來龍去脈,就不能真正掌握它,更談不上什么運用自如了。
于是,我開始認(rèn)真地學(xué)習(xí)每一個定理的推導(dǎo)。有時候,某些地方很難理解,我便反復(fù)思考,或請教老師、同學(xué)。盡管這個過程并不輕松,但我卻認(rèn)為非常值得。
因為只有通過自己去探索的知識,才是掌握得最好的。
總而言之,高等數(shù)學(xué)的以上幾個特點,使我的數(shù)學(xué)學(xué)習(xí)歷程充滿了挑戰(zhàn),同時也給了我難得的鍛煉機會,讓我收獲多多。
進入大學(xué)之前,我們都是學(xué)習(xí)基礎(chǔ)的數(shù)學(xué)知識,聯(lián)系實際的東西并不多。在大學(xué)卻不同了。
不同專業(yè)的學(xué)生學(xué)習(xí)的數(shù)學(xué)是不同的。
正是因為如此,高等數(shù)學(xué)的課本上有了更多與實際內(nèi)容相關(guān)的`內(nèi)容,這對專業(yè)學(xué)習(xí)的幫助是不可低估的。
比如“常用簡單經(jīng)濟函數(shù)介紹”中所列舉的需求函數(shù),供給函數(shù),生產(chǎn)函數(shù)等等在西方經(jīng)濟學(xué)的學(xué)習(xí)中都有用到。
而“極值原理在經(jīng)濟管理和經(jīng)濟分析中的應(yīng)用”這一節(jié)與經(jīng)濟學(xué)中的“邊際問題”密切相關(guān)。如果沒有這些知識作為基礎(chǔ),經(jīng)濟學(xué)中的許多問題都無法解決。
當(dāng)我親身學(xué)習(xí)了高等數(shù)學(xué),并試圖把它運用到經(jīng)濟問題的分析中時,才真正體會到了數(shù)學(xué)方法是經(jīng)濟學(xué)中最重要的方法之一,是經(jīng)濟理論取得突破性發(fā)展的重要工具。這也堅定了我努力學(xué)好高等數(shù)學(xué)的決心。希望未來自己可以憑借扎實的數(shù)理基礎(chǔ),在經(jīng)濟領(lǐng)域里大展鴻圖。
高等數(shù)學(xué)作為大學(xué)的一門課程,自然與其它課程有著共同之處,那就是講課速度快。
剛開始,我非常不適應(yīng)。上一題還沒有消化,老師已經(jīng)講完下一題了。帶著幾分焦慮,我向?qū)W長請教學(xué)習(xí)經(jīng)驗,才明白大學(xué)學(xué)習(xí)的重點不僅僅是課堂,課下的預(yù)習(xí)與復(fù)習(xí)是學(xué)好高數(shù)的必要條件。
于是,每節(jié)課前我都認(rèn)真預(yù)習(xí),把不懂的地方作上記號。課堂上有選擇、有計劃地聽講。
課后及時復(fù)習(xí),歸納總結(jié)。逐漸地,我便感到高數(shù)課變得輕松有趣。只要肯努力,高等數(shù)學(xué)并不會太難。
高等數(shù)學(xué)有其獨特之處,但它畢竟是數(shù)學(xué),那么一定量的習(xí)題自然必不可少。
通過練習(xí),才能更深入地理解,運用。
以上便是本人一個多學(xué)期以來,學(xué)習(xí)高等數(shù)學(xué)的一些體會。
希望自己能在以后的學(xué)習(xí)中更上一層樓!
對高等數(shù)學(xué)的體會篇五
高等數(shù)學(xué)是大學(xué)數(shù)學(xué)教學(xué)中的一門重要課程,它深入探討了微積分、常微分方程、多元函數(shù)等數(shù)學(xué)領(lǐng)域的理論與應(yīng)用。作為一名學(xué)習(xí)高等數(shù)學(xué)的學(xué)生,通過學(xué)習(xí)本學(xué)期下冊的高等數(shù)學(xué)課程,我有了一些心得體會。在這篇文章中,我將分享我對于高等數(shù)學(xué)下冊的認(rèn)識和體悟,以及它對于我的學(xué)習(xí)和思維方式的影響。
第一段:高等數(shù)學(xué)下冊的知識體系
高等數(shù)學(xué)下冊是高等數(shù)學(xué)課程的延續(xù),它包含了微分方程、重積分、無窮級數(shù)和場論等內(nèi)容。與上冊相比,下冊的內(nèi)容更加深入和細致。通過學(xué)習(xí)下冊的課程,我對高等數(shù)學(xué)的整體框架有了更加清晰的認(rèn)識,同時也加深了對微積分的理解。微分方程是高等數(shù)學(xué)下冊的重點之一,它在科學(xué)研究和工程應(yīng)用中具有重要意義。通過學(xué)習(xí)微分方程,我對于它在實際問題中的應(yīng)用有了更深刻的認(rèn)識,從而增強了我的問題解決能力。
第二段:高等數(shù)學(xué)下冊的邏輯思維
高等數(shù)學(xué)下冊的學(xué)習(xí)過程強調(diào)了邏輯思維的培養(yǎng)。在解題過程中,我學(xué)會了運用嚴(yán)密的邏輯推理和抽象思維來分析問題,從而解決復(fù)雜的數(shù)學(xué)問題。在學(xué)習(xí)重積分和無窮級數(shù)時,尤其需要運用邏輯思維進行推導(dǎo)和證明。通過這些習(xí)題的解答,我逐漸培養(yǎng)出了邏輯思維的能力,提高了自己的數(shù)學(xué)素養(yǎng)。我相信,邏輯思維的培養(yǎng)不僅對于學(xué)習(xí)數(shù)學(xué)有著重要意義,也對于我們?nèi)粘I詈吐殬I(yè)發(fā)展具有積極影響。
第三段:高等數(shù)學(xué)下冊的實踐能力
學(xué)習(xí)高等數(shù)學(xué)下冊的過程中,我發(fā)現(xiàn)課本中的理論和知識需要通過實踐來加深理解。例如,在學(xué)習(xí)微分方程時,我們需要通過實際問題的建模和求解,來驗證所學(xué)知識的正確性和適用性。通過課堂上的實例和作業(yè)的練習(xí),我提高了自己的實踐能力。而這種實踐能力也是在工程和科技領(lǐng)域中所必須具備的。通過實踐能力的培養(yǎng),我相信自己在未來的學(xué)習(xí)和工作中能夠更好地應(yīng)對各種挑戰(zhàn)。
第四段:高等數(shù)學(xué)下冊的學(xué)習(xí)方法
面對高等數(shù)學(xué)下冊的內(nèi)容,我深刻體會到了合理的學(xué)習(xí)方法的重要性。在解決數(shù)學(xué)問題時,我逐漸掌握了一些學(xué)習(xí)技巧。例如,在學(xué)習(xí)微分方程和重積分時,我會先了解和理解基本概念,然后通過刻意練習(xí)來掌握解題方法,并在課后復(fù)習(xí)中加深對知識的理解。這些學(xué)習(xí)方法的應(yīng)用使我在高等數(shù)學(xué)下冊的學(xué)習(xí)中事半功倍。我認(rèn)為,學(xué)習(xí)方法的培養(yǎng)是學(xué)習(xí)高等數(shù)學(xué)下冊的必要過程,也是提高學(xué)習(xí)效率的關(guān)鍵。
第五段:高等數(shù)學(xué)下冊的啟示和反思
通過學(xué)習(xí)高等數(shù)學(xué)下冊,我認(rèn)識到高等數(shù)學(xué)不僅僅是一門課程,更是培養(yǎng)學(xué)生綜合素質(zhì)的重要途徑。通過學(xué)習(xí)高等數(shù)學(xué),我不僅僅掌握了數(shù)學(xué)知識,更學(xué)會了思考問題、理解問題和解決問題的方法。高等數(shù)學(xué)下冊的學(xué)習(xí),培養(yǎng)了我對于數(shù)學(xué)的興趣和學(xué)術(shù)追求。同時,我也反思了自己在學(xué)習(xí)中存在的不足,例如在理解概念和應(yīng)用推導(dǎo)方面有待提高。在今后的學(xué)業(yè)中,我會更加注重培養(yǎng)自己的邏輯思維和實踐能力,提高學(xué)習(xí)方法的靈活應(yīng)用,以達到更好的學(xué)習(xí)效果。
總結(jié)起來,通過對高等數(shù)學(xué)下冊的學(xué)習(xí),我對于高等數(shù)學(xué)的知識體系、邏輯思維、實踐能力和學(xué)習(xí)方法有了更深入的理解和認(rèn)識。同時,我也發(fā)現(xiàn)高等數(shù)學(xué)不僅僅是一門學(xué)科,更是培養(yǎng)學(xué)生思維能力和解決問題能力的過程。通過學(xué)習(xí)高等數(shù)學(xué)下冊,我不僅提高了自己的數(shù)學(xué)水平,也增強了自信和對學(xué)習(xí)的熱愛。我相信,在今后的學(xué)習(xí)和人生中,我會繼續(xù)努力,追求更高的數(shù)學(xué)境界和學(xué)術(shù)成就。
對高等數(shù)學(xué)的體會篇六
高等數(shù)學(xué)是大學(xué)必修課程之一,是數(shù)學(xué)學(xué)科的重要組成部分。在我小學(xué)和初中的數(shù)學(xué)課上,我一直都是數(shù)學(xué)的優(yōu)等生,但是對于高等數(shù)學(xué),我卻感到了困惑和挑戰(zhàn)。在大學(xué)一年級的時候,我開始接觸高等數(shù)學(xué)課程,剛開始覺得不太適應(yīng),因此在此期間感覺相當(dāng)壓抑。隨著時間的推移,我開始更深入地研究這門學(xué)科,并嘗試各種不同的學(xué)習(xí)方法,以便提高自己的成績。最終,在經(jīng)過無數(shù)次的努力后,我克服了困難,考出了令人滿意的高等數(shù)學(xué)成績。
第二段:回顧高等數(shù)學(xué)的考試經(jīng)驗
在學(xué)習(xí)高等數(shù)學(xué)的過程中,我不僅學(xué)到了許多知識和技能,也經(jīng)歷了很多考試。這些考試無疑是對我學(xué)習(xí)成果的檢驗,也讓我有機會去發(fā)現(xiàn)自己的弱點,找到不足之處,并嘗試改進和克服它們。另外,這些考試還讓我體會到了競爭的壓力和緊張氣氛,這些因素都激發(fā)了我更深入地學(xué)習(xí)高等數(shù)學(xué)的熱情。
第三段:總結(jié)高等數(shù)學(xué)的重要性
高等數(shù)學(xué)的學(xué)習(xí)不僅僅關(guān)乎學(xué)習(xí)數(shù)學(xué)知識,更重要的是培養(yǎng)了我學(xué)習(xí)的能力。在學(xué)習(xí)過程中,我不斷努力,練習(xí)思考和分析的能力,提高了自己的邏輯推理和解決問題的能力。這些都是遠遠超出課程范圍的技能,對我的職業(yè)生涯和個人發(fā)展有著深遠的影響。此外,學(xué)習(xí)高等數(shù)學(xué)還讓我感受到了知識的博大精深和對未知事物探索的熱情,這些元素也能夠?qū)ξ椅磥淼陌l(fā)展起到重要的支持作用。
第四段:點評吳昊的體會和經(jīng)驗
吳昊是我身邊一個優(yōu)秀的同學(xué),在高等數(shù)學(xué)的學(xué)習(xí)中他取得了出色的成績。他的學(xué)習(xí)經(jīng)驗和體會也對我啟發(fā)和影響很大。從吳昊的學(xué)習(xí)經(jīng)驗中,我們可以看到他在學(xué)習(xí)過程中非常注重理論知識的掌握和實踐能力的培養(yǎng)。而且,吳昊非常善于把理論知識和實踐技能有機結(jié)合起來,不斷地總結(jié)和反思,從而實現(xiàn)了對高等數(shù)學(xué)的深入理解。這些學(xué)習(xí)方法和態(tài)度對我指引良多,讓我對高等數(shù)學(xué)的學(xué)習(xí)也有了更多的信心和動力。
第五段:思考未來發(fā)展方向
在未來的學(xué)習(xí)過程中,我還需要不斷地探索和尋求新的機遇和挑戰(zhàn),以提高自己的學(xué)習(xí)能力和職業(yè)素養(yǎng)。高等數(shù)學(xué)作為一門必修課程,是培養(yǎng)我學(xué)習(xí)能力和解決問題能力的重要途徑。在今后的學(xué)習(xí)和生活中,我將會更加努力和專注于高等數(shù)學(xué)的學(xué)習(xí),以完成自己的職業(yè)規(guī)劃和個人發(fā)展目標(biāo)。
對高等數(shù)學(xué)的體會篇七
高等數(shù)學(xué)作為理工科大學(xué)生的一門必修的基礎(chǔ)課,具有高度的抽象性、嚴(yán)密的邏輯性和廣泛的應(yīng)用性的特點,可以培養(yǎng)學(xué)生的抽象概括能力、邏輯思維能力、解決分析問題的能力,對科技進步也起著基礎(chǔ)性推動作用。隨著國家高等教育從精英型轉(zhuǎn)入大眾型,學(xué)生素質(zhì)呈下降趨勢,大部分學(xué)生在學(xué)習(xí)高等數(shù)學(xué)時感到困難,從而提高高等數(shù)學(xué)教學(xué)質(zhì)量、改革高等數(shù)學(xué)教育教學(xué)方法已成為一個亟需解決的問題。
一、高等數(shù)學(xué)教學(xué)中學(xué)生存在的誤區(qū) 1.誤區(qū)一很多學(xué)生認(rèn)為學(xué)數(shù)學(xué)沒有用
高中階段學(xué)生已經(jīng)接觸到了高等數(shù)學(xué)中比較簡單的極限、導(dǎo)數(shù)、定積分,但沒有深入學(xué)習(xí)其概念、定義,高考也只是考了一點點,學(xué)生認(rèn)為自己掌握了高等數(shù)學(xué)的知識,再學(xué)了也沒有什么用,在將來實際工作中也用不到數(shù)學(xué)。
2.誤區(qū)二高等數(shù)學(xué)具有很高的抽象性,很多學(xué)生覺得學(xué)也學(xué)不會
現(xiàn)在學(xué)生不愿意動腦、動筆,碰到題目就在想答案。往往因為大學(xué)的高數(shù)題運算步驟比較多,想是想不出來的,不動筆又不畫圖,學(xué)生坐一會就有點困了,自然就認(rèn)為高等數(shù)學(xué)非常難。
3.誤區(qū)三學(xué)生習(xí)慣于用中學(xué)的思維來解題
很多學(xué)生學(xué)習(xí)數(shù)學(xué)的一些簡單想法就是來解數(shù)學(xué)題,愿意用中學(xué)的方法去解決高等數(shù)學(xué)里的題目,只要能做出答案就行。在這種思想的影響下,不愿意去掌握定義、定理,做題少步驟或只有答案,但是有的題目肯本做不出來。隨著學(xué)習(xí)的深入學(xué)生發(fā)現(xiàn)題目越來越不會做。
二、提高高等數(shù)學(xué)教學(xué)質(zhì)量的方法 1.端正學(xué)生學(xué)習(xí)態(tài)度
許多同學(xué)認(rèn)為,考上大學(xué)就可以放松了,自我要求標(biāo)準(zhǔn)降低了。只有有了明確的學(xué)習(xí)目標(biāo),端正學(xué)習(xí)態(tài)度,才能增加學(xué)習(xí)高等數(shù)學(xué)的動力。教師要以身作則,這要求教師熱愛數(shù)學(xué),對每節(jié)課都要以飽滿的激情、對數(shù)學(xué)美的無限欣賞呈現(xiàn)在學(xué)生面前,教師積極地態(tài)度從而感染學(xué)生學(xué)習(xí)高等數(shù)學(xué)的熱情。部分同學(xué)在應(yīng)試教育的影響下,應(yīng)經(jīng)形成了消極的數(shù)學(xué)態(tài)度,教師還應(yīng)該全方位、多角度扭轉(zhuǎn)學(xué)生學(xué)習(xí)態(tài)度,如課下談心談話、建立互助興趣小組、“一對一”結(jié)對子等方法,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的動力。端正學(xué)生的學(xué)習(xí)態(tài)度首先從數(shù)學(xué)字母的寫法、發(fā)信做起,很多學(xué)生古希臘字母不會寫也不會讀,上課多練習(xí)幾遍,老師在做題過程中要注重解題的每一步驟,告訴學(xué)生每一步驟的重要性,做題中感受數(shù)學(xué)題的美。
2.激發(fā)學(xué)生學(xué)習(xí)興趣
興趣是最好的老師,只有有了學(xué)習(xí)高等數(shù)學(xué)的興趣,學(xué)生才有了學(xué)習(xí)動力。在教學(xué)過程中,可以穿插一些關(guān)于數(shù)學(xué)的歷史,數(shù)學(xué)家的故事,數(shù)學(xué)文化,來激發(fā)學(xué)生的興趣。如定積分的講解時,自然引入牛頓、萊布尼茨兩位數(shù)學(xué)家的故事。教師在課堂講解時,把抽象的問題具體化,通過幾何畫圖提高學(xué)生的理解能力,這樣學(xué)生才更容易接受。
3.提高教師自身素質(zhì)
教師是課堂教育的主導(dǎo)者,是良好課堂氛圍的主要營造者,要想學(xué)生緊跟教師講課的思路,教師必須具有良好的人格魅力和深厚的專業(yè)功底。這就要求教師一方面要提高自身的文化底蘊,多讀一些與另一方面刻苦專研專業(yè)知識、完善知識結(jié)構(gòu)、提高教育教學(xué)能力,只有做到這樣,教師的課堂教育才能吸引學(xué)生,課下學(xué)生才愿意并主動與教師交流、溝通。教師在上課的時候要身體力行,做題要在步驟上下功夫,解釋每一步驟的重要性,既要用最少的步驟把題做完,又要講解每一步驟的重要性。這樣雖然浪費了一點時間,但是學(xué)生還是會做的,同時學(xué)生也得到了怎樣去做題以及真正的理解數(shù)學(xué)題,并從中發(fā)現(xiàn)數(shù)學(xué)美,時間長了能培養(yǎng)學(xué)生良好的數(shù)學(xué)興趣、數(shù)學(xué)能力和創(chuàng)新能力。對所講授的課程要有深入的了解,知識的內(nèi)在聯(lián)系及在學(xué)生專業(yè)上的應(yīng)用要有所了解,可以給學(xué)生提一提,以便引起學(xué)生足夠的重視。
4.創(chuàng)新教師教學(xué)方法
好的教學(xué)方法能激發(fā)學(xué)生思維能力,啟迪學(xué)生的思維悟性。教師在教學(xué)方法上進行創(chuàng)新能有效改善課堂教學(xué)的效果。如教師在講授極限時,可以采用情景教學(xué)方法,把抽象的定義、定理與實際生活相聯(lián)系,營造學(xué)生認(rèn)知懸念,從而激發(fā)學(xué)生自主探索的積極性,從而提高學(xué)生思維能力和發(fā)現(xiàn)、分析問題的能力。在教學(xué)空閑的時候、或者學(xué)生比較累的時候、或者在講到某一個問題時,可以講一些實際的東西。如在剛開始學(xué)極限時,現(xiàn)在學(xué)生都在教學(xué)樓上課,教室里到處可見支撐樓的柱子。柱子不能太細,細了樓就有可能倒掉,也不能非常粗,那樣雖然結(jié)實了,但是浪費材料,建筑商也不會同意。這樣柱子肯定要通過數(shù)學(xué)計算得到一個合理的數(shù)值,既要能承重又要節(jié)約材料,這個確定的數(shù)就可以認(rèn)為是一個極限。
5.建立良好的師生關(guān)系
在教育教學(xué)活動中,良好的師生關(guān)系是保證教育效果和質(zhì)量的前提。新時代的大學(xué)生具有自我意識強,個性張揚等特點,要提高課堂教育效果,必須建立良好的師生關(guān)系。只有師生間相互了解、相互尊重、相互賞識,把教學(xué)過程看做是教師與學(xué)生的交流、交往過程,才能建立輕松、和諧的課堂氛圍,從而才能提高課堂教育效果和教學(xué)質(zhì)量。教師在教學(xué)的過程中,要學(xué)會換位思考,站在學(xué)生的角度估計講授問題的難易程度。對學(xué)生容易出錯或者經(jīng)常犯錯誤的地方,上課要強調(diào)知識的重要性,舉例說明讓學(xué)生理解知識點及了解出錯的原因。
6.重視作業(yè)中存在的問題
作業(yè)是學(xué)生學(xué)習(xí)知識好壞的一面鏡子,雖然現(xiàn)在學(xué)生有抄襲作業(yè)的現(xiàn)象,但是大部分學(xué)生還是自己做作業(yè)。從作業(yè)中可以看出學(xué)生對知識掌握的程度,沒掌握好的話,想辦法用最簡單的題目來說明問題。也許作業(yè)有可能做的非常好,這就要求教師對知識有很好的理解,對學(xué)生容易出錯的地方,上課時可以提問學(xué)生做過的題目或者讓學(xué)生課前上黑板重新做。這樣一學(xué)期下來,學(xué)生對難點重點會掌握的很好,考試成績自然會很好,同時對高等數(shù)學(xué)理解的程度也會很高。學(xué)生取得了好的成績,對高等數(shù)學(xué)了解的多了,自然對高等數(shù)學(xué)學(xué)習(xí)興趣提高了。在以后的學(xué)習(xí)過程中,自然會對各種數(shù)學(xué)課更加努力的去學(xué)習(xí),從而對其本專業(yè)課也起到了很好的促進作用。最終學(xué)生會發(fā)現(xiàn)大學(xué)生活是非??鞓返?,學(xué)到了很多知識,學(xué)校也培養(yǎng)出了合格的大學(xué)生。
