優(yōu)質微積分的心得與感悟大全(14篇)

字號:

    在感悟中,我們可以從自己的經驗中汲取教訓,從他人的故事中獲取啟示。在寫作感悟時,應該注重表達的真實性和自發(fā)性,避免浮夸和夸張的語言。以下是小編為大家整理的一些感悟范文,供大家參考。希望通過這些范文,能夠激發(fā)大家對生活的感悟和思考,進而提升自己的綜合素質和心理修養(yǎng)。讓我們一起來看看吧!
    微積分的心得與感悟篇一
    作為理科生必修的課程,《微積分學教程》是高等數(shù)學的重要組成部分。這本教材在教授完整微積分體系的基礎上,既注重思路訓練,又提高了抽象思維能力和數(shù)學語言運用能力,同時也是了解數(shù)學發(fā)展歷程中的經典著作之一。在學習這本書的過程中,我對微積分以及數(shù)學思維方法有了更深刻的認識,也深感數(shù)學的魅力和威力。
    第二段:學習難度。
    首先要說的是,學習微積分并不容易,特別是對于像我這樣的學渣來說。書中概念、定理的推導都需要一定的時間去理解和消化,并且還要反復進行練習。對于初學者來說,最大的難點就是對微積分的概念的理解和應用。比如微分的本質意義,微積分的基本定理等都需要一定量的時間去掌握。
    第三段:思維方法的提高。
    學習微積分并不只是為了學會公式和算法,更重要的是通過數(shù)學思維方法的訓練,提高自己的分析和解決問題的能力。在學習微積分的過程中,我們要通過一些技巧和方法來解決復雜的數(shù)學問題。比如,我們可以通過畫函數(shù)圖像來直觀地了解函數(shù)的性質,通過變量代換能夠簡化一些復雜的式子,通過重求導或者求導數(shù)列可以快速得到一些高階導數(shù)等。通過這些技巧和方法的訓練,不僅可以提高解決問題的效率,還可以讓我們更加深入地理解微積分知識點的本質。
    第四段:數(shù)學思想的發(fā)展歷程。
    除了微積分的知識體系,我們通過學習這本書,還可以了解到微積分作為一種數(shù)學工具的發(fā)展歷程。發(fā)現(xiàn)微積分的過程中蘊含著數(shù)值計算的需求,同時也是人類的智慧和追求的體現(xiàn)。在這個過程中,很多重要的數(shù)學家都為微積分的發(fā)展做出了巨大的貢獻。比如萊布尼茨、牛頓等數(shù)學大師不斷地發(fā)掘和完善微積分的理論,使得它成為現(xiàn)代科學中不可或缺的一部分。因此學習微積分不僅僅是為了掌握一門技能,同時也可以讓我們更加深入地了解數(shù)學的發(fā)展歷程與數(shù)學思想的演進。
    第五段:感悟與收獲。
    在學習《微積分學教程》的過程中,我結合教材進行了大量的練習和思考,不僅學到了微積分知識,還提高了自己的數(shù)學思維能力和分析能力。同時,我也體會到了數(shù)學對于世界認識和人類進步的重要性,提醒自己要對數(shù)學更加認真地學習和探索。通過學習這本書,不僅感興趣和了解了數(shù)學的知識和發(fā)展歷程,也讓我更加宏觀地看待了人文科學的綜合能力和感性認知力的重要性。通過對微積分的學習,了解數(shù)學的發(fā)展歷程,我更加正視數(shù)學對于現(xiàn)代科技以及整個人類社會進步的深刻影響,從而對于人生的追求和發(fā)展方向有了更加清晰和明確的認識。
    微積分的心得與感悟篇二
    微積分,作為數(shù)學的一門重要分支,是應用廣泛的數(shù)學工具之一。通過學習微積分,我們可以更好地理解各種現(xiàn)象的變化規(guī)律,解決實際問題,以及開拓思維方式。在我學習微積分的過程中,我深刻領悟到了它的重要性和應用價值,并且體會到了其中蘊含的數(shù)學美感和邏輯思維的樂趣。下面我將從應用、推導、數(shù)學美感、邏輯思維以及對未來的展望等方面談一下我對微積分的心得體會。
    首先,微積分在實際生活中有著廣泛的應用。無論是物理、化學、經濟學還是工程學等領域,微積分都能提供有效的分析工具。比如,在物理學中,通過微積分可以計算出任意變化速度的物體的位移,對于解決運動過程中的問題非常有幫助。在經濟學中,微積分可以幫助我們分析價格變化、市場供需等問題,促進經濟的穩(wěn)定和發(fā)展。微積分的應用將我們從抽象的數(shù)學理論中聯(lián)系到實際生活,使我們對世界的認識更加全面。
