對于一段時間內(nèi)的學(xué)習(xí)和工作,總結(jié)可以幫助我們發(fā)現(xiàn)自己的優(yōu)點和不足,并提出改進(jìn)的方案。寫總結(jié)時要注意語氣平和穩(wěn)定,不要過于情緒化和主觀化。以下是一些學(xué)習(xí)總結(jié)的例子,希望能對同學(xué)們的學(xué)習(xí)有所幫助。
高等數(shù)學(xué)的體會篇一
1.提前預(yù)習(xí):上課前抽出一個鐘或半個鐘的時間,預(yù)習(xí)一下要學(xué)習(xí)的東西,不明白的做筆記,帶著問題有目的的聽講。
2.借助外部力量:可以借助一些輔導(dǎo)書,習(xí)題冊,幫助自己更好的理解。
3.概念反復(fù)研究:概念性的知識缺乏直接的經(jīng)驗,因此需要反復(fù)的研究演練。
4.數(shù)學(xué)語言:多練習(xí)運用數(shù)學(xué)語言進(jìn)行描述,數(shù)學(xué)語言是符號語言,簡明準(zhǔn)確,自成體系,是數(shù)學(xué)思維的基礎(chǔ)。
5.知識系統(tǒng)化:
a.理脈絡(luò):極限思想貫穿高等數(shù)學(xué)始終,其它主要知識體系的建立、主要問題的解決都依賴于它。
b.知基礎(chǔ):例如,導(dǎo)數(shù)是微分的基礎(chǔ),牛頓—萊布尼茲公式是積分學(xué)的基礎(chǔ)。
c.分層次:采用化歸的數(shù)學(xué)思想。例如,定積分、重積分、曲線積分、曲面積分等都是和式的極限,層層深入提高,而解題方法又都?xì)w結(jié)到不定積分的基礎(chǔ)上來。
d.舉反例:例如,函數(shù)在某點的極限存在,而在該點處卻不連續(xù)。
e.找特例:采用從特殊到一般的數(shù)學(xué)思想,再把特例中的條件更換為一般的條件,即可得出一般性的結(jié)論。
f.明了知識的交叉點:例如,微分學(xué)與解析幾何的某些知識點的結(jié)合,產(chǎn)生了微分幾何的初步知識—曲率、切線、切平面、法線、法平面等。
g.幾何直觀:采用數(shù)形結(jié)合的數(shù)學(xué)思想,使抽象的函數(shù)關(guān)系變?yōu)樾蜗蟮膸缀螆D形,使概念、定理更易于理解和掌握。
6.要適當(dāng)多做習(xí)題,注意積累解題經(jīng)驗,及時總結(jié):
a.分題型:按數(shù)學(xué)思想及方法的不同分清不同題型,即可達(dá)到事半功倍的學(xué)習(xí)效果。
b.重方法:注意平時做題方法的積累,例如,條件極值問題和部分不等式的證明,引入輔助函數(shù)的方法。
c.按步驟:根據(jù)步驟一步一步進(jìn)行解答,不要嫌麻煩,例如,求最值問題。
d.找規(guī)律:某些問題可以按照一定的規(guī)律解決。
高等數(shù)學(xué)的體會篇二
原本以為憑借小學(xué)到高中這十余年所總結(jié)出的數(shù)學(xué)學(xué)習(xí)方法,就能輕松應(yīng)對大學(xué)高等數(shù)學(xué)的學(xué)習(xí)。
然而,經(jīng)過一個多學(xué)期的學(xué)習(xí),我真正體會到高等數(shù)學(xué)的學(xué)習(xí)特點與以往所學(xué)習(xí)的數(shù)學(xué)大相徑庭。因此,我必須在學(xué)習(xí)過程中找到高等數(shù)學(xué)的獨特之處,總結(jié)出一套新的有效的方法,才能在高等數(shù)學(xué)的學(xué)習(xí)中做到游刃有余。
就我個人而言,我認(rèn)為高等數(shù)學(xué)有以下幾個顯著特點:
(1)識記的知識相對減少,理解的知識點相對增加;
(2)不僅要求會運用所學(xué)的知識解題,還要明白其來龍去脈;
(3)系實際多,對專業(yè)學(xué)習(xí)幫助大;
(4)教師授課速度快,課下復(fù)習(xí)與預(yù)習(xí)必不可少。
以前上數(shù)學(xué)課,老師在黑板上寫滿各種公式和結(jié)論,我便一邊在書上勾畫,一邊在筆記本上記錄。
然后像背單詞一樣,把一堆公式與結(jié)論死記硬背下來。
哪種類型的題目用哪個公式、哪條結(jié)論,老師都已一一總結(jié)出來,我只需要將其對號入座,便可將問題解答出來。
而現(xiàn)在,我不再有那么多需要識記的結(jié)論。
唯一需要記住的只是數(shù)目不多的一些定義、定理和推論。
老師也不會給出固定的解題套路。因為高等數(shù)學(xué)與中學(xué)數(shù)學(xué)不同,它更要求理解。只要充分理解了各個知識點,遇到題目可以自己分析出正確的解題思路。
所以,學(xué)習(xí)高等數(shù)學(xué),記憶的負(fù)擔(dān)輕了,但對思維的要求卻提高了。
每一次高數(shù)課,都是一次大腦的思維訓(xùn)練,都是一次提升理解力的好機(jī)會。
高等數(shù)學(xué)的學(xué)習(xí)目的不是為了應(yīng)付考試,因此,我們的學(xué)習(xí)不能停留在以解出答案為目標(biāo)。
我們必須知道解題過程中每一步的依據(jù)。正如我前面所提到的,中學(xué)時期學(xué)過的許多定理并不特別要求我們理解其結(jié)論的推導(dǎo)過程。
而高等數(shù)學(xué)課本中的每一個定理都有詳細(xì)的證明。
最初,我以為只要把定理內(nèi)容記住,能做題就行了。
然而,漸漸地,我發(fā)現(xiàn)如果沒有真正明白每個定理的來龍去脈,就不能真正掌握它,更談不上什么運用自如了。
于是,我開始認(rèn)真地學(xué)習(xí)每一個定理的推導(dǎo)。有時候,某些地方很難理解,我便反復(fù)思考,或請教老師、同學(xué)。盡管這個過程并不輕松,但我卻認(rèn)為非常值得。
因為只有通過自己去探索的知識,才是掌握得最好的。
總而言之,高等數(shù)學(xué)的以上幾個特點,使我的數(shù)學(xué)學(xué)習(xí)歷程充滿了挑戰(zhàn),同時也給了我難得的鍛煉機(jī)會,讓我收獲多多。
進(jìn)入大學(xué)之前,我們都是學(xué)習(xí)基礎(chǔ)的數(shù)學(xué)知識,聯(lián)系實際的東西并不多。在大學(xué)卻不同了。
不同專業(yè)的學(xué)生學(xué)習(xí)的數(shù)學(xué)是不同的。
正是因為如此,高等數(shù)學(xué)的課本上有了更多與實際內(nèi)容相關(guān)的`內(nèi)容,這對專業(yè)學(xué)習(xí)的幫助是不可低估的。
比如“常用簡單經(jīng)濟(jì)函數(shù)介紹”中所列舉的需求函數(shù),供給函數(shù),生產(chǎn)函數(shù)等等在西方經(jīng)濟(jì)學(xué)的學(xué)習(xí)中都有用到。
而“極值原理在經(jīng)濟(jì)管理和經(jīng)濟(jì)分析中的應(yīng)用”這一節(jié)與經(jīng)濟(jì)學(xué)中的“邊際問題”密切相關(guān)。如果沒有這些知識作為基礎(chǔ),經(jīng)濟(jì)學(xué)中的許多問題都無法解決。
當(dāng)我親身學(xué)習(xí)了高等數(shù)學(xué),并試圖把它運用到經(jīng)濟(jì)問題的分析中時,才真正體會到了數(shù)學(xué)方法是經(jīng)濟(jì)學(xué)中最重要的方法之一,是經(jīng)濟(jì)理論取得突破性發(fā)展的重要工具。這也堅定了我努力學(xué)好高等數(shù)學(xué)的決心。希望未來自己可以憑借扎實的數(shù)理基礎(chǔ),在經(jīng)濟(jì)領(lǐng)域里大展鴻圖。
高等數(shù)學(xué)作為大學(xué)的一門課程,自然與其它課程有著共同之處,那就是講課速度快。
剛開始,我非常不適應(yīng)。上一題還沒有消化,老師已經(jīng)講完下一題了。帶著幾分焦慮,我向?qū)W長請教學(xué)習(xí)經(jīng)驗,才明白大學(xué)學(xué)習(xí)的重點不僅僅是課堂,課下的預(yù)習(xí)與復(fù)習(xí)是學(xué)好高數(shù)的必要條件。
于是,每節(jié)課前我都認(rèn)真預(yù)習(xí),把不懂的地方作上記號。課堂上有選擇、有計劃地聽講。
課后及時復(fù)習(xí),歸納總結(jié)。逐漸地,我便感到高數(shù)課變得輕松有趣。只要肯努力,高等數(shù)學(xué)并不會太難。
高等數(shù)學(xué)有其獨特之處,但它畢竟是數(shù)學(xué),那么一定量的習(xí)題自然必不可少。
通過練習(xí),才能更深入地理解,運用。
以上便是本人一個多學(xué)期以來,學(xué)習(xí)高等數(shù)學(xué)的一些體會。
希望自己能在以后的學(xué)習(xí)中更上一層樓!
高等數(shù)學(xué)的體會篇三
高等數(shù)學(xué)是大學(xué)必修課程之一,是數(shù)學(xué)學(xué)科的重要組成部分。在我小學(xué)和初中的數(shù)學(xué)課上,我一直都是數(shù)學(xué)的優(yōu)等生,但是對于高等數(shù)學(xué),我卻感到了困惑和挑戰(zhàn)。在大學(xué)一年級的時候,我開始接觸高等數(shù)學(xué)課程,剛開始覺得不太適應(yīng),因此在此期間感覺相當(dāng)壓抑。隨著時間的推移,我開始更深入地研究這門學(xué)科,并嘗試各種不同的學(xué)習(xí)方法,以便提高自己的成績。最終,在經(jīng)過無數(shù)次的努力后,我克服了困難,考出了令人滿意的高等數(shù)學(xué)成績。
第二段:回顧高等數(shù)學(xué)的考試經(jīng)驗
在學(xué)習(xí)高等數(shù)學(xué)的過程中,我不僅學(xué)到了許多知識和技能,也經(jīng)歷了很多考試。這些考試無疑是對我學(xué)習(xí)成果的檢驗,也讓我有機(jī)會去發(fā)現(xiàn)自己的弱點,找到不足之處,并嘗試改進(jìn)和克服它們。另外,這些考試還讓我體會到了競爭的壓力和緊張氣氛,這些因素都激發(fā)了我更深入地學(xué)習(xí)高等數(shù)學(xué)的熱情。
第三段:總結(jié)高等數(shù)學(xué)的重要性
高等數(shù)學(xué)的學(xué)習(xí)不僅僅關(guān)乎學(xué)習(xí)數(shù)學(xué)知識,更重要的是培養(yǎng)了我學(xué)習(xí)的能力。在學(xué)習(xí)過程中,我不斷努力,練習(xí)思考和分析的能力,提高了自己的邏輯推理和解決問題的能力。這些都是遠(yuǎn)遠(yuǎn)超出課程范圍的技能,對我的職業(yè)生涯和個人發(fā)展有著深遠(yuǎn)的影響。此外,學(xué)習(xí)高等數(shù)學(xué)還讓我感受到了知識的博大精深和對未知事物探索的熱情,這些元素也能夠?qū)ξ椅磥淼陌l(fā)展起到重要的支持作用。
第四段:點評吳昊的體會和經(jīng)驗
吳昊是我身邊一個優(yōu)秀的同學(xué),在高等數(shù)學(xué)的學(xué)習(xí)中他取得了出色的成績。他的學(xué)習(xí)經(jīng)驗和體會也對我啟發(fā)和影響很大。從吳昊的學(xué)習(xí)經(jīng)驗中,我們可以看到他在學(xué)習(xí)過程中非常注重理論知識的掌握和實踐能力的培養(yǎng)。而且,吳昊非常善于把理論知識和實踐技能有機(jī)結(jié)合起來,不斷地總結(jié)和反思,從而實現(xiàn)了對高等數(shù)學(xué)的深入理解。這些學(xué)習(xí)方法和態(tài)度對我指引良多,讓我對高等數(shù)學(xué)的學(xué)習(xí)也有了更多的信心和動力。
第五段:思考未來發(fā)展方向
在未來的學(xué)習(xí)過程中,我還需要不斷地探索和尋求新的機(jī)遇和挑戰(zhàn),以提高自己的學(xué)習(xí)能力和職業(yè)素養(yǎng)。高等數(shù)學(xué)作為一門必修課程,是培養(yǎng)我學(xué)習(xí)能力和解決問題能力的重要途徑。在今后的學(xué)習(xí)和生活中,我將會更加努力和專注于高等數(shù)學(xué)的學(xué)習(xí),以完成自己的職業(yè)規(guī)劃和個人發(fā)展目標(biāo)。
高等數(shù)學(xué)的體會篇四
高等代數(shù)作為數(shù)學(xué)基礎(chǔ)中的一門重要學(xué)科,是我在大學(xué)學(xué)習(xí)生涯中必修的一門課程。在這門課上,我深入學(xué)習(xí)了向量空間、線性代數(shù)、矩陣?yán)碚摰鹊?,并從中得出了一些心得體會。
第二段:突破自我認(rèn)知
在學(xué)習(xí)高等代數(shù)的過程中,我發(fā)現(xiàn)自己原本對數(shù)學(xué)的學(xué)習(xí)方法是缺失的。在以往的學(xué)習(xí)過程中,我往往會死記硬背定理和公式,而高等代數(shù)的學(xué)習(xí)則需要我不斷拓展自己的思路和認(rèn)知。通過學(xué)習(xí)高等代數(shù),我突破了自我對數(shù)學(xué)的認(rèn)知,從“背誦”到“理解”,從“計算”到“思考”。
第三段:運用于實際生活
高等代數(shù)學(xué)習(xí)對我的實際生活也有很大的幫助。在學(xué)習(xí)過程中,我不僅掌握了向量、矩陣等基本的數(shù)學(xué)工具,還學(xué)會了如何將這些數(shù)學(xué)知識應(yīng)用到生活實踐中。在處理各種實際問題時,我能夠運用這些學(xué)習(xí)到的高等代數(shù)知識,分析出問題的本質(zhì),得到更準(zhǔn)確的結(jié)論。
第四段:加深對數(shù)學(xué)基礎(chǔ)的理解
高等代數(shù)學(xué)習(xí)也加深了我對數(shù)學(xué)基礎(chǔ)的理解。 我們只有在基礎(chǔ)理解的基礎(chǔ)上才能建立更深層的學(xué)習(xí),高等代數(shù)學(xué)習(xí)在一定程度上鞏固了我在初等數(shù)學(xué)學(xué)習(xí)中所掌握的知識,特別是空間幾何方面的知識,越是基礎(chǔ)的知識點就越是能讓我對數(shù)學(xué)產(chǎn)生新的認(rèn)知和體驗。
第五段:總結(jié)
在高等代數(shù)的學(xué)習(xí)過程中,我收獲了很多。除了掌握一些有用的數(shù)學(xué)知識外,我還學(xué)會了如何更好地應(yīng)對數(shù)學(xué)學(xué)習(xí),這對我的未來學(xué)習(xí)、工作、生活都有很大的幫助。高等代數(shù)學(xué)習(xí)讓我不斷突破自我,提高了對基礎(chǔ)數(shù)學(xué)知識的理解,讓我對數(shù)學(xué)知識擁有更深入的體會和認(rèn)知。
高等數(shù)學(xué)的體會篇五
1.極限思想:是一種漸進(jìn)變化的數(shù)學(xué)思想。利用有限描述無限,由近似到精確的一種過程。極限思想是高等數(shù)學(xué)必不可少的一種重要方法,是高等數(shù)學(xué)與初等數(shù)學(xué)的本質(zhì)區(qū)別。利用極限思想方法解決了許多初等數(shù)學(xué)無法解決的問題,例如,求瞬時速度、曲線弧長、曲邊形面積、曲面體體積等問題。
2.函數(shù)思想:是通過構(gòu)造函數(shù),利用函數(shù)的概念、圖象和性質(zhì)去分析問題、轉(zhuǎn)化問題和解決問題的思想方法。中學(xué)數(shù)學(xué)和大學(xué)數(shù)學(xué)中都有用到函數(shù)思想,而大學(xué)中是將函數(shù)進(jìn)一步深化,更復(fù)雜一些,例如,函數(shù)的極限、連續(xù)性、極值等。
3.化歸思想:化歸思想的中心是轉(zhuǎn)化。原則是陌生問題熟悉化,復(fù)雜問題簡單化,抽象問題具體化,命題形式的轉(zhuǎn)化,引入輔助元素等。
4.數(shù)形結(jié)合思想:數(shù)學(xué)是以數(shù)和形為主干,劃分為代數(shù)和幾何兩個方向,而數(shù)和形又常常結(jié)合在一起,內(nèi)容上相互聯(lián)系,方法上相互滲透,并在一定條件下相互轉(zhuǎn)化。例如,平面向量的數(shù)量關(guān)系、解析幾何中曲線與方程的關(guān)系等。
5.邏輯思想:邏輯思想依賴于嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)推理。推理是多樣的,其中歸納和類比是兩種應(yīng)用極廣的推理。
a.歸納推理的過程:“發(fā)現(xiàn)問題”-“觀察問題”-“歸納問題”-“推廣問題”-“猜想”-“證明猜想”,例如,在某些證明中所使用的數(shù)學(xué)歸納法等。
b.類比:是根據(jù)兩個或兩類對象有部分屬性相同,推出它們的其它屬性也相同。類比方法有不同的類型:概念間的類比、形式間的類比、有限與無限間的類比等。
高等數(shù)學(xué)的體會篇六
高等數(shù)學(xué)是大學(xué)重要的數(shù)學(xué)基礎(chǔ)課程,涉及到微積分、線性代數(shù)、概率論與數(shù)理統(tǒng)計等多個學(xué)科領(lǐng)域,為學(xué)生的數(shù)學(xué)素養(yǎng)和綜合能力的提高帶來了巨大的幫助。如今,我已經(jīng)學(xué)習(xí)高等數(shù)學(xué)一年多,并考取了高分。在學(xué)習(xí)中,我積累了一些心得體會,現(xiàn)在愿意分享給大家。
一、認(rèn)真理解概念
高等數(shù)學(xué)中包含了大量的數(shù)學(xué)概念,這些概念是該學(xué)科的基礎(chǔ)。我們要經(jīng)常復(fù)習(xí)、深刻理解這些概念,才能更好地庖闡數(shù)學(xué)原理,推導(dǎo)出數(shù)學(xué)公式。對于某些難以理解的概念,可以尋找一些相關(guān)的實例進(jìn)行解釋,或者和同學(xué)一起討論,共同掌握這些概念,這樣才能更好地理解后面的內(nèi)容。
二、透徹掌握習(xí)題
高等數(shù)學(xué)的習(xí)題類型較多,需要我們不斷地練習(xí),從而鞏固和提高自己的掌握程度。在做習(xí)題時,我們要遵循“由易到難”的原則,先做容易的,逐漸增加難度,提升自身的解題水平。做題時,也要注意拓展視野,不要僅局限于老師講授的范圍,多嘗試一些新的方法和角度。
三、整合思維方式
高等數(shù)學(xué)的學(xué)習(xí)需要我們具有一定的數(shù)學(xué)思維能力,這也是高等數(shù)學(xué)和初等數(shù)學(xué)一份四的區(qū)別所在。在學(xué)習(xí)中,我們要注重培養(yǎng)自己的數(shù)學(xué)思考能力,學(xué)會用多種方式解決一道問題,整合不同的思維方式,拓展自己的思路。這種能力的培養(yǎng)要靠平時的訓(xùn)練,結(jié)合習(xí)題、考試和解題課等多種形式進(jìn)行。
四、注重細(xì)節(jié)處理
在高等數(shù)學(xué)課程中,一個小小的細(xì)節(jié)往往決定著整道題的成敗。因此,在學(xué)習(xí)高等數(shù)學(xué)時,我們必須將注意力集中在題目的細(xì)節(jié)上,嚴(yán)謹(jǐn)?shù)貙Υ恳徊接嬎?,避免出現(xiàn)計算錯誤。同時,在做習(xí)題和考試時,我們也要注意填寫卷面和計算器的使用規(guī)范,這樣才能避免走彎路,保證高分通過。
五、多方面尋求幫助
高等數(shù)學(xué)作為一門比較重要的基礎(chǔ)課程,難度比較大,我們學(xué)習(xí)中難免會遇到困難。遇到問題時,我們應(yīng)該多方面尋求幫助,可以找老師、同學(xué)或者其他渠道,與他人交流和探討,相互幫助提高解決問題的能力。此外,也要注重查找有關(guān)的參考書籍和一些網(wǎng)上的研究綜述,引領(lǐng)自己更快地掌握課程要點。
總之,高等數(shù)學(xué)雖然難,但只要認(rèn)真刻苦,多方尋求幫助,注重方向且扎實整合思維方式,嚴(yán)謹(jǐn)處理學(xué)習(xí)細(xì)節(jié),逐漸提升自己的數(shù)學(xué)素養(yǎng)和思維能力,就可以取得好成績,為自己的學(xué)業(yè)和未來的發(fā)展提供堅實的保障。
高等數(shù)學(xué)的體會篇七
學(xué)好高等數(shù)學(xué)是一個長期的過程,要做到邊學(xué)邊鞏固,今天的事今天完成,分階段有目的的復(fù)習(xí),學(xué)習(xí)來不得半點的投機(jī)取巧,所以考前突擊,臨時抱佛腳的做法都是不足取的,只有按照自己的計劃,踏踏實實的進(jìn)行準(zhǔn)備,才能以不變應(yīng)萬變,只要自己的綜合能力提高了,就能取得好的成績。
數(shù)學(xué)是嚴(yán)密的科學(xué)。數(shù)學(xué)是由概念、公理、定理、公式等,按照一定的邏輯規(guī)則組成的嚴(yán)密的知識體系,有很強(qiáng)的系統(tǒng)性。因此,在數(shù)學(xué)的學(xué)習(xí)中,一定要循序漸進(jìn),打好基礎(chǔ),完整地、系統(tǒng)地掌握基本概念和基本原理,這樣才能為解題打好堅實的基礎(chǔ)??傊?,學(xué)好高等數(shù)學(xué)并不是一件難事,只要你付出必要的努力,數(shù)學(xué)不應(yīng)是枯燥乏味的符號,只要你鉆進(jìn)去就會感到趣味盎然,數(shù)學(xué)不是一堆繁瑣無用的公式,掌握了它的真諦,就會給你增添知識和力量。
高等數(shù)學(xué)的體會篇八
隨著科技日新月異的發(fā)展和電腦無孔不入的應(yīng)用。高等數(shù)學(xué)課程作為一種數(shù)學(xué)工具的功能正在逐步縮減。但作為一種思維方法的載體的功能(例如訓(xùn)練學(xué)生辯證思維、邏輯推理、發(fā)現(xiàn)同題及分析同題的能力)卻愈顯風(fēng)采。一個多元線性方程組如何去解?我們可以交給電腦去完成,只要會正確使用數(shù)學(xué)軟件。但一個實際問題如何通過數(shù)學(xué)建模轉(zhuǎn)化為一個數(shù)學(xué)同題,除了必須具備許多綜合的知識,還需要具備一定的分析推理能力,這種素質(zhì)自然可以通過生活來積累,但如果能夠通過象高等數(shù)學(xué)這樣的課程作為載體來進(jìn)行系統(tǒng)訓(xùn)練,將是事半功倍的。
以往對工科學(xué)生來講,高等數(shù)學(xué)的教學(xué)比較偏重于計算方法的訓(xùn)練,例如,如何計算極限,計算導(dǎo)數(shù),計算積分,通過熟練掌握計算方法來加深對概念的理解,這是學(xué)習(xí)高等數(shù)學(xué)的一條捷便之徑。但是從二十一世紀(jì)更加需要創(chuàng)新人才的觀點看,從高等數(shù)學(xué)的概念中直接去提煉一種分析推理能力及實際應(yīng)用能力,將是更加重要的。(當(dāng)然,在改革的力度還未到位時,由于教學(xué)要求及教材等原因。學(xué)習(xí)高等數(shù)學(xué)并不能僅偏重于概念,對基本的計算方法必須熟練地掌握。如今就如何學(xué)好高等數(shù)學(xué)的基本概念。提出一些拙見供同學(xué)參考。
我們觀察一個物體,如果僅僅通過平視去進(jìn)行,那么對這個物體的認(rèn)識往往是局部的,甚至是扭曲的,只有從正視、俯視、側(cè)視的多角度去觀察與綜合,方能得到物體正確的空間定位。觀察事物尚且如此,要理解一個抽象的概念,如果只有單向的思維方法,肯定只能淺嘗輒止。只有從正反兩個方向去透視概念,才能較深地抓住概念中一些本質(zhì)的東西。這里所說的正方向思維應(yīng)該包含幾層意思:一是概念的定義是如何敘述的,二是概念所尉帶的條件是必要的。還是充分的'?三是概念產(chǎn)生的實際背景是什么?這里所說的反方向思維又應(yīng)該包含兩層意思:一是對一個概念的否定是怎樣表達(dá)的?二是如果錯誤的理解了概念中的一些條件會導(dǎo)致什么樣的錯誤結(jié)果。
