感悟是人們在生活和學(xué)習(xí)中領(lǐng)悟到的一些重要觀點(diǎn)和感悟,它可以提醒我們思考人生的意義和價(jià)值,我想我們需要多多體驗(yàn)和思考,才能有更深刻的感悟。感悟是對人生經(jīng)歷的一種總結(jié)和思考,通過感悟我們可以更好地理解自己,認(rèn)識世界,我們每個(gè)人都應(yīng)該珍惜感悟的機(jī)會,用心去體驗(yàn)生活中的點(diǎn)滴,從中發(fā)掘真諦。學(xué)會傾聽他人的意見和看法,從中獲取更多的靈感和思考的角度。不同的人對同一件事情的感悟可能會有不同的看法和理解,這是多元思維的體現(xiàn)。
數(shù)學(xué)建模論文感悟篇一
摘要:在新課改以后,要求教師要在教學(xué)中重視學(xué)生的主體地位,提升學(xué)生學(xué)習(xí)興趣,培養(yǎng)他們的自主學(xué)習(xí)能力。本文從小學(xué)數(shù)學(xué)教學(xué)過程中數(shù)學(xué)建模入手,對如何將數(shù)學(xué)建模運(yùn)用到學(xué)生解題過程中進(jìn)行了分析。
關(guān)鍵詞:小學(xué)數(shù)學(xué);建模;運(yùn)用
數(shù)學(xué)建模是指利用數(shù)學(xué)模型的形式去解決實(shí)際中遇到的問題,換句話說,就是利用數(shù)學(xué)思維、數(shù)學(xué)方法解決各種數(shù)學(xué)問題。數(shù)學(xué)建模是在新課程改革后出現(xiàn)的新概念,經(jīng)過一段時(shí)間的觀察我們可以發(fā)現(xiàn),數(shù)學(xué)建模的方法能夠有效的提高學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生的數(shù)學(xué)能力。這種方式能夠?qū)?fù)雜的數(shù)學(xué)問題利用簡單的方式找到解決方案,是提高小學(xué)數(shù)學(xué)課堂效率及課堂質(zhì)量的有效手段。小學(xué)數(shù)學(xué)是小學(xué)學(xué)習(xí)中的重要課程之一,也是培養(yǎng)學(xué)生數(shù)學(xué)思維的重要階段??梢哉f,小學(xué)數(shù)學(xué)的學(xué)習(xí)是學(xué)生學(xué)習(xí)數(shù)學(xué)的關(guān)鍵,對今后的學(xué)習(xí)起到極大的影響。因此,對于小學(xué)數(shù)學(xué)教師來說,不斷的完善教學(xué)手段,提高數(shù)學(xué)課堂質(zhì)量是教學(xué)工作中的重中之重。而數(shù)學(xué)建模就是為了解決數(shù)學(xué)在生活中的實(shí)際問題,能夠讓學(xué)生感受到數(shù)學(xué)本身的魅力,培養(yǎng)他們的數(shù)學(xué)思維,提高數(shù)學(xué)學(xué)習(xí)能力,從而讓小學(xué)數(shù)學(xué)教學(xué)質(zhì)量也得到大幅度的提升。小學(xué)數(shù)學(xué)與數(shù)學(xué)建模之間有著密不可分的作用,兩者相互聯(lián)系、相互促進(jìn),如何有效的將數(shù)學(xué)建模運(yùn)用在小學(xué)數(shù)學(xué)教學(xué)過程中,是每個(gè)小學(xué)數(shù)學(xué)教師都值得思考的問題。
一、培養(yǎng)學(xué)生數(shù)學(xué)建模意識
數(shù)學(xué)建模是為了解決數(shù)學(xué)中遇到的問題,數(shù)學(xué)本身特別是小學(xué)數(shù)學(xué)也是一門較貼近學(xué)生生活的學(xué)科。因此在數(shù)學(xué)學(xué)習(xí)中,教師要首先培養(yǎng)學(xué)生的數(shù)學(xué)學(xué)習(xí)意識,讓他們感受到數(shù)學(xué)與生活的緊密聯(lián)系,然后再引導(dǎo)學(xué)生用數(shù)學(xué)建模去解決遇到的問題。在這一過程中,數(shù)學(xué)教師要注意以下兩個(gè)問題:(一)在教學(xué)中一定要貼近學(xué)生的生活,課堂中所提出的問題也必須要符合生活實(shí)際,讓學(xué)生對所學(xué)內(nèi)容感到親切。積極引導(dǎo)學(xué)生利用多種方式解決同一問題,尤其是利用數(shù)學(xué)建模的方式,以達(dá)到培養(yǎng)他們的數(shù)學(xué)思維以及想象能力的目的。(二)在學(xué)生進(jìn)行數(shù)學(xué)建模的過程中要利用多鼓勵(lì)的方式調(diào)動(dòng)他們對數(shù)學(xué)學(xué)習(xí)的積極性,讓他們在數(shù)學(xué)建模中獲得成就感,增加自信心,以此來提高學(xué)生在今后學(xué)習(xí)中使用數(shù)學(xué)建模方法的熱情。
二、提高學(xué)生想象力,用數(shù)學(xué)建模簡化問題
對于小學(xué)生來說,他們的思維與其他年齡段相比極其活躍,擁有了豐富的想象力。在數(shù)學(xué)學(xué)習(xí)中,如果能將想象力與數(shù)學(xué)學(xué)習(xí)結(jié)合在一起,一定會得到意想不到的效果。教師可以根據(jù)小學(xué)生這一特點(diǎn),提高他們的想象力,然后再引導(dǎo)他們利用數(shù)學(xué)建模解決問題,讓題目簡單化。具體來說,就是在面對復(fù)雜的'數(shù)學(xué)問題時(shí),教師可以先為學(xué)生創(chuàng)建教學(xué)情境,以這樣的方式提高學(xué)生的學(xué)習(xí)興趣,讓他們愿意主動(dòng)去深入的研究遇到的題目。之后教師再去對他們進(jìn)行引導(dǎo),讓他們能夠理解題目中所提問題的含義,并能夠運(yùn)用他們的想象能力思考解決問題的方式。最后再引導(dǎo)他們進(jìn)行數(shù)學(xué)建模,解決問題。這樣的方式充分的利用了學(xué)生的想象能力,將所需解決的問題簡單化。
三、選擇合適的題目作為建模案例
在數(shù)學(xué)建模過程中,教師也要時(shí)刻牢記題目應(yīng)該貼近學(xué)生的生活,符合實(shí)際,并且具有一定的趣味性,讓他們有興趣投入到數(shù)學(xué)建模的過程中去,然后再反復(fù)練習(xí)之后達(dá)到提高他們建模能力的目的。在選擇數(shù)學(xué)建模案例時(shí)教師主要應(yīng)該注意以下兩點(diǎn):首先,教師在選擇建模案例時(shí)要盡量選擇比較典型的問題,能夠讓學(xué)生在學(xué)習(xí)了該題目以后掌握這一類的解題方法,達(dá)到小學(xué)數(shù)學(xué)教學(xué)的目的。所以,這就需要教師對題目進(jìn)行深入的分析,看是否在擁有趣味性、真實(shí)性的同時(shí)符合教學(xué)要求。其次,題目最好能夠擁有可變性,教師能夠通過對題目中已知條件的改變讓學(xué)生進(jìn)行不同方面的建模練習(xí),以此提高他們數(shù)學(xué)建模的能力。
四、引導(dǎo)學(xué)生主動(dòng)進(jìn)行數(shù)學(xué)建模
在教師經(jīng)過反復(fù)的教學(xué)后,學(xué)生都已經(jīng)擁有了基本的數(shù)學(xué)建模知識,了解了數(shù)學(xué)建模過程,并且能夠在解題過程中簡單的使用數(shù)學(xué)建模。此時(shí),教師在教學(xué)中就可以引導(dǎo)學(xué)生利用數(shù)學(xué)建模解決數(shù)學(xué)題目了。引導(dǎo)學(xué)生用數(shù)學(xué)建模方法解決數(shù)學(xué)問題,就要在解題過程中多對學(xué)生進(jìn)行這一方面的鼓勵(lì),讓他們提高建模信心。在這一過程中,教師還可以嘗試讓學(xué)生之間利用合作的方式讓他們進(jìn)行數(shù)學(xué)建模方法的探討,并在探討的過程中吸取他人的經(jīng)驗(yàn),提高自己數(shù)學(xué)建模水平,同時(shí)這樣的方式能夠讓數(shù)學(xué)建模深入到每一個(gè)學(xué)生的心中,逐漸影響每一個(gè)學(xué)生的解題思路,讓他們能夠在解題過程中熟練運(yùn)用建模的方式,提高解題能力。數(shù)學(xué)建模的方法能夠有效的改變過去的傳統(tǒng)教學(xué)思路,增加學(xué)生對數(shù)學(xué)的學(xué)習(xí)興趣,提高數(shù)學(xué)解題能力。這種教學(xué)方法對于小學(xué)數(shù)學(xué)教師來說,值得不斷的探討研究,并應(yīng)用在教學(xué)中,以此提高數(shù)學(xué)課堂的教學(xué)效率和教學(xué)質(zhì)量。
數(shù)學(xué)建模論文感悟篇二
為了培養(yǎng)小學(xué)生良好的數(shù)學(xué)學(xué)習(xí)興趣,激發(fā)他們的數(shù)學(xué)潛能,教師需要采取必要的措施注重?cái)?shù)學(xué)建模思想的有效培養(yǎng),促進(jìn)學(xué)生的全面發(fā)展。在制定相關(guān)培養(yǎng)策略的過程中,教師應(yīng)充分考慮小學(xué)生的性格特點(diǎn),提高數(shù)學(xué)建模思想培養(yǎng)的有效性。基于此,文章將從不同的方面對小學(xué)生數(shù)學(xué)建模思想的培養(yǎng)策略進(jìn)行初步的探討。
作為小學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,數(shù)學(xué)建模思想的滲透及相關(guān)教學(xué)活動(dòng)的順利開展,有利于提高復(fù)雜數(shù)學(xué)問題的處理效率,保持?jǐn)?shù)學(xué)課堂教學(xué)的高效性。要實(shí)現(xiàn)這樣的發(fā)展目標(biāo),增強(qiáng)小學(xué)生數(shù)學(xué)建模思想的實(shí)際培養(yǎng)效果,需要加強(qiáng)對學(xué)生動(dòng)手實(shí)踐能力的培養(yǎng),激發(fā)學(xué)生的更高興趣。建模的過程涉及問題表述、求解、必要解釋及有效驗(yàn)證,在這四個(gè)環(huán)節(jié)中,可能會存在一定的問題,影響著數(shù)學(xué)教學(xué)計(jì)劃的實(shí)施。因此,教師需要利用學(xué)生動(dòng)手實(shí)踐能力的作用,實(shí)現(xiàn)數(shù)學(xué)建模思想的有效培養(yǎng),促使小學(xué)生能夠在數(shù)學(xué)建模過程中享受到更多的快樂。比如,在講解“認(rèn)識角”知識的過程中,某些學(xué)生認(rèn)為邊越長角度也越大。為了使學(xué)生能夠?qū)ζ渲械闹R點(diǎn)有更加正確而全面的認(rèn)識,教師可以通過在黑板上設(shè)置一些能夠活動(dòng)的三角板,讓學(xué)生親自動(dòng)手操作,以此得出角與邊長的正確關(guān)系,為后續(xù)教學(xué)計(jì)劃的實(shí)施打下堅(jiān)實(shí)的基礎(chǔ)。通過這種教學(xué)方法的合理運(yùn)用,可以激發(fā)出學(xué)生們在數(shù)學(xué)建模學(xué)習(xí)中的更高興趣,豐富他們的想象力,從而使他們對數(shù)學(xué)建模思想有一定的了解,在未來學(xué)習(xí)過程中能夠保持良好的`數(shù)學(xué)建模能力。
通過對小學(xué)階段各種數(shù)學(xué)實(shí)踐教學(xué)活動(dòng)實(shí)際概況的深入分析,可知構(gòu)建良好的數(shù)學(xué)模型有利于加深學(xué)生對各知識(福建省莆田市秀嶼區(qū)東嶠前江小學(xué),福建莆田351164)點(diǎn)的深入理解,增強(qiáng)其主動(dòng)參與數(shù)學(xué)建模教學(xué)活動(dòng)的積極性。因此,為了使小學(xué)生數(shù)學(xué)建模思想培養(yǎng)能夠達(dá)到預(yù)期的效果,教師需要結(jié)合實(shí)際的教學(xué)內(nèi)容,建立必要的數(shù)學(xué)參考模型,提升學(xué)生對數(shù)學(xué)建模思想的整體認(rèn)知水平。比如,在講授“異分母分?jǐn)?shù)加減法”這部分知識的過程中,可以設(shè)置“0.8千克+300克”“1.6千克-400克”等問題,向?qū)W生提問是否可以直接計(jì)算,并說出原因。當(dāng)學(xué)生通過對問題的深入思考,總結(jié)出“單位不同不能直接計(jì)算”的結(jié)論后,繼續(xù)向?qū)W生提問小數(shù)計(jì)算中為什么每一位都要對齊,實(shí)現(xiàn)“計(jì)數(shù)單位統(tǒng)一后才能計(jì)算”這一數(shù)學(xué)模型的構(gòu)建。在這樣的教學(xué)過程中,學(xué)生可以加深對知識點(diǎn)的理解,實(shí)現(xiàn)數(shù)學(xué)建模思想的有效培養(yǎng)。
加強(qiáng)小學(xué)生數(shù)學(xué)建模思想的有效培養(yǎng),需要在具體的教學(xué)活動(dòng)開展中注重對數(shù)學(xué)思想的靈活運(yùn)用,增強(qiáng)相關(guān)模型構(gòu)建的可靠性,促使學(xué)生在長期的數(shù)學(xué)學(xué)習(xí)中能夠不斷提高自身的數(shù)學(xué)能力,運(yùn)用各種數(shù)學(xué)知識處理實(shí)際問題。比如,在“角的度量”這部分內(nèi)容講解的過程中,為了提高學(xué)生對角的分類及畫角相關(guān)知識點(diǎn)的深入理解,教師可以將所有的學(xué)生分為不同的小組,讓學(xué)生們通過小組討論的方式,對角的正確分類及如何畫角有一定的了解,并讓每個(gè)小組代表在講臺上演示畫角的過程。此時(shí),教師可以通過對多媒體教學(xué)設(shè)備的合理運(yùn)用,利用動(dòng)態(tài)化的文字與圖片對其中的知識要點(diǎn)進(jìn)行展示,確保學(xué)生們能夠在良好的教學(xué)模式中提升自身的認(rèn)知水平,并在不斷的思考過程中逐漸形成良好的創(chuàng)造性思維,強(qiáng)化自身的創(chuàng)新意識。比如,在講解“圖形變換”中的軸對稱、旋轉(zhuǎn)知識點(diǎn)的過程中,教師應(yīng)通過對學(xué)生的正確引導(dǎo),運(yùn)用三角板、圓柱等教學(xué)輔助工具,讓學(xué)生從不同的角度對各種軸對稱圖形、旋轉(zhuǎn)后得到的圖形進(jìn)行深入思考,提高自身數(shù)學(xué)建模過程中的創(chuàng)新能力,從不同的角度深入理解圖像變換過程,對這部分內(nèi)容有更多的了解。因此,教師應(yīng)注重小學(xué)生數(shù)學(xué)建模思想培養(yǎng)中多方位思考方式的針對性培養(yǎng),提高學(xué)生的創(chuàng)新能力,優(yōu)化學(xué)生的思維方式,全面提升小學(xué)數(shù)學(xué)建模教學(xué)水平。
總之,加強(qiáng)小學(xué)生數(shù)學(xué)建模思想培養(yǎng)策略的制定與實(shí)施,有利于滿足素質(zhì)教育的更高要求,實(shí)現(xiàn)對小學(xué)生數(shù)學(xué)能力的有效鍛煉,確保相關(guān)的教學(xué)計(jì)劃能夠在規(guī)定的時(shí)間內(nèi)順利地完成。與此同時(shí),結(jié)合當(dāng)前小學(xué)數(shù)學(xué)教育教學(xué)的實(shí)際發(fā)展概況,可知靈活運(yùn)用各種科學(xué)的數(shù)學(xué)建模思想培養(yǎng)策略,有利于滿足學(xué)生數(shù)學(xué)建模學(xué)習(xí)中的多樣化需求,為相關(guān)教學(xué)目標(biāo)的順利實(shí)現(xiàn)提供可靠的保障。
[1]童小艷.小學(xué)數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生建模思想的策略[j].學(xué)子(教育新理念),20xx(6).
[2]白寧.先學(xué)而后教——小學(xué)生數(shù)學(xué)建模思想培養(yǎng)的捷徑[j].數(shù)學(xué)學(xué)習(xí)與研究,20xx(16).
數(shù)學(xué)建模論文感悟篇三
使學(xué)生的綜合應(yīng)用能力、實(shí)踐創(chuàng)新能力和綜合應(yīng)用素質(zhì)等多方面均能得到提升和發(fā)展。
對于醫(yī)學(xué)專業(yè)的學(xué)生來說,在校所學(xué)的數(shù)學(xué)基礎(chǔ)理論課程比較有限,并且學(xué)生對純粹的數(shù)學(xué)知識與復(fù)雜的理論推導(dǎo)已經(jīng)極為厭倦,如果數(shù)學(xué)建模還是以傳統(tǒng)的“灌輸式”和教師“主導(dǎo)型”為主、簡單的應(yīng)用案例為主要教學(xué)內(nèi)容的話,其結(jié)果勢必會使學(xué)生有一種再講數(shù)學(xué)課和做應(yīng)用題的感覺,既不能很好地激發(fā)學(xué)生的學(xué)習(xí)興趣,也不能體現(xiàn)數(shù)學(xué)建模的思想方法和本質(zhì)特色。
因此,如何使學(xué)生擺脫這種尷尬的現(xiàn)狀已成為我們教學(xué)的一大難點(diǎn)。針對這種情況,在教學(xué)模式上,我們大膽嘗試研究型教學(xué)模式,即采用“從實(shí)踐中來,到實(shí)踐中去”的教學(xué)理念。一方面,從最現(xiàn)實(shí)、最熱門的醫(yī)學(xué)話題出發(fā),從學(xué)生最感興趣的.問題入手,激發(fā)學(xué)生的學(xué)習(xí)興趣和進(jìn)一步學(xué)習(xí)的主動(dòng)性,使他們從一開始就能進(jìn)入到學(xué)習(xí)的角色中去;另一方面,通過開展多種方式的實(shí)踐教學(xué)活動(dòng),使學(xué)生在實(shí)踐中掌握數(shù)學(xué)建模的常用方法和基本技能,忽略繁瑣的數(shù)學(xué)推導(dǎo)過程,讓學(xué)生體會發(fā)現(xiàn)問題和思考問題的過程,培養(yǎng)學(xué)生解決問題的創(chuàng)新能力。
近些年來,我們開設(shè)的醫(yī)藥數(shù)學(xué)建模課受到了學(xué)生的一致好評,其關(guān)鍵之處在于我們一改傳統(tǒng)的教學(xué)模式,通過組織數(shù)學(xué)建模興趣研討班,讓每位同學(xué)都能充分地參與到研究中去并且使每位學(xué)生都有發(fā)言的機(jī)會。這些舉措旨在進(jìn)一步激發(fā)學(xué)生的創(chuàng)新意識,提高學(xué)生的數(shù)學(xué)建模實(shí)踐能力。研討班面向全校各類醫(yī)學(xué)專業(yè)的學(xué)生,并以三人為單位,劃分成若干個(gè)組,通過專題研討的形式開展活動(dòng)。實(shí)踐證明:通過這種研討過程,學(xué)生不僅對所學(xué)的醫(yī)學(xué)知識有了更深刻的理解與認(rèn)識,在文獻(xiàn)資料查閱、計(jì)算機(jī)編程、語言表達(dá)能力等諸多方面也都有了顯著的提高。通過這個(gè)過程的學(xué)習(xí),為學(xué)生今后從事醫(yī)學(xué)科研工作打下了良好的基礎(chǔ)。
為了有效的培養(yǎng)學(xué)生綜合應(yīng)用能力和深層次學(xué)習(xí)的習(xí)慣與意識,我們在教學(xué)方法上一改往日的“講透,講懂”的方法,忽略純理論的繁瑣推導(dǎo),突出知識的應(yīng)用思想和應(yīng)用意識,讓學(xué)生帶著問題上課,嘗試在解決問題中與教師進(jìn)行交流,下課帶著問題回去。
在課堂教學(xué)中,重點(diǎn)講解發(fā)現(xiàn)問題和解決問題的方法與技巧。通過課前作業(yè),引導(dǎo)學(xué)生自我發(fā)現(xiàn)問題;通過課堂講解和研討,引導(dǎo)學(xué)生解決問題;通過課后作業(yè),總結(jié)和鞏固所學(xué)知識,學(xué)習(xí)應(yīng)用與拓展知識。這種完全以學(xué)生為主,教師為輔的做法,有利于培養(yǎng)學(xué)生樹立勇于探索求知的信心和探索新知識的能力與意識,提高學(xué)生的創(chuàng)新能力和敏銳的洞察力及想象力,從而提升學(xué)生的綜合應(yīng)用素質(zhì)。
在現(xiàn)實(shí)生活中的實(shí)際問題是比較復(fù)雜的,往往單一的方法是難以解決的,通常是需要多種方法的綜合應(yīng)用方能解決。
因此,以實(shí)際問題驅(qū)動(dòng)的教學(xué)模式,主要是引導(dǎo)學(xué)生如何將復(fù)雜的實(shí)際問題分解為一系列簡單的小問題,在解決每一個(gè)小問題的過程中,讓學(xué)生學(xué)習(xí)并掌握相關(guān)的數(shù)學(xué)知識與方法。這種在應(yīng)用中學(xué)習(xí)的教學(xué)方法,在很大程度上解決了學(xué)生普遍存在的“學(xué)數(shù)學(xué)有什么用、學(xué)了數(shù)學(xué)不知怎么用”的困惑。
在整個(gè)教學(xué)過程中,貫穿以學(xué)生為主體,通過案例分析引導(dǎo)學(xué)生的思維方法,針對一個(gè)案例的解決過程和方法,要求實(shí)現(xiàn)舉一反三,促使學(xué)生對所掌握的知識進(jìn)行重組再現(xiàn)和優(yōu)化構(gòu)建,讓學(xué)生在學(xué)習(xí)和問題的解決中學(xué)會不斷地總結(jié)與歸納,用成功的方法再去演繹解決新的問題,通過不斷地歸納演繹、對比分析、總結(jié)經(jīng)驗(yàn)、彌補(bǔ)不足,進(jìn)一步學(xué)習(xí)相關(guān)知識和方法,再進(jìn)行實(shí)踐,從而不斷增強(qiáng)自身的綜合應(yīng)用能力和素質(zhì)。
隨著醫(yī)學(xué)院校教育理念的轉(zhuǎn)變以及教育體制改革的深入,對培養(yǎng)適應(yīng)科學(xué)技術(shù)迅速發(fā)展的創(chuàng)新型醫(yī)學(xué)人才提出了更高的要求。如何培養(yǎng)出具有創(chuàng)新能力、綜合素質(zhì)高的專業(yè)人才已成為亟待解決的問題之一。本文探討了醫(yī)藥數(shù)學(xué)建模課程的開設(shè)對培養(yǎng)大學(xué)生實(shí)踐創(chuàng)新能力的幾點(diǎn)做法。教學(xué)實(shí)踐證明:數(shù)學(xué)建模課充分鍛煉了學(xué)生的各項(xiàng)能力,是提高醫(yī)學(xué)專業(yè)學(xué)生綜合應(yīng)用素質(zhì)行之有效的方法。
數(shù)學(xué)建模論文感悟篇四
3.3增強(qiáng)選擇數(shù)學(xué)模型的能力。
選擇數(shù)學(xué)模型是數(shù)學(xué)能力的反映。數(shù)學(xué)模型的建立有多種方法,怎樣選擇一個(gè)最佳的模型,體現(xiàn)數(shù)學(xué)能力的強(qiáng)弱。建立數(shù)學(xué)模型主要涉及到方程、函數(shù)、不等式、數(shù)列通項(xiàng)公式、求和公式、曲線方程等類型。結(jié)合教學(xué)內(nèi)容,以函數(shù)建模為例,以下實(shí)際問題所選擇的數(shù)學(xué)模型列表:
函數(shù)建模類型實(shí)際問題
一次函數(shù)成本、利潤、銷售收入等
二次函數(shù)優(yōu)化問題、用料最省問題、造價(jià)最低、利潤最大等
冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)細(xì)胞分裂、生物繁殖等
三角函數(shù)測量、交流量、力學(xué)問題等
3.4加強(qiáng)數(shù)學(xué)運(yùn)算能力。
數(shù)學(xué)應(yīng)用題一般運(yùn)算量較大、較復(fù)雜,且有近似計(jì)算。有的盡管思路正確、建模合理,但計(jì)算能力欠缺,就會前功盡棄。所以加強(qiáng)數(shù)學(xué)運(yùn)算推理能力是使數(shù)學(xué)建模正確求解的關(guān)鍵所在,忽視運(yùn)算能力,特別是計(jì)算能力的培養(yǎng),只重視推理過程,不重視計(jì)算過程的做法是不可取的。
利用數(shù)學(xué)建模解數(shù)學(xué)應(yīng)用題對于多角度、多層次、多側(cè)面思考問題,培養(yǎng)學(xué)生發(fā)散思維能力是很有益的,是提高學(xué)生素質(zhì),進(jìn)行素質(zhì)教育的一條有效途徑。同時(shí)數(shù)學(xué)建模的`應(yīng)用也是科學(xué)實(shí)踐,有利于實(shí)踐能力的培養(yǎng),是實(shí)施素質(zhì)教育所必須的,需要引起教育工作者的足夠重視。
數(shù)學(xué)建模論文感悟篇五
摘要:數(shù)學(xué)建模課堂中學(xué)生的自主探究、合作學(xué)習(xí)與教師的科學(xué)引導(dǎo)并不矛盾而是相輔相成的。只有在教師科學(xué)、適時(shí)、適當(dāng)?shù)匾龑?dǎo)下才能更好地突出學(xué)生的主體地位,從而打造出自主探究、合作學(xué)習(xí)、愉悅發(fā)展的高效數(shù)學(xué)建模課堂。
關(guān)鍵詞:數(shù)學(xué)建模;教師
一、新課的引入需要發(fā)揮教師的作用
教師在數(shù)學(xué)建模課堂上的引導(dǎo)作用首先體現(xiàn)在教師對新課的引入上。教師一段精彩的導(dǎo)入會點(diǎn)燃學(xué)生學(xué)習(xí)的熱情、激發(fā)學(xué)生的學(xué)習(xí)興趣、喚起學(xué)生的好奇心,能把學(xué)生的注意力迅速集中到要學(xué)的知識上來。這對提高教學(xué)質(zhì)量、提高學(xué)生的學(xué)習(xí)效果起著不可估量的作用。同時(shí),新課前的導(dǎo)入環(huán)節(jié)是對學(xué)生進(jìn)行情感教育的最佳時(shí)刻。學(xué)生只有在教師的引導(dǎo)下才能夠體會到數(shù)學(xué)建模的價(jià)值、增強(qiáng)學(xué)好數(shù)學(xué)建模的信心。俗話說:“好的開始是成功的一半?!睌?shù)學(xué)建模課堂也是這樣。因此,在新課引入時(shí)要充分發(fā)揮教師的作用。
二、在教學(xué)任務(wù)的設(shè)計(jì)上需要發(fā)揮教師的作用
數(shù)學(xué)建模課堂一般應(yīng)采用任務(wù)型教學(xué)模式,是讓學(xué)生通過自主探究、合作學(xué)習(xí)、交流展示的方式完成一系列學(xué)習(xí)任務(wù)來達(dá)到特定的教學(xué)目標(biāo)和學(xué)習(xí)目標(biāo)。學(xué)生在課堂中的主體作用能否得到有效發(fā)揮取決于教師對問題設(shè)計(jì)質(zhì)量的高低。教師應(yīng)通過設(shè)計(jì)一系列高質(zhì)量的問題把復(fù)雜的數(shù)學(xué)建模問題分解成若干簡單問題來引導(dǎo)學(xué)生更好地發(fā)揮其主動(dòng)性。學(xué)生也只有在這些問題的正確引導(dǎo)下才能突破難點(diǎn)并向著學(xué)習(xí)目標(biāo)努力,有效防止學(xué)生思考、探究、交流的內(nèi)容偏離學(xué)習(xí)目標(biāo)等現(xiàn)象的出現(xiàn)。這些任務(wù)的制訂需要充分發(fā)揮教師的作用。
三、在新舊知識的聯(lián)系點(diǎn)上需要發(fā)揮教師的作用
建構(gòu)主義強(qiáng)調(diào)新知識是在學(xué)生已有知識的基礎(chǔ)上通過學(xué)生自身有意義的建構(gòu)獲得的。筆者認(rèn)為,學(xué)生自主建構(gòu)知識應(yīng)在教師的科學(xué)引導(dǎo)下進(jìn)行。尤其是對于數(shù)學(xué)建模這樣高難度的知識更是這樣。失去了教師的科學(xué)引導(dǎo),學(xué)生易產(chǎn)生疲倦感,久而久之會喪失學(xué)習(xí)數(shù)學(xué)建模的興趣和信心。因此,在新舊知識聯(lián)系點(diǎn)上應(yīng)發(fā)揮教師的作用。教師應(yīng)在準(zhǔn)確掌握教學(xué)目標(biāo)、難點(diǎn)的基礎(chǔ)上,充分考慮學(xué)生的認(rèn)知能力、習(xí)慣、思維方式,通過有針對性的具體問題喚起學(xué)生對舊知識的回憶,再通過啟發(fā)性問題引導(dǎo)學(xué)生去發(fā)現(xiàn)新知識,從而實(shí)現(xiàn)溫故知新的目的。在教師引領(lǐng)下學(xué)生自主建構(gòu)知識可以使學(xué)生少走彎路,從而使學(xué)生更加高效地自主探究、掌握新知識。
四、在教學(xué)重點(diǎn)、難點(diǎn)上需要教師的引導(dǎo)