    其次,微積分的推導過程讓我感受到了數(shù)學的美感。微積分的推導過程精妙而且優(yōu)雅,讓人感嘆數(shù)學的智慧。例如,在求導數(shù)的過程中,通過一系列的代數(shù)、極限等運算,我們可以得到一個函數(shù)在某一點處的斜率,這個過程充滿了奇妙的變換和對數(shù)學本質的深入思考。微積分讓我從中感受到了數(shù)學的美妙,也加深了我對數(shù)學的喜愛和興趣。
    此外,微積分的學習過程培養(yǎng)了我的邏輯思維。微積分是一門高度邏輯性的學科,它要求我們從抽象的概念中進行具體的推導和演算,這對于培養(yǎng)我們的邏輯思維和推理能力非常重要。通過學習微積分,我逐漸掌握了邏輯思維的方法和技巧,學會了分析問題、解決問題的能力。這一能力不僅在數(shù)學上有所幫助,對于其他學科以及日常生活中的決策和思考也有積極的影響。
    最后,我對微積分充滿了期待和展望。微積分是一門不斷發(fā)展的學科,隨著科學技術的進步和社會的不斷發(fā)展,微積分在各個領域都將有更多的應用和發(fā)展,為人類提供更多的科學技術支撐。我相信,在微積分的指導下,我們可以更好地認識和改造世界,為人類的幸福和發(fā)展做出更大的貢獻。
    綜上所述,微積分作為數(shù)學的一門重要分支,不僅在實際生活中有著廣泛的應用,而且讓人感受到了數(shù)學的美感和邏輯思維的樂趣。通過學習微積分,我們不僅可以解決實際問題,還可以提高自己的數(shù)學素養(yǎng)和思維能力。我對微積分充滿了期待和展望,相信它將繼續(xù)為我們的學習和生活帶來更多的益處。
    微積分的心得與感悟篇三
    近年來,微積分作為一門重要的數(shù)學學科,被廣大學生所學習。我也不例外,通過學習微積分這門課程,我深刻體會到了它的重要性和應用價值。微積分不僅是一種數(shù)學工具,更是一種思維方式和解決問題的方法。在學習過程中,我不僅掌握了微積分的基本概念和方法,更體會到了微積分的智慧和魅力。
    首先,微積分幫助我理解了自然界和社會現(xiàn)象中的變化規(guī)律。通過微積分,我學會了如何用函數(shù)來描述和分析物體的運動、電子電路中電流的變化,甚至是人口增長的趨勢。微積分的基本概念如極限、導數(shù)、積分等,使我能夠將復雜的問題簡化為一系列簡單的數(shù)學操作,從而更好地描述和預測事物的變化趨勢。
    其次,微積分讓我懂得了計算的方法與策略對于解決問題的重要性。學習微積分的過程中,我逐漸領悟到,計算并不僅僅是進行簡單的代數(shù)運算,而是需要運用各種數(shù)學技巧和分析方法。微積分教會了我如何通過求導、積分等操作來求解極值、計算曲線下的面積等問題。這些方法的靈活運用不僅提高了我的計算能力,也讓我深刻認識到問題的本質和求解的本質。
    另外,微積分讓我培養(yǎng)了嚴謹?shù)乃季S和解決問題的能力。在學習微積分的過程中,尤其是在做題和解題的過程中,我體會到了嚴謹?shù)臄?shù)學推理和邏輯思維的重要性。微積分要求學生從幾何、代數(shù)、分析等多個角度來理解和處理問題,鍛煉了我的思維能力和解決問題的能力。通過微積分的學習,我學會了如何從大局出發(fā),如何劃分和處理問題的各個部分,如何嚴謹?shù)剡M行推理和論證。
    在學習微積分的過程中,我深刻認識到數(shù)學與實際生活的聯(lián)系和應用場景。微積分不僅僅是一種學科知識,更是實際問題的數(shù)學模型和工具。無論是物理學中的運動方程,經濟學中的供求關系,還是工程學中的電路分析,微積分都起著不可或缺的作用。通過學習微積分,我意識到數(shù)學不僅僅是一種抽象的理論體系,更是解決實際問題的有力工具,它可以幫助我們更好地理解和改造世界。