對高等數(shù)學(xué)的體會篇八
高等代數(shù)學(xué)習(xí)是大學(xué)數(shù)學(xué)重要的一部分,相較于初等代數(shù),高等代數(shù)更為抽象和理論化,對于學(xué)生來說大有難度。但是隨著時間的推移,我漸漸開始感到了高等代數(shù)的魅力,也逐漸發(fā)現(xiàn)了學(xué)習(xí)高等代數(shù)的重要性。在這篇文章中,我將分享自己在高等代數(shù)學(xué)習(xí)過程中所得到的心得和體會。
第二段:抵抗初衷
學(xué)習(xí)高等代數(shù)的第一階段,我感到了很大的挑戰(zhàn)和困惑。在不斷滑坡中,我內(nèi)心渴望退出,想要擺脫這門讓我疲憊的學(xué)科。四年前,我開始學(xué)習(xí)線性代數(shù),我認(rèn)為自己已經(jīng)成功掌握了這種代數(shù)學(xué)基礎(chǔ),在此基礎(chǔ)上學(xué)習(xí)更高級的代數(shù)只需要一點點努力就可以了。然而,我發(fā)現(xiàn)自己所擁有的數(shù)學(xué)知識并沒有真正利于我掌握高等代數(shù)的本質(zhì)和更深層的觀念。開始的時候,我覺得自己面對了一個難題,無法克服這個阻礙心名字邁出的頑爍。
第三段:不斷嘗試
然而,隨著不斷的努力、不斷的嘗試,我開始慢慢了解到了自己所面對問題的真正本質(zhì)。我閱讀了更多更深的數(shù)學(xué)論文,掌握了基本概念,進而對所學(xué)的東西有了更深刻的理解。我漸漸地意識到,只是單純地閱讀數(shù)學(xué)問題和相關(guān)理論是遠遠不夠的。我也需要進行自己的實踐,去親身探究一些問題。因為只有通過實踐,才能夠找到真正有效的方法和途徑。
第四段:逐漸領(lǐng)悟
在實踐之中,我越來越理解到高等代數(shù)學(xué)的優(yōu)點。高等代數(shù)學(xué)的優(yōu)點在于其極具抽象性以及精致的理論系統(tǒng)。我發(fā)現(xiàn)高等代數(shù)對數(shù)學(xué)、物理、工程學(xué)以及計算機科學(xué)等方面非常重要,而且與其他學(xué)科密切相關(guān)。在我逐漸習(xí)慣、理解和掌握高等代數(shù)的過程中,我越來越喜歡它的項目。。我感到,高等代數(shù)不僅有助我掌握各種概覽和概念,還可以幫助我更精準(zhǔn)地理解其他學(xué)科的內(nèi)容。能夠被如此深刻的理解事物的方法,我認(rèn)為是很難得的。
第五段:結(jié)論
總之,學(xué)習(xí)高等代數(shù)是一個充滿挑戰(zhàn)性的過程。如果你認(rèn)真學(xué)習(xí),努力訓(xùn)練,并找到了有效的學(xué)習(xí)方法,那么這個過程 will將讓你受益良多,并且對我們今后的職業(yè)生涯和個人思考能力都會受益。我感謝高等代數(shù)讓我拓寬了我的視野,并讓我認(rèn)識到,對于我的專業(yè)及其他方面,學(xué)習(xí)和鉆研決不是終點。相反,它開啟了一個探索不斷、充滿挑戰(zhàn)但也充滿可能性的新世界。
對高等數(shù)學(xué)的體會篇九
高等數(shù)學(xué)是理工科專業(yè)必修的一門重要課程,對于提升數(shù)學(xué)思維,培養(yǎng)分析和解決實際問題的能力有著重要的作用。在高等數(shù)學(xué)下冊學(xué)習(xí)的過程中,我深感受益匪淺。下面就是我對高等數(shù)學(xué)下冊的心得體會。
首先,高等數(shù)學(xué)下冊強調(diào)的是更深入的數(shù)學(xué)理論和應(yīng)用。在上冊我們學(xué)習(xí)了微積分的基礎(chǔ)知識,在下冊我們進一步學(xué)習(xí)了微分方程、多元函數(shù)、空間解析幾何等內(nèi)容。這些內(nèi)容對于學(xué)習(xí)者來說都是比較新穎和抽象的,要求我們更深入地理解和掌握數(shù)學(xué)的概念和方法。通過學(xué)習(xí)下冊高等數(shù)學(xué),我逐漸明白了數(shù)學(xué)是一門探索自然規(guī)律和解決實際問題的學(xué)科,數(shù)學(xué)理論與實際應(yīng)用是密不可分的。
其次,高等數(shù)學(xué)下冊的學(xué)習(xí)注重于培養(yǎng)學(xué)生的邏輯思維和問題解決能力。數(shù)學(xué)是一門以邏輯為基礎(chǔ)的學(xué)科,通過學(xué)習(xí)高等數(shù)學(xué)下冊,我更加深刻地理解了邏輯思維和問題解決能力的重要性。在解題過程中,我們需要根據(jù)所學(xué)的數(shù)學(xué)理論與知識,運用邏輯推理,靈活運用解題方法,從而解決各種復(fù)雜的數(shù)學(xué)問題。通過不斷練習(xí)和思考,我逐漸提升了我的邏輯思維和問題解決能力,并且在其他學(xué)科中也能夠得到運用和提升。
第三,高等數(shù)學(xué)下冊的學(xué)習(xí)培養(yǎng)了我的數(shù)學(xué)抽象和建模能力。數(shù)學(xué)作為一門抽象的學(xué)科,需要我們學(xué)會抽象問題、建立數(shù)學(xué)模型,并在模型的基礎(chǔ)上進行分析和解決問題。在學(xué)習(xí)下冊高等數(shù)學(xué)的過程中,我有了更多的機會進行數(shù)學(xué)建模,并且通過實例分析和計算來驗證和應(yīng)用模型。這種訓(xùn)練不僅提高了我的數(shù)學(xué)抽象思維能力,還培養(yǎng)了我應(yīng)對實際問題的能力。數(shù)學(xué)建模能力是未來工作和研究中必不可少的能力,通過學(xué)習(xí)下冊高等數(shù)學(xué),我在這方面的能力得到了提升。
第四,高等數(shù)學(xué)下冊的學(xué)習(xí)強調(diào)了數(shù)學(xué)與實際問題的聯(lián)系。數(shù)學(xué)作為一門工具學(xué)科,它的應(yīng)用范圍廣泛,與物理、化學(xué)、經(jīng)濟和工程等學(xué)科存在著密切的聯(lián)系。在學(xué)習(xí)下冊高等數(shù)學(xué)的過程中,我通過一些實際問題的分析和解決,深刻體會到了數(shù)學(xué)的實際應(yīng)用。例如,在學(xué)習(xí)微分方程時,我們可以通過微分方程來描述一些物理現(xiàn)象、生態(tài)系統(tǒng)的變化規(guī)律等。這樣的學(xué)習(xí)過程增強了我對數(shù)學(xué)與實際問題之間聯(lián)系的認(rèn)識,也讓我更加明確了數(shù)學(xué)的重要性。
最后,高等數(shù)學(xué)下冊的學(xué)習(xí)給我?guī)砹撕芏嗟目鞓贰?shù)學(xué)是一門極具美感的學(xué)科,通過解題和推導(dǎo),我們可以發(fā)現(xiàn)數(shù)學(xué)之美。在學(xué)習(xí)下冊高等數(shù)學(xué)的過程中,我常常感受到當(dāng)成功解答一個困難的問題時的喜悅和成就感,這也激發(fā)了我對數(shù)學(xué)的興趣和熱愛。在解題過程中,我探索、思考和創(chuàng)新,不斷挑戰(zhàn)自己,這種過程本身就是一種樂趣。
總之,通過學(xué)習(xí)高等數(shù)學(xué)下冊,我不僅在數(shù)學(xué)理論和應(yīng)用上有了更深入的了解和認(rèn)識,也發(fā)現(xiàn)了邏輯思維和問題解決能力在學(xué)習(xí)和工作中的重要性,培養(yǎng)了數(shù)學(xué)抽象和建模能力,增強了數(shù)學(xué)與實際問題之間的聯(lián)系,同時也感受到了數(shù)學(xué)學(xué)習(xí)的樂趣和成就感。這些都使我對高等數(shù)學(xué)下冊留下了深刻的印象和珍貴的回憶。我相信,通過對高等數(shù)學(xué)下冊的學(xué)習(xí)和體會,我將在今后的學(xué)習(xí)和工作中更好地運用數(shù)學(xué),更好地解決各種實際問題。
對高等數(shù)學(xué)的體會篇十
學(xué)好高等數(shù)學(xué)是一個長期的過程,要做到邊學(xué)邊鞏固,今天的事今天完成,分階段有目的的復(fù)習(xí),學(xué)習(xí)來不得半點的投機取巧,所以考前突擊,臨時抱佛腳的做法都是不足取的,只有按照自己的計劃,踏踏實實的進行準(zhǔn)備,才能以不變應(yīng)萬變,只要自己的綜合能力提高了,就能取得好的成績。
數(shù)學(xué)是嚴(yán)密的科學(xué)。數(shù)學(xué)是由概念、公理、定理、公式等,按照一定的邏輯規(guī)則組成的嚴(yán)密的知識體系,有很強的系統(tǒng)性。因此,在數(shù)學(xué)的學(xué)習(xí)中,一定要循序漸進,打好基礎(chǔ),完整地、系統(tǒng)地掌握基本概念和基本原理,這樣才能為解題打好堅實的基礎(chǔ)。總之,學(xué)好高等數(shù)學(xué)并不是一件難事,只要你付出必要的努力,數(shù)學(xué)不應(yīng)是枯燥乏味的符號,只要你鉆進去就會感到趣味盎然,數(shù)學(xué)不是一堆繁瑣無用的公式,掌握了它的真諦,就會給你增添知識和力量。
對高等數(shù)學(xué)的體會篇十一
數(shù)學(xué)教研室緊緊圍繞以提高教學(xué)質(zhì)量,抓好內(nèi)涵建設(shè)為中心,以優(yōu)化教師業(yè)務(wù)素質(zhì),不斷提高教師的教學(xué)、教研水平和提高學(xué)生運用數(shù)學(xué)解決實際問題的能力為基本點;始終以應(yīng)用為目的,以為專業(yè)服務(wù)為教學(xué)重點,充分發(fā)揮數(shù)學(xué)課程在高職教育特色中的基礎(chǔ)作用。
二、本學(xué)期開展的工作。
1.組織好數(shù)學(xué)補考以及試卷的批改和成績上報工作;。
2.配合基礎(chǔ)部作好正常的教學(xué)及管理工作;。
3.按學(xué)院和教務(wù)處教學(xué)要求完成正常的教學(xué),如聽課、公開課聽課評課任務(wù),集體備課等活動.
(1)深入開展各專業(yè)對高等數(shù)學(xué)知識點需求的研討會,真正做到數(shù)學(xué)為專業(yè)課服務(wù);。
(3)為充分調(diào)動學(xué)生學(xué)習(xí)《高等數(shù)學(xué)》課程的積極性,組織一次全院數(shù)學(xué)調(diào)研。
5.定期召開教研室會議,堅持高職高專教育理論的'學(xué)習(xí)與研究,吸收先進的教學(xué)理念與教學(xué)經(jīng)驗,改進自己的教學(xué)方法、教學(xué)思想。要求撰寫一篇教學(xué)或教研論文。
6.搞好院級研究課題;。
7.進一步完善《高等數(shù)學(xué)》校本教材、教學(xué)課件等工作;。
8.做好教研室本學(xué)期的總結(jié)、下學(xué)期計劃等工作;。
9.配合基礎(chǔ)部做好一些臨時性工作。
三、工作具體時間安排見下表:
第一學(xué)期數(shù)學(xué)教研室具體工作安排。
周次。
時間。
教學(xué)活動內(nèi)容。
8月28至9月30日。
做好教學(xué)前準(zhǔn)備工作(如教學(xué)計劃、教案的撰寫),要求教師上好每一堂課,確保教育教學(xué)質(zhì)量,并要求沒課的教師隨機聽取有課老師的課。做好學(xué)生的補考工作。
6
10月1日至10月7日。
國慶放假,假期間認(rèn)真?zhèn)湔n,撰寫論文。
7
10月8日至10月14日。
確定教師舉行公開課、組織安排數(shù)學(xué)教研室教師參加聽課、評課活動。檢查教案、教學(xué)計劃的撰寫情況。
8
10月17日至10月21日。
組織數(shù)學(xué)教師召開專題會議:針對學(xué)生數(shù)學(xué)基礎(chǔ)差,如何上好高等數(shù)學(xué)課,如何體現(xiàn)為專業(yè)課服務(wù)。
9
10月24日至10月28日。
高等數(shù)學(xué)院級精品課程以及校本教材的進一步完善,公開課按計劃開展。教師集體備課。
10。
10月31日至11月4日。
要求每位教師撰寫一篇教學(xué)或教研論文。作業(yè)抽查、公開課、觀摩課等活動的監(jiān)督與實施。
11。
11月7日至11月11日。
期中教學(xué)檢查,教案檢查、作業(yè)批改情況抽查,做好數(shù)學(xué)教研室期中工作小結(jié)。
12。
11月14日至11月18日。
組織安排數(shù)學(xué)調(diào)研。
13。
11月21日至。
11月25日。
組織教師集體備課。
14。
11月28日。
至12月2日。
繼續(xù)開展公開課、觀摩課等活動,并召開專題會議:如何提高學(xué)生學(xué)習(xí)高等數(shù)學(xué)的興趣;如何提高教學(xué)教研質(zhì)量。
15。
12月5日至。
教案、作業(yè)隨機抽查,教學(xué)進度、教學(xué)效果的反饋,做好總結(jié)工作.
16。
12月12日至。
12月16日。
根據(jù)高數(shù)為專業(yè)課服務(wù)的原則,進一步做好高等數(shù)學(xué)課程教學(xué)改革,上好數(shù)學(xué)實驗課。
17。
12月19日。
至12月23日。
討論、交流教學(xué)心得,總結(jié)成功與不足。
18。
12月26日至。
12月30日。
開展教學(xué)、教研交流活動;檢查實踐教學(xué)的落實。
19。
公開課、觀摩課等教研活動總結(jié)。院級課題落實情況的檢查與反饋。有關(guān)實驗、實踐教學(xué)落實情況的總結(jié)。安排期末考試試卷的編制、保密、閱卷注意事項等事宜;本學(xué)期教學(xué)工作總結(jié)。
20。
元月9日至元月13日。
做好數(shù)學(xué)考試試卷分析與總結(jié);做好本學(xué)期教研室工作總結(jié)以及下學(xué)期教研室工作計劃。試卷裝訂情況檢查,并做好有關(guān)資料的收集與整理并歸檔。
對高等數(shù)學(xué)的體會篇十二
第一段:引言(120字)
高等數(shù)學(xué)作為大學(xué)數(shù)學(xué)課程中的一門重要學(xué)科,不僅是理工科學(xué)生的必修課,更是培養(yǎng)學(xué)生分析解決問題能力的重要途徑。在學(xué)習(xí)高等數(shù)學(xué)的過程中,我感受到了數(shù)學(xué)的美妙與魅力,同時也深刻體會到了數(shù)學(xué)學(xué)習(xí)的重要性。通過這門課程的學(xué)習(xí),我不僅提高了自己的數(shù)學(xué)水平,更具備了解決實際問題的能力,下面將分為邏輯推理能力的提升、問題解決能力的培養(yǎng)、批判性思維的養(yǎng)成、嚴(yán)密的思維訓(xùn)練以及團隊合作精神的培養(yǎng)五個方面,詳細論述我在高等數(shù)學(xué)學(xué)習(xí)中的心得體會。
第二段:邏輯推理能力的提升(250字)
高等數(shù)學(xué)學(xué)習(xí)需要運用各種公式定理,進行推導(dǎo)證明。在這個過程中,我不斷鍛煉了自己的邏輯推理能力。老師引導(dǎo)我們學(xué)會分析問題,從多個角度去思考,利用數(shù)學(xué)方法解決問題。通過數(shù)學(xué)定理的證明,我更加深入地理解了邏輯推理的重要性以及問題求解的思路。此外,在高等數(shù)學(xué)的學(xué)習(xí)過程中,我還學(xué)會了如何將復(fù)雜問題分解為簡單子問題,逐步推導(dǎo)出一個完整的解決方案。這一過程的鍛煉不僅提高了我的數(shù)學(xué)素養(yǎng),還培養(yǎng)了我的邏輯思維能力,使我能夠更好地應(yīng)對其他學(xué)科的學(xué)習(xí)和實際問題的解決。
第三段:問題解決能力的培養(yǎng)(250字)
高等數(shù)學(xué)學(xué)習(xí)強調(diào)實際問題的建模與求解,培養(yǎng)學(xué)生解決實際問題的能力。在課堂上,我親身體驗了數(shù)學(xué)在解決實際問題中的作用。通過案例分析和問題解決討論,我學(xué)會了將抽象概念和公式與實際問題相結(jié)合,找到問題的關(guān)鍵點,提出有效的解決方案。此外,高等數(shù)學(xué)課程還讓我了解了數(shù)學(xué)與其他學(xué)科的交叉點,從而拓寬了視野,幫助我更好地理解和解決其他學(xué)科的實際問題。
第四段:批判性思維的養(yǎng)成(250字)
高等數(shù)學(xué)學(xué)習(xí)強調(diào)學(xué)生的批判性思維能力的培養(yǎng)。在學(xué)習(xí)過程中,我發(fā)現(xiàn)數(shù)學(xué)不僅有固定答案,還有多種解決路徑和解釋方法。通過解析問題的不同方面,從不同的角度思考,我逐漸養(yǎng)成了批判性思維的習(xí)慣。我開始質(zhì)疑問題是否被正確解決,是否有更好的方法,這種思維方式不僅在高等數(shù)學(xué)學(xué)習(xí)中幫助我更好地理解概念和定理,還在其他學(xué)科和實際生活中使我更加理性和客觀。
第五段:嚴(yán)密的思維訓(xùn)練與團隊合作精神的培養(yǎng)(320字)
高等數(shù)學(xué)中的復(fù)雜定理和抽象概念要求學(xué)生掌握嚴(yán)密的思維能力。在解題過程中,我不得不重復(fù)思考,審查每一個環(huán)節(jié),確保每個推導(dǎo)步驟的準(zhǔn)確性和嚴(yán)密性。這過程雖然艱辛,但成功地提升了我的思維嚴(yán)密性和細心程度。另外,高等數(shù)學(xué)學(xué)習(xí)中的小組討論和團隊合作也給了我很大的啟示。通過與同學(xué)合作,每個人可以帶來不同的思路和見解,我們可以互相學(xué)習(xí)、互相鼓勵,并共同解決問題。這種團隊合作精神不僅在高等數(shù)學(xué)中得到培養(yǎng),還可以應(yīng)用到其他學(xué)科和實際工作中。
結(jié)尾:總結(jié)(90字)
總的來說,高等數(shù)學(xué)的學(xué)習(xí)不僅提高了我的數(shù)學(xué)水平,更重要的是培養(yǎng)了我解決問題的能力、批判性思維以及團隊合作精神。這些能力將在我的未來學(xué)習(xí)和工作中發(fā)揮重要作用。通過高等數(shù)學(xué)的學(xué)習(xí),我明白了數(shù)學(xué)不僅僅是一種學(xué)科,更是一種思維方式和處理問題的工具。
對高等數(shù)學(xué)的體會篇十三
不是誤導(dǎo)大家武漢大學(xué)的教科書實在是很難理解,兩本加起來足是一本字典,是編者賣弄的園地,所以強烈建議不要和此書叫板,我曾試過一年完全是浪費時間,即使有同學(xué)看懂了,但仍難以對付實戰(zhàn)。
我的建議是以戰(zhàn)致戰(zhàn),就是通過做歷年的考試題的方法順利通過考試。此法花費時間極小,但可以獲得很大的收益,從經(jīng)濟的角度講就是效益最大化。
具體實施方法:
首先,高高興興的將書撕碎,優(yōu)點有三:1)不給自己浪費時間的機會。2)建立此戰(zhàn)必勝的信心。3)心情將更加愉悅。
其次:把各年試卷及答案]收集齊,網(wǎng)上不難找到,書店中也可買到。實在不行我給你個網(wǎng)址。強烈建議從1997年下半年到20xx年上半年共十套試卷,這套模擬題就是葵花寶典,沒事就做吧,一遍不行,至少十遍,知道答案不行,必須要知道過程。當(dāng)你做到第三遍時你就會發(fā)現(xiàn)所有試卷的共同之處,每年的試題是等的相似。第五遍第七遍時,你就會因為找不到不會的題而痛苦萬分。
最后,是考前不用動筆用腦看題非??斓目瓷?遍,一個框架會產(chǎn)生在你的大腦中。合格證對于你來說,已經(jīng)成了一張名片,伸手就拿!