教學(xué)的重點(diǎn)、難點(diǎn)是每一節(jié)課的核心和主線,只有準(zhǔn)確把握了重點(diǎn)、突破了難點(diǎn)才能更好地掌握本節(jié)課的內(nèi)容。在強(qiáng)調(diào)學(xué)生自主探究、小組合作學(xué)習(xí)的課堂教學(xué)模式中,數(shù)學(xué)建模教材的重點(diǎn)、難點(diǎn)學(xué)生往往把握不準(zhǔn)、難以突破。這就需要教師科學(xué)引導(dǎo)學(xué)生主動(dòng)去發(fā)現(xiàn)重點(diǎn)、突破難點(diǎn)。教師引導(dǎo)學(xué)生發(fā)現(xiàn)重點(diǎn)、突破難點(diǎn)并不是讓教師直接告訴學(xué)生本節(jié)課的重點(diǎn)是什么、怎樣突破難點(diǎn),而是通過具體問題的引導(dǎo)讓學(xué)生自己找到重點(diǎn)、并通過學(xué)生自己的思考、討論解決疑難問題。學(xué)生在教師的引導(dǎo)下通過自己的努力、討論解決了疑難后,學(xué)生會非常興奮,從而會越來越喜歡數(shù)學(xué)建模課。相反,在沒有教師引導(dǎo)的數(shù)學(xué)建模課堂中,學(xué)生經(jīng)常被困難嚇倒,從而對數(shù)學(xué)建模課產(chǎn)生畏懼感。由此可見,教師對學(xué)生的科學(xué)引導(dǎo)是學(xué)生學(xué)好數(shù)學(xué)建模必不可少的環(huán)節(jié)。在以學(xué)生為本、注重學(xué)生全面發(fā)展、提倡課堂中突出學(xué)生主體地位的背景下,教師的引導(dǎo)仍是數(shù)學(xué)建模課堂中不可缺失的要素。數(shù)學(xué)建模課堂中學(xué)生的自主探究、合作學(xué)習(xí)與教師的科學(xué)引導(dǎo)并不矛盾而是相輔相成的。只有在教師科學(xué)、適時(shí)、適當(dāng)?shù)匾龑?dǎo)下才能更好地突出學(xué)生的主體地位,從而打造出自主探究、合作學(xué)習(xí)、愉悅發(fā)展的高效數(shù)學(xué)建模課堂。
數(shù)學(xué)建模論文感悟篇六
:隨著經(jīng)濟(jì)的快速發(fā)展,我國的科學(xué)技術(shù)也得到了長足的進(jìn)步,在計(jì)算機(jī)應(yīng)用方面,從對計(jì)算機(jī)技術(shù)尚存新鮮感到運(yùn)用成熟,可以說有了質(zhì)的飛躍。在日常生活以及技術(shù)操作當(dāng)中,計(jì)算機(jī)已經(jīng)融入其中,廣泛地應(yīng)用于各行各業(yè),筆者以數(shù)學(xué)建模為例,分析了數(shù)學(xué)建模與計(jì)算機(jī)應(yīng)用之間的關(guān)系,與此同時(shí),也探尋了計(jì)算機(jī)應(yīng)用技術(shù)在數(shù)學(xué)建模的輔助之下發(fā)揮的作用,并對數(shù)學(xué)建模進(jìn)行概念定義,使得讀者能夠?qū)?shù)學(xué)建模的意義有著更深層次的了解,希望能夠起到促進(jìn)二者之間的良性發(fā)展。
數(shù)學(xué)建模;計(jì)算機(jī)技術(shù);計(jì)算機(jī)應(yīng)用
隨著經(jīng)濟(jì)的快速發(fā)展,我國的科學(xué)技術(shù)也有了長足的進(jìn)步,而與之密不可分的數(shù)學(xué)學(xué)科也有著不可小覷的進(jìn)步,與此同時(shí),數(shù)學(xué)學(xué)科的延伸領(lǐng)域從物理等逐漸擴(kuò)展到環(huán)境、人口、社會、經(jīng)濟(jì)范圍,使得其作用力逐漸增強(qiáng)。不僅如此,數(shù)學(xué)學(xué)科由原本的研究事物的性質(zhì)分析逐漸轉(zhuǎn)變到研究定量性質(zhì)范圍,促進(jìn)了多方面多層次的發(fā)展,由此可見,數(shù)學(xué)學(xué)科的重要性質(zhì)。在日常生活中,運(yùn)用數(shù)學(xué)學(xué)科去解決實(shí)際問題時(shí),首要完成的就是從復(fù)雜的事物中找到普遍的規(guī)律現(xiàn)象存在,并用最為清晰的數(shù)字、符號、公式等將潛在的信息表達(dá)出來,再運(yùn)用計(jì)算機(jī)技術(shù)加以呈現(xiàn),形成人們所要完成的結(jié)果。筆者以數(shù)學(xué)建模為例,分析了數(shù)學(xué)建模與計(jì)算機(jī)應(yīng)用之間的關(guān)系,與此同時(shí),也探尋了計(jì)算機(jī)應(yīng)用技術(shù)在數(shù)學(xué)建模的輔助之下發(fā)揮的作用,并對數(shù)學(xué)建模進(jìn)行概念定義,使得讀者能夠?qū)?shù)學(xué)建模的意義有著更深層次的了解,希望能夠起到促進(jìn)二者之間的良性發(fā)展。
從宏觀角度上來講,數(shù)學(xué)建模是更側(cè)重于實(shí)際研究方面,并不僅僅是通過數(shù)字演示來完成事物的一般發(fā)展規(guī)律,與一般的理論研究截然不同。其研究范圍之廣,能夠深入到各個(gè)領(lǐng)域當(dāng)中,從任何一個(gè)相關(guān)領(lǐng)域中都能夠找到數(shù)學(xué)學(xué)科的發(fā)展軌跡,從中不難看出數(shù)學(xué)學(xué)科的實(shí)際意義與鮮明特點(diǎn)。數(shù)學(xué)為一門注重實(shí)際問題研究的學(xué)科,這一性質(zhì)方向決定了其研究的層次,其研究范圍大到漫無邊際的宇宙,小到對于個(gè)體微生物或者單細(xì)胞物體,綜合性之強(qiáng)形成了研究范圍廣的特點(diǎn)。多個(gè)學(xué)科之間互相影響,從中找到互相之間存在的相互聯(lián)系,其中有許多不能夠被忽視的數(shù)學(xué)元素,且這些元素都是至關(guān)重要的,所以這個(gè)計(jì)算過程十分復(fù)雜,計(jì)算量與數(shù)據(jù)驗(yàn)算過程也十分耗費(fèi)時(shí)間,因此需要充足的存儲空間支持這一過程的運(yùn)行。在數(shù)學(xué)建模的過程當(dāng)中,所涉獵的數(shù)學(xué)算法并不是很簡單,而建立的模型也遵循個(gè)人習(xí)慣,因此建成的模型也不是一成不變的,但是都能夠得出相同的答案。正因如此,在數(shù)學(xué)建模的過程當(dāng)中,就需要使用各種輔助工具來完成這一過程。由于計(jì)算機(jī)軟件具有的高速運(yùn)轉(zhuǎn)空間,使得計(jì)算機(jī)技術(shù)應(yīng)用于數(shù)學(xué)學(xué)科的建模過程當(dāng)中,與數(shù)學(xué)建模過程密不可分息息相關(guān)。由此可見,計(jì)算機(jī)技術(shù)的應(yīng)用水平對于數(shù)學(xué)學(xué)科的重要作用。
2。1計(jì)算機(jī)的獨(dú)特性與數(shù)學(xué)建模的實(shí)際性特點(diǎn)計(jì)算機(jī)的獨(dú)特性與數(shù)學(xué)建模的實(shí)際性特點(diǎn),使得二者之間有著密不可分的聯(lián)系,正是因?yàn)檫@種聯(lián)系使得雙方都能夠有長足的發(fā)展,在技術(shù)上是起著互相促進(jìn)的作用。計(jì)算機(jī)的廣泛應(yīng)用為數(shù)學(xué)建模提供了較為便利的服務(wù),在使用過程當(dāng)中,數(shù)學(xué)建模也能夠起到完成對計(jì)算機(jī)技術(shù)的促進(jìn),能夠在這一過程中形成更為便捷高速的使用方法與途徑,使得計(jì)算機(jī)技術(shù)應(yīng)用更為靈活,也可以說數(shù)學(xué)建模為計(jì)算機(jī)技術(shù)的實(shí)際應(yīng)用提供了更為廣闊的應(yīng)用空間,從中不難發(fā)現(xiàn),數(shù)學(xué)建模對于計(jì)算機(jī)應(yīng)用技術(shù)的支持性。計(jì)算機(jī)應(yīng)用技術(shù)需要合成的是多方面的技術(shù)支持,而數(shù)學(xué)建模則是需要首要完成的,二者之間是相互影響共同促進(jìn)的作用。
2。2計(jì)算機(jī)為數(shù)學(xué)建模提供了重要的技術(shù)支持?jǐn)?shù)學(xué)建模對于計(jì)算機(jī)應(yīng)用技術(shù)的重要的指導(dǎo)意義與作用。第一點(diǎn),計(jì)算機(jī)在其技術(shù)的支持之下,有著大量的存儲空間能夠完成存儲資料的這一過程,許多重要資料在計(jì)算機(jī)技術(shù)的保護(hù)之下,存儲時(shí)間較為長久,且保護(hù)力度較大,不容易被破壞及減少了不必要的人力以及物力;第二點(diǎn),計(jì)算機(jī)是多媒體的一個(gè)分支,運(yùn)用其成熟的互聯(lián)網(wǎng)思維技術(shù),能夠完成數(shù)學(xué)建模從平面到空間的轉(zhuǎn)化,能夠提供更為成熟的模擬環(huán)境,從而提高實(shí)踐的效率。由于數(shù)學(xué)建模過程的復(fù)雜化及對于實(shí)際問題的研究方向的特質(zhì),使得對于各項(xiàng)技術(shù)的要求就很高,所以,需要涉及的操作與數(shù)據(jù)量非常大,過程也十分復(fù)雜,常見的過程有三維打印、三維激光掃描等。這些都是需要計(jì)算機(jī)技術(shù)的支持才能夠完成的,所以對于計(jì)算機(jī)技術(shù)的要求非常高,與此同時(shí),計(jì)算機(jī)應(yīng)用技術(shù)為數(shù)學(xué)建模提供了更為便捷、快速的解決方案與途徑。
2。3數(shù)學(xué)建模為計(jì)算機(jī)的發(fā)展提供了基石計(jì)算機(jī)的產(chǎn)生起源于數(shù)學(xué)建模的過程,在二十世紀(jì)八十年代,由于導(dǎo)彈在飛行時(shí)的運(yùn)行軌跡的計(jì)算量過大,人工無法滿足這一高速率的運(yùn)算條件,基于這一背景條件,產(chǎn)生了計(jì)算機(jī),計(jì)算機(jī)應(yīng)用技術(shù)由此拉開了序幕。數(shù)學(xué)建模的過程是需要計(jì)算機(jī)來完成的,在全部的過程當(dāng)中,計(jì)算機(jī)參與計(jì)算的比重很大,從某種意義程度上來講,計(jì)算機(jī)技術(shù)對于數(shù)學(xué)建模的發(fā)展是起著推動(dòng)性的作用的,二者之間是有著聯(lián)系的。
數(shù)學(xué)建模論文感悟篇七
一、在高等數(shù)學(xué)教學(xué)中運(yùn)用數(shù)學(xué)建模思想的重要性
(1)將教材中的數(shù)學(xué)知識運(yùn)用現(xiàn)實(shí)生活中的對象進(jìn)行還原,讓學(xué)生樹立數(shù)學(xué)知識來源于現(xiàn)實(shí)生活的思想觀念。
(2)數(shù)學(xué)建模思想要求學(xué)生能夠通過運(yùn)用相應(yīng)的數(shù)學(xué)工具和數(shù)學(xué)語言,對現(xiàn)實(shí)生活中的特定對象的信息、數(shù)據(jù)或者現(xiàn)象進(jìn)行簡化,對抽象的數(shù)學(xué)對象進(jìn)行翻譯和歸納,將所求解的數(shù)學(xué)問題中的數(shù)量關(guān)系運(yùn)用數(shù)學(xué)關(guān)系式、數(shù)學(xué)圖形或者數(shù)學(xué)表格等形式進(jìn)行表達(dá),這種方式有利于培養(yǎng)、鍛煉學(xué)生的數(shù)學(xué)表達(dá)能力。
(3)在運(yùn)用數(shù)學(xué)建模思想獲得實(shí)際的答案后,需要運(yùn)用現(xiàn)實(shí)生活對象的相關(guān)信息對其進(jìn)行檢驗(yàn),對計(jì)算結(jié)果的準(zhǔn)確性進(jìn)行檢驗(yàn)和確定。該流程能夠培養(yǎng)學(xué)生運(yùn)用合理的數(shù)學(xué)方法對數(shù)學(xué)問題進(jìn)行主動(dòng)性、客觀性以及辯證性的分析,最后得到最有效的解決問題的方法。
二、高等數(shù)學(xué)教學(xué)中數(shù)學(xué)建模能力的培養(yǎng)策略
1.教師要具備數(shù)學(xué)建模思想意識
在對高等數(shù)學(xué)進(jìn)行教學(xué)的過程中,培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)建模思想,首先教師要具備足夠的數(shù)學(xué)建模意識。教師在進(jìn)行高等數(shù)學(xué)教學(xué)之前,首先,要對所講數(shù)學(xué)內(nèi)容的相關(guān)實(shí)例進(jìn)行查找,有意識的實(shí)現(xiàn)高等數(shù)學(xué)內(nèi)容和各個(gè)不同領(lǐng)域之間的聯(lián)系;其次,教師要實(shí)現(xiàn)高等數(shù)學(xué)教學(xué)內(nèi)容與教學(xué)要求的轉(zhuǎn)變,及時(shí)的更新自身的教學(xué)觀念和教學(xué)思想。例如,教師細(xì)心發(fā)現(xiàn)現(xiàn)實(shí)生活中的小事,然后運(yùn)用這些小事建造相應(yīng)的數(shù)學(xué)模型,這樣不僅有利于營造活躍的課堂環(huán)境,而且還有利于激發(fā)學(xué)生的學(xué)習(xí)興趣。
2.實(shí)現(xiàn)數(shù)學(xué)建模思想和高等數(shù)學(xué)教材的互相結(jié)合
教師在講解高等數(shù)學(xué)時(shí),對其中能夠引入數(shù)學(xué)模型的章節(jié),要構(gòu)建相關(guān)的數(shù)學(xué)模型,對其提出相應(yīng)的問題,進(jìn)行分析和處理。在該基礎(chǔ)上,提出假設(shè),實(shí)現(xiàn)數(shù)學(xué)模型的完善。教師在高等數(shù)學(xué)的教學(xué)中融入建模意識,讓學(xué)生潛移默化的感受到建模思想在高等數(shù)學(xué)教學(xué)中應(yīng)用的效果。這樣有利于提高學(xué)生數(shù)學(xué)知識的運(yùn)用能力和學(xué)習(xí)興趣。例如,在進(jìn)行教學(xué)時(shí),針對學(xué)生所學(xué)專業(yè)的特點(diǎn),選擇科學(xué)、合理的數(shù)學(xué)案例,運(yùn)用數(shù)學(xué)建模思想對其進(jìn)行相應(yīng)的加工后,作為高等數(shù)學(xué)講授的應(yīng)用例題。這樣不僅能夠讓學(xué)生發(fā)現(xiàn)數(shù)學(xué)發(fā)揮的巨大作用,而且還能夠有效的提高學(xué)生的數(shù)學(xué)解題水平。另外,數(shù)學(xué)課結(jié)束后,轉(zhuǎn)變以往的作業(yè)模式,給學(xué)生布置一些具有專業(yè)性、數(shù)學(xué)性的習(xí)題,讓學(xué)生充分利用網(wǎng)絡(luò)資源,自主建立數(shù)學(xué)模型,有效的解決問題。
3.理清高等數(shù)學(xué)名詞的概念
教材中,導(dǎo)數(shù)和定積分是其中的比較重要的概念,因此,教師在進(jìn)行教學(xué)時(shí),要引導(dǎo)學(xué)生理清這兩個(gè)的概念。比如導(dǎo)數(shù)概念是由幾何曲線中的切線斜率引導(dǎo)出來的,定積分的概念是由局部取近似值引出的,將常量轉(zhuǎn)變?yōu)樽兞俊?BR> 4.加強(qiáng)數(shù)學(xué)應(yīng)用問題的培養(yǎng)
高等數(shù)學(xué)中,主要有以下幾種應(yīng)用問題:
(1)最值問題
在高等數(shù)學(xué)教材中,最值問題是導(dǎo)數(shù)應(yīng)用中最重要的問題。教師在教學(xué)過程中通過對最值問題的解題步驟進(jìn)行歸納,能夠有效地將數(shù)學(xué)建模的基本思想進(jìn)行反映。因此,在對這部分內(nèi)容進(jìn)行教學(xué)時(shí),要增加例題,加大學(xué)生的練習(xí),開拓學(xué)生的思維,讓學(xué)生熟練掌握最值問題的解決辦法。
(2)微分方程
在微分方程的教學(xué)中運(yùn)用數(shù)學(xué)建模思想,能夠有效地解決實(shí)際問題。微分方程所構(gòu)建的數(shù)學(xué)模型不具有通用的規(guī)則。首先,要確定方程中的變量,對變量和變化率、微元之間的關(guān)系進(jìn)行分析,然后運(yùn)用相關(guān)的物理理論、化學(xué)理論或者工程學(xué)理論對其進(jìn)行實(shí)驗(yàn),運(yùn)用所得出的定理、規(guī)律來構(gòu)建微分方程;其次,對其進(jìn)行求解和驗(yàn)證結(jié)果。微分方程的概念主要從實(shí)際引入,堅(jiān)持由淺入深的原則,來對現(xiàn)實(shí)問題進(jìn)行解決。例如,在對學(xué)生講解外有引力定律時(shí),讓學(xué)生對萬有引力的提出、猜想進(jìn)行探究,了解到在其發(fā)展的整個(gè)過程中,數(shù)學(xué)發(fā)揮著十分重要的作用。
(3)定積分
微元法思想用途比較廣泛,其主要以定積分概念為基礎(chǔ),在數(shù)學(xué)中滲入定積分概念,讓學(xué)生對定積分概念的意義進(jìn)行分析和了解,這樣有利于在對實(shí)際問題進(jìn)行解決時(shí),樹立“欲積先分”意識,意識到運(yùn)用定積分是解決微元實(shí)際問題的重要方法。教師在布置作業(yè)題時(shí),要增加該問題的實(shí)例。
三、結(jié)語
總之,在高等數(shù)學(xué)中對學(xué)生的數(shù)學(xué)建模能力進(jìn)行培養(yǎng),讓學(xué)生在解題的過程中運(yùn)用數(shù)學(xué)建模思想和數(shù)學(xué)建模方法,能夠有效地激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生的分析、解決問題的能力以及提高學(xué)生數(shù)學(xué)知識的運(yùn)用能力。
數(shù)學(xué)建模論文感悟篇八
優(yōu)秀高教社杯全國大學(xué)生數(shù)學(xué)建模競賽題目
(請先閱讀“全國大學(xué)生數(shù)學(xué)建模競賽論文格式規(guī)范”)
a題城市表層土壤重金屬污染分析
隨著城市經(jīng)濟(jì)的快速發(fā)展和城市人口的不斷增加,人類活動(dòng)對城市環(huán)境質(zhì)量的影響日顯突出。對城市土壤地質(zhì)環(huán)境異常的查證,以及如何應(yīng)用查證獲得的海量數(shù)據(jù)資料開展城市環(huán)境質(zhì)量評價(jià),研究人類活動(dòng)影響下城市地質(zhì)環(huán)境的演變模式,日益成為人們關(guān)注的焦點(diǎn)。
按照功能劃分,城區(qū)一般可分為生活區(qū)、工業(yè)區(qū)、山區(qū)、主干道路區(qū)及公園綠地區(qū)等,分別記為1類區(qū)、2類區(qū)、??、5類區(qū),不同的區(qū)域環(huán)境受人類活動(dòng)影響的程度不同。
現(xiàn)對某城市城區(qū)土壤地質(zhì)環(huán)境進(jìn)行調(diào)查。為此,將所考察的城區(qū)劃分為間距1公里左右的網(wǎng)格子區(qū)域,按照每平方公里1個(gè)采樣點(diǎn)對表層土(0~10厘米深度)進(jìn)行取樣、編號,并用gps記錄采樣點(diǎn)的位置。應(yīng)用專門儀器測試分析,獲得了每個(gè)樣本所含的多種化學(xué)元素的濃度數(shù)據(jù)。另一方面,按照2公里的間距在那些遠(yuǎn)離人群及工業(yè)活動(dòng)的自然區(qū)取樣,將其作為該城區(qū)表層土壤中元素的背景值。
附件1列出了采樣點(diǎn)的位置、海拔高度及其所屬功能區(qū)等信息,附件2列出了8種主要重金屬元素在采樣點(diǎn)處的濃度,附件3列出了8種主要重金屬元素的背景值。
現(xiàn)要求你們通過數(shù)學(xué)建模來完成以下任務(wù):
(1)給出8種主要重金屬元素在該城區(qū)的空間分布,并分析該城區(qū)內(nèi)不同區(qū)域重金屬的污染程度。
(2)通過數(shù)據(jù)分析,說明重金屬污染的主要原因。
(3)分析重金屬污染物的傳播特征,由此建立模型,確定污染源的位置。
數(shù)學(xué)建模論文感悟篇九
高校數(shù)學(xué)教育是高等教育的基礎(chǔ)學(xué)科,占據(jù)重要的一席之地。如何改變學(xué)生對數(shù)學(xué)枯燥乏味的學(xué)習(xí)狀態(tài),讓學(xué)生輕松愉快地參與到數(shù)學(xué)學(xué)習(xí)中,是當(dāng)前高校數(shù)學(xué)教學(xué)者面臨的一個(gè)重要課題。在高校數(shù)學(xué)教學(xué)中開展數(shù)學(xué)建模競賽,不僅能培養(yǎng)學(xué)生的創(chuàng)新思維,還能有效提高提高學(xué)生的創(chuàng)新能力、綜合素質(zhì)和對數(shù)學(xué)的應(yīng)用能力。本文對高校開展數(shù)學(xué)建模競賽與創(chuàng)新思維培養(yǎng)進(jìn)行了分析闡述,并對此進(jìn)行了一定的思考。
數(shù)學(xué)建模是一種融合數(shù)學(xué)邏輯思想的思考方法,通過運(yùn)用抽象性的數(shù)學(xué)語言和數(shù)學(xué)邏輯思考方法,創(chuàng)造性的解決數(shù)學(xué)問題。當(dāng)前很多高校中開始引入數(shù)學(xué)建模思想來加強(qiáng)學(xué)生創(chuàng)新能力的培養(yǎng),可以使學(xué)生的邏輯思維能力和運(yùn)用數(shù)學(xué)邏輯創(chuàng)新解決問題的能力得到提升。數(shù)學(xué)建模競賽起源于1985年的美國,幾年后國內(nèi)幾所高校數(shù)學(xué)建模教師組織學(xué)生開始參與美國的數(shù)學(xué)建模大賽,促進(jìn)了數(shù)學(xué)建模思維的快速發(fā)展。直到1992中國首屆數(shù)學(xué)建模大賽召開,而后一發(fā)不可收拾,至今仍以每年20%左右的速度增長,呈現(xiàn)一派繁榮景象。
2.1數(shù)學(xué)建模競賽自主性較強(qiáng)。自主性首先體現(xiàn)在在數(shù)學(xué)建模過程中學(xué)生可以根據(jù)自己的建模需要通過一切可以利用的資源、工具來進(jìn)行資料查閱和收集,建模比賽隊(duì)員可以根據(jù)自己的意見和思維進(jìn)行靈活自由解答,形式不拘一格。其次體現(xiàn)在數(shù)學(xué)建模競賽的組織形式呈現(xiàn)多元化特點(diǎn),組織制度上也較為靈活多樣,數(shù)學(xué)建模主要側(cè)重于分析思想,沒有標(biāo)準(zhǔn)答案可以參考分享。2.2建模隊(duì)伍呈日益燎原之勢。1992年首屆中國數(shù)學(xué)建模大賽開展以來,其影響力與日俱增,高校和社會各界對數(shù)學(xué)建模頗為重視,參賽隊(duì)伍、參賽學(xué)生的質(zhì)量一直處于上升狀態(tài),數(shù)學(xué)模型也日漸合理科學(xué),學(xué)生團(tuán)隊(duì)在國際數(shù)學(xué)建模大賽中屢創(chuàng)驕人戰(zhàn)績。2.3組織培訓(xùn)日益加強(qiáng)。數(shù)學(xué)建模競賽對學(xué)生數(shù)學(xué)知識的掌握及靈活運(yùn)用、口套表達(dá)、語言邏輯思維、綜合素質(zhì)都有著非常高的要求,因此高校遴選參賽選手都投入了很大的精力,組織培訓(xùn)的時(shí)間很長,培訓(xùn)內(nèi)容也很豐富,為數(shù)學(xué)建模競賽取得好成績奠定了堅(jiān)實(shí)的基礎(chǔ)。
3.1學(xué)生的團(tuán)隊(duì)協(xié)作能力和意識得到增強(qiáng)。數(shù)學(xué)建模競賽的團(tuán)隊(duì)組織形式活潑自由,通常采用學(xué)生組隊(duì)模式開展,數(shù)學(xué)建模競賽隊(duì)伍形成一個(gè)團(tuán)結(jié)戰(zhàn)斗的整體,代表著不僅僅是學(xué)校的聲譽(yù),還一定程度上展示著國家的形象。經(jīng)過長時(shí)間的培訓(xùn),對數(shù)學(xué)模型的研究和分析,根據(jù)學(xué)生訓(xùn)練中的優(yōu)勢和特長,進(jìn)行合理科學(xué)的小組分工,讓學(xué)生快速高效地完成整個(gè)數(shù)學(xué)建模,在建模過程中學(xué)生統(tǒng)籌協(xié)作、密切配合,發(fā)揮各自的優(yōu)勢和長處,確保數(shù)學(xué)建模取得最大效用,學(xué)生的團(tuán)隊(duì)協(xié)作能力和意識得到鍛煉,責(zé)任感和榮譽(yù)感進(jìn)一步增強(qiáng),通過建模競賽彰顯團(tuán)隊(duì)的合作能力和中國數(shù)學(xué)建模方面的發(fā)展。
3.2高校學(xué)生參賽積極性高漲。近年來大學(xué)生數(shù)學(xué)建模競賽的參與性高漲,參賽人數(shù)保持著20%左右的上漲幅度,參賽成績也較為理想,創(chuàng)新能力得到了較好的鍛煉和培養(yǎng),綜合素質(zhì)得到提高,數(shù)學(xué)的應(yīng)用能力提升。
3.3高校學(xué)生數(shù)學(xué)邏輯思維能力和靈活運(yùn)用知識的能力得到提升。數(shù)學(xué)建模競賽充滿著刺激性和挑戰(zhàn)性,是學(xué)生各方面綜合能力的一個(gè)展示。在數(shù)學(xué)建模競賽中,學(xué)生不僅要需要扎實(shí)豐厚的數(shù)學(xué)知識儲備,還需要具備清晰的數(shù)學(xué)邏輯思維和語言表達(dá)能力。同時(shí)要有機(jī)智的臨場發(fā)揮能力和應(yīng)變能力,不怯場、不驚慌,有充分的思想準(zhǔn)備,能輕松應(yīng)對其他參賽選手和評委的提問,能組織條理性、邏輯性的語言進(jìn)行表述,將參賽小組數(shù)學(xué)模型的含義和設(shè)計(jì)清晰完整的傳達(dá)給評委和其他參賽選手。在這個(gè)過程中,無疑會使學(xué)生的數(shù)學(xué)邏輯思維和語言表達(dá)能力及靈活運(yùn)用數(shù)學(xué)知識的能力有一個(gè)較大的提升。
3.4學(xué)生的自學(xué)能力和意志力得到鍛。數(shù)學(xué)建模競賽對參賽學(xué)生的綜合知識和能力要求非常高,難度也非常大,需要與眾不同的智慧和能力??梢哉f數(shù)學(xué)建模過程中,有許多高深的知識難于理解,有的日常學(xué)習(xí)過程中根本接觸不到,需要數(shù)學(xué)建模參賽小組成員的互助合作,充分發(fā)揮各自優(yōu)勢和平時(shí)培訓(xùn)中的知識積淀,通過借助大量的工具書及參考資料,加上團(tuán)隊(duì)的`理解分析去摸索,探尋數(shù)學(xué)建模所需要的基礎(chǔ)知識,無疑這對學(xué)生的自學(xué)能力培養(yǎng)是一個(gè)很好的鍛煉。另外,搜尋資料、學(xué)習(xí)數(shù)學(xué)建模知識的過程是枯燥乏味的,需要長久的耐力和信心,無疑這對學(xué)生的堅(jiān)毅不畏難的品質(zhì)是一個(gè)很好的培養(yǎng)和磨煉。
3.5創(chuàng)新思維與能力得到有效提升。經(jīng)過艱苦復(fù)雜的數(shù)學(xué)建模訓(xùn)練,高校學(xué)生信息收集與處理復(fù)雜問題的能力得到培養(yǎng)鍛煉,學(xué)生數(shù)量觀念得到增強(qiáng),能夠養(yǎng)成敏銳觀察事物數(shù)量變化的能力,數(shù)學(xué)的嚴(yán)謹(jǐn)推導(dǎo)也使學(xué)生養(yǎng)成認(rèn)真細(xì)心、一絲不茍的習(xí)慣,邏輯思維能力得到提高,思路變得更加富有條理性,能靈活地處理各種復(fù)雜問題,有效解決數(shù)學(xué)疑難,數(shù)學(xué)理論能更好第應(yīng)用于實(shí)踐,數(shù)學(xué)素養(yǎng)進(jìn)一步得到提升。
綜上所述,高校學(xué)生數(shù)學(xué)建模競賽的開展,能較高地提升學(xué)生的創(chuàng)新能力和綜合素養(yǎng),團(tuán)隊(duì)合作能力、競爭能力、表達(dá)交流能力、邏輯思維能力、意志品質(zhì)能力等都能得到良好的塑造。高校要積極組織和開展數(shù)學(xué)建模競賽,使學(xué)生的綜合素質(zhì)得到發(fā)展和鍛煉。學(xué)校用重視和鼓勵(lì)全體學(xué)生參與數(shù)學(xué)建模競賽,通過競賽實(shí)現(xiàn)學(xué)生各方面能力尤其是創(chuàng)新能力的培養(yǎng)。
[1]趙剛.高校數(shù)學(xué)建模競賽與創(chuàng)新思維培養(yǎng)探究[j].才智,20xx(06).
[2]陳羽,徐小紅,房少梅.數(shù)學(xué)建模實(shí)踐及其對培養(yǎng)學(xué)生創(chuàng)新思維的影響分析[j].科技創(chuàng)業(yè)月刊,20xx(08).
[3]趙建英.數(shù)學(xué)建模競賽對高校創(chuàng)新人才培養(yǎng)的促進(jìn)作用分析[j].科技展望,20xx(08)5.
[4]畢波,杜輝.關(guān)于高校開展數(shù)學(xué)建模競賽與創(chuàng)新思維培養(yǎng)的思考[j].中國校外教育,20xx(12).