    綜上所述,微積分的學習不僅僅是為了應付考試和取得好成績,更是一種思維方式和解決問題的方法。通過學習微積分,我深刻認識到了微積分的重要性和應用價值,培養(yǎng)了我數(shù)學思維和解決問題的能力。微積分教會了我如何理解和分析自然界和社會現(xiàn)象中的變化規(guī)律,如何進行計算和驗證,如何培養(yǎng)嚴謹?shù)乃季S和解決問題的能力。微積分的學習不僅理論豐富,更注重實踐應用,讓我認識到數(shù)學與實際生活的聯(lián)系和應用場景。相信在今后的學習和工作中,微積分的學習經驗和方法將對我產生深遠的影響。
    微積分的心得與感悟篇四
    微積分是一門讓許多人望而卻步的學科,它常常被形容為晦澀難懂、抽象而且繁瑣。然而,無論是在數(shù)理基礎還是在應用方面,微積分都扮演著重要的角色。在我學習微積分的過程中,我逐漸領悟到了它對于實際生活和學術研究的重要性,并深刻體會到了它對于我自己的啟迪和思維方式的改變。
    首先,微積分為我們提供了一種分析和理解定量變化的有效方法。在生活中,我們經常會遇到需要研究變化的現(xiàn)象,比如物體的運動、人口的增長、化學反應的速率等等。通過微積分,我們能夠用數(shù)學的方法描述和解釋這些變化,并通過對函數(shù)的導數(shù)和定積分的運算,揭示變化的規(guī)律和趨勢。這種定量分析的能力,使我們能夠更好地理解和預測事物的發(fā)展趨勢,從而做出更明智的決策。
    其次,微積分還培養(yǎng)了我的邏輯思維和問題解決能力。在學習微積分的過程中,我們需要通過對函數(shù)和方程的分析,運用各種微積分的概念和方法,來解決各種復雜的問題。這要求我們具備較高的邏輯思維和問題解決能力。我發(fā)現(xiàn),通過反復練習和思考,我在邏輯推理和問題求解方面的能力得到了顯著提升。這種能力的培養(yǎng)不僅在學習中具有廣泛的應用,還對于日常生活中的決策和解決問題起到了積極的影響。
    此外,微積分還幫助我培養(yǎng)了抽象思維和數(shù)學建模的能力。微積分的概念和方法往往是抽象的,需要我們進行抽象化的思考和推理,從而將具體問題轉化為數(shù)學問題,并進一步解決。通過不斷地練習和思考,我逐漸培養(yǎng)了抽象思維的能力,能夠站在數(shù)學的角度來看待和解決問題。這種能力的培養(yǎng)對于我在數(shù)學和其他科學領域的學習和研究具有重要意義,也對于培養(yǎng)創(chuàng)造力和創(chuàng)新能力產生了積極的影響。
    最后,學習微積分讓我明白了學習的過程和方法的重要性。微積分是一個漸進的學科,需要我們進行不斷的鞏固和擴展。在學習微積分的過程中,我遇到了很多難題和困惑,但我通過堅持不懈的學習和不斷的思考,逐漸克服了困難,并取得了進步。這個過程讓我深刻地認識到學習需要耐心和毅力,需要不斷地思考和實踐,以及合理的學習方法和時間管理。這些經驗不僅對于微積分學習,也對于其他學科和生活中的學習都具有指導作用。
    綜上所述,微積分的學習對我產生了重要的啟迪和深遠的影響。通過微積分,我能夠更好地理解和分析定量變化的規(guī)律,培養(yǎng)了我的邏輯思維和問題解決能力,鍛煉了我的抽象思維和數(shù)學建模的能力,也讓我明白了學習過程和方法的重要性。微積分不僅是一門學科,更是一種思維方式和方法論,它對于我的成長和發(fā)展起到了重要的推動作用。通過微積分的學習,我相信我的思維方式和能力將會得到持續(xù)的提升,并為我未來的學習和研究奠定堅實的基礎。
    微積分的心得與感悟篇五
    微積分作為數(shù)學的一個分支,是研究變化的數(shù)學工具,其深奧和廣泛應用不僅讓人們感嘆其智慧和美妙,更有助于我們認識和解決現(xiàn)實生活中的問題。在學習微積分的過程中,我不僅掌握了基本概念和定理的運用,更領略到了其在科學和工程等領域的重要性。下面我將結合學習過程和實際應用,對微積分進行總結心得。
    首先,學習微積分讓我深刻理解了數(shù)學與現(xiàn)實的聯(lián)系。微積分的基本思想是研究變化的量,而我們生活中的許多問題都可以轉化為變化的問題。例如,計算機的速度是以每秒中運算次數(shù)來衡量的,而微積分則可以幫助我們揭示其變化規(guī)律。通過微積分的學習,我了解到速度的變化率對于控制臺的設計和優(yōu)化至關重要,可以提高計算效率,減少能源消耗。這個例子讓我更深一步意識到微積分在現(xiàn)實世界中的應用價值。