20xx年,在今年進行新的考試。相信要在今年自考的廣大群體以進入了金鑼彌補的準(zhǔn)備當(dāng)中,小編也會更多的發(fā)布一些相關(guān)信息希望可以為您提供到幫助。
對高等數(shù)學(xué)的體會篇十四
隨著科技日新月異的發(fā)展和電腦無孔不入的應(yīng)用。高等數(shù)學(xué)課程作為一種數(shù)學(xué)工具的功能正在逐步縮減。但作為一種思維方法的載體的功能(例如訓(xùn)練學(xué)生辯證思維、邏輯推理、發(fā)現(xiàn)同題及分析同題的能力)卻愈顯風(fēng)采。一個多元線性方程組如何去解?我們可以交給電腦去完成,只要會正確使用數(shù)學(xué)軟件。但一個實際問題如何通過數(shù)學(xué)建模轉(zhuǎn)化為一個數(shù)學(xué)同題,除了必須具備許多綜合的知識,還需要具備一定的分析推理能力,這種素質(zhì)自然可以通過生活來積累,但如果能夠通過象高等數(shù)學(xué)這樣的課程作為載體來進行系統(tǒng)訓(xùn)練,將是事半功倍的。
以往對工科學(xué)生來講,高等數(shù)學(xué)的教學(xué)比較偏重于計算方法的訓(xùn)練,例如,如何計算極限,計算導(dǎo)數(shù),計算積分,通過熟練掌握計算方法來加深對概念的理解,這是學(xué)習(xí)高等數(shù)學(xué)的一條捷便之徑。但是從二十一世紀(jì)更加需要創(chuàng)新人才的觀點看,從高等數(shù)學(xué)的概念中直接去提煉一種分析推理能力及實際應(yīng)用能力,將是更加重要的。(當(dāng)然,在改革的力度還未到位時,由于教學(xué)要求及教材等原因。學(xué)習(xí)高等數(shù)學(xué)并不能僅偏重于概念,對基本的計算方法必須熟練地掌握。如今就如何學(xué)好高等數(shù)學(xué)的基本概念。提出一些拙見供同學(xué)參考。
我們觀察一個物體,如果僅僅通過平視去進行,那么對這個物體的認(rèn)識往往是局部的,甚至是扭曲的,只有從正視、俯視、側(cè)視的多角度去觀察與綜合,方能得到物體正確的空間定位。觀察事物尚且如此,要理解一個抽象的概念,如果只有單向的思維方法,肯定只能淺嘗輒止。只有從正反兩個方向去透視概念,才能較深地抓住概念中一些本質(zhì)的東西。這里所說的正方向思維應(yīng)該包含幾層意思:一是概念的定義是如何敘述的,二是概念所尉帶的條件是必要的。還是充分的'?三是概念產(chǎn)生的實際背景是什么?這里所說的反方向思維又應(yīng)該包含兩層意思:一是對一個概念的否定是怎樣表達的?二是如果錯誤的理解了概念中的一些條件會導(dǎo)致什么樣的錯誤結(jié)果。
發(fā)現(xiàn)問題呢?首先要提倡自學(xué),在自己預(yù)習(xí)教材(也鍛煉了一種自學(xué)能力)的過程中很容易發(fā)現(xiàn)不懂的同題,帶著同題再去聽課就會有的放矢。其次是聽課之后做習(xí)題之前要認(rèn)真復(fù)習(xí)消化課上的內(nèi)容,只要積極地開動腦筋,從中是會發(fā)現(xiàn)很多問題的,在這個較深層次上發(fā)現(xiàn)問題又去解決問題(可以通過同學(xué)與老師的幫助),那么分析問題的能力就會有一個質(zhì)的提高。
學(xué)習(xí)數(shù)學(xué),不做習(xí)題是絕對不行的。因為耐概念究竟理解與否檢驗的最后關(guān)口是習(xí)題。一道習(xí)題不會做或者做錯了,肯定是某些概念投有消化好,帶著習(xí)題再來復(fù)習(xí)理解概念,拄往會摩擦出新的思想火花。學(xué)習(xí)高等數(shù)學(xué)的過程中,我們不主張采用中學(xué)的題海戰(zhàn),但對每道習(xí)題不但要弄懂正確的解法,而且盡量要考慮能否有多種解法。這還不夠,進一步的思考是一些似是而非的錯誤解法究竟錯在哪里?必定是對概念理解的偏差才導(dǎo)致的錯誤結(jié)果。經(jīng)過又一次正反兩個層面的開掘。思考深入了,學(xué)習(xí)的興趣也會逐步培育起來。
對高等數(shù)學(xué)的體會篇十五
一個高中生升入大學(xué)學(xué)習(xí)后,不僅要在環(huán)境上、心理上適應(yīng)新的學(xué)習(xí)生活,同時學(xué)習(xí)方法的改變也是一個不容忽視的方面。
從中學(xué)升入大學(xué)學(xué)習(xí)后,在學(xué)習(xí)方法上將會遇到一個比較大的轉(zhuǎn)折。首先是對大學(xué)的教學(xué)方式和方法會感到很不適應(yīng)。這在高等數(shù)學(xué)課程的教學(xué)中反應(yīng)特別明顯,因為它是一門對大一新生首當(dāng)其沖的理論性較強的基礎(chǔ)理論課程。而學(xué)生正是習(xí)慣于模仿性和單一性的學(xué)習(xí)方法。這是從小學(xué)到中學(xué)的教育中長期養(yǎng)成的,一時還難以改變。
中學(xué)的教學(xué)方式和方法與大學(xué)有質(zhì)的差別,中學(xué)的學(xué)習(xí)學(xué)生是在教師的直接指導(dǎo)下進行模仿和單一性的學(xué)習(xí),大學(xué)則是在教師的指導(dǎo)下進行創(chuàng)造性的學(xué)習(xí)。而大學(xué)高等數(shù)學(xué)課程的學(xué)習(xí),教材僅是作為一種主要的參考書,要求學(xué)生以課堂上老師所講的重點和難點為線索,課后去鉆研教材和閱讀大量的同類參考書,然后去完成課后習(xí)題。就這樣反復(fù)地進行創(chuàng)造性學(xué)習(xí)。這是一種艱苦的腦力勞動,需要學(xué)生能反復(fù)地、自覺地進行學(xué)習(xí)。還要在松散的環(huán)境中能約束自己。
大學(xué)生活是人生的一大轉(zhuǎn)折點。大學(xué)時期注重于培養(yǎng)同學(xué)們的獨立生活、獨立思考、獨立分析問題和解決問題的能力,而不像中學(xué)那樣有一個依賴的環(huán)境。高等數(shù)學(xué)與高中數(shù)學(xué)相比有很大的不同,內(nèi)容上主要是引進了一些全新的數(shù)學(xué)思想,特別是無限分割逐步逼近,極限等;從形式上講,學(xué)習(xí)方式也很不一樣,特別是一般都是大班授課,進度快,老師很難個別輔導(dǎo),故對自學(xué)能力的要求很高。中學(xué)時期主要是老師領(lǐng)著學(xué),學(xué)生只需要跟著老師的指揮棒走就可以了,而在大學(xué)時主要靠自學(xué),教師只起一個引導(dǎo)的作用。新同學(xué)應(yīng)盡快適應(yīng)大學(xué)生活,形成一個良好的開端,這對四年的大學(xué)生涯是有益的。
中學(xué)數(shù)學(xué)課程的中心是從具體數(shù)學(xué)到概念化數(shù)學(xué)的轉(zhuǎn)變。中學(xué)數(shù)學(xué)課程的宗旨是為大學(xué)微積分作準(zhǔn)備。學(xué)習(xí)數(shù)學(xué)總要經(jīng)歷由具體到抽象、由特殊到一般的漸進過程。由數(shù)引導(dǎo)到符號,即變量的名稱;由符號間的關(guān)系引導(dǎo)到函數(shù),即符號所代表的對象之間的關(guān)系。高等數(shù)學(xué)首先要做的是幫助學(xué)生發(fā)展函數(shù)概念——變量間關(guān)系的表述方式。這就把同學(xué)們的理解力從常量推進到變量、從描述推進到證明、從具體情形推進到一般方程,開始領(lǐng)會到數(shù)學(xué)符號的威力。但《高等數(shù)學(xué)》的主要內(nèi)容是微積分,它繼承了中學(xué)的訓(xùn)練,它們之間有千絲萬縷的聯(lián)系。
為了適應(yīng)21世紀(jì)高等數(shù)學(xué)課程的教學(xué)改革,高等數(shù)學(xué)課程的教學(xué)也發(fā)生了很大的變化,在傳統(tǒng)的教學(xué)手段的基礎(chǔ)上,采用了更加具體化、形象化的現(xiàn)代教育技術(shù),這也是一般中學(xué)所沒有的,因此,同學(xué)們在進入大學(xué)以后,不僅要注意高等數(shù)學(xué)課程的內(nèi)容與中學(xué)數(shù)學(xué)的區(qū)別與聯(lián)系,還要盡快適應(yīng)高等數(shù)學(xué)課程的新的教學(xué)特點。認(rèn)真上好第一節(jié)高等數(shù)學(xué)課,嚴(yán)格按照任課老師的要求去做。若能堅持做到,課前預(yù)習(xí),課上聽講,課后復(fù)習(xí),認(rèn)真完成作業(yè),課后對所學(xué)的知識進行歸納總結(jié),加深對所學(xué)內(nèi)容的理解,從而也就掌握了所學(xué)的知識,就不難學(xué)好高等數(shù)學(xué)這門課。有些同學(xué)就是沒有把握好自己,一看高等數(shù)學(xué)一開始的內(nèi)容和中學(xué)所學(xué)內(nèi)容極其相似,就掉以輕心,認(rèn)為自己看看就會了,要么不聽課,要么不完成作業(yè),結(jié)果導(dǎo)致后面的章節(jié)聽不懂,跟不上,甚至有的同學(xué)就一直跟不上,學(xué)期末成績不理想,甚至不及格。
第一,要勤學(xué)、善思、多練。所謂學(xué),包括學(xué)和問兩方面,即向教師,向同學(xué),向自己學(xué)和問。惟有在“學(xué)中問”和“問中學(xué)”,才能消化數(shù)學(xué)的概念、理論、方法;所謂思,就是將所學(xué)內(nèi)容,經(jīng)過思考加工去粗取精,抓本質(zhì)和精華。華羅庚“抓住要點”使“書本變薄”的這種勤于思考、善于思考、從厚到薄的學(xué)習(xí)數(shù)學(xué)的方法,值得我們借鑒;所謂習(xí),就《高等數(shù)學(xué)》而言,就是做練習(xí),這是數(shù)學(xué)自身的特點。練習(xí)一般分為兩類,一是基礎(chǔ)訓(xùn)練練習(xí),經(jīng)常附在每章每節(jié)之后,這類問題相對來說比較簡單,無大難度,但很重要,是打基礎(chǔ)部分。二是提高訓(xùn)練練習(xí),知識面廣些,不局限于本章本節(jié),在解決的方法上要用到多種數(shù)學(xué)工具。數(shù)學(xué)的練習(xí)是消化鞏固知識極重要的一個環(huán)節(jié),舍此達不到目的。
第二,狠抓基礎(chǔ),循序漸進。任何學(xué)科,基礎(chǔ)內(nèi)容常常是最重要的部分,它關(guān)系到學(xué)習(xí)的成敗與否?!陡叩葦?shù)學(xué)》本身就是數(shù)學(xué)和其他學(xué)科的基礎(chǔ),而《高等數(shù)學(xué)》又有一些重要的基礎(chǔ)內(nèi)容,它關(guān)系到整個知識結(jié)構(gòu)的全局。以微積分部分為例,極限貫穿著整個微積分,函數(shù)的連續(xù)性及性質(zhì)貫穿著后面一系列定理結(jié)論,初等函數(shù)求導(dǎo)法及積分法關(guān)系到今后各個學(xué)科。因此,一開始就要下狠功夫,牢牢掌握這些基礎(chǔ)內(nèi)容。在學(xué)習(xí)《高等數(shù)學(xué)》時要一步一個腳印,扎扎實實地學(xué)和練。第三,歸類小結(jié),從厚到薄。記憶總的原則是抓綱,在用中記。歸類小結(jié)是一個重要方法。《高等數(shù)學(xué)》歸類方法可按內(nèi)容和方法兩部分小結(jié),以代表性問題為例輔以說明。在歸類小節(jié)時,要特別注意有基礎(chǔ)內(nèi)容派生出來的一些結(jié)論,即所謂一些中間結(jié)果,這些結(jié)果常常在一些典型例題和習(xí)題上出現(xiàn),如果你能多掌握一些中間結(jié)果,則解決一般問題和綜合訓(xùn)練題就會感到輕松。
第四,精讀一本參考書。實踐證明,在教師指導(dǎo)下,抓準(zhǔn)一本參考書,精讀到底,如果你能熟讀了一本有代表性的參考書,再看其它參考書就會迎刃而解了。
第五,注意學(xué)習(xí)效率。數(shù)學(xué)的方法和理論的掌握,常常需要做到熟能生巧、觸類旁通。人不可能通過一次學(xué)習(xí)就掌握所學(xué)的知識,需要有幾個反復(fù)。所謂“學(xué)而時習(xí)之”、“溫故而知新”都是指學(xué)習(xí)要經(jīng)過反復(fù)多次。《高等數(shù)學(xué)》的記憶,必須建立在理解和熟練做題的基礎(chǔ)上,死記硬背無濟于事。
1.書:課本+習(xí)題集(必備),因為學(xué)好數(shù)學(xué)絕對離不開多做題,建議習(xí)題集最好有本跟考研有關(guān)的,這樣也有利于你做好將來的考研準(zhǔn)備。
2.筆記:盡量有,我說的筆記不是指原封不動的抄板書,那樣沒意思,而且不必非單獨用個小本,可記在書上。關(guān)鍵是在筆記上一定要有自己對每一章知識的總結(jié),類似于一個提綱,(有時老師或參考書上有,可以參考),最好還有各種題型+方法+易錯點。
3.上課:建議最好預(yù)習(xí)后聽,聽不懂不要緊,很多大學(xué)的課程都是靠課下結(jié)合老師的筆記自己重新看。但是記住:高數(shù)千萬別搞考前突擊,絕對行不通,所以平時你就要跟上,步步盡量別斷層。
4.學(xué)好高數(shù)=基本概念透+基本定理牢+基本網(wǎng)絡(luò)有+基本常識記+基本題型熟。數(shù)學(xué)就是一個概念+定理體系(還有推理),對概念的理解至關(guān)重要,比如說極限、導(dǎo)數(shù)等,你既要有形象的對它們的理解,也要熟記它們的數(shù)學(xué)描述,不用硬背,可以自己對著書舉例子,畫個圖看看(形象理解其實很重要),然后多做題,做題中體會。建議你用一只彩筆專門把所有的概念標(biāo)出來,這樣看書時一目了然(定理用方框框起來)。基本網(wǎng)絡(luò)就是上面說的筆記上的總結(jié)的知識提綱,也要重視?;境WR就是高中時老師常說的“準(zhǔn)定理”,就是書上沒有,在習(xí)題中我們總結(jié)的可以當(dāng)定理或推論用的東西,還有一些自己小小的經(jīng)驗。這些東西不正式但很有用的,比如各種極限的求法。
這些都做到了,高等數(shù)學(xué)應(yīng)該學(xué)得不會差了,至少應(yīng)付考試沒問題。如果你想提高些,可以做些考研的數(shù)學(xué)題,體會一下,其實也不過如此,并不象你想象的那么難。還可以看些關(guān)于高數(shù)應(yīng)用的書,其實數(shù)學(xué)本來就是從應(yīng)用中來的,你會知道高等數(shù)學(xué)真的很有用。
對高等數(shù)學(xué)的體會篇十六
數(shù)學(xué)最需要強調(diào)的是基礎(chǔ)而不是技巧。很多同學(xué)不重視基礎(chǔ)的學(xué)習(xí),反而只是忙著做題,做難題,就想通過題海戰(zhàn)術(shù)取勝,這是不行的,選擇輔導(dǎo)班一定不要選擇一味追求技巧的,可以上有命題組老師的輔導(dǎo)班,從而能夠準(zhǔn)確把握命題思路,不至于走偏了方向。
善于歸納,學(xué)會總結(jié),使知識條理化系統(tǒng)化。
善于總結(jié)也是我要十分強調(diào)的一點。因為很多同學(xué)做題的過程就到對過答案或是糾正過錯誤就簡單的結(jié)束了,一套題的價值也就到此為止了。大家在糾正完錯誤之后,再把這套試題從頭看一遍,總結(jié)一下自己都在哪些方面出錯了,原因是什么,這套題中有沒有出現(xiàn)我不知道的新的方法、思路,新推導(dǎo)出的定理、公式等,并把這些有用的知識全都寫到你的筆記本上,以便隨時查看和重點記憶。對于大題的解題方法,要仔細想一想,都涉及到哪些科目和章節(jié)了,這些知識點之間有哪些聯(lián)系等,從而使自己所掌握的知識系統(tǒng)化,以達到融會貫通。只有這樣,才能使你做過的題目實現(xiàn)其的價值,也才算是你真正做懂了一套題。如果你能夠這樣做了,那么做過的題在以后的復(fù)習(xí)中如果沒有時間了,就不用再拿出來重新看了,因為你已經(jīng)把要掌握的精華總結(jié)好了,只需看你的筆記本就行了。解數(shù)學(xué)題一定要從思路,原理的角度入手。
要勤于思考,多動腦子。
很多同學(xué)學(xué)數(shù)學(xué)就喜歡看例題,看別人做好的題目,分析別人總結(jié)好的解題方法、步驟。只這樣是遠遠不夠的。只是一味的被動的接受別人的東西,就永遠也變不成自己的東西。第一遍復(fù)習(xí)可以只看題,但以后就必須自己試著做了,先不看答案,完全通過自己的能力做著試試,不管能做到什么程度,起碼你自己先思考了,只有啟動自己的大腦,才會使知識更深入的得到理解和掌握,才能真正成為自己的知識,也才會具有獨立的解題能力。在做題時不要太輕易的選擇放棄,想一會兒沒有思路就去看答案,一定要仔細開動腦筋想過之后,實在不行再求助于外力。
對高等數(shù)學(xué)的體會篇十七
俗話說,熟能生巧。練習(xí)做多了,看到類似的問題就能輕松應(yīng)付,對癥下藥。在做練習(xí)時,要清楚每一步的思路,上一步為什么會得到下一步,都要了如指掌。對不懂的問題一定要問。說到問,陶行知先生說過:“發(fā)明千千萬,起點在一問?!睂W(xué)數(shù)學(xué)也是一樣,一定要多動手,動口。在動口之前要先學(xué)會思考,因為思考了才會有問題可問。不要以為思考是那些做學(xué)問的學(xué)者們的專利,只要是有思想的人,任何人都可以步入思考的行列。只有在不斷思考探求中才能充實自己的大腦。當(dāng)然也要避免盲目做習(xí)題,改變中學(xué)時期“只知道做題”的習(xí)慣。要獨立思考,不要做太多的難題、偏題。另外要注意數(shù)學(xué)語言表述的正確性,論證的嚴(yán)密性,養(yǎng)成一種科學(xué)嚴(yán)謹(jǐn)?shù)乃季S習(xí)慣。
對高等數(shù)學(xué)的體會篇十八
現(xiàn)在我不妨引領(lǐng)大家把我們所學(xué)的容易遺漏的數(shù)學(xué)知識再仔細地閱讀一下:
集合部分:
(1)集合的概念:把具有某種特性的事物組成的整體叫集合,同學(xué)們往往忽略整體二字。如:
(1)方程x22x30的解集,x22x10的解集,x22x10的解集,x22x10的解集。
(2)空集:不含任何元素,表示為。
(3)集合與元素的關(guān)系:兩種符號,不能正確的填寫,主要原因是不能理解元素和集合的書寫,不明白那些是元素那些事集合。
(4)集合與集合的關(guān)系。
(5),這兩種關(guān)系的具體含義。
不等式部分:
(1)不等式的基本性質(zhì),容易出錯的就是如ab,則ac2bc2()。
對一個數(shù)的平方理解不透徹,
(3)邏輯用語,(充分,必要,充要,非充分非必要)。
函數(shù)部分:
(1)函數(shù)的概念。
(2)函數(shù)的三要素。
(3)如何研究函數(shù),主要是從以下內(nèi)容,一定義域,二值域,三。
函數(shù)的三性(單調(diào)性、奇偶性、周期性)。
(4)冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)。
(5)三角函數(shù):特別是對三角函數(shù)的定義,利用好三角函數(shù)的定。
義,可自然地得出(三角函數(shù)正負(fù)符號的判定、同角三角函數(shù)的關(guān)系)。
數(shù)列部分:
(1)兩特殊數(shù)列等差和等比。
(2)規(guī)律。
向量部分:
(1)向量相等,共線,向量垂直。
(2)向量的運算。
(3)向量的坐標(biāo)。
(4)向量的內(nèi)內(nèi)積。
直線和圓的方程部分:
(1)直線的相關(guān)部件(斜率和傾斜角),圓的相關(guān)部件(圓心和半徑)。
(2)直線方程的求法,圓的方程求法。
立體幾何部分:
(1)點、線、面。
(2)線線的關(guān)系。
(3)線面的關(guān)系。
(4)面面的關(guān)系。
以上我把職高的所有易錯易忘難理解的知識點羅列出來,在平時我們閱讀的時候要注意掌握解決問題的依據(jù)和解決問題的方法。
閱讀的同時,我們要理解書中的`句子,那么對數(shù)學(xué)而言,我們該理解什么呢?