數(shù)學(xué)建模論文感悟篇十
信息化時(shí)代,數(shù)學(xué)科學(xué)與其他學(xué)科交叉融合,使得數(shù)學(xué)技術(shù)變成了一種普適性的關(guān)鍵技術(shù)。大學(xué)加強(qiáng)數(shù)學(xué)課程的應(yīng)用功能,不但可以為學(xué)生提供解決問題的思想和方法,而且更為重要的是可以培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)科學(xué)進(jìn)行定量化、精確化思維的意識,學(xué)會創(chuàng)造性地解決問題的應(yīng)用能力。數(shù)學(xué)建模課程將數(shù)學(xué)的基本原理、現(xiàn)代優(yōu)化算法以及程序設(shè)計(jì)知識很好地融合在一起,有助于培養(yǎng)學(xué)生綜合應(yīng)用數(shù)學(xué)知識將現(xiàn)實(shí)問題化為數(shù)學(xué)問題,并進(jìn)行求解運(yùn)算的能力,激發(fā)學(xué)生對解決現(xiàn)實(shí)問題的探索欲望,強(qiáng)化數(shù)學(xué)課程本身的應(yīng)用功能,凸顯數(shù)學(xué)課程的教育價(jià)值,適應(yīng)大學(xué)數(shù)學(xué)課程以培養(yǎng)學(xué)生創(chuàng)新意識為宗旨的教育改革需要。
大學(xué)傳統(tǒng)的數(shù)學(xué)主干課程,如高等數(shù)學(xué)、線性代數(shù)、概率論與數(shù)理統(tǒng)計(jì)在奠定學(xué)生的數(shù)學(xué)基礎(chǔ)、培養(yǎng)自學(xué)能力以及為后續(xù)課程的學(xué)習(xí)在基礎(chǔ)方面發(fā)揮奠基作用。但是,這種原有的教學(xué)模式重在突出培養(yǎng)學(xué)生嚴(yán)格的邏輯思維能力,而對數(shù)學(xué)的應(yīng)用重視不夠,這使得學(xué)生即使掌握了較為高深的數(shù)學(xué)理論,卻并不能將其靈活應(yīng)用于現(xiàn)實(shí)生活解決實(shí)際問題,更是缺乏將數(shù)學(xué)應(yīng)用于專業(yè)研究和軍事工程的能力,與創(chuàng)新教育的基本要求差距甚遠(yuǎn)。教育轉(zhuǎn)型要求數(shù)學(xué)教學(xué)模式從傳統(tǒng)的傳授知識為主向以培養(yǎng)能力素質(zhì)為主轉(zhuǎn)變,特別是將數(shù)學(xué)建模的思想方法融入到數(shù)學(xué)主干課程之中,在教學(xué)過程中引導(dǎo)學(xué)生將數(shù)學(xué)知識內(nèi)化為學(xué)生的應(yīng)用能力,充分發(fā)揮數(shù)學(xué)建模思想在數(shù)學(xué)教學(xué)過程中的引領(lǐng)作用。數(shù)學(xué)課程教學(xué)改革要適應(yīng)這一教學(xué)模式轉(zhuǎn)型需要,深入探究融入式教學(xué)模式的理論與方式,是推進(jìn)數(shù)學(xué)教育改革的重要舉措。
2.1理清數(shù)學(xué)建模思想方法與數(shù)學(xué)主干課程的關(guān)系。數(shù)學(xué)主干課程提供了大學(xué)數(shù)學(xué)的基礎(chǔ)理論與基本原理,將數(shù)學(xué)建模的思想方法有機(jī)地融入到數(shù)學(xué)主干課程中,不但可以有效地提升數(shù)學(xué)課程的應(yīng)用功能,而且有利于深化學(xué)生對數(shù)學(xué)本原知識的理解,培養(yǎng)學(xué)生的綜合應(yīng)用能力。深入研究數(shù)學(xué)主干課程的功能定位,主要從課程目標(biāo)上的一致性、課程內(nèi)容上的互補(bǔ)性、學(xué)習(xí)形式上的互促性、功能上的整體優(yōu)化性等方面,研究數(shù)學(xué)建模本身所承載的思想、方法與數(shù)學(xué)主干課程的內(nèi)容與邏輯關(guān)系,闡述數(shù)學(xué)建模思想方法對提高學(xué)生創(chuàng)新能力和對數(shù)學(xué)教育改革的重要意義,探索開展融入式教學(xué)及創(chuàng)新數(shù)學(xué)課程教學(xué)模式的有效途徑。
2.2探索融入式教學(xué)模式提升數(shù)學(xué)主干課程應(yīng)用功能的方式。融入式教學(xué)主要有輕度融入、中度融入和完全融入三種方式。根據(jù)主干課程的基本特點(diǎn),對課程體系進(jìn)行調(diào)整,在問題解決過程中安排需要融入的知識體系,按照三種方式融入數(shù)學(xué)建模的思想與方法。以學(xué)生能力訓(xùn)練為主導(dǎo),在培養(yǎng)深厚的數(shù)學(xué)基礎(chǔ)和嚴(yán)格的邏輯思維能力的基礎(chǔ)上,充分發(fā)揮數(shù)學(xué)建模思想方法對學(xué)生思維方式的培養(yǎng)功能和引導(dǎo)作用,培養(yǎng)學(xué)生敏銳的分析能力、深刻的'歸納演繹能力以及將數(shù)學(xué)知識應(yīng)用于工程問題的創(chuàng)新能力。
2.3建立數(shù)學(xué)建模思想方法融入數(shù)學(xué)主干課程的評價(jià)方式。融入式教學(xué)是處于探索中的教學(xué)模式,教學(xué)成效有待于實(shí)踐檢驗(yàn)。選取開展融入式教學(xué)的實(shí)驗(yàn)班級,對數(shù)學(xué)建模思想方法融入主干課程進(jìn)行教學(xué)效果實(shí)踐驗(yàn)證。設(shè)計(jì)相應(yīng)的考察量表,從運(yùn)用直覺思維深入理解背景知識、符號翻譯開展邏輯思維、依托圖表理順數(shù)量關(guān)系、大膽嘗試進(jìn)行建模求解等多方面對實(shí)驗(yàn)課程的教學(xué)效果進(jìn)行檢驗(yàn),深入分析融入式教學(xué)模式的成效與不足,為探索有效的教學(xué)模式提出改進(jìn)的對策。
3.1改革課程教學(xué)內(nèi)容,滲透數(shù)學(xué)建模的思想方法。傳統(tǒng)的數(shù)學(xué)主干課程教學(xué)內(nèi)容,將數(shù)學(xué)看作嚴(yán)謹(jǐn)?shù)难堇[體系,教學(xué)過程中著力于對學(xué)生傳授大學(xué)數(shù)學(xué)的基礎(chǔ)知識,而對應(yīng)用能力的培養(yǎng)卻重視不夠。使得本應(yīng)能夠發(fā)揮應(yīng)用功能的數(shù)學(xué)知識則淪為僵死的教條性數(shù)學(xué)原理,這失去了教學(xué)的活力。學(xué)生即使掌握了再高深的數(shù)學(xué)知識,仍難以學(xué)會用數(shù)學(xué)的基本方法解決現(xiàn)實(shí)問題?,F(xiàn)行的大學(xué)數(shù)學(xué)課程教學(xué)內(nèi)容中,適當(dāng)?shù)貪B透一些應(yīng)用性比較廣泛的數(shù)學(xué)方法,如微元法、迭代法及最佳逼近等方法,有利于促進(jìn)學(xué)生對數(shù)學(xué)基礎(chǔ)知識的掌握,同時(shí)理解數(shù)學(xué)原理所蘊(yùn)涵的思想與方法。
這樣,在解決實(shí)際問題的時(shí)候,學(xué)生就會有意識地從數(shù)學(xué)的角度進(jìn)行思考,嘗試建立相應(yīng)的數(shù)學(xué)模型并進(jìn)行求解,拓展了數(shù)學(xué)知識的深度與廣度,提升了學(xué)生的數(shù)學(xué)應(yīng)用能力四、結(jié)語數(shù)學(xué)建模是數(shù)學(xué)科學(xué)在科技、經(jīng)濟(jì)、軍事等領(lǐng)域廣泛應(yīng)用的接口,是數(shù)學(xué)科學(xué)轉(zhuǎn)化成科學(xué)技術(shù)的重要途徑。在數(shù)學(xué)主干課程中融入數(shù)學(xué)建模的思想與方法,可以推動(dòng)大學(xué)數(shù)學(xué)教育改革的深入發(fā)展,加深學(xué)生對相關(guān)知識的理解和掌握,有助于從思維方式上培養(yǎng)學(xué)生的創(chuàng)新意識與創(chuàng)新能力。
此外,數(shù)學(xué)建模思想方法融入教學(xué)主干課程還涉及到許多問題,比如數(shù)學(xué)建模與計(jì)算技術(shù)如何有效結(jié)合以進(jìn)行模擬仿真、融入式教學(xué)模式的基本理論、構(gòu)建新的課程體系等問題,仍將有待于更深入的研究。
數(shù)學(xué)建模論文感悟篇十一
問題教學(xué)法是一種新的教學(xué)模式,與傳統(tǒng)教學(xué)有很大的區(qū)別。在傳統(tǒng)的教學(xué)中,教師考慮最多的是“教什么、怎樣教”的問題,很少顧及學(xué)生“學(xué)什么、怎樣學(xué)”,限制了學(xué)生學(xué)習(xí)的主動(dòng)性和創(chuàng)造性。[1]為了改變這種現(xiàn)狀,美國神經(jīng)病學(xué)教授howardbarrows于1969年創(chuàng)立了基于問題和項(xiàng)目的學(xué)習(xí)(problembasedlearning)理念教學(xué)法。[2]這種方法不像傳統(tǒng)教學(xué)模式那樣先學(xué)習(xí)理論知識再解決問題,而是讓學(xué)生圍繞問題尋求解決方案。它強(qiáng)調(diào)讓學(xué)生置身于復(fù)雜的、有意義的問題情境中,并讓學(xué)生成為該問題情境的主體,自己去分析問題,學(xué)習(xí)解決該問題所需的知識,進(jìn)而通過合作解決問題。此外,教師在該過程中也可以通過提問的方式,不斷地激發(fā)學(xué)生去思考、探索,培養(yǎng)學(xué)生自主學(xué)習(xí)的能力。與傳統(tǒng)的教學(xué)模式相比,問題教學(xué)模式更注重對學(xué)生自學(xué)能力、創(chuàng)新能力、發(fā)現(xiàn)問題和解決問題能力的培養(yǎng)。問題教學(xué)模式剛開始主要被應(yīng)用于醫(yī)學(xué)、市場營銷、實(shí)驗(yàn)教學(xué)、畢業(yè)論文的寫作等領(lǐng)域。[3]近年來,一些學(xué)者開始探索將這種教學(xué)模式引入到“數(shù)學(xué)建?!闭n程的教學(xué)中。黃河科技學(xué)院從20xx級信息與計(jì)算科學(xué)專業(yè)的學(xué)生開始,在“數(shù)學(xué)建?!苯虒W(xué)活動(dòng)引入問題教學(xué)模式,已經(jīng)取得了初步的成效。
1.教師提出問題
教師在每次上課之前要精心設(shè)計(jì)適合學(xué)生自學(xué)的問題體系,目的是為了誘導(dǎo)學(xué)生的思維,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生置身于特定的問題環(huán)境中,營造一種質(zhì)疑、探究、討論、和諧互動(dòng)的學(xué)習(xí)氛圍。這一步驟要求教師不僅需要熟悉教學(xué)內(nèi)容,還必須更好地了解學(xué)生的實(shí)際情況,這是成功實(shí)施問題教學(xué)模式的基礎(chǔ)。
2.積極分析問題
問題教學(xué)法的基本特點(diǎn)是教學(xué)環(huán)節(jié)由一連串問題組成,并且問題與問題之間的`聯(lián)系具有鏈接性和層次性。前一個(gè)問題是后一個(gè)問題的鋪墊,后一個(gè)問題又是前一個(gè)問題的深化和拓展。在學(xué)生熟悉了相關(guān)知識的基礎(chǔ)上,根據(jù)給出的實(shí)際問題,教師引導(dǎo)學(xué)生進(jìn)行探索。探索活動(dòng)一般包括自學(xué)教材、觀察實(shí)驗(yàn)、小組討論等方式。學(xué)生一方面要充分利用原有認(rèn)知結(jié)構(gòu)中存儲的有關(guān)知識信息,另一方面可以利用教材、實(shí)驗(yàn)或教師提供的閱讀材料,獲取解決問題的方法。在對問題討論中教師要?jiǎng)?chuàng)設(shè)和諧民主的教學(xué)環(huán)境,要讓學(xué)生充分發(fā)表自己的見解,大膽質(zhì)疑,相互答辯,相互啟發(fā)。
3.解決問題
當(dāng)所有學(xué)生都對問題的解決方案有了一定的思路之后,教師組織課堂發(fā)言。讓每一小組推薦一位表達(dá)能力強(qiáng)的學(xué)生,在課堂上把他們對解決問題的方法及結(jié)論的合理性進(jìn)行講解。在每組講解完之后,其他學(xué)生可以對他們進(jìn)行提問,而發(fā)言小組的學(xué)生要向其他同學(xué)和老師進(jìn)行解釋。教師在主持和引導(dǎo)的同時(shí),也可以向?qū)W生提問。這樣通過對一個(gè)又一個(gè)問題的提問,推動(dòng)學(xué)生思考,將問題引向縱深層次,一步步朝著解決問題的方向發(fā)展。
4.對問題的結(jié)果進(jìn)行評價(jià)
問題教學(xué)法不僅以問題為開端,還以問題為終結(jié)。教學(xué)的最終結(jié)果不是傳授知識來消滅問題,而是在解決已有問題的基礎(chǔ)上引發(fā)更多、更廣泛的問題。因此教師在對問題的結(jié)果進(jìn)行總結(jié)時(shí)要注意引導(dǎo)學(xué)生反思“這個(gè)問題為什么要這樣解決”,“這個(gè)問題還可以怎樣解決”,“從解決這個(gè)問題中我學(xué)到了什么”以及“這種解決方案還有什么不足之處”等等,從而激發(fā)他們提出新的問題,這是問題教學(xué)中最重要、最有教益的一個(gè)方面。
在基于問題教學(xué)的過程中,每次討論的問題都圍繞某一專題進(jìn)行討論學(xué)習(xí),下面以“公平的席位分配問題”[4]為例,說明在“數(shù)學(xué)建?!敝腥绾芜\(yùn)用問題教學(xué)法。
1.合理設(shè)計(jì)問題
獎(jiǎng)學(xué)金評定是學(xué)生比較關(guān)心的問題,筆者根據(jù)學(xué)生的興趣及認(rèn)知水平選擇“獎(jiǎng)學(xué)金名額分配問題”。設(shè)某校有5個(gè)系a、b、c、d、e,各系學(xué)生數(shù)分別為345、72、894、68、39,現(xiàn)在有74個(gè)獎(jiǎng)學(xué)金名額,問每個(gè)系分配幾個(gè)名額比較公平?[5]在給出問題后,我們將相關(guān)問題印發(fā)給學(xué)生,并讓學(xué)生課下先收集關(guān)于“公平的席位分配問題”的模型及相關(guān)求解方法并認(rèn)真研讀。
2.小組討論分析問題
根據(jù)課下學(xué)生收集的求解方案,上課時(shí)首先以小組為單位初步討論。首先提出如果讓同學(xué)們進(jìn)行分配的話,他們會使用什么方法進(jìn)行分配,讓他們進(jìn)行討論。學(xué)生首先會給出比例分配方案,如果按人數(shù)比例分配到各系的名額恰好都是整數(shù),可以得到完全公平的分配方案。但在很多情況下,按人數(shù)比例分配到各系的名額帶有小數(shù)。比如在這個(gè)問題中各系分配的名額數(shù)分別為:18.00、3.76、46.65、3.55、2.04,有小數(shù)部分??梢韵劝颜麛?shù)分配完,這時(shí)各系分配的名額數(shù)為:18、3、46、3、2。共分配了72名額,還有2個(gè)名額該如何分配?大家經(jīng)過討論,會提出誰的小數(shù)部分大就把名額給誰的分配方案,于是第73個(gè)名額給b系,第74個(gè)名額給c系。最終的方案是各系名額數(shù)分別為:18、4、47、3、2。接著老師會提出下面的問題,這種分配方案對誰最不公平?學(xué)生會進(jìn)一步討論每個(gè)名額代表的人數(shù),a為19.17人,b為18人,c為19.02人,d為22.67人,e為19.5人,說明這種分配方案對d系最不公平,而b系最占便宜,兩個(gè)系中每個(gè)名額代表的人數(shù)相差了4.67人。那么要重點(diǎn)討論有沒有相對來說比較公平的席位分配方案。
3.學(xué)生進(jìn)行發(fā)言討論
在所有小組都討論完之后,教師組織各組學(xué)生進(jìn)行課堂發(fā)言和討論,讓每組選一人報(bào)告本小組討論結(jié)果。教師對各組的報(bào)告進(jìn)行評價(jià),指出在討論過程中的問題及不足之處。在這個(gè)問題中,學(xué)生根據(jù)課下收集的文獻(xiàn)資料會逐步提出q值分配方案,q值分配方案的改進(jìn),q值+d’hondt分配方案,席位分配的平均公平度方案等等。每種方案都是前面方案的改進(jìn),最后我們提出問題,這些分配方案公平度如何?讓學(xué)生逐一討論,從而營造出一個(gè)討論主題鮮明、學(xué)習(xí)氛圍良好的課堂環(huán)境。
4.教師對結(jié)果進(jìn)行評價(jià)總結(jié)
在這個(gè)問題中,經(jīng)過逐一討論,大部分學(xué)生認(rèn)為問題已經(jīng)圓滿解決了,不會再對結(jié)果進(jìn)行歸納整理,不會反思問題解決的思路。因此在最初的問題解決后,老師要引導(dǎo)學(xué)生進(jìn)行評價(jià)總結(jié),比如:“各個(gè)方案的公平度如何”,“我們還有沒有更公平的分配方案”,“公平的席位分配方案應(yīng)滿足什么原則”等等。
從“公平的席位分配問題”這個(gè)案例可以看到,在教學(xué)中為學(xué)生設(shè)計(jì)一個(gè)真實(shí)的問題進(jìn)行教學(xué),學(xué)生可以通過真實(shí)問題進(jìn)行學(xué)習(xí),并且以一個(gè)真實(shí)問題的解決為主線,激發(fā)學(xué)生的學(xué)習(xí)興趣和探索精神,再通過結(jié)果反饋信息,引導(dǎo)學(xué)生逐步深入理解學(xué)習(xí)內(nèi)容。學(xué)生在研究問題的過程中不僅學(xué)習(xí)了課本上的知識,而且還親身體會了解決實(shí)際問題的樂趣,為學(xué)生以后自主學(xué)習(xí)提供了極大的幫助。[6]四、結(jié)語當(dāng)然,在“數(shù)學(xué)建?!闭n程的教學(xué)過程中問題教學(xué)模式也存在不足之處,比如課程內(nèi)容多、課時(shí)少,問題討論時(shí)間和講授時(shí)間出現(xiàn)矛盾,對有的專題討論不夠深入,學(xué)生參與度不夠,學(xué)生發(fā)言的深度和廣度都有待于進(jìn)一步提高等等。這需要教師認(rèn)真歸納講課內(nèi)容,盡量分離出較多比較有吸引力的專題供學(xué)生討論,以問題為中心規(guī)劃教學(xué)內(nèi)容,讓學(xué)生圍繞問題尋求解決方案,從而提高學(xué)生學(xué)習(xí)的主動(dòng)性,提高學(xué)生在教學(xué)過程中的參與程度,激發(fā)學(xué)生的求知欲?!皵?shù)學(xué)建模”課程教學(xué)的本身就是一個(gè)不斷探索、創(chuàng)新和提高的過程,選擇正確有效的教學(xué)方法能更好培養(yǎng)學(xué)生的創(chuàng)新能力,激發(fā)學(xué)生對數(shù)學(xué)建模的興趣。
數(shù)學(xué)建模論文感悟篇十二
在高等教育事業(yè)改革不斷深化的背景下,為了提升教育教學(xué)質(zhì)量,新時(shí)期對大學(xué)數(shù)學(xué)教學(xué)提出了更高的要求。大學(xué)數(shù)學(xué)作為課堂教學(xué)的主體,教師在傳授知識的同時(shí),要注重學(xué)生學(xué)習(xí)能力和解決問題能力的培養(yǎng)。
數(shù)學(xué)知識來源于生活,應(yīng)用于生活,如微積分作為高等數(shù)學(xué)知識中的典型代表,在各個(gè)行業(yè)中具有不可或缺的作用。為此,任課教師在大學(xué)數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題和解決問題的能力十分重要,在傳授知識的過程中幫助學(xué)生利用所學(xué)知識來解決實(shí)際問題。一般情況下,教師著重介紹相關(guān)數(shù)學(xué)概念和原理,推導(dǎo)常用公式,促使學(xué)生能夠記住公式,學(xué)會公式的應(yīng)用過程,逐漸掌握解題技巧。
因此,如何能夠在傳授知識的同時(shí),促使學(xué)生掌握數(shù)學(xué)學(xué)習(xí)方法,將所學(xué)知識應(yīng)用到實(shí)踐中來解決數(shù)學(xué)問題是一個(gè)首要問題。從大量教學(xué)實(shí)踐中可以了解到,在大學(xué)數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模思想十分重要,有助于激發(fā)學(xué)生的學(xué)習(xí)興趣,促使學(xué)生積極投入其中,切實(shí)提升學(xué)生的數(shù)學(xué)專業(yè)水平。
在大學(xué)數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模思想,應(yīng)該結(jié)合實(shí)際情況,深入挖掘數(shù)學(xué)知識。在教學(xué)中,教師應(yīng)該充分發(fā)揮自身引導(dǎo)作用,聯(lián)系學(xué)生數(shù)學(xué)知識實(shí)際學(xué)習(xí)情況,有針對性地整合數(shù)學(xué)知識,了解相關(guān)數(shù)學(xué)內(nèi)容,這樣不僅可以豐富教學(xué)內(nèi)容,還可以為課堂教學(xué)注入新的活力,有效激發(fā)學(xué)生的學(xué)習(xí)興趣,提升學(xué)習(xí)成效。具體表現(xiàn)在以下方面:
(一)閉區(qū)間連續(xù)函數(shù)的性質(zhì)
閉區(qū)間連續(xù)函數(shù)的性質(zhì)內(nèi)容是大學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,由于知識理論性較強(qiáng),知識較為抽象,學(xué)習(xí)難度較大,在講解完相關(guān)理論知識后,可以引入椅子的穩(wěn)定問題,創(chuàng)建數(shù)學(xué)模型,提問學(xué)生如何在不平穩(wěn)的地面上平穩(wěn)地放置椅子。學(xué)生可以了解到這一問題同所學(xué)知識相關(guān)聯(lián),閉區(qū)間連續(xù)函數(shù)的性質(zhì)可以解決這一問題。學(xué)生整合所學(xué)知識,通過對問題的分析,可以了解到利用介值定理來解決問題。通過建立數(shù)學(xué)模型,學(xué)生更加充分地掌握了閉區(qū)間連續(xù)函數(shù)的`性質(zhì),提升了學(xué)習(xí)成效,為后續(xù)知識學(xué)習(xí)打下了堅(jiān)實(shí)的基礎(chǔ)。
(二)定積分
定積分是高等數(shù)學(xué)教學(xué)中的重要組成部分,在解決幾何問題時(shí)均有所應(yīng)用,并且被廣泛應(yīng)用在實(shí)際生活中。如,在一道全國大學(xué)生數(shù)學(xué)建模競賽題目中,計(jì)算煤矸石的堆積,煤礦采煤時(shí)所產(chǎn)生的煤矸石,為了處理煤矸石就需要征用土地來堆放煤矸石,根據(jù)上級主管部門的年產(chǎn)量計(jì)劃和經(jīng)費(fèi)如何堆放煤矸石?題目中的關(guān)鍵點(diǎn)在于堆放煤矸石的征地費(fèi)用和電費(fèi)的計(jì)算。征地費(fèi)計(jì)算難度較小,但是煤矸石堆積的電費(fèi)計(jì)算難度較高,但此項(xiàng)內(nèi)容涉及定積分中的變力做功知識點(diǎn)。學(xué)生掌握這些內(nèi)容后就可以建立數(shù)學(xué)模型,更加高效地了解如何根據(jù)預(yù)期開采量來堆放煤矸石。通過數(shù)學(xué)模型,學(xué)生也可以了解到定積分內(nèi)容同實(shí)際生活之間的聯(lián)系,學(xué)習(xí)積極性就會大大提升。
(三)最值問題
在高等數(shù)學(xué)中,最值問題占比比較大,同時(shí)在實(shí)際生活中應(yīng)用較為普遍,導(dǎo)數(shù)知識可以解決實(shí)際生活中的最值問題,這就需要提高對導(dǎo)數(shù)知識實(shí)際應(yīng)用的重視程度。教師在為學(xué)生講解完導(dǎo)數(shù)的相關(guān)概念知識后,通過建立關(guān)于天空的采空模型,提問學(xué)生為什么雨后太陽出來了,雨滴還在空中,那么將為人們呈現(xiàn)出什么樣的景色?學(xué)生回答彩虹。繼續(xù)提問彩虹為什么有顏色,是什么決定了天空中彩虹的高度?對此,學(xué)生的興趣較為濃厚,可以分為若干個(gè)小組進(jìn)行討論。通過分析可以得出,雨滴可以反射太陽光,形成彩虹。結(jié)合光線的反射和折射定律,借助所學(xué)的導(dǎo)數(shù)知識來計(jì)算得出太陽光偏轉(zhuǎn)角度的最值,有效解決實(shí)際學(xué)習(xí)的問題,加深對知識的理解和記憶,提升數(shù)學(xué)知識學(xué)習(xí)成效。
(四)微分方程
微分方程知識同實(shí)際生活之間息息相關(guān),建立微分方程可以有效解決實(shí)際生活中的問題。這就需要學(xué)生在了解微分方程知識的基礎(chǔ)上,進(jìn)一步建立數(shù)學(xué)模型來解決問題。如,在當(dāng)前社會進(jìn)步和發(fā)展下,人均物質(zhì)生活水平顯著提升,肥胖成為危害人們身體健康的主要問題之一,受到社會各界廣泛的關(guān)注和重視。通過問題精簡化和假設(shè),可以得到微分方程模型,在分析方程中飲食控制和運(yùn)動(dòng)鍛煉兩個(gè)關(guān)鍵要素后,有助于避免人們走入減肥誤區(qū),幫助他們樹立正確的減肥理念。
(五)矩陣
在高等數(shù)學(xué)教學(xué)中,矩陣的概念較為抽象和復(fù)雜,在講解問題之前,應(yīng)該根據(jù)知識點(diǎn)來創(chuàng)設(shè)教學(xué)情境,輔助教學(xué)活動(dòng)。通過引入企業(yè)工廠生產(chǎn)總成本模型,充分描述工廠生產(chǎn)中需要的原材料和勞動(dòng)力,并且詳細(xì)記錄管理費(fèi)用。這有助于加深人們對矩陣概念的認(rèn)知和理解,提升學(xué)習(xí)成效,同時(shí)幫助學(xué)生深入理解和記憶,鍛煉學(xué)生的數(shù)學(xué)解題思維,加深概念理解和記憶,掌握解題技巧和方法,從而提升學(xué)生的數(shù)學(xué)建模意識。
綜上所述,在大學(xué)數(shù)學(xué)教學(xué)中,可以通過數(shù)學(xué)建模思想來引導(dǎo)學(xué)生養(yǎng)成良好的自主學(xué)習(xí)能力,發(fā)揮自身的主體能動(dòng)性和創(chuàng)新能力,提升學(xué)生解決問題的能力,將所學(xué)知識靈活運(yùn)用到實(shí)際生活中,養(yǎng)成良好的數(shù)學(xué)素養(yǎng)。
數(shù)學(xué)建模論文感悟篇十三
:本文從“如何培養(yǎng)學(xué)生實(shí)踐應(yīng)用能力提高就業(yè)素質(zhì)”出發(fā),通過對大專院校進(jìn)行廣泛的調(diào)研,分析了目前高職院校開展數(shù)學(xué)建模的現(xiàn)狀,并總結(jié)了黑龍江交通職業(yè)技術(shù)院校開展數(shù)學(xué)建模教學(xué)與競賽活動(dòng)的經(jīng)驗(yàn)和做法,對指導(dǎo)高職院校的數(shù)學(xué)建模實(shí)踐教學(xué)工作具有重要意義。
:數(shù)學(xué)建模競賽;教學(xué)改革;實(shí)踐教學(xué)
中國大學(xué)生數(shù)學(xué)建模競賽是目前全國高校中規(guī)模最大、影響最廣的大學(xué)生課外科技活動(dòng),它在培養(yǎng)大學(xué)生知識的應(yīng)用能力、創(chuàng)新能力以及團(tuán)隊(duì)的合作精神、頑強(qiáng)的意志品質(zhì)等方面都顯示了獨(dú)特的作用和優(yōu)勢。然而,大學(xué)生數(shù)學(xué)建模競賽在高職學(xué)院的開展卻起步遲緩且步履維艱,如何改變現(xiàn)狀,促進(jìn)大學(xué)生數(shù)學(xué)建模競賽在高職學(xué)院持續(xù)健康發(fā)展,已經(jīng)成為教育工作者研究的重要課題。
總體來說起步較緩慢,以黑龍江賽區(qū)為例,參加全國大學(xué)生數(shù)學(xué)建模競賽的院校和參賽隊(duì)雖然逐年增加,20xx年達(dá)到了34所參賽院校共444支參賽隊(duì),但是高職學(xué)院參賽的少,僅占全省高職學(xué)院的1/3,有的高職學(xué)院長期徘徊在競賽之外,有的斷斷續(xù)續(xù),今年參賽明年休息。分析其原因主要有兩個(gè):一是部分高職學(xué)院對大學(xué)生數(shù)學(xué)建模競賽十分陌生,對競賽的意義缺乏認(rèn)識,沒有配套的實(shí)施辦法和有效的激勵(lì)機(jī)制;二是競賽的指導(dǎo)教師匱乏,能力有限,目前高職數(shù)學(xué)教師隊(duì)伍嚴(yán)重萎縮,有的學(xué)院數(shù)學(xué)教研室只剩一兩個(gè)人。
參加數(shù)學(xué)建模競賽需要扎實(shí)的數(shù)學(xué)功底和良好的應(yīng)用意識。而高職的課程體系突出專業(yè)技能的培養(yǎng),通常只在一年級開設(shè)一個(gè)學(xué)期的“高等數(shù)學(xué)”課程,總學(xué)時(shí)一般僅有30學(xué)時(shí),有的甚至不開數(shù)學(xué)課。教學(xué)內(nèi)容以一元微積分的基本概念和簡單算法為主。大多數(shù)參賽的高職院校,僅僅是為競賽而競賽,極少關(guān)注數(shù)學(xué)建模思想和方法在深化數(shù)學(xué)教學(xué)改革、促進(jìn)課程建設(shè)等方面的作用。
高職學(xué)生總體水平較差,但對從未接觸過的數(shù)學(xué)建模充滿好奇。然而數(shù)學(xué)建模競賽對學(xué)生的知識和能力要求都比較高,同時(shí)因高職學(xué)生二年級末就要面臨頂崗實(shí)習(xí)和就業(yè)問題,參賽學(xué)生通常只能在一年級中選拔,他們的基礎(chǔ)和能力顯然都沒有本科生扎實(shí),因此賽前培訓(xùn)的工作量非常大。
通過數(shù)學(xué)建模競賽可以提高學(xué)生的綜合素質(zhì),是培養(yǎng)學(xué)生綜合能力的有效途徑。數(shù)學(xué)建模競賽可以培養(yǎng)團(tuán)隊(duì)精神與合理表達(dá)自己思想和綜合運(yùn)用知識的能力等,所有這些對提高學(xué)生的素質(zhì)都是很有幫助的,且非常符合當(dāng)今提倡素質(zhì)教育精神。