    其次,微積分的學習不僅培養(yǎng)了我的邏輯思維能力,也鍛煉了我的問題解決能力。微積分中的課程內容涉及到許多復雜的問題,需要從多個角度進行分析和推理。例如,通過求解微分方程可以確定物體的運動軌跡和速度變化規(guī)律;通過積分可以求得曲線下的面積和體積等。這樣的練習讓我不斷思考和挑戰(zhàn),培養(yǎng)了我的邏輯思維和問題解決能力。這種能力在工作和生活中都非常重要,尤其是在解決復雜的問題時,通過將問題分解為多個小問題,再一步步解決,最終達到總體目標。
    進一步來說,微積分的學習還培養(yǎng)了我耐心和毅力。微積分作為一個復雜而抽象的學科,很多時候需要反復推理和證明,需要花費大量的時間和精力。就像曾經的大數(shù)定律在推廣時碰到重重困難,解析幾何在發(fā)展時也經歷了曲折。但是,我從中體會到了科學的研究需要不斷的嘗試和摸索,需要耐心和毅力去攻克困難。正是因為有了這種耐心和毅力,我才能順利地學習并掌握微積分的核心概念和方法。
    另外,微積分學習讓我體會到了數(shù)學之美和智慧。微積分中的許多定理和公式都非常簡潔而優(yōu)美,通過一些簡單的公式和推導,可以得到非常重要的結果。例如,牛頓-萊布尼茲公式可以將曲線下的面積轉化為一個定積分,從而簡化了面積計算的過程。學習微積分的過程中,我也親身感受到了數(shù)學的奧妙和智慧,這種美妙的感覺令人陶醉。
    綜上所述,學習微積分是一種對邏輯思維和問題解決能力的鍛煉,更是一場對現(xiàn)實世界的探求和對數(shù)學之美的領悟。通過學習微積分,我不僅掌握了基本的概念和定理,更深刻理解了數(shù)學與現(xiàn)實的聯(lián)系,培養(yǎng)了我的邏輯思維和問題解決能力,增強了我的耐心和毅力,使我領略到了數(shù)學的美妙和智慧。微積分給我?guī)淼牟粌H僅是知識的擴充,更是一種對于人類智慧的敬畏和對于數(shù)學之美的追求。讓我們以微積分為契機,進一步探索數(shù)學的奧秘,用數(shù)學的智慧去解決實際的問題,為人類的進步和發(fā)展貢獻自己的力量。
    微積分的心得與感悟篇六
    微積分,作為高中數(shù)學的一部分,是一門讓許多學生頭疼的學科。然而,在我學習微積分的過程中,我漸漸發(fā)現(xiàn)微積分并非像表面上那樣難以理解和應用,這讓我對微積分有了新的體會和認識。通過探究微積分的原理和應用,我逐漸領悟到微積分的價值和深層含義。
    首先,微積分的起源和發(fā)展展示了人類智慧的輝煌。微積分理論的建立離不開偉大的數(shù)學家們如牛頓、萊布尼茨等的努力。回顧微積分的歷史,我深受啟發(fā)。面對類似求導、積分等概念,這些數(shù)學家們不斷思考、實踐,最終創(chuàng)造了微積分這門偉大的數(shù)學工具,為人類社會的科學技術發(fā)展做出了巨大貢獻。微積分的深厚背后蘊含著人類智慧的結晶,這使我對微積分產生了更深的敬意和興趣。
    其次,微積分的應用使我對數(shù)學與實際問題的連接有了更深的認識。微積分在自然科學、工程技術、經濟學等領域的應用廣泛而深入。例如,在物理學中,運用微積分可以研究物體的運動規(guī)律;在經濟學中,微積分可以幫助分析經濟模型中的邊際效應等。學習微積分讓我領悟到數(shù)學并不是只停留在紙上或黑板上的抽象理論,而是可以用于解決實際問題的強大工具。感受到微積分在現(xiàn)實生活中的應用,我對這門學科的學習充滿了動力。
    另外,微積分的邏輯推理讓我對思考方式有了新的認識。學習微積分需要嚴密的邏輯思維,要嚴格推導和證明定理。這讓我懂得了思考問題需要有系統(tǒng)性和嚴謹性,不能流于表面。微積分之所以在解決實際問題中如此有效,是因為它是建立在嚴密的推理和邏輯基礎上的。通過學習微積分,我的思維方式得到了鍛煉,我也學會了運用邏輯思維去解決其他問題。
    最后,微積分的學習過程培養(yǎng)了我的動手能力和解決問題的能力。微積分的每一個概念和方法都需要通過例題來進行鞏固和應用。這要求我必須主動動手,多實踐,才能更好地掌握微積分的知識和技能。在解決各種微積分問題的過程中,我逐漸培養(yǎng)了觀察問題、分析問題、解決問題的能力。這種能力在其他學科和實際生活中也同樣有著重要的作用。