(1)理解定義概念。
(2)理解公式定理。
(1)練習(xí)要有目的練習(xí)要有針對性。
(2)練習(xí)不要盲目,有同學(xué)喜歡做題,覺得題做得越多越好,其實不然,題要做,要少而精,會的熟練地題我們只動腦不動手,理一理解題思路就可以了,不會的、或經(jīng)常出錯的那就得好好練練。
(1)總結(jié)各章節(jié)的知識點,各章節(jié)的典型例題。
(2)總結(jié)解題思路。
(3)總結(jié)解題的方法。
學(xué)無定法,適合自己的能夠幫助自己學(xué)習(xí)成績提高的方法都是好的方法,寫這篇文章只是拋磚引玉,希望我的建議能夠幫助同學(xué)找到適合自己的學(xué)習(xí)方法。能夠通過好的學(xué)習(xí)方法快速的提高數(shù)學(xué)學(xué)習(xí)成績。
對高等數(shù)學(xué)的體會篇十九
第一段:引言(150字)
在大學(xué)學(xué)習(xí)期間,高等數(shù)學(xué)是我們無法回避的一門課程。對于許多學(xué)生來說,高等數(shù)學(xué)可能是他們第一次接觸到抽象的數(shù)學(xué)概念和復(fù)雜的數(shù)學(xué)運算。然而,通過數(shù)學(xué)家和教育家的不斷努力,高等數(shù)學(xué)正在變得越來越有趣和易于理解。在我個人的學(xué)習(xí)過程中,我逐漸領(lǐng)悟到高等數(shù)學(xué)的重要性和應(yīng)用場景,并從中獲得了許多寶貴的經(jīng)驗和體會。
第二段:興趣驅(qū)動學(xué)習(xí)(250字)
我發(fā)現(xiàn),對于高等數(shù)學(xué)的學(xué)習(xí)來說,培養(yǎng)興趣是至關(guān)重要的。在開始學(xué)習(xí)高等數(shù)學(xué)之前,我對這門課程沒有太多的期待。然而,通過與教師的互動和進一步的研究,我開始意識到高等數(shù)學(xué)是一門實際應(yīng)用廣泛且充滿挑戰(zhàn)的學(xué)科。我發(fā)現(xiàn)高等數(shù)學(xué)在物理、經(jīng)濟學(xué)甚至金融學(xué)中都起著重要的作用,并且具有許多實用性的應(yīng)用。為了更好地理解和應(yīng)用高等數(shù)學(xué)的知識,我主動參加數(shù)學(xué)建模和實驗課程,并且積極加入數(shù)學(xué)學(xué)術(shù)團隊。通過這些課程和團隊活動,我發(fā)現(xiàn)高等數(shù)學(xué)能夠幫助我們解決實際問題,并且在現(xiàn)實生活中起到重要的作用。
第三段:實踐驅(qū)動理論(250字)
在高等數(shù)學(xué)的學(xué)習(xí)過程中,我體會到實踐是鞏固理論知識的重要手段。通過解決一系列的習(xí)題和實際問題,我逐漸運用所學(xué)的數(shù)學(xué)方法來解決復(fù)雜的問題。并在此過程中體會到從紙上計算到實際應(yīng)用的轉(zhuǎn)換。在學(xué)習(xí)微積分時,我除了翻閱課本上的例題和習(xí)題外,還多次利用數(shù)學(xué)軟件進行計算和模擬,并嘗試將所學(xué)的理論用于解決實際問題。通過這樣的實踐過程,我不僅加深了對高等數(shù)學(xué)理論的理解,還培養(yǎng)了解決實際問題的能力。
第四段:提升邏輯思維(250字)
高等數(shù)學(xué)的學(xué)習(xí)讓我逐漸鍛煉了邏輯思維能力。通過學(xué)習(xí)證明方法、推理規(guī)則以及數(shù)學(xué)定理等知識,我逐漸培養(yǎng)了嚴(yán)密的邏輯思維和分析問題的能力。高等數(shù)學(xué)課程中的證明過程迫使我們思考每一個步驟的合理性和正確性,并提出自己的證明思路。這種思考方式使我從中受益匪淺,不僅在數(shù)學(xué)領(lǐng)域受益,還在其他學(xué)科中應(yīng)用中受益。
第五段:結(jié)語(300字)
通過高等數(shù)學(xué)的學(xué)習(xí),我逐漸發(fā)現(xiàn)抽象的數(shù)學(xué)世界與現(xiàn)實生活是息息相關(guān)的。高等數(shù)學(xué)的學(xué)習(xí)讓我在思維、邏輯、實踐等多個方面得到了全面的提升。通過在數(shù)學(xué)領(lǐng)域中的探索與研究,我重新定義了對于高等數(shù)學(xué)這門課程的認(rèn)知,并且樹立起全新的目標(biāo)和動力。高等數(shù)學(xué)不僅僅是為了通過考試,更是培養(yǎng)我們終身學(xué)習(xí)的能力和思維方式的橋梁。在未來的學(xué)習(xí)和工作中,我相信高等數(shù)學(xué)所賦予的知識和能力會繼續(xù)對我產(chǎn)生重大影響。因此,我會繼續(xù)努力學(xué)習(xí)高等數(shù)學(xué),并將所學(xué)應(yīng)用于實際生活中,為現(xiàn)實問題的解決提供更多有益的思考和方法。
對高等數(shù)學(xué)的體會篇一
1.極限思想:是一種漸進變化的數(shù)學(xué)思想。利用有限描述無限,由近似到精確的一種過程。極限思想是高等數(shù)學(xué)必不可少的一種重要方法,是高等數(shù)學(xué)與初等數(shù)學(xué)的本質(zhì)區(qū)別。利用極限思想方法解決了許多初等數(shù)學(xué)無法解決的問題,例如,求瞬時速度、曲線弧長、曲邊形面積、曲面體體積等問題。
2.函數(shù)思想:是通過構(gòu)造函數(shù),利用函數(shù)的概念、圖象和性質(zhì)去分析問題、轉(zhuǎn)化問題和解決問題的思想方法。中學(xué)數(shù)學(xué)和大學(xué)數(shù)學(xué)中都有用到函數(shù)思想,而大學(xué)中是將函數(shù)進一步深化,更復(fù)雜一些,例如,函數(shù)的極限、連續(xù)性、極值等。
3.化歸思想:化歸思想的中心是轉(zhuǎn)化。原則是陌生問題熟悉化,復(fù)雜問題簡單化,抽象問題具體化,命題形式的轉(zhuǎn)化,引入輔助元素等。
4.數(shù)形結(jié)合思想:數(shù)學(xué)是以數(shù)和形為主干,劃分為代數(shù)和幾何兩個方向,而數(shù)和形又常常結(jié)合在一起,內(nèi)容上相互聯(lián)系,方法上相互滲透,并在一定條件下相互轉(zhuǎn)化。例如,平面向量的數(shù)量關(guān)系、解析幾何中曲線與方程的關(guān)系等。
5.邏輯思想:邏輯思想依賴于嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)推理。推理是多樣的,其中歸納和類比是兩種應(yīng)用極廣的推理。
a.歸納推理的過程:“發(fā)現(xiàn)問題”-“觀察問題”-“歸納問題”-“推廣問題”-“猜想”-“證明猜想”,例如,在某些證明中所使用的數(shù)學(xué)歸納法等。
b.類比:是根據(jù)兩個或兩類對象有部分屬性相同,推出它們的其它屬性也相同。類比方法有不同的類型:概念間的類比、形式間的類比、有限與無限間的類比等。
對高等數(shù)學(xué)的體會篇二
作為一門數(shù)學(xué)專業(yè)的必修課程,高等數(shù)學(xué)對學(xué)生來說并不易于掌握,需要在學(xué)習(xí)中不斷地消化吸收。而吳昊,則是一位對高等數(shù)學(xué)有深入研究,并且在教學(xué)中取得了較好成績的老師。因此,我們會特別關(guān)注吳昊的高等數(shù)學(xué)心得體會,從中汲取經(jīng)驗,提高學(xué)習(xí)效率。
第二段:心得體會一:高等數(shù)學(xué)需要系統(tǒng)性學(xué)習(xí)
吳昊表示,高等數(shù)學(xué)知識體系龐雜,而且知識之間的聯(lián)系非常緊密。因此,學(xué)生需要先從系統(tǒng)性入手,掌握高等數(shù)學(xué)的整體框架和學(xué)習(xí)路線。在學(xué)習(xí)中要注意先后順序,不能掉以輕心,否則就會遇到迷失方向的情況。
第三段:心得體會二:掌握基礎(chǔ)知識是關(guān)鍵
高等數(shù)學(xué)中的每一個概念,都是建立在基礎(chǔ)之上的。如果基礎(chǔ)學(xué)習(xí)不扎實,那么后期的學(xué)習(xí)也無從談起。因此,吳昊建議學(xué)生在學(xué)習(xí)高等數(shù)學(xué)之前,先重視基礎(chǔ)概念的學(xué)習(xí),鞏固數(shù)學(xué)的基礎(chǔ)知識,才能更好地理解和掌握高等數(shù)學(xué)。
第四段:心得體會三:靈活運用解題思路
高等數(shù)學(xué)中的問題并不單一,其解題方法也需要靈活變通。吳昊提醒學(xué)生,在學(xué)習(xí)高等數(shù)學(xué)時,不能僅僅停留在概念和公式的記憶,而應(yīng)該注重解決具體問題的能力。在解題過程中,應(yīng)該運用多種思路,靈活變換解題方法,從而提高解題的效率和準(zhǔn)確性。
第五段:結(jié)尾及總結(jié)
高等數(shù)學(xué)在數(shù)學(xué)專業(yè)中占據(jù)著重要的地位,不僅有助于理論的研究,還能為工程應(yīng)用提供數(shù)學(xué)依據(jù)。吳昊的高等數(shù)學(xué)心得體會不僅是學(xué)生能夠?qū)W好高等數(shù)學(xué)的經(jīng)驗之談,也能幫助教師對高等數(shù)學(xué)教學(xué)的優(yōu)化。通過吳昊的經(jīng)驗與體會,我們可以更加準(zhǔn)確地把握高等數(shù)學(xué)的學(xué)習(xí)方向,提高學(xué)習(xí)效率,做好學(xué)科的拓展與深化。
對高等數(shù)學(xué)的體會篇三
經(jīng)濟學(xué)是考察社會經(jīng)濟現(xiàn)象、行為及其規(guī)律的學(xué)科,而計量經(jīng)濟學(xué)則是揭示經(jīng)濟學(xué)理論所考察的社會經(jīng)濟現(xiàn)象之間的數(shù)量規(guī)律。計量經(jīng)濟學(xué)的學(xué)習(xí)與應(yīng)用能力,關(guān)鍵取決于能否運用經(jīng)濟學(xué)的思維方式觀察理解經(jīng)濟現(xiàn)象,能否構(gòu)建恰當(dāng)?shù)慕?jīng)濟模型,能否準(zhǔn)確進行參數(shù)估計與模型檢驗,使研究結(jié)論客觀反映經(jīng)濟規(guī)律,進而為政策決策提供有意義的參考。目前,雖然計量經(jīng)濟學(xué)已被列為高等院校經(jīng)管類各專業(yè)的重要課程,但我國計量經(jīng)濟學(xué)教學(xué)與研究與發(fā)達國家相比還有較大差距,進一步培養(yǎng)好計量經(jīng)濟學(xué)人才任重道遠。為更好提升學(xué)生學(xué)習(xí)和應(yīng)用能力,應(yīng)著重從以下方面入手進行計量經(jīng)濟學(xué)人才的培養(yǎng)。
(一)有助于培養(yǎng)學(xué)生觀察與分析經(jīng)濟現(xiàn)象的能力
計量經(jīng)濟學(xué)重在培養(yǎng)學(xué)生基于經(jīng)濟學(xué)理論觀察社會經(jīng)濟現(xiàn)象,勇于提出問題。譬如,在研究通貨膨脹時,學(xué)生應(yīng)回顧成本推動型、需求拉動型等通脹形成機制,思考這些理論能否解釋現(xiàn)實。以始于2009年下半年的通貨膨脹為例,顯然,每個人都經(jīng)歷與感知到了該輪通貨膨脹對自身的影響,企業(yè)家感覺到原材料上漲,居民感覺到菜價上漲,學(xué)生發(fā)現(xiàn)食堂飯菜價格上升。對于計量經(jīng)濟學(xué)的學(xué)生來說,首先要思考此輪通脹的原因與貨幣供給過多是否相關(guān),進而要思考此輪通脹與過去通脹是否存在相同特征。教師要將這些問題引入課堂,適時引導(dǎo)學(xué)生思考與研究社會經(jīng)濟現(xiàn)象,這實質(zhì)就是培養(yǎng)學(xué)生學(xué)習(xí)與研究計量經(jīng)濟學(xué)的能力。
(二)有助于培養(yǎng)學(xué)生研究社會經(jīng)濟現(xiàn)象的能力
計量經(jīng)濟學(xué)教學(xué)是引導(dǎo)學(xué)生應(yīng)用經(jīng)濟學(xué)理論理解經(jīng)濟問題的過程。由于社會經(jīng)濟現(xiàn)象的形成機制非常復(fù)雜,對同一經(jīng)濟現(xiàn)象經(jīng)濟學(xué)家存在不同的看法。經(jīng)濟學(xué)理論和計量經(jīng)濟學(xué)方法發(fā)展日新月異,這種快速的知識更新使得師生需要不斷學(xué)習(xí)與研究。此外,經(jīng)濟現(xiàn)象本身也伴隨經(jīng)濟體制、運行機制與經(jīng)濟結(jié)構(gòu)的變化而發(fā)生復(fù)雜變化,對這些日益復(fù)雜的現(xiàn)實經(jīng)濟現(xiàn)象的深入考察,也考驗著我們運用計量經(jīng)濟模型的能力。因此,深刻理解經(jīng)濟現(xiàn)象及其背后的機制,重在能否正確應(yīng)用計量經(jīng)濟學(xué)。仍以通脹現(xiàn)象為例,學(xué)生可能首先聯(lián)想到的是貨幣需求函數(shù),此時,教師可以引導(dǎo)學(xué)生比較分析消費價格指數(shù)(cpi)與廣義貨幣(m2)的時間序列數(shù)據(jù)。通過觀察,m2增速于2009年起快速下降,但與此同時,通脹卻表現(xiàn)出持續(xù)上漲的態(tài)勢。該現(xiàn)象提醒我們,若以非線性貨幣需求函數(shù)建模,則可以揭示通脹與貨幣需求間的復(fù)雜關(guān)系。為此,適時引導(dǎo)學(xué)生針對我國特定的數(shù)據(jù),探索性研究通脹與貨幣需求間的復(fù)雜關(guān)系,能夠培養(yǎng)其學(xué)習(xí)與解決問題的能力。
(三)有助于培養(yǎng)學(xué)生研究計量經(jīng)濟理論的能力