數(shù)學(xué)建模競賽不同于其它各種具有單個(gè)學(xué)科如:數(shù)學(xué)競賽,物理競賽,計(jì)算機(jī)程序設(shè)計(jì)競賽等的競賽,因?yàn)檫@些競賽只涉及到一門學(xué)科,甚至一門課程的知識,而數(shù)學(xué)建模競賽涉及到數(shù)學(xué)學(xué)科,計(jì)算機(jī)學(xué)科等其他許多學(xué)科的知識,僅數(shù)學(xué)學(xué)科就涉及到高等數(shù)學(xué),線性代數(shù),概率統(tǒng)計(jì),計(jì)算方法,運(yùn)籌學(xué),圖論,數(shù)學(xué)軟件等方面的知識。學(xué)生要想在數(shù)學(xué)建模競賽中取得好成績,除了具有以上數(shù)學(xué)知識外,還要有較好的計(jì)算機(jī)編程能力,網(wǎng)上查閱資料的能力及論文寫作能力等,此外,他們還應(yīng)有接觸各種新知識的環(huán)境和喜好。因?yàn)閿?shù)學(xué)建模的競賽題遠(yuǎn)非只是一個(gè)數(shù)學(xué)題目,而更多是一個(gè)初看起來與數(shù)學(xué)沒有聯(lián)系的實(shí)際問題,它涉及到很多知識,有些還是當(dāng)前尚未解決的問題,如:飛行管理問題,dna排序問題等就是較有代表性的數(shù)學(xué)建??荚囶}目。通常數(shù)學(xué)建模題目只給出問題的描述和要達(dá)到的目的,參賽學(xué)生要做的事情是將問題用數(shù)學(xué)語言轉(zhuǎn)化成數(shù)學(xué)問題,然后在數(shù)學(xué)的背景下使用計(jì)算機(jī)或數(shù)學(xué)軟件來求解,最后再根據(jù)所得的解來解釋和檢驗(yàn)所給的實(shí)際問題。與數(shù)學(xué)競賽不同的是,數(shù)學(xué)建模賽題沒有標(biāo)準(zhǔn)的正確答案,試卷的評分標(biāo)準(zhǔn)是看學(xué)生解決問題和創(chuàng)新的能力.因此要做好一個(gè)數(shù)學(xué)建模問題并不是一件容易的事情,需要學(xué)生很多的知識以及對所學(xué)各種知識的綜合運(yùn)用,對學(xué)生是一個(gè)挑戰(zhàn)。
數(shù)學(xué)建模競賽的題目由工程技術(shù)、經(jīng)濟(jì)管理、社會生活等領(lǐng)域中的實(shí)際問題簡化加工而成,沒有事先設(shè)定的標(biāo)準(zhǔn)答案,但留有充分余地供參賽者發(fā)揮其聰明才智和創(chuàng)造精神。競賽以通訊形式進(jìn)行,三名大學(xué)生組成一隊(duì),在三天時(shí)間內(nèi)可以自由地收集資料、調(diào)查研究,使用計(jì)算機(jī)、軟件和互聯(lián)網(wǎng),但不得與隊(duì)外任何人(包括指導(dǎo)教師在內(nèi))以任何方式討論賽題。競賽要求每個(gè)隊(duì)完成一篇用數(shù)學(xué)建模方法解決實(shí)際問題的科技論文。競賽評獎(jiǎng)以假設(shè)的合理性、建模的創(chuàng)造性、結(jié)果的正確性以及文字表述的清晰程度為主要標(biāo)準(zhǔn)??梢钥闯?,這項(xiàng)競賽從內(nèi)容到形式與傳統(tǒng)的數(shù)學(xué)競賽不同,是大學(xué)階段除畢業(yè)設(shè)計(jì)外難得的一次“真刀真槍”的訓(xùn)練,相當(dāng)程度上模擬了學(xué)生畢業(yè)后工作時(shí)的情況,既豐富、活躍了廣大同學(xué)的課外生活,也為優(yōu)秀學(xué)生脫穎而出創(chuàng)造了條件。
競賽讓學(xué)生面對一個(gè)從未接觸過的實(shí)際問題,運(yùn)用數(shù)學(xué)方法和計(jì)算機(jī)技術(shù)加以分析、解決,他們必須開動(dòng)腦筋、拓寬思路,充分發(fā)揮創(chuàng)造力和想象力,從而培養(yǎng)了學(xué)生的創(chuàng)新意識及主動(dòng)學(xué)習(xí)、獨(dú)立研究的能力。
通過數(shù)學(xué)建模競賽可以推動(dòng)高校的教育教學(xué)改革。十幾年來在競賽的推動(dòng)下許多高校相繼開設(shè)了數(shù)學(xué)建模課程以及與此密切相關(guān)的數(shù)學(xué)實(shí)驗(yàn)課程,出版了兩百多本相關(guān)的教材,一些教師正在進(jìn)行將數(shù)學(xué)建模的思想和方法融入數(shù)學(xué)主干課程的研究和試驗(yàn)。
數(shù)學(xué)教育本質(zhì)上是一種素質(zhì)教育,要體現(xiàn)素質(zhì)教育的要求,數(shù)學(xué)的教學(xué)不能完全和外部世界隔離開來,關(guān)起門來在數(shù)學(xué)的概念、方法和理論中打圈子,處于自我封閉狀態(tài),以致學(xué)生在學(xué)了許多據(jù)說是非常重要、十分有用的數(shù)學(xué)知識以后,卻不怎么會應(yīng)用或無法應(yīng)用。開設(shè)數(shù)學(xué)建模和數(shù)學(xué)實(shí)驗(yàn)課程,舉辦數(shù)學(xué)建模競賽,為數(shù)學(xué)與外部世界的聯(lián)系打開了一個(gè)通道,提高了學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性和主動(dòng)性,是對數(shù)學(xué)教學(xué)體系和內(nèi)容改革的一個(gè)成功的嘗試。
數(shù)學(xué)建模教學(xué)和競賽活動(dòng)中經(jīng)常用到計(jì)算機(jī)和數(shù)學(xué)軟件,普遍采取案例教學(xué)和課堂討論,豐富了數(shù)學(xué)教學(xué)的形式和方法。經(jīng)過幾年來參加數(shù)學(xué)建模競賽和教學(xué)方法和手段的改革,一方面教師的'知識面拓寬了,知識結(jié)構(gòu)改善了,利用數(shù)學(xué)工具和計(jì)算機(jī)找出解決實(shí)際問題的意識和能力提高了,另一方面,由于理論與實(shí)際的結(jié)合多,學(xué)生的動(dòng)手能力增強(qiáng)了,學(xué)習(xí)的主動(dòng)性和積極性有了很大的提高,同時(shí)也培養(yǎng)了學(xué)生的創(chuàng)新意識和解決實(shí)際問題的能力。
近年來,我校一直有序地組織學(xué)生參加數(shù)學(xué)建模競賽,學(xué)校領(lǐng)導(dǎo)和教務(wù)處等有關(guān)部門非常重視和支持學(xué)生參加數(shù)學(xué)建模競賽,逐步探索完善了一套合理的激勵(lì)機(jī)制,激發(fā)指導(dǎo)教師的工作積極性和學(xué)生的參賽榮譽(yù)感及學(xué)習(xí)積極性。
我校開展的數(shù)學(xué)建模競賽活動(dòng)是采用第二課堂課余活動(dòng)的形式進(jìn)行的。由數(shù)學(xué)教研室負(fù)責(zé)每學(xué)期對學(xué)生進(jìn)行集體強(qiáng)化培訓(xùn),以提高建模水平,培養(yǎng)學(xué)生之間的團(tuán)隊(duì)協(xié)作精神。通常我們在每年四月份組織校級競賽,然后評選出五個(gè)代表隊(duì)的優(yōu)秀論文參加?xùn)|三省數(shù)學(xué)建模聯(lián)賽的評獎(jiǎng)。通過校級的比賽在全校范圍內(nèi)選拔出隊(duì)員,再進(jìn)行深入的培訓(xùn),最后參加全國比賽。
我校歷年來在大學(xué)生數(shù)學(xué)建模競賽活動(dòng)中保持優(yōu)秀成績,涌現(xiàn)了一批優(yōu)秀的指導(dǎo)教師和學(xué)生。20xx年黑龍江交通職業(yè)職業(yè)技術(shù)學(xué)院第一次組隊(duì)參加?xùn)|北三省大學(xué)生數(shù)學(xué)建模競賽,由于領(lǐng)導(dǎo)重視,工作扎實(shí),平時(shí)訓(xùn)練重過程、重細(xì)節(jié),競賽中隊(duì)員們表現(xiàn)出了良好的意志品質(zhì)和團(tuán)隊(duì)精神,最終取得了不俗的成績:5個(gè)參賽隊(duì)中,1個(gè)隊(duì)榮獲省一等獎(jiǎng),另有1個(gè)隊(duì)獲省二等獎(jiǎng)。20xx年參加?xùn)|北三省數(shù)學(xué)建模聯(lián)賽,四個(gè)隊(duì)獲得二等獎(jiǎng);20xx年參加全國大學(xué)生數(shù)學(xué)建模競賽,一個(gè)隊(duì)獲得省級二等獎(jiǎng),一個(gè)隊(duì)獲得省級三等獎(jiǎng);20xx年參加?xùn)|北三省數(shù)學(xué)建模聯(lián)賽,一個(gè)隊(duì)獲得一等獎(jiǎng),三個(gè)隊(duì)獲得二等獎(jiǎng)。事實(shí)證明:通過自身的努力,高職學(xué)院可以在全國大學(xué)生數(shù)學(xué)建模競賽中取得較好成績,而高職學(xué)生也必定會在艱苦的培訓(xùn)和競賽過程中得到鍛煉和提高。
盡管目前高職學(xué)院開展大學(xué)生數(shù)學(xué)建模競賽活動(dòng)仍有不少困難,但是我們有理由相信,在社會各界的關(guān)心和支持下,這一項(xiàng)能使高職學(xué)生、教師和學(xué)院全面受益的競賽不僅值得我們?yōu)橹?而且一定能越辦越好。
數(shù)學(xué)建模論文感悟篇十四
高校學(xué)生社團(tuán)是一種具有共同興趣愛好的學(xué)生自發(fā)組織的開展一些藝術(shù)、娛樂和學(xué)術(shù)型的活動(dòng)的團(tuán)體。學(xué)生社團(tuán)以其鮮明的開放性、自主性以及多樣性等特點(diǎn),為一些有特長的學(xué)生提供了廣闊的舞臺,讓這些學(xué)生可以更好的發(fā)揮自己的才能,促進(jìn)其更好的成才。全國大學(xué)生數(shù)學(xué)建模競賽是最早由教育部工業(yè)與數(shù)學(xué)應(yīng)用學(xué)會共同承辦的一個(gè)科技性的賽事,該比賽要通過數(shù)學(xué)和計(jì)算機(jī)的知識來解決實(shí)際生活中的問題,由于其特有的比賽形式,使得高職院校在全校范圍內(nèi)直接選拔參賽隊(duì)員是件費(fèi)神的事情,因此,為了更好的為數(shù)學(xué)建模競賽選拔人才,激發(fā)學(xué)生的學(xué)習(xí)興趣,學(xué)術(shù)性社團(tuán)“數(shù)學(xué)建模協(xié)會”也就應(yīng)運(yùn)而生。數(shù)學(xué)建模協(xié)會的成立,可以更好的為學(xué)生提供一個(gè)展示自己的機(jī)會,可以增強(qiáng)學(xué)生對數(shù)學(xué)的學(xué)習(xí)興趣,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)解決實(shí)際問題的能力,激發(fā)學(xué)生的創(chuàng)新思維,為數(shù)學(xué)建模競賽選拔人才。本文主要以西安航空職業(yè)技術(shù)學(xué)院數(shù)學(xué)建模協(xié)會為例,探討高職數(shù)學(xué)建模社團(tuán)活動(dòng)開展的形式和意義。
(一)數(shù)學(xué)建模社團(tuán)有利于數(shù)學(xué)建模競賽的開展。高職數(shù)學(xué)建模協(xié)會為數(shù)學(xué)建模競賽搭建了一個(gè)平臺,是數(shù)學(xué)建模競賽強(qiáng)有力的后盾,數(shù)學(xué)建模競賽成績的取得與這個(gè)平臺密不可分,只有充分發(fā)揮數(shù)學(xué)建模社團(tuán)的作用,才能源源不斷的為數(shù)學(xué)建模提供人力和智力保障,才能更好的推動(dòng)高職數(shù)學(xué)的學(xué)習(xí)氛圍。1、數(shù)學(xué)建模協(xié)會起著動(dòng)員宣傳的作用從沒聽過,到知道,在到熟悉,只有通過大力宣傳和動(dòng)員,才能讓更多的人了解數(shù)學(xué)建模,讓更多優(yōu)秀學(xué)生參加到數(shù)學(xué)建模競賽中。大學(xué)校園中有許多數(shù)學(xué)愛好者,他們對數(shù)學(xué)建模也有一定的認(rèn)識,只要有參加數(shù)學(xué)建?;顒?dòng)的愿望的,都可以利用數(shù)學(xué)建模協(xié)會招新的機(jī)會,加入數(shù)學(xué)建模創(chuàng)新協(xié)會。將成績優(yōu)秀的學(xué)生邀請加入數(shù)學(xué)建模協(xié)會,對進(jìn)一步擴(kuò)大數(shù)學(xué)建模協(xié)會,夯實(shí)數(shù)學(xué)建?;A(chǔ),起著舉足輕重的作用。2、數(shù)學(xué)建模協(xié)會起著知識傳播的作用高職院校學(xué)生在校學(xué)習(xí)時(shí)間較短,學(xué)業(yè)較為繁重,課余時(shí)間較少,數(shù)學(xué)建模培訓(xùn)的時(shí)間不足,無法讓學(xué)生在短時(shí)期內(nèi)掌握較多的數(shù)學(xué)建模相關(guān)知識。因此,利用數(shù)學(xué)建模協(xié)會活動(dòng)可以開展數(shù)學(xué)建模課程的培訓(xùn)工作,普及數(shù)學(xué)建模相關(guān)知識。采用“老帶新”的模式進(jìn)行數(shù)學(xué)建模知識的普及。通過制定系統(tǒng)的培訓(xùn)方案,在每年秋季競賽后,參加過競賽的同學(xué)對新入?yún)f(xié)會的成員可以進(jìn)行初級培訓(xùn),為今后的競賽奠定基礎(chǔ)。3、數(shù)學(xué)建模社團(tuán)起著選拔學(xué)生的作用每年數(shù)學(xué)建模競賽的隊(duì)員需要通過校內(nèi)賽等形式進(jìn)行選拔,此時(shí),數(shù)學(xué)建模協(xié)會就起著校內(nèi)賽命題及選拔隊(duì)員的作用,當(dāng)然這種選拔方式也有的弊端,就是所有隊(duì)員都是來自校內(nèi)賽成績優(yōu)秀的學(xué)生,而校內(nèi)賽發(fā)揮不理想但建模能力突出或計(jì)算機(jī)技術(shù)水平優(yōu)秀的學(xué)生就沒法參加數(shù)學(xué)建模競賽。為確保每一位有能力的學(xué)生都能夠加入到建模競賽隊(duì)伍中來,可以通過校內(nèi)競賽與建模協(xié)會推薦兩者相結(jié)合的方式選拔建模競賽學(xué)生,以確保最優(yōu)優(yōu)秀的學(xué)生參加數(shù)學(xué)建模競賽。(二)數(shù)學(xué)建模社團(tuán)有利于大學(xué)生綜合素質(zhì)的培養(yǎng)。(1)數(shù)學(xué)建模社團(tuán)屬于專業(yè)的學(xué)術(shù)性社團(tuán),成立的目的是為了參加全國大學(xué)生數(shù)學(xué)建模競賽,數(shù)學(xué)建模社團(tuán)活動(dòng)的趣味性和實(shí)踐性可以提高學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生自主學(xué)習(xí)的能力,增加學(xué)生參與競賽的熱情。社團(tuán)活動(dòng)中的培訓(xùn)使學(xué)生可以更好的應(yīng)對競賽,取得更好的成績。另外,競賽之余還可以進(jìn)行其他領(lǐng)域的學(xué)術(shù)交流,比如計(jì)算機(jī),經(jīng)濟(jì),工程等領(lǐng)域,良好的交流氛圍激發(fā)學(xué)生的創(chuàng)新思維和意識,從而培養(yǎng)他們的創(chuàng)新能力。(2)數(shù)學(xué)建模社團(tuán)是學(xué)生自發(fā)組織的服務(wù)學(xué)生的群體,除了學(xué)術(shù)研究之外,還可以進(jìn)行一些創(chuàng)新創(chuàng)業(yè)的活動(dòng),具有更多的實(shí)踐的機(jī)會。比如,可以利用平時(shí)社團(tuán)所學(xué)的知識,以團(tuán)體的形式進(jìn)行一些數(shù)據(jù)處理的校企合作;也可以以微信平臺和微信群等發(fā)布一些數(shù)學(xué)建模相關(guān)的微課等,進(jìn)行一些微信群講座等等。這樣可以讓學(xué)生真正體會到數(shù)學(xué)的用處,達(dá)到學(xué)以致用的效果。(3)數(shù)學(xué)建模社團(tuán)是學(xué)生自發(fā)組織的學(xué)術(shù)性社團(tuán),社團(tuán)的組織機(jī)構(gòu)都是學(xué)生在擔(dān)任,社團(tuán)的活動(dòng)也都是學(xué)生在協(xié)調(diào)策劃,甚至很多時(shí)候社團(tuán)的老成員都可以輔助老師進(jìn)行社團(tuán)的一些學(xué)術(shù)性的講座。因此,在學(xué)習(xí)的同時(shí)還鍛煉了他們的處事應(yīng)變能力團(tuán)隊(duì)合作的能力,可以說提高了學(xué)生的綜合素質(zhì)。
(一)數(shù)學(xué)建模社團(tuán)的管理形式。數(shù)學(xué)建模協(xié)會作為一個(gè)學(xué)生群體組織,需要好的制度和管理模式。以筆者所在學(xué)校為例,數(shù)學(xué)建模創(chuàng)新協(xié)會具有自己的一套規(guī)章管理制度;在管理形式方面是以“三個(gè)管理面”來進(jìn)行社團(tuán)管理和學(xué)術(shù)交流的,具體如下:1、學(xué)術(shù)交流面這個(gè)主要是通過“社團(tuán)內(nèi)部進(jìn)行學(xué)術(shù)交流活動(dòng)”和“老帶新培訓(xùn)”兩部分組成,內(nèi)部的交流活動(dòng)主要是學(xué)生之間的相互溝通和交流,以及不定期的邀請指導(dǎo)教師和外校專家做一些數(shù)學(xué)建模報(bào)告。老帶新培訓(xùn)是指社團(tuán)主席團(tuán)成員(一般是參加過前一年全國大學(xué)生數(shù)學(xué)建模競賽的學(xué)生)為新入社團(tuán)的學(xué)生進(jìn)行培訓(xùn),培訓(xùn)的內(nèi)容基本上都是之前指導(dǎo)教師對他們集訓(xùn)時(shí)的內(nèi)容,這種培訓(xùn)方式可以提升社團(tuán)成員的授課和理解問題的能力,對于在校大學(xué)生來說是一次很好的鍛煉。2、網(wǎng)絡(luò)交流面采用qq群,網(wǎng)絡(luò)空間和微信公眾平臺等開展社團(tuán)成員之間的交流互動(dòng),社團(tuán)宣傳。筆者所在學(xué)校的數(shù)學(xué)建模創(chuàng)新協(xié)會每一屆社團(tuán)都有相應(yīng)的qq群,另外,在20xx年也積極申請了微信平臺,目前的'關(guān)注量也在800余人,微信平臺的建立可以更方面使大學(xué)生關(guān)注數(shù)學(xué)建模相關(guān)信息,尤其是對大一新生可以更多的取了解數(shù)學(xué)建模,擴(kuò)大數(shù)學(xué)建模的受益面和影響力。力求在大學(xué)生中營造一種“人人知數(shù)模,人人愛數(shù)模,人人參與數(shù)?!钡牧己玫慕逃h(huán)境,使建模活動(dòng)廣泛化、群眾化。3、交流互訪面開展研討會,專家報(bào)告會,社團(tuán)聯(lián)誼會等交流活動(dòng),既可以豐富數(shù)學(xué)建模社團(tuán)學(xué)生的知識面,又能促進(jìn)數(shù)學(xué)知識的理解和吸收,通過與其他社團(tuán)的聯(lián)誼,豐富了社團(tuán)學(xué)生的業(yè)余生活,又能學(xué)習(xí)其他社團(tuán)好的管理經(jīng)驗(yàn),促進(jìn)社團(tuán)管理的制度化、規(guī)范化、專業(yè)化,也只有通過不斷的學(xué)習(xí),不斷的交流,才能真正“走出去”,建立一個(gè)管理完善,富有成效的學(xué)生社團(tuán)。(二)數(shù)學(xué)建模社團(tuán)的特色活動(dòng)。數(shù)學(xué)建模社團(tuán)在開展學(xué)術(shù)活動(dòng)和輔助教師進(jìn)行競賽培訓(xùn)的同時(shí),還不定期的舉行一些活動(dòng),在提高學(xué)生學(xué)習(xí)興趣的同時(shí)也以擴(kuò)大了數(shù)學(xué)建模的影響力。以筆者坐在學(xué)校為例,每年可以開展一系列的數(shù)學(xué)建?;顒?dòng)。比如,數(shù)學(xué)建模創(chuàng)新協(xié)會納新,數(shù)學(xué)建模創(chuàng)新協(xié)會趣味運(yùn)動(dòng)會,數(shù)學(xué)科技節(jié),趣味數(shù)學(xué)知識競賽,數(shù)學(xué)建模經(jīng)驗(yàn)交流會,數(shù)學(xué)建模校內(nèi)賽,數(shù)學(xué)輔導(dǎo)周,數(shù)學(xué)建模專題講座。這些社團(tuán)活動(dòng)貫穿整個(gè)學(xué)年,不僅可以“由點(diǎn)及面、由淺入深”的對全國大學(xué)生數(shù)學(xué)建模競賽進(jìn)行宣傳,在最大的范圍內(nèi),提升數(shù)學(xué)建模大賽的影響力及參與度,成效較好。而且讓枯燥的學(xué)術(shù)型社團(tuán)變得豐富多彩,成為學(xué)生課后獲取知識的一種平臺,同時(shí)也是社團(tuán)蓬勃發(fā)展的利器。
總之,數(shù)學(xué)建模社團(tuán)活動(dòng)的開展,有利于培養(yǎng)學(xué)生的創(chuàng)新意識和思維,有利于激發(fā)了學(xué)生的學(xué)習(xí)興趣,有利于豐富學(xué)生的課后生活,有利于調(diào)動(dòng)了學(xué)生參加學(xué)術(shù)型社團(tuán)的積極性,同時(shí)也是高職院校組織參加數(shù)學(xué)建模競賽的強(qiáng)有力的后盾。
[1]胡建茹,王搖娟.加強(qiáng)專業(yè)社團(tuán)建設(shè)推進(jìn)大學(xué)生創(chuàng)新實(shí)踐能力培養(yǎng)[j].中國石油大學(xué)學(xué)報(bào):社會科學(xué)版,20xx(12)
[2]王珍娥,宋維,孫潔.?dāng)?shù)學(xué)社團(tuán)建設(shè)的探索與實(shí)踐[j].機(jī)械職業(yè)教育,20xx(7)
[3]李湘玲,王泳興.大學(xué)生社團(tuán)發(fā)展與創(chuàng)新型人才培養(yǎng)互動(dòng)機(jī)制研究:以吉首大學(xué)為例[j].黑龍江教育,20xx(11)
[4]孫浩,葉正麟.西北工業(yè)大學(xué)數(shù)學(xué)建模創(chuàng)新教育之探索[j].高等數(shù)學(xué)研究,20xx(4)
作者:張?zhí)m單位:西安航空職業(yè)技術(shù)學(xué)院通識教育學(xué)院
數(shù)學(xué)建模論文感悟篇十五
眾所周知,高等數(shù)學(xué)是所有自然學(xué)科的基礎(chǔ),一個(gè)大學(xué)生要想在以后的工作、學(xué)習(xí)中大展宏圖,那么就一定少不了堅(jiān)實(shí)的高等數(shù)學(xué)基礎(chǔ)。如何解決大學(xué)生在學(xué)習(xí)高等數(shù)學(xué)時(shí)碰到的問題?如何調(diào)動(dòng)大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性?讓學(xué)生們了解高等數(shù)學(xué)的用途,真正愿意靜下心來好好學(xué)習(xí)高等數(shù)學(xué),努力為以后的發(fā)展打好數(shù)學(xué)基礎(chǔ)。一直以來,各所高校的教師們都在努力的想辦法、找對策,一些實(shí)用有效的方法已經(jīng)提出并且在逐步推廣,比如,問題驅(qū)動(dòng)式的教學(xué)方法和基于pbl的教學(xué)方法等。筆者從所在學(xué)校的學(xué)生實(shí)際學(xué)習(xí)情況出發(fā),根據(jù)幾年來的教學(xué)心得和積累,打算提出一種較為實(shí)用的教學(xué)方法——利用數(shù)學(xué)建模的思想調(diào)動(dòng)大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性。該方法在筆者所教授的班級中已經(jīng)實(shí)際應(yīng)用過幾屆,學(xué)生普遍反映效果較好,任課老師也認(rèn)為該方法確實(shí)能極大地調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性。
提到高等數(shù)學(xué),學(xué)生們的第一反應(yīng)往往是:各種公式塞滿黑板,各種運(yùn)算充斥腦海;定義、定理、推論一個(gè)連著一個(gè);極限、連續(xù)、可導(dǎo)可積一個(gè)涵蓋另一個(gè)[1]。和高中數(shù)學(xué)相比,記憶的負(fù)擔(dān)輕了(實(shí)際上是知識點(diǎn)太多,記不住了),而對思維的要求卻提高了。對大學(xué)生來說,每一次的高數(shù)課,都是一次大腦的思維訓(xùn)練,時(shí)刻要求精神高度集中,一定要緊跟老師的步劃,一旦走神,后面的內(nèi)容就不知所云了。這樣的要求短時(shí)間可以達(dá)到,長久下去學(xué)生們會覺得很辛苦,很有壓力,會出現(xiàn)抱怨。筆者碰到過這樣的學(xué)生,剛開始時(shí),興致勃勃,雄心萬丈,可到后來興趣索然,馬虎應(yīng)對。怪學(xué)生嗎?誠然學(xué)生有責(zé)任,但任課老師也該負(fù)很大的責(zé)任。作為高等數(shù)學(xué)的老師我們經(jīng)常要面對學(xué)生提的這些問題:(1)我學(xué)的專業(yè)和高等數(shù)學(xué)相差甚遠(yuǎn),有可能這一輩子都不會用到高等數(shù)學(xué)的知識,那我學(xué)高等數(shù)學(xué)的目的何在?(2)老師您天天鼓吹高等數(shù)學(xué)的強(qiáng)大功能和廣泛用途,但是通過一學(xué)期的學(xué)習(xí),我發(fā)現(xiàn)除了對付考試有用,真不知高等數(shù)學(xué)可以用在何處?這些問題不及時(shí)解決,時(shí)間長了一定會影響到大學(xué)生對高等數(shù)學(xué)的學(xué)習(xí)積極性,甚至有可能會產(chǎn)生厭學(xué)的情緒和氛圍。有些極端的學(xué)生,期末考試之后,一聽到自己高等數(shù)學(xué)考過了,立馬將高等數(shù)學(xué)的課本給撕了,可想而知高等數(shù)學(xué)對其造成的壓力有多大[2]。如何解決大學(xué)生在學(xué)習(xí)高等數(shù)學(xué)時(shí)碰到的問題?如何調(diào)動(dòng)大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性?讓學(xué)生們了解高等數(shù)學(xué)的用途,真正愿意靜下心來好好學(xué)習(xí)高等數(shù)學(xué),努力地為以后的發(fā)展打好數(shù)學(xué)基礎(chǔ)。筆者從所在學(xué)校的學(xué)生實(shí)際學(xué)習(xí)情況出發(fā),根據(jù)幾年來的教學(xué)心得和積累,打算提出一種較為實(shí)用的教學(xué)方法——利用數(shù)學(xué)建模的思想調(diào)動(dòng)大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性。
一、以實(shí)際問題反推解決問題時(shí)我們需要的高等數(shù)學(xué)知識
有這樣一個(gè)實(shí)際問題:報(bào)童每天清晨從報(bào)社購進(jìn)報(bào)紙零售,晚上將沒賣掉的報(bào)紙退回給報(bào)社。假設(shè)報(bào)紙每份的購進(jìn)價(jià)為b元,零售價(jià)為a元,退回價(jià)為c元,自然地有abc。這就是說,報(bào)童每售出一份報(bào)紙賺a-b元,每退回一份報(bào)紙賠b-c元,報(bào)童每天如果購進(jìn)的報(bào)紙?zhí)?,那么會不夠賣,就會少賺錢;如果每天購進(jìn)的報(bào)紙?zhí)?,那么會賣不完,將要賠錢。請為報(bào)童規(guī)劃一下,他該如何確定每天購進(jìn)的報(bào)紙份數(shù),以獲得最大的收入[3]。
現(xiàn)在我們來反推該問題涉及到的高等數(shù)學(xué)的知識:首先,通過分析題目可知,問題解決的關(guān)鍵在于——如何確定每天的報(bào)紙需求量,注意每天的報(bào)紙需求量是隨機(jī)變化的?解決這個(gè)關(guān)鍵問題的知識我們早就掌握了,分別是數(shù)理統(tǒng)計(jì)中的頻率連續(xù)化、概率論中的概率密度與期望和高等數(shù)學(xué)中的定積分[4]。
二、利用高等數(shù)學(xué)的解決實(shí)際問題
f(r)[4]。如果求出了f(r),那么
g(n)=[(a-b)r+(b-c)(n-r)]f(r)+(a-b)nf(r).(1)
現(xiàn)在我們來求f(r),假定報(bào)童已經(jīng)通過自己的經(jīng)驗(yàn)和其他渠道掌握了一年(365天)中每天報(bào)紙的售出份數(shù),那么在他的銷售范圍內(nèi),每天報(bào)紙日需求量r的概率f(r)為:
f(r)=,r=(0,1,2,3,…)
其中k表示為賣出r份的天數(shù)。
g(n)=[(a-b)r+(b-c)(n-r)]p(r)dr+(a-b)np(r)dr.(2)
通過上面的分析,可知實(shí)際問題歸結(jié)為,在p(r)和a,b,c已知時(shí),求n使得g(n)最大。
=-(b-c)p(r)dr+(a-b)p(r)dr.(3)
令=0,得到=,又因?yàn)閜(r)dr+p(r)dr=1,所以p(r)dr=.(4)
在等式(4)中,p(r)和a,b,c均為已知,所以利用定積分的知識一定可以求出n。也即可以確定每天購進(jìn)的報(bào)紙份數(shù),使報(bào)童每天獲得最大的收入。
三、利用現(xiàn)實(shí)問題,讓學(xué)生學(xué)會思考,給他們提供創(chuàng)造成就感的機(jī)會
通過上面碰到的實(shí)際問題,可以很容易地說服同學(xué)們靜下心來好好學(xué)習(xí)高等數(shù)學(xué)。因?yàn)橥ㄟ^實(shí)際問題的求解,學(xué)生們了解到了,要想解決一個(gè)實(shí)際問題(哪怕是很小的問題),也需要大量的高等數(shù)學(xué)知識的儲備;學(xué)生們也大概領(lǐng)略到了高等數(shù)學(xué)的用途與功能。這樣的教學(xué)方法簡單、直接,勝過老師課堂上反復(fù)的嘮叨與強(qiáng)調(diào)。有了這樣的一些實(shí)際問題,老師們就可以大膽地將數(shù)學(xué)建模思想引入高等數(shù)學(xué)的教學(xué)當(dāng)中,讓學(xué)生們在解決實(shí)際問題中學(xué)會思考,掌握知識,提高能力。
通過訓(xùn)練后,碰到實(shí)際問題,同學(xué)們會自然的想到我們的教學(xué)方法:(1)這些實(shí)際問題涉及到的高等數(shù)學(xué)知識?那些自己掌握了,那些還沒有弄明白,學(xué)要加強(qiáng)學(xué)習(xí)。(2)知識點(diǎn)找到后,如何建立起數(shù)學(xué)與實(shí)際問題求解之間的關(guān)系?也即如何建立數(shù)學(xué)模型。(3)除了老師給的題目,自己本專業(yè)中的實(shí)際問題,能否用高等數(shù)學(xué)的知識去解決?通過思考、分析、解決這些問題,學(xué)生們會有一種創(chuàng)造創(chuàng)新的成就感,會愿意自主學(xué)習(xí),自然而然其學(xué)習(xí)高等數(shù)學(xué)的積極性也會大大提高了。
數(shù)學(xué)建模論文感悟篇十六
運(yùn)籌學(xué)與數(shù)學(xué)建模2門課程聯(lián)系密切,在運(yùn)籌學(xué)教學(xué)中,適當(dāng)融入數(shù)學(xué)建模思想,能大幅度提高學(xué)生應(yīng)用數(shù)學(xué)解決實(shí)際問題的能力.從運(yùn)籌學(xué)教學(xué)中教學(xué)大綱的改革、教學(xué)環(huán)節(jié)的設(shè)計(jì)等方面進(jìn)行了探索與實(shí)踐.教學(xué)實(shí)踐表明,將數(shù)學(xué)建模思想融入到運(yùn)籌學(xué)教學(xué)中能提高課堂教學(xué)的效果,鍛煉學(xué)生的動(dòng)手實(shí)踐能力.