    總結而言,學習微積分讓我對這門學科有了全新的感悟和體會。微積分的應用和價值超出了我之前的認識。這門學科不僅是人類智慧的結晶,更是連接數(shù)學與實際問題的橋梁。通過學習微積分,我不僅僅學到了知識和技能,更培養(yǎng)了邏輯思維、動手能力和問題解決能力。微積分是一門挑戰(zhàn)和嚴謹?shù)膶W科,但它也是一門有趣和富有啟發(fā)性的學科。對于未來的學習和生活,我將更加認真學習和應用微積分,不斷探索其中的奧秘和價值。
    微積分的心得與感悟篇七
    數(shù)學基礎階段的復習從現(xiàn)在持續(xù)到到3月份,對于基礎較差的同學建議盡量保證在寒假期間完成這一階段的復習計劃?;A階段復習主要依照考試大綱的要求,系統(tǒng)梳理考綱中各章節(jié)的規(guī)定的考點,熟練掌握基本概念、定理、公式及常用結論等內容,為后期的強化及沖刺階段打下牢固的基礎。
    看書與做題都需用心落到實處。特別需要注意:重點清晰。考綱中對知識點的考查要求各異,把握重點是提高效率的必要環(huán)節(jié)。教材對知識點的講解面面俱到,但對考綱的知識點缺乏側重,大家可以借助一些專升本數(shù)學輔導書。對于一些基礎掌握不是很好的同學來說,還可以通過聽取老師的專升本數(shù)學課進一步加強復習效果。
    另外一點就是看書與做題有機結合。大家在復習時很容易遇到看了后邊忘了前邊的困擾,只有及時配合做題加以鞏固,方可透徹理解各章節(jié)的知識點及其應用,達到相輔相成的理想效果。第一遍復習的時候,需要認真研究各種題型的求解思路和方法,做到心中有數(shù),同時對自己的強項和薄弱環(huán)節(jié)有清楚的認識;第二遍復習的時候就可以有針對性地加強自己不擅長的題型的練習了,經過這樣兩邊的系統(tǒng)梳理,相信解題能力一定會有飛躍性的提高。
    第二階段關鍵詞:提高、強化、做題。
    這一階段的目標是把課本上的基礎知識轉化為自己的做題能力,時間是3月——4月底。這一階段最好是先做一本基礎性質的書,一步一步提高自己的數(shù)學能力,一定要自己認真的做題并且做好記錄。剛開始你可能不會做,一定要分析題型和解題思路,總結出解答不同題型的的路徑?!把鄹呤值汀笔呛芏嗫忌趶土晹?shù)學時易犯的錯誤,很多考生對基礎性的東西不屑一顧,認為這些內容很簡單用不著下勁復習,還有的考生只是“看”,認為看懂就行了很少下筆去做題,結果在最后的考試中眼熟手生難以取得好的成績。
    復習數(shù)學時一定要腳踏實地,一步一個腳印,穩(wěn)扎穩(wěn)打,步步為營,才能以不變應萬變,在最后的實考中占據(jù)主動。
    第三階段關鍵詞:真題、鞏固、查漏補缺。
    這一階段的目標是通過鉆研歷年的真題和高質量的模擬題達到專升本數(shù)學考高分的要求,時間在5月——考前。要按照考試的開始做整套的數(shù)學題,可能開始分數(shù)只有60分甚至更少,不要灰心,我們的目的是查漏補缺以及科學的分配考試時間。
    真題大體上可以兩天一套,嚴格按照考試時間和評分把真題認真的做一遍、推敲一遍,這樣一來你會發(fā)現(xiàn)自己理解的深度又提高了。
    微積分的心得與感悟篇八
    時間,如同軌道上疾馳的列車,匆匆行駛,不留一點痕跡的我們的寒假就這樣over掉了了?;秀敝g,我們就要開始正式上課了。我們依稀還記得,放假前,老師們說讓好好復習,來學校不久便是冬季學期的期末考試了,可是,嘿嘿~~自己卻不得不承認有很大一部分的時間是被荒廢了的。但早早來學校,我們好好靜下心來思考了一下學習的經驗和方法。突然有了要好好學習的沖動,可能以前真的是我們對學習不夠上心的緣故吧。
    對于學習方面,以前我總覺得數(shù)學一直處于主心骨的位置,它是我從小的夢想、我的驕傲??墒亲詮拇髮W以來的第一個學期,微積分卻著實讓我們倍受打擊。成績的不再拔尖,沉痛的打擊了我的自信心。但是,通過和老師交流,與同學討論,讓我明白強中自有強中手,而自己,并不是笨,只是有些方面自己做的不夠,只要深切去思考自己的學習方法,自己依舊有很大的進步空間。