高等教育的重要落腳點是開發(fā)學(xué)生創(chuàng)新能力。在計量經(jīng)濟學(xué)學(xué)習(xí)中,學(xué)生的創(chuàng)新能力體現(xiàn)于能否發(fā)展計量經(jīng)濟學(xué)理論。比如,通過引導(dǎo)學(xué)生觀察通脹現(xiàn)象,逐步提出以下問題:如何檢驗通貨膨脹與m2是否是平穩(wěn)序列?這兩個變量是否存在協(xié)整關(guān)系?該關(guān)系是否具有非對稱、非線性的特征?怎樣檢驗與估計非對稱、非線性的長期均衡關(guān)系?要回答以上問題,必須學(xué)習(xí)與發(fā)展計量理論,這需要我們拓展既有非平穩(wěn)時間序列分析的理論與方法。因此,在研究中準(zhǔn)確理解與應(yīng)用相關(guān)理論與方法,特別是針對數(shù)據(jù)特征拓展計量理論,是培養(yǎng)與提升學(xué)生學(xué)習(xí)與應(yīng)用能力的重點。
二、計量經(jīng)濟學(xué)教學(xué)實踐改革路徑
現(xiàn)代計量經(jīng)濟學(xué)的主要內(nèi)容有:單位根檢驗與基于非平穩(wěn)變量的建模技術(shù);描述經(jīng)濟現(xiàn)象復(fù)雜動態(tài)性的模型;使用面板數(shù)據(jù)建立的模型。這些理論與方法與之前的經(jīng)典計量經(jīng)濟學(xué)相比存在較大區(qū)別,為使教學(xué)與現(xiàn)代計量經(jīng)濟學(xué)的發(fā)展相適應(yīng),許多教師從教材改革、教學(xué)方法創(chuàng)新、突出實驗教學(xué)等角度思考了計量經(jīng)濟學(xué)的教學(xué)方法改革?;谂囵B(yǎng)學(xué)生能力這一角度,借鑒以往教學(xué)改革的有益建議,結(jié)合我國計量經(jīng)濟學(xué)教學(xué)的現(xiàn)實狀況,在計量經(jīng)濟學(xué)教學(xué)實踐中,嘗試從以下方面踐行教學(xué)活動。
(一)立足引導(dǎo)與啟發(fā)
首先要清晰講授相關(guān)概念、理論和方法,梳理知識之間的內(nèi)在聯(lián)系,適時對學(xué)生提出問題,培養(yǎng)其智能。例如,在講解參數(shù)估計量的線性無偏最小方差性質(zhì)中,應(yīng)分析估計量是被解釋變量的線性樣本組合,從而引導(dǎo)學(xué)生認(rèn)識估計量的本質(zhì),在理解估計量為一個隨機變量的基礎(chǔ)上,提出其是否服從特定的分布,最終引導(dǎo)學(xué)生理解估計量的方差以及對備選估計量的方差分析比較?;诠烙嬃康挠行?,再講解漸進無偏與漸進最優(yōu)估計量。接下來,適時展示線性無偏最小方差估計量的仿真結(jié)果,以此引導(dǎo)學(xué)生理解基本的計量經(jīng)濟理論,把引導(dǎo)學(xué)生學(xué)習(xí)和“教會學(xué)生學(xué)習(xí)”一體化。
(二)貫穿“理論、方法和應(yīng)用”三位一體
在教學(xué)中因勢利導(dǎo),從經(jīng)典計量經(jīng)濟學(xué)適當(dāng)拓展到現(xiàn)代計量經(jīng)濟學(xué),并據(jù)此闡釋計量經(jīng)濟學(xué)的相關(guān)理論,注重學(xué)生的學(xué)習(xí)反應(yīng),清晰介紹相關(guān)前沿理論。培養(yǎng)學(xué)生學(xué)習(xí)與應(yīng)用計量經(jīng)濟學(xué)的能力重在:一要闡釋回歸分析的產(chǎn)生背景及其內(nèi)涵;二是要培養(yǎng)學(xué)生根據(jù)我國數(shù)據(jù)構(gòu)建計量模型的能力;三是要根據(jù)學(xué)生的實際情況對講授內(nèi)容進行延伸。計量經(jīng)濟學(xué)前沿的理論與方法集中在文獻中,應(yīng)根據(jù)學(xué)生的知識基礎(chǔ)與結(jié)構(gòu)從教材延伸至文獻中。比如,在講授異方差時,適時引出arch模型及其應(yīng)用;在講授面板模型時,適時延伸到動態(tài)面板模型與廣義矩估計,并結(jié)合我國各省市城鎮(zhèn)居民收入的面板數(shù)據(jù),介紹動態(tài)面板模型和廣義矩估計的分析思路。這種適時適度地引申新的知識,不但使學(xué)生深入理解基礎(chǔ)概念,還啟發(fā)學(xué)生拓展知識進行應(yīng)用研究。
(三)充分利用蒙特卡洛仿真技術(shù)
針對學(xué)生對計量經(jīng)濟學(xué)理論望而生畏的現(xiàn)狀,我們利用蒙特卡洛仿真技術(shù),通過編程將計量經(jīng)濟學(xué)中晦澀難懂的估計與檢驗理論轉(zhuǎn)化為仿真結(jié)果,使得學(xué)生對抽象數(shù)學(xué)公式的模糊認(rèn)識,轉(zhuǎn)化為對仿真圖形直觀深入的理解。比如,線性無偏有效估計量的統(tǒng)計含義,既是參數(shù)估計中最基礎(chǔ)的知識,又是大多數(shù)學(xué)生難懂的部分。在教學(xué)中采用仿真實驗和仿真圖形,讓學(xué)生對抽象的計量理論產(chǎn)生直觀的認(rèn)識。又如,模型的誤設(shè)定(如隨機誤差項的異方差性)及其導(dǎo)致的相應(yīng)后果,是學(xué)習(xí)傳統(tǒng)線性計量模型基本假設(shè)的重點,由于需要較強的數(shù)理統(tǒng)計學(xué)基礎(chǔ),這部分內(nèi)容不但學(xué)生難理解,也是教師難以詮釋清楚的問題。通過仿真實驗結(jié)果能夠形象展示違背經(jīng)典計量經(jīng)濟假設(shè)下所導(dǎo)致的結(jié)果,促進學(xué)生對設(shè)定正確模型的重要意義產(chǎn)生深刻理解。這種仿真實驗的教學(xué)模式不僅避免數(shù)學(xué)方面繁雜的推導(dǎo)過程,防止學(xué)生對計量經(jīng)濟理論“望而生畏”,還培養(yǎng)了其創(chuàng)新性的學(xué)習(xí)與研究能力。
三、計量經(jīng)濟學(xué)教學(xué)創(chuàng)新策略
不斷創(chuàng)新教學(xué)方法,培養(yǎng)學(xué)生對計量經(jīng)濟學(xué)的學(xué)習(xí)興趣與解決問題的能力,是“學(xué)生主動學(xué)習(xí)”與“干中學(xué)”這種新型教學(xué)理念的出發(fā)點與落腳點。在教學(xué)實踐中,我們采用如下策略。
1.在課堂講授中有意識地提出問題,與學(xué)生互動,共同討論問題,適時延伸問題,將學(xué)生引入到對相關(guān)前沿文獻的學(xué)習(xí)。例如,為何采用標(biāo)準(zhǔn)差衡量估計量的精度?ols與廣義gmm的估計原理區(qū)別在哪?單位根檢驗統(tǒng)計量的概率分布為何區(qū)別于常規(guī)分布?通過不斷提出類似問題,與學(xué)生“互動式”討論并且解答問題,不僅可以啟發(fā)學(xué)生的思維向深度與廣度發(fā)展,還有助于激發(fā)其學(xué)習(xí)積極性。
2.在課堂教學(xué)中協(xié)調(diào)理論講授、案例分析、實驗教學(xué)之間的關(guān)系。課堂教學(xué)的核心是模型設(shè)定、參數(shù)估計與假設(shè)檢驗等,案例分析和實驗教學(xué)的目的在于幫助學(xué)生直觀理解理論和方法,并促進其學(xué)以致用,能夠進行經(jīng)濟學(xué)研究,但絕對不應(yīng)以軟件操作教學(xué)替代基礎(chǔ)理論的教學(xué)。在講解理論的基礎(chǔ)上,適時操作相關(guān)的計量經(jīng)濟學(xué)軟件,解釋軟件輸出結(jié)果,是實現(xiàn)理論教學(xué)和實驗教學(xué)融合的有效路徑。
3.通過案例與數(shù)據(jù)分析,建立恰當(dāng)?shù)挠嬃拷?jīng)濟學(xué)模型,引導(dǎo)學(xué)生靈活運用。不管是經(jīng)濟學(xué)理論,還是計量經(jīng)濟學(xué)的研究,經(jīng)濟現(xiàn)象及其背后的運行規(guī)律是學(xué)生關(guān)注的問題?;谖覈膶嶋H例子講授計量模型,容易激發(fā)學(xué)生對計量經(jīng)濟學(xué)的學(xué)習(xí)興趣,能夠有效促進學(xué)生應(yīng)用所學(xué)知識解決現(xiàn)實經(jīng)濟問題的能力。針對計量經(jīng)濟學(xué)“難教、難學(xué)、難懂”,上述教學(xué)方法體現(xiàn)“學(xué)生主動學(xué)習(xí)”和“干中學(xué)”等先進教學(xué)理論的精神實質(zhì),不僅使學(xué)生帶著濃厚的興趣學(xué)習(xí)計量經(jīng)濟學(xué),也開拓了其知識視野,培養(yǎng)學(xué)習(xí)、研究與應(yīng)用計量經(jīng)濟學(xué)的能力。
[高等數(shù)學(xué)經(jīng)濟學(xué)論文]
將本文的word文檔下載到電腦,方便收藏和打印
推薦度:
點擊下載文檔
搜索文檔
對高等數(shù)學(xué)的體會篇四
原本以為憑借小學(xué)到高中這十余年所總結(jié)出的數(shù)學(xué)學(xué)習(xí)方法,就能輕松應(yīng)對大學(xué)高等數(shù)學(xué)的學(xué)習(xí)。
然而,經(jīng)過一個多學(xué)期的學(xué)習(xí),我真正體會到高等數(shù)學(xué)的學(xué)習(xí)特點與以往所學(xué)習(xí)的數(shù)學(xué)大相徑庭。因此,我必須在學(xué)習(xí)過程中找到高等數(shù)學(xué)的獨特之處,總結(jié)出一套新的有效的方法,才能在高等數(shù)學(xué)的學(xué)習(xí)中做到游刃有余。
就我個人而言,我認(rèn)為高等數(shù)學(xué)有以下幾個顯著特點:
(1)識記的知識相對減少,理解的知識點相對增加;
(2)不僅要求會運用所學(xué)的知識解題,還要明白其來龍去脈;
(3)系實際多,對專業(yè)學(xué)習(xí)幫助大;
(4)教師授課速度快,課下復(fù)習(xí)與預(yù)習(xí)必不可少。
以前上數(shù)學(xué)課,老師在黑板上寫滿各種公式和結(jié)論,我便一邊在書上勾畫,一邊在筆記本上記錄。
然后像背單詞一樣,把一堆公式與結(jié)論死記硬背下來。
哪種類型的題目用哪個公式、哪條結(jié)論,老師都已一一總結(jié)出來,我只需要將其對號入座,便可將問題解答出來。
而現(xiàn)在,我不再有那么多需要識記的結(jié)論。
唯一需要記住的只是數(shù)目不多的一些定義、定理和推論。
老師也不會給出固定的解題套路。因為高等數(shù)學(xué)與中學(xué)數(shù)學(xué)不同,它更要求理解。只要充分理解了各個知識點,遇到題目可以自己分析出正確的解題思路。
所以,學(xué)習(xí)高等數(shù)學(xué),記憶的負(fù)擔(dān)輕了,但對思維的要求卻提高了。
每一次高數(shù)課,都是一次大腦的思維訓(xùn)練,都是一次提升理解力的好機會。
高等數(shù)學(xué)的學(xué)習(xí)目的不是為了應(yīng)付考試,因此,我們的學(xué)習(xí)不能停留在以解出答案為目標(biāo)。
我們必須知道解題過程中每一步的依據(jù)。正如我前面所提到的,中學(xué)時期學(xué)過的許多定理并不特別要求我們理解其結(jié)論的推導(dǎo)過程。
而高等數(shù)學(xué)課本中的每一個定理都有詳細的證明。
最初,我以為只要把定理內(nèi)容記住,能做題就行了。
然而,漸漸地,我發(fā)現(xiàn)如果沒有真正明白每個定理的來龍去脈,就不能真正掌握它,更談不上什么運用自如了。
于是,我開始認(rèn)真地學(xué)習(xí)每一個定理的推導(dǎo)。有時候,某些地方很難理解,我便反復(fù)思考,或請教老師、同學(xué)。盡管這個過程并不輕松,但我卻認(rèn)為非常值得。
因為只有通過自己去探索的知識,才是掌握得最好的。
總而言之,高等數(shù)學(xué)的以上幾個特點,使我的數(shù)學(xué)學(xué)習(xí)歷程充滿了挑戰(zhàn),同時也給了我難得的鍛煉機會,讓我收獲多多。
進入大學(xué)之前,我們都是學(xué)習(xí)基礎(chǔ)的數(shù)學(xué)知識,聯(lián)系實際的東西并不多。在大學(xué)卻不同了。
不同專業(yè)的學(xué)生學(xué)習(xí)的數(shù)學(xué)是不同的。
正是因為如此,高等數(shù)學(xué)的課本上有了更多與實際內(nèi)容相關(guān)的`內(nèi)容,這對專業(yè)學(xué)習(xí)的幫助是不可低估的。
比如“常用簡單經(jīng)濟函數(shù)介紹”中所列舉的需求函數(shù),供給函數(shù),生產(chǎn)函數(shù)等等在西方經(jīng)濟學(xué)的學(xué)習(xí)中都有用到。
而“極值原理在經(jīng)濟管理和經(jīng)濟分析中的應(yīng)用”這一節(jié)與經(jīng)濟學(xué)中的“邊際問題”密切相關(guān)。如果沒有這些知識作為基礎(chǔ),經(jīng)濟學(xué)中的許多問題都無法解決。
當(dāng)我親身學(xué)習(xí)了高等數(shù)學(xué),并試圖把它運用到經(jīng)濟問題的分析中時,才真正體會到了數(shù)學(xué)方法是經(jīng)濟學(xué)中最重要的方法之一,是經(jīng)濟理論取得突破性發(fā)展的重要工具。這也堅定了我努力學(xué)好高等數(shù)學(xué)的決心。希望未來自己可以憑借扎實的數(shù)理基礎(chǔ),在經(jīng)濟領(lǐng)域里大展鴻圖。
高等數(shù)學(xué)作為大學(xué)的一門課程,自然與其它課程有著共同之處,那就是講課速度快。
剛開始,我非常不適應(yīng)。上一題還沒有消化,老師已經(jīng)講完下一題了。帶著幾分焦慮,我向?qū)W長請教學(xué)習(xí)經(jīng)驗,才明白大學(xué)學(xué)習(xí)的重點不僅僅是課堂,課下的預(yù)習(xí)與復(fù)習(xí)是學(xué)好高數(shù)的必要條件。
于是,每節(jié)課前我都認(rèn)真預(yù)習(xí),把不懂的地方作上記號。課堂上有選擇、有計劃地聽講。
課后及時復(fù)習(xí),歸納總結(jié)。逐漸地,我便感到高數(shù)課變得輕松有趣。只要肯努力,高等數(shù)學(xué)并不會太難。
高等數(shù)學(xué)有其獨特之處,但它畢竟是數(shù)學(xué),那么一定量的習(xí)題自然必不可少。
通過練習(xí),才能更深入地理解,運用。
以上便是本人一個多學(xué)期以來,學(xué)習(xí)高等數(shù)學(xué)的一些體會。
希望自己能在以后的學(xué)習(xí)中更上一層樓!