發(fā)現(xiàn)問題呢?首先要提倡自學(xué),在自己預(yù)習(xí)教材(也鍛煉了一種自學(xué)能力)的過程中很容易發(fā)現(xiàn)不懂的同題,帶著同題再去聽課就會有的放矢。其次是聽課之后做習(xí)題之前要認(rèn)真復(fù)習(xí)消化課上的內(nèi)容,只要積極地開動腦筋,從中是會發(fā)現(xiàn)很多問題的,在這個較深層次上發(fā)現(xiàn)問題又去解決問題(可以通過同學(xué)與老師的幫助),那么分析問題的能力就會有一個質(zhì)的提高。
學(xué)習(xí)數(shù)學(xué),不做習(xí)題是絕對不行的。因為耐概念究竟理解與否檢驗的最后關(guān)口是習(xí)題。一道習(xí)題不會做或者做錯了,肯定是某些概念投有消化好,帶著習(xí)題再來復(fù)習(xí)理解概念,拄往會摩擦出新的思想火花。學(xué)習(xí)高等數(shù)學(xué)的過程中,我們不主張采用中學(xué)的題海戰(zhàn),但對每道習(xí)題不但要弄懂正確的解法,而且盡量要考慮能否有多種解法。這還不夠,進(jìn)一步的思考是一些似是而非的錯誤解法究竟錯在哪里?必定是對概念理解的偏差才導(dǎo)致的錯誤結(jié)果。經(jīng)過又一次正反兩個層面的開掘。思考深入了,學(xué)習(xí)的興趣也會逐步培育起來。
高等數(shù)學(xué)的體會篇九
第一段:引言(120字)
高等數(shù)學(xué)作為大學(xué)數(shù)學(xué)課程中的一門重要學(xué)科,不僅是理工科學(xué)生的必修課,更是培養(yǎng)學(xué)生分析解決問題能力的重要途徑。在學(xué)習(xí)高等數(shù)學(xué)的過程中,我感受到了數(shù)學(xué)的美妙與魅力,同時也深刻體會到了數(shù)學(xué)學(xué)習(xí)的重要性。通過這門課程的學(xué)習(xí),我不僅提高了自己的數(shù)學(xué)水平,更具備了解決實際問題的能力,下面將分為邏輯推理能力的提升、問題解決能力的培養(yǎng)、批判性思維的養(yǎng)成、嚴(yán)密的思維訓(xùn)練以及團(tuán)隊合作精神的培養(yǎng)五個方面,詳細(xì)論述我在高等數(shù)學(xué)學(xué)習(xí)中的心得體會。
第二段:邏輯推理能力的提升(250字)
高等數(shù)學(xué)學(xué)習(xí)需要運用各種公式定理,進(jìn)行推導(dǎo)證明。在這個過程中,我不斷鍛煉了自己的邏輯推理能力。老師引導(dǎo)我們學(xué)會分析問題,從多個角度去思考,利用數(shù)學(xué)方法解決問題。通過數(shù)學(xué)定理的證明,我更加深入地理解了邏輯推理的重要性以及問題求解的思路。此外,在高等數(shù)學(xué)的學(xué)習(xí)過程中,我還學(xué)會了如何將復(fù)雜問題分解為簡單子問題,逐步推導(dǎo)出一個完整的解決方案。這一過程的鍛煉不僅提高了我的數(shù)學(xué)素養(yǎng),還培養(yǎng)了我的邏輯思維能力,使我能夠更好地應(yīng)對其他學(xué)科的學(xué)習(xí)和實際問題的解決。
第三段:問題解決能力的培養(yǎng)(250字)
高等數(shù)學(xué)學(xué)習(xí)強(qiáng)調(diào)實際問題的建模與求解,培養(yǎng)學(xué)生解決實際問題的能力。在課堂上,我親身體驗了數(shù)學(xué)在解決實際問題中的作用。通過案例分析和問題解決討論,我學(xué)會了將抽象概念和公式與實際問題相結(jié)合,找到問題的關(guān)鍵點,提出有效的解決方案。此外,高等數(shù)學(xué)課程還讓我了解了數(shù)學(xué)與其他學(xué)科的交叉點,從而拓寬了視野,幫助我更好地理解和解決其他學(xué)科的實際問題。
第四段:批判性思維的養(yǎng)成(250字)
高等數(shù)學(xué)學(xué)習(xí)強(qiáng)調(diào)學(xué)生的批判性思維能力的培養(yǎng)。在學(xué)習(xí)過程中,我發(fā)現(xiàn)數(shù)學(xué)不僅有固定答案,還有多種解決路徑和解釋方法。通過解析問題的不同方面,從不同的角度思考,我逐漸養(yǎng)成了批判性思維的習(xí)慣。我開始質(zhì)疑問題是否被正確解決,是否有更好的方法,這種思維方式不僅在高等數(shù)學(xué)學(xué)習(xí)中幫助我更好地理解概念和定理,還在其他學(xué)科和實際生活中使我更加理性和客觀。
第五段:嚴(yán)密的思維訓(xùn)練與團(tuán)隊合作精神的培養(yǎng)(320字)
高等數(shù)學(xué)中的復(fù)雜定理和抽象概念要求學(xué)生掌握嚴(yán)密的思維能力。在解題過程中,我不得不重復(fù)思考,審查每一個環(huán)節(jié),確保每個推導(dǎo)步驟的準(zhǔn)確性和嚴(yán)密性。這過程雖然艱辛,但成功地提升了我的思維嚴(yán)密性和細(xì)心程度。另外,高等數(shù)學(xué)學(xué)習(xí)中的小組討論和團(tuán)隊合作也給了我很大的啟示。通過與同學(xué)合作,每個人可以帶來不同的思路和見解,我們可以互相學(xué)習(xí)、互相鼓勵,并共同解決問題。這種團(tuán)隊合作精神不僅在高等數(shù)學(xué)中得到培養(yǎng),還可以應(yīng)用到其他學(xué)科和實際工作中。
結(jié)尾:總結(jié)(90字)
總的來說,高等數(shù)學(xué)的學(xué)習(xí)不僅提高了我的數(shù)學(xué)水平,更重要的是培養(yǎng)了我解決問題的能力、批判性思維以及團(tuán)隊合作精神。這些能力將在我的未來學(xué)習(xí)和工作中發(fā)揮重要作用。通過高等數(shù)學(xué)的學(xué)習(xí),我明白了數(shù)學(xué)不僅僅是一種學(xué)科,更是一種思維方式和處理問題的工具。
高等數(shù)學(xué)的體會篇十
隨著科技日新月異的發(fā)展和電腦無孔不入的應(yīng)用.高等數(shù)學(xué)課程作為一種數(shù)學(xué)工具的功能正在逐步縮減.但作為一種思維方法的載體的功能(例如訓(xùn)練學(xué)生辯證思維、邏輯推理、發(fā)現(xiàn)同題及分析同題的能力)卻愈顯風(fēng)采。一個多元線性方程組如何去解?我們可以交給電腦去完成,只要會正確使用數(shù)學(xué)軟件。但一個實際問題如何通過數(shù)學(xué)建模轉(zhuǎn)化為一個數(shù)學(xué)同題,除了必須具備許多綜合的知識,還需要具備一定的分析推理能力,這種素質(zhì)自然可以通過生活來積累,但如果能夠通過象高等數(shù)學(xué)這樣的課程作為載體來進(jìn)行系統(tǒng)訓(xùn)練,將是事半功倍的。
以往對工科學(xué)生來講,高等數(shù)學(xué)的教學(xué)比較偏重于計算方法的訓(xùn)練,例如,如何計算極限,計算導(dǎo)數(shù),計算積分,通過熟練掌握計算方法來加深對概念的理解,這是學(xué)習(xí)高等數(shù)學(xué)的一條捷便之徑。但是從二十一世紀(jì)更加需要創(chuàng)新人才的觀點看,從高等數(shù)學(xué)的概念中直接去提煉一種分析推理能力及實際應(yīng)用能力,將是更加重要的。(當(dāng)然,在改革的力度還未到位時,由于教學(xué)要求及教材等原因.學(xué)習(xí)高等數(shù)學(xué)并不能僅偏重于概念,對基本的計算方法必須熟練地掌握。如今就如何學(xué)好高等數(shù)學(xué)的基本概念。提出一些拙見供同學(xué)參考。
1)從正反兩個層面理解概念
我們觀察一個物體,如果僅僅通過平視去進(jìn)行,那么對這個物體的認(rèn)識往往是局部的,甚至是扭曲的,只有從正視、俯視、側(cè)視的多角度去觀察與綜合,方能得到物體正確的空間定位。觀察事物尚且如此,要理解一個抽象的概念,如果只有單向的思維方法,肯定只能淺嘗輒止.只有從正反兩個方向去透視概念,才能較深地抓住概念中一些本質(zhì)的東西。這里所說的正方向思維應(yīng)該包含幾層意思:一是概念的定義是如何敘述的,二是概念所尉帶的條件是必要的.還是充分的?三是概念產(chǎn)生的實際背景是什么?這里所說的反方向思維又應(yīng)該包含兩層意思:一是對一個概念的否定是怎樣表達(dá)的?二是如果錯誤的理解了概念中的一些條件會導(dǎo)致什么樣的錯誤結(jié)果。
2)學(xué)與問
發(fā)現(xiàn)問題呢?首先要提倡自學(xué),在自己預(yù)習(xí)教材(也鍛煉了一種自學(xué)能力)的過程中很容易發(fā)現(xiàn)不懂的同題,帶著同題再去聽課就會有的放矢。其次是聽課之后做習(xí)題之前要認(rèn)真復(fù)習(xí)消化課上的內(nèi)容,只要積極地開動腦筋,從中是會發(fā)現(xiàn)很多問題的,在這個較深層次上發(fā)現(xiàn)問題又去解決問題(可以通過同學(xué)與老師的幫助),那么分析問題的能力就會有一個質(zhì)的提高。
3)做習(xí)題與想習(xí)題
學(xué)習(xí)數(shù)學(xué),不做習(xí)題是絕對不行的.因為耐概念究竟理解與否檢驗的最后關(guān)口是習(xí)題。一道習(xí)題不會做或者做錯了,肯定是某些概念投有消化好,帶著習(xí)題再來復(fù)習(xí)理解概念,拄往會摩擦出新的思想火花。學(xué)習(xí)高等數(shù)學(xué)的過程中,我們不主張采用中學(xué)的題海戰(zhàn),但對每道習(xí)題不但要弄懂正確的解法,而且盡量要考慮能否有多種解法。這還不夠,進(jìn)一步的思考是一些似是而非的錯誤解法究竟錯在哪里?必定是對概念理解的偏差才導(dǎo)致的錯誤結(jié)果.經(jīng)過又一次正反兩個層面的開掘.思考深入了,學(xué)習(xí)的興趣也會逐步培育起來。
高等數(shù)學(xué)的體會篇十一
一個高中生升入大學(xué)學(xué)習(xí)后,不僅要在環(huán)境上、心理上適應(yīng)新的學(xué)習(xí)生活,同時學(xué)習(xí)方法的改變也是一個不容忽視的方面。
從中學(xué)升入大學(xué)學(xué)習(xí)后,在學(xué)習(xí)方法上將會遇到一個比較大的轉(zhuǎn)折。首先是對大學(xué)的教學(xué)方式和方法會感到很不適應(yīng)。這在高等數(shù)學(xué)課程的教學(xué)中反應(yīng)特別明顯,因為它是一門對大一新生首當(dāng)其沖的理論性較強(qiáng)的基礎(chǔ)理論課程。而學(xué)生正是習(xí)慣于模仿性和單一性的學(xué)習(xí)方法。這是從小學(xué)到中學(xué)的教育中長期養(yǎng)成的,一時還難以改變。
中學(xué)的教學(xué)方式和方法與大學(xué)有質(zhì)的差別,中學(xué)的學(xué)習(xí)學(xué)生是在教師的直接指導(dǎo)下進(jìn)行模仿和單一性的學(xué)習(xí),大學(xué)則是在教師的指導(dǎo)下進(jìn)行創(chuàng)造性的學(xué)習(xí)。而大學(xué)高等數(shù)學(xué)課程的學(xué)習(xí),教材僅是作為一種主要的參考書,要求學(xué)生以課堂上老師所講的重點和難點為線索,課后去鉆研教材和閱讀大量的同類參考書,然后去完成課后習(xí)題。就這樣反復(fù)地進(jìn)行創(chuàng)造性學(xué)習(xí)。這是一種艱苦的腦力勞動,需要學(xué)生能反復(fù)地、自覺地進(jìn)行學(xué)習(xí)。還要在松散的環(huán)境中能約束自己。
大學(xué)生活是人生的一大轉(zhuǎn)折點。大學(xué)時期注重于培養(yǎng)同學(xué)們的獨立生活、獨立思考、獨立分析問題和解決問題的能力,而不像中學(xué)那樣有一個依賴的環(huán)境。高等數(shù)學(xué)與高中數(shù)學(xué)相比有很大的不同,內(nèi)容上主要是引進(jìn)了一些全新的數(shù)學(xué)思想,特別是無限分割逐步逼近,極限等;從形式上講,學(xué)習(xí)方式也很不一樣,特別是一般都是大班授課,進(jìn)度快,老師很難個別輔導(dǎo),故對自學(xué)能力的要求很高。中學(xué)時期主要是老師領(lǐng)著學(xué),學(xué)生只需要跟著老師的指揮棒走就可以了,而在大學(xué)時主要靠自學(xué),教師只起一個引導(dǎo)的作用。新同學(xué)應(yīng)盡快適應(yīng)大學(xué)生活,形成一個良好的開端,這對四年的大學(xué)生涯是有益的。
中學(xué)數(shù)學(xué)課程的中心是從具體數(shù)學(xué)到概念化數(shù)學(xué)的轉(zhuǎn)變。中學(xué)數(shù)學(xué)課程的宗旨是為大學(xué)微積分作準(zhǔn)備。學(xué)習(xí)數(shù)學(xué)總要經(jīng)歷由具體到抽象、由特殊到一般的漸進(jìn)過程。由數(shù)引導(dǎo)到符號,即變量的名稱;由符號間的關(guān)系引導(dǎo)到函數(shù),即符號所代表的對象之間的關(guān)系。高等數(shù)學(xué)首先要做的是幫助學(xué)生發(fā)展函數(shù)概念——變量間關(guān)系的表述方式。這就把同學(xué)們的理解力從常量推進(jìn)到變量、從描述推進(jìn)到證明、從具體情形推進(jìn)到一般方程,開始領(lǐng)會到數(shù)學(xué)符號的威力。但《高等數(shù)學(xué)》的主要內(nèi)容是微積分,它繼承了中學(xué)的訓(xùn)練,它們之間有千絲萬縷的聯(lián)系。
為了適應(yīng)21世紀(jì)高等數(shù)學(xué)課程的教學(xué)改革,高等數(shù)學(xué)課程的教學(xué)也發(fā)生了很大的變化,在傳統(tǒng)的教學(xué)手段的基礎(chǔ)上,采用了更加具體化、形象化的現(xiàn)代教育技術(shù),這也是一般中學(xué)所沒有的,因此,同學(xué)們在進(jìn)入大學(xué)以后,不僅要注意高等數(shù)學(xué)課程的內(nèi)容與中學(xué)數(shù)學(xué)的區(qū)別與聯(lián)系,還要盡快適應(yīng)高等數(shù)學(xué)課程的新的教學(xué)特點。認(rèn)真上好第一節(jié)高等數(shù)學(xué)課,嚴(yán)格按照任課老師的要求去做。若能堅持做到,課前預(yù)習(xí),課上聽講,課后復(fù)習(xí),認(rèn)真完成作業(yè),課后對所學(xué)的知識進(jìn)行歸納總結(jié),加深對所學(xué)內(nèi)容的理解,從而也就掌握了所學(xué)的知識,就不難學(xué)好高等數(shù)學(xué)這門課。有些同學(xué)就是沒有把握好自己,一看高等數(shù)學(xué)一開始的內(nèi)容和中學(xué)所學(xué)內(nèi)容極其相似,就掉以輕心,認(rèn)為自己看看就會了,要么不聽課,要么不完成作業(yè),結(jié)果導(dǎo)致后面的章節(jié)聽不懂,跟不上,甚至有的同學(xué)就一直跟不上,學(xué)期末成績不理想,甚至不及格。
第一,要勤學(xué)、善思、多練。所謂學(xué),包括學(xué)和問兩方面,即向教師,向同學(xué),向自己學(xué)和問。惟有在“學(xué)中問”和“問中學(xué)”,才能消化數(shù)學(xué)的概念、理論、方法;所謂思,就是將所學(xué)內(nèi)容,經(jīng)過思考加工去粗取精,抓本質(zhì)和精華。華羅庚“抓住要點”使“書本變薄”的這種勤于思考、善于思考、從厚到薄的學(xué)習(xí)數(shù)學(xué)的方法,值得我們借鑒;所謂習(xí),就《高等數(shù)學(xué)》而言,就是做練習(xí),這是數(shù)學(xué)自身的特點。練習(xí)一般分為兩類,一是基礎(chǔ)訓(xùn)練練習(xí),經(jīng)常附在每章每節(jié)之后,這類問題相對來說比較簡單,無大難度,但很重要,是打基礎(chǔ)部分。二是提高訓(xùn)練練習(xí),知識面廣些,不局限于本章本節(jié),在解決的方法上要用到多種數(shù)學(xué)工具。數(shù)學(xué)的練習(xí)是消化鞏固知識極重要的一個環(huán)節(jié),舍此達(dá)不到目的。
第二,狠抓基礎(chǔ),循序漸進(jìn)。任何學(xué)科,基礎(chǔ)內(nèi)容常常是最重要的部分,它關(guān)系到學(xué)習(xí)的成敗與否?!陡叩葦?shù)學(xué)》本身就是數(shù)學(xué)和其他學(xué)科的基礎(chǔ),而《高等數(shù)學(xué)》又有一些重要的基礎(chǔ)內(nèi)容,它關(guān)系到整個知識結(jié)構(gòu)的全局。以微積分部分為例,極限貫穿著整個微積分,函數(shù)的連續(xù)性及性質(zhì)貫穿著后面一系列定理結(jié)論,初等函數(shù)求導(dǎo)法及積分法關(guān)系到今后各個學(xué)科。因此,一開始就要下狠功夫,牢牢掌握這些基礎(chǔ)內(nèi)容。在學(xué)習(xí)《高等數(shù)學(xué)》時要一步一個腳印,扎扎實實地學(xué)和練。第三,歸類小結(jié),從厚到薄。記憶總的原則是抓綱,在用中記。歸類小結(jié)是一個重要方法?!陡叩葦?shù)學(xué)》歸類方法可按內(nèi)容和方法兩部分小結(jié),以代表性問題為例輔以說明。在歸類小節(jié)時,要特別注意有基礎(chǔ)內(nèi)容派生出來的一些結(jié)論,即所謂一些中間結(jié)果,這些結(jié)果常常在一些典型例題和習(xí)題上出現(xiàn),如果你能多掌握一些中間結(jié)果,則解決一般問題和綜合訓(xùn)練題就會感到輕松。
第四,精讀一本參考書。實踐證明,在教師指導(dǎo)下,抓準(zhǔn)一本參考書,精讀到底,如果你能熟讀了一本有代表性的參考書,再看其它參考書就會迎刃而解了。
第五,注意學(xué)習(xí)效率。數(shù)學(xué)的方法和理論的掌握,常常需要做到熟能生巧、觸類旁通。人不可能通過一次學(xué)習(xí)就掌握所學(xué)的知識,需要有幾個反復(fù)。所謂“學(xué)而時習(xí)之”、“溫故而知新”都是指學(xué)習(xí)要經(jīng)過反復(fù)多次?!陡叩葦?shù)學(xué)》的記憶,必須建立在理解和熟練做題的基礎(chǔ)上,死記硬背無濟(jì)于事。
1.書:課本+習(xí)題集(必備),因為學(xué)好數(shù)學(xué)絕對離不開多做題,建議習(xí)題集最好有本跟考研有關(guān)的,這樣也有利于你做好將來的考研準(zhǔn)備。
2.筆記:盡量有,我說的筆記不是指原封不動的抄板書,那樣沒意思,而且不必非單獨用個小本,可記在書上。關(guān)鍵是在筆記上一定要有自己對每一章知識的總結(jié),類似于一個提綱,(有時老師或參考書上有,可以參考),最好還有各種題型+方法+易錯點。
3.上課:建議最好預(yù)習(xí)后聽,聽不懂不要緊,很多大學(xué)的課程都是靠課下結(jié)合老師的筆記自己重新看。但是記?。焊邤?shù)千萬別搞考前突擊,絕對行不通,所以平時你就要跟上,步步盡量別斷層。
4.學(xué)好高數(shù)=基本概念透+基本定理牢+基本網(wǎng)絡(luò)有+基本常識記+基本題型熟。數(shù)學(xué)就是一個概念+定理體系(還有推理),對概念的理解至關(guān)重要,比如說極限、導(dǎo)數(shù)等,你既要有形象的對它們的理解,也要熟記它們的數(shù)學(xué)描述,不用硬背,可以自己對著書舉例子,畫個圖看看(形象理解其實很重要),然后多做題,做題中體會。建議你用一只彩筆專門把所有的概念標(biāo)出來,這樣看書時一目了然(定理用方框框起來)。基本網(wǎng)絡(luò)就是上面說的筆記上的總結(jié)的知識提綱,也要重視?;境WR就是高中時老師常說的“準(zhǔn)定理”,就是書上沒有,在習(xí)題中我們總結(jié)的可以當(dāng)定理或推論用的東西,還有一些自己小小的經(jīng)驗。這些東西不正式但很有用的,比如各種極限的求法。
這些都做到了,高等數(shù)學(xué)應(yīng)該學(xué)得不會差了,至少應(yīng)付考試沒問題。如果你想提高些,可以做些考研的數(shù)學(xué)題,體會一下,其實也不過如此,并不象你想象的那么難。還可以看些關(guān)于高數(shù)應(yīng)用的書,其實數(shù)學(xué)本來就是從應(yīng)用中來的,你會知道高等數(shù)學(xué)真的很有用。
高等數(shù)學(xué)的體會篇十二
本學(xué)期我擔(dān)任??茖哟嗡幹?3-1、藥分13-1、藥營13-1、生制13-1、中藥13-1五個班的《高等數(shù)學(xué)》教學(xué)工作,周課時20,按15個教學(xué)周,計300課時,另外還開設(shè)《太極拳》選修課30課時,共計330課時。
二、工作態(tài)度與方法。
工作態(tài)度方面,我每每中午去食堂是最后,甚至教工食堂收工,我得去學(xué)生食堂,只因我從不提前下課。我按時下課,但有時同學(xué)問問題,會弄遲些。在備課的時候,我會為一個問題的表述反復(fù)思考,看怎么能讓同學(xué)們更容易接受,總之,為了提高同學(xué)們的學(xué)習(xí)效率,自己是不計成本的。
鑒于高校老師不坐班,上完課就走人,師生交流僅限于課堂,我感覺這不利于學(xué)生發(fā)展。為此,我在課堂教學(xué)之余,采取多種方式--或當(dāng)面引導(dǎo),高屋建瓴,一語中的;或充分利用現(xiàn)代網(wǎng)絡(luò)媒體,與同學(xué)們在線交流。有時是解答他們在學(xué)習(xí)上的某一具體問題,有時是就人生成長過程中的困惑進(jìn)行分析探討,為其答疑解惑,做其良師益友。
當(dāng)然,更多的交流還是課堂教學(xué),這里我稍微總結(jié)一下《高等數(shù)學(xué)》課程教學(xué)中的三個細(xì)節(jié):
三是積分部分,不定積分我強(qiáng)調(diào)練習(xí),求積分(1)(2)(3)(4),練習(xí)得比較充分,定積分我強(qiáng)調(diào)理論,微積分基本公式的詳細(xì)推導(dǎo)雖不是考點,但我還是耐心引導(dǎo)、仔細(xì)講解……我這樣做一方面對想繼續(xù)深造的同學(xué)有利,另一方面,我是想讓自己嚴(yán)謹(jǐn)求實的工作作風(fēng)給學(xué)生一些正面影響。
在評價考核方面,我十分注重過程性、形成性。我發(fā)現(xiàn),某個階段,如果學(xué)生草稿本“銷量”大增,其數(shù)學(xué)功力就有所提升,草稿本打得多與少,很大程度反映出一個人的數(shù)學(xué)學(xué)習(xí)狀態(tài)。因此第一堂課我就強(qiáng)調(diào),草稿本不要扔棄,寫完了送給我,我“記工分”(畫正字)。為防止有人為了工分而工分,12月底我就將這項活動截止。從效果上看,一方面督促大家你追我趕,多做多練;另一方面,也較真實地反映出大家平時的數(shù)學(xué)學(xué)習(xí)狀況,為學(xué)期末平時成績的評定提供了重要參考依據(jù)。一學(xué)期下來,草稿紙作為廢品賣掉,收入頗豐,相當(dāng)于同學(xué)們請我吃了早茶,謝謝謝謝!