    首先我們覺得大學里的學習課后鞏固很重要,光靠一周兩次大課的學習,遠遠不夠。并且,課上老師可能會因為進度問題而降得很快,很多時候我們會跟不上老師的速度,這時,如果課后不再看老師局的例題,課上的疑問會永遠得不到解答。在此情況下談想進步是不可能的。
    然而課后的鞏固應該從兩方面著手,一方面是教學大綱上要求必須掌握的內容,這些是考試必考內容,或許看似很簡單的內容,確實解題目的最基本的基礎。秋季學期的期末考正是由于自己對基本知識忽略,在一些很簡單的題目丟了分,慘痛的教訓給了哦我們深刻的教訓,夯實基礎知識,才能維納最重要的考試打下良好的基礎。
    另一方面。是自己認為在內容掌握上的盲點和誤區(qū),這些事最容易忘記的,也是應用熟練程度最差的。而考試不會因為這是自己認為的難點就會不考,所以認真鉆研這些題目便可為自己在分數(shù)上的突破起決定性作用。
    同時,復習一定要有耐心,要持之以恒。學習上最大的忌諱便是三天打魚兩天曬網,這樣的學習不會有任何收獲。知識既然學習了,我們就要好好消化,不能讓它成為大腦中的脂肪。周期性的復習才不會使大腦一片空白,一周一次或兩周一次,可以根據(jù)自己的記憶力而定,以適合自己的為基準便可以。
    復習的時候,第一,便是要克服浮躁的毛病,靜心看課本??荚囶}目幾乎都是從課本知識中發(fā)散來的,所以,復習中必須要看課本,反復看,細節(jié)很重要,特別是不被重視的基本概念和定理。力爭課后復習參考題每題都過關。第二,是要制定好復習計劃,針對自身情況分配好時間,各個擊破。第三,要理清知識結構網絡圖,從上學期到現(xiàn)在,我們已經學了:極限、連續(xù)不連續(xù)、導數(shù)、定積分、不定積分等知識內容,然后根據(jù)知識結構網絡圖區(qū)發(fā)散、聯(lián)想基礎概念和基本定理和每個知識點的應用計算題,對本章節(jié)的內容有個清晰的思路,這樣就可以在整體上把我書本知識。從整體上把握書本知識有利于我們對于試卷中的一些基本的題目有一個宏觀的把握。對于試卷中的問答題,可以從多角度去理解和把握,這樣就能做到回答問題的嚴密性。第四,將課上老師所講授的典型例題及做題過程中遇到的難題還有易錯的題歸納整理,分析。數(shù)學中,我們很容易遇到同一個問題有不同方法的解決方法。第五,最好多看看往年真題,針對出現(xiàn)頻率較高的題型,適當做些有針對性的模擬試題。對于自己認為薄弱的環(huán)節(jié)更要加強鉆研,與同學和老師多交流,更要勇于舍棄那些偏題、怪題。
    當然,講這么多,并不是要我們去死學,數(shù)學不是死學就可以學好的,即使短時間內有了成效,那也是持久不了的。所以,我們要靈活學習,多思考??磾?shù)學書要有側重點,數(shù)學分析中的定理,有的要著重看他的證明方法,我們或許可以借鑒;有的著重看定理的內容,或許可以繼續(xù)推廣;有的可以當了解內容,或許此可以為以后的解題做鋪墊呢。
    可是,還要提醒大家一點哦,復習的過程之中,勞逸結合也很重要哦。我們應該注意調整我們的狀態(tài)。一般來說,我們的大腦集中于一門學科的時間不很長,時間久了,思維可能就會停滯了,大腦也不會工作,這樣的時候強逼著自己學習,是沒有任何效果的。所以我們可以采用這樣的一個辦法,將各科學習交叉進行,合理安排好時間這樣既能保證其他功課的學習,有提高了學習效率。而且,我們還要注意休息,適當放松,也是很必要的,看書之余聽聽音樂,出去散散步,就是很不錯的想法。讓大腦呼吸新鮮空氣,時刻處于活躍狀態(tài),我們的學習效率將會大大的提高,做事也就事半功倍了。
    微積分的心得與感悟篇九
    1重基礎,全面學習。
    重基礎,就是指我們應該對教材上的基本定義,定理,公式,例題弄明白。所謂萬變不離其宗,我們把這些弄清楚后,我們才有舉一反三的本錢。全面學習,即指我們在學習過程中應多注意前后聯(lián)系。數(shù)學學習是一個長期過程,我們不能依據(jù)個人愛好而對某些部分的內容放棄,相反,做好各章之間的聯(lián)系才是我們該做的。
    2反復訓練重點內容,熟練掌握。
    數(shù)學成績是練出來的,而且是看出來的,很多東西需要我們自己動手之后才會有收獲。多問,多練,是學習數(shù)學的一種重要方法。