對高等數(shù)學(xué)的體會篇五
高等數(shù)學(xué)是大學(xué)數(shù)學(xué)教學(xué)中的一門重要課程,它深入探討了微積分、常微分方程、多元函數(shù)等數(shù)學(xué)領(lǐng)域的理論與應(yīng)用。作為一名學(xué)習(xí)高等數(shù)學(xué)的學(xué)生,通過學(xué)習(xí)本學(xué)期下冊的高等數(shù)學(xué)課程,我有了一些心得體會。在這篇文章中,我將分享我對于高等數(shù)學(xué)下冊的認(rèn)識和體悟,以及它對于我的學(xué)習(xí)和思維方式的影響。
第一段:高等數(shù)學(xué)下冊的知識體系
高等數(shù)學(xué)下冊是高等數(shù)學(xué)課程的延續(xù),它包含了微分方程、重積分、無窮級數(shù)和場論等內(nèi)容。與上冊相比,下冊的內(nèi)容更加深入和細致。通過學(xué)習(xí)下冊的課程,我對高等數(shù)學(xué)的整體框架有了更加清晰的認(rèn)識,同時也加深了對微積分的理解。微分方程是高等數(shù)學(xué)下冊的重點之一,它在科學(xué)研究和工程應(yīng)用中具有重要意義。通過學(xué)習(xí)微分方程,我對于它在實際問題中的應(yīng)用有了更深刻的認(rèn)識,從而增強了我的問題解決能力。
第二段:高等數(shù)學(xué)下冊的邏輯思維
高等數(shù)學(xué)下冊的學(xué)習(xí)過程強調(diào)了邏輯思維的培養(yǎng)。在解題過程中,我學(xué)會了運用嚴(yán)密的邏輯推理和抽象思維來分析問題,從而解決復(fù)雜的數(shù)學(xué)問題。在學(xué)習(xí)重積分和無窮級數(shù)時,尤其需要運用邏輯思維進行推導(dǎo)和證明。通過這些習(xí)題的解答,我逐漸培養(yǎng)出了邏輯思維的能力,提高了自己的數(shù)學(xué)素養(yǎng)。我相信,邏輯思維的培養(yǎng)不僅對于學(xué)習(xí)數(shù)學(xué)有著重要意義,也對于我們?nèi)粘I詈吐殬I(yè)發(fā)展具有積極影響。
第三段:高等數(shù)學(xué)下冊的實踐能力
學(xué)習(xí)高等數(shù)學(xué)下冊的過程中,我發(fā)現(xiàn)課本中的理論和知識需要通過實踐來加深理解。例如,在學(xué)習(xí)微分方程時,我們需要通過實際問題的建模和求解,來驗證所學(xué)知識的正確性和適用性。通過課堂上的實例和作業(yè)的練習(xí),我提高了自己的實踐能力。而這種實踐能力也是在工程和科技領(lǐng)域中所必須具備的。通過實踐能力的培養(yǎng),我相信自己在未來的學(xué)習(xí)和工作中能夠更好地應(yīng)對各種挑戰(zhàn)。
第四段:高等數(shù)學(xué)下冊的學(xué)習(xí)方法
面對高等數(shù)學(xué)下冊的內(nèi)容,我深刻體會到了合理的學(xué)習(xí)方法的重要性。在解決數(shù)學(xué)問題時,我逐漸掌握了一些學(xué)習(xí)技巧。例如,在學(xué)習(xí)微分方程和重積分時,我會先了解和理解基本概念,然后通過刻意練習(xí)來掌握解題方法,并在課后復(fù)習(xí)中加深對知識的理解。這些學(xué)習(xí)方法的應(yīng)用使我在高等數(shù)學(xué)下冊的學(xué)習(xí)中事半功倍。我認(rèn)為,學(xué)習(xí)方法的培養(yǎng)是學(xué)習(xí)高等數(shù)學(xué)下冊的必要過程,也是提高學(xué)習(xí)效率的關(guān)鍵。
第五段:高等數(shù)學(xué)下冊的啟示和反思
通過學(xué)習(xí)高等數(shù)學(xué)下冊,我認(rèn)識到高等數(shù)學(xué)不僅僅是一門課程,更是培養(yǎng)學(xué)生綜合素質(zhì)的重要途徑。通過學(xué)習(xí)高等數(shù)學(xué),我不僅僅掌握了數(shù)學(xué)知識,更學(xué)會了思考問題、理解問題和解決問題的方法。高等數(shù)學(xué)下冊的學(xué)習(xí),培養(yǎng)了我對于數(shù)學(xué)的興趣和學(xué)術(shù)追求。同時,我也反思了自己在學(xué)習(xí)中存在的不足,例如在理解概念和應(yīng)用推導(dǎo)方面有待提高。在今后的學(xué)業(yè)中,我會更加注重培養(yǎng)自己的邏輯思維和實踐能力,提高學(xué)習(xí)方法的靈活應(yīng)用,以達到更好的學(xué)習(xí)效果。
總結(jié)起來,通過對高等數(shù)學(xué)下冊的學(xué)習(xí),我對于高等數(shù)學(xué)的知識體系、邏輯思維、實踐能力和學(xué)習(xí)方法有了更深入的理解和認(rèn)識。同時,我也發(fā)現(xiàn)高等數(shù)學(xué)不僅僅是一門學(xué)科,更是培養(yǎng)學(xué)生思維能力和解決問題能力的過程。通過學(xué)習(xí)高等數(shù)學(xué)下冊,我不僅提高了自己的數(shù)學(xué)水平,也增強了自信和對學(xué)習(xí)的熱愛。我相信,在今后的學(xué)習(xí)和人生中,我會繼續(xù)努力,追求更高的數(shù)學(xué)境界和學(xué)術(shù)成就。
對高等數(shù)學(xué)的體會篇六
高等數(shù)學(xué)是大學(xué)必修課程之一,是數(shù)學(xué)學(xué)科的重要組成部分。在我小學(xué)和初中的數(shù)學(xué)課上,我一直都是數(shù)學(xué)的優(yōu)等生,但是對于高等數(shù)學(xué),我卻感到了困惑和挑戰(zhàn)。在大學(xué)一年級的時候,我開始接觸高等數(shù)學(xué)課程,剛開始覺得不太適應(yīng),因此在此期間感覺相當(dāng)壓抑。隨著時間的推移,我開始更深入地研究這門學(xué)科,并嘗試各種不同的學(xué)習(xí)方法,以便提高自己的成績。最終,在經(jīng)過無數(shù)次的努力后,我克服了困難,考出了令人滿意的高等數(shù)學(xué)成績。
第二段:回顧高等數(shù)學(xué)的考試經(jīng)驗
在學(xué)習(xí)高等數(shù)學(xué)的過程中,我不僅學(xué)到了許多知識和技能,也經(jīng)歷了很多考試。這些考試無疑是對我學(xué)習(xí)成果的檢驗,也讓我有機會去發(fā)現(xiàn)自己的弱點,找到不足之處,并嘗試改進和克服它們。另外,這些考試還讓我體會到了競爭的壓力和緊張氣氛,這些因素都激發(fā)了我更深入地學(xué)習(xí)高等數(shù)學(xué)的熱情。
第三段:總結(jié)高等數(shù)學(xué)的重要性
高等數(shù)學(xué)的學(xué)習(xí)不僅僅關(guān)乎學(xué)習(xí)數(shù)學(xué)知識,更重要的是培養(yǎng)了我學(xué)習(xí)的能力。在學(xué)習(xí)過程中,我不斷努力,練習(xí)思考和分析的能力,提高了自己的邏輯推理和解決問題的能力。這些都是遠遠超出課程范圍的技能,對我的職業(yè)生涯和個人發(fā)展有著深遠的影響。此外,學(xué)習(xí)高等數(shù)學(xué)還讓我感受到了知識的博大精深和對未知事物探索的熱情,這些元素也能夠?qū)ξ椅磥淼陌l(fā)展起到重要的支持作用。
第四段:點評吳昊的體會和經(jīng)驗
吳昊是我身邊一個優(yōu)秀的同學(xué),在高等數(shù)學(xué)的學(xué)習(xí)中他取得了出色的成績。他的學(xué)習(xí)經(jīng)驗和體會也對我啟發(fā)和影響很大。從吳昊的學(xué)習(xí)經(jīng)驗中,我們可以看到他在學(xué)習(xí)過程中非常注重理論知識的掌握和實踐能力的培養(yǎng)。而且,吳昊非常善于把理論知識和實踐技能有機結(jié)合起來,不斷地總結(jié)和反思,從而實現(xiàn)了對高等數(shù)學(xué)的深入理解。這些學(xué)習(xí)方法和態(tài)度對我指引良多,讓我對高等數(shù)學(xué)的學(xué)習(xí)也有了更多的信心和動力。
第五段:思考未來發(fā)展方向
在未來的學(xué)習(xí)過程中,我還需要不斷地探索和尋求新的機遇和挑戰(zhàn),以提高自己的學(xué)習(xí)能力和職業(yè)素養(yǎng)。高等數(shù)學(xué)作為一門必修課程,是培養(yǎng)我學(xué)習(xí)能力和解決問題能力的重要途徑。在今后的學(xué)習(xí)和生活中,我將會更加努力和專注于高等數(shù)學(xué)的學(xué)習(xí),以完成自己的職業(yè)規(guī)劃和個人發(fā)展目標(biāo)。
對高等數(shù)學(xué)的體會篇七
高等數(shù)學(xué)作為理工科大學(xué)生的一門必修的基礎(chǔ)課,具有高度的抽象性、嚴(yán)密的邏輯性和廣泛的應(yīng)用性的特點,可以培養(yǎng)學(xué)生的抽象概括能力、邏輯思維能力、解決分析問題的能力,對科技進步也起著基礎(chǔ)性推動作用。隨著國家高等教育從精英型轉(zhuǎn)入大眾型,學(xué)生素質(zhì)呈下降趨勢,大部分學(xué)生在學(xué)習(xí)高等數(shù)學(xué)時感到困難,從而提高高等數(shù)學(xué)教學(xué)質(zhì)量、改革高等數(shù)學(xué)教育教學(xué)方法已成為一個亟需解決的問題。
一、高等數(shù)學(xué)教學(xué)中學(xué)生存在的誤區(qū) 1.誤區(qū)一很多學(xué)生認(rèn)為學(xué)數(shù)學(xué)沒有用
高中階段學(xué)生已經(jīng)接觸到了高等數(shù)學(xué)中比較簡單的極限、導(dǎo)數(shù)、定積分,但沒有深入學(xué)習(xí)其概念、定義,高考也只是考了一點點,學(xué)生認(rèn)為自己掌握了高等數(shù)學(xué)的知識,再學(xué)了也沒有什么用,在將來實際工作中也用不到數(shù)學(xué)。
2.誤區(qū)二高等數(shù)學(xué)具有很高的抽象性,很多學(xué)生覺得學(xué)也學(xué)不會
現(xiàn)在學(xué)生不愿意動腦、動筆,碰到題目就在想答案。往往因為大學(xué)的高數(shù)題運算步驟比較多,想是想不出來的,不動筆又不畫圖,學(xué)生坐一會就有點困了,自然就認(rèn)為高等數(shù)學(xué)非常難。
3.誤區(qū)三學(xué)生習(xí)慣于用中學(xué)的思維來解題
很多學(xué)生學(xué)習(xí)數(shù)學(xué)的一些簡單想法就是來解數(shù)學(xué)題,愿意用中學(xué)的方法去解決高等數(shù)學(xué)里的題目,只要能做出答案就行。在這種思想的影響下,不愿意去掌握定義、定理,做題少步驟或只有答案,但是有的題目肯本做不出來。隨著學(xué)習(xí)的深入學(xué)生發(fā)現(xiàn)題目越來越不會做。
二、提高高等數(shù)學(xué)教學(xué)質(zhì)量的方法 1.端正學(xué)生學(xué)習(xí)態(tài)度
許多同學(xué)認(rèn)為,考上大學(xué)就可以放松了,自我要求標(biāo)準(zhǔn)降低了。只有有了明確的學(xué)習(xí)目標(biāo),端正學(xué)習(xí)態(tài)度,才能增加學(xué)習(xí)高等數(shù)學(xué)的動力。教師要以身作則,這要求教師熱愛數(shù)學(xué),對每節(jié)課都要以飽滿的激情、對數(shù)學(xué)美的無限欣賞呈現(xiàn)在學(xué)生面前,教師積極地態(tài)度從而感染學(xué)生學(xué)習(xí)高等數(shù)學(xué)的熱情。部分同學(xué)在應(yīng)試教育的影響下,應(yīng)經(jīng)形成了消極的數(shù)學(xué)態(tài)度,教師還應(yīng)該全方位、多角度扭轉(zhuǎn)學(xué)生學(xué)習(xí)態(tài)度,如課下談心談話、建立互助興趣小組、“一對一”結(jié)對子等方法,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的動力。端正學(xué)生的學(xué)習(xí)態(tài)度首先從數(shù)學(xué)字母的寫法、發(fā)信做起,很多學(xué)生古希臘字母不會寫也不會讀,上課多練習(xí)幾遍,老師在做題過程中要注重解題的每一步驟,告訴學(xué)生每一步驟的重要性,做題中感受數(shù)學(xué)題的美。
2.激發(fā)學(xué)生學(xué)習(xí)興趣
興趣是最好的老師,只有有了學(xué)習(xí)高等數(shù)學(xué)的興趣,學(xué)生才有了學(xué)習(xí)動力。在教學(xué)過程中,可以穿插一些關(guān)于數(shù)學(xué)的歷史,數(shù)學(xué)家的故事,數(shù)學(xué)文化,來激發(fā)學(xué)生的興趣。如定積分的講解時,自然引入牛頓、萊布尼茨兩位數(shù)學(xué)家的故事。教師在課堂講解時,把抽象的問題具體化,通過幾何畫圖提高學(xué)生的理解能力,這樣學(xué)生才更容易接受。
3.提高教師自身素質(zhì)
教師是課堂教育的主導(dǎo)者,是良好課堂氛圍的主要營造者,要想學(xué)生緊跟教師講課的思路,教師必須具有良好的人格魅力和深厚的專業(yè)功底。這就要求教師一方面要提高自身的文化底蘊,多讀一些與另一方面刻苦專研專業(yè)知識、完善知識結(jié)構(gòu)、提高教育教學(xué)能力,只有做到這樣,教師的課堂教育才能吸引學(xué)生,課下學(xué)生才愿意并主動與教師交流、溝通。教師在上課的時候要身體力行,做題要在步驟上下功夫,解釋每一步驟的重要性,既要用最少的步驟把題做完,又要講解每一步驟的重要性。這樣雖然浪費了一點時間,但是學(xué)生還是會做的,同時學(xué)生也得到了怎樣去做題以及真正的理解數(shù)學(xué)題,并從中發(fā)現(xiàn)數(shù)學(xué)美,時間長了能培養(yǎng)學(xué)生良好的數(shù)學(xué)興趣、數(shù)學(xué)能力和創(chuàng)新能力。對所講授的課程要有深入的了解,知識的內(nèi)在聯(lián)系及在學(xué)生專業(yè)上的應(yīng)用要有所了解,可以給學(xué)生提一提,以便引起學(xué)生足夠的重視。
4.創(chuàng)新教師教學(xué)方法
好的教學(xué)方法能激發(fā)學(xué)生思維能力,啟迪學(xué)生的思維悟性。教師在教學(xué)方法上進行創(chuàng)新能有效改善課堂教學(xué)的效果。如教師在講授極限時,可以采用情景教學(xué)方法,把抽象的定義、定理與實際生活相聯(lián)系,營造學(xué)生認(rèn)知懸念,從而激發(fā)學(xué)生自主探索的積極性,從而提高學(xué)生思維能力和發(fā)現(xiàn)、分析問題的能力。在教學(xué)空閑的時候、或者學(xué)生比較累的時候、或者在講到某一個問題時,可以講一些實際的東西。如在剛開始學(xué)極限時,現(xiàn)在學(xué)生都在教學(xué)樓上課,教室里到處可見支撐樓的柱子。柱子不能太細,細了樓就有可能倒掉,也不能非常粗,那樣雖然結(jié)實了,但是浪費材料,建筑商也不會同意。這樣柱子肯定要通過數(shù)學(xué)計算得到一個合理的數(shù)值,既要能承重又要節(jié)約材料,這個確定的數(shù)就可以認(rèn)為是一個極限。
5.建立良好的師生關(guān)系
在教育教學(xué)活動中,良好的師生關(guān)系是保證教育效果和質(zhì)量的前提。新時代的大學(xué)生具有自我意識強,個性張揚等特點,要提高課堂教育效果,必須建立良好的師生關(guān)系。只有師生間相互了解、相互尊重、相互賞識,把教學(xué)過程看做是教師與學(xué)生的交流、交往過程,才能建立輕松、和諧的課堂氛圍,從而才能提高課堂教育效果和教學(xué)質(zhì)量。教師在教學(xué)的過程中,要學(xué)會換位思考,站在學(xué)生的角度估計講授問題的難易程度。對學(xué)生容易出錯或者經(jīng)常犯錯誤的地方,上課要強調(diào)知識的重要性,舉例說明讓學(xué)生理解知識點及了解出錯的原因。
6.重視作業(yè)中存在的問題
作業(yè)是學(xué)生學(xué)習(xí)知識好壞的一面鏡子,雖然現(xiàn)在學(xué)生有抄襲作業(yè)的現(xiàn)象,但是大部分學(xué)生還是自己做作業(yè)。從作業(yè)中可以看出學(xué)生對知識掌握的程度,沒掌握好的話,想辦法用最簡單的題目來說明問題。也許作業(yè)有可能做的非常好,這就要求教師對知識有很好的理解,對學(xué)生容易出錯的地方,上課時可以提問學(xué)生做過的題目或者讓學(xué)生課前上黑板重新做。這樣一學(xué)期下來,學(xué)生對難點重點會掌握的很好,考試成績自然會很好,同時對高等數(shù)學(xué)理解的程度也會很高。學(xué)生取得了好的成績,對高等數(shù)學(xué)了解的多了,自然對高等數(shù)學(xué)學(xué)習(xí)興趣提高了。在以后的學(xué)習(xí)過程中,自然會對各種數(shù)學(xué)課更加努力的去學(xué)習(xí),從而對其本專業(yè)課也起到了很好的促進作用。最終學(xué)生會發(fā)現(xiàn)大學(xué)生活是非??鞓返?,學(xué)到了很多知識,學(xué)校也培養(yǎng)出了合格的大學(xué)生。
對高等數(shù)學(xué)的體會篇八
高等代數(shù)學(xué)習(xí)是大學(xué)數(shù)學(xué)重要的一部分,相較于初等代數(shù),高等代數(shù)更為抽象和理論化,對于學(xué)生來說大有難度。但是隨著時間的推移,我漸漸開始感到了高等代數(shù)的魅力,也逐漸發(fā)現(xiàn)了學(xué)習(xí)高等代數(shù)的重要性。在這篇文章中,我將分享自己在高等代數(shù)學(xué)習(xí)過程中所得到的心得和體會。
第二段:抵抗初衷
學(xué)習(xí)高等代數(shù)的第一階段,我感到了很大的挑戰(zhàn)和困惑。在不斷滑坡中,我內(nèi)心渴望退出,想要擺脫這門讓我疲憊的學(xué)科。四年前,我開始學(xué)習(xí)線性代數(shù),我認(rèn)為自己已經(jīng)成功掌握了這種代數(shù)學(xué)基礎(chǔ),在此基礎(chǔ)上學(xué)習(xí)更高級的代數(shù)只需要一點點努力就可以了。然而,我發(fā)現(xiàn)自己所擁有的數(shù)學(xué)知識并沒有真正利于我掌握高等代數(shù)的本質(zhì)和更深層的觀念。開始的時候,我覺得自己面對了一個難題,無法克服這個阻礙心名字邁出的頑爍。
第三段:不斷嘗試
然而,隨著不斷的努力、不斷的嘗試,我開始慢慢了解到了自己所面對問題的真正本質(zhì)。我閱讀了更多更深的數(shù)學(xué)論文,掌握了基本概念,進而對所學(xué)的東西有了更深刻的理解。我漸漸地意識到,只是單純地閱讀數(shù)學(xué)問題和相關(guān)理論是遠遠不夠的。我也需要進行自己的實踐,去親身探究一些問題。因為只有通過實踐,才能夠找到真正有效的方法和途徑。
第四段:逐漸領(lǐng)悟
在實踐之中,我越來越理解到高等代數(shù)學(xué)的優(yōu)點。高等代數(shù)學(xué)的優(yōu)點在于其極具抽象性以及精致的理論系統(tǒng)。我發(fā)現(xiàn)高等代數(shù)對數(shù)學(xué)、物理、工程學(xué)以及計算機科學(xué)等方面非常重要,而且與其他學(xué)科密切相關(guān)。在我逐漸習(xí)慣、理解和掌握高等代數(shù)的過程中,我越來越喜歡它的項目。。我感到,高等代數(shù)不僅有助我掌握各種概覽和概念,還可以幫助我更精準(zhǔn)地理解其他學(xué)科的內(nèi)容。能夠被如此深刻的理解事物的方法,我認(rèn)為是很難得的。
第五段:結(jié)論
總之,學(xué)習(xí)高等代數(shù)是一個充滿挑戰(zhàn)性的過程。如果你認(rèn)真學(xué)習(xí),努力訓(xùn)練,并找到了有效的學(xué)習(xí)方法,那么這個過程 will將讓你受益良多,并且對我們今后的職業(yè)生涯和個人思考能力都會受益。我感謝高等代數(shù)讓我拓寬了我的視野,并讓我認(rèn)識到,對于我的專業(yè)及其他方面,學(xué)習(xí)和鉆研決不是終點。相反,它開啟了一個探索不斷、充滿挑戰(zhàn)但也充滿可能性的新世界。
對高等數(shù)學(xué)的體會篇九
高等數(shù)學(xué)是理工科專業(yè)必修的一門重要課程,對于提升數(shù)學(xué)思維,培養(yǎng)分析和解決實際問題的能力有著重要的作用。在高等數(shù)學(xué)下冊學(xué)習(xí)的過程中,我深感受益匪淺。下面就是我對高等數(shù)學(xué)下冊的心得體會。
首先,高等數(shù)學(xué)下冊強調(diào)的是更深入的數(shù)學(xué)理論和應(yīng)用。在上冊我們學(xué)習(xí)了微積分的基礎(chǔ)知識,在下冊我們進一步學(xué)習(xí)了微分方程、多元函數(shù)、空間解析幾何等內(nèi)容。這些內(nèi)容對于學(xué)習(xí)者來說都是比較新穎和抽象的,要求我們更深入地理解和掌握數(shù)學(xué)的概念和方法。通過學(xué)習(xí)下冊高等數(shù)學(xué),我逐漸明白了數(shù)學(xué)是一門探索自然規(guī)律和解決實際問題的學(xué)科,數(shù)學(xué)理論與實際應(yīng)用是密不可分的。
其次,高等數(shù)學(xué)下冊的學(xué)習(xí)注重于培養(yǎng)學(xué)生的邏輯思維和問題解決能力。數(shù)學(xué)是一門以邏輯為基礎(chǔ)的學(xué)科,通過學(xué)習(xí)高等數(shù)學(xué)下冊,我更加深刻地理解了邏輯思維和問題解決能力的重要性。在解題過程中,我們需要根據(jù)所學(xué)的數(shù)學(xué)理論與知識,運用邏輯推理,靈活運用解題方法,從而解決各種復(fù)雜的數(shù)學(xué)問題。通過不斷練習(xí)和思考,我逐漸提升了我的邏輯思維和問題解決能力,并且在其他學(xué)科中也能夠得到運用和提升。
第三,高等數(shù)學(xué)下冊的學(xué)習(xí)培養(yǎng)了我的數(shù)學(xué)抽象和建模能力。數(shù)學(xué)作為一門抽象的學(xué)科,需要我們學(xué)會抽象問題、建立數(shù)學(xué)模型,并在模型的基礎(chǔ)上進行分析和解決問題。在學(xué)習(xí)下冊高等數(shù)學(xué)的過程中,我有了更多的機會進行數(shù)學(xué)建模,并且通過實例分析和計算來驗證和應(yīng)用模型。這種訓(xùn)練不僅提高了我的數(shù)學(xué)抽象思維能力,還培養(yǎng)了我應(yīng)對實際問題的能力。數(shù)學(xué)建模能力是未來工作和研究中必不可少的能力,通過學(xué)習(xí)下冊高等數(shù)學(xué),我在這方面的能力得到了提升。
第四,高等數(shù)學(xué)下冊的學(xué)習(xí)強調(diào)了數(shù)學(xué)與實際問題的聯(lián)系。數(shù)學(xué)作為一門工具學(xué)科,它的應(yīng)用范圍廣泛,與物理、化學(xué)、經(jīng)濟和工程等學(xué)科存在著密切的聯(lián)系。在學(xué)習(xí)下冊高等數(shù)學(xué)的過程中,我通過一些實際問題的分析和解決,深刻體會到了數(shù)學(xué)的實際應(yīng)用。例如,在學(xué)習(xí)微分方程時,我們可以通過微分方程來描述一些物理現(xiàn)象、生態(tài)系統(tǒng)的變化規(guī)律等。這樣的學(xué)習(xí)過程增強了我對數(shù)學(xué)與實際問題之間聯(lián)系的認(rèn)識,也讓我更加明確了數(shù)學(xué)的重要性。
最后,高等數(shù)學(xué)下冊的學(xué)習(xí)給我?guī)砹撕芏嗟目鞓贰?shù)學(xué)是一門極具美感的學(xué)科,通過解題和推導(dǎo),我們可以發(fā)現(xiàn)數(shù)學(xué)之美。在學(xué)習(xí)下冊高等數(shù)學(xué)的過程中,我常常感受到當(dāng)成功解答一個困難的問題時的喜悅和成就感,這也激發(fā)了我對數(shù)學(xué)的興趣和熱愛。在解題過程中,我探索、思考和創(chuàng)新,不斷挑戰(zhàn)自己,這種過程本身就是一種樂趣。
總之,通過學(xué)習(xí)高等數(shù)學(xué)下冊,我不僅在數(shù)學(xué)理論和應(yīng)用上有了更深入的了解和認(rèn)識,也發(fā)現(xiàn)了邏輯思維和問題解決能力在學(xué)習(xí)和工作中的重要性,培養(yǎng)了數(shù)學(xué)抽象和建模能力,增強了數(shù)學(xué)與實際問題之間的聯(lián)系,同時也感受到了數(shù)學(xué)學(xué)習(xí)的樂趣和成就感。這些都使我對高等數(shù)學(xué)下冊留下了深刻的印象和珍貴的回憶。我相信,通過對高等數(shù)學(xué)下冊的學(xué)習(xí)和體會,我將在今后的學(xué)習(xí)和工作中更好地運用數(shù)學(xué),更好地解決各種實際問題。
對高等數(shù)學(xué)的體會篇十
學(xué)好高等數(shù)學(xué)是一個長期的過程,要做到邊學(xué)邊鞏固,今天的事今天完成,分階段有目的的復(fù)習(xí),學(xué)習(xí)來不得半點的投機取巧,所以考前突擊,臨時抱佛腳的做法都是不足取的,只有按照自己的計劃,踏踏實實的進行準(zhǔn)備,才能以不變應(yīng)萬變,只要自己的綜合能力提高了,就能取得好的成績。
數(shù)學(xué)是嚴(yán)密的科學(xué)。數(shù)學(xué)是由概念、公理、定理、公式等,按照一定的邏輯規(guī)則組成的嚴(yán)密的知識體系,有很強的系統(tǒng)性。因此,在數(shù)學(xué)的學(xué)習(xí)中,一定要循序漸進,打好基礎(chǔ),完整地、系統(tǒng)地掌握基本概念和基本原理,這樣才能為解題打好堅實的基礎(chǔ)。總之,學(xué)好高等數(shù)學(xué)并不是一件難事,只要你付出必要的努力,數(shù)學(xué)不應(yīng)是枯燥乏味的符號,只要你鉆進去就會感到趣味盎然,數(shù)學(xué)不是一堆繁瑣無用的公式,掌握了它的真諦,就會給你增添知識和力量。
對高等數(shù)學(xué)的體會篇十一
數(shù)學(xué)教研室緊緊圍繞以提高教學(xué)質(zhì)量,抓好內(nèi)涵建設(shè)為中心,以優(yōu)化教師業(yè)務(wù)素質(zhì),不斷提高教師的教學(xué)、教研水平和提高學(xué)生運用數(shù)學(xué)解決實際問題的能力為基本點;始終以應(yīng)用為目的,以為專業(yè)服務(wù)為教學(xué)重點,充分發(fā)揮數(shù)學(xué)課程在高職教育特色中的基礎(chǔ)作用。
二、本學(xué)期開展的工作。
1.組織好數(shù)學(xué)補考以及試卷的批改和成績上報工作;。
2.配合基礎(chǔ)部作好正常的教學(xué)及管理工作;。
3.按學(xué)院和教務(wù)處教學(xué)要求完成正常的教學(xué),如聽課、公開課聽課評課任務(wù),集體備課等活動.