數(shù)學(xué)建模;運(yùn)籌學(xué);教學(xué)實(shí)踐
數(shù)學(xué)建模論文感悟篇一
摘要:在新課改以后,要求教師要在教學(xué)中重視學(xué)生的主體地位,提升學(xué)生學(xué)習(xí)興趣,培養(yǎng)他們的自主學(xué)習(xí)能力。本文從小學(xué)數(shù)學(xué)教學(xué)過程中數(shù)學(xué)建模入手,對如何將數(shù)學(xué)建模運(yùn)用到學(xué)生解題過程中進(jìn)行了分析。
關(guān)鍵詞:小學(xué)數(shù)學(xué);建模;運(yùn)用
數(shù)學(xué)建模是指利用數(shù)學(xué)模型的形式去解決實(shí)際中遇到的問題,換句話說,就是利用數(shù)學(xué)思維、數(shù)學(xué)方法解決各種數(shù)學(xué)問題。數(shù)學(xué)建模是在新課程改革后出現(xiàn)的新概念,經(jīng)過一段時(shí)間的觀察我們可以發(fā)現(xiàn),數(shù)學(xué)建模的方法能夠有效的提高學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生的數(shù)學(xué)能力。這種方式能夠?qū)?fù)雜的數(shù)學(xué)問題利用簡單的方式找到解決方案,是提高小學(xué)數(shù)學(xué)課堂效率及課堂質(zhì)量的有效手段。小學(xué)數(shù)學(xué)是小學(xué)學(xué)習(xí)中的重要課程之一,也是培養(yǎng)學(xué)生數(shù)學(xué)思維的重要階段??梢哉f,小學(xué)數(shù)學(xué)的學(xué)習(xí)是學(xué)生學(xué)習(xí)數(shù)學(xué)的關(guān)鍵,對今后的學(xué)習(xí)起到極大的影響。因此,對于小學(xué)數(shù)學(xué)教師來說,不斷的完善教學(xué)手段,提高數(shù)學(xué)課堂質(zhì)量是教學(xué)工作中的重中之重。而數(shù)學(xué)建模就是為了解決數(shù)學(xué)在生活中的實(shí)際問題,能夠讓學(xué)生感受到數(shù)學(xué)本身的魅力,培養(yǎng)他們的數(shù)學(xué)思維,提高數(shù)學(xué)學(xué)習(xí)能力,從而讓小學(xué)數(shù)學(xué)教學(xué)質(zhì)量也得到大幅度的提升。小學(xué)數(shù)學(xué)與數(shù)學(xué)建模之間有著密不可分的作用,兩者相互聯(lián)系、相互促進(jìn),如何有效的將數(shù)學(xué)建模運(yùn)用在小學(xué)數(shù)學(xué)教學(xué)過程中,是每個(gè)小學(xué)數(shù)學(xué)教師都值得思考的問題。
一、培養(yǎng)學(xué)生數(shù)學(xué)建模意識
數(shù)學(xué)建模是為了解決數(shù)學(xué)中遇到的問題,數(shù)學(xué)本身特別是小學(xué)數(shù)學(xué)也是一門較貼近學(xué)生生活的學(xué)科。因此在數(shù)學(xué)學(xué)習(xí)中,教師要首先培養(yǎng)學(xué)生的數(shù)學(xué)學(xué)習(xí)意識,讓他們感受到數(shù)學(xué)與生活的緊密聯(lián)系,然后再引導(dǎo)學(xué)生用數(shù)學(xué)建模去解決遇到的問題。在這一過程中,數(shù)學(xué)教師要注意以下兩個(gè)問題:(一)在教學(xué)中一定要貼近學(xué)生的生活,課堂中所提出的問題也必須要符合生活實(shí)際,讓學(xué)生對所學(xué)內(nèi)容感到親切。積極引導(dǎo)學(xué)生利用多種方式解決同一問題,尤其是利用數(shù)學(xué)建模的方式,以達(dá)到培養(yǎng)他們的數(shù)學(xué)思維以及想象能力的目的。(二)在學(xué)生進(jìn)行數(shù)學(xué)建模的過程中要利用多鼓勵(lì)的方式調(diào)動(dòng)他們對數(shù)學(xué)學(xué)習(xí)的積極性,讓他們在數(shù)學(xué)建模中獲得成就感,增加自信心,以此來提高學(xué)生在今后學(xué)習(xí)中使用數(shù)學(xué)建模方法的熱情。
二、提高學(xué)生想象力,用數(shù)學(xué)建模簡化問題
對于小學(xué)生來說,他們的思維與其他年齡段相比極其活躍,擁有了豐富的想象力。在數(shù)學(xué)學(xué)習(xí)中,如果能將想象力與數(shù)學(xué)學(xué)習(xí)結(jié)合在一起,一定會得到意想不到的效果。教師可以根據(jù)小學(xué)生這一特點(diǎn),提高他們的想象力,然后再引導(dǎo)他們利用數(shù)學(xué)建模解決問題,讓題目簡單化。具體來說,就是在面對復(fù)雜的'數(shù)學(xué)問題時(shí),教師可以先為學(xué)生創(chuàng)建教學(xué)情境,以這樣的方式提高學(xué)生的學(xué)習(xí)興趣,讓他們愿意主動(dòng)去深入的研究遇到的題目。之后教師再去對他們進(jìn)行引導(dǎo),讓他們能夠理解題目中所提問題的含義,并能夠運(yùn)用他們的想象能力思考解決問題的方式。最后再引導(dǎo)他們進(jìn)行數(shù)學(xué)建模,解決問題。這樣的方式充分的利用了學(xué)生的想象能力,將所需解決的問題簡單化。
三、選擇合適的題目作為建模案例
在數(shù)學(xué)建模過程中,教師也要時(shí)刻牢記題目應(yīng)該貼近學(xué)生的生活,符合實(shí)際,并且具有一定的趣味性,讓他們有興趣投入到數(shù)學(xué)建模的過程中去,然后再反復(fù)練習(xí)之后達(dá)到提高他們建模能力的目的。在選擇數(shù)學(xué)建模案例時(shí)教師主要應(yīng)該注意以下兩點(diǎn):首先,教師在選擇建模案例時(shí)要盡量選擇比較典型的問題,能夠讓學(xué)生在學(xué)習(xí)了該題目以后掌握這一類的解題方法,達(dá)到小學(xué)數(shù)學(xué)教學(xué)的目的。所以,這就需要教師對題目進(jìn)行深入的分析,看是否在擁有趣味性、真實(shí)性的同時(shí)符合教學(xué)要求。其次,題目最好能夠擁有可變性,教師能夠通過對題目中已知條件的改變讓學(xué)生進(jìn)行不同方面的建模練習(xí),以此提高他們數(shù)學(xué)建模的能力。
四、引導(dǎo)學(xué)生主動(dòng)進(jìn)行數(shù)學(xué)建模
在教師經(jīng)過反復(fù)的教學(xué)后,學(xué)生都已經(jīng)擁有了基本的數(shù)學(xué)建模知識,了解了數(shù)學(xué)建模過程,并且能夠在解題過程中簡單的使用數(shù)學(xué)建模。此時(shí),教師在教學(xué)中就可以引導(dǎo)學(xué)生利用數(shù)學(xué)建模解決數(shù)學(xué)題目了。引導(dǎo)學(xué)生用數(shù)學(xué)建模方法解決數(shù)學(xué)問題,就要在解題過程中多對學(xué)生進(jìn)行這一方面的鼓勵(lì),讓他們提高建模信心。在這一過程中,教師還可以嘗試讓學(xué)生之間利用合作的方式讓他們進(jìn)行數(shù)學(xué)建模方法的探討,并在探討的過程中吸取他人的經(jīng)驗(yàn),提高自己數(shù)學(xué)建模水平,同時(shí)這樣的方式能夠讓數(shù)學(xué)建模深入到每一個(gè)學(xué)生的心中,逐漸影響每一個(gè)學(xué)生的解題思路,讓他們能夠在解題過程中熟練運(yùn)用建模的方式,提高解題能力。數(shù)學(xué)建模的方法能夠有效的改變過去的傳統(tǒng)教學(xué)思路,增加學(xué)生對數(shù)學(xué)的學(xué)習(xí)興趣,提高數(shù)學(xué)解題能力。這種教學(xué)方法對于小學(xué)數(shù)學(xué)教師來說,值得不斷的探討研究,并應(yīng)用在教學(xué)中,以此提高數(shù)學(xué)課堂的教學(xué)效率和教學(xué)質(zhì)量。
數(shù)學(xué)建模論文感悟篇二
為了培養(yǎng)小學(xué)生良好的數(shù)學(xué)學(xué)習(xí)興趣,激發(fā)他們的數(shù)學(xué)潛能,教師需要采取必要的措施注重?cái)?shù)學(xué)建模思想的有效培養(yǎng),促進(jìn)學(xué)生的全面發(fā)展。在制定相關(guān)培養(yǎng)策略的過程中,教師應(yīng)充分考慮小學(xué)生的性格特點(diǎn),提高數(shù)學(xué)建模思想培養(yǎng)的有效性。基于此,文章將從不同的方面對小學(xué)生數(shù)學(xué)建模思想的培養(yǎng)策略進(jìn)行初步的探討。
作為小學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,數(shù)學(xué)建模思想的滲透及相關(guān)教學(xué)活動(dòng)的順利開展,有利于提高復(fù)雜數(shù)學(xué)問題的處理效率,保持?jǐn)?shù)學(xué)課堂教學(xué)的高效性。要實(shí)現(xiàn)這樣的發(fā)展目標(biāo),增強(qiáng)小學(xué)生數(shù)學(xué)建模思想的實(shí)際培養(yǎng)效果,需要加強(qiáng)對學(xué)生動(dòng)手實(shí)踐能力的培養(yǎng),激發(fā)學(xué)生的更高興趣。建模的過程涉及問題表述、求解、必要解釋及有效驗(yàn)證,在這四個(gè)環(huán)節(jié)中,可能會存在一定的問題,影響著數(shù)學(xué)教學(xué)計(jì)劃的實(shí)施。因此,教師需要利用學(xué)生動(dòng)手實(shí)踐能力的作用,實(shí)現(xiàn)數(shù)學(xué)建模思想的有效培養(yǎng),促使小學(xué)生能夠在數(shù)學(xué)建模過程中享受到更多的快樂。比如,在講解“認(rèn)識角”知識的過程中,某些學(xué)生認(rèn)為邊越長角度也越大。為了使學(xué)生能夠?qū)ζ渲械闹R點(diǎn)有更加正確而全面的認(rèn)識,教師可以通過在黑板上設(shè)置一些能夠活動(dòng)的三角板,讓學(xué)生親自動(dòng)手操作,以此得出角與邊長的正確關(guān)系,為后續(xù)教學(xué)計(jì)劃的實(shí)施打下堅(jiān)實(shí)的基礎(chǔ)。通過這種教學(xué)方法的合理運(yùn)用,可以激發(fā)出學(xué)生們在數(shù)學(xué)建模學(xué)習(xí)中的更高興趣,豐富他們的想象力,從而使他們對數(shù)學(xué)建模思想有一定的了解,在未來學(xué)習(xí)過程中能夠保持良好的`數(shù)學(xué)建模能力。
通過對小學(xué)階段各種數(shù)學(xué)實(shí)踐教學(xué)活動(dòng)實(shí)際概況的深入分析,可知構(gòu)建良好的數(shù)學(xué)模型有利于加深學(xué)生對各知識(福建省莆田市秀嶼區(qū)東嶠前江小學(xué),福建莆田351164)點(diǎn)的深入理解,增強(qiáng)其主動(dòng)參與數(shù)學(xué)建模教學(xué)活動(dòng)的積極性。因此,為了使小學(xué)生數(shù)學(xué)建模思想培養(yǎng)能夠達(dá)到預(yù)期的效果,教師需要結(jié)合實(shí)際的教學(xué)內(nèi)容,建立必要的數(shù)學(xué)參考模型,提升學(xué)生對數(shù)學(xué)建模思想的整體認(rèn)知水平。比如,在講授“異分母分?jǐn)?shù)加減法”這部分知識的過程中,可以設(shè)置“0.8千克+300克”“1.6千克-400克”等問題,向?qū)W生提問是否可以直接計(jì)算,并說出原因。當(dāng)學(xué)生通過對問題的深入思考,總結(jié)出“單位不同不能直接計(jì)算”的結(jié)論后,繼續(xù)向?qū)W生提問小數(shù)計(jì)算中為什么每一位都要對齊,實(shí)現(xiàn)“計(jì)數(shù)單位統(tǒng)一后才能計(jì)算”這一數(shù)學(xué)模型的構(gòu)建。在這樣的教學(xué)過程中,學(xué)生可以加深對知識點(diǎn)的理解,實(shí)現(xiàn)數(shù)學(xué)建模思想的有效培養(yǎng)。
加強(qiáng)小學(xué)生數(shù)學(xué)建模思想的有效培養(yǎng),需要在具體的教學(xué)活動(dòng)開展中注重對數(shù)學(xué)思想的靈活運(yùn)用,增強(qiáng)相關(guān)模型構(gòu)建的可靠性,促使學(xué)生在長期的數(shù)學(xué)學(xué)習(xí)中能夠不斷提高自身的數(shù)學(xué)能力,運(yùn)用各種數(shù)學(xué)知識處理實(shí)際問題。比如,在“角的度量”這部分內(nèi)容講解的過程中,為了提高學(xué)生對角的分類及畫角相關(guān)知識點(diǎn)的深入理解,教師可以將所有的學(xué)生分為不同的小組,讓學(xué)生們通過小組討論的方式,對角的正確分類及如何畫角有一定的了解,并讓每個(gè)小組代表在講臺上演示畫角的過程。此時(shí),教師可以通過對多媒體教學(xué)設(shè)備的合理運(yùn)用,利用動(dòng)態(tài)化的文字與圖片對其中的知識要點(diǎn)進(jìn)行展示,確保學(xué)生們能夠在良好的教學(xué)模式中提升自身的認(rèn)知水平,并在不斷的思考過程中逐漸形成良好的創(chuàng)造性思維,強(qiáng)化自身的創(chuàng)新意識。比如,在講解“圖形變換”中的軸對稱、旋轉(zhuǎn)知識點(diǎn)的過程中,教師應(yīng)通過對學(xué)生的正確引導(dǎo),運(yùn)用三角板、圓柱等教學(xué)輔助工具,讓學(xué)生從不同的角度對各種軸對稱圖形、旋轉(zhuǎn)后得到的圖形進(jìn)行深入思考,提高自身數(shù)學(xué)建模過程中的創(chuàng)新能力,從不同的角度深入理解圖像變換過程,對這部分內(nèi)容有更多的了解。因此,教師應(yīng)注重小學(xué)生數(shù)學(xué)建模思想培養(yǎng)中多方位思考方式的針對性培養(yǎng),提高學(xué)生的創(chuàng)新能力,優(yōu)化學(xué)生的思維方式,全面提升小學(xué)數(shù)學(xué)建模教學(xué)水平。
總之,加強(qiáng)小學(xué)生數(shù)學(xué)建模思想培養(yǎng)策略的制定與實(shí)施,有利于滿足素質(zhì)教育的更高要求,實(shí)現(xiàn)對小學(xué)生數(shù)學(xué)能力的有效鍛煉,確保相關(guān)的教學(xué)計(jì)劃能夠在規(guī)定的時(shí)間內(nèi)順利地完成。與此同時(shí),結(jié)合當(dāng)前小學(xué)數(shù)學(xué)教育教學(xué)的實(shí)際發(fā)展概況,可知靈活運(yùn)用各種科學(xué)的數(shù)學(xué)建模思想培養(yǎng)策略,有利于滿足學(xué)生數(shù)學(xué)建模學(xué)習(xí)中的多樣化需求,為相關(guān)教學(xué)目標(biāo)的順利實(shí)現(xiàn)提供可靠的保障。
[1]童小艷.小學(xué)數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生建模思想的策略[j].學(xué)子(教育新理念),20xx(6).
[2]白寧.先學(xué)而后教——小學(xué)生數(shù)學(xué)建模思想培養(yǎng)的捷徑[j].數(shù)學(xué)學(xué)習(xí)與研究,20xx(16).
數(shù)學(xué)建模論文感悟篇三
使學(xué)生的綜合應(yīng)用能力、實(shí)踐創(chuàng)新能力和綜合應(yīng)用素質(zhì)等多方面均能得到提升和發(fā)展。
對于醫(yī)學(xué)專業(yè)的學(xué)生來說,在校所學(xué)的數(shù)學(xué)基礎(chǔ)理論課程比較有限,并且學(xué)生對純粹的數(shù)學(xué)知識與復(fù)雜的理論推導(dǎo)已經(jīng)極為厭倦,如果數(shù)學(xué)建模還是以傳統(tǒng)的“灌輸式”和教師“主導(dǎo)型”為主、簡單的應(yīng)用案例為主要教學(xué)內(nèi)容的話,其結(jié)果勢必會使學(xué)生有一種再講數(shù)學(xué)課和做應(yīng)用題的感覺,既不能很好地激發(fā)學(xué)生的學(xué)習(xí)興趣,也不能體現(xiàn)數(shù)學(xué)建模的思想方法和本質(zhì)特色。
因此,如何使學(xué)生擺脫這種尷尬的現(xiàn)狀已成為我們教學(xué)的一大難點(diǎn)。針對這種情況,在教學(xué)模式上,我們大膽嘗試研究型教學(xué)模式,即采用“從實(shí)踐中來,到實(shí)踐中去”的教學(xué)理念。一方面,從最現(xiàn)實(shí)、最熱門的醫(yī)學(xué)話題出發(fā),從學(xué)生最感興趣的.問題入手,激發(fā)學(xué)生的學(xué)習(xí)興趣和進(jìn)一步學(xué)習(xí)的主動(dòng)性,使他們從一開始就能進(jìn)入到學(xué)習(xí)的角色中去;另一方面,通過開展多種方式的實(shí)踐教學(xué)活動(dòng),使學(xué)生在實(shí)踐中掌握數(shù)學(xué)建模的常用方法和基本技能,忽略繁瑣的數(shù)學(xué)推導(dǎo)過程,讓學(xué)生體會發(fā)現(xiàn)問題和思考問題的過程,培養(yǎng)學(xué)生解決問題的創(chuàng)新能力。
近些年來,我們開設(shè)的醫(yī)藥數(shù)學(xué)建模課受到了學(xué)生的一致好評,其關(guān)鍵之處在于我們一改傳統(tǒng)的教學(xué)模式,通過組織數(shù)學(xué)建模興趣研討班,讓每位同學(xué)都能充分地參與到研究中去并且使每位學(xué)生都有發(fā)言的機(jī)會。這些舉措旨在進(jìn)一步激發(fā)學(xué)生的創(chuàng)新意識,提高學(xué)生的數(shù)學(xué)建模實(shí)踐能力。研討班面向全校各類醫(yī)學(xué)專業(yè)的學(xué)生,并以三人為單位,劃分成若干個(gè)組,通過專題研討的形式開展活動(dòng)。實(shí)踐證明:通過這種研討過程,學(xué)生不僅對所學(xué)的醫(yī)學(xué)知識有了更深刻的理解與認(rèn)識,在文獻(xiàn)資料查閱、計(jì)算機(jī)編程、語言表達(dá)能力等諸多方面也都有了顯著的提高。通過這個(gè)過程的學(xué)習(xí),為學(xué)生今后從事醫(yī)學(xué)科研工作打下了良好的基礎(chǔ)。
為了有效的培養(yǎng)學(xué)生綜合應(yīng)用能力和深層次學(xué)習(xí)的習(xí)慣與意識,我們在教學(xué)方法上一改往日的“講透,講懂”的方法,忽略純理論的繁瑣推導(dǎo),突出知識的應(yīng)用思想和應(yīng)用意識,讓學(xué)生帶著問題上課,嘗試在解決問題中與教師進(jìn)行交流,下課帶著問題回去。
在課堂教學(xué)中,重點(diǎn)講解發(fā)現(xiàn)問題和解決問題的方法與技巧。通過課前作業(yè),引導(dǎo)學(xué)生自我發(fā)現(xiàn)問題;通過課堂講解和研討,引導(dǎo)學(xué)生解決問題;通過課后作業(yè),總結(jié)和鞏固所學(xué)知識,學(xué)習(xí)應(yīng)用與拓展知識。這種完全以學(xué)生為主,教師為輔的做法,有利于培養(yǎng)學(xué)生樹立勇于探索求知的信心和探索新知識的能力與意識,提高學(xué)生的創(chuàng)新能力和敏銳的洞察力及想象力,從而提升學(xué)生的綜合應(yīng)用素質(zhì)。
在現(xiàn)實(shí)生活中的實(shí)際問題是比較復(fù)雜的,往往單一的方法是難以解決的,通常是需要多種方法的綜合應(yīng)用方能解決。
因此,以實(shí)際問題驅(qū)動(dòng)的教學(xué)模式,主要是引導(dǎo)學(xué)生如何將復(fù)雜的實(shí)際問題分解為一系列簡單的小問題,在解決每一個(gè)小問題的過程中,讓學(xué)生學(xué)習(xí)并掌握相關(guān)的數(shù)學(xué)知識與方法。這種在應(yīng)用中學(xué)習(xí)的教學(xué)方法,在很大程度上解決了學(xué)生普遍存在的“學(xué)數(shù)學(xué)有什么用、學(xué)了數(shù)學(xué)不知怎么用”的困惑。
在整個(gè)教學(xué)過程中,貫穿以學(xué)生為主體,通過案例分析引導(dǎo)學(xué)生的思維方法,針對一個(gè)案例的解決過程和方法,要求實(shí)現(xiàn)舉一反三,促使學(xué)生對所掌握的知識進(jìn)行重組再現(xiàn)和優(yōu)化構(gòu)建,讓學(xué)生在學(xué)習(xí)和問題的解決中學(xué)會不斷地總結(jié)與歸納,用成功的方法再去演繹解決新的問題,通過不斷地歸納演繹、對比分析、總結(jié)經(jīng)驗(yàn)、彌補(bǔ)不足,進(jìn)一步學(xué)習(xí)相關(guān)知識和方法,再進(jìn)行實(shí)踐,從而不斷增強(qiáng)自身的綜合應(yīng)用能力和素質(zhì)。
隨著醫(yī)學(xué)院校教育理念的轉(zhuǎn)變以及教育體制改革的深入,對培養(yǎng)適應(yīng)科學(xué)技術(shù)迅速發(fā)展的創(chuàng)新型醫(yī)學(xué)人才提出了更高的要求。如何培養(yǎng)出具有創(chuàng)新能力、綜合素質(zhì)高的專業(yè)人才已成為亟待解決的問題之一。本文探討了醫(yī)藥數(shù)學(xué)建模課程的開設(shè)對培養(yǎng)大學(xué)生實(shí)踐創(chuàng)新能力的幾點(diǎn)做法。教學(xué)實(shí)踐證明:數(shù)學(xué)建模課充分鍛煉了學(xué)生的各項(xiàng)能力,是提高醫(yī)學(xué)專業(yè)學(xué)生綜合應(yīng)用素質(zhì)行之有效的方法。
數(shù)學(xué)建模論文感悟篇四
3.3增強(qiáng)選擇數(shù)學(xué)模型的能力。
選擇數(shù)學(xué)模型是數(shù)學(xué)能力的反映。數(shù)學(xué)模型的建立有多種方法,怎樣選擇一個(gè)最佳的模型,體現(xiàn)數(shù)學(xué)能力的強(qiáng)弱。建立數(shù)學(xué)模型主要涉及到方程、函數(shù)、不等式、數(shù)列通項(xiàng)公式、求和公式、曲線方程等類型。結(jié)合教學(xué)內(nèi)容,以函數(shù)建模為例,以下實(shí)際問題所選擇的數(shù)學(xué)模型列表:
函數(shù)建模類型實(shí)際問題
一次函數(shù)成本、利潤、銷售收入等
二次函數(shù)優(yōu)化問題、用料最省問題、造價(jià)最低、利潤最大等
冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)細(xì)胞分裂、生物繁殖等
三角函數(shù)測量、交流量、力學(xué)問題等
3.4加強(qiáng)數(shù)學(xué)運(yùn)算能力。
數(shù)學(xué)應(yīng)用題一般運(yùn)算量較大、較復(fù)雜,且有近似計(jì)算。有的盡管思路正確、建模合理,但計(jì)算能力欠缺,就會前功盡棄。所以加強(qiáng)數(shù)學(xué)運(yùn)算推理能力是使數(shù)學(xué)建模正確求解的關(guān)鍵所在,忽視運(yùn)算能力,特別是計(jì)算能力的培養(yǎng),只重視推理過程,不重視計(jì)算過程的做法是不可取的。
利用數(shù)學(xué)建模解數(shù)學(xué)應(yīng)用題對于多角度、多層次、多側(cè)面思考問題,培養(yǎng)學(xué)生發(fā)散思維能力是很有益的,是提高學(xué)生素質(zhì),進(jìn)行素質(zhì)教育的一條有效途徑。同時(shí)數(shù)學(xué)建模的`應(yīng)用也是科學(xué)實(shí)踐,有利于實(shí)踐能力的培養(yǎng),是實(shí)施素質(zhì)教育所必須的,需要引起教育工作者的足夠重視。
數(shù)學(xué)建模論文感悟篇五
摘要:數(shù)學(xué)建模課堂中學(xué)生的自主探究、合作學(xué)習(xí)與教師的科學(xué)引導(dǎo)并不矛盾而是相輔相成的。只有在教師科學(xué)、適時(shí)、適當(dāng)?shù)匾龑?dǎo)下才能更好地突出學(xué)生的主體地位,從而打造出自主探究、合作學(xué)習(xí)、愉悅發(fā)展的高效數(shù)學(xué)建模課堂。
關(guān)鍵詞:數(shù)學(xué)建模;教師
一、新課的引入需要發(fā)揮教師的作用
教師在數(shù)學(xué)建模課堂上的引導(dǎo)作用首先體現(xiàn)在教師對新課的引入上。教師一段精彩的導(dǎo)入會點(diǎn)燃學(xué)生學(xué)習(xí)的熱情、激發(fā)學(xué)生的學(xué)習(xí)興趣、喚起學(xué)生的好奇心,能把學(xué)生的注意力迅速集中到要學(xué)的知識上來。這對提高教學(xué)質(zhì)量、提高學(xué)生的學(xué)習(xí)效果起著不可估量的作用。同時(shí),新課前的導(dǎo)入環(huán)節(jié)是對學(xué)生進(jìn)行情感教育的最佳時(shí)刻。學(xué)生只有在教師的引導(dǎo)下才能夠體會到數(shù)學(xué)建模的價(jià)值、增強(qiáng)學(xué)好數(shù)學(xué)建模的信心。俗話說:“好的開始是成功的一半?!睌?shù)學(xué)建模課堂也是這樣。因此,在新課引入時(shí)要充分發(fā)揮教師的作用。
二、在教學(xué)任務(wù)的設(shè)計(jì)上需要發(fā)揮教師的作用
數(shù)學(xué)建模課堂一般應(yīng)采用任務(wù)型教學(xué)模式,是讓學(xué)生通過自主探究、合作學(xué)習(xí)、交流展示的方式完成一系列學(xué)習(xí)任務(wù)來達(dá)到特定的教學(xué)目標(biāo)和學(xué)習(xí)目標(biāo)。學(xué)生在課堂中的主體作用能否得到有效發(fā)揮取決于教師對問題設(shè)計(jì)質(zhì)量的高低。教師應(yīng)通過設(shè)計(jì)一系列高質(zhì)量的問題把復(fù)雜的數(shù)學(xué)建模問題分解成若干簡單問題來引導(dǎo)學(xué)生更好地發(fā)揮其主動(dòng)性。學(xué)生也只有在這些問題的正確引導(dǎo)下才能突破難點(diǎn)并向著學(xué)習(xí)目標(biāo)努力,有效防止學(xué)生思考、探究、交流的內(nèi)容偏離學(xué)習(xí)目標(biāo)等現(xiàn)象的出現(xiàn)。這些任務(wù)的制訂需要充分發(fā)揮教師的作用。
三、在新舊知識的聯(lián)系點(diǎn)上需要發(fā)揮教師的作用
建構(gòu)主義強(qiáng)調(diào)新知識是在學(xué)生已有知識的基礎(chǔ)上通過學(xué)生自身有意義的建構(gòu)獲得的。筆者認(rèn)為,學(xué)生自主建構(gòu)知識應(yīng)在教師的科學(xué)引導(dǎo)下進(jìn)行。尤其是對于數(shù)學(xué)建模這樣高難度的知識更是這樣。失去了教師的科學(xué)引導(dǎo),學(xué)生易產(chǎn)生疲倦感,久而久之會喪失學(xué)習(xí)數(shù)學(xué)建模的興趣和信心。因此,在新舊知識聯(lián)系點(diǎn)上應(yīng)發(fā)揮教師的作用。教師應(yīng)在準(zhǔn)確掌握教學(xué)目標(biāo)、難點(diǎn)的基礎(chǔ)上,充分考慮學(xué)生的認(rèn)知能力、習(xí)慣、思維方式,通過有針對性的具體問題喚起學(xué)生對舊知識的回憶,再通過啟發(fā)性問題引導(dǎo)學(xué)生去發(fā)現(xiàn)新知識,從而實(shí)現(xiàn)溫故知新的目的。在教師引領(lǐng)下學(xué)生自主建構(gòu)知識可以使學(xué)生少走彎路,從而使學(xué)生更加高效地自主探究、掌握新知識。
四、在教學(xué)重點(diǎn)、難點(diǎn)上需要教師的引導(dǎo)