最后階段,我為了同學(xué)們更好地復(fù)習(xí)鞏固,考前給出《考試說明》,提示哪些知識點務(wù)必掌握,并鼓勵同學(xué)們根據(jù)考點提示成立“猜題委員會”,當(dāng)然,您也可以美其名曰“高等數(shù)學(xué)互助學(xué)習(xí)志愿者協(xié)會”,說是猜題押題,實則是在引導(dǎo)更多的同學(xué)成為學(xué)霸,并請熱心的超級學(xué)霸將自己精美的《好題本》與大家分享,驅(qū)散學(xué)困生備考陰霾。
三、工作體會與感悟。
對于工作量,我想教師任課班級過多、班級人數(shù)過多、周課時過密,對教師、對學(xué)生都是不利的。說實在的,盡管同學(xué)們看見我都很有禮貌地叫:“老師好!”,但大部分同學(xué)的名字我是叫不出的。教書育人,兩者不可偏頗,很大程度上后者可能更重要些。
對于多媒體教學(xué),我是積極參與并可謂“先行者”之一,但我愈來愈發(fā)現(xiàn)對于數(shù)學(xué)等課程,教師的板演是不可替代的,你可以制作多媒體動畫模擬板演,但還是不能替代教師站在黑板前一步步分析展開。當(dāng)然,如果投影屏幕掛在黑板兩側(cè)再靠邊一點,提綱性的要領(lǐng)或大信息量的展示用一下,而黑板的粉塵能杜絕,彈指間就能局部擦除或全部清空,那就更方便了。總之,時尚科技與經(jīng)典傳統(tǒng)要有機(jī)融合、揚長補(bǔ)短。
學(xué)包括高等數(shù)學(xué)是可以聽懂的,無論原來基礎(chǔ)好壞,只要認(rèn)真聽,而要讓學(xué)生認(rèn)真聽,得有趣、得活潑、得幽默。
對于教育事業(yè),我認(rèn)為老師除了教書,更重要的是育人。因此,自己首先得是位真正的道德高尚之君,以自身灼熱的人格正氣讓每位接觸過的學(xué)生于無形中獲得一種人格的滋養(yǎng)與人性的清明。崇高的人格是一股強(qiáng)大的教育力量,崇高的人格是一座珍貴的教育寶藏。
我時常反思,自己有無教育教學(xué)誤區(qū)?比如師生關(guān)系,把握住“尊重”,這是教師工作的出發(fā)點,在學(xué)生之間不能主觀地圈定優(yōu)等生,去偏愛這些優(yōu)等生,教師偏愛少數(shù)“好學(xué)生”就是不尊重大多數(shù)學(xué)生。教師應(yīng)該一視同仁,善待每一個學(xué)生,及時發(fā)現(xiàn)他們身上的優(yōu)點,幫助他們克服缺點,努力挖掘?qū)W生的潛在能力,給所有的學(xué)生創(chuàng)造表現(xiàn)才能的機(jī)會,尊重每一個學(xué)生。這里,對于我這門課平時成績較低的同學(xué),我真誠地說聲:“對不起!”。我相信,您的`成績(自我評價,他人評價)會在后續(xù)的課程、未來的人生中節(jié)節(jié)攀升、漸入佳境。
高等職業(yè)教育的職業(yè)性、技術(shù)性、就業(yè)導(dǎo)向性以及巨大的就業(yè)壓力,迫使高職院校公共基礎(chǔ)課教學(xué)必須把高職學(xué)生普遍關(guān)注的就業(yè)能力問題作為基礎(chǔ)課教學(xué)改革的立足點與出發(fā)點,在提高學(xué)生就業(yè)創(chuàng)業(yè)能力,引導(dǎo)學(xué)生更快更好地提升職業(yè)能力、職業(yè)素養(yǎng)方面發(fā)揮重要作用。這對公共基礎(chǔ)課教師的教學(xué)觀念與教學(xué)能力是一大挑戰(zhàn)。我有一個想法,就是系統(tǒng)地學(xué)習(xí)臨床、藥學(xué)、護(hù)理等所任專業(yè)的所有課程,看看學(xué)生到底需要哪些數(shù)學(xué)知識?需要什么數(shù)學(xué)技能?思維品質(zhì)培養(yǎng)的關(guān)鍵在何處?做到心中有數(shù),以便打破公共基礎(chǔ)課和專業(yè)課之間的壁壘,將原先的公共基礎(chǔ)課融合穿插到各個學(xué)習(xí)領(lǐng)域的學(xué)習(xí)情境中去教學(xué)。
當(dāng)然,公共基礎(chǔ)課不僅僅具有為專業(yè)課程服務(wù)的工具性功能,更具有“潤物細(xì)無聲”的人文教化功能。在今后的教學(xué)上,我爭取突破教學(xué)常規(guī),更高效更機(jī)智地處理問題,彰顯出更多的的課堂教學(xué)機(jī)智,妥帖恰當(dāng)?shù)靥幚斫虒W(xué)突發(fā)事件,順勢而為地引導(dǎo)學(xué)生積極探索與思考,巧妙有效地幫助學(xué)生對重點、難點進(jìn)行深入理解,自然流暢地啟發(fā)學(xué)生展開思維的翅膀,生動愉悅地引導(dǎo)學(xué)生步入人生智慧的魅力境界,同時,形成自己較高水平的教學(xué)智慧。
夏宜凡。
高等數(shù)學(xué)的體會篇十三
數(shù)學(xué)中有很多概念。概念反映的是事物的本質(zhì),弄清楚了它是如何定義的、有什么性質(zhì),才能真正地理解一個概念。所有的問題都在理解的基礎(chǔ)上才能做好。
第二,要掌握定理。
定理是一個正確的命題,分為條件和結(jié)論兩部分。對于定理除了要掌握它的條件和結(jié)論以外,還要搞清它的適用范圍,做到有的放矢。
第三,在弄懂例題的基礎(chǔ)上作適量的習(xí)題。
要特別提醒學(xué)習(xí)者的是,課本上的例題都是很典型的,有助于理解概念和掌握定理,要注意不同例題的特點和解法在理解例題的基礎(chǔ)上作適量的習(xí)題。作題時要善于總結(jié)——不僅總結(jié)方法,也要總結(jié)錯誤。這樣,作完之后才會有所收獲,才能舉一反三。
第四,理清脈絡(luò)。
要對所學(xué)的知識有個整體的把握,及時總結(jié)知識體系,這樣不僅可以加深對知識的理解,還會對進(jìn)一步的學(xué)習(xí)有所幫助。
高等數(shù)學(xué)中包括微積分和立體解析幾何,級數(shù)和常微分方程。其中尤以微積分的內(nèi)容最為系統(tǒng)且在其他課程中有廣泛的應(yīng)用。微積分的理論,是由牛頓和萊布尼茨完成的。(當(dāng)然在他們之前就已有微積分的應(yīng)用,但不夠系統(tǒng))。
數(shù)學(xué)備考一定要有一個復(fù)習(xí)時間表,也就是要有一個周密可行的計劃。按照計劃,循序漸進(jìn),切忌搞突擊,臨時抱佛腳。其實數(shù)學(xué)是基礎(chǔ)性學(xué)科,解題能力的提高,是一個長期積累的過程,因而復(fù)習(xí)時間就應(yīng)適當(dāng)提前,循序漸進(jìn)。大致在三、四月分開始著手進(jìn)行復(fù)習(xí),如果數(shù)學(xué)基礎(chǔ)差可以將復(fù)習(xí)的時間適當(dāng)提前。復(fù)習(xí)一定要有一個可行的計劃,通過計劃保證復(fù)習(xí)的進(jìn)度和效果。一般可以將復(fù)習(xí)分成四個階段,每個階段的起止時間和所要完成的任務(wù)考生應(yīng)給予明確規(guī)定,以保證計劃的可行性。第一個階段是按照考試大綱劃分復(fù)習(xí)范圍,在熟悉大綱的基礎(chǔ)上對考試必備的基礎(chǔ)知識進(jìn)行系統(tǒng)的復(fù)習(xí),了解考研數(shù)學(xué)的基本內(nèi)容、重點、難點和特點。這個時間段一般劃定為六月前。第二個階段是在第一階段的基礎(chǔ)上,做一定數(shù)量的題,重點解決解題思路的問題。一般從七月到十月。這個階段要注意歸納總結(jié),即拿到題后要知道從什么角度,可以分幾步去求解,每道題并不要求都要寫出完整步驟,只要思路有了,運算過程會做了,可以視情況而靈活掌握,這樣省出時間來看更多的題。所選試題可以是歷年真題,也可以是書上的練習(xí)題,但真題一定要做,而且要嚴(yán)格按照實考的要求去做,把握真題的特點和解題思路及運算步驟。第三個階段是實戰(zhàn)訓(xùn)練階段,從十一月到十二月的中旬,這也是臨考前非常重要的階段??忌獙Υ缶V所要求的知識點做最后的梳理,熟記公式,系統(tǒng)地做幾套模擬試卷,進(jìn)行實戰(zhàn)訓(xùn)練,自測復(fù)習(xí)成果。在做模擬題前先要系統(tǒng)記憶掌握基本公式,做題要講究質(zhì)量,既要有速度,又要有嚴(yán)格的步驟、格式和計算的準(zhǔn)確性。最后階段是考前沖刺,從十二月下旬到考試。針對在做模擬試題過程中出現(xiàn)的問題作最后的補(bǔ)習(xí),查缺補(bǔ)漏,以便以的狀態(tài)參加考試。學(xué)好數(shù)學(xué)是一個長期的過程,來不得半點的投機(jī)取巧,所以考前突擊,臨時抱佛腳的做法是不足取的,只有按照自己的計劃,踏踏實實的進(jìn)行準(zhǔn)備,才能以不變應(yīng)萬變,只要自己的綜合能力提高了,不管考試如何變化,都能取得好的成績。
數(shù)學(xué)的學(xué)習(xí)一定要每天都有個進(jìn)度,每天都要有題量,我們不應(yīng)該搞題海戰(zhàn)術(shù),但是通過做題提高實戰(zhàn)經(jīng)驗也是必須的,首先有個大的學(xué)習(xí)框架,然后計劃到每天,怎么去學(xué)習(xí),每天做那方面的題,定期的查漏補(bǔ)缺,這樣的學(xué)習(xí)才真正的有效果。
在高等教育自學(xué)考試的很多專業(yè)中,很多都有高等數(shù)學(xué)課程。很多考生反映,高等數(shù)學(xué)(一)通過非常難,林士中老師所教授的高等數(shù)學(xué)課程一直受到廣大網(wǎng)校學(xué)員的好評。在授課之余,林教授傳授了通過高數(shù)的訣竅。他說,在學(xué)習(xí)高數(shù)(一)之前,首先你要打好基礎(chǔ),把初中的數(shù)學(xué)補(bǔ)回來,再參加這兩門課程的考試就好的多。
林士中:我對同學(xué)了解的情況,一種是原來中學(xué)學(xué)的初等知識掌握太少,高等數(shù)學(xué)沒有用大量的初等數(shù)學(xué)知識,但是要用一部分的知識。有些同學(xué)不是高等數(shù)學(xué)知識沒掌握好,主要是初等數(shù)學(xué)知識不夠數(shù)量,或者掌握太少,變形變不過來,這樣就算你知道高等數(shù)學(xué),但是初等掌握不好,考試肯定會遇到一定困難。如果你是初等數(shù)學(xué)掌握過少影響考試不及格,你應(yīng)該把最基本的初等數(shù)學(xué)知識復(fù)習(xí)。自考365網(wǎng)校已經(jīng)推出了高等數(shù)學(xué)的基礎(chǔ)輔導(dǎo)課程,介紹微積分當(dāng)中用到的初等數(shù)學(xué)有哪些,大概有6課時。介紹微積分當(dāng)中用到的初等數(shù)學(xué)有哪些,如果有一部分同學(xué)感到初等數(shù)學(xué)知識不夠用,我希望同學(xué)不要害怕,你即便初等數(shù)學(xué)知識不夠好,不見得過不了。希望大家多花點時間學(xué)習(xí),可以起到事半功倍的效果。
第二個,有些同學(xué)覺得,學(xué)高等數(shù)學(xué),或者微積分,主要靠理解,但是實際上這里邊有一些誤會,數(shù)學(xué)主要是靠理解,但是和其他課程有區(qū)別,其他課程靠記憶比較多,當(dāng)然也要理解,但是數(shù)學(xué),靠理解的比較多,不等于不要記憶,特別有些基本的東西必須記的大家還要記憶,比如說一些基本概念,導(dǎo)數(shù)的定義,連續(xù)性的定義這些基本的東西要適當(dāng)?shù)挠浺幌隆?BR> 第三個,基本公式表,微分公式表也要記,這些基本的東西大家還要記。積分公式表記不住,積分就過不了關(guān),在記憶的基礎(chǔ)上適當(dāng)做一些題達(dá)到融會貫通,我希望大家做好這兩方面的復(fù)習(xí)。
有同學(xué)初等數(shù)學(xué)不會的,經(jīng)過努力,這樣的都能考過,其他人一定能考過。當(dāng)然得補(bǔ)一些數(shù)學(xué),不補(bǔ)是不行的,你們提出來補(bǔ)什么好,我跟大家說,初等數(shù)學(xué)不像你們中學(xué)那樣什么都要考,中學(xué)老師教你們主要是競爭,考大學(xué)是一種競爭性質(zhì),要求的內(nèi)容相當(dāng)多,偏題怪題都有,但是作為學(xué)高等數(shù)學(xué)不是競爭性質(zhì),只要求掌握基本知識,所以這部分就要把初等數(shù)學(xué)的基本內(nèi)容掌握好就行,實際上我個人覺得,你只要有決心補(bǔ)初等數(shù)學(xué),有兩三天就夠了。
認(rèn)真聽課。既然是高數(shù)課,自然是老師講課,一周的高數(shù)課的節(jié)數(shù)肯定不會少。所以,老師上課就是最好的一個學(xué)習(xí)媒介。少年們,上課努力早起去做前排吧。如果老師夠認(rèn)真負(fù)責(zé),相信做好了這一步,那就基本上成功了一半.