(1)深入開展各專業(yè)對高等數(shù)學(xué)知識點需求的研討會,真正做到數(shù)學(xué)為專業(yè)課服務(wù);。
(3)為充分調(diào)動學(xué)生學(xué)習(xí)《高等數(shù)學(xué)》課程的積極性,組織一次全院數(shù)學(xué)調(diào)研。
5.定期召開教研室會議,堅持高職高專教育理論的'學(xué)習(xí)與研究,吸收先進的教學(xué)理念與教學(xué)經(jīng)驗,改進自己的教學(xué)方法、教學(xué)思想。要求撰寫一篇教學(xué)或教研論文。
6.搞好院級研究課題;。
7.進一步完善《高等數(shù)學(xué)》校本教材、教學(xué)課件等工作;。
8.做好教研室本學(xué)期的總結(jié)、下學(xué)期計劃等工作;。
9.配合基礎(chǔ)部做好一些臨時性工作。
三、工作具體時間安排見下表:
第一學(xué)期數(shù)學(xué)教研室具體工作安排。
周次。
時間。
教學(xué)活動內(nèi)容。
8月28至9月30日。
做好教學(xué)前準(zhǔn)備工作(如教學(xué)計劃、教案的撰寫),要求教師上好每一堂課,確保教育教學(xué)質(zhì)量,并要求沒課的教師隨機聽取有課老師的課。做好學(xué)生的補考工作。
6
10月1日至10月7日。
國慶放假,假期間認(rèn)真?zhèn)湔n,撰寫論文。
7
10月8日至10月14日。
確定教師舉行公開課、組織安排數(shù)學(xué)教研室教師參加聽課、評課活動。檢查教案、教學(xué)計劃的撰寫情況。
8
10月17日至10月21日。
組織數(shù)學(xué)教師召開專題會議:針對學(xué)生數(shù)學(xué)基礎(chǔ)差,如何上好高等數(shù)學(xué)課,如何體現(xiàn)為專業(yè)課服務(wù)。
9
10月24日至10月28日。
高等數(shù)學(xué)院級精品課程以及校本教材的進一步完善,公開課按計劃開展。教師集體備課。
10。
10月31日至11月4日。
要求每位教師撰寫一篇教學(xué)或教研論文。作業(yè)抽查、公開課、觀摩課等活動的監(jiān)督與實施。
11。
11月7日至11月11日。
期中教學(xué)檢查,教案檢查、作業(yè)批改情況抽查,做好數(shù)學(xué)教研室期中工作小結(jié)。
12。
11月14日至11月18日。
組織安排數(shù)學(xué)調(diào)研。
13。
11月21日至。
11月25日。
組織教師集體備課。
14。
11月28日。
至12月2日。
繼續(xù)開展公開課、觀摩課等活動,并召開專題會議:如何提高學(xué)生學(xué)習(xí)高等數(shù)學(xué)的興趣;如何提高教學(xué)教研質(zhì)量。
15。
12月5日至。
教案、作業(yè)隨機抽查,教學(xué)進度、教學(xué)效果的反饋,做好總結(jié)工作.
16。
12月12日至。
12月16日。
根據(jù)高數(shù)為專業(yè)課服務(wù)的原則,進一步做好高等數(shù)學(xué)課程教學(xué)改革,上好數(shù)學(xué)實驗課。
17。
12月19日。
至12月23日。
討論、交流教學(xué)心得,總結(jié)成功與不足。
18。
12月26日至。
12月30日。
開展教學(xué)、教研交流活動;檢查實踐教學(xué)的落實。
19。
公開課、觀摩課等教研活動總結(jié)。院級課題落實情況的檢查與反饋。有關(guān)實驗、實踐教學(xué)落實情況的總結(jié)。安排期末考試試卷的編制、保密、閱卷注意事項等事宜;本學(xué)期教學(xué)工作總結(jié)。
20。
元月9日至元月13日。
做好數(shù)學(xué)考試試卷分析與總結(jié);做好本學(xué)期教研室工作總結(jié)以及下學(xué)期教研室工作計劃。試卷裝訂情況檢查,并做好有關(guān)資料的收集與整理并歸檔。
對高等數(shù)學(xué)的體會篇十二
第一段:引言(120字)
高等數(shù)學(xué)作為大學(xué)數(shù)學(xué)課程中的一門重要學(xué)科,不僅是理工科學(xué)生的必修課,更是培養(yǎng)學(xué)生分析解決問題能力的重要途徑。在學(xué)習(xí)高等數(shù)學(xué)的過程中,我感受到了數(shù)學(xué)的美妙與魅力,同時也深刻體會到了數(shù)學(xué)學(xué)習(xí)的重要性。通過這門課程的學(xué)習(xí),我不僅提高了自己的數(shù)學(xué)水平,更具備了解決實際問題的能力,下面將分為邏輯推理能力的提升、問題解決能力的培養(yǎng)、批判性思維的養(yǎng)成、嚴(yán)密的思維訓(xùn)練以及團隊合作精神的培養(yǎng)五個方面,詳細論述我在高等數(shù)學(xué)學(xué)習(xí)中的心得體會。
第二段:邏輯推理能力的提升(250字)
高等數(shù)學(xué)學(xué)習(xí)需要運用各種公式定理,進行推導(dǎo)證明。在這個過程中,我不斷鍛煉了自己的邏輯推理能力。老師引導(dǎo)我們學(xué)會分析問題,從多個角度去思考,利用數(shù)學(xué)方法解決問題。通過數(shù)學(xué)定理的證明,我更加深入地理解了邏輯推理的重要性以及問題求解的思路。此外,在高等數(shù)學(xué)的學(xué)習(xí)過程中,我還學(xué)會了如何將復(fù)雜問題分解為簡單子問題,逐步推導(dǎo)出一個完整的解決方案。這一過程的鍛煉不僅提高了我的數(shù)學(xué)素養(yǎng),還培養(yǎng)了我的邏輯思維能力,使我能夠更好地應(yīng)對其他學(xué)科的學(xué)習(xí)和實際問題的解決。
第三段:問題解決能力的培養(yǎng)(250字)
高等數(shù)學(xué)學(xué)習(xí)強調(diào)實際問題的建模與求解,培養(yǎng)學(xué)生解決實際問題的能力。在課堂上,我親身體驗了數(shù)學(xué)在解決實際問題中的作用。通過案例分析和問題解決討論,我學(xué)會了將抽象概念和公式與實際問題相結(jié)合,找到問題的關(guān)鍵點,提出有效的解決方案。此外,高等數(shù)學(xué)課程還讓我了解了數(shù)學(xué)與其他學(xué)科的交叉點,從而拓寬了視野,幫助我更好地理解和解決其他學(xué)科的實際問題。
第四段:批判性思維的養(yǎng)成(250字)
高等數(shù)學(xué)學(xué)習(xí)強調(diào)學(xué)生的批判性思維能力的培養(yǎng)。在學(xué)習(xí)過程中,我發(fā)現(xiàn)數(shù)學(xué)不僅有固定答案,還有多種解決路徑和解釋方法。通過解析問題的不同方面,從不同的角度思考,我逐漸養(yǎng)成了批判性思維的習(xí)慣。我開始質(zhì)疑問題是否被正確解決,是否有更好的方法,這種思維方式不僅在高等數(shù)學(xué)學(xué)習(xí)中幫助我更好地理解概念和定理,還在其他學(xué)科和實際生活中使我更加理性和客觀。
第五段:嚴(yán)密的思維訓(xùn)練與團隊合作精神的培養(yǎng)(320字)
高等數(shù)學(xué)中的復(fù)雜定理和抽象概念要求學(xué)生掌握嚴(yán)密的思維能力。在解題過程中,我不得不重復(fù)思考,審查每一個環(huán)節(jié),確保每個推導(dǎo)步驟的準(zhǔn)確性和嚴(yán)密性。這過程雖然艱辛,但成功地提升了我的思維嚴(yán)密性和細心程度。另外,高等數(shù)學(xué)學(xué)習(xí)中的小組討論和團隊合作也給了我很大的啟示。通過與同學(xué)合作,每個人可以帶來不同的思路和見解,我們可以互相學(xué)習(xí)、互相鼓勵,并共同解決問題。這種團隊合作精神不僅在高等數(shù)學(xué)中得到培養(yǎng),還可以應(yīng)用到其他學(xué)科和實際工作中。
結(jié)尾:總結(jié)(90字)
總的來說,高等數(shù)學(xué)的學(xué)習(xí)不僅提高了我的數(shù)學(xué)水平,更重要的是培養(yǎng)了我解決問題的能力、批判性思維以及團隊合作精神。這些能力將在我的未來學(xué)習(xí)和工作中發(fā)揮重要作用。通過高等數(shù)學(xué)的學(xué)習(xí),我明白了數(shù)學(xué)不僅僅是一種學(xué)科,更是一種思維方式和處理問題的工具。
對高等數(shù)學(xué)的體會篇十三
不是誤導(dǎo)大家武漢大學(xué)的教科書實在是很難理解,兩本加起來足是一本字典,是編者賣弄的園地,所以強烈建議不要和此書叫板,我曾試過一年完全是浪費時間,即使有同學(xué)看懂了,但仍難以對付實戰(zhàn)。
我的建議是以戰(zhàn)致戰(zhàn),就是通過做歷年的考試題的方法順利通過考試。此法花費時間極小,但可以獲得很大的收益,從經(jīng)濟的角度講就是效益最大化。
具體實施方法:
首先,高高興興的將書撕碎,優(yōu)點有三:1)不給自己浪費時間的機會。2)建立此戰(zhàn)必勝的信心。3)心情將更加愉悅。
其次:把各年試卷及答案]收集齊,網(wǎng)上不難找到,書店中也可買到。實在不行我給你個網(wǎng)址。強烈建議從1997年下半年到20xx年上半年共十套試卷,這套模擬題就是葵花寶典,沒事就做吧,一遍不行,至少十遍,知道答案不行,必須要知道過程。當(dāng)你做到第三遍時你就會發(fā)現(xiàn)所有試卷的共同之處,每年的試題是等的相似。第五遍第七遍時,你就會因為找不到不會的題而痛苦萬分。
最后,是考前不用動筆用腦看題非??斓目瓷?遍,一個框架會產(chǎn)生在你的大腦中。合格證對于你來說,已經(jīng)成了一張名片,伸手就拿!
20xx年,在今年進行新的考試。相信要在今年自考的廣大群體以進入了金鑼彌補的準(zhǔn)備當(dāng)中,小編也會更多的發(fā)布一些相關(guān)信息希望可以為您提供到幫助。
對高等數(shù)學(xué)的體會篇十四
隨著科技日新月異的發(fā)展和電腦無孔不入的應(yīng)用。高等數(shù)學(xué)課程作為一種數(shù)學(xué)工具的功能正在逐步縮減。但作為一種思維方法的載體的功能(例如訓(xùn)練學(xué)生辯證思維、邏輯推理、發(fā)現(xiàn)同題及分析同題的能力)卻愈顯風(fēng)采。一個多元線性方程組如何去解?我們可以交給電腦去完成,只要會正確使用數(shù)學(xué)軟件。但一個實際問題如何通過數(shù)學(xué)建模轉(zhuǎn)化為一個數(shù)學(xué)同題,除了必須具備許多綜合的知識,還需要具備一定的分析推理能力,這種素質(zhì)自然可以通過生活來積累,但如果能夠通過象高等數(shù)學(xué)這樣的課程作為載體來進行系統(tǒng)訓(xùn)練,將是事半功倍的。
以往對工科學(xué)生來講,高等數(shù)學(xué)的教學(xué)比較偏重于計算方法的訓(xùn)練,例如,如何計算極限,計算導(dǎo)數(shù),計算積分,通過熟練掌握計算方法來加深對概念的理解,這是學(xué)習(xí)高等數(shù)學(xué)的一條捷便之徑。但是從二十一世紀(jì)更加需要創(chuàng)新人才的觀點看,從高等數(shù)學(xué)的概念中直接去提煉一種分析推理能力及實際應(yīng)用能力,將是更加重要的。(當(dāng)然,在改革的力度還未到位時,由于教學(xué)要求及教材等原因。學(xué)習(xí)高等數(shù)學(xué)并不能僅偏重于概念,對基本的計算方法必須熟練地掌握。如今就如何學(xué)好高等數(shù)學(xué)的基本概念。提出一些拙見供同學(xué)參考。
我們觀察一個物體,如果僅僅通過平視去進行,那么對這個物體的認(rèn)識往往是局部的,甚至是扭曲的,只有從正視、俯視、側(cè)視的多角度去觀察與綜合,方能得到物體正確的空間定位。觀察事物尚且如此,要理解一個抽象的概念,如果只有單向的思維方法,肯定只能淺嘗輒止。只有從正反兩個方向去透視概念,才能較深地抓住概念中一些本質(zhì)的東西。這里所說的正方向思維應(yīng)該包含幾層意思:一是概念的定義是如何敘述的,二是概念所尉帶的條件是必要的。還是充分的'?三是概念產(chǎn)生的實際背景是什么?這里所說的反方向思維又應(yīng)該包含兩層意思:一是對一個概念的否定是怎樣表達的?二是如果錯誤的理解了概念中的一些條件會導(dǎo)致什么樣的錯誤結(jié)果。
發(fā)現(xiàn)問題呢?首先要提倡自學(xué),在自己預(yù)習(xí)教材(也鍛煉了一種自學(xué)能力)的過程中很容易發(fā)現(xiàn)不懂的同題,帶著同題再去聽課就會有的放矢。其次是聽課之后做習(xí)題之前要認(rèn)真復(fù)習(xí)消化課上的內(nèi)容,只要積極地開動腦筋,從中是會發(fā)現(xiàn)很多問題的,在這個較深層次上發(fā)現(xiàn)問題又去解決問題(可以通過同學(xué)與老師的幫助),那么分析問題的能力就會有一個質(zhì)的提高。
學(xué)習(xí)數(shù)學(xué),不做習(xí)題是絕對不行的。因為耐概念究竟理解與否檢驗的最后關(guān)口是習(xí)題。一道習(xí)題不會做或者做錯了,肯定是某些概念投有消化好,帶著習(xí)題再來復(fù)習(xí)理解概念,拄往會摩擦出新的思想火花。學(xué)習(xí)高等數(shù)學(xué)的過程中,我們不主張采用中學(xué)的題海戰(zhàn),但對每道習(xí)題不但要弄懂正確的解法,而且盡量要考慮能否有多種解法。這還不夠,進一步的思考是一些似是而非的錯誤解法究竟錯在哪里?必定是對概念理解的偏差才導(dǎo)致的錯誤結(jié)果。經(jīng)過又一次正反兩個層面的開掘。思考深入了,學(xué)習(xí)的興趣也會逐步培育起來。
對高等數(shù)學(xué)的體會篇十五
一個高中生升入大學(xué)學(xué)習(xí)后,不僅要在環(huán)境上、心理上適應(yīng)新的學(xué)習(xí)生活,同時學(xué)習(xí)方法的改變也是一個不容忽視的方面。
從中學(xué)升入大學(xué)學(xué)習(xí)后,在學(xué)習(xí)方法上將會遇到一個比較大的轉(zhuǎn)折。首先是對大學(xué)的教學(xué)方式和方法會感到很不適應(yīng)。這在高等數(shù)學(xué)課程的教學(xué)中反應(yīng)特別明顯,因為它是一門對大一新生首當(dāng)其沖的理論性較強的基礎(chǔ)理論課程。而學(xué)生正是習(xí)慣于模仿性和單一性的學(xué)習(xí)方法。這是從小學(xué)到中學(xué)的教育中長期養(yǎng)成的,一時還難以改變。
中學(xué)的教學(xué)方式和方法與大學(xué)有質(zhì)的差別,中學(xué)的學(xué)習(xí)學(xué)生是在教師的直接指導(dǎo)下進行模仿和單一性的學(xué)習(xí),大學(xué)則是在教師的指導(dǎo)下進行創(chuàng)造性的學(xué)習(xí)。而大學(xué)高等數(shù)學(xué)課程的學(xué)習(xí),教材僅是作為一種主要的參考書,要求學(xué)生以課堂上老師所講的重點和難點為線索,課后去鉆研教材和閱讀大量的同類參考書,然后去完成課后習(xí)題。就這樣反復(fù)地進行創(chuàng)造性學(xué)習(xí)。這是一種艱苦的腦力勞動,需要學(xué)生能反復(fù)地、自覺地進行學(xué)習(xí)。還要在松散的環(huán)境中能約束自己。
大學(xué)生活是人生的一大轉(zhuǎn)折點。大學(xué)時期注重于培養(yǎng)同學(xué)們的獨立生活、獨立思考、獨立分析問題和解決問題的能力,而不像中學(xué)那樣有一個依賴的環(huán)境。高等數(shù)學(xué)與高中數(shù)學(xué)相比有很大的不同,內(nèi)容上主要是引進了一些全新的數(shù)學(xué)思想,特別是無限分割逐步逼近,極限等;從形式上講,學(xué)習(xí)方式也很不一樣,特別是一般都是大班授課,進度快,老師很難個別輔導(dǎo),故對自學(xué)能力的要求很高。中學(xué)時期主要是老師領(lǐng)著學(xué),學(xué)生只需要跟著老師的指揮棒走就可以了,而在大學(xué)時主要靠自學(xué),教師只起一個引導(dǎo)的作用。新同學(xué)應(yīng)盡快適應(yīng)大學(xué)生活,形成一個良好的開端,這對四年的大學(xué)生涯是有益的。
中學(xué)數(shù)學(xué)課程的中心是從具體數(shù)學(xué)到概念化數(shù)學(xué)的轉(zhuǎn)變。中學(xué)數(shù)學(xué)課程的宗旨是為大學(xué)微積分作準(zhǔn)備。學(xué)習(xí)數(shù)學(xué)總要經(jīng)歷由具體到抽象、由特殊到一般的漸進過程。由數(shù)引導(dǎo)到符號,即變量的名稱;由符號間的關(guān)系引導(dǎo)到函數(shù),即符號所代表的對象之間的關(guān)系。高等數(shù)學(xué)首先要做的是幫助學(xué)生發(fā)展函數(shù)概念——變量間關(guān)系的表述方式。這就把同學(xué)們的理解力從常量推進到變量、從描述推進到證明、從具體情形推進到一般方程,開始領(lǐng)會到數(shù)學(xué)符號的威力。但《高等數(shù)學(xué)》的主要內(nèi)容是微積分,它繼承了中學(xué)的訓(xùn)練,它們之間有千絲萬縷的聯(lián)系。