教學(xué)的重點(diǎn)、難點(diǎn)是每一節(jié)課的核心和主線,只有準(zhǔn)確把握了重點(diǎn)、突破了難點(diǎn)才能更好地掌握本節(jié)課的內(nèi)容。在強(qiáng)調(diào)學(xué)生自主探究、小組合作學(xué)習(xí)的課堂教學(xué)模式中,數(shù)學(xué)建模教材的重點(diǎn)、難點(diǎn)學(xué)生往往把握不準(zhǔn)、難以突破。這就需要教師科學(xué)引導(dǎo)學(xué)生主動(dòng)去發(fā)現(xiàn)重點(diǎn)、突破難點(diǎn)。教師引導(dǎo)學(xué)生發(fā)現(xiàn)重點(diǎn)、突破難點(diǎn)并不是讓教師直接告訴學(xué)生本節(jié)課的重點(diǎn)是什么、怎樣突破難點(diǎn),而是通過具體問題的引導(dǎo)讓學(xué)生自己找到重點(diǎn)、并通過學(xué)生自己的思考、討論解決疑難問題。學(xué)生在教師的引導(dǎo)下通過自己的努力、討論解決了疑難后,學(xué)生會非常興奮,從而會越來越喜歡數(shù)學(xué)建模課。相反,在沒有教師引導(dǎo)的數(shù)學(xué)建模課堂中,學(xué)生經(jīng)常被困難嚇倒,從而對數(shù)學(xué)建模課產(chǎn)生畏懼感。由此可見,教師對學(xué)生的科學(xué)引導(dǎo)是學(xué)生學(xué)好數(shù)學(xué)建模必不可少的環(huán)節(jié)。在以學(xué)生為本、注重學(xué)生全面發(fā)展、提倡課堂中突出學(xué)生主體地位的背景下,教師的引導(dǎo)仍是數(shù)學(xué)建模課堂中不可缺失的要素。數(shù)學(xué)建模課堂中學(xué)生的自主探究、合作學(xué)習(xí)與教師的科學(xué)引導(dǎo)并不矛盾而是相輔相成的。只有在教師科學(xué)、適時(shí)、適當(dāng)?shù)匾龑?dǎo)下才能更好地突出學(xué)生的主體地位,從而打造出自主探究、合作學(xué)習(xí)、愉悅發(fā)展的高效數(shù)學(xué)建模課堂。
數(shù)學(xué)建模論文感悟篇六
:隨著經(jīng)濟(jì)的快速發(fā)展,我國的科學(xué)技術(shù)也得到了長足的進(jìn)步,在計(jì)算機(jī)應(yīng)用方面,從對計(jì)算機(jī)技術(shù)尚存新鮮感到運(yùn)用成熟,可以說有了質(zhì)的飛躍。在日常生活以及技術(shù)操作當(dāng)中,計(jì)算機(jī)已經(jīng)融入其中,廣泛地應(yīng)用于各行各業(yè),筆者以數(shù)學(xué)建模為例,分析了數(shù)學(xué)建模與計(jì)算機(jī)應(yīng)用之間的關(guān)系,與此同時(shí),也探尋了計(jì)算機(jī)應(yīng)用技術(shù)在數(shù)學(xué)建模的輔助之下發(fā)揮的作用,并對數(shù)學(xué)建模進(jìn)行概念定義,使得讀者能夠?qū)?shù)學(xué)建模的意義有著更深層次的了解,希望能夠起到促進(jìn)二者之間的良性發(fā)展。
數(shù)學(xué)建模;計(jì)算機(jī)技術(shù);計(jì)算機(jī)應(yīng)用
隨著經(jīng)濟(jì)的快速發(fā)展,我國的科學(xué)技術(shù)也有了長足的進(jìn)步,而與之密不可分的數(shù)學(xué)學(xué)科也有著不可小覷的進(jìn)步,與此同時(shí),數(shù)學(xué)學(xué)科的延伸領(lǐng)域從物理等逐漸擴(kuò)展到環(huán)境、人口、社會、經(jīng)濟(jì)范圍,使得其作用力逐漸增強(qiáng)。不僅如此,數(shù)學(xué)學(xué)科由原本的研究事物的性質(zhì)分析逐漸轉(zhuǎn)變到研究定量性質(zhì)范圍,促進(jìn)了多方面多層次的發(fā)展,由此可見,數(shù)學(xué)學(xué)科的重要性質(zhì)。在日常生活中,運(yùn)用數(shù)學(xué)學(xué)科去解決實(shí)際問題時(shí),首要完成的就是從復(fù)雜的事物中找到普遍的規(guī)律現(xiàn)象存在,并用最為清晰的數(shù)字、符號、公式等將潛在的信息表達(dá)出來,再運(yùn)用計(jì)算機(jī)技術(shù)加以呈現(xiàn),形成人們所要完成的結(jié)果。筆者以數(shù)學(xué)建模為例,分析了數(shù)學(xué)建模與計(jì)算機(jī)應(yīng)用之間的關(guān)系,與此同時(shí),也探尋了計(jì)算機(jī)應(yīng)用技術(shù)在數(shù)學(xué)建模的輔助之下發(fā)揮的作用,并對數(shù)學(xué)建模進(jìn)行概念定義,使得讀者能夠?qū)?shù)學(xué)建模的意義有著更深層次的了解,希望能夠起到促進(jìn)二者之間的良性發(fā)展。
從宏觀角度上來講,數(shù)學(xué)建模是更側(cè)重于實(shí)際研究方面,并不僅僅是通過數(shù)字演示來完成事物的一般發(fā)展規(guī)律,與一般的理論研究截然不同。其研究范圍之廣,能夠深入到各個(gè)領(lǐng)域當(dāng)中,從任何一個(gè)相關(guān)領(lǐng)域中都能夠找到數(shù)學(xué)學(xué)科的發(fā)展軌跡,從中不難看出數(shù)學(xué)學(xué)科的實(shí)際意義與鮮明特點(diǎn)。數(shù)學(xué)為一門注重實(shí)際問題研究的學(xué)科,這一性質(zhì)方向決定了其研究的層次,其研究范圍大到漫無邊際的宇宙,小到對于個(gè)體微生物或者單細(xì)胞物體,綜合性之強(qiáng)形成了研究范圍廣的特點(diǎn)。多個(gè)學(xué)科之間互相影響,從中找到互相之間存在的相互聯(lián)系,其中有許多不能夠被忽視的數(shù)學(xué)元素,且這些元素都是至關(guān)重要的,所以這個(gè)計(jì)算過程十分復(fù)雜,計(jì)算量與數(shù)據(jù)驗(yàn)算過程也十分耗費(fèi)時(shí)間,因此需要充足的存儲空間支持這一過程的運(yùn)行。在數(shù)學(xué)建模的過程當(dāng)中,所涉獵的數(shù)學(xué)算法并不是很簡單,而建立的模型也遵循個(gè)人習(xí)慣,因此建成的模型也不是一成不變的,但是都能夠得出相同的答案。正因如此,在數(shù)學(xué)建模的過程當(dāng)中,就需要使用各種輔助工具來完成這一過程。由于計(jì)算機(jī)軟件具有的高速運(yùn)轉(zhuǎn)空間,使得計(jì)算機(jī)技術(shù)應(yīng)用于數(shù)學(xué)學(xué)科的建模過程當(dāng)中,與數(shù)學(xué)建模過程密不可分息息相關(guān)。由此可見,計(jì)算機(jī)技術(shù)的應(yīng)用水平對于數(shù)學(xué)學(xué)科的重要作用。
2。1計(jì)算機(jī)的獨(dú)特性與數(shù)學(xué)建模的實(shí)際性特點(diǎn)計(jì)算機(jī)的獨(dú)特性與數(shù)學(xué)建模的實(shí)際性特點(diǎn),使得二者之間有著密不可分的聯(lián)系,正是因?yàn)檫@種聯(lián)系使得雙方都能夠有長足的發(fā)展,在技術(shù)上是起著互相促進(jìn)的作用。計(jì)算機(jī)的廣泛應(yīng)用為數(shù)學(xué)建模提供了較為便利的服務(wù),在使用過程當(dāng)中,數(shù)學(xué)建模也能夠起到完成對計(jì)算機(jī)技術(shù)的促進(jìn),能夠在這一過程中形成更為便捷高速的使用方法與途徑,使得計(jì)算機(jī)技術(shù)應(yīng)用更為靈活,也可以說數(shù)學(xué)建模為計(jì)算機(jī)技術(shù)的實(shí)際應(yīng)用提供了更為廣闊的應(yīng)用空間,從中不難發(fā)現(xiàn),數(shù)學(xué)建模對于計(jì)算機(jī)應(yīng)用技術(shù)的支持性。計(jì)算機(jī)應(yīng)用技術(shù)需要合成的是多方面的技術(shù)支持,而數(shù)學(xué)建模則是需要首要完成的,二者之間是相互影響共同促進(jìn)的作用。
2。2計(jì)算機(jī)為數(shù)學(xué)建模提供了重要的技術(shù)支持?jǐn)?shù)學(xué)建模對于計(jì)算機(jī)應(yīng)用技術(shù)的重要的指導(dǎo)意義與作用。第一點(diǎn),計(jì)算機(jī)在其技術(shù)的支持之下,有著大量的存儲空間能夠完成存儲資料的這一過程,許多重要資料在計(jì)算機(jī)技術(shù)的保護(hù)之下,存儲時(shí)間較為長久,且保護(hù)力度較大,不容易被破壞及減少了不必要的人力以及物力;第二點(diǎn),計(jì)算機(jī)是多媒體的一個(gè)分支,運(yùn)用其成熟的互聯(lián)網(wǎng)思維技術(shù),能夠完成數(shù)學(xué)建模從平面到空間的轉(zhuǎn)化,能夠提供更為成熟的模擬環(huán)境,從而提高實(shí)踐的效率。由于數(shù)學(xué)建模過程的復(fù)雜化及對于實(shí)際問題的研究方向的特質(zhì),使得對于各項(xiàng)技術(shù)的要求就很高,所以,需要涉及的操作與數(shù)據(jù)量非常大,過程也十分復(fù)雜,常見的過程有三維打印、三維激光掃描等。這些都是需要計(jì)算機(jī)技術(shù)的支持才能夠完成的,所以對于計(jì)算機(jī)技術(shù)的要求非常高,與此同時(shí),計(jì)算機(jī)應(yīng)用技術(shù)為數(shù)學(xué)建模提供了更為便捷、快速的解決方案與途徑。
2。3數(shù)學(xué)建模為計(jì)算機(jī)的發(fā)展提供了基石計(jì)算機(jī)的產(chǎn)生起源于數(shù)學(xué)建模的過程,在二十世紀(jì)八十年代,由于導(dǎo)彈在飛行時(shí)的運(yùn)行軌跡的計(jì)算量過大,人工無法滿足這一高速率的運(yùn)算條件,基于這一背景條件,產(chǎn)生了計(jì)算機(jī),計(jì)算機(jī)應(yīng)用技術(shù)由此拉開了序幕。數(shù)學(xué)建模的過程是需要計(jì)算機(jī)來完成的,在全部的過程當(dāng)中,計(jì)算機(jī)參與計(jì)算的比重很大,從某種意義程度上來講,計(jì)算機(jī)技術(shù)對于數(shù)學(xué)建模的發(fā)展是起著推動(dòng)性的作用的,二者之間是有著聯(lián)系的。
數(shù)學(xué)建模論文感悟篇七
一、在高等數(shù)學(xué)教學(xué)中運(yùn)用數(shù)學(xué)建模思想的重要性
(1)將教材中的數(shù)學(xué)知識運(yùn)用現(xiàn)實(shí)生活中的對象進(jìn)行還原,讓學(xué)生樹立數(shù)學(xué)知識來源于現(xiàn)實(shí)生活的思想觀念。
(2)數(shù)學(xué)建模思想要求學(xué)生能夠通過運(yùn)用相應(yīng)的數(shù)學(xué)工具和數(shù)學(xué)語言,對現(xiàn)實(shí)生活中的特定對象的信息、數(shù)據(jù)或者現(xiàn)象進(jìn)行簡化,對抽象的數(shù)學(xué)對象進(jìn)行翻譯和歸納,將所求解的數(shù)學(xué)問題中的數(shù)量關(guān)系運(yùn)用數(shù)學(xué)關(guān)系式、數(shù)學(xué)圖形或者數(shù)學(xué)表格等形式進(jìn)行表達(dá),這種方式有利于培養(yǎng)、鍛煉學(xué)生的數(shù)學(xué)表達(dá)能力。
(3)在運(yùn)用數(shù)學(xué)建模思想獲得實(shí)際的答案后,需要運(yùn)用現(xiàn)實(shí)生活對象的相關(guān)信息對其進(jìn)行檢驗(yàn),對計(jì)算結(jié)果的準(zhǔn)確性進(jìn)行檢驗(yàn)和確定。該流程能夠培養(yǎng)學(xué)生運(yùn)用合理的數(shù)學(xué)方法對數(shù)學(xué)問題進(jìn)行主動(dòng)性、客觀性以及辯證性的分析,最后得到最有效的解決問題的方法。
二、高等數(shù)學(xué)教學(xué)中數(shù)學(xué)建模能力的培養(yǎng)策略
1.教師要具備數(shù)學(xué)建模思想意識
在對高等數(shù)學(xué)進(jìn)行教學(xué)的過程中,培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)建模思想,首先教師要具備足夠的數(shù)學(xué)建模意識。教師在進(jìn)行高等數(shù)學(xué)教學(xué)之前,首先,要對所講數(shù)學(xué)內(nèi)容的相關(guān)實(shí)例進(jìn)行查找,有意識的實(shí)現(xiàn)高等數(shù)學(xué)內(nèi)容和各個(gè)不同領(lǐng)域之間的聯(lián)系;其次,教師要實(shí)現(xiàn)高等數(shù)學(xué)教學(xué)內(nèi)容與教學(xué)要求的轉(zhuǎn)變,及時(shí)的更新自身的教學(xué)觀念和教學(xué)思想。例如,教師細(xì)心發(fā)現(xiàn)現(xiàn)實(shí)生活中的小事,然后運(yùn)用這些小事建造相應(yīng)的數(shù)學(xué)模型,這樣不僅有利于營造活躍的課堂環(huán)境,而且還有利于激發(fā)學(xué)生的學(xué)習(xí)興趣。
2.實(shí)現(xiàn)數(shù)學(xué)建模思想和高等數(shù)學(xué)教材的互相結(jié)合
教師在講解高等數(shù)學(xué)時(shí),對其中能夠引入數(shù)學(xué)模型的章節(jié),要構(gòu)建相關(guān)的數(shù)學(xué)模型,對其提出相應(yīng)的問題,進(jìn)行分析和處理。在該基礎(chǔ)上,提出假設(shè),實(shí)現(xiàn)數(shù)學(xué)模型的完善。教師在高等數(shù)學(xué)的教學(xué)中融入建模意識,讓學(xué)生潛移默化的感受到建模思想在高等數(shù)學(xué)教學(xué)中應(yīng)用的效果。這樣有利于提高學(xué)生數(shù)學(xué)知識的運(yùn)用能力和學(xué)習(xí)興趣。例如,在進(jìn)行教學(xué)時(shí),針對學(xué)生所學(xué)專業(yè)的特點(diǎn),選擇科學(xué)、合理的數(shù)學(xué)案例,運(yùn)用數(shù)學(xué)建模思想對其進(jìn)行相應(yīng)的加工后,作為高等數(shù)學(xué)講授的應(yīng)用例題。這樣不僅能夠讓學(xué)生發(fā)現(xiàn)數(shù)學(xué)發(fā)揮的巨大作用,而且還能夠有效的提高學(xué)生的數(shù)學(xué)解題水平。另外,數(shù)學(xué)課結(jié)束后,轉(zhuǎn)變以往的作業(yè)模式,給學(xué)生布置一些具有專業(yè)性、數(shù)學(xué)性的習(xí)題,讓學(xué)生充分利用網(wǎng)絡(luò)資源,自主建立數(shù)學(xué)模型,有效的解決問題。
3.理清高等數(shù)學(xué)名詞的概念
教材中,導(dǎo)數(shù)和定積分是其中的比較重要的概念,因此,教師在進(jìn)行教學(xué)時(shí),要引導(dǎo)學(xué)生理清這兩個(gè)的概念。比如導(dǎo)數(shù)概念是由幾何曲線中的切線斜率引導(dǎo)出來的,定積分的概念是由局部取近似值引出的,將常量轉(zhuǎn)變?yōu)樽兞俊?BR> 4.加強(qiáng)數(shù)學(xué)應(yīng)用問題的培養(yǎng)
高等數(shù)學(xué)中,主要有以下幾種應(yīng)用問題:
(1)最值問題
在高等數(shù)學(xué)教材中,最值問題是導(dǎo)數(shù)應(yīng)用中最重要的問題。教師在教學(xué)過程中通過對最值問題的解題步驟進(jìn)行歸納,能夠有效地將數(shù)學(xué)建模的基本思想進(jìn)行反映。因此,在對這部分內(nèi)容進(jìn)行教學(xué)時(shí),要增加例題,加大學(xué)生的練習(xí),開拓學(xué)生的思維,讓學(xué)生熟練掌握最值問題的解決辦法。
(2)微分方程
在微分方程的教學(xué)中運(yùn)用數(shù)學(xué)建模思想,能夠有效地解決實(shí)際問題。微分方程所構(gòu)建的數(shù)學(xué)模型不具有通用的規(guī)則。首先,要確定方程中的變量,對變量和變化率、微元之間的關(guān)系進(jìn)行分析,然后運(yùn)用相關(guān)的物理理論、化學(xué)理論或者工程學(xué)理論對其進(jìn)行實(shí)驗(yàn),運(yùn)用所得出的定理、規(guī)律來構(gòu)建微分方程;其次,對其進(jìn)行求解和驗(yàn)證結(jié)果。微分方程的概念主要從實(shí)際引入,堅(jiān)持由淺入深的原則,來對現(xiàn)實(shí)問題進(jìn)行解決。例如,在對學(xué)生講解外有引力定律時(shí),讓學(xué)生對萬有引力的提出、猜想進(jìn)行探究,了解到在其發(fā)展的整個(gè)過程中,數(shù)學(xué)發(fā)揮著十分重要的作用。
(3)定積分
微元法思想用途比較廣泛,其主要以定積分概念為基礎(chǔ),在數(shù)學(xué)中滲入定積分概念,讓學(xué)生對定積分概念的意義進(jìn)行分析和了解,這樣有利于在對實(shí)際問題進(jìn)行解決時(shí),樹立“欲積先分”意識,意識到運(yùn)用定積分是解決微元實(shí)際問題的重要方法。教師在布置作業(yè)題時(shí),要增加該問題的實(shí)例。
三、結(jié)語
總之,在高等數(shù)學(xué)中對學(xué)生的數(shù)學(xué)建模能力進(jìn)行培養(yǎng),讓學(xué)生在解題的過程中運(yùn)用數(shù)學(xué)建模思想和數(shù)學(xué)建模方法,能夠有效地激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生的分析、解決問題的能力以及提高學(xué)生數(shù)學(xué)知識的運(yùn)用能力。
數(shù)學(xué)建模論文感悟篇八
優(yōu)秀高教社杯全國大學(xué)生數(shù)學(xué)建模競賽題目
(請先閱讀“全國大學(xué)生數(shù)學(xué)建模競賽論文格式規(guī)范”)
a題城市表層土壤重金屬污染分析
隨著城市經(jīng)濟(jì)的快速發(fā)展和城市人口的不斷增加,人類活動(dòng)對城市環(huán)境質(zhì)量的影響日顯突出。對城市土壤地質(zhì)環(huán)境異常的查證,以及如何應(yīng)用查證獲得的海量數(shù)據(jù)資料開展城市環(huán)境質(zhì)量評價(jià),研究人類活動(dòng)影響下城市地質(zhì)環(huán)境的演變模式,日益成為人們關(guān)注的焦點(diǎn)。
按照功能劃分,城區(qū)一般可分為生活區(qū)、工業(yè)區(qū)、山區(qū)、主干道路區(qū)及公園綠地區(qū)等,分別記為1類區(qū)、2類區(qū)、??、5類區(qū),不同的區(qū)域環(huán)境受人類活動(dòng)影響的程度不同。
現(xiàn)對某城市城區(qū)土壤地質(zhì)環(huán)境進(jìn)行調(diào)查。為此,將所考察的城區(qū)劃分為間距1公里左右的網(wǎng)格子區(qū)域,按照每平方公里1個(gè)采樣點(diǎn)對表層土(0~10厘米深度)進(jìn)行取樣、編號,并用gps記錄采樣點(diǎn)的位置。應(yīng)用專門儀器測試分析,獲得了每個(gè)樣本所含的多種化學(xué)元素的濃度數(shù)據(jù)。另一方面,按照2公里的間距在那些遠(yuǎn)離人群及工業(yè)活動(dòng)的自然區(qū)取樣,將其作為該城區(qū)表層土壤中元素的背景值。
附件1列出了采樣點(diǎn)的位置、海拔高度及其所屬功能區(qū)等信息,附件2列出了8種主要重金屬元素在采樣點(diǎn)處的濃度,附件3列出了8種主要重金屬元素的背景值。
現(xiàn)要求你們通過數(shù)學(xué)建模來完成以下任務(wù):
(1)給出8種主要重金屬元素在該城區(qū)的空間分布,并分析該城區(qū)內(nèi)不同區(qū)域重金屬的污染程度。
(2)通過數(shù)據(jù)分析,說明重金屬污染的主要原因。
(3)分析重金屬污染物的傳播特征,由此建立模型,確定污染源的位置。
數(shù)學(xué)建模論文感悟篇九
高校數(shù)學(xué)教育是高等教育的基礎(chǔ)學(xué)科,占據(jù)重要的一席之地。如何改變學(xué)生對數(shù)學(xué)枯燥乏味的學(xué)習(xí)狀態(tài),讓學(xué)生輕松愉快地參與到數(shù)學(xué)學(xué)習(xí)中,是當(dāng)前高校數(shù)學(xué)教學(xué)者面臨的一個(gè)重要課題。在高校數(shù)學(xué)教學(xué)中開展數(shù)學(xué)建模競賽,不僅能培養(yǎng)學(xué)生的創(chuàng)新思維,還能有效提高提高學(xué)生的創(chuàng)新能力、綜合素質(zhì)和對數(shù)學(xué)的應(yīng)用能力。本文對高校開展數(shù)學(xué)建模競賽與創(chuàng)新思維培養(yǎng)進(jìn)行了分析闡述,并對此進(jìn)行了一定的思考。
數(shù)學(xué)建模是一種融合數(shù)學(xué)邏輯思想的思考方法,通過運(yùn)用抽象性的數(shù)學(xué)語言和數(shù)學(xué)邏輯思考方法,創(chuàng)造性的解決數(shù)學(xué)問題。當(dāng)前很多高校中開始引入數(shù)學(xué)建模思想來加強(qiáng)學(xué)生創(chuàng)新能力的培養(yǎng),可以使學(xué)生的邏輯思維能力和運(yùn)用數(shù)學(xué)邏輯創(chuàng)新解決問題的能力得到提升。數(shù)學(xué)建模競賽起源于1985年的美國,幾年后國內(nèi)幾所高校數(shù)學(xué)建模教師組織學(xué)生開始參與美國的數(shù)學(xué)建模大賽,促進(jìn)了數(shù)學(xué)建模思維的快速發(fā)展。直到1992中國首屆數(shù)學(xué)建模大賽召開,而后一發(fā)不可收拾,至今仍以每年20%左右的速度增長,呈現(xiàn)一派繁榮景象。
2.1數(shù)學(xué)建模競賽自主性較強(qiáng)。自主性首先體現(xiàn)在在數(shù)學(xué)建模過程中學(xué)生可以根據(jù)自己的建模需要通過一切可以利用的資源、工具來進(jìn)行資料查閱和收集,建模比賽隊(duì)員可以根據(jù)自己的意見和思維進(jìn)行靈活自由解答,形式不拘一格。其次體現(xiàn)在數(shù)學(xué)建模競賽的組織形式呈現(xiàn)多元化特點(diǎn),組織制度上也較為靈活多樣,數(shù)學(xué)建模主要側(cè)重于分析思想,沒有標(biāo)準(zhǔn)答案可以參考分享。2.2建模隊(duì)伍呈日益燎原之勢。1992年首屆中國數(shù)學(xué)建模大賽開展以來,其影響力與日俱增,高校和社會各界對數(shù)學(xué)建模頗為重視,參賽隊(duì)伍、參賽學(xué)生的質(zhì)量一直處于上升狀態(tài),數(shù)學(xué)模型也日漸合理科學(xué),學(xué)生團(tuán)隊(duì)在國際數(shù)學(xué)建模大賽中屢創(chuàng)驕人戰(zhàn)績。2.3組織培訓(xùn)日益加強(qiáng)。數(shù)學(xué)建模競賽對學(xué)生數(shù)學(xué)知識的掌握及靈活運(yùn)用、口套表達(dá)、語言邏輯思維、綜合素質(zhì)都有著非常高的要求,因此高校遴選參賽選手都投入了很大的精力,組織培訓(xùn)的時(shí)間很長,培訓(xùn)內(nèi)容也很豐富,為數(shù)學(xué)建模競賽取得好成績奠定了堅(jiān)實(shí)的基礎(chǔ)。
3.1學(xué)生的團(tuán)隊(duì)協(xié)作能力和意識得到增強(qiáng)。數(shù)學(xué)建模競賽的團(tuán)隊(duì)組織形式活潑自由,通常采用學(xué)生組隊(duì)模式開展,數(shù)學(xué)建模競賽隊(duì)伍形成一個(gè)團(tuán)結(jié)戰(zhàn)斗的整體,代表著不僅僅是學(xué)校的聲譽(yù),還一定程度上展示著國家的形象。經(jīng)過長時(shí)間的培訓(xùn),對數(shù)學(xué)模型的研究和分析,根據(jù)學(xué)生訓(xùn)練中的優(yōu)勢和特長,進(jìn)行合理科學(xué)的小組分工,讓學(xué)生快速高效地完成整個(gè)數(shù)學(xué)建模,在建模過程中學(xué)生統(tǒng)籌協(xié)作、密切配合,發(fā)揮各自的優(yōu)勢和長處,確保數(shù)學(xué)建模取得最大效用,學(xué)生的團(tuán)隊(duì)協(xié)作能力和意識得到鍛煉,責(zé)任感和榮譽(yù)感進(jìn)一步增強(qiáng),通過建模競賽彰顯團(tuán)隊(duì)的合作能力和中國數(shù)學(xué)建模方面的發(fā)展。
3.2高校學(xué)生參賽積極性高漲。近年來大學(xué)生數(shù)學(xué)建模競賽的參與性高漲,參賽人數(shù)保持著20%左右的上漲幅度,參賽成績也較為理想,創(chuàng)新能力得到了較好的鍛煉和培養(yǎng),綜合素質(zhì)得到提高,數(shù)學(xué)的應(yīng)用能力提升。
3.3高校學(xué)生數(shù)學(xué)邏輯思維能力和靈活運(yùn)用知識的能力得到提升。數(shù)學(xué)建模競賽充滿著刺激性和挑戰(zhàn)性,是學(xué)生各方面綜合能力的一個(gè)展示。在數(shù)學(xué)建模競賽中,學(xué)生不僅要需要扎實(shí)豐厚的數(shù)學(xué)知識儲備,還需要具備清晰的數(shù)學(xué)邏輯思維和語言表達(dá)能力。同時(shí)要有機(jī)智的臨場發(fā)揮能力和應(yīng)變能力,不怯場、不驚慌,有充分的思想準(zhǔn)備,能輕松應(yīng)對其他參賽選手和評委的提問,能組織條理性、邏輯性的語言進(jìn)行表述,將參賽小組數(shù)學(xué)模型的含義和設(shè)計(jì)清晰完整的傳達(dá)給評委和其他參賽選手。在這個(gè)過程中,無疑會使學(xué)生的數(shù)學(xué)邏輯思維和語言表達(dá)能力及靈活運(yùn)用數(shù)學(xué)知識的能力有一個(gè)較大的提升。
3.4學(xué)生的自學(xué)能力和意志力得到鍛。數(shù)學(xué)建模競賽對參賽學(xué)生的綜合知識和能力要求非常高,難度也非常大,需要與眾不同的智慧和能力??梢哉f數(shù)學(xué)建模過程中,有許多高深的知識難于理解,有的日常學(xué)習(xí)過程中根本接觸不到,需要數(shù)學(xué)建模參賽小組成員的互助合作,充分發(fā)揮各自優(yōu)勢和平時(shí)培訓(xùn)中的知識積淀,通過借助大量的工具書及參考資料,加上團(tuán)隊(duì)的`理解分析去摸索,探尋數(shù)學(xué)建模所需要的基礎(chǔ)知識,無疑這對學(xué)生的自學(xué)能力培養(yǎng)是一個(gè)很好的鍛煉。另外,搜尋資料、學(xué)習(xí)數(shù)學(xué)建模知識的過程是枯燥乏味的,需要長久的耐力和信心,無疑這對學(xué)生的堅(jiān)毅不畏難的品質(zhì)是一個(gè)很好的培養(yǎng)和磨煉。
3.5創(chuàng)新思維與能力得到有效提升。經(jīng)過艱苦復(fù)雜的數(shù)學(xué)建模訓(xùn)練,高校學(xué)生信息收集與處理復(fù)雜問題的能力得到培養(yǎng)鍛煉,學(xué)生數(shù)量觀念得到增強(qiáng),能夠養(yǎng)成敏銳觀察事物數(shù)量變化的能力,數(shù)學(xué)的嚴(yán)謹(jǐn)推導(dǎo)也使學(xué)生養(yǎng)成認(rèn)真細(xì)心、一絲不茍的習(xí)慣,邏輯思維能力得到提高,思路變得更加富有條理性,能靈活地處理各種復(fù)雜問題,有效解決數(shù)學(xué)疑難,數(shù)學(xué)理論能更好第應(yīng)用于實(shí)踐,數(shù)學(xué)素養(yǎng)進(jìn)一步得到提升。
綜上所述,高校學(xué)生數(shù)學(xué)建模競賽的開展,能較高地提升學(xué)生的創(chuàng)新能力和綜合素養(yǎng),團(tuán)隊(duì)合作能力、競爭能力、表達(dá)交流能力、邏輯思維能力、意志品質(zhì)能力等都能得到良好的塑造。高校要積極組織和開展數(shù)學(xué)建模競賽,使學(xué)生的綜合素質(zhì)得到發(fā)展和鍛煉。學(xué)校用重視和鼓勵(lì)全體學(xué)生參與數(shù)學(xué)建模競賽,通過競賽實(shí)現(xiàn)學(xué)生各方面能力尤其是創(chuàng)新能力的培養(yǎng)。
[1]趙剛.高校數(shù)學(xué)建模競賽與創(chuàng)新思維培養(yǎng)探究[j].才智,20xx(06).
[2]陳羽,徐小紅,房少梅.數(shù)學(xué)建模實(shí)踐及其對培養(yǎng)學(xué)生創(chuàng)新思維的影響分析[j].科技創(chuàng)業(yè)月刊,20xx(08).
[3]趙建英.數(shù)學(xué)建模競賽對高校創(chuàng)新人才培養(yǎng)的促進(jìn)作用分析[j].科技展望,20xx(08)5.
[4]畢波,杜輝.關(guān)于高校開展數(shù)學(xué)建模競賽與創(chuàng)新思維培養(yǎng)的思考[j].中國校外教育,20xx(12).