    3學會總結。
    在大量的練習的基礎上,我們應該依據(jù)個人的情況,定期(每周或每月)對自己所學進行總結,在總結之后才能舉一反三,中練習中汲取到方法。
    4考前復習。
    在考試之前,對教材的熟悉是必要的,將書上的定理等熟記于心在考試中才能減少失誤,因此如果時間充裕,最好將教材通看一遍。
    5沉著冷靜應考。
    無論是過程考核,還是最后的期末考試,都要保持良好的心態(tài),對自己有信心。
    微積分的心得與感悟篇十
    一個老生常談的話題,也是提到學習方法必將的一個,話雖老,雖舊,但仍然是不得不提。雖然大家都明白該這樣做,但是真正能夠做到課前預習的能有幾人,課前預習可以使我們提前了解將要學習的知識,不至于到課上手足無措,加深我們聽課時的理解,從而能夠很快的吸收新知識。
    2記筆記。
    這里主要指的是課堂筆記,因為每節(jié)課的時間有限,所以老師將的東西一般都是精華部分,因此很有必要把它們記錄下來,一來可以加深我們的理解,好記性不如爛筆頭嗎,二來可以方便我們以后復習查看。如果對課堂講述的知識不理解的同學更應該做筆記,以便課下細細琢磨,直到理解為止。
    在這里,推薦有能力的同學課下做筆記,一方面加深印象,另一方面檢驗自己的疏漏,更好的提升自己。
    3認真聽講。
    4課后復習。
    同預習一樣,是個老生常談的話題,但也是行之有效的方法,課堂的幾十分鐘不足以使我們學習和消化所學知識,需要我們在課下進行大量的練習與鞏固,才能真正掌握所學知識。
    5涉獵課外習題。
    想要在數(shù)學中有所建樹,取得好成績,光靠課本上的知識是遠遠不夠的,因此我們需要多多涉獵一些課外習題,學習它們的解題思路和方法,如果實在不能理解,可以問問老師或者同學。
    6學會歸類總結。
    學習數(shù)學要記得東西很多,尤其是數(shù)學公式,而且知識還很散,通常解一道題需要各種公式的配合,如果單純的記憶每個公式,不但增加記憶量,而且容易忘,此時我們必須學會歸類總結,把經常搭配使用的公式等總結在一起記憶,這樣會大大的減少我們的記憶量,同時提高我們做題效率(因為公式都綁在一起了)。
    7建立糾錯本。
    我們在學習數(shù)學的時候可能會經常因為同樣一類題目而失分,自己也十分懊惱,其實有辦法可以解決這個問題,就是建立糾錯本,幫我們經常會出錯的題目都集中在一起(當然只要是做錯過得都可以記錄上),然后空閑的時候看看,考試之前再看看,這樣考試的時候出現(xiàn)同類題目再出錯的幾率就降低好多。
    8培養(yǎng)學習興趣。
    又是一個老話題了,今天小編好像講了很多“廢話”,雖然情況確實也是如此,但是小編仍然要講,興趣是最好的老師(又是廢話),只有有了興趣,才會自主自發(fā)的進行學習,學習的效率才會提高。當然建立興趣不是一件容易的事情,怎樣才能對數(shù)學產生興趣還需自己去發(fā)掘,如果實在不能產生興趣,只有掌握以上學習方法了。
    微積分的心得與感悟篇十一
    (一)。
    在我的大學學習生涯中,微積分一直是我最為苦惱的一門課程。公開課在我學習時并不普及,我只能通過課本和老師的講解來學習這門課程。但是最近,在朋友的介紹下,我參與了一次微積分公開課學習,這極大地拓寬了我的視野和知識面,讓我在這門課上獲得了更多的幫助和成效。
    (二)。
    在公開課的學習中,我最深刻的體會是老師的講解全面深入,內容豐富,尤其是他的例題講解。我從老師的講課中看到了老師在這門學科上的熱愛、堅持和毫不懈怠,更深入的理解和掌握了微積分知識。受益匪淺,我更加感受到了補充老師講解的課外學習的重要性。
    (三)。
    公開課對我來說還有一個重要的作用,就是借此與更多的同學交流學習,鍛煉思維與組織表達能力。在公開課的活動中,我參加了很多課堂互動,與同學討論學習中的問題,交流學習的心得,分享思路和技巧,這使我在課堂上不僅僅是一個默默學習的人,更是一個積極向上的同學。
    (四)。