買一本靠譜的考研書。如果老師不認(rèn)真負(fù)責(zé),只會用蚊子般大小的聲音念念ppt怎么辦;根本聽不下去怎么辦。這個時候,不用慌張,其實還是有很多很好的選擇,推薦去買一本厚厚的考研書,不用擔(dān)心,考研書就是幫你們復(fù)習(xí)大一的高數(shù)知識,而且上面通常整理的非常好。各類例題也都是平時??嫉念愋?。
做好筆記。書上一些沒有的證明和老師上課隨性發(fā)揮的精華可是一瞬即逝的噠。做好筆記還有益于自己上課認(rèn)真專注。如果是自己看書也需要記筆記。
按時做作業(yè)。還記得高中時怎么沒日沒夜的做作業(yè)嗎,practicemakesperfect,這句話是沒有錯的,高數(shù)的作業(yè)會有很多,而它對你學(xué)好高數(shù)的重要性也不言而喻的。而且,作業(yè)好還有平時分還高,最后總評也高不是。
學(xué)習(xí)公開課。如果對一些證明,推理,或者概念不清楚,想要找個名師的話,網(wǎng)絡(luò)上的公開課其實是一個非常好的選擇。這也是現(xiàn)在的教育的一種趨勢,這里推薦一些常用的,比如mooc,愛課程網(wǎng),網(wǎng)易公開課等等。國外名校的都是大師,聽完他們的講解相信一定會對高數(shù)和整個數(shù)學(xué)體系有一個新的理解,并對它產(chǎn)生興趣。
高等數(shù)學(xué)的體會篇十四
高等數(shù)學(xué)作為理工科大學(xué)生的一門必修的基礎(chǔ)課,具有高度的抽象性、嚴(yán)密的邏輯性和廣泛的應(yīng)用性的特點,可以培養(yǎng)學(xué)生的抽象概括能力、邏輯思維能力、解決分析問題的能力,對科技進(jìn)步也起著基礎(chǔ)性推動作用。隨著國家高等教育從精英型轉(zhuǎn)入大眾型,學(xué)生素質(zhì)呈下降趨勢,大部分學(xué)生在學(xué)習(xí)高等數(shù)學(xué)時感到困難,從而提高高等數(shù)學(xué)教學(xué)質(zhì)量、改革高等數(shù)學(xué)教育教學(xué)方法已成為一個亟需解決的問題。
一、高等數(shù)學(xué)教學(xué)中學(xué)生存在的誤區(qū) 1.誤區(qū)一很多學(xué)生認(rèn)為學(xué)數(shù)學(xué)沒有用
高中階段學(xué)生已經(jīng)接觸到了高等數(shù)學(xué)中比較簡單的極限、導(dǎo)數(shù)、定積分,但沒有深入學(xué)習(xí)其概念、定義,高考也只是考了一點點,學(xué)生認(rèn)為自己掌握了高等數(shù)學(xué)的知識,再學(xué)了也沒有什么用,在將來實際工作中也用不到數(shù)學(xué)。
2.誤區(qū)二高等數(shù)學(xué)具有很高的抽象性,很多學(xué)生覺得學(xué)也學(xué)不會
現(xiàn)在學(xué)生不愿意動腦、動筆,碰到題目就在想答案。往往因為大學(xué)的高數(shù)題運算步驟比較多,想是想不出來的,不動筆又不畫圖,學(xué)生坐一會就有點困了,自然就認(rèn)為高等數(shù)學(xué)非常難。
3.誤區(qū)三學(xué)生習(xí)慣于用中學(xué)的思維來解題
很多學(xué)生學(xué)習(xí)數(shù)學(xué)的一些簡單想法就是來解數(shù)學(xué)題,愿意用中學(xué)的方法去解決高等數(shù)學(xué)里的題目,只要能做出答案就行。在這種思想的影響下,不愿意去掌握定義、定理,做題少步驟或只有答案,但是有的題目肯本做不出來。隨著學(xué)習(xí)的深入學(xué)生發(fā)現(xiàn)題目越來越不會做。
二、提高高等數(shù)學(xué)教學(xué)質(zhì)量的方法 1.端正學(xué)生學(xué)習(xí)態(tài)度
許多同學(xué)認(rèn)為,考上大學(xué)就可以放松了,自我要求標(biāo)準(zhǔn)降低了。只有有了明確的學(xué)習(xí)目標(biāo),端正學(xué)習(xí)態(tài)度,才能增加學(xué)習(xí)高等數(shù)學(xué)的動力。教師要以身作則,這要求教師熱愛數(shù)學(xué),對每節(jié)課都要以飽滿的激情、對數(shù)學(xué)美的無限欣賞呈現(xiàn)在學(xué)生面前,教師積極地態(tài)度從而感染學(xué)生學(xué)習(xí)高等數(shù)學(xué)的熱情。部分同學(xué)在應(yīng)試教育的影響下,應(yīng)經(jīng)形成了消極的數(shù)學(xué)態(tài)度,教師還應(yīng)該全方位、多角度扭轉(zhuǎn)學(xué)生學(xué)習(xí)態(tài)度,如課下談心談話、建立互助興趣小組、“一對一”結(jié)對子等方法,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的動力。端正學(xué)生的學(xué)習(xí)態(tài)度首先從數(shù)學(xué)字母的寫法、發(fā)信做起,很多學(xué)生古希臘字母不會寫也不會讀,上課多練習(xí)幾遍,老師在做題過程中要注重解題的每一步驟,告訴學(xué)生每一步驟的重要性,做題中感受數(shù)學(xué)題的美。
2.激發(fā)學(xué)生學(xué)習(xí)興趣
興趣是最好的老師,只有有了學(xué)習(xí)高等數(shù)學(xué)的興趣,學(xué)生才有了學(xué)習(xí)動力。在教學(xué)過程中,可以穿插一些關(guān)于數(shù)學(xué)的歷史,數(shù)學(xué)家的故事,數(shù)學(xué)文化,來激發(fā)學(xué)生的興趣。如定積分的講解時,自然引入牛頓、萊布尼茨兩位數(shù)學(xué)家的故事。教師在課堂講解時,把抽象的問題具體化,通過幾何畫圖提高學(xué)生的理解能力,這樣學(xué)生才更容易接受。
3.提高教師自身素質(zhì)
教師是課堂教育的主導(dǎo)者,是良好課堂氛圍的主要營造者,要想學(xué)生緊跟教師講課的思路,教師必須具有良好的人格魅力和深厚的專業(yè)功底。這就要求教師一方面要提高自身的文化底蘊(yùn),多讀一些與另一方面刻苦專研專業(yè)知識、完善知識結(jié)構(gòu)、提高教育教學(xué)能力,只有做到這樣,教師的課堂教育才能吸引學(xué)生,課下學(xué)生才愿意并主動與教師交流、溝通。教師在上課的時候要身體力行,做題要在步驟上下功夫,解釋每一步驟的重要性,既要用最少的步驟把題做完,又要講解每一步驟的重要性。這樣雖然浪費了一點時間,但是學(xué)生還是會做的,同時學(xué)生也得到了怎樣去做題以及真正的理解數(shù)學(xué)題,并從中發(fā)現(xiàn)數(shù)學(xué)美,時間長了能培養(yǎng)學(xué)生良好的數(shù)學(xué)興趣、數(shù)學(xué)能力和創(chuàng)新能力。對所講授的課程要有深入的了解,知識的內(nèi)在聯(lián)系及在學(xué)生專業(yè)上的應(yīng)用要有所了解,可以給學(xué)生提一提,以便引起學(xué)生足夠的重視。
4.創(chuàng)新教師教學(xué)方法
好的教學(xué)方法能激發(fā)學(xué)生思維能力,啟迪學(xué)生的思維悟性。教師在教學(xué)方法上進(jìn)行創(chuàng)新能有效改善課堂教學(xué)的效果。如教師在講授極限時,可以采用情景教學(xué)方法,把抽象的定義、定理與實際生活相聯(lián)系,營造學(xué)生認(rèn)知懸念,從而激發(fā)學(xué)生自主探索的積極性,從而提高學(xué)生思維能力和發(fā)現(xiàn)、分析問題的能力。在教學(xué)空閑的時候、或者學(xué)生比較累的時候、或者在講到某一個問題時,可以講一些實際的東西。如在剛開始學(xué)極限時,現(xiàn)在學(xué)生都在教學(xué)樓上課,教室里到處可見支撐樓的柱子。柱子不能太細(xì),細(xì)了樓就有可能倒掉,也不能非常粗,那樣雖然結(jié)實了,但是浪費材料,建筑商也不會同意。這樣柱子肯定要通過數(shù)學(xué)計算得到一個合理的數(shù)值,既要能承重又要節(jié)約材料,這個確定的數(shù)就可以認(rèn)為是一個極限。
5.建立良好的師生關(guān)系
在教育教學(xué)活動中,良好的師生關(guān)系是保證教育效果和質(zhì)量的前提。新時代的大學(xué)生具有自我意識強(qiáng),個性張揚等特點,要提高課堂教育效果,必須建立良好的師生關(guān)系。只有師生間相互了解、相互尊重、相互賞識,把教學(xué)過程看做是教師與學(xué)生的交流、交往過程,才能建立輕松、和諧的課堂氛圍,從而才能提高課堂教育效果和教學(xué)質(zhì)量。教師在教學(xué)的過程中,要學(xué)會換位思考,站在學(xué)生的角度估計講授問題的難易程度。對學(xué)生容易出錯或者經(jīng)常犯錯誤的地方,上課要強(qiáng)調(diào)知識的重要性,舉例說明讓學(xué)生理解知識點及了解出錯的原因。
6.重視作業(yè)中存在的問題
作業(yè)是學(xué)生學(xué)習(xí)知識好壞的一面鏡子,雖然現(xiàn)在學(xué)生有抄襲作業(yè)的現(xiàn)象,但是大部分學(xué)生還是自己做作業(yè)。從作業(yè)中可以看出學(xué)生對知識掌握的程度,沒掌握好的話,想辦法用最簡單的題目來說明問題。也許作業(yè)有可能做的非常好,這就要求教師對知識有很好的理解,對學(xué)生容易出錯的地方,上課時可以提問學(xué)生做過的題目或者讓學(xué)生課前上黑板重新做。這樣一學(xué)期下來,學(xué)生對難點重點會掌握的很好,考試成績自然會很好,同時對高等數(shù)學(xué)理解的程度也會很高。學(xué)生取得了好的成績,對高等數(shù)學(xué)了解的多了,自然對高等數(shù)學(xué)學(xué)習(xí)興趣提高了。在以后的學(xué)習(xí)過程中,自然會對各種數(shù)學(xué)課更加努力的去學(xué)習(xí),從而對其本專業(yè)課也起到了很好的促進(jìn)作用。最終學(xué)生會發(fā)現(xiàn)大學(xué)生活是非??鞓返?,學(xué)到了很多知識,學(xué)校也培養(yǎng)出了合格的大學(xué)生。
高等數(shù)學(xué)的體會篇十五
第一段:引言(150字)
在大學(xué)學(xué)習(xí)期間,高等數(shù)學(xué)是我們無法回避的一門課程。對于許多學(xué)生來說,高等數(shù)學(xué)可能是他們第一次接觸到抽象的數(shù)學(xué)概念和復(fù)雜的數(shù)學(xué)運算。然而,通過數(shù)學(xué)家和教育家的不斷努力,高等數(shù)學(xué)正在變得越來越有趣和易于理解。在我個人的學(xué)習(xí)過程中,我逐漸領(lǐng)悟到高等數(shù)學(xué)的重要性和應(yīng)用場景,并從中獲得了許多寶貴的經(jīng)驗和體會。
第二段:興趣驅(qū)動學(xué)習(xí)(250字)
我發(fā)現(xiàn),對于高等數(shù)學(xué)的學(xué)習(xí)來說,培養(yǎng)興趣是至關(guān)重要的。在開始學(xué)習(xí)高等數(shù)學(xué)之前,我對這門課程沒有太多的期待。然而,通過與教師的互動和進(jìn)一步的研究,我開始意識到高等數(shù)學(xué)是一門實際應(yīng)用廣泛且充滿挑戰(zhàn)的學(xué)科。我發(fā)現(xiàn)高等數(shù)學(xué)在物理、經(jīng)濟(jì)學(xué)甚至金融學(xué)中都起著重要的作用,并且具有許多實用性的應(yīng)用。為了更好地理解和應(yīng)用高等數(shù)學(xué)的知識,我主動參加數(shù)學(xué)建模和實驗課程,并且積極加入數(shù)學(xué)學(xué)術(shù)團(tuán)隊。通過這些課程和團(tuán)隊活動,我發(fā)現(xiàn)高等數(shù)學(xué)能夠幫助我們解決實際問題,并且在現(xiàn)實生活中起到重要的作用。
第三段:實踐驅(qū)動理論(250字)
在高等數(shù)學(xué)的學(xué)習(xí)過程中,我體會到實踐是鞏固理論知識的重要手段。通過解決一系列的習(xí)題和實際問題,我逐漸運用所學(xué)的數(shù)學(xué)方法來解決復(fù)雜的問題。并在此過程中體會到從紙上計算到實際應(yīng)用的轉(zhuǎn)換。在學(xué)習(xí)微積分時,我除了翻閱課本上的例題和習(xí)題外,還多次利用數(shù)學(xué)軟件進(jìn)行計算和模擬,并嘗試將所學(xué)的理論用于解決實際問題。通過這樣的實踐過程,我不僅加深了對高等數(shù)學(xué)理論的理解,還培養(yǎng)了解決實際問題的能力。
第四段:提升邏輯思維(250字)
高等數(shù)學(xué)的學(xué)習(xí)讓我逐漸鍛煉了邏輯思維能力。通過學(xué)習(xí)證明方法、推理規(guī)則以及數(shù)學(xué)定理等知識,我逐漸培養(yǎng)了嚴(yán)密的邏輯思維和分析問題的能力。高等數(shù)學(xué)課程中的證明過程迫使我們思考每一個步驟的合理性和正確性,并提出自己的證明思路。這種思考方式使我從中受益匪淺,不僅在數(shù)學(xué)領(lǐng)域受益,還在其他學(xué)科中應(yīng)用中受益。
第五段:結(jié)語(300字)
通過高等數(shù)學(xué)的學(xué)習(xí),我逐漸發(fā)現(xiàn)抽象的數(shù)學(xué)世界與現(xiàn)實生活是息息相關(guān)的。高等數(shù)學(xué)的學(xué)習(xí)讓我在思維、邏輯、實踐等多個方面得到了全面的提升。通過在數(shù)學(xué)領(lǐng)域中的探索與研究,我重新定義了對于高等數(shù)學(xué)這門課程的認(rèn)知,并且樹立起全新的目標(biāo)和動力。高等數(shù)學(xué)不僅僅是為了通過考試,更是培養(yǎng)我們終身學(xué)習(xí)的能力和思維方式的橋梁。在未來的學(xué)習(xí)和工作中,我相信高等數(shù)學(xué)所賦予的知識和能力會繼續(xù)對我產(chǎn)生重大影響。因此,我會繼續(xù)努力學(xué)習(xí)高等數(shù)學(xué),并將所學(xué)應(yīng)用于實際生活中,為現(xiàn)實問題的解決提供更多有益的思考和方法。
高等數(shù)學(xué)的體會篇十六
不是誤導(dǎo)大家武漢大學(xué)的教科書實在是很難理解,兩本加起來足是一本字典,是編者賣弄的園地,所以強(qiáng)烈建議不要和此書叫板,我曾試過一年完全是浪費時間,即使有同學(xué)看懂了,但仍難以對付實戰(zhàn)。
我的建議是以戰(zhàn)致戰(zhàn),就是通過做歷年的考試題的方法順利通過考試。此法花費時間極小,但可以獲得很大的收益,從經(jīng)濟(jì)的角度講就是效益最大化。
具體實施方法:
首先,高高興興的將書撕碎,優(yōu)點有三:1)不給自己浪費時間的機(jī)會。2)建立此戰(zhàn)必勝的信心。3)心情將更加愉悅。
其次:把各年試卷及答案]收集齊,網(wǎng)上不難找到,書店中也可買到。實在不行我給你個網(wǎng)址。強(qiáng)烈建議從1997年下半年到20xx年上半年共十套試卷,這套模擬題就是葵花寶典,沒事就做吧,一遍不行,至少十遍,知道答案不行,必須要知道過程。當(dāng)你做到第三遍時你就會發(fā)現(xiàn)所有試卷的共同之處,每年的試題是等的相似。第五遍第七遍時,你就會因為找不到不會的題而痛苦萬分。
最后,是考前不用動筆用腦看題非??斓目瓷?遍,一個框架會產(chǎn)生在你的大腦中。合格證對于你來說,已經(jīng)成了一張名片,伸手就拿!
20xx年,在今年進(jìn)行新的考試。相信要在今年自考的廣大群體以進(jìn)入了金鑼彌補(bǔ)的準(zhǔn)備當(dāng)中,小編也會更多的發(fā)布一些相關(guān)信息希望可以為您提供到幫助。
高等數(shù)學(xué)的體會篇十七
第一段:學(xué)習(xí)動機(jī)與目標(biāo)(引言)
高等數(shù)學(xué)是一門對于大部分大學(xué)生來說充滿挑戰(zhàn)的學(xué)科。作為一名大學(xué)生,我對高等數(shù)學(xué)學(xué)習(xí)非常重視,因為它是我專業(yè)學(xué)習(xí)的基礎(chǔ)課程之一。在學(xué)習(xí)高等數(shù)學(xué)的過程中,我經(jīng)歷了許多辛苦和困惑,但也從中收獲了很多。在這篇文章中,我將與大家分享我的高等數(shù)學(xué)學(xué)習(xí)心得體會。
第二段:規(guī)劃和時間管理(學(xué)習(xí)方法和技巧)
在面對高等數(shù)學(xué)這門課程時,我意識到規(guī)劃和時間管理是非常重要的。高等數(shù)學(xué)包含了大量的知識點和公式,因此我制定了一個學(xué)習(xí)計劃,將每個知識點分配到不同的時間段,并給自己留出足夠的時間進(jìn)行復(fù)習(xí)和鞏固。我還學(xué)會了合理安排每天的學(xué)習(xí)時間,將重點放在疑難問題上,以便更好地掌握知識。
第三段:找到適合自己的學(xué)習(xí)方式(學(xué)習(xí)方法和技巧)
在高等數(shù)學(xué)學(xué)習(xí)的過程中,我發(fā)現(xiàn)找到適合自己的學(xué)習(xí)方式能夠提高學(xué)習(xí)效果。有些人更適合通過聽講座和課堂上的互動來學(xué)習(xí),而我更喜歡通過自學(xué)和解題來掌握知識。我經(jīng)常和同學(xué)們一起組隊討論問題,通過交流和互幫互助來解決難題。這種學(xué)習(xí)方式不僅鞏固了我的知識,還提高了我的解題能力和思維靈活性。
第四段:克服困難與堅持學(xué)習(xí)(學(xué)習(xí)態(tài)度與人生觀)
高等數(shù)學(xué)是一門需要耐心和恒心的學(xué)科。在學(xué)習(xí)過程中,我遇到了許多困難和挫折,但我相信只要堅持下去,就一定能夠克服這些困難并取得好成績。我時常重復(fù)著“努力就會有回報”的信念,堅持每天都學(xué)習(xí)一段時間高等數(shù)學(xué),無論是通過自學(xué)、參加輔導(dǎo)班或向老師請教,我都不放棄任何機(jī)會來提高自己的數(shù)學(xué)水平。
第五段:從高等數(shù)學(xué)中的應(yīng)用反思(學(xué)科價值與人生思考)
通過學(xué)習(xí)高等數(shù)學(xué),我不僅掌握了數(shù)學(xué)知識,更培養(yǎng)了自己的邏輯思維和問題解決能力。高等數(shù)學(xué)課程中的許多概念和方法在實際生活中都有廣泛的應(yīng)用。數(shù)學(xué)是一門實用的學(xué)科,它不僅幫助我們理解世界的運作方式,還能培養(yǎng)我們的邏輯思維和抽象思維能力。通過高等數(shù)學(xué)的學(xué)習(xí),我深深體會到數(shù)學(xué)不僅僅是個工具,更是一門能夠引導(dǎo)我們思考和解決問題的科學(xué)。
總結(jié):
通過高等數(shù)學(xué)的學(xué)習(xí),我不僅掌握了基本概念和方法,也培養(yǎng)了自己的學(xué)習(xí)方法和態(tài)度。我發(fā)現(xiàn)規(guī)劃和時間管理對于高等數(shù)學(xué)學(xué)習(xí)非常重要,找到適合自己的學(xué)習(xí)方式能夠提高學(xué)習(xí)效果。在困難和挫折面前要堅持學(xué)習(xí),相信努力會有回報。最重要的是,高等數(shù)學(xué)的學(xué)習(xí)不僅可以提高我們的數(shù)學(xué)水平,還能幫助我們培養(yǎng)邏輯思維和解決問題的能力。通過高等數(shù)學(xué)的學(xué)習(xí),我對數(shù)學(xué)這門學(xué)科有了更深入的理解,也對自己的學(xué)習(xí)和未來充滿了信心。
高等數(shù)學(xué)的體會篇十八
相對于現(xiàn)階段高等職業(yè)教育發(fā)展的綜合性和終身性趨勢來說,高等數(shù)學(xué)不僅僅是學(xué)生掌握數(shù)學(xué)工具學(xué)習(xí)其他相關(guān)專業(yè)課程的基礎(chǔ),更是培養(yǎng)學(xué)生邏輯思維嚴(yán)謹(jǐn)性的重要載體,高等數(shù)學(xué)的重要性是不言而喻的。因此高等數(shù)學(xué)的有效學(xué)習(xí)成了高數(shù)教師和同學(xué)們共同關(guān)注的一個重要問題。
通過平時與學(xué)生的交流和上課,學(xué)生的學(xué)習(xí)困難一般集中在認(rèn)為教學(xué)內(nèi)容太抽象聽不懂、不會做題,數(shù)學(xué)概念太抽象,不易理解(如極限、無窮小等)。學(xué)生對于接受高等數(shù)學(xué)的思想、原理、方法非常不適應(yīng),對于如何學(xué)好高等數(shù)學(xué),如何理解它的思想、方法茫然無知。下面我們大家一起討論一下高數(shù)學(xué)不好的原因。
首先,對大多數(shù)高中生而言,考取大學(xué)是最具誘惑力的行為歸因,但進(jìn)人大學(xué)后,這一因素就不復(fù)存在了,大一新生基本上處于如釋重負(fù)的解脫狀態(tài),缺乏主動進(jìn)取的精神,學(xué)習(xí)目標(biāo)不明確,學(xué)習(xí)動機(jī)不強(qiáng)烈。有些同學(xué)則認(rèn)為學(xué)高等數(shù)學(xué)對將來的工作也沒有多大用處,有些同學(xué)本來數(shù)學(xué)的基礎(chǔ)就不好,進(jìn)人大學(xué)后一接觸高等數(shù)學(xué),發(fā)現(xiàn)難以與中學(xué)數(shù)學(xué)知識直接銜接,學(xué)習(xí)高等數(shù)學(xué)的興趣蕩然無存,對高等數(shù)學(xué)的學(xué)習(xí)消極應(yīng)付。
再次,學(xué)生在高中階段已形成一定的思維方式及學(xué)習(xí)習(xí)慣,解數(shù)學(xué)題基本上采取模式辨認(rèn)、方法回憶的思維方式,對解題方法和技巧模仿、記憶、套用,對知識不求甚解,并未真正理解和內(nèi)化,沒有進(jìn)行數(shù)學(xué)思考的意識,也沒有掌握數(shù)學(xué)思考的方法。大學(xué)課堂上,對高等數(shù)學(xué)各部分內(nèi)容的理解支離破碎,自學(xué)能力差,缺乏獨立思考的意識,沒有反思學(xué)習(xí)過程的習(xí)慣,更沒有總結(jié)、歸納知識和思想方法的習(xí)慣,對教師有較強(qiáng)的依賴心理,學(xué)生已形成的思維方式及學(xué)習(xí)習(xí)慣直接影響學(xué)生接受高等數(shù)學(xué)。
最后,大學(xué)與高中的教學(xué)都以講授法為主,但受高考的影響和制約,高中教師對知識的講授詳細(xì),題型、方法歸納完整,較多的精力用于通過大題量的訓(xùn)練來培養(yǎng)學(xué)生的技能技巧,并及時進(jìn)行輔導(dǎo)和鞏固;而大學(xué)的教學(xué)由于知識點較多,課時有限,課容量大,教師更注重思想方法的深刻理解,和數(shù)學(xué)思想的培養(yǎng)。
對于上述幾個原因建議大家從以下幾方面入手:
第一、調(diào)整好自己的心態(tài),盡快適應(yīng)大學(xué)生活,對自己有一個準(zhǔn)確的定位。
學(xué)的學(xué)習(xí),根據(jù)高數(shù)課的特點和自己的學(xué)習(xí)習(xí)慣,盡快總結(jié)出適合自己的學(xué)習(xí)方法。