為了適應(yīng)21世紀(jì)高等數(shù)學(xué)課程的教學(xué)改革,高等數(shù)學(xué)課程的教學(xué)也發(fā)生了很大的變化,在傳統(tǒng)的教學(xué)手段的基礎(chǔ)上,采用了更加具體化、形象化的現(xiàn)代教育技術(shù),這也是一般中學(xué)所沒有的,因此,同學(xué)們在進入大學(xué)以后,不僅要注意高等數(shù)學(xué)課程的內(nèi)容與中學(xué)數(shù)學(xué)的區(qū)別與聯(lián)系,還要盡快適應(yīng)高等數(shù)學(xué)課程的新的教學(xué)特點。認(rèn)真上好第一節(jié)高等數(shù)學(xué)課,嚴(yán)格按照任課老師的要求去做。若能堅持做到,課前預(yù)習(xí),課上聽講,課后復(fù)習(xí),認(rèn)真完成作業(yè),課后對所學(xué)的知識進行歸納總結(jié),加深對所學(xué)內(nèi)容的理解,從而也就掌握了所學(xué)的知識,就不難學(xué)好高等數(shù)學(xué)這門課。有些同學(xué)就是沒有把握好自己,一看高等數(shù)學(xué)一開始的內(nèi)容和中學(xué)所學(xué)內(nèi)容極其相似,就掉以輕心,認(rèn)為自己看看就會了,要么不聽課,要么不完成作業(yè),結(jié)果導(dǎo)致后面的章節(jié)聽不懂,跟不上,甚至有的同學(xué)就一直跟不上,學(xué)期末成績不理想,甚至不及格。
第一,要勤學(xué)、善思、多練。所謂學(xué),包括學(xué)和問兩方面,即向教師,向同學(xué),向自己學(xué)和問。惟有在“學(xué)中問”和“問中學(xué)”,才能消化數(shù)學(xué)的概念、理論、方法;所謂思,就是將所學(xué)內(nèi)容,經(jīng)過思考加工去粗取精,抓本質(zhì)和精華。華羅庚“抓住要點”使“書本變薄”的這種勤于思考、善于思考、從厚到薄的學(xué)習(xí)數(shù)學(xué)的方法,值得我們借鑒;所謂習(xí),就《高等數(shù)學(xué)》而言,就是做練習(xí),這是數(shù)學(xué)自身的特點。練習(xí)一般分為兩類,一是基礎(chǔ)訓(xùn)練練習(xí),經(jīng)常附在每章每節(jié)之后,這類問題相對來說比較簡單,無大難度,但很重要,是打基礎(chǔ)部分。二是提高訓(xùn)練練習(xí),知識面廣些,不局限于本章本節(jié),在解決的方法上要用到多種數(shù)學(xué)工具。數(shù)學(xué)的練習(xí)是消化鞏固知識極重要的一個環(huán)節(jié),舍此達不到目的。
第二,狠抓基礎(chǔ),循序漸進。任何學(xué)科,基礎(chǔ)內(nèi)容常常是最重要的部分,它關(guān)系到學(xué)習(xí)的成敗與否?!陡叩葦?shù)學(xué)》本身就是數(shù)學(xué)和其他學(xué)科的基礎(chǔ),而《高等數(shù)學(xué)》又有一些重要的基礎(chǔ)內(nèi)容,它關(guān)系到整個知識結(jié)構(gòu)的全局。以微積分部分為例,極限貫穿著整個微積分,函數(shù)的連續(xù)性及性質(zhì)貫穿著后面一系列定理結(jié)論,初等函數(shù)求導(dǎo)法及積分法關(guān)系到今后各個學(xué)科。因此,一開始就要下狠功夫,牢牢掌握這些基礎(chǔ)內(nèi)容。在學(xué)習(xí)《高等數(shù)學(xué)》時要一步一個腳印,扎扎實實地學(xué)和練。第三,歸類小結(jié),從厚到薄。記憶總的原則是抓綱,在用中記。歸類小結(jié)是一個重要方法。《高等數(shù)學(xué)》歸類方法可按內(nèi)容和方法兩部分小結(jié),以代表性問題為例輔以說明。在歸類小節(jié)時,要特別注意有基礎(chǔ)內(nèi)容派生出來的一些結(jié)論,即所謂一些中間結(jié)果,這些結(jié)果常常在一些典型例題和習(xí)題上出現(xiàn),如果你能多掌握一些中間結(jié)果,則解決一般問題和綜合訓(xùn)練題就會感到輕松。
第四,精讀一本參考書。實踐證明,在教師指導(dǎo)下,抓準(zhǔn)一本參考書,精讀到底,如果你能熟讀了一本有代表性的參考書,再看其它參考書就會迎刃而解了。
第五,注意學(xué)習(xí)效率。數(shù)學(xué)的方法和理論的掌握,常常需要做到熟能生巧、觸類旁通。人不可能通過一次學(xué)習(xí)就掌握所學(xué)的知識,需要有幾個反復(fù)。所謂“學(xué)而時習(xí)之”、“溫故而知新”都是指學(xué)習(xí)要經(jīng)過反復(fù)多次。《高等數(shù)學(xué)》的記憶,必須建立在理解和熟練做題的基礎(chǔ)上,死記硬背無濟于事。
1.書:課本+習(xí)題集(必備),因為學(xué)好數(shù)學(xué)絕對離不開多做題,建議習(xí)題集最好有本跟考研有關(guān)的,這樣也有利于你做好將來的考研準(zhǔn)備。
2.筆記:盡量有,我說的筆記不是指原封不動的抄板書,那樣沒意思,而且不必非單獨用個小本,可記在書上。關(guān)鍵是在筆記上一定要有自己對每一章知識的總結(jié),類似于一個提綱,(有時老師或參考書上有,可以參考),最好還有各種題型+方法+易錯點。
3.上課:建議最好預(yù)習(xí)后聽,聽不懂不要緊,很多大學(xué)的課程都是靠課下結(jié)合老師的筆記自己重新看。但是記住:高數(shù)千萬別搞考前突擊,絕對行不通,所以平時你就要跟上,步步盡量別斷層。
4.學(xué)好高數(shù)=基本概念透+基本定理牢+基本網(wǎng)絡(luò)有+基本常識記+基本題型熟。數(shù)學(xué)就是一個概念+定理體系(還有推理),對概念的理解至關(guān)重要,比如說極限、導(dǎo)數(shù)等,你既要有形象的對它們的理解,也要熟記它們的數(shù)學(xué)描述,不用硬背,可以自己對著書舉例子,畫個圖看看(形象理解其實很重要),然后多做題,做題中體會。建議你用一只彩筆專門把所有的概念標(biāo)出來,這樣看書時一目了然(定理用方框框起來)。基本網(wǎng)絡(luò)就是上面說的筆記上的總結(jié)的知識提綱,也要重視?;境WR就是高中時老師常說的“準(zhǔn)定理”,就是書上沒有,在習(xí)題中我們總結(jié)的可以當(dāng)定理或推論用的東西,還有一些自己小小的經(jīng)驗。這些東西不正式但很有用的,比如各種極限的求法。
這些都做到了,高等數(shù)學(xué)應(yīng)該學(xué)得不會差了,至少應(yīng)付考試沒問題。如果你想提高些,可以做些考研的數(shù)學(xué)題,體會一下,其實也不過如此,并不象你想象的那么難。還可以看些關(guān)于高數(shù)應(yīng)用的書,其實數(shù)學(xué)本來就是從應(yīng)用中來的,你會知道高等數(shù)學(xué)真的很有用。
對高等數(shù)學(xué)的體會篇十六
數(shù)學(xué)最需要強調(diào)的是基礎(chǔ)而不是技巧。很多同學(xué)不重視基礎(chǔ)的學(xué)習(xí),反而只是忙著做題,做難題,就想通過題海戰(zhàn)術(shù)取勝,這是不行的,選擇輔導(dǎo)班一定不要選擇一味追求技巧的,可以上有命題組老師的輔導(dǎo)班,從而能夠準(zhǔn)確把握命題思路,不至于走偏了方向。
善于歸納,學(xué)會總結(jié),使知識條理化系統(tǒng)化。
善于總結(jié)也是我要十分強調(diào)的一點。因為很多同學(xué)做題的過程就到對過答案或是糾正過錯誤就簡單的結(jié)束了,一套題的價值也就到此為止了。大家在糾正完錯誤之后,再把這套試題從頭看一遍,總結(jié)一下自己都在哪些方面出錯了,原因是什么,這套題中有沒有出現(xiàn)我不知道的新的方法、思路,新推導(dǎo)出的定理、公式等,并把這些有用的知識全都寫到你的筆記本上,以便隨時查看和重點記憶。對于大題的解題方法,要仔細想一想,都涉及到哪些科目和章節(jié)了,這些知識點之間有哪些聯(lián)系等,從而使自己所掌握的知識系統(tǒng)化,以達到融會貫通。只有這樣,才能使你做過的題目實現(xiàn)其的價值,也才算是你真正做懂了一套題。如果你能夠這樣做了,那么做過的題在以后的復(fù)習(xí)中如果沒有時間了,就不用再拿出來重新看了,因為你已經(jīng)把要掌握的精華總結(jié)好了,只需看你的筆記本就行了。解數(shù)學(xué)題一定要從思路,原理的角度入手。
要勤于思考,多動腦子。
很多同學(xué)學(xué)數(shù)學(xué)就喜歡看例題,看別人做好的題目,分析別人總結(jié)好的解題方法、步驟。只這樣是遠遠不夠的。只是一味的被動的接受別人的東西,就永遠也變不成自己的東西。第一遍復(fù)習(xí)可以只看題,但以后就必須自己試著做了,先不看答案,完全通過自己的能力做著試試,不管能做到什么程度,起碼你自己先思考了,只有啟動自己的大腦,才會使知識更深入的得到理解和掌握,才能真正成為自己的知識,也才會具有獨立的解題能力。在做題時不要太輕易的選擇放棄,想一會兒沒有思路就去看答案,一定要仔細開動腦筋想過之后,實在不行再求助于外力。
對高等數(shù)學(xué)的體會篇十七
俗話說,熟能生巧。練習(xí)做多了,看到類似的問題就能輕松應(yīng)付,對癥下藥。在做練習(xí)時,要清楚每一步的思路,上一步為什么會得到下一步,都要了如指掌。對不懂的問題一定要問。說到問,陶行知先生說過:“發(fā)明千千萬,起點在一問?!睂W(xué)數(shù)學(xué)也是一樣,一定要多動手,動口。在動口之前要先學(xué)會思考,因為思考了才會有問題可問。不要以為思考是那些做學(xué)問的學(xué)者們的專利,只要是有思想的人,任何人都可以步入思考的行列。只有在不斷思考探求中才能充實自己的大腦。當(dāng)然也要避免盲目做習(xí)題,改變中學(xué)時期“只知道做題”的習(xí)慣。要獨立思考,不要做太多的難題、偏題。另外要注意數(shù)學(xué)語言表述的正確性,論證的嚴(yán)密性,養(yǎng)成一種科學(xué)嚴(yán)謹(jǐn)?shù)乃季S習(xí)慣。
對高等數(shù)學(xué)的體會篇十八
現(xiàn)在我不妨引領(lǐng)大家把我們所學(xué)的容易遺漏的數(shù)學(xué)知識再仔細地閱讀一下:
集合部分:
(1)集合的概念:把具有某種特性的事物組成的整體叫集合,同學(xué)們往往忽略整體二字。如:
(1)方程x22x30的解集,x22x10的解集,x22x10的解集,x22x10的解集。
(2)空集:不含任何元素,表示為。
(3)集合與元素的關(guān)系:兩種符號,不能正確的填寫,主要原因是不能理解元素和集合的書寫,不明白那些是元素那些事集合。
(4)集合與集合的關(guān)系。
(5),這兩種關(guān)系的具體含義。
不等式部分:
(1)不等式的基本性質(zhì),容易出錯的就是如ab,則ac2bc2()。
對一個數(shù)的平方理解不透徹,
(3)邏輯用語,(充分,必要,充要,非充分非必要)。
函數(shù)部分:
(1)函數(shù)的概念。
(2)函數(shù)的三要素。
(3)如何研究函數(shù),主要是從以下內(nèi)容,一定義域,二值域,三。
函數(shù)的三性(單調(diào)性、奇偶性、周期性)。
(4)冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)。
(5)三角函數(shù):特別是對三角函數(shù)的定義,利用好三角函數(shù)的定。
義,可自然地得出(三角函數(shù)正負(fù)符號的判定、同角三角函數(shù)的關(guān)系)。
數(shù)列部分:
(1)兩特殊數(shù)列等差和等比。
(2)規(guī)律。
向量部分:
(1)向量相等,共線,向量垂直。
(2)向量的運算。
(3)向量的坐標(biāo)。
(4)向量的內(nèi)內(nèi)積。
直線和圓的方程部分:
(1)直線的相關(guān)部件(斜率和傾斜角),圓的相關(guān)部件(圓心和半徑)。
(2)直線方程的求法,圓的方程求法。
立體幾何部分:
(1)點、線、面。
(2)線線的關(guān)系。
(3)線面的關(guān)系。
(4)面面的關(guān)系。
以上我把職高的所有易錯易忘難理解的知識點羅列出來,在平時我們閱讀的時候要注意掌握解決問題的依據(jù)和解決問題的方法。
閱讀的同時,我們要理解書中的`句子,那么對數(shù)學(xué)而言,我們該理解什么呢?
(1)理解定義概念。
(2)理解公式定理。
(1)練習(xí)要有目的練習(xí)要有針對性。
(2)練習(xí)不要盲目,有同學(xué)喜歡做題,覺得題做得越多越好,其實不然,題要做,要少而精,會的熟練地題我們只動腦不動手,理一理解題思路就可以了,不會的、或經(jīng)常出錯的那就得好好練練。
(1)總結(jié)各章節(jié)的知識點,各章節(jié)的典型例題。
(2)總結(jié)解題思路。
(3)總結(jié)解題的方法。
學(xué)無定法,適合自己的能夠幫助自己學(xué)習(xí)成績提高的方法都是好的方法,寫這篇文章只是拋磚引玉,希望我的建議能夠幫助同學(xué)找到適合自己的學(xué)習(xí)方法。能夠通過好的學(xué)習(xí)方法快速的提高數(shù)學(xué)學(xué)習(xí)成績。
對高等數(shù)學(xué)的體會篇十九
第一段:引言(150字)
在大學(xué)學(xué)習(xí)期間,高等數(shù)學(xué)是我們無法回避的一門課程。對于許多學(xué)生來說,高等數(shù)學(xué)可能是他們第一次接觸到抽象的數(shù)學(xué)概念和復(fù)雜的數(shù)學(xué)運算。然而,通過數(shù)學(xué)家和教育家的不斷努力,高等數(shù)學(xué)正在變得越來越有趣和易于理解。在我個人的學(xué)習(xí)過程中,我逐漸領(lǐng)悟到高等數(shù)學(xué)的重要性和應(yīng)用場景,并從中獲得了許多寶貴的經(jīng)驗和體會。
第二段:興趣驅(qū)動學(xué)習(xí)(250字)
我發(fā)現(xiàn),對于高等數(shù)學(xué)的學(xué)習(xí)來說,培養(yǎng)興趣是至關(guān)重要的。在開始學(xué)習(xí)高等數(shù)學(xué)之前,我對這門課程沒有太多的期待。然而,通過與教師的互動和進一步的研究,我開始意識到高等數(shù)學(xué)是一門實際應(yīng)用廣泛且充滿挑戰(zhàn)的學(xué)科。我發(fā)現(xiàn)高等數(shù)學(xué)在物理、經(jīng)濟學(xué)甚至金融學(xué)中都起著重要的作用,并且具有許多實用性的應(yīng)用。為了更好地理解和應(yīng)用高等數(shù)學(xué)的知識,我主動參加數(shù)學(xué)建模和實驗課程,并且積極加入數(shù)學(xué)學(xué)術(shù)團隊。通過這些課程和團隊活動,我發(fā)現(xiàn)高等數(shù)學(xué)能夠幫助我們解決實際問題,并且在現(xiàn)實生活中起到重要的作用。
第三段:實踐驅(qū)動理論(250字)
在高等數(shù)學(xué)的學(xué)習(xí)過程中,我體會到實踐是鞏固理論知識的重要手段。通過解決一系列的習(xí)題和實際問題,我逐漸運用所學(xué)的數(shù)學(xué)方法來解決復(fù)雜的問題。并在此過程中體會到從紙上計算到實際應(yīng)用的轉(zhuǎn)換。在學(xué)習(xí)微積分時,我除了翻閱課本上的例題和習(xí)題外,還多次利用數(shù)學(xué)軟件進行計算和模擬,并嘗試將所學(xué)的理論用于解決實際問題。通過這樣的實踐過程,我不僅加深了對高等數(shù)學(xué)理論的理解,還培養(yǎng)了解決實際問題的能力。
第四段:提升邏輯思維(250字)
高等數(shù)學(xué)的學(xué)習(xí)讓我逐漸鍛煉了邏輯思維能力。通過學(xué)習(xí)證明方法、推理規(guī)則以及數(shù)學(xué)定理等知識,我逐漸培養(yǎng)了嚴(yán)密的邏輯思維和分析問題的能力。高等數(shù)學(xué)課程中的證明過程迫使我們思考每一個步驟的合理性和正確性,并提出自己的證明思路。這種思考方式使我從中受益匪淺,不僅在數(shù)學(xué)領(lǐng)域受益,還在其他學(xué)科中應(yīng)用中受益。
第五段:結(jié)語(300字)
通過高等數(shù)學(xué)的學(xué)習(xí),我逐漸發(fā)現(xiàn)抽象的數(shù)學(xué)世界與現(xiàn)實生活是息息相關(guān)的。高等數(shù)學(xué)的學(xué)習(xí)讓我在思維、邏輯、實踐等多個方面得到了全面的提升。通過在數(shù)學(xué)領(lǐng)域中的探索與研究,我重新定義了對于高等數(shù)學(xué)這門課程的認(rèn)知,并且樹立起全新的目標(biāo)和動力。高等數(shù)學(xué)不僅僅是為了通過考試,更是培養(yǎng)我們終身學(xué)習(xí)的能力和思維方式的橋梁。在未來的學(xué)習(xí)和工作中,我相信高等數(shù)學(xué)所賦予的知識和能力會繼續(xù)對我產(chǎn)生重大影響。因此,我會繼續(xù)努力學(xué)習(xí)高等數(shù)學(xué),并將所學(xué)應(yīng)用于實際生活中,為現(xiàn)實問題的解決提供更多有益的思考和方法。