數(shù)學(xué)建模論文感悟篇十
信息化時(shí)代,數(shù)學(xué)科學(xué)與其他學(xué)科交叉融合,使得數(shù)學(xué)技術(shù)變成了一種普適性的關(guān)鍵技術(shù)。大學(xué)加強(qiáng)數(shù)學(xué)課程的應(yīng)用功能,不但可以為學(xué)生提供解決問題的思想和方法,而且更為重要的是可以培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)科學(xué)進(jìn)行定量化、精確化思維的意識,學(xué)會創(chuàng)造性地解決問題的應(yīng)用能力。數(shù)學(xué)建模課程將數(shù)學(xué)的基本原理、現(xiàn)代優(yōu)化算法以及程序設(shè)計(jì)知識很好地融合在一起,有助于培養(yǎng)學(xué)生綜合應(yīng)用數(shù)學(xué)知識將現(xiàn)實(shí)問題化為數(shù)學(xué)問題,并進(jìn)行求解運(yùn)算的能力,激發(fā)學(xué)生對解決現(xiàn)實(shí)問題的探索欲望,強(qiáng)化數(shù)學(xué)課程本身的應(yīng)用功能,凸顯數(shù)學(xué)課程的教育價(jià)值,適應(yīng)大學(xué)數(shù)學(xué)課程以培養(yǎng)學(xué)生創(chuàng)新意識為宗旨的教育改革需要。
大學(xué)傳統(tǒng)的數(shù)學(xué)主干課程,如高等數(shù)學(xué)、線性代數(shù)、概率論與數(shù)理統(tǒng)計(jì)在奠定學(xué)生的數(shù)學(xué)基礎(chǔ)、培養(yǎng)自學(xué)能力以及為后續(xù)課程的學(xué)習(xí)在基礎(chǔ)方面發(fā)揮奠基作用。但是,這種原有的教學(xué)模式重在突出培養(yǎng)學(xué)生嚴(yán)格的邏輯思維能力,而對數(shù)學(xué)的應(yīng)用重視不夠,這使得學(xué)生即使掌握了較為高深的數(shù)學(xué)理論,卻并不能將其靈活應(yīng)用于現(xiàn)實(shí)生活解決實(shí)際問題,更是缺乏將數(shù)學(xué)應(yīng)用于專業(yè)研究和軍事工程的能力,與創(chuàng)新教育的基本要求差距甚遠(yuǎn)。教育轉(zhuǎn)型要求數(shù)學(xué)教學(xué)模式從傳統(tǒng)的傳授知識為主向以培養(yǎng)能力素質(zhì)為主轉(zhuǎn)變,特別是將數(shù)學(xué)建模的思想方法融入到數(shù)學(xué)主干課程之中,在教學(xué)過程中引導(dǎo)學(xué)生將數(shù)學(xué)知識內(nèi)化為學(xué)生的應(yīng)用能力,充分發(fā)揮數(shù)學(xué)建模思想在數(shù)學(xué)教學(xué)過程中的引領(lǐng)作用。數(shù)學(xué)課程教學(xué)改革要適應(yīng)這一教學(xué)模式轉(zhuǎn)型需要,深入探究融入式教學(xué)模式的理論與方式,是推進(jìn)數(shù)學(xué)教育改革的重要舉措。
2.1理清數(shù)學(xué)建模思想方法與數(shù)學(xué)主干課程的關(guān)系。數(shù)學(xué)主干課程提供了大學(xué)數(shù)學(xué)的基礎(chǔ)理論與基本原理,將數(shù)學(xué)建模的思想方法有機(jī)地融入到數(shù)學(xué)主干課程中,不但可以有效地提升數(shù)學(xué)課程的應(yīng)用功能,而且有利于深化學(xué)生對數(shù)學(xué)本原知識的理解,培養(yǎng)學(xué)生的綜合應(yīng)用能力。深入研究數(shù)學(xué)主干課程的功能定位,主要從課程目標(biāo)上的一致性、課程內(nèi)容上的互補(bǔ)性、學(xué)習(xí)形式上的互促性、功能上的整體優(yōu)化性等方面,研究數(shù)學(xué)建模本身所承載的思想、方法與數(shù)學(xué)主干課程的內(nèi)容與邏輯關(guān)系,闡述數(shù)學(xué)建模思想方法對提高學(xué)生創(chuàng)新能力和對數(shù)學(xué)教育改革的重要意義,探索開展融入式教學(xué)及創(chuàng)新數(shù)學(xué)課程教學(xué)模式的有效途徑。
2.2探索融入式教學(xué)模式提升數(shù)學(xué)主干課程應(yīng)用功能的方式。融入式教學(xué)主要有輕度融入、中度融入和完全融入三種方式。根據(jù)主干課程的基本特點(diǎn),對課程體系進(jìn)行調(diào)整,在問題解決過程中安排需要融入的知識體系,按照三種方式融入數(shù)學(xué)建模的思想與方法。以學(xué)生能力訓(xùn)練為主導(dǎo),在培養(yǎng)深厚的數(shù)學(xué)基礎(chǔ)和嚴(yán)格的邏輯思維能力的基礎(chǔ)上,充分發(fā)揮數(shù)學(xué)建模思想方法對學(xué)生思維方式的培養(yǎng)功能和引導(dǎo)作用,培養(yǎng)學(xué)生敏銳的分析能力、深刻的'歸納演繹能力以及將數(shù)學(xué)知識應(yīng)用于工程問題的創(chuàng)新能力。
2.3建立數(shù)學(xué)建模思想方法融入數(shù)學(xué)主干課程的評價(jià)方式。融入式教學(xué)是處于探索中的教學(xué)模式,教學(xué)成效有待于實(shí)踐檢驗(yàn)。選取開展融入式教學(xué)的實(shí)驗(yàn)班級,對數(shù)學(xué)建模思想方法融入主干課程進(jìn)行教學(xué)效果實(shí)踐驗(yàn)證。設(shè)計(jì)相應(yīng)的考察量表,從運(yùn)用直覺思維深入理解背景知識、符號翻譯開展邏輯思維、依托圖表理順數(shù)量關(guān)系、大膽嘗試進(jìn)行建模求解等多方面對實(shí)驗(yàn)課程的教學(xué)效果進(jìn)行檢驗(yàn),深入分析融入式教學(xué)模式的成效與不足,為探索有效的教學(xué)模式提出改進(jìn)的對策。
3.1改革課程教學(xué)內(nèi)容,滲透數(shù)學(xué)建模的思想方法。傳統(tǒng)的數(shù)學(xué)主干課程教學(xué)內(nèi)容,將數(shù)學(xué)看作嚴(yán)謹(jǐn)?shù)难堇[體系,教學(xué)過程中著力于對學(xué)生傳授大學(xué)數(shù)學(xué)的基礎(chǔ)知識,而對應(yīng)用能力的培養(yǎng)卻重視不夠。使得本應(yīng)能夠發(fā)揮應(yīng)用功能的數(shù)學(xué)知識則淪為僵死的教條性數(shù)學(xué)原理,這失去了教學(xué)的活力。學(xué)生即使掌握了再高深的數(shù)學(xué)知識,仍難以學(xué)會用數(shù)學(xué)的基本方法解決現(xiàn)實(shí)問題?,F(xiàn)行的大學(xué)數(shù)學(xué)課程教學(xué)內(nèi)容中,適當(dāng)?shù)貪B透一些應(yīng)用性比較廣泛的數(shù)學(xué)方法,如微元法、迭代法及最佳逼近等方法,有利于促進(jìn)學(xué)生對數(shù)學(xué)基礎(chǔ)知識的掌握,同時(shí)理解數(shù)學(xué)原理所蘊(yùn)涵的思想與方法。
這樣,在解決實(shí)際問題的時(shí)候,學(xué)生就會有意識地從數(shù)學(xué)的角度進(jìn)行思考,嘗試建立相應(yīng)的數(shù)學(xué)模型并進(jìn)行求解,拓展了數(shù)學(xué)知識的深度與廣度,提升了學(xué)生的數(shù)學(xué)應(yīng)用能力四、結(jié)語數(shù)學(xué)建模是數(shù)學(xué)科學(xué)在科技、經(jīng)濟(jì)、軍事等領(lǐng)域廣泛應(yīng)用的接口,是數(shù)學(xué)科學(xué)轉(zhuǎn)化成科學(xué)技術(shù)的重要途徑。在數(shù)學(xué)主干課程中融入數(shù)學(xué)建模的思想與方法,可以推動(dòng)大學(xué)數(shù)學(xué)教育改革的深入發(fā)展,加深學(xué)生對相關(guān)知識的理解和掌握,有助于從思維方式上培養(yǎng)學(xué)生的創(chuàng)新意識與創(chuàng)新能力。
此外,數(shù)學(xué)建模思想方法融入教學(xué)主干課程還涉及到許多問題,比如數(shù)學(xué)建模與計(jì)算技術(shù)如何有效結(jié)合以進(jìn)行模擬仿真、融入式教學(xué)模式的基本理論、構(gòu)建新的課程體系等問題,仍將有待于更深入的研究。
數(shù)學(xué)建模論文感悟篇十一
問題教學(xué)法是一種新的教學(xué)模式,與傳統(tǒng)教學(xué)有很大的區(qū)別。在傳統(tǒng)的教學(xué)中,教師考慮最多的是“教什么、怎樣教”的問題,很少顧及學(xué)生“學(xué)什么、怎樣學(xué)”,限制了學(xué)生學(xué)習(xí)的主動(dòng)性和創(chuàng)造性。[1]為了改變這種現(xiàn)狀,美國神經(jīng)病學(xué)教授howardbarrows于1969年創(chuàng)立了基于問題和項(xiàng)目的學(xué)習(xí)(problembasedlearning)理念教學(xué)法。[2]這種方法不像傳統(tǒng)教學(xué)模式那樣先學(xué)習(xí)理論知識再解決問題,而是讓學(xué)生圍繞問題尋求解決方案。它強(qiáng)調(diào)讓學(xué)生置身于復(fù)雜的、有意義的問題情境中,并讓學(xué)生成為該問題情境的主體,自己去分析問題,學(xué)習(xí)解決該問題所需的知識,進(jìn)而通過合作解決問題。此外,教師在該過程中也可以通過提問的方式,不斷地激發(fā)學(xué)生去思考、探索,培養(yǎng)學(xué)生自主學(xué)習(xí)的能力。與傳統(tǒng)的教學(xué)模式相比,問題教學(xué)模式更注重對學(xué)生自學(xué)能力、創(chuàng)新能力、發(fā)現(xiàn)問題和解決問題能力的培養(yǎng)。問題教學(xué)模式剛開始主要被應(yīng)用于醫(yī)學(xué)、市場營銷、實(shí)驗(yàn)教學(xué)、畢業(yè)論文的寫作等領(lǐng)域。[3]近年來,一些學(xué)者開始探索將這種教學(xué)模式引入到“數(shù)學(xué)建?!闭n程的教學(xué)中。黃河科技學(xué)院從20xx級信息與計(jì)算科學(xué)專業(yè)的學(xué)生開始,在“數(shù)學(xué)建?!苯虒W(xué)活動(dòng)引入問題教學(xué)模式,已經(jīng)取得了初步的成效。
1.教師提出問題
教師在每次上課之前要精心設(shè)計(jì)適合學(xué)生自學(xué)的問題體系,目的是為了誘導(dǎo)學(xué)生的思維,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生置身于特定的問題環(huán)境中,營造一種質(zhì)疑、探究、討論、和諧互動(dòng)的學(xué)習(xí)氛圍。這一步驟要求教師不僅需要熟悉教學(xué)內(nèi)容,還必須更好地了解學(xué)生的實(shí)際情況,這是成功實(shí)施問題教學(xué)模式的基礎(chǔ)。
2.積極分析問題
問題教學(xué)法的基本特點(diǎn)是教學(xué)環(huán)節(jié)由一連串問題組成,并且問題與問題之間的`聯(lián)系具有鏈接性和層次性。前一個(gè)問題是后一個(gè)問題的鋪墊,后一個(gè)問題又是前一個(gè)問題的深化和拓展。在學(xué)生熟悉了相關(guān)知識的基礎(chǔ)上,根據(jù)給出的實(shí)際問題,教師引導(dǎo)學(xué)生進(jìn)行探索。探索活動(dòng)一般包括自學(xué)教材、觀察實(shí)驗(yàn)、小組討論等方式。學(xué)生一方面要充分利用原有認(rèn)知結(jié)構(gòu)中存儲的有關(guān)知識信息,另一方面可以利用教材、實(shí)驗(yàn)或教師提供的閱讀材料,獲取解決問題的方法。在對問題討論中教師要?jiǎng)?chuàng)設(shè)和諧民主的教學(xué)環(huán)境,要讓學(xué)生充分發(fā)表自己的見解,大膽質(zhì)疑,相互答辯,相互啟發(fā)。
3.解決問題
當(dāng)所有學(xué)生都對問題的解決方案有了一定的思路之后,教師組織課堂發(fā)言。讓每一小組推薦一位表達(dá)能力強(qiáng)的學(xué)生,在課堂上把他們對解決問題的方法及結(jié)論的合理性進(jìn)行講解。在每組講解完之后,其他學(xué)生可以對他們進(jìn)行提問,而發(fā)言小組的學(xué)生要向其他同學(xué)和老師進(jìn)行解釋。教師在主持和引導(dǎo)的同時(shí),也可以向?qū)W生提問。這樣通過對一個(gè)又一個(gè)問題的提問,推動(dòng)學(xué)生思考,將問題引向縱深層次,一步步朝著解決問題的方向發(fā)展。
4.對問題的結(jié)果進(jìn)行評價(jià)
問題教學(xué)法不僅以問題為開端,還以問題為終結(jié)。教學(xué)的最終結(jié)果不是傳授知識來消滅問題,而是在解決已有問題的基礎(chǔ)上引發(fā)更多、更廣泛的問題。因此教師在對問題的結(jié)果進(jìn)行總結(jié)時(shí)要注意引導(dǎo)學(xué)生反思“這個(gè)問題為什么要這樣解決”,“這個(gè)問題還可以怎樣解決”,“從解決這個(gè)問題中我學(xué)到了什么”以及“這種解決方案還有什么不足之處”等等,從而激發(fā)他們提出新的問題,這是問題教學(xué)中最重要、最有教益的一個(gè)方面。
在基于問題教學(xué)的過程中,每次討論的問題都圍繞某一專題進(jìn)行討論學(xué)習(xí),下面以“公平的席位分配問題”[4]為例,說明在“數(shù)學(xué)建?!敝腥绾芜\(yùn)用問題教學(xué)法。
1.合理設(shè)計(jì)問題
獎(jiǎng)學(xué)金評定是學(xué)生比較關(guān)心的問題,筆者根據(jù)學(xué)生的興趣及認(rèn)知水平選擇“獎(jiǎng)學(xué)金名額分配問題”。設(shè)某校有5個(gè)系a、b、c、d、e,各系學(xué)生數(shù)分別為345、72、894、68、39,現(xiàn)在有74個(gè)獎(jiǎng)學(xué)金名額,問每個(gè)系分配幾個(gè)名額比較公平?[5]在給出問題后,我們將相關(guān)問題印發(fā)給學(xué)生,并讓學(xué)生課下先收集關(guān)于“公平的席位分配問題”的模型及相關(guān)求解方法并認(rèn)真研讀。
2.小組討論分析問題
根據(jù)課下學(xué)生收集的求解方案,上課時(shí)首先以小組為單位初步討論。首先提出如果讓同學(xué)們進(jìn)行分配的話,他們會使用什么方法進(jìn)行分配,讓他們進(jìn)行討論。學(xué)生首先會給出比例分配方案,如果按人數(shù)比例分配到各系的名額恰好都是整數(shù),可以得到完全公平的分配方案。但在很多情況下,按人數(shù)比例分配到各系的名額帶有小數(shù)。比如在這個(gè)問題中各系分配的名額數(shù)分別為:18.00、3.76、46.65、3.55、2.04,有小數(shù)部分??梢韵劝颜麛?shù)分配完,這時(shí)各系分配的名額數(shù)為:18、3、46、3、2。共分配了72名額,還有2個(gè)名額該如何分配?大家經(jīng)過討論,會提出誰的小數(shù)部分大就把名額給誰的分配方案,于是第73個(gè)名額給b系,第74個(gè)名額給c系。最終的方案是各系名額數(shù)分別為:18、4、47、3、2。接著老師會提出下面的問題,這種分配方案對誰最不公平?學(xué)生會進(jìn)一步討論每個(gè)名額代表的人數(shù),a為19.17人,b為18人,c為19.02人,d為22.67人,e為19.5人,說明這種分配方案對d系最不公平,而b系最占便宜,兩個(gè)系中每個(gè)名額代表的人數(shù)相差了4.67人。那么要重點(diǎn)討論有沒有相對來說比較公平的席位分配方案。
3.學(xué)生進(jìn)行發(fā)言討論
在所有小組都討論完之后,教師組織各組學(xué)生進(jìn)行課堂發(fā)言和討論,讓每組選一人報(bào)告本小組討論結(jié)果。教師對各組的報(bào)告進(jìn)行評價(jià),指出在討論過程中的問題及不足之處。在這個(gè)問題中,學(xué)生根據(jù)課下收集的文獻(xiàn)資料會逐步提出q值分配方案,q值分配方案的改進(jìn),q值+d’hondt分配方案,席位分配的平均公平度方案等等。每種方案都是前面方案的改進(jìn),最后我們提出問題,這些分配方案公平度如何?讓學(xué)生逐一討論,從而營造出一個(gè)討論主題鮮明、學(xué)習(xí)氛圍良好的課堂環(huán)境。
4.教師對結(jié)果進(jìn)行評價(jià)總結(jié)
在這個(gè)問題中,經(jīng)過逐一討論,大部分學(xué)生認(rèn)為問題已經(jīng)圓滿解決了,不會再對結(jié)果進(jìn)行歸納整理,不會反思問題解決的思路。因此在最初的問題解決后,老師要引導(dǎo)學(xué)生進(jìn)行評價(jià)總結(jié),比如:“各個(gè)方案的公平度如何”,“我們還有沒有更公平的分配方案”,“公平的席位分配方案應(yīng)滿足什么原則”等等。
從“公平的席位分配問題”這個(gè)案例可以看到,在教學(xué)中為學(xué)生設(shè)計(jì)一個(gè)真實(shí)的問題進(jìn)行教學(xué),學(xué)生可以通過真實(shí)問題進(jìn)行學(xué)習(xí),并且以一個(gè)真實(shí)問題的解決為主線,激發(fā)學(xué)生的學(xué)習(xí)興趣和探索精神,再通過結(jié)果反饋信息,引導(dǎo)學(xué)生逐步深入理解學(xué)習(xí)內(nèi)容。學(xué)生在研究問題的過程中不僅學(xué)習(xí)了課本上的知識,而且還親身體會了解決實(shí)際問題的樂趣,為學(xué)生以后自主學(xué)習(xí)提供了極大的幫助。[6]四、結(jié)語當(dāng)然,在“數(shù)學(xué)建?!闭n程的教學(xué)過程中問題教學(xué)模式也存在不足之處,比如課程內(nèi)容多、課時(shí)少,問題討論時(shí)間和講授時(shí)間出現(xiàn)矛盾,對有的專題討論不夠深入,學(xué)生參與度不夠,學(xué)生發(fā)言的深度和廣度都有待于進(jìn)一步提高等等。這需要教師認(rèn)真歸納講課內(nèi)容,盡量分離出較多比較有吸引力的專題供學(xué)生討論,以問題為中心規(guī)劃教學(xué)內(nèi)容,讓學(xué)生圍繞問題尋求解決方案,從而提高學(xué)生學(xué)習(xí)的主動(dòng)性,提高學(xué)生在教學(xué)過程中的參與程度,激發(fā)學(xué)生的求知欲?!皵?shù)學(xué)建模”課程教學(xué)的本身就是一個(gè)不斷探索、創(chuàng)新和提高的過程,選擇正確有效的教學(xué)方法能更好培養(yǎng)學(xué)生的創(chuàng)新能力,激發(fā)學(xué)生對數(shù)學(xué)建模的興趣。
數(shù)學(xué)建模論文感悟篇十二
在高等教育事業(yè)改革不斷深化的背景下,為了提升教育教學(xué)質(zhì)量,新時(shí)期對大學(xué)數(shù)學(xué)教學(xué)提出了更高的要求。大學(xué)數(shù)學(xué)作為課堂教學(xué)的主體,教師在傳授知識的同時(shí),要注重學(xué)生學(xué)習(xí)能力和解決問題能力的培養(yǎng)。
數(shù)學(xué)知識來源于生活,應(yīng)用于生活,如微積分作為高等數(shù)學(xué)知識中的典型代表,在各個(gè)行業(yè)中具有不可或缺的作用。為此,任課教師在大學(xué)數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題和解決問題的能力十分重要,在傳授知識的過程中幫助學(xué)生利用所學(xué)知識來解決實(shí)際問題。一般情況下,教師著重介紹相關(guān)數(shù)學(xué)概念和原理,推導(dǎo)常用公式,促使學(xué)生能夠記住公式,學(xué)會公式的應(yīng)用過程,逐漸掌握解題技巧。
因此,如何能夠在傳授知識的同時(shí),促使學(xué)生掌握數(shù)學(xué)學(xué)習(xí)方法,將所學(xué)知識應(yīng)用到實(shí)踐中來解決數(shù)學(xué)問題是一個(gè)首要問題。從大量教學(xué)實(shí)踐中可以了解到,在大學(xué)數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模思想十分重要,有助于激發(fā)學(xué)生的學(xué)習(xí)興趣,促使學(xué)生積極投入其中,切實(shí)提升學(xué)生的數(shù)學(xué)專業(yè)水平。
在大學(xué)數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模思想,應(yīng)該結(jié)合實(shí)際情況,深入挖掘數(shù)學(xué)知識。在教學(xué)中,教師應(yīng)該充分發(fā)揮自身引導(dǎo)作用,聯(lián)系學(xué)生數(shù)學(xué)知識實(shí)際學(xué)習(xí)情況,有針對性地整合數(shù)學(xué)知識,了解相關(guān)數(shù)學(xué)內(nèi)容,這樣不僅可以豐富教學(xué)內(nèi)容,還可以為課堂教學(xué)注入新的活力,有效激發(fā)學(xué)生的學(xué)習(xí)興趣,提升學(xué)習(xí)成效。具體表現(xiàn)在以下方面:
(一)閉區(qū)間連續(xù)函數(shù)的性質(zhì)
閉區(qū)間連續(xù)函數(shù)的性質(zhì)內(nèi)容是大學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,由于知識理論性較強(qiáng),知識較為抽象,學(xué)習(xí)難度較大,在講解完相關(guān)理論知識后,可以引入椅子的穩(wěn)定問題,創(chuàng)建數(shù)學(xué)模型,提問學(xué)生如何在不平穩(wěn)的地面上平穩(wěn)地放置椅子。學(xué)生可以了解到這一問題同所學(xué)知識相關(guān)聯(lián),閉區(qū)間連續(xù)函數(shù)的性質(zhì)可以解決這一問題。學(xué)生整合所學(xué)知識,通過對問題的分析,可以了解到利用介值定理來解決問題。通過建立數(shù)學(xué)模型,學(xué)生更加充分地掌握了閉區(qū)間連續(xù)函數(shù)的`性質(zhì),提升了學(xué)習(xí)成效,為后續(xù)知識學(xué)習(xí)打下了堅(jiān)實(shí)的基礎(chǔ)。
(二)定積分
定積分是高等數(shù)學(xué)教學(xué)中的重要組成部分,在解決幾何問題時(shí)均有所應(yīng)用,并且被廣泛應(yīng)用在實(shí)際生活中。如,在一道全國大學(xué)生數(shù)學(xué)建模競賽題目中,計(jì)算煤矸石的堆積,煤礦采煤時(shí)所產(chǎn)生的煤矸石,為了處理煤矸石就需要征用土地來堆放煤矸石,根據(jù)上級主管部門的年產(chǎn)量計(jì)劃和經(jīng)費(fèi)如何堆放煤矸石?題目中的關(guān)鍵點(diǎn)在于堆放煤矸石的征地費(fèi)用和電費(fèi)的計(jì)算。征地費(fèi)計(jì)算難度較小,但是煤矸石堆積的電費(fèi)計(jì)算難度較高,但此項(xiàng)內(nèi)容涉及定積分中的變力做功知識點(diǎn)。學(xué)生掌握這些內(nèi)容后就可以建立數(shù)學(xué)模型,更加高效地了解如何根據(jù)預(yù)期開采量來堆放煤矸石。通過數(shù)學(xué)模型,學(xué)生也可以了解到定積分內(nèi)容同實(shí)際生活之間的聯(lián)系,學(xué)習(xí)積極性就會大大提升。
(三)最值問題
在高等數(shù)學(xué)中,最值問題占比比較大,同時(shí)在實(shí)際生活中應(yīng)用較為普遍,導(dǎo)數(shù)知識可以解決實(shí)際生活中的最值問題,這就需要提高對導(dǎo)數(shù)知識實(shí)際應(yīng)用的重視程度。教師在為學(xué)生講解完導(dǎo)數(shù)的相關(guān)概念知識后,通過建立關(guān)于天空的采空模型,提問學(xué)生為什么雨后太陽出來了,雨滴還在空中,那么將為人們呈現(xiàn)出什么樣的景色?學(xué)生回答彩虹。繼續(xù)提問彩虹為什么有顏色,是什么決定了天空中彩虹的高度?對此,學(xué)生的興趣較為濃厚,可以分為若干個(gè)小組進(jìn)行討論。通過分析可以得出,雨滴可以反射太陽光,形成彩虹。結(jié)合光線的反射和折射定律,借助所學(xué)的導(dǎo)數(shù)知識來計(jì)算得出太陽光偏轉(zhuǎn)角度的最值,有效解決實(shí)際學(xué)習(xí)的問題,加深對知識的理解和記憶,提升數(shù)學(xué)知識學(xué)習(xí)成效。
(四)微分方程
微分方程知識同實(shí)際生活之間息息相關(guān),建立微分方程可以有效解決實(shí)際生活中的問題。這就需要學(xué)生在了解微分方程知識的基礎(chǔ)上,進(jìn)一步建立數(shù)學(xué)模型來解決問題。如,在當(dāng)前社會進(jìn)步和發(fā)展下,人均物質(zhì)生活水平顯著提升,肥胖成為危害人們身體健康的主要問題之一,受到社會各界廣泛的關(guān)注和重視。通過問題精簡化和假設(shè),可以得到微分方程模型,在分析方程中飲食控制和運(yùn)動(dòng)鍛煉兩個(gè)關(guān)鍵要素后,有助于避免人們走入減肥誤區(qū),幫助他們樹立正確的減肥理念。
(五)矩陣
在高等數(shù)學(xué)教學(xué)中,矩陣的概念較為抽象和復(fù)雜,在講解問題之前,應(yīng)該根據(jù)知識點(diǎn)來創(chuàng)設(shè)教學(xué)情境,輔助教學(xué)活動(dòng)。通過引入企業(yè)工廠生產(chǎn)總成本模型,充分描述工廠生產(chǎn)中需要的原材料和勞動(dòng)力,并且詳細(xì)記錄管理費(fèi)用。這有助于加深人們對矩陣概念的認(rèn)知和理解,提升學(xué)習(xí)成效,同時(shí)幫助學(xué)生深入理解和記憶,鍛煉學(xué)生的數(shù)學(xué)解題思維,加深概念理解和記憶,掌握解題技巧和方法,從而提升學(xué)生的數(shù)學(xué)建模意識。
綜上所述,在大學(xué)數(shù)學(xué)教學(xué)中,可以通過數(shù)學(xué)建模思想來引導(dǎo)學(xué)生養(yǎng)成良好的自主學(xué)習(xí)能力,發(fā)揮自身的主體能動(dòng)性和創(chuàng)新能力,提升學(xué)生解決問題的能力,將所學(xué)知識靈活運(yùn)用到實(shí)際生活中,養(yǎng)成良好的數(shù)學(xué)素養(yǎng)。
數(shù)學(xué)建模論文感悟篇十三
:本文從“如何培養(yǎng)學(xué)生實(shí)踐應(yīng)用能力提高就業(yè)素質(zhì)”出發(fā),通過對大專院校進(jìn)行廣泛的調(diào)研,分析了目前高職院校開展數(shù)學(xué)建模的現(xiàn)狀,并總結(jié)了黑龍江交通職業(yè)技術(shù)院校開展數(shù)學(xué)建模教學(xué)與競賽活動(dòng)的經(jīng)驗(yàn)和做法,對指導(dǎo)高職院校的數(shù)學(xué)建模實(shí)踐教學(xué)工作具有重要意義。
:數(shù)學(xué)建模競賽;教學(xué)改革;實(shí)踐教學(xué)
中國大學(xué)生數(shù)學(xué)建模競賽是目前全國高校中規(guī)模最大、影響最廣的大學(xué)生課外科技活動(dòng),它在培養(yǎng)大學(xué)生知識的應(yīng)用能力、創(chuàng)新能力以及團(tuán)隊(duì)的合作精神、頑強(qiáng)的意志品質(zhì)等方面都顯示了獨(dú)特的作用和優(yōu)勢。然而,大學(xué)生數(shù)學(xué)建模競賽在高職學(xué)院的開展卻起步遲緩且步履維艱,如何改變現(xiàn)狀,促進(jìn)大學(xué)生數(shù)學(xué)建模競賽在高職學(xué)院持續(xù)健康發(fā)展,已經(jīng)成為教育工作者研究的重要課題。
總體來說起步較緩慢,以黑龍江賽區(qū)為例,參加全國大學(xué)生數(shù)學(xué)建模競賽的院校和參賽隊(duì)雖然逐年增加,20xx年達(dá)到了34所參賽院校共444支參賽隊(duì),但是高職學(xué)院參賽的少,僅占全省高職學(xué)院的1/3,有的高職學(xué)院長期徘徊在競賽之外,有的斷斷續(xù)續(xù),今年參賽明年休息。分析其原因主要有兩個(gè):一是部分高職學(xué)院對大學(xué)生數(shù)學(xué)建模競賽十分陌生,對競賽的意義缺乏認(rèn)識,沒有配套的實(shí)施辦法和有效的激勵(lì)機(jī)制;二是競賽的指導(dǎo)教師匱乏,能力有限,目前高職數(shù)學(xué)教師隊(duì)伍嚴(yán)重萎縮,有的學(xué)院數(shù)學(xué)教研室只剩一兩個(gè)人。
參加數(shù)學(xué)建模競賽需要扎實(shí)的數(shù)學(xué)功底和良好的應(yīng)用意識。而高職的課程體系突出專業(yè)技能的培養(yǎng),通常只在一年級開設(shè)一個(gè)學(xué)期的“高等數(shù)學(xué)”課程,總學(xué)時(shí)一般僅有30學(xué)時(shí),有的甚至不開數(shù)學(xué)課。教學(xué)內(nèi)容以一元微積分的基本概念和簡單算法為主。大多數(shù)參賽的高職院校,僅僅是為競賽而競賽,極少關(guān)注數(shù)學(xué)建模思想和方法在深化數(shù)學(xué)教學(xué)改革、促進(jìn)課程建設(shè)等方面的作用。
高職學(xué)生總體水平較差,但對從未接觸過的數(shù)學(xué)建模充滿好奇。然而數(shù)學(xué)建模競賽對學(xué)生的知識和能力要求都比較高,同時(shí)因高職學(xué)生二年級末就要面臨頂崗實(shí)習(xí)和就業(yè)問題,參賽學(xué)生通常只能在一年級中選拔,他們的基礎(chǔ)和能力顯然都沒有本科生扎實(shí),因此賽前培訓(xùn)的工作量非常大。
通過數(shù)學(xué)建模競賽可以提高學(xué)生的綜合素質(zhì),是培養(yǎng)學(xué)生綜合能力的有效途徑。數(shù)學(xué)建模競賽可以培養(yǎng)團(tuán)隊(duì)精神與合理表達(dá)自己思想和綜合運(yùn)用知識的能力等,所有這些對提高學(xué)生的素質(zhì)都是很有幫助的,且非常符合當(dāng)今提倡素質(zhì)教育精神。