第三、高數(shù)的學(xué)習(xí)是一個日積月累的過程,不是幾天或一段時間的突擊成績就可以上來的。只要你把平時的多努力,那么你的付出一定會有所得。
高等數(shù)學(xué)的體會篇一
1.提前預(yù)習(xí):上課前抽出一個鐘或半個鐘的時間,預(yù)習(xí)一下要學(xué)習(xí)的東西,不明白的做筆記,帶著問題有目的的聽講。
2.借助外部力量:可以借助一些輔導(dǎo)書,習(xí)題冊,幫助自己更好的理解。
3.概念反復(fù)研究:概念性的知識缺乏直接的經(jīng)驗,因此需要反復(fù)的研究演練。
4.數(shù)學(xué)語言:多練習(xí)運用數(shù)學(xué)語言進(jìn)行描述,數(shù)學(xué)語言是符號語言,簡明準(zhǔn)確,自成體系,是數(shù)學(xué)思維的基礎(chǔ)。
5.知識系統(tǒng)化:
a.理脈絡(luò):極限思想貫穿高等數(shù)學(xué)始終,其它主要知識體系的建立、主要問題的解決都依賴于它。
b.知基礎(chǔ):例如,導(dǎo)數(shù)是微分的基礎(chǔ),牛頓—萊布尼茲公式是積分學(xué)的基礎(chǔ)。
c.分層次:采用化歸的數(shù)學(xué)思想。例如,定積分、重積分、曲線積分、曲面積分等都是和式的極限,層層深入提高,而解題方法又都?xì)w結(jié)到不定積分的基礎(chǔ)上來。
d.舉反例:例如,函數(shù)在某點的極限存在,而在該點處卻不連續(xù)。
e.找特例:采用從特殊到一般的數(shù)學(xué)思想,再把特例中的條件更換為一般的條件,即可得出一般性的結(jié)論。
f.明了知識的交叉點:例如,微分學(xué)與解析幾何的某些知識點的結(jié)合,產(chǎn)生了微分幾何的初步知識—曲率、切線、切平面、法線、法平面等。
g.幾何直觀:采用數(shù)形結(jié)合的數(shù)學(xué)思想,使抽象的函數(shù)關(guān)系變?yōu)樾蜗蟮膸缀螆D形,使概念、定理更易于理解和掌握。
6.要適當(dāng)多做習(xí)題,注意積累解題經(jīng)驗,及時總結(jié):
a.分題型:按數(shù)學(xué)思想及方法的不同分清不同題型,即可達(dá)到事半功倍的學(xué)習(xí)效果。
b.重方法:注意平時做題方法的積累,例如,條件極值問題和部分不等式的證明,引入輔助函數(shù)的方法。
c.按步驟:根據(jù)步驟一步一步進(jìn)行解答,不要嫌麻煩,例如,求最值問題。
d.找規(guī)律:某些問題可以按照一定的規(guī)律解決。
高等數(shù)學(xué)的體會篇二
原本以為憑借小學(xué)到高中這十余年所總結(jié)出的數(shù)學(xué)學(xué)習(xí)方法,就能輕松應(yīng)對大學(xué)高等數(shù)學(xué)的學(xué)習(xí)。
然而,經(jīng)過一個多學(xué)期的學(xué)習(xí),我真正體會到高等數(shù)學(xué)的學(xué)習(xí)特點與以往所學(xué)習(xí)的數(shù)學(xué)大相徑庭。因此,我必須在學(xué)習(xí)過程中找到高等數(shù)學(xué)的獨特之處,總結(jié)出一套新的有效的方法,才能在高等數(shù)學(xué)的學(xué)習(xí)中做到游刃有余。
就我個人而言,我認(rèn)為高等數(shù)學(xué)有以下幾個顯著特點:
(1)識記的知識相對減少,理解的知識點相對增加;
(2)不僅要求會運用所學(xué)的知識解題,還要明白其來龍去脈;
(3)系實際多,對專業(yè)學(xué)習(xí)幫助大;
(4)教師授課速度快,課下復(fù)習(xí)與預(yù)習(xí)必不可少。
以前上數(shù)學(xué)課,老師在黑板上寫滿各種公式和結(jié)論,我便一邊在書上勾畫,一邊在筆記本上記錄。
然后像背單詞一樣,把一堆公式與結(jié)論死記硬背下來。
哪種類型的題目用哪個公式、哪條結(jié)論,老師都已一一總結(jié)出來,我只需要將其對號入座,便可將問題解答出來。
而現(xiàn)在,我不再有那么多需要識記的結(jié)論。
唯一需要記住的只是數(shù)目不多的一些定義、定理和推論。
老師也不會給出固定的解題套路。因為高等數(shù)學(xué)與中學(xué)數(shù)學(xué)不同,它更要求理解。只要充分理解了各個知識點,遇到題目可以自己分析出正確的解題思路。
所以,學(xué)習(xí)高等數(shù)學(xué),記憶的負(fù)擔(dān)輕了,但對思維的要求卻提高了。
每一次高數(shù)課,都是一次大腦的思維訓(xùn)練,都是一次提升理解力的好機(jī)會。
高等數(shù)學(xué)的學(xué)習(xí)目的不是為了應(yīng)付考試,因此,我們的學(xué)習(xí)不能停留在以解出答案為目標(biāo)。
我們必須知道解題過程中每一步的依據(jù)。正如我前面所提到的,中學(xué)時期學(xué)過的許多定理并不特別要求我們理解其結(jié)論的推導(dǎo)過程。
而高等數(shù)學(xué)課本中的每一個定理都有詳細(xì)的證明。
最初,我以為只要把定理內(nèi)容記住,能做題就行了。
然而,漸漸地,我發(fā)現(xiàn)如果沒有真正明白每個定理的來龍去脈,就不能真正掌握它,更談不上什么運用自如了。
于是,我開始認(rèn)真地學(xué)習(xí)每一個定理的推導(dǎo)。有時候,某些地方很難理解,我便反復(fù)思考,或請教老師、同學(xué)。盡管這個過程并不輕松,但我卻認(rèn)為非常值得。
因為只有通過自己去探索的知識,才是掌握得最好的。
總而言之,高等數(shù)學(xué)的以上幾個特點,使我的數(shù)學(xué)學(xué)習(xí)歷程充滿了挑戰(zhàn),同時也給了我難得的鍛煉機(jī)會,讓我收獲多多。
進(jìn)入大學(xué)之前,我們都是學(xué)習(xí)基礎(chǔ)的數(shù)學(xué)知識,聯(lián)系實際的東西并不多。在大學(xué)卻不同了。
不同專業(yè)的學(xué)生學(xué)習(xí)的數(shù)學(xué)是不同的。
正是因為如此,高等數(shù)學(xué)的課本上有了更多與實際內(nèi)容相關(guān)的`內(nèi)容,這對專業(yè)學(xué)習(xí)的幫助是不可低估的。
比如“常用簡單經(jīng)濟(jì)函數(shù)介紹”中所列舉的需求函數(shù),供給函數(shù),生產(chǎn)函數(shù)等等在西方經(jīng)濟(jì)學(xué)的學(xué)習(xí)中都有用到。
而“極值原理在經(jīng)濟(jì)管理和經(jīng)濟(jì)分析中的應(yīng)用”這一節(jié)與經(jīng)濟(jì)學(xué)中的“邊際問題”密切相關(guān)。如果沒有這些知識作為基礎(chǔ),經(jīng)濟(jì)學(xué)中的許多問題都無法解決。
當(dāng)我親身學(xué)習(xí)了高等數(shù)學(xué),并試圖把它運用到經(jīng)濟(jì)問題的分析中時,才真正體會到了數(shù)學(xué)方法是經(jīng)濟(jì)學(xué)中最重要的方法之一,是經(jīng)濟(jì)理論取得突破性發(fā)展的重要工具。這也堅定了我努力學(xué)好高等數(shù)學(xué)的決心。希望未來自己可以憑借扎實的數(shù)理基礎(chǔ),在經(jīng)濟(jì)領(lǐng)域里大展鴻圖。
高等數(shù)學(xué)作為大學(xué)的一門課程,自然與其它課程有著共同之處,那就是講課速度快。
剛開始,我非常不適應(yīng)。上一題還沒有消化,老師已經(jīng)講完下一題了。帶著幾分焦慮,我向?qū)W長請教學(xué)習(xí)經(jīng)驗,才明白大學(xué)學(xué)習(xí)的重點不僅僅是課堂,課下的預(yù)習(xí)與復(fù)習(xí)是學(xué)好高數(shù)的必要條件。
于是,每節(jié)課前我都認(rèn)真預(yù)習(xí),把不懂的地方作上記號。課堂上有選擇、有計劃地聽講。
課后及時復(fù)習(xí),歸納總結(jié)。逐漸地,我便感到高數(shù)課變得輕松有趣。只要肯努力,高等數(shù)學(xué)并不會太難。
高等數(shù)學(xué)有其獨特之處,但它畢竟是數(shù)學(xué),那么一定量的習(xí)題自然必不可少。
通過練習(xí),才能更深入地理解,運用。
以上便是本人一個多學(xué)期以來,學(xué)習(xí)高等數(shù)學(xué)的一些體會。
希望自己能在以后的學(xué)習(xí)中更上一層樓!
高等數(shù)學(xué)的體會篇三
高等數(shù)學(xué)是大學(xué)必修課程之一,是數(shù)學(xué)學(xué)科的重要組成部分。在我小學(xué)和初中的數(shù)學(xué)課上,我一直都是數(shù)學(xué)的優(yōu)等生,但是對于高等數(shù)學(xué),我卻感到了困惑和挑戰(zhàn)。在大學(xué)一年級的時候,我開始接觸高等數(shù)學(xué)課程,剛開始覺得不太適應(yīng),因此在此期間感覺相當(dāng)壓抑。隨著時間的推移,我開始更深入地研究這門學(xué)科,并嘗試各種不同的學(xué)習(xí)方法,以便提高自己的成績。最終,在經(jīng)過無數(shù)次的努力后,我克服了困難,考出了令人滿意的高等數(shù)學(xué)成績。
第二段:回顧高等數(shù)學(xué)的考試經(jīng)驗
在學(xué)習(xí)高等數(shù)學(xué)的過程中,我不僅學(xué)到了許多知識和技能,也經(jīng)歷了很多考試。這些考試無疑是對我學(xué)習(xí)成果的檢驗,也讓我有機(jī)會去發(fā)現(xiàn)自己的弱點,找到不足之處,并嘗試改進(jìn)和克服它們。另外,這些考試還讓我體會到了競爭的壓力和緊張氣氛,這些因素都激發(fā)了我更深入地學(xué)習(xí)高等數(shù)學(xué)的熱情。
第三段:總結(jié)高等數(shù)學(xué)的重要性
高等數(shù)學(xué)的學(xué)習(xí)不僅僅關(guān)乎學(xué)習(xí)數(shù)學(xué)知識,更重要的是培養(yǎng)了我學(xué)習(xí)的能力。在學(xué)習(xí)過程中,我不斷努力,練習(xí)思考和分析的能力,提高了自己的邏輯推理和解決問題的能力。這些都是遠(yuǎn)遠(yuǎn)超出課程范圍的技能,對我的職業(yè)生涯和個人發(fā)展有著深遠(yuǎn)的影響。此外,學(xué)習(xí)高等數(shù)學(xué)還讓我感受到了知識的博大精深和對未知事物探索的熱情,這些元素也能夠?qū)ξ椅磥淼陌l(fā)展起到重要的支持作用。
第四段:點評吳昊的體會和經(jīng)驗
吳昊是我身邊一個優(yōu)秀的同學(xué),在高等數(shù)學(xué)的學(xué)習(xí)中他取得了出色的成績。他的學(xué)習(xí)經(jīng)驗和體會也對我啟發(fā)和影響很大。從吳昊的學(xué)習(xí)經(jīng)驗中,我們可以看到他在學(xué)習(xí)過程中非常注重理論知識的掌握和實踐能力的培養(yǎng)。而且,吳昊非常善于把理論知識和實踐技能有機(jī)結(jié)合起來,不斷地總結(jié)和反思,從而實現(xiàn)了對高等數(shù)學(xué)的深入理解。這些學(xué)習(xí)方法和態(tài)度對我指引良多,讓我對高等數(shù)學(xué)的學(xué)習(xí)也有了更多的信心和動力。
第五段:思考未來發(fā)展方向
在未來的學(xué)習(xí)過程中,我還需要不斷地探索和尋求新的機(jī)遇和挑戰(zhàn),以提高自己的學(xué)習(xí)能力和職業(yè)素養(yǎng)。高等數(shù)學(xué)作為一門必修課程,是培養(yǎng)我學(xué)習(xí)能力和解決問題能力的重要途徑。在今后的學(xué)習(xí)和生活中,我將會更加努力和專注于高等數(shù)學(xué)的學(xué)習(xí),以完成自己的職業(yè)規(guī)劃和個人發(fā)展目標(biāo)。
高等數(shù)學(xué)的體會篇四
高等代數(shù)作為數(shù)學(xué)基礎(chǔ)中的一門重要學(xué)科,是我在大學(xué)學(xué)習(xí)生涯中必修的一門課程。在這門課上,我深入學(xué)習(xí)了向量空間、線性代數(shù)、矩陣?yán)碚摰鹊?,并從中得出了一些心得體會。
第二段:突破自我認(rèn)知
在學(xué)習(xí)高等代數(shù)的過程中,我發(fā)現(xiàn)自己原本對數(shù)學(xué)的學(xué)習(xí)方法是缺失的。在以往的學(xué)習(xí)過程中,我往往會死記硬背定理和公式,而高等代數(shù)的學(xué)習(xí)則需要我不斷拓展自己的思路和認(rèn)知。通過學(xué)習(xí)高等代數(shù),我突破了自我對數(shù)學(xué)的認(rèn)知,從“背誦”到“理解”,從“計算”到“思考”。
第三段:運用于實際生活
高等代數(shù)學(xué)習(xí)對我的實際生活也有很大的幫助。在學(xué)習(xí)過程中,我不僅掌握了向量、矩陣等基本的數(shù)學(xué)工具,還學(xué)會了如何將這些數(shù)學(xué)知識應(yīng)用到生活實踐中。在處理各種實際問題時,我能夠運用這些學(xué)習(xí)到的高等代數(shù)知識,分析出問題的本質(zhì),得到更準(zhǔn)確的結(jié)論。
第四段:加深對數(shù)學(xué)基礎(chǔ)的理解
高等代數(shù)學(xué)習(xí)也加深了我對數(shù)學(xué)基礎(chǔ)的理解。 我們只有在基礎(chǔ)理解的基礎(chǔ)上才能建立更深層的學(xué)習(xí),高等代數(shù)學(xué)習(xí)在一定程度上鞏固了我在初等數(shù)學(xué)學(xué)習(xí)中所掌握的知識,特別是空間幾何方面的知識,越是基礎(chǔ)的知識點就越是能讓我對數(shù)學(xué)產(chǎn)生新的認(rèn)知和體驗。
第五段:總結(jié)
在高等代數(shù)的學(xué)習(xí)過程中,我收獲了很多。除了掌握一些有用的數(shù)學(xué)知識外,我還學(xué)會了如何更好地應(yīng)對數(shù)學(xué)學(xué)習(xí),這對我的未來學(xué)習(xí)、工作、生活都有很大的幫助。高等代數(shù)學(xué)習(xí)讓我不斷突破自我,提高了對基礎(chǔ)數(shù)學(xué)知識的理解,讓我對數(shù)學(xué)知識擁有更深入的體會和認(rèn)知。
高等數(shù)學(xué)的體會篇五
1.極限思想:是一種漸進(jìn)變化的數(shù)學(xué)思想。利用有限描述無限,由近似到精確的一種過程。極限思想是高等數(shù)學(xué)必不可少的一種重要方法,是高等數(shù)學(xué)與初等數(shù)學(xué)的本質(zhì)區(qū)別。利用極限思想方法解決了許多初等數(shù)學(xué)無法解決的問題,例如,求瞬時速度、曲線弧長、曲邊形面積、曲面體體積等問題。
2.函數(shù)思想:是通過構(gòu)造函數(shù),利用函數(shù)的概念、圖象和性質(zhì)去分析問題、轉(zhuǎn)化問題和解決問題的思想方法。中學(xué)數(shù)學(xué)和大學(xué)數(shù)學(xué)中都有用到函數(shù)思想,而大學(xué)中是將函數(shù)進(jìn)一步深化,更復(fù)雜一些,例如,函數(shù)的極限、連續(xù)性、極值等。
3.化歸思想:化歸思想的中心是轉(zhuǎn)化。原則是陌生問題熟悉化,復(fù)雜問題簡單化,抽象問題具體化,命題形式的轉(zhuǎn)化,引入輔助元素等。
4.數(shù)形結(jié)合思想:數(shù)學(xué)是以數(shù)和形為主干,劃分為代數(shù)和幾何兩個方向,而數(shù)和形又常常結(jié)合在一起,內(nèi)容上相互聯(lián)系,方法上相互滲透,并在一定條件下相互轉(zhuǎn)化。例如,平面向量的數(shù)量關(guān)系、解析幾何中曲線與方程的關(guān)系等。
5.邏輯思想:邏輯思想依賴于嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)推理。推理是多樣的,其中歸納和類比是兩種應(yīng)用極廣的推理。
a.歸納推理的過程:“發(fā)現(xiàn)問題”-“觀察問題”-“歸納問題”-“推廣問題”-“猜想”-“證明猜想”,例如,在某些證明中所使用的數(shù)學(xué)歸納法等。
b.類比:是根據(jù)兩個或兩類對象有部分屬性相同,推出它們的其它屬性也相同。類比方法有不同的類型:概念間的類比、形式間的類比、有限與無限間的類比等。
高等數(shù)學(xué)的體會篇六
高等數(shù)學(xué)是大學(xué)重要的數(shù)學(xué)基礎(chǔ)課程,涉及到微積分、線性代數(shù)、概率論與數(shù)理統(tǒng)計等多個學(xué)科領(lǐng)域,為學(xué)生的數(shù)學(xué)素養(yǎng)和綜合能力的提高帶來了巨大的幫助。如今,我已經(jīng)學(xué)習(xí)高等數(shù)學(xué)一年多,并考取了高分。在學(xué)習(xí)中,我積累了一些心得體會,現(xiàn)在愿意分享給大家。
一、認(rèn)真理解概念
高等數(shù)學(xué)中包含了大量的數(shù)學(xué)概念,這些概念是該學(xué)科的基礎(chǔ)。我們要經(jīng)常復(fù)習(xí)、深刻理解這些概念,才能更好地庖闡數(shù)學(xué)原理,推導(dǎo)出數(shù)學(xué)公式。對于某些難以理解的概念,可以尋找一些相關(guān)的實例進(jìn)行解釋,或者和同學(xué)一起討論,共同掌握這些概念,這樣才能更好地理解后面的內(nèi)容。
二、透徹掌握習(xí)題
高等數(shù)學(xué)的習(xí)題類型較多,需要我們不斷地練習(xí),從而鞏固和提高自己的掌握程度。在做習(xí)題時,我們要遵循“由易到難”的原則,先做容易的,逐漸增加難度,提升自身的解題水平。做題時,也要注意拓展視野,不要僅局限于老師講授的范圍,多嘗試一些新的方法和角度。
三、整合思維方式
高等數(shù)學(xué)的學(xué)習(xí)需要我們具有一定的數(shù)學(xué)思維能力,這也是高等數(shù)學(xué)和初等數(shù)學(xué)一份四的區(qū)別所在。在學(xué)習(xí)中,我們要注重培養(yǎng)自己的數(shù)學(xué)思考能力,學(xué)會用多種方式解決一道問題,整合不同的思維方式,拓展自己的思路。這種能力的培養(yǎng)要靠平時的訓(xùn)練,結(jié)合習(xí)題、考試和解題課等多種形式進(jìn)行。
四、注重細(xì)節(jié)處理
在高等數(shù)學(xué)課程中,一個小小的細(xì)節(jié)往往決定著整道題的成敗。因此,在學(xué)習(xí)高等數(shù)學(xué)時,我們必須將注意力集中在題目的細(xì)節(jié)上,嚴(yán)謹(jǐn)?shù)貙Υ恳徊接嬎?,避免出現(xiàn)計算錯誤。同時,在做習(xí)題和考試時,我們也要注意填寫卷面和計算器的使用規(guī)范,這樣才能避免走彎路,保證高分通過。
五、多方面尋求幫助
高等數(shù)學(xué)作為一門比較重要的基礎(chǔ)課程,難度比較大,我們學(xué)習(xí)中難免會遇到困難。遇到問題時,我們應(yīng)該多方面尋求幫助,可以找老師、同學(xué)或者其他渠道,與他人交流和探討,相互幫助提高解決問題的能力。此外,也要注重查找有關(guān)的參考書籍和一些網(wǎng)上的研究綜述,引領(lǐng)自己更快地掌握課程要點。
總之,高等數(shù)學(xué)雖然難,但只要認(rèn)真刻苦,多方尋求幫助,注重方向且扎實整合思維方式,嚴(yán)謹(jǐn)處理學(xué)習(xí)細(xì)節(jié),逐漸提升自己的數(shù)學(xué)素養(yǎng)和思維能力,就可以取得好成績,為自己的學(xué)業(yè)和未來的發(fā)展提供堅實的保障。
高等數(shù)學(xué)的體會篇七
學(xué)好高等數(shù)學(xué)是一個長期的過程,要做到邊學(xué)邊鞏固,今天的事今天完成,分階段有目的的復(fù)習(xí),學(xué)習(xí)來不得半點的投機(jī)取巧,所以考前突擊,臨時抱佛腳的做法都是不足取的,只有按照自己的計劃,踏踏實實的進(jìn)行準(zhǔn)備,才能以不變應(yīng)萬變,只要自己的綜合能力提高了,就能取得好的成績。
數(shù)學(xué)是嚴(yán)密的科學(xué)。數(shù)學(xué)是由概念、公理、定理、公式等,按照一定的邏輯規(guī)則組成的嚴(yán)密的知識體系,有很強(qiáng)的系統(tǒng)性。因此,在數(shù)學(xué)的學(xué)習(xí)中,一定要循序漸進(jìn),打好基礎(chǔ),完整地、系統(tǒng)地掌握基本概念和基本原理,這樣才能為解題打好堅實的基礎(chǔ)??傊?,學(xué)好高等數(shù)學(xué)并不是一件難事,只要你付出必要的努力,數(shù)學(xué)不應(yīng)是枯燥乏味的符號,只要你鉆進(jìn)去就會感到趣味盎然,數(shù)學(xué)不是一堆繁瑣無用的公式,掌握了它的真諦,就會給你增添知識和力量。
高等數(shù)學(xué)的體會篇八
隨著科技日新月異的發(fā)展和電腦無孔不入的應(yīng)用。高等數(shù)學(xué)課程作為一種數(shù)學(xué)工具的功能正在逐步縮減。但作為一種思維方法的載體的功能(例如訓(xùn)練學(xué)生辯證思維、邏輯推理、發(fā)現(xiàn)同題及分析同題的能力)卻愈顯風(fēng)采。一個多元線性方程組如何去解?我們可以交給電腦去完成,只要會正確使用數(shù)學(xué)軟件。但一個實際問題如何通過數(shù)學(xué)建模轉(zhuǎn)化為一個數(shù)學(xué)同題,除了必須具備許多綜合的知識,還需要具備一定的分析推理能力,這種素質(zhì)自然可以通過生活來積累,但如果能夠通過象高等數(shù)學(xué)這樣的課程作為載體來進(jìn)行系統(tǒng)訓(xùn)練,將是事半功倍的。
以往對工科學(xué)生來講,高等數(shù)學(xué)的教學(xué)比較偏重于計算方法的訓(xùn)練,例如,如何計算極限,計算導(dǎo)數(shù),計算積分,通過熟練掌握計算方法來加深對概念的理解,這是學(xué)習(xí)高等數(shù)學(xué)的一條捷便之徑。但是從二十一世紀(jì)更加需要創(chuàng)新人才的觀點看,從高等數(shù)學(xué)的概念中直接去提煉一種分析推理能力及實際應(yīng)用能力,將是更加重要的。(當(dāng)然,在改革的力度還未到位時,由于教學(xué)要求及教材等原因。學(xué)習(xí)高等數(shù)學(xué)并不能僅偏重于概念,對基本的計算方法必須熟練地掌握。如今就如何學(xué)好高等數(shù)學(xué)的基本概念。提出一些拙見供同學(xué)參考。
我們觀察一個物體,如果僅僅通過平視去進(jìn)行,那么對這個物體的認(rèn)識往往是局部的,甚至是扭曲的,只有從正視、俯視、側(cè)視的多角度去觀察與綜合,方能得到物體正確的空間定位。觀察事物尚且如此,要理解一個抽象的概念,如果只有單向的思維方法,肯定只能淺嘗輒止。只有從正反兩個方向去透視概念,才能較深地抓住概念中一些本質(zhì)的東西。這里所說的正方向思維應(yīng)該包含幾層意思:一是概念的定義是如何敘述的,二是概念所尉帶的條件是必要的。還是充分的'?三是概念產(chǎn)生的實際背景是什么?這里所說的反方向思維又應(yīng)該包含兩層意思:一是對一個概念的否定是怎樣表達(dá)的?二是如果錯誤的理解了概念中的一些條件會導(dǎo)致什么樣的錯誤結(jié)果。