    公開課還為我提供了更多的學習資源和參考資料。老師提供了電子版的課件、教材以及其他資料,讓我從更深入更廣闊的角度去理解微積分,更細致和完備地掌握知識。我也通過公開課來獲得最新的相關研究成果,并有機會參加相關學術會議,這些都為自己的學術研究提供了更多的思路和支持。
    (五)。
    總體來說,通過公開課的學習,我的微積分能力得到了很大提升。我能將所學的知識更加清晰地梳理和理解,并嘗試應用于實踐中。我相信,在今后的學習和工作生涯中,我會愈發(fā)深刻地體會到學習這門課的重要性,并為之付出更多努力。同時,我將更加積極地參與各種形式的學習交流活動,不斷分享和學習,讓自己成為一個更優(yōu)秀的知識工作者。
    微積分的心得與感悟篇十二
    (1)考前看書。在考試之前,對教材的熟悉是必要的,將書上的定理等熟記于心在考試中才能減少失誤,因此如果時間充裕,最好將教材通看一遍。
    (2)記公式,定義??记爸v公式,定義記憶一遍,在考試中就不會出現(xiàn)因為公式,定義模糊不清而出現(xiàn)丟分的情況。
    (3)練習。考前最好的檢測自己是否準備到位的方法最好的便是找一套題來自己練習一遍,在練習的過程中,自己才能發(fā)現(xiàn)自己存在的問題。
    (4)搞定例題。雖然考試時不會出現(xiàn)原題,但萬變不離其宗,書上的例題全部搞懂,在考試時遇到類似的題自己才能穩(wěn)住陣腳,將其拿下。建議大家采用先看例題,再關上書自己做,實在無法解出在看書的方法。
    (四)一些考試的小技巧。
    (1)保持良好的心態(tài),對自己有信心。
    (2)拿到試卷后,把試卷瀏覽一遍,分清難易程度,做題時按照先易后難的順序做。
    (3)認真仔細做題,保證自己會做的全部做對。
    (4)不要在試卷是留空白。大題的過程分占了很大比例,因此自己能做多少做多少。
    (5)做完之后檢查自己試卷,減少自己的失誤。
    微積分的心得與感悟篇十三
    (1)考前看書。在考試之前,對教材的熟悉是必要的,將書上的定理等熟記于心在考試中才能減少失誤,因此如果時間充裕,最好將教材通看一遍。
    (2)記公式,定義??记爸v公式,定義記憶一遍,在考試中就不會出現(xiàn)因為公式,定義模糊不清而出現(xiàn)丟分的情況。
    (3)練習??记白詈玫臋z測自己是否準備到位的方法最好的便是找一套題來自己練習一遍,在練習的過程中,自己才能發(fā)現(xiàn)自己存在的問題。
    (4)搞定例題。雖然考試時不會出現(xiàn)原題,但萬變不離其宗,書上的例題全部搞懂,在考試時遇到類似的題自己才能穩(wěn)住陣腳,將其拿下。建議大家采用先看例題,再關上書自己做,實在無法解出在看書的方法。
    微積分的心得與感悟篇十四
    事實上,數(shù)學三考微積分相關內容的題目都不是太難,但是出題老師似乎對基本計算及應用情有獨鐘,所以對基礎知識扎扎實實地復習一遍是最好的應對方法。閱讀教材雖然是奠定基礎的一種良方,但參考一下一些輔導資料,如《微積分過關與提高》等,能夠有效幫助同學們從不同角度理解基本概念、基本原理,加深對定理、公式的印象,增加基本方法及技巧的攝入量。對基本內容的復習不能只注重速度而忽視質量。在看書時帶著思考,并不時提出問題,這才是好的讀懂知識的方法。
    二、關注重點知識。
    在看教材及輔導資料時要依三大塊分清重點、次重點、非重點。閱讀數(shù)學圖書與其他文藝社科類圖書有個區(qū)別,就是內容沒有那么強的故事性,同時所述理論有一定抽象性,所以在此再一次提醒同學們讀書需要不斷思考其邏輯結構。比如在看函數(shù)極限的性質中的局部有界性時,能夠聯(lián)系其在幾何上的表現(xiàn)來理解,并思考其實質含義及應用。三大塊內容中,一元函數(shù)的微積分是基礎,定義一元函數(shù)微積分的極限及微積分的主要研究對象——函數(shù)及連續(xù)是基礎中的基礎。這個部分也是每年必定會出題考查的,必須引起注意。多元函數(shù)微積分,主要是二元函數(shù)微積分,這個部分大家需要記很多公式及解題捷徑。無窮級數(shù)和常微分方程與差分方程部分的重點很容易把握,考點就那幾個,需要注意的是其與實際問題結合出題的情況。
    三、適度做題。