數(shù)學(xué)建模競賽不同于其它各種具有單個(gè)學(xué)科如:數(shù)學(xué)競賽,物理競賽,計(jì)算機(jī)程序設(shè)計(jì)競賽等的競賽,因?yàn)檫@些競賽只涉及到一門學(xué)科,甚至一門課程的知識,而數(shù)學(xué)建模競賽涉及到數(shù)學(xué)學(xué)科,計(jì)算機(jī)學(xué)科等其他許多學(xué)科的知識,僅數(shù)學(xué)學(xué)科就涉及到高等數(shù)學(xué),線性代數(shù),概率統(tǒng)計(jì),計(jì)算方法,運(yùn)籌學(xué),圖論,數(shù)學(xué)軟件等方面的知識。學(xué)生要想在數(shù)學(xué)建模競賽中取得好成績,除了具有以上數(shù)學(xué)知識外,還要有較好的計(jì)算機(jī)編程能力,網(wǎng)上查閱資料的能力及論文寫作能力等,此外,他們還應(yīng)有接觸各種新知識的環(huán)境和喜好。因?yàn)閿?shù)學(xué)建模的競賽題遠(yuǎn)非只是一個(gè)數(shù)學(xué)題目,而更多是一個(gè)初看起來與數(shù)學(xué)沒有聯(lián)系的實(shí)際問題,它涉及到很多知識,有些還是當(dāng)前尚未解決的問題,如:飛行管理問題,dna排序問題等就是較有代表性的數(shù)學(xué)建??荚囶}目。通常數(shù)學(xué)建模題目只給出問題的描述和要達(dá)到的目的,參賽學(xué)生要做的事情是將問題用數(shù)學(xué)語言轉(zhuǎn)化成數(shù)學(xué)問題,然后在數(shù)學(xué)的背景下使用計(jì)算機(jī)或數(shù)學(xué)軟件來求解,最后再根據(jù)所得的解來解釋和檢驗(yàn)所給的實(shí)際問題。與數(shù)學(xué)競賽不同的是,數(shù)學(xué)建模賽題沒有標(biāo)準(zhǔn)的正確答案,試卷的評分標(biāo)準(zhǔn)是看學(xué)生解決問題和創(chuàng)新的能力.因此要做好一個(gè)數(shù)學(xué)建模問題并不是一件容易的事情,需要學(xué)生很多的知識以及對所學(xué)各種知識的綜合運(yùn)用,對學(xué)生是一個(gè)挑戰(zhàn)。
數(shù)學(xué)建模競賽的題目由工程技術(shù)、經(jīng)濟(jì)管理、社會生活等領(lǐng)域中的實(shí)際問題簡化加工而成,沒有事先設(shè)定的標(biāo)準(zhǔn)答案,但留有充分余地供參賽者發(fā)揮其聰明才智和創(chuàng)造精神。競賽以通訊形式進(jìn)行,三名大學(xué)生組成一隊(duì),在三天時(shí)間內(nèi)可以自由地收集資料、調(diào)查研究,使用計(jì)算機(jī)、軟件和互聯(lián)網(wǎng),但不得與隊(duì)外任何人(包括指導(dǎo)教師在內(nèi))以任何方式討論賽題。競賽要求每個(gè)隊(duì)完成一篇用數(shù)學(xué)建模方法解決實(shí)際問題的科技論文。競賽評獎(jiǎng)以假設(shè)的合理性、建模的創(chuàng)造性、結(jié)果的正確性以及文字表述的清晰程度為主要標(biāo)準(zhǔn)??梢钥闯?,這項(xiàng)競賽從內(nèi)容到形式與傳統(tǒng)的數(shù)學(xué)競賽不同,是大學(xué)階段除畢業(yè)設(shè)計(jì)外難得的一次“真刀真槍”的訓(xùn)練,相當(dāng)程度上模擬了學(xué)生畢業(yè)后工作時(shí)的情況,既豐富、活躍了廣大同學(xué)的課外生活,也為優(yōu)秀學(xué)生脫穎而出創(chuàng)造了條件。
競賽讓學(xué)生面對一個(gè)從未接觸過的實(shí)際問題,運(yùn)用數(shù)學(xué)方法和計(jì)算機(jī)技術(shù)加以分析、解決,他們必須開動(dòng)腦筋、拓寬思路,充分發(fā)揮創(chuàng)造力和想象力,從而培養(yǎng)了學(xué)生的創(chuàng)新意識及主動(dòng)學(xué)習(xí)、獨(dú)立研究的能力。
通過數(shù)學(xué)建模競賽可以推動(dòng)高校的教育教學(xué)改革。十幾年來在競賽的推動(dòng)下許多高校相繼開設(shè)了數(shù)學(xué)建模課程以及與此密切相關(guān)的數(shù)學(xué)實(shí)驗(yàn)課程,出版了兩百多本相關(guān)的教材,一些教師正在進(jìn)行將數(shù)學(xué)建模的思想和方法融入數(shù)學(xué)主干課程的研究和試驗(yàn)。
數(shù)學(xué)教育本質(zhì)上是一種素質(zhì)教育,要體現(xiàn)素質(zhì)教育的要求,數(shù)學(xué)的教學(xué)不能完全和外部世界隔離開來,關(guān)起門來在數(shù)學(xué)的概念、方法和理論中打圈子,處于自我封閉狀態(tài),以致學(xué)生在學(xué)了許多據(jù)說是非常重要、十分有用的數(shù)學(xué)知識以后,卻不怎么會應(yīng)用或無法應(yīng)用。開設(shè)數(shù)學(xué)建模和數(shù)學(xué)實(shí)驗(yàn)課程,舉辦數(shù)學(xué)建模競賽,為數(shù)學(xué)與外部世界的聯(lián)系打開了一個(gè)通道,提高了學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性和主動(dòng)性,是對數(shù)學(xué)教學(xué)體系和內(nèi)容改革的一個(gè)成功的嘗試。
數(shù)學(xué)建模教學(xué)和競賽活動(dòng)中經(jīng)常用到計(jì)算機(jī)和數(shù)學(xué)軟件,普遍采取案例教學(xué)和課堂討論,豐富了數(shù)學(xué)教學(xué)的形式和方法。經(jīng)過幾年來參加數(shù)學(xué)建模競賽和教學(xué)方法和手段的改革,一方面教師的'知識面拓寬了,知識結(jié)構(gòu)改善了,利用數(shù)學(xué)工具和計(jì)算機(jī)找出解決實(shí)際問題的意識和能力提高了,另一方面,由于理論與實(shí)際的結(jié)合多,學(xué)生的動(dòng)手能力增強(qiáng)了,學(xué)習(xí)的主動(dòng)性和積極性有了很大的提高,同時(shí)也培養(yǎng)了學(xué)生的創(chuàng)新意識和解決實(shí)際問題的能力。
近年來,我校一直有序地組織學(xué)生參加數(shù)學(xué)建模競賽,學(xué)校領(lǐng)導(dǎo)和教務(wù)處等有關(guān)部門非常重視和支持學(xué)生參加數(shù)學(xué)建模競賽,逐步探索完善了一套合理的激勵(lì)機(jī)制,激發(fā)指導(dǎo)教師的工作積極性和學(xué)生的參賽榮譽(yù)感及學(xué)習(xí)積極性。
我校開展的數(shù)學(xué)建模競賽活動(dòng)是采用第二課堂課余活動(dòng)的形式進(jìn)行的。由數(shù)學(xué)教研室負(fù)責(zé)每學(xué)期對學(xué)生進(jìn)行集體強(qiáng)化培訓(xùn),以提高建模水平,培養(yǎng)學(xué)生之間的團(tuán)隊(duì)協(xié)作精神。通常我們在每年四月份組織校級競賽,然后評選出五個(gè)代表隊(duì)的優(yōu)秀論文參加?xùn)|三省數(shù)學(xué)建模聯(lián)賽的評獎(jiǎng)。通過校級的比賽在全校范圍內(nèi)選拔出隊(duì)員,再進(jìn)行深入的培訓(xùn),最后參加全國比賽。
我校歷年來在大學(xué)生數(shù)學(xué)建模競賽活動(dòng)中保持優(yōu)秀成績,涌現(xiàn)了一批優(yōu)秀的指導(dǎo)教師和學(xué)生。20xx年黑龍江交通職業(yè)職業(yè)技術(shù)學(xué)院第一次組隊(duì)參加?xùn)|北三省大學(xué)生數(shù)學(xué)建模競賽,由于領(lǐng)導(dǎo)重視,工作扎實(shí),平時(shí)訓(xùn)練重過程、重細(xì)節(jié),競賽中隊(duì)員們表現(xiàn)出了良好的意志品質(zhì)和團(tuán)隊(duì)精神,最終取得了不俗的成績:5個(gè)參賽隊(duì)中,1個(gè)隊(duì)榮獲省一等獎(jiǎng),另有1個(gè)隊(duì)獲省二等獎(jiǎng)。20xx年參加?xùn)|北三省數(shù)學(xué)建模聯(lián)賽,四個(gè)隊(duì)獲得二等獎(jiǎng);20xx年參加全國大學(xué)生數(shù)學(xué)建模競賽,一個(gè)隊(duì)獲得省級二等獎(jiǎng),一個(gè)隊(duì)獲得省級三等獎(jiǎng);20xx年參加?xùn)|北三省數(shù)學(xué)建模聯(lián)賽,一個(gè)隊(duì)獲得一等獎(jiǎng),三個(gè)隊(duì)獲得二等獎(jiǎng)。事實(shí)證明:通過自身的努力,高職學(xué)院可以在全國大學(xué)生數(shù)學(xué)建模競賽中取得較好成績,而高職學(xué)生也必定會在艱苦的培訓(xùn)和競賽過程中得到鍛煉和提高。
盡管目前高職學(xué)院開展大學(xué)生數(shù)學(xué)建模競賽活動(dòng)仍有不少困難,但是我們有理由相信,在社會各界的關(guān)心和支持下,這一項(xiàng)能使高職學(xué)生、教師和學(xué)院全面受益的競賽不僅值得我們?yōu)橹?而且一定能越辦越好。
數(shù)學(xué)建模論文感悟篇十四
高校學(xué)生社團(tuán)是一種具有共同興趣愛好的學(xué)生自發(fā)組織的開展一些藝術(shù)、娛樂和學(xué)術(shù)型的活動(dòng)的團(tuán)體。學(xué)生社團(tuán)以其鮮明的開放性、自主性以及多樣性等特點(diǎn),為一些有特長的學(xué)生提供了廣闊的舞臺,讓這些學(xué)生可以更好的發(fā)揮自己的才能,促進(jìn)其更好的成才。全國大學(xué)生數(shù)學(xué)建模競賽是最早由教育部工業(yè)與數(shù)學(xué)應(yīng)用學(xué)會共同承辦的一個(gè)科技性的賽事,該比賽要通過數(shù)學(xué)和計(jì)算機(jī)的知識來解決實(shí)際生活中的問題,由于其特有的比賽形式,使得高職院校在全校范圍內(nèi)直接選拔參賽隊(duì)員是件費(fèi)神的事情,因此,為了更好的為數(shù)學(xué)建模競賽選拔人才,激發(fā)學(xué)生的學(xué)習(xí)興趣,學(xué)術(shù)性社團(tuán)“數(shù)學(xué)建模協(xié)會”也就應(yīng)運(yùn)而生。數(shù)學(xué)建模協(xié)會的成立,可以更好的為學(xué)生提供一個(gè)展示自己的機(jī)會,可以增強(qiáng)學(xué)生對數(shù)學(xué)的學(xué)習(xí)興趣,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)解決實(shí)際問題的能力,激發(fā)學(xué)生的創(chuàng)新思維,為數(shù)學(xué)建模競賽選拔人才。本文主要以西安航空職業(yè)技術(shù)學(xué)院數(shù)學(xué)建模協(xié)會為例,探討高職數(shù)學(xué)建模社團(tuán)活動(dòng)開展的形式和意義。
(一)數(shù)學(xué)建模社團(tuán)有利于數(shù)學(xué)建模競賽的開展。高職數(shù)學(xué)建模協(xié)會為數(shù)學(xué)建模競賽搭建了一個(gè)平臺,是數(shù)學(xué)建模競賽強(qiáng)有力的后盾,數(shù)學(xué)建模競賽成績的取得與這個(gè)平臺密不可分,只有充分發(fā)揮數(shù)學(xué)建模社團(tuán)的作用,才能源源不斷的為數(shù)學(xué)建模提供人力和智力保障,才能更好的推動(dòng)高職數(shù)學(xué)的學(xué)習(xí)氛圍。1、數(shù)學(xué)建模協(xié)會起著動(dòng)員宣傳的作用從沒聽過,到知道,在到熟悉,只有通過大力宣傳和動(dòng)員,才能讓更多的人了解數(shù)學(xué)建模,讓更多優(yōu)秀學(xué)生參加到數(shù)學(xué)建模競賽中。大學(xué)校園中有許多數(shù)學(xué)愛好者,他們對數(shù)學(xué)建模也有一定的認(rèn)識,只要有參加數(shù)學(xué)建?;顒?dòng)的愿望的,都可以利用數(shù)學(xué)建模協(xié)會招新的機(jī)會,加入數(shù)學(xué)建模創(chuàng)新協(xié)會。將成績優(yōu)秀的學(xué)生邀請加入數(shù)學(xué)建模協(xié)會,對進(jìn)一步擴(kuò)大數(shù)學(xué)建模協(xié)會,夯實(shí)數(shù)學(xué)建?;A(chǔ),起著舉足輕重的作用。2、數(shù)學(xué)建模協(xié)會起著知識傳播的作用高職院校學(xué)生在校學(xué)習(xí)時(shí)間較短,學(xué)業(yè)較為繁重,課余時(shí)間較少,數(shù)學(xué)建模培訓(xùn)的時(shí)間不足,無法讓學(xué)生在短時(shí)期內(nèi)掌握較多的數(shù)學(xué)建模相關(guān)知識。因此,利用數(shù)學(xué)建模協(xié)會活動(dòng)可以開展數(shù)學(xué)建模課程的培訓(xùn)工作,普及數(shù)學(xué)建模相關(guān)知識。采用“老帶新”的模式進(jìn)行數(shù)學(xué)建模知識的普及。通過制定系統(tǒng)的培訓(xùn)方案,在每年秋季競賽后,參加過競賽的同學(xué)對新入?yún)f(xié)會的成員可以進(jìn)行初級培訓(xùn),為今后的競賽奠定基礎(chǔ)。3、數(shù)學(xué)建模社團(tuán)起著選拔學(xué)生的作用每年數(shù)學(xué)建模競賽的隊(duì)員需要通過校內(nèi)賽等形式進(jìn)行選拔,此時(shí),數(shù)學(xué)建模協(xié)會就起著校內(nèi)賽命題及選拔隊(duì)員的作用,當(dāng)然這種選拔方式也有的弊端,就是所有隊(duì)員都是來自校內(nèi)賽成績優(yōu)秀的學(xué)生,而校內(nèi)賽發(fā)揮不理想但建模能力突出或計(jì)算機(jī)技術(shù)水平優(yōu)秀的學(xué)生就沒法參加數(shù)學(xué)建模競賽。為確保每一位有能力的學(xué)生都能夠加入到建模競賽隊(duì)伍中來,可以通過校內(nèi)競賽與建模協(xié)會推薦兩者相結(jié)合的方式選拔建模競賽學(xué)生,以確保最優(yōu)優(yōu)秀的學(xué)生參加數(shù)學(xué)建模競賽。(二)數(shù)學(xué)建模社團(tuán)有利于大學(xué)生綜合素質(zhì)的培養(yǎng)。(1)數(shù)學(xué)建模社團(tuán)屬于專業(yè)的學(xué)術(shù)性社團(tuán),成立的目的是為了參加全國大學(xué)生數(shù)學(xué)建模競賽,數(shù)學(xué)建模社團(tuán)活動(dòng)的趣味性和實(shí)踐性可以提高學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生自主學(xué)習(xí)的能力,增加學(xué)生參與競賽的熱情。社團(tuán)活動(dòng)中的培訓(xùn)使學(xué)生可以更好的應(yīng)對競賽,取得更好的成績。另外,競賽之余還可以進(jìn)行其他領(lǐng)域的學(xué)術(shù)交流,比如計(jì)算機(jī),經(jīng)濟(jì),工程等領(lǐng)域,良好的交流氛圍激發(fā)學(xué)生的創(chuàng)新思維和意識,從而培養(yǎng)他們的創(chuàng)新能力。(2)數(shù)學(xué)建模社團(tuán)是學(xué)生自發(fā)組織的服務(wù)學(xué)生的群體,除了學(xué)術(shù)研究之外,還可以進(jìn)行一些創(chuàng)新創(chuàng)業(yè)的活動(dòng),具有更多的實(shí)踐的機(jī)會。比如,可以利用平時(shí)社團(tuán)所學(xué)的知識,以團(tuán)體的形式進(jìn)行一些數(shù)據(jù)處理的校企合作;也可以以微信平臺和微信群等發(fā)布一些數(shù)學(xué)建模相關(guān)的微課等,進(jìn)行一些微信群講座等等。這樣可以讓學(xué)生真正體會到數(shù)學(xué)的用處,達(dá)到學(xué)以致用的效果。(3)數(shù)學(xué)建模社團(tuán)是學(xué)生自發(fā)組織的學(xué)術(shù)性社團(tuán),社團(tuán)的組織機(jī)構(gòu)都是學(xué)生在擔(dān)任,社團(tuán)的活動(dòng)也都是學(xué)生在協(xié)調(diào)策劃,甚至很多時(shí)候社團(tuán)的老成員都可以輔助老師進(jìn)行社團(tuán)的一些學(xué)術(shù)性的講座。因此,在學(xué)習(xí)的同時(shí)還鍛煉了他們的處事應(yīng)變能力團(tuán)隊(duì)合作的能力,可以說提高了學(xué)生的綜合素質(zhì)。
(一)數(shù)學(xué)建模社團(tuán)的管理形式。數(shù)學(xué)建模協(xié)會作為一個(gè)學(xué)生群體組織,需要好的制度和管理模式。以筆者所在學(xué)校為例,數(shù)學(xué)建模創(chuàng)新協(xié)會具有自己的一套規(guī)章管理制度;在管理形式方面是以“三個(gè)管理面”來進(jìn)行社團(tuán)管理和學(xué)術(shù)交流的,具體如下:1、學(xué)術(shù)交流面這個(gè)主要是通過“社團(tuán)內(nèi)部進(jìn)行學(xué)術(shù)交流活動(dòng)”和“老帶新培訓(xùn)”兩部分組成,內(nèi)部的交流活動(dòng)主要是學(xué)生之間的相互溝通和交流,以及不定期的邀請指導(dǎo)教師和外校專家做一些數(shù)學(xué)建模報(bào)告。老帶新培訓(xùn)是指社團(tuán)主席團(tuán)成員(一般是參加過前一年全國大學(xué)生數(shù)學(xué)建模競賽的學(xué)生)為新入社團(tuán)的學(xué)生進(jìn)行培訓(xùn),培訓(xùn)的內(nèi)容基本上都是之前指導(dǎo)教師對他們集訓(xùn)時(shí)的內(nèi)容,這種培訓(xùn)方式可以提升社團(tuán)成員的授課和理解問題的能力,對于在校大學(xué)生來說是一次很好的鍛煉。2、網(wǎng)絡(luò)交流面采用qq群,網(wǎng)絡(luò)空間和微信公眾平臺等開展社團(tuán)成員之間的交流互動(dòng),社團(tuán)宣傳。筆者所在學(xué)校的數(shù)學(xué)建模創(chuàng)新協(xié)會每一屆社團(tuán)都有相應(yīng)的qq群,另外,在20xx年也積極申請了微信平臺,目前的'關(guān)注量也在800余人,微信平臺的建立可以更方面使大學(xué)生關(guān)注數(shù)學(xué)建模相關(guān)信息,尤其是對大一新生可以更多的取了解數(shù)學(xué)建模,擴(kuò)大數(shù)學(xué)建模的受益面和影響力。力求在大學(xué)生中營造一種“人人知數(shù)模,人人愛數(shù)模,人人參與數(shù)?!钡牧己玫慕逃h(huán)境,使建模活動(dòng)廣泛化、群眾化。3、交流互訪面開展研討會,專家報(bào)告會,社團(tuán)聯(lián)誼會等交流活動(dòng),既可以豐富數(shù)學(xué)建模社團(tuán)學(xué)生的知識面,又能促進(jìn)數(shù)學(xué)知識的理解和吸收,通過與其他社團(tuán)的聯(lián)誼,豐富了社團(tuán)學(xué)生的業(yè)余生活,又能學(xué)習(xí)其他社團(tuán)好的管理經(jīng)驗(yàn),促進(jìn)社團(tuán)管理的制度化、規(guī)范化、專業(yè)化,也只有通過不斷的學(xué)習(xí),不斷的交流,才能真正“走出去”,建立一個(gè)管理完善,富有成效的學(xué)生社團(tuán)。(二)數(shù)學(xué)建模社團(tuán)的特色活動(dòng)。數(shù)學(xué)建模社團(tuán)在開展學(xué)術(shù)活動(dòng)和輔助教師進(jìn)行競賽培訓(xùn)的同時(shí),還不定期的舉行一些活動(dòng),在提高學(xué)生學(xué)習(xí)興趣的同時(shí)也以擴(kuò)大了數(shù)學(xué)建模的影響力。以筆者坐在學(xué)校為例,每年可以開展一系列的數(shù)學(xué)建?;顒?dòng)。比如,數(shù)學(xué)建模創(chuàng)新協(xié)會納新,數(shù)學(xué)建模創(chuàng)新協(xié)會趣味運(yùn)動(dòng)會,數(shù)學(xué)科技節(jié),趣味數(shù)學(xué)知識競賽,數(shù)學(xué)建模經(jīng)驗(yàn)交流會,數(shù)學(xué)建模校內(nèi)賽,數(shù)學(xué)輔導(dǎo)周,數(shù)學(xué)建模專題講座。這些社團(tuán)活動(dòng)貫穿整個(gè)學(xué)年,不僅可以“由點(diǎn)及面、由淺入深”的對全國大學(xué)生數(shù)學(xué)建模競賽進(jìn)行宣傳,在最大的范圍內(nèi),提升數(shù)學(xué)建模大賽的影響力及參與度,成效較好。而且讓枯燥的學(xué)術(shù)型社團(tuán)變得豐富多彩,成為學(xué)生課后獲取知識的一種平臺,同時(shí)也是社團(tuán)蓬勃發(fā)展的利器。
總之,數(shù)學(xué)建模社團(tuán)活動(dòng)的開展,有利于培養(yǎng)學(xué)生的創(chuàng)新意識和思維,有利于激發(fā)了學(xué)生的學(xué)習(xí)興趣,有利于豐富學(xué)生的課后生活,有利于調(diào)動(dòng)了學(xué)生參加學(xué)術(shù)型社團(tuán)的積極性,同時(shí)也是高職院校組織參加數(shù)學(xué)建模競賽的強(qiáng)有力的后盾。
[1]胡建茹,王搖娟.加強(qiáng)專業(yè)社團(tuán)建設(shè)推進(jìn)大學(xué)生創(chuàng)新實(shí)踐能力培養(yǎng)[j].中國石油大學(xué)學(xué)報(bào):社會科學(xué)版,20xx(12)
[2]王珍娥,宋維,孫潔.?dāng)?shù)學(xué)社團(tuán)建設(shè)的探索與實(shí)踐[j].機(jī)械職業(yè)教育,20xx(7)
[3]李湘玲,王泳興.大學(xué)生社團(tuán)發(fā)展與創(chuàng)新型人才培養(yǎng)互動(dòng)機(jī)制研究:以吉首大學(xué)為例[j].黑龍江教育,20xx(11)
[4]孫浩,葉正麟.西北工業(yè)大學(xué)數(shù)學(xué)建模創(chuàng)新教育之探索[j].高等數(shù)學(xué)研究,20xx(4)
作者:張?zhí)m單位:西安航空職業(yè)技術(shù)學(xué)院通識教育學(xué)院
數(shù)學(xué)建模論文感悟篇十五
眾所周知,高等數(shù)學(xué)是所有自然學(xué)科的基礎(chǔ),一個(gè)大學(xué)生要想在以后的工作、學(xué)習(xí)中大展宏圖,那么就一定少不了堅(jiān)實(shí)的高等數(shù)學(xué)基礎(chǔ)。如何解決大學(xué)生在學(xué)習(xí)高等數(shù)學(xué)時(shí)碰到的問題?如何調(diào)動(dòng)大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性?讓學(xué)生們了解高等數(shù)學(xué)的用途,真正愿意靜下心來好好學(xué)習(xí)高等數(shù)學(xué),努力為以后的發(fā)展打好數(shù)學(xué)基礎(chǔ)。一直以來,各所高校的教師們都在努力的想辦法、找對策,一些實(shí)用有效的方法已經(jīng)提出并且在逐步推廣,比如,問題驅(qū)動(dòng)式的教學(xué)方法和基于pbl的教學(xué)方法等。筆者從所在學(xué)校的學(xué)生實(shí)際學(xué)習(xí)情況出發(fā),根據(jù)幾年來的教學(xué)心得和積累,打算提出一種較為實(shí)用的教學(xué)方法——利用數(shù)學(xué)建模的思想調(diào)動(dòng)大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性。該方法在筆者所教授的班級中已經(jīng)實(shí)際應(yīng)用過幾屆,學(xué)生普遍反映效果較好,任課老師也認(rèn)為該方法確實(shí)能極大地調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性。
提到高等數(shù)學(xué),學(xué)生們的第一反應(yīng)往往是:各種公式塞滿黑板,各種運(yùn)算充斥腦海;定義、定理、推論一個(gè)連著一個(gè);極限、連續(xù)、可導(dǎo)可積一個(gè)涵蓋另一個(gè)[1]。和高中數(shù)學(xué)相比,記憶的負(fù)擔(dān)輕了(實(shí)際上是知識點(diǎn)太多,記不住了),而對思維的要求卻提高了。對大學(xué)生來說,每一次的高數(shù)課,都是一次大腦的思維訓(xùn)練,時(shí)刻要求精神高度集中,一定要緊跟老師的步劃,一旦走神,后面的內(nèi)容就不知所云了。這樣的要求短時(shí)間可以達(dá)到,長久下去學(xué)生們會覺得很辛苦,很有壓力,會出現(xiàn)抱怨。筆者碰到過這樣的學(xué)生,剛開始時(shí),興致勃勃,雄心萬丈,可到后來興趣索然,馬虎應(yīng)對。怪學(xué)生嗎?誠然學(xué)生有責(zé)任,但任課老師也該負(fù)很大的責(zé)任。作為高等數(shù)學(xué)的老師我們經(jīng)常要面對學(xué)生提的這些問題:(1)我學(xué)的專業(yè)和高等數(shù)學(xué)相差甚遠(yuǎn),有可能這一輩子都不會用到高等數(shù)學(xué)的知識,那我學(xué)高等數(shù)學(xué)的目的何在?(2)老師您天天鼓吹高等數(shù)學(xué)的強(qiáng)大功能和廣泛用途,但是通過一學(xué)期的學(xué)習(xí),我發(fā)現(xiàn)除了對付考試有用,真不知高等數(shù)學(xué)可以用在何處?這些問題不及時(shí)解決,時(shí)間長了一定會影響到大學(xué)生對高等數(shù)學(xué)的學(xué)習(xí)積極性,甚至有可能會產(chǎn)生厭學(xué)的情緒和氛圍。有些極端的學(xué)生,期末考試之后,一聽到自己高等數(shù)學(xué)考過了,立馬將高等數(shù)學(xué)的課本給撕了,可想而知高等數(shù)學(xué)對其造成的壓力有多大[2]。如何解決大學(xué)生在學(xué)習(xí)高等數(shù)學(xué)時(shí)碰到的問題?如何調(diào)動(dòng)大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性?讓學(xué)生們了解高等數(shù)學(xué)的用途,真正愿意靜下心來好好學(xué)習(xí)高等數(shù)學(xué),努力地為以后的發(fā)展打好數(shù)學(xué)基礎(chǔ)。筆者從所在學(xué)校的學(xué)生實(shí)際學(xué)習(xí)情況出發(fā),根據(jù)幾年來的教學(xué)心得和積累,打算提出一種較為實(shí)用的教學(xué)方法——利用數(shù)學(xué)建模的思想調(diào)動(dòng)大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性。
一、以實(shí)際問題反推解決問題時(shí)我們需要的高等數(shù)學(xué)知識
有這樣一個(gè)實(shí)際問題:報(bào)童每天清晨從報(bào)社購進(jìn)報(bào)紙零售,晚上將沒賣掉的報(bào)紙退回給報(bào)社。假設(shè)報(bào)紙每份的購進(jìn)價(jià)為b元,零售價(jià)為a元,退回價(jià)為c元,自然地有abc。這就是說,報(bào)童每售出一份報(bào)紙賺a-b元,每退回一份報(bào)紙賠b-c元,報(bào)童每天如果購進(jìn)的報(bào)紙?zhí)?,那么會不夠賣,就會少賺錢;如果每天購進(jìn)的報(bào)紙?zhí)?,那么會賣不完,將要賠錢。請為報(bào)童規(guī)劃一下,他該如何確定每天購進(jìn)的報(bào)紙份數(shù),以獲得最大的收入[3]。
現(xiàn)在我們來反推該問題涉及到的高等數(shù)學(xué)的知識:首先,通過分析題目可知,問題解決的關(guān)鍵在于——如何確定每天的報(bào)紙需求量,注意每天的報(bào)紙需求量是隨機(jī)變化的?解決這個(gè)關(guān)鍵問題的知識我們早就掌握了,分別是數(shù)理統(tǒng)計(jì)中的頻率連續(xù)化、概率論中的概率密度與期望和高等數(shù)學(xué)中的定積分[4]。
二、利用高等數(shù)學(xué)的解決實(shí)際問題
f(r)[4]。如果求出了f(r),那么
g(n)=[(a-b)r+(b-c)(n-r)]f(r)+(a-b)nf(r).(1)
現(xiàn)在我們來求f(r),假定報(bào)童已經(jīng)通過自己的經(jīng)驗(yàn)和其他渠道掌握了一年(365天)中每天報(bào)紙的售出份數(shù),那么在他的銷售范圍內(nèi),每天報(bào)紙日需求量r的概率f(r)為:
f(r)=,r=(0,1,2,3,…)
其中k表示為賣出r份的天數(shù)。
g(n)=[(a-b)r+(b-c)(n-r)]p(r)dr+(a-b)np(r)dr.(2)
通過上面的分析,可知實(shí)際問題歸結(jié)為,在p(r)和a,b,c已知時(shí),求n使得g(n)最大。
=-(b-c)p(r)dr+(a-b)p(r)dr.(3)
令=0,得到=,又因?yàn)閜(r)dr+p(r)dr=1,所以p(r)dr=.(4)
在等式(4)中,p(r)和a,b,c均為已知,所以利用定積分的知識一定可以求出n。也即可以確定每天購進(jìn)的報(bào)紙份數(shù),使報(bào)童每天獲得最大的收入。
三、利用現(xiàn)實(shí)問題,讓學(xué)生學(xué)會思考,給他們提供創(chuàng)造成就感的機(jī)會
通過上面碰到的實(shí)際問題,可以很容易地說服同學(xué)們靜下心來好好學(xué)習(xí)高等數(shù)學(xué)。因?yàn)橥ㄟ^實(shí)際問題的求解,學(xué)生們了解到了,要想解決一個(gè)實(shí)際問題(哪怕是很小的問題),也需要大量的高等數(shù)學(xué)知識的儲備;學(xué)生們也大概領(lǐng)略到了高等數(shù)學(xué)的用途與功能。這樣的教學(xué)方法簡單、直接,勝過老師課堂上反復(fù)的嘮叨與強(qiáng)調(diào)。有了這樣的一些實(shí)際問題,老師們就可以大膽地將數(shù)學(xué)建模思想引入高等數(shù)學(xué)的教學(xué)當(dāng)中,讓學(xué)生們在解決實(shí)際問題中學(xué)會思考,掌握知識,提高能力。
通過訓(xùn)練后,碰到實(shí)際問題,同學(xué)們會自然的想到我們的教學(xué)方法:(1)這些實(shí)際問題涉及到的高等數(shù)學(xué)知識?那些自己掌握了,那些還沒有弄明白,學(xué)要加強(qiáng)學(xué)習(xí)。(2)知識點(diǎn)找到后,如何建立起數(shù)學(xué)與實(shí)際問題求解之間的關(guān)系?也即如何建立數(shù)學(xué)模型。(3)除了老師給的題目,自己本專業(yè)中的實(shí)際問題,能否用高等數(shù)學(xué)的知識去解決?通過思考、分析、解決這些問題,學(xué)生們會有一種創(chuàng)造創(chuàng)新的成就感,會愿意自主學(xué)習(xí),自然而然其學(xué)習(xí)高等數(shù)學(xué)的積極性也會大大提高了。
數(shù)學(xué)建模論文感悟篇十六
運(yùn)籌學(xué)與數(shù)學(xué)建模2門課程聯(lián)系密切,在運(yùn)籌學(xué)教學(xué)中,適當(dāng)融入數(shù)學(xué)建模思想,能大幅度提高學(xué)生應(yīng)用數(shù)學(xué)解決實(shí)際問題的能力.從運(yùn)籌學(xué)教學(xué)中教學(xué)大綱的改革、教學(xué)環(huán)節(jié)的設(shè)計(jì)等方面進(jìn)行了探索與實(shí)踐.教學(xué)實(shí)踐表明,將數(shù)學(xué)建模思想融入到運(yùn)籌學(xué)教學(xué)中能提高課堂教學(xué)的效果,鍛煉學(xué)生的動(dòng)手實(shí)踐能力.
數(shù)學(xué)建模;運(yùn)籌學(xué);教學(xué)實(shí)踐