發(fā)現(xiàn)問題呢?首先要提倡自學(xué),在自己預(yù)習(xí)教材(也鍛煉了一種自學(xué)能力)的過程中很容易發(fā)現(xiàn)不懂的同題,帶著同題再去聽課就會有的放矢。其次是聽課之后做習(xí)題之前要認(rèn)真復(fù)習(xí)消化課上的內(nèi)容,只要積極地開動腦筋,從中是會發(fā)現(xiàn)很多問題的,在這個較深層次上發(fā)現(xiàn)問題又去解決問題(可以通過同學(xué)與老師的幫助),那么分析問題的能力就會有一個質(zhì)的提高。
學(xué)習(xí)數(shù)學(xué),不做習(xí)題是絕對不行的。因為耐概念究竟理解與否檢驗的最后關(guān)口是習(xí)題。一道習(xí)題不會做或者做錯了,肯定是某些概念投有消化好,帶著習(xí)題再來復(fù)習(xí)理解概念,拄往會摩擦出新的思想火花。學(xué)習(xí)高等數(shù)學(xué)的過程中,我們不主張采用中學(xué)的題海戰(zhàn),但對每道習(xí)題不但要弄懂正確的解法,而且盡量要考慮能否有多種解法。這還不夠,進(jìn)一步的思考是一些似是而非的錯誤解法究竟錯在哪里?必定是對概念理解的偏差才導(dǎo)致的錯誤結(jié)果。經(jīng)過又一次正反兩個層面的開掘。思考深入了,學(xué)習(xí)的興趣也會逐步培育起來。
高等數(shù)學(xué)的體會篇九
第一段:引言(120字)
高等數(shù)學(xué)作為大學(xué)數(shù)學(xué)課程中的一門重要學(xué)科,不僅是理工科學(xué)生的必修課,更是培養(yǎng)學(xué)生分析解決問題能力的重要途徑。在學(xué)習(xí)高等數(shù)學(xué)的過程中,我感受到了數(shù)學(xué)的美妙與魅力,同時也深刻體會到了數(shù)學(xué)學(xué)習(xí)的重要性。通過這門課程的學(xué)習(xí),我不僅提高了自己的數(shù)學(xué)水平,更具備了解決實際問題的能力,下面將分為邏輯推理能力的提升、問題解決能力的培養(yǎng)、批判性思維的養(yǎng)成、嚴(yán)密的思維訓(xùn)練以及團(tuán)隊合作精神的培養(yǎng)五個方面,詳細(xì)論述我在高等數(shù)學(xué)學(xué)習(xí)中的心得體會。
第二段:邏輯推理能力的提升(250字)
高等數(shù)學(xué)學(xué)習(xí)需要運用各種公式定理,進(jìn)行推導(dǎo)證明。在這個過程中,我不斷鍛煉了自己的邏輯推理能力。老師引導(dǎo)我們學(xué)會分析問題,從多個角度去思考,利用數(shù)學(xué)方法解決問題。通過數(shù)學(xué)定理的證明,我更加深入地理解了邏輯推理的重要性以及問題求解的思路。此外,在高等數(shù)學(xué)的學(xué)習(xí)過程中,我還學(xué)會了如何將復(fù)雜問題分解為簡單子問題,逐步推導(dǎo)出一個完整的解決方案。這一過程的鍛煉不僅提高了我的數(shù)學(xué)素養(yǎng),還培養(yǎng)了我的邏輯思維能力,使我能夠更好地應(yīng)對其他學(xué)科的學(xué)習(xí)和實際問題的解決。
第三段:問題解決能力的培養(yǎng)(250字)
高等數(shù)學(xué)學(xué)習(xí)強(qiáng)調(diào)實際問題的建模與求解,培養(yǎng)學(xué)生解決實際問題的能力。在課堂上,我親身體驗了數(shù)學(xué)在解決實際問題中的作用。通過案例分析和問題解決討論,我學(xué)會了將抽象概念和公式與實際問題相結(jié)合,找到問題的關(guān)鍵點,提出有效的解決方案。此外,高等數(shù)學(xué)課程還讓我了解了數(shù)學(xué)與其他學(xué)科的交叉點,從而拓寬了視野,幫助我更好地理解和解決其他學(xué)科的實際問題。
第四段:批判性思維的養(yǎng)成(250字)
高等數(shù)學(xué)學(xué)習(xí)強(qiáng)調(diào)學(xué)生的批判性思維能力的培養(yǎng)。在學(xué)習(xí)過程中,我發(fā)現(xiàn)數(shù)學(xué)不僅有固定答案,還有多種解決路徑和解釋方法。通過解析問題的不同方面,從不同的角度思考,我逐漸養(yǎng)成了批判性思維的習(xí)慣。我開始質(zhì)疑問題是否被正確解決,是否有更好的方法,這種思維方式不僅在高等數(shù)學(xué)學(xué)習(xí)中幫助我更好地理解概念和定理,還在其他學(xué)科和實際生活中使我更加理性和客觀。
第五段:嚴(yán)密的思維訓(xùn)練與團(tuán)隊合作精神的培養(yǎng)(320字)
高等數(shù)學(xué)中的復(fù)雜定理和抽象概念要求學(xué)生掌握嚴(yán)密的思維能力。在解題過程中,我不得不重復(fù)思考,審查每一個環(huán)節(jié),確保每個推導(dǎo)步驟的準(zhǔn)確性和嚴(yán)密性。這過程雖然艱辛,但成功地提升了我的思維嚴(yán)密性和細(xì)心程度。另外,高等數(shù)學(xué)學(xué)習(xí)中的小組討論和團(tuán)隊合作也給了我很大的啟示。通過與同學(xué)合作,每個人可以帶來不同的思路和見解,我們可以互相學(xué)習(xí)、互相鼓勵,并共同解決問題。這種團(tuán)隊合作精神不僅在高等數(shù)學(xué)中得到培養(yǎng),還可以應(yīng)用到其他學(xué)科和實際工作中。
結(jié)尾:總結(jié)(90字)
總的來說,高等數(shù)學(xué)的學(xué)習(xí)不僅提高了我的數(shù)學(xué)水平,更重要的是培養(yǎng)了我解決問題的能力、批判性思維以及團(tuán)隊合作精神。這些能力將在我的未來學(xué)習(xí)和工作中發(fā)揮重要作用。通過高等數(shù)學(xué)的學(xué)習(xí),我明白了數(shù)學(xué)不僅僅是一種學(xué)科,更是一種思維方式和處理問題的工具。
高等數(shù)學(xué)的體會篇十
隨著科技日新月異的發(fā)展和電腦無孔不入的應(yīng)用.高等數(shù)學(xué)課程作為一種數(shù)學(xué)工具的功能正在逐步縮減.但作為一種思維方法的載體的功能(例如訓(xùn)練學(xué)生辯證思維、邏輯推理、發(fā)現(xiàn)同題及分析同題的能力)卻愈顯風(fēng)采。一個多元線性方程組如何去解?我們可以交給電腦去完成,只要會正確使用數(shù)學(xué)軟件。但一個實際問題如何通過數(shù)學(xué)建模轉(zhuǎn)化為一個數(shù)學(xué)同題,除了必須具備許多綜合的知識,還需要具備一定的分析推理能力,這種素質(zhì)自然可以通過生活來積累,但如果能夠通過象高等數(shù)學(xué)這樣的課程作為載體來進(jìn)行系統(tǒng)訓(xùn)練,將是事半功倍的。
以往對工科學(xué)生來講,高等數(shù)學(xué)的教學(xué)比較偏重于計算方法的訓(xùn)練,例如,如何計算極限,計算導(dǎo)數(shù),計算積分,通過熟練掌握計算方法來加深對概念的理解,這是學(xué)習(xí)高等數(shù)學(xué)的一條捷便之徑。但是從二十一世紀(jì)更加需要創(chuàng)新人才的觀點看,從高等數(shù)學(xué)的概念中直接去提煉一種分析推理能力及實際應(yīng)用能力,將是更加重要的。(當(dāng)然,在改革的力度還未到位時,由于教學(xué)要求及教材等原因.學(xué)習(xí)高等數(shù)學(xué)并不能僅偏重于概念,對基本的計算方法必須熟練地掌握。如今就如何學(xué)好高等數(shù)學(xué)的基本概念。提出一些拙見供同學(xué)參考。
1)從正反兩個層面理解概念
我們觀察一個物體,如果僅僅通過平視去進(jìn)行,那么對這個物體的認(rèn)識往往是局部的,甚至是扭曲的,只有從正視、俯視、側(cè)視的多角度去觀察與綜合,方能得到物體正確的空間定位。觀察事物尚且如此,要理解一個抽象的概念,如果只有單向的思維方法,肯定只能淺嘗輒止.只有從正反兩個方向去透視概念,才能較深地抓住概念中一些本質(zhì)的東西。這里所說的正方向思維應(yīng)該包含幾層意思:一是概念的定義是如何敘述的,二是概念所尉帶的條件是必要的.還是充分的?三是概念產(chǎn)生的實際背景是什么?這里所說的反方向思維又應(yīng)該包含兩層意思:一是對一個概念的否定是怎樣表達(dá)的?二是如果錯誤的理解了概念中的一些條件會導(dǎo)致什么樣的錯誤結(jié)果。
2)學(xué)與問
發(fā)現(xiàn)問題呢?首先要提倡自學(xué),在自己預(yù)習(xí)教材(也鍛煉了一種自學(xué)能力)的過程中很容易發(fā)現(xiàn)不懂的同題,帶著同題再去聽課就會有的放矢。其次是聽課之后做習(xí)題之前要認(rèn)真復(fù)習(xí)消化課上的內(nèi)容,只要積極地開動腦筋,從中是會發(fā)現(xiàn)很多問題的,在這個較深層次上發(fā)現(xiàn)問題又去解決問題(可以通過同學(xué)與老師的幫助),那么分析問題的能力就會有一個質(zhì)的提高。
3)做習(xí)題與想習(xí)題
學(xué)習(xí)數(shù)學(xué),不做習(xí)題是絕對不行的.因為耐概念究竟理解與否檢驗的最后關(guān)口是習(xí)題。一道習(xí)題不會做或者做錯了,肯定是某些概念投有消化好,帶著習(xí)題再來復(fù)習(xí)理解概念,拄往會摩擦出新的思想火花。學(xué)習(xí)高等數(shù)學(xué)的過程中,我們不主張采用中學(xué)的題海戰(zhàn),但對每道習(xí)題不但要弄懂正確的解法,而且盡量要考慮能否有多種解法。這還不夠,進(jìn)一步的思考是一些似是而非的錯誤解法究竟錯在哪里?必定是對概念理解的偏差才導(dǎo)致的錯誤結(jié)果.經(jīng)過又一次正反兩個層面的開掘.思考深入了,學(xué)習(xí)的興趣也會逐步培育起來。
高等數(shù)學(xué)的體會篇十一
一個高中生升入大學(xué)學(xué)習(xí)后,不僅要在環(huán)境上、心理上適應(yīng)新的學(xué)習(xí)生活,同時學(xué)習(xí)方法的改變也是一個不容忽視的方面。
從中學(xué)升入大學(xué)學(xué)習(xí)后,在學(xué)習(xí)方法上將會遇到一個比較大的轉(zhuǎn)折。首先是對大學(xué)的教學(xué)方式和方法會感到很不適應(yīng)。這在高等數(shù)學(xué)課程的教學(xué)中反應(yīng)特別明顯,因為它是一門對大一新生首當(dāng)其沖的理論性較強(qiáng)的基礎(chǔ)理論課程。而學(xué)生正是習(xí)慣于模仿性和單一性的學(xué)習(xí)方法。這是從小學(xué)到中學(xué)的教育中長期養(yǎng)成的,一時還難以改變。
中學(xué)的教學(xué)方式和方法與大學(xué)有質(zhì)的差別,中學(xué)的學(xué)習(xí)學(xué)生是在教師的直接指導(dǎo)下進(jìn)行模仿和單一性的學(xué)習(xí),大學(xué)則是在教師的指導(dǎo)下進(jìn)行創(chuàng)造性的學(xué)習(xí)。而大學(xué)高等數(shù)學(xué)課程的學(xué)習(xí),教材僅是作為一種主要的參考書,要求學(xué)生以課堂上老師所講的重點和難點為線索,課后去鉆研教材和閱讀大量的同類參考書,然后去完成課后習(xí)題。就這樣反復(fù)地進(jìn)行創(chuàng)造性學(xué)習(xí)。這是一種艱苦的腦力勞動,需要學(xué)生能反復(fù)地、自覺地進(jìn)行學(xué)習(xí)。還要在松散的環(huán)境中能約束自己。
大學(xué)生活是人生的一大轉(zhuǎn)折點。大學(xué)時期注重于培養(yǎng)同學(xué)們的獨立生活、獨立思考、獨立分析問題和解決問題的能力,而不像中學(xué)那樣有一個依賴的環(huán)境。高等數(shù)學(xué)與高中數(shù)學(xué)相比有很大的不同,內(nèi)容上主要是引進(jìn)了一些全新的數(shù)學(xué)思想,特別是無限分割逐步逼近,極限等;從形式上講,學(xué)習(xí)方式也很不一樣,特別是一般都是大班授課,進(jìn)度快,老師很難個別輔導(dǎo),故對自學(xué)能力的要求很高。中學(xué)時期主要是老師領(lǐng)著學(xué),學(xué)生只需要跟著老師的指揮棒走就可以了,而在大學(xué)時主要靠自學(xué),教師只起一個引導(dǎo)的作用。新同學(xué)應(yīng)盡快適應(yīng)大學(xué)生活,形成一個良好的開端,這對四年的大學(xué)生涯是有益的。
中學(xué)數(shù)學(xué)課程的中心是從具體數(shù)學(xué)到概念化數(shù)學(xué)的轉(zhuǎn)變。中學(xué)數(shù)學(xué)課程的宗旨是為大學(xué)微積分作準(zhǔn)備。學(xué)習(xí)數(shù)學(xué)總要經(jīng)歷由具體到抽象、由特殊到一般的漸進(jìn)過程。由數(shù)引導(dǎo)到符號,即變量的名稱;由符號間的關(guān)系引導(dǎo)到函數(shù),即符號所代表的對象之間的關(guān)系。高等數(shù)學(xué)首先要做的是幫助學(xué)生發(fā)展函數(shù)概念——變量間關(guān)系的表述方式。這就把同學(xué)們的理解力從常量推進(jìn)到變量、從描述推進(jìn)到證明、從具體情形推進(jìn)到一般方程,開始領(lǐng)會到數(shù)學(xué)符號的威力。但《高等數(shù)學(xué)》的主要內(nèi)容是微積分,它繼承了中學(xué)的訓(xùn)練,它們之間有千絲萬縷的聯(lián)系。
為了適應(yīng)21世紀(jì)高等數(shù)學(xué)課程的教學(xué)改革,高等數(shù)學(xué)課程的教學(xué)也發(fā)生了很大的變化,在傳統(tǒng)的教學(xué)手段的基礎(chǔ)上,采用了更加具體化、形象化的現(xiàn)代教育技術(shù),這也是一般中學(xué)所沒有的,因此,同學(xué)們在進(jìn)入大學(xué)以后,不僅要注意高等數(shù)學(xué)課程的內(nèi)容與中學(xué)數(shù)學(xué)的區(qū)別與聯(lián)系,還要盡快適應(yīng)高等數(shù)學(xué)課程的新的教學(xué)特點。認(rèn)真上好第一節(jié)高等數(shù)學(xué)課,嚴(yán)格按照任課老師的要求去做。若能堅持做到,課前預(yù)習(xí),課上聽講,課后復(fù)習(xí),認(rèn)真完成作業(yè),課后對所學(xué)的知識進(jìn)行歸納總結(jié),加深對所學(xué)內(nèi)容的理解,從而也就掌握了所學(xué)的知識,就不難學(xué)好高等數(shù)學(xué)這門課。有些同學(xué)就是沒有把握好自己,一看高等數(shù)學(xué)一開始的內(nèi)容和中學(xué)所學(xué)內(nèi)容極其相似,就掉以輕心,認(rèn)為自己看看就會了,要么不聽課,要么不完成作業(yè),結(jié)果導(dǎo)致后面的章節(jié)聽不懂,跟不上,甚至有的同學(xué)就一直跟不上,學(xué)期末成績不理想,甚至不及格。
第一,要勤學(xué)、善思、多練。所謂學(xué),包括學(xué)和問兩方面,即向教師,向同學(xué),向自己學(xué)和問。惟有在“學(xué)中問”和“問中學(xué)”,才能消化數(shù)學(xué)的概念、理論、方法;所謂思,就是將所學(xué)內(nèi)容,經(jīng)過思考加工去粗取精,抓本質(zhì)和精華。華羅庚“抓住要點”使“書本變薄”的這種勤于思考、善于思考、從厚到薄的學(xué)習(xí)數(shù)學(xué)的方法,值得我們借鑒;所謂習(xí),就《高等數(shù)學(xué)》而言,就是做練習(xí),這是數(shù)學(xué)自身的特點。練習(xí)一般分為兩類,一是基礎(chǔ)訓(xùn)練練習(xí),經(jīng)常附在每章每節(jié)之后,這類問題相對來說比較簡單,無大難度,但很重要,是打基礎(chǔ)部分。二是提高訓(xùn)練練習(xí),知識面廣些,不局限于本章本節(jié),在解決的方法上要用到多種數(shù)學(xué)工具。數(shù)學(xué)的練習(xí)是消化鞏固知識極重要的一個環(huán)節(jié),舍此達(dá)不到目的。
第二,狠抓基礎(chǔ),循序漸進(jìn)。任何學(xué)科,基礎(chǔ)內(nèi)容常常是最重要的部分,它關(guān)系到學(xué)習(xí)的成敗與否?!陡叩葦?shù)學(xué)》本身就是數(shù)學(xué)和其他學(xué)科的基礎(chǔ),而《高等數(shù)學(xué)》又有一些重要的基礎(chǔ)內(nèi)容,它關(guān)系到整個知識結(jié)構(gòu)的全局。以微積分部分為例,極限貫穿著整個微積分,函數(shù)的連續(xù)性及性質(zhì)貫穿著后面一系列定理結(jié)論,初等函數(shù)求導(dǎo)法及積分法關(guān)系到今后各個學(xué)科。因此,一開始就要下狠功夫,牢牢掌握這些基礎(chǔ)內(nèi)容。在學(xué)習(xí)《高等數(shù)學(xué)》時要一步一個腳印,扎扎實實地學(xué)和練。第三,歸類小結(jié),從厚到薄。記憶總的原則是抓綱,在用中記。歸類小結(jié)是一個重要方法?!陡叩葦?shù)學(xué)》歸類方法可按內(nèi)容和方法兩部分小結(jié),以代表性問題為例輔以說明。在歸類小節(jié)時,要特別注意有基礎(chǔ)內(nèi)容派生出來的一些結(jié)論,即所謂一些中間結(jié)果,這些結(jié)果常常在一些典型例題和習(xí)題上出現(xiàn),如果你能多掌握一些中間結(jié)果,則解決一般問題和綜合訓(xùn)練題就會感到輕松。
第四,精讀一本參考書。實踐證明,在教師指導(dǎo)下,抓準(zhǔn)一本參考書,精讀到底,如果你能熟讀了一本有代表性的參考書,再看其它參考書就會迎刃而解了。
第五,注意學(xué)習(xí)效率。數(shù)學(xué)的方法和理論的掌握,常常需要做到熟能生巧、觸類旁通。人不可能通過一次學(xué)習(xí)就掌握所學(xué)的知識,需要有幾個反復(fù)。所謂“學(xué)而時習(xí)之”、“溫故而知新”都是指學(xué)習(xí)要經(jīng)過反復(fù)多次?!陡叩葦?shù)學(xué)》的記憶,必須建立在理解和熟練做題的基礎(chǔ)上,死記硬背無濟(jì)于事。
1.書:課本+習(xí)題集(必備),因為學(xué)好數(shù)學(xué)絕對離不開多做題,建議習(xí)題集最好有本跟考研有關(guān)的,這樣也有利于你做好將來的考研準(zhǔn)備。
2.筆記:盡量有,我說的筆記不是指原封不動的抄板書,那樣沒意思,而且不必非單獨用個小本,可記在書上。關(guān)鍵是在筆記上一定要有自己對每一章知識的總結(jié),類似于一個提綱,(有時老師或參考書上有,可以參考),最好還有各種題型+方法+易錯點。
3.上課:建議最好預(yù)習(xí)后聽,聽不懂不要緊,很多大學(xué)的課程都是靠課下結(jié)合老師的筆記自己重新看。但是記?。焊邤?shù)千萬別搞考前突擊,絕對行不通,所以平時你就要跟上,步步盡量別斷層。
4.學(xué)好高數(shù)=基本概念透+基本定理牢+基本網(wǎng)絡(luò)有+基本常識記+基本題型熟。數(shù)學(xué)就是一個概念+定理體系(還有推理),對概念的理解至關(guān)重要,比如說極限、導(dǎo)數(shù)等,你既要有形象的對它們的理解,也要熟記它們的數(shù)學(xué)描述,不用硬背,可以自己對著書舉例子,畫個圖看看(形象理解其實很重要),然后多做題,做題中體會。建議你用一只彩筆專門把所有的概念標(biāo)出來,這樣看書時一目了然(定理用方框框起來)。基本網(wǎng)絡(luò)就是上面說的筆記上的總結(jié)的知識提綱,也要重視?;境WR就是高中時老師常說的“準(zhǔn)定理”,就是書上沒有,在習(xí)題中我們總結(jié)的可以當(dāng)定理或推論用的東西,還有一些自己小小的經(jīng)驗。這些東西不正式但很有用的,比如各種極限的求法。
這些都做到了,高等數(shù)學(xué)應(yīng)該學(xué)得不會差了,至少應(yīng)付考試沒問題。如果你想提高些,可以做些考研的數(shù)學(xué)題,體會一下,其實也不過如此,并不象你想象的那么難。還可以看些關(guān)于高數(shù)應(yīng)用的書,其實數(shù)學(xué)本來就是從應(yīng)用中來的,你會知道高等數(shù)學(xué)真的很有用。
高等數(shù)學(xué)的體會篇十二
本學(xué)期我擔(dān)任??茖哟嗡幹?3-1、藥分13-1、藥營13-1、生制13-1、中藥13-1五個班的《高等數(shù)學(xué)》教學(xué)工作,周課時20,按15個教學(xué)周,計300課時,另外還開設(shè)《太極拳》選修課30課時,共計330課時。
二、工作態(tài)度與方法。
工作態(tài)度方面,我每每中午去食堂是最后,甚至教工食堂收工,我得去學(xué)生食堂,只因我從不提前下課。我按時下課,但有時同學(xué)問問題,會弄遲些。在備課的時候,我會為一個問題的表述反復(fù)思考,看怎么能讓同學(xué)們更容易接受,總之,為了提高同學(xué)們的學(xué)習(xí)效率,自己是不計成本的。
鑒于高校老師不坐班,上完課就走人,師生交流僅限于課堂,我感覺這不利于學(xué)生發(fā)展。為此,我在課堂教學(xué)之余,采取多種方式--或當(dāng)面引導(dǎo),高屋建瓴,一語中的;或充分利用現(xiàn)代網(wǎng)絡(luò)媒體,與同學(xué)們在線交流。有時是解答他們在學(xué)習(xí)上的某一具體問題,有時是就人生成長過程中的困惑進(jìn)行分析探討,為其答疑解惑,做其良師益友。
當(dāng)然,更多的交流還是課堂教學(xué),這里我稍微總結(jié)一下《高等數(shù)學(xué)》課程教學(xué)中的三個細(xì)節(jié):
三是積分部分,不定積分我強(qiáng)調(diào)練習(xí),求積分(1)(2)(3)(4),練習(xí)得比較充分,定積分我強(qiáng)調(diào)理論,微積分基本公式的詳細(xì)推導(dǎo)雖不是考點,但我還是耐心引導(dǎo)、仔細(xì)講解……我這樣做一方面對想繼續(xù)深造的同學(xué)有利,另一方面,我是想讓自己嚴(yán)謹(jǐn)求實的工作作風(fēng)給學(xué)生一些正面影響。
在評價考核方面,我十分注重過程性、形成性。我發(fā)現(xiàn),某個階段,如果學(xué)生草稿本“銷量”大增,其數(shù)學(xué)功力就有所提升,草稿本打得多與少,很大程度反映出一個人的數(shù)學(xué)學(xué)習(xí)狀態(tài)。因此第一堂課我就強(qiáng)調(diào),草稿本不要扔棄,寫完了送給我,我“記工分”(畫正字)。為防止有人為了工分而工分,12月底我就將這項活動截止。從效果上看,一方面督促大家你追我趕,多做多練;另一方面,也較真實地反映出大家平時的數(shù)學(xué)學(xué)習(xí)狀況,為學(xué)期末平時成績的評定提供了重要參考依據(jù)。一學(xué)期下來,草稿紙作為廢品賣掉,收入頗豐,相當(dāng)于同學(xué)們請我吃了早茶,謝謝謝謝!
最后階段,我為了同學(xué)們更好地復(fù)習(xí)鞏固,考前給出《考試說明》,提示哪些知識點務(wù)必掌握,并鼓勵同學(xué)們根據(jù)考點提示成立“猜題委員會”,當(dāng)然,您也可以美其名曰“高等數(shù)學(xué)互助學(xué)習(xí)志愿者協(xié)會”,說是猜題押題,實則是在引導(dǎo)更多的同學(xué)成為學(xué)霸,并請熱心的超級學(xué)霸將自己精美的《好題本》與大家分享,驅(qū)散學(xué)困生備考陰霾。
三、工作體會與感悟。
對于工作量,我想教師任課班級過多、班級人數(shù)過多、周課時過密,對教師、對學(xué)生都是不利的。說實在的,盡管同學(xué)們看見我都很有禮貌地叫:“老師好!”,但大部分同學(xué)的名字我是叫不出的。教書育人,兩者不可偏頗,很大程度上后者可能更重要些。
對于多媒體教學(xué),我是積極參與并可謂“先行者”之一,但我愈來愈發(fā)現(xiàn)對于數(shù)學(xué)等課程,教師的板演是不可替代的,你可以制作多媒體動畫模擬板演,但還是不能替代教師站在黑板前一步步分析展開。當(dāng)然,如果投影屏幕掛在黑板兩側(cè)再靠邊一點,提綱性的要領(lǐng)或大信息量的展示用一下,而黑板的粉塵能杜絕,彈指間就能局部擦除或全部清空,那就更方便了。總之,時尚科技與經(jīng)典傳統(tǒng)要有機(jī)融合、揚長補(bǔ)短。
學(xué)包括高等數(shù)學(xué)是可以聽懂的,無論原來基礎(chǔ)好壞,只要認(rèn)真聽,而要讓學(xué)生認(rèn)真聽,得有趣、得活潑、得幽默。
對于教育事業(yè),我認(rèn)為老師除了教書,更重要的是育人。因此,自己首先得是位真正的道德高尚之君,以自身灼熱的人格正氣讓每位接觸過的學(xué)生于無形中獲得一種人格的滋養(yǎng)與人性的清明。崇高的人格是一股強(qiáng)大的教育力量,崇高的人格是一座珍貴的教育寶藏。
我時常反思,自己有無教育教學(xué)誤區(qū)?比如師生關(guān)系,把握住“尊重”,這是教師工作的出發(fā)點,在學(xué)生之間不能主觀地圈定優(yōu)等生,去偏愛這些優(yōu)等生,教師偏愛少數(shù)“好學(xué)生”就是不尊重大多數(shù)學(xué)生。教師應(yīng)該一視同仁,善待每一個學(xué)生,及時發(fā)現(xiàn)他們身上的優(yōu)點,幫助他們克服缺點,努力挖掘?qū)W生的潛在能力,給所有的學(xué)生創(chuàng)造表現(xiàn)才能的機(jī)會,尊重每一個學(xué)生。這里,對于我這門課平時成績較低的同學(xué),我真誠地說聲:“對不起!”。我相信,您的`成績(自我評價,他人評價)會在后續(xù)的課程、未來的人生中節(jié)節(jié)攀升、漸入佳境。
高等職業(yè)教育的職業(yè)性、技術(shù)性、就業(yè)導(dǎo)向性以及巨大的就業(yè)壓力,迫使高職院校公共基礎(chǔ)課教學(xué)必須把高職學(xué)生普遍關(guān)注的就業(yè)能力問題作為基礎(chǔ)課教學(xué)改革的立足點與出發(fā)點,在提高學(xué)生就業(yè)創(chuàng)業(yè)能力,引導(dǎo)學(xué)生更快更好地提升職業(yè)能力、職業(yè)素養(yǎng)方面發(fā)揮重要作用。這對公共基礎(chǔ)課教師的教學(xué)觀念與教學(xué)能力是一大挑戰(zhàn)。我有一個想法,就是系統(tǒng)地學(xué)習(xí)臨床、藥學(xué)、護(hù)理等所任專業(yè)的所有課程,看看學(xué)生到底需要哪些數(shù)學(xué)知識?需要什么數(shù)學(xué)技能?思維品質(zhì)培養(yǎng)的關(guān)鍵在何處?做到心中有數(shù),以便打破公共基礎(chǔ)課和專業(yè)課之間的壁壘,將原先的公共基礎(chǔ)課融合穿插到各個學(xué)習(xí)領(lǐng)域的學(xué)習(xí)情境中去教學(xué)。
當(dāng)然,公共基礎(chǔ)課不僅僅具有為專業(yè)課程服務(wù)的工具性功能,更具有“潤物細(xì)無聲”的人文教化功能。在今后的教學(xué)上,我爭取突破教學(xué)常規(guī),更高效更機(jī)智地處理問題,彰顯出更多的的課堂教學(xué)機(jī)智,妥帖恰當(dāng)?shù)靥幚斫虒W(xué)突發(fā)事件,順勢而為地引導(dǎo)學(xué)生積極探索與思考,巧妙有效地幫助學(xué)生對重點、難點進(jìn)行深入理解,自然流暢地啟發(fā)學(xué)生展開思維的翅膀,生動愉悅地引導(dǎo)學(xué)生步入人生智慧的魅力境界,同時,形成自己較高水平的教學(xué)智慧。
夏宜凡。
高等數(shù)學(xué)的體會篇十三
數(shù)學(xué)中有很多概念。概念反映的是事物的本質(zhì),弄清楚了它是如何定義的、有什么性質(zhì),才能真正地理解一個概念。所有的問題都在理解的基礎(chǔ)上才能做好。
第二,要掌握定理。
定理是一個正確的命題,分為條件和結(jié)論兩部分。對于定理除了要掌握它的條件和結(jié)論以外,還要搞清它的適用范圍,做到有的放矢。
第三,在弄懂例題的基礎(chǔ)上作適量的習(xí)題。
要特別提醒學(xué)習(xí)者的是,課本上的例題都是很典型的,有助于理解概念和掌握定理,要注意不同例題的特點和解法在理解例題的基礎(chǔ)上作適量的習(xí)題。作題時要善于總結(jié)——不僅總結(jié)方法,也要總結(jié)錯誤。這樣,作完之后才會有所收獲,才能舉一反三。
第四,理清脈絡(luò)。
要對所學(xué)的知識有個整體的把握,及時總結(jié)知識體系,這樣不僅可以加深對知識的理解,還會對進(jìn)一步的學(xué)習(xí)有所幫助。
高等數(shù)學(xué)中包括微積分和立體解析幾何,級數(shù)和常微分方程。其中尤以微積分的內(nèi)容最為系統(tǒng)且在其他課程中有廣泛的應(yīng)用。微積分的理論,是由牛頓和萊布尼茨完成的。(當(dāng)然在他們之前就已有微積分的應(yīng)用,但不夠系統(tǒng))。
數(shù)學(xué)備考一定要有一個復(fù)習(xí)時間表,也就是要有一個周密可行的計劃。按照計劃,循序漸進(jìn),切忌搞突擊,臨時抱佛腳。其實數(shù)學(xué)是基礎(chǔ)性學(xué)科,解題能力的提高,是一個長期積累的過程,因而復(fù)習(xí)時間就應(yīng)適當(dāng)提前,循序漸進(jìn)。大致在三、四月分開始著手進(jìn)行復(fù)習(xí),如果數(shù)學(xué)基礎(chǔ)差可以將復(fù)習(xí)的時間適當(dāng)提前。復(fù)習(xí)一定要有一個可行的計劃,通過計劃保證復(fù)習(xí)的進(jìn)度和效果。一般可以將復(fù)習(xí)分成四個階段,每個階段的起止時間和所要完成的任務(wù)考生應(yīng)給予明確規(guī)定,以保證計劃的可行性。第一個階段是按照考試大綱劃分復(fù)習(xí)范圍,在熟悉大綱的基礎(chǔ)上對考試必備的基礎(chǔ)知識進(jìn)行系統(tǒng)的復(fù)習(xí),了解考研數(shù)學(xué)的基本內(nèi)容、重點、難點和特點。這個時間段一般劃定為六月前。第二個階段是在第一階段的基礎(chǔ)上,做一定數(shù)量的題,重點解決解題思路的問題。一般從七月到十月。這個階段要注意歸納總結(jié),即拿到題后要知道從什么角度,可以分幾步去求解,每道題并不要求都要寫出完整步驟,只要思路有了,運算過程會做了,可以視情況而靈活掌握,這樣省出時間來看更多的題。所選試題可以是歷年真題,也可以是書上的練習(xí)題,但真題一定要做,而且要嚴(yán)格按照實考的要求去做,把握真題的特點和解題思路及運算步驟。第三個階段是實戰(zhàn)訓(xùn)練階段,從十一月到十二月的中旬,這也是臨考前非常重要的階段??忌獙Υ缶V所要求的知識點做最后的梳理,熟記公式,系統(tǒng)地做幾套模擬試卷,進(jìn)行實戰(zhàn)訓(xùn)練,自測復(fù)習(xí)成果。在做模擬題前先要系統(tǒng)記憶掌握基本公式,做題要講究質(zhì)量,既要有速度,又要有嚴(yán)格的步驟、格式和計算的準(zhǔn)確性。最后階段是考前沖刺,從十二月下旬到考試。針對在做模擬試題過程中出現(xiàn)的問題作最后的補(bǔ)習(xí),查缺補(bǔ)漏,以便以的狀態(tài)參加考試。學(xué)好數(shù)學(xué)是一個長期的過程,來不得半點的投機(jī)取巧,所以考前突擊,臨時抱佛腳的做法是不足取的,只有按照自己的計劃,踏踏實實的進(jìn)行準(zhǔn)備,才能以不變應(yīng)萬變,只要自己的綜合能力提高了,不管考試如何變化,都能取得好的成績。
數(shù)學(xué)的學(xué)習(xí)一定要每天都有個進(jìn)度,每天都要有題量,我們不應(yīng)該搞題海戰(zhàn)術(shù),但是通過做題提高實戰(zhàn)經(jīng)驗也是必須的,首先有個大的學(xué)習(xí)框架,然后計劃到每天,怎么去學(xué)習(xí),每天做那方面的題,定期的查漏補(bǔ)缺,這樣的學(xué)習(xí)才真正的有效果。
在高等教育自學(xué)考試的很多專業(yè)中,很多都有高等數(shù)學(xué)課程。很多考生反映,高等數(shù)學(xué)(一)通過非常難,林士中老師所教授的高等數(shù)學(xué)課程一直受到廣大網(wǎng)校學(xué)員的好評。在授課之余,林教授傳授了通過高數(shù)的訣竅。他說,在學(xué)習(xí)高數(shù)(一)之前,首先你要打好基礎(chǔ),把初中的數(shù)學(xué)補(bǔ)回來,再參加這兩門課程的考試就好的多。
林士中:我對同學(xué)了解的情況,一種是原來中學(xué)學(xué)的初等知識掌握太少,高等數(shù)學(xué)沒有用大量的初等數(shù)學(xué)知識,但是要用一部分的知識。有些同學(xué)不是高等數(shù)學(xué)知識沒掌握好,主要是初等數(shù)學(xué)知識不夠數(shù)量,或者掌握太少,變形變不過來,這樣就算你知道高等數(shù)學(xué),但是初等掌握不好,考試肯定會遇到一定困難。如果你是初等數(shù)學(xué)掌握過少影響考試不及格,你應(yīng)該把最基本的初等數(shù)學(xué)知識復(fù)習(xí)。自考365網(wǎng)校已經(jīng)推出了高等數(shù)學(xué)的基礎(chǔ)輔導(dǎo)課程,介紹微積分當(dāng)中用到的初等數(shù)學(xué)有哪些,大概有6課時。介紹微積分當(dāng)中用到的初等數(shù)學(xué)有哪些,如果有一部分同學(xué)感到初等數(shù)學(xué)知識不夠用,我希望同學(xué)不要害怕,你即便初等數(shù)學(xué)知識不夠好,不見得過不了。希望大家多花點時間學(xué)習(xí),可以起到事半功倍的效果。
第二個,有些同學(xué)覺得,學(xué)高等數(shù)學(xué),或者微積分,主要靠理解,但是實際上這里邊有一些誤會,數(shù)學(xué)主要是靠理解,但是和其他課程有區(qū)別,其他課程靠記憶比較多,當(dāng)然也要理解,但是數(shù)學(xué),靠理解的比較多,不等于不要記憶,特別有些基本的東西必須記的大家還要記憶,比如說一些基本概念,導(dǎo)數(shù)的定義,連續(xù)性的定義這些基本的東西要適當(dāng)?shù)挠浺幌隆?BR> 第三個,基本公式表,微分公式表也要記,這些基本的東西大家還要記。積分公式表記不住,積分就過不了關(guān),在記憶的基礎(chǔ)上適當(dāng)做一些題達(dá)到融會貫通,我希望大家做好這兩方面的復(fù)習(xí)。
有同學(xué)初等數(shù)學(xué)不會的,經(jīng)過努力,這樣的都能考過,其他人一定能考過。當(dāng)然得補(bǔ)一些數(shù)學(xué),不補(bǔ)是不行的,你們提出來補(bǔ)什么好,我跟大家說,初等數(shù)學(xué)不像你們中學(xué)那樣什么都要考,中學(xué)老師教你們主要是競爭,考大學(xué)是一種競爭性質(zhì),要求的內(nèi)容相當(dāng)多,偏題怪題都有,但是作為學(xué)高等數(shù)學(xué)不是競爭性質(zhì),只要求掌握基本知識,所以這部分就要把初等數(shù)學(xué)的基本內(nèi)容掌握好就行,實際上我個人覺得,你只要有決心補(bǔ)初等數(shù)學(xué),有兩三天就夠了。
認(rèn)真聽課。既然是高數(shù)課,自然是老師講課,一周的高數(shù)課的節(jié)數(shù)肯定不會少。所以,老師上課就是最好的一個學(xué)習(xí)媒介。少年們,上課努力早起去做前排吧。如果老師夠認(rèn)真負(fù)責(zé),相信做好了這一步,那就基本上成功了一半.
買一本靠譜的考研書。如果老師不認(rèn)真負(fù)責(zé),只會用蚊子般大小的聲音念念ppt怎么辦;根本聽不下去怎么辦。這個時候,不用慌張,其實還是有很多很好的選擇,推薦去買一本厚厚的考研書,不用擔(dān)心,考研書就是幫你們復(fù)習(xí)大一的高數(shù)知識,而且上面通常整理的非常好。各類例題也都是平時??嫉念愋?。
做好筆記。書上一些沒有的證明和老師上課隨性發(fā)揮的精華可是一瞬即逝的噠。做好筆記還有益于自己上課認(rèn)真專注。如果是自己看書也需要記筆記。
按時做作業(yè)。還記得高中時怎么沒日沒夜的做作業(yè)嗎,practicemakesperfect,這句話是沒有錯的,高數(shù)的作業(yè)會有很多,而它對你學(xué)好高數(shù)的重要性也不言而喻的。而且,作業(yè)好還有平時分還高,最后總評也高不是。
學(xué)習(xí)公開課。如果對一些證明,推理,或者概念不清楚,想要找個名師的話,網(wǎng)絡(luò)上的公開課其實是一個非常好的選擇。這也是現(xiàn)在的教育的一種趨勢,這里推薦一些常用的,比如mooc,愛課程網(wǎng),網(wǎng)易公開課等等。國外名校的都是大師,聽完他們的講解相信一定會對高數(shù)和整個數(shù)學(xué)體系有一個新的理解,并對它產(chǎn)生興趣。
高等數(shù)學(xué)的體會篇十四
高等數(shù)學(xué)作為理工科大學(xué)生的一門必修的基礎(chǔ)課,具有高度的抽象性、嚴(yán)密的邏輯性和廣泛的應(yīng)用性的特點,可以培養(yǎng)學(xué)生的抽象概括能力、邏輯思維能力、解決分析問題的能力,對科技進(jìn)步也起著基礎(chǔ)性推動作用。隨著國家高等教育從精英型轉(zhuǎn)入大眾型,學(xué)生素質(zhì)呈下降趨勢,大部分學(xué)生在學(xué)習(xí)高等數(shù)學(xué)時感到困難,從而提高高等數(shù)學(xué)教學(xué)質(zhì)量、改革高等數(shù)學(xué)教育教學(xué)方法已成為一個亟需解決的問題。
一、高等數(shù)學(xué)教學(xué)中學(xué)生存在的誤區(qū) 1.誤區(qū)一很多學(xué)生認(rèn)為學(xué)數(shù)學(xué)沒有用
高中階段學(xué)生已經(jīng)接觸到了高等數(shù)學(xué)中比較簡單的極限、導(dǎo)數(shù)、定積分,但沒有深入學(xué)習(xí)其概念、定義,高考也只是考了一點點,學(xué)生認(rèn)為自己掌握了高等數(shù)學(xué)的知識,再學(xué)了也沒有什么用,在將來實際工作中也用不到數(shù)學(xué)。
2.誤區(qū)二高等數(shù)學(xué)具有很高的抽象性,很多學(xué)生覺得學(xué)也學(xué)不會
現(xiàn)在學(xué)生不愿意動腦、動筆,碰到題目就在想答案。往往因為大學(xué)的高數(shù)題運算步驟比較多,想是想不出來的,不動筆又不畫圖,學(xué)生坐一會就有點困了,自然就認(rèn)為高等數(shù)學(xué)非常難。
3.誤區(qū)三學(xué)生習(xí)慣于用中學(xué)的思維來解題
很多學(xué)生學(xué)習(xí)數(shù)學(xué)的一些簡單想法就是來解數(shù)學(xué)題,愿意用中學(xué)的方法去解決高等數(shù)學(xué)里的題目,只要能做出答案就行。在這種思想的影響下,不愿意去掌握定義、定理,做題少步驟或只有答案,但是有的題目肯本做不出來。隨著學(xué)習(xí)的深入學(xué)生發(fā)現(xiàn)題目越來越不會做。
二、提高高等數(shù)學(xué)教學(xué)質(zhì)量的方法 1.端正學(xué)生學(xué)習(xí)態(tài)度
許多同學(xué)認(rèn)為,考上大學(xué)就可以放松了,自我要求標(biāo)準(zhǔn)降低了。只有有了明確的學(xué)習(xí)目標(biāo),端正學(xué)習(xí)態(tài)度,才能增加學(xué)習(xí)高等數(shù)學(xué)的動力。教師要以身作則,這要求教師熱愛數(shù)學(xué),對每節(jié)課都要以飽滿的激情、對數(shù)學(xué)美的無限欣賞呈現(xiàn)在學(xué)生面前,教師積極地態(tài)度從而感染學(xué)生學(xué)習(xí)高等數(shù)學(xué)的熱情。部分同學(xué)在應(yīng)試教育的影響下,應(yīng)經(jīng)形成了消極的數(shù)學(xué)態(tài)度,教師還應(yīng)該全方位、多角度扭轉(zhuǎn)學(xué)生學(xué)習(xí)態(tài)度,如課下談心談話、建立互助興趣小組、“一對一”結(jié)對子等方法,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的動力。端正學(xué)生的學(xué)習(xí)態(tài)度首先從數(shù)學(xué)字母的寫法、發(fā)信做起,很多學(xué)生古希臘字母不會寫也不會讀,上課多練習(xí)幾遍,老師在做題過程中要注重解題的每一步驟,告訴學(xué)生每一步驟的重要性,做題中感受數(shù)學(xué)題的美。
2.激發(fā)學(xué)生學(xué)習(xí)興趣
興趣是最好的老師,只有有了學(xué)習(xí)高等數(shù)學(xué)的興趣,學(xué)生才有了學(xué)習(xí)動力。在教學(xué)過程中,可以穿插一些關(guān)于數(shù)學(xué)的歷史,數(shù)學(xué)家的故事,數(shù)學(xué)文化,來激發(fā)學(xué)生的興趣。如定積分的講解時,自然引入牛頓、萊布尼茨兩位數(shù)學(xué)家的故事。教師在課堂講解時,把抽象的問題具體化,通過幾何畫圖提高學(xué)生的理解能力,這樣學(xué)生才更容易接受。
3.提高教師自身素質(zhì)
教師是課堂教育的主導(dǎo)者,是良好課堂氛圍的主要營造者,要想學(xué)生緊跟教師講課的思路,教師必須具有良好的人格魅力和深厚的專業(yè)功底。這就要求教師一方面要提高自身的文化底蘊(yùn),多讀一些與另一方面刻苦專研專業(yè)知識、完善知識結(jié)構(gòu)、提高教育教學(xué)能力,只有做到這樣,教師的課堂教育才能吸引學(xué)生,課下學(xué)生才愿意并主動與教師交流、溝通。教師在上課的時候要身體力行,做題要在步驟上下功夫,解釋每一步驟的重要性,既要用最少的步驟把題做完,又要講解每一步驟的重要性。這樣雖然浪費了一點時間,但是學(xué)生還是會做的,同時學(xué)生也得到了怎樣去做題以及真正的理解數(shù)學(xué)題,并從中發(fā)現(xiàn)數(shù)學(xué)美,時間長了能培養(yǎng)學(xué)生良好的數(shù)學(xué)興趣、數(shù)學(xué)能力和創(chuàng)新能力。對所講授的課程要有深入的了解,知識的內(nèi)在聯(lián)系及在學(xué)生專業(yè)上的應(yīng)用要有所了解,可以給學(xué)生提一提,以便引起學(xué)生足夠的重視。
4.創(chuàng)新教師教學(xué)方法
好的教學(xué)方法能激發(fā)學(xué)生思維能力,啟迪學(xué)生的思維悟性。教師在教學(xué)方法上進(jìn)行創(chuàng)新能有效改善課堂教學(xué)的效果。如教師在講授極限時,可以采用情景教學(xué)方法,把抽象的定義、定理與實際生活相聯(lián)系,營造學(xué)生認(rèn)知懸念,從而激發(fā)學(xué)生自主探索的積極性,從而提高學(xué)生思維能力和發(fā)現(xiàn)、分析問題的能力。在教學(xué)空閑的時候、或者學(xué)生比較累的時候、或者在講到某一個問題時,可以講一些實際的東西。如在剛開始學(xué)極限時,現(xiàn)在學(xué)生都在教學(xué)樓上課,教室里到處可見支撐樓的柱子。柱子不能太細(xì),細(xì)了樓就有可能倒掉,也不能非常粗,那樣雖然結(jié)實了,但是浪費材料,建筑商也不會同意。這樣柱子肯定要通過數(shù)學(xué)計算得到一個合理的數(shù)值,既要能承重又要節(jié)約材料,這個確定的數(shù)就可以認(rèn)為是一個極限。
5.建立良好的師生關(guān)系
在教育教學(xué)活動中,良好的師生關(guān)系是保證教育效果和質(zhì)量的前提。新時代的大學(xué)生具有自我意識強(qiáng),個性張揚等特點,要提高課堂教育效果,必須建立良好的師生關(guān)系。只有師生間相互了解、相互尊重、相互賞識,把教學(xué)過程看做是教師與學(xué)生的交流、交往過程,才能建立輕松、和諧的課堂氛圍,從而才能提高課堂教育效果和教學(xué)質(zhì)量。教師在教學(xué)的過程中,要學(xué)會換位思考,站在學(xué)生的角度估計講授問題的難易程度。對學(xué)生容易出錯或者經(jīng)常犯錯誤的地方,上課要強(qiáng)調(diào)知識的重要性,舉例說明讓學(xué)生理解知識點及了解出錯的原因。
6.重視作業(yè)中存在的問題
作業(yè)是學(xué)生學(xué)習(xí)知識好壞的一面鏡子,雖然現(xiàn)在學(xué)生有抄襲作業(yè)的現(xiàn)象,但是大部分學(xué)生還是自己做作業(yè)。從作業(yè)中可以看出學(xué)生對知識掌握的程度,沒掌握好的話,想辦法用最簡單的題目來說明問題。也許作業(yè)有可能做的非常好,這就要求教師對知識有很好的理解,對學(xué)生容易出錯的地方,上課時可以提問學(xué)生做過的題目或者讓學(xué)生課前上黑板重新做。這樣一學(xué)期下來,學(xué)生對難點重點會掌握的很好,考試成績自然會很好,同時對高等數(shù)學(xué)理解的程度也會很高。學(xué)生取得了好的成績,對高等數(shù)學(xué)了解的多了,自然對高等數(shù)學(xué)學(xué)習(xí)興趣提高了。在以后的學(xué)習(xí)過程中,自然會對各種數(shù)學(xué)課更加努力的去學(xué)習(xí),從而對其本專業(yè)課也起到了很好的促進(jìn)作用。最終學(xué)生會發(fā)現(xiàn)大學(xué)生活是非??鞓返?,學(xué)到了很多知識,學(xué)校也培養(yǎng)出了合格的大學(xué)生。
高等數(shù)學(xué)的體會篇十五
第一段:引言(150字)
在大學(xué)學(xué)習(xí)期間,高等數(shù)學(xué)是我們無法回避的一門課程。對于許多學(xué)生來說,高等數(shù)學(xué)可能是他們第一次接觸到抽象的數(shù)學(xué)概念和復(fù)雜的數(shù)學(xué)運算。然而,通過數(shù)學(xué)家和教育家的不斷努力,高等數(shù)學(xué)正在變得越來越有趣和易于理解。在我個人的學(xué)習(xí)過程中,我逐漸領(lǐng)悟到高等數(shù)學(xué)的重要性和應(yīng)用場景,并從中獲得了許多寶貴的經(jīng)驗和體會。
第二段:興趣驅(qū)動學(xué)習(xí)(250字)
我發(fā)現(xiàn),對于高等數(shù)學(xué)的學(xué)習(xí)來說,培養(yǎng)興趣是至關(guān)重要的。在開始學(xué)習(xí)高等數(shù)學(xué)之前,我對這門課程沒有太多的期待。然而,通過與教師的互動和進(jìn)一步的研究,我開始意識到高等數(shù)學(xué)是一門實際應(yīng)用廣泛且充滿挑戰(zhàn)的學(xué)科。我發(fā)現(xiàn)高等數(shù)學(xué)在物理、經(jīng)濟(jì)學(xué)甚至金融學(xué)中都起著重要的作用,并且具有許多實用性的應(yīng)用。為了更好地理解和應(yīng)用高等數(shù)學(xué)的知識,我主動參加數(shù)學(xué)建模和實驗課程,并且積極加入數(shù)學(xué)學(xué)術(shù)團(tuán)隊。通過這些課程和團(tuán)隊活動,我發(fā)現(xiàn)高等數(shù)學(xué)能夠幫助我們解決實際問題,并且在現(xiàn)實生活中起到重要的作用。
第三段:實踐驅(qū)動理論(250字)
在高等數(shù)學(xué)的學(xué)習(xí)過程中,我體會到實踐是鞏固理論知識的重要手段。通過解決一系列的習(xí)題和實際問題,我逐漸運用所學(xué)的數(shù)學(xué)方法來解決復(fù)雜的問題。并在此過程中體會到從紙上計算到實際應(yīng)用的轉(zhuǎn)換。在學(xué)習(xí)微積分時,我除了翻閱課本上的例題和習(xí)題外,還多次利用數(shù)學(xué)軟件進(jìn)行計算和模擬,并嘗試將所學(xué)的理論用于解決實際問題。通過這樣的實踐過程,我不僅加深了對高等數(shù)學(xué)理論的理解,還培養(yǎng)了解決實際問題的能力。
第四段:提升邏輯思維(250字)
高等數(shù)學(xué)的學(xué)習(xí)讓我逐漸鍛煉了邏輯思維能力。通過學(xué)習(xí)證明方法、推理規(guī)則以及數(shù)學(xué)定理等知識,我逐漸培養(yǎng)了嚴(yán)密的邏輯思維和分析問題的能力。高等數(shù)學(xué)課程中的證明過程迫使我們思考每一個步驟的合理性和正確性,并提出自己的證明思路。這種思考方式使我從中受益匪淺,不僅在數(shù)學(xué)領(lǐng)域受益,還在其他學(xué)科中應(yīng)用中受益。
第五段:結(jié)語(300字)
通過高等數(shù)學(xué)的學(xué)習(xí),我逐漸發(fā)現(xiàn)抽象的數(shù)學(xué)世界與現(xiàn)實生活是息息相關(guān)的。高等數(shù)學(xué)的學(xué)習(xí)讓我在思維、邏輯、實踐等多個方面得到了全面的提升。通過在數(shù)學(xué)領(lǐng)域中的探索與研究,我重新定義了對于高等數(shù)學(xué)這門課程的認(rèn)知,并且樹立起全新的目標(biāo)和動力。高等數(shù)學(xué)不僅僅是為了通過考試,更是培養(yǎng)我們終身學(xué)習(xí)的能力和思維方式的橋梁。在未來的學(xué)習(xí)和工作中,我相信高等數(shù)學(xué)所賦予的知識和能力會繼續(xù)對我產(chǎn)生重大影響。因此,我會繼續(xù)努力學(xué)習(xí)高等數(shù)學(xué),并將所學(xué)應(yīng)用于實際生活中,為現(xiàn)實問題的解決提供更多有益的思考和方法。
高等數(shù)學(xué)的體會篇十六
不是誤導(dǎo)大家武漢大學(xué)的教科書實在是很難理解,兩本加起來足是一本字典,是編者賣弄的園地,所以強(qiáng)烈建議不要和此書叫板,我曾試過一年完全是浪費時間,即使有同學(xué)看懂了,但仍難以對付實戰(zhàn)。
我的建議是以戰(zhàn)致戰(zhàn),就是通過做歷年的考試題的方法順利通過考試。此法花費時間極小,但可以獲得很大的收益,從經(jīng)濟(jì)的角度講就是效益最大化。
具體實施方法:
首先,高高興興的將書撕碎,優(yōu)點有三:1)不給自己浪費時間的機(jī)會。2)建立此戰(zhàn)必勝的信心。3)心情將更加愉悅。
其次:把各年試卷及答案]收集齊,網(wǎng)上不難找到,書店中也可買到。實在不行我給你個網(wǎng)址。強(qiáng)烈建議從1997年下半年到20xx年上半年共十套試卷,這套模擬題就是葵花寶典,沒事就做吧,一遍不行,至少十遍,知道答案不行,必須要知道過程。當(dāng)你做到第三遍時你就會發(fā)現(xiàn)所有試卷的共同之處,每年的試題是等的相似。第五遍第七遍時,你就會因為找不到不會的題而痛苦萬分。
最后,是考前不用動筆用腦看題非??斓目瓷?遍,一個框架會產(chǎn)生在你的大腦中。合格證對于你來說,已經(jīng)成了一張名片,伸手就拿!
20xx年,在今年進(jìn)行新的考試。相信要在今年自考的廣大群體以進(jìn)入了金鑼彌補(bǔ)的準(zhǔn)備當(dāng)中,小編也會更多的發(fā)布一些相關(guān)信息希望可以為您提供到幫助。
高等數(shù)學(xué)的體會篇十七
第一段:學(xué)習(xí)動機(jī)與目標(biāo)(引言)
高等數(shù)學(xué)是一門對于大部分大學(xué)生來說充滿挑戰(zhàn)的學(xué)科。作為一名大學(xué)生,我對高等數(shù)學(xué)學(xué)習(xí)非常重視,因為它是我專業(yè)學(xué)習(xí)的基礎(chǔ)課程之一。在學(xué)習(xí)高等數(shù)學(xué)的過程中,我經(jīng)歷了許多辛苦和困惑,但也從中收獲了很多。在這篇文章中,我將與大家分享我的高等數(shù)學(xué)學(xué)習(xí)心得體會。
第二段:規(guī)劃和時間管理(學(xué)習(xí)方法和技巧)
在面對高等數(shù)學(xué)這門課程時,我意識到規(guī)劃和時間管理是非常重要的。高等數(shù)學(xué)包含了大量的知識點和公式,因此我制定了一個學(xué)習(xí)計劃,將每個知識點分配到不同的時間段,并給自己留出足夠的時間進(jìn)行復(fù)習(xí)和鞏固。我還學(xué)會了合理安排每天的學(xué)習(xí)時間,將重點放在疑難問題上,以便更好地掌握知識。
第三段:找到適合自己的學(xué)習(xí)方式(學(xué)習(xí)方法和技巧)
在高等數(shù)學(xué)學(xué)習(xí)的過程中,我發(fā)現(xiàn)找到適合自己的學(xué)習(xí)方式能夠提高學(xué)習(xí)效果。有些人更適合通過聽講座和課堂上的互動來學(xué)習(xí),而我更喜歡通過自學(xué)和解題來掌握知識。我經(jīng)常和同學(xué)們一起組隊討論問題,通過交流和互幫互助來解決難題。這種學(xué)習(xí)方式不僅鞏固了我的知識,還提高了我的解題能力和思維靈活性。
第四段:克服困難與堅持學(xué)習(xí)(學(xué)習(xí)態(tài)度與人生觀)
高等數(shù)學(xué)是一門需要耐心和恒心的學(xué)科。在學(xué)習(xí)過程中,我遇到了許多困難和挫折,但我相信只要堅持下去,就一定能夠克服這些困難并取得好成績。我時常重復(fù)著“努力就會有回報”的信念,堅持每天都學(xué)習(xí)一段時間高等數(shù)學(xué),無論是通過自學(xué)、參加輔導(dǎo)班或向老師請教,我都不放棄任何機(jī)會來提高自己的數(shù)學(xué)水平。
第五段:從高等數(shù)學(xué)中的應(yīng)用反思(學(xué)科價值與人生思考)
通過學(xué)習(xí)高等數(shù)學(xué),我不僅掌握了數(shù)學(xué)知識,更培養(yǎng)了自己的邏輯思維和問題解決能力。高等數(shù)學(xué)課程中的許多概念和方法在實際生活中都有廣泛的應(yīng)用。數(shù)學(xué)是一門實用的學(xué)科,它不僅幫助我們理解世界的運作方式,還能培養(yǎng)我們的邏輯思維和抽象思維能力。通過高等數(shù)學(xué)的學(xué)習(xí),我深深體會到數(shù)學(xué)不僅僅是個工具,更是一門能夠引導(dǎo)我們思考和解決問題的科學(xué)。
總結(jié):
通過高等數(shù)學(xué)的學(xué)習(xí),我不僅掌握了基本概念和方法,也培養(yǎng)了自己的學(xué)習(xí)方法和態(tài)度。我發(fā)現(xiàn)規(guī)劃和時間管理對于高等數(shù)學(xué)學(xué)習(xí)非常重要,找到適合自己的學(xué)習(xí)方式能夠提高學(xué)習(xí)效果。在困難和挫折面前要堅持學(xué)習(xí),相信努力會有回報。最重要的是,高等數(shù)學(xué)的學(xué)習(xí)不僅可以提高我們的數(shù)學(xué)水平,還能幫助我們培養(yǎng)邏輯思維和解決問題的能力。通過高等數(shù)學(xué)的學(xué)習(xí),我對數(shù)學(xué)這門學(xué)科有了更深入的理解,也對自己的學(xué)習(xí)和未來充滿了信心。
高等數(shù)學(xué)的體會篇十八
相對于現(xiàn)階段高等職業(yè)教育發(fā)展的綜合性和終身性趨勢來說,高等數(shù)學(xué)不僅僅是學(xué)生掌握數(shù)學(xué)工具學(xué)習(xí)其他相關(guān)專業(yè)課程的基礎(chǔ),更是培養(yǎng)學(xué)生邏輯思維嚴(yán)謹(jǐn)性的重要載體,高等數(shù)學(xué)的重要性是不言而喻的。因此高等數(shù)學(xué)的有效學(xué)習(xí)成了高數(shù)教師和同學(xué)們共同關(guān)注的一個重要問題。
通過平時與學(xué)生的交流和上課,學(xué)生的學(xué)習(xí)困難一般集中在認(rèn)為教學(xué)內(nèi)容太抽象聽不懂、不會做題,數(shù)學(xué)概念太抽象,不易理解(如極限、無窮小等)。學(xué)生對于接受高等數(shù)學(xué)的思想、原理、方法非常不適應(yīng),對于如何學(xué)好高等數(shù)學(xué),如何理解它的思想、方法茫然無知。下面我們大家一起討論一下高數(shù)學(xué)不好的原因。
首先,對大多數(shù)高中生而言,考取大學(xué)是最具誘惑力的行為歸因,但進(jìn)人大學(xué)后,這一因素就不復(fù)存在了,大一新生基本上處于如釋重負(fù)的解脫狀態(tài),缺乏主動進(jìn)取的精神,學(xué)習(xí)目標(biāo)不明確,學(xué)習(xí)動機(jī)不強(qiáng)烈。有些同學(xué)則認(rèn)為學(xué)高等數(shù)學(xué)對將來的工作也沒有多大用處,有些同學(xué)本來數(shù)學(xué)的基礎(chǔ)就不好,進(jìn)人大學(xué)后一接觸高等數(shù)學(xué),發(fā)現(xiàn)難以與中學(xué)數(shù)學(xué)知識直接銜接,學(xué)習(xí)高等數(shù)學(xué)的興趣蕩然無存,對高等數(shù)學(xué)的學(xué)習(xí)消極應(yīng)付。
再次,學(xué)生在高中階段已形成一定的思維方式及學(xué)習(xí)習(xí)慣,解數(shù)學(xué)題基本上采取模式辨認(rèn)、方法回憶的思維方式,對解題方法和技巧模仿、記憶、套用,對知識不求甚解,并未真正理解和內(nèi)化,沒有進(jìn)行數(shù)學(xué)思考的意識,也沒有掌握數(shù)學(xué)思考的方法。大學(xué)課堂上,對高等數(shù)學(xué)各部分內(nèi)容的理解支離破碎,自學(xué)能力差,缺乏獨立思考的意識,沒有反思學(xué)習(xí)過程的習(xí)慣,更沒有總結(jié)、歸納知識和思想方法的習(xí)慣,對教師有較強(qiáng)的依賴心理,學(xué)生已形成的思維方式及學(xué)習(xí)習(xí)慣直接影響學(xué)生接受高等數(shù)學(xué)。
最后,大學(xué)與高中的教學(xué)都以講授法為主,但受高考的影響和制約,高中教師對知識的講授詳細(xì),題型、方法歸納完整,較多的精力用于通過大題量的訓(xùn)練來培養(yǎng)學(xué)生的技能技巧,并及時進(jìn)行輔導(dǎo)和鞏固;而大學(xué)的教學(xué)由于知識點較多,課時有限,課容量大,教師更注重思想方法的深刻理解,和數(shù)學(xué)思想的培養(yǎng)。
對于上述幾個原因建議大家從以下幾方面入手:
第一、調(diào)整好自己的心態(tài),盡快適應(yīng)大學(xué)生活,對自己有一個準(zhǔn)確的定位。
學(xué)的學(xué)習(xí),根據(jù)高數(shù)課的特點和自己的學(xué)習(xí)習(xí)慣,盡快總結(jié)出適合自己的學(xué)習(xí)方法。
第三、高數(shù)的學(xué)習(xí)是一個日積月累的過程,不是幾天或一段時間的突擊成績就可以上來的。只要你把平時的多努力,那么你的付出一定會有所得。