最新定理教學(xué)設(shè)計(模板18篇)

字號:

    總結(jié)是一種反思的過程,讓我們能夠更好地發(fā)現(xiàn)問題和解決問題。總結(jié)是一個重要的環(huán)節(jié),幫助我們更好地反思過去的經(jīng)驗。總結(jié)是在一段時間內(nèi)對學(xué)習(xí)和工作生活等表現(xiàn)加以總結(jié)和概括的一種書面材料,它可以促使我們思考,我想我們需要寫一份總結(jié)了吧。那么我們該如何寫一篇較為完美的總結(jié)呢?以下是小編為大家收集的總結(jié)范文,僅供參考,大家一起來看看吧。
    定理教學(xué)設(shè)計篇一
    “紙上得來終覺淺,絕知此事要躬行”,構(gòu)建高效課堂之聲頻頻入耳,但實效甚微,很多空喊不干,我覺得就是沒實施、沒領(lǐng)悟好這一詩句的真諦。我們走在第一線的教師,入心地走進教材,深入了解學(xué)生的認知能力,其實對上好每堂課是個必備的前奏,那才能感悟到育人的快樂!
    剛剛講完《垂徑定理》第一課時的內(nèi)容,自我有些許的滿足感,因為我入心了,入情了。在上課之前,我精心設(shè)計了課題的引入、定理的推理、定理的引申、應(yīng)用,整堂課下來預(yù)設(shè)的基本程序和任務(wù)都算是圓滿完成。
    使之知識的消化得以升華。這些點點滴滴地精心傳授迎來了喜悅的成果,在例題的解決的過程中學(xué)生處理地得心應(yīng)手,定理運用自如。這時真切地體會到了沒有笨學(xué)生,只有不用心教的老師。見到這一成效,我很自信,很有成就感,我的努力沒付諸東流,由此自信產(chǎn)生了激情,激情就會創(chuàng)造奇跡,后面的教學(xué)過程讓我的教與學(xué)生的學(xué)更為融洽了。果不其然,學(xué)生們對于我出示的有點難度的鞏固訓(xùn)練題都不怕艱難險阻、躍躍欲試地掙著搶著去解決,已然忘記了這是課堂的約束,好像突然間已經(jīng)把這節(jié)新內(nèi)容注入到了骨子里,令人欣慰地得到了他們既快又準的答案。
    本節(jié)課我見證了我入心教學(xué)的神奇,孩子們的收獲與應(yīng)對就是最好的證明。一堂課后,我教我樂,他學(xué)他樂。面對這些鮮活的生命沒有理由讓我退縮,唯獨只有義無反顧地耐心地將愛心傳遞,來感染周圍人,因為愛心的力量是不可估量的。真的,孩子們在學(xué)習(xí)中及教師在教學(xué)中保持愉快和舒暢的心境,有利于發(fā)揮學(xué)生的主動性和創(chuàng)造性,實現(xiàn)有意識和無意識的統(tǒng)一,從而釋放出巨大的學(xué)習(xí)潛能。如今,我們每天的實戰(zhàn)演習(xí)受任于課改之旺季,時刻奉命于教師責(zé)任之根本。作為執(zhí)教者只有讓責(zé)任在課外擔(dān)起,才得以讓智慧在課內(nèi)展現(xiàn),在探究中師生互動,在分享中情景交融!如此的良性循環(huán)讓教師的授課豈不就變成一大美差!
    定理教學(xué)設(shè)計篇二
    勾股定理是平面幾何有關(guān)度量的最基本定理,它從邊的角度進一步刻畫了直角三角形的特點。學(xué)習(xí)勾股定理極其逆定理是進一步認識和理解直角三角形的需要,也是后續(xù)有關(guān)幾何度量運算和代數(shù)學(xué)習(xí)的必然基礎(chǔ)。《20xx版數(shù)學(xué)課程標準》對勾股定理教學(xué)內(nèi)容的要求是:
    1、在研究圖形性質(zhì)和運動等過程中,進一步發(fā)展空間觀念;
    2、在多種形式的數(shù)學(xué)活動中,發(fā)展合情推理能力;
    3、經(jīng)歷從不同角度分析問題和解決問題的方法的過程,體驗解決問題方法的多樣性;
    4、探索勾股定理及其逆定理,并能運用它們解決一些簡單的實際問題。
    本節(jié)《勾股定理的應(yīng)用》是北師大版八年級數(shù)學(xué)上冊第一章《勾股定理》第3節(jié)、具體內(nèi)容是運用勾股定理及其逆定理解決簡單的實際問題、在這些具體問題的解決過程中,需要經(jīng)歷幾何圖形的抽象過程,需要借助觀察、操作等實踐活動,這些都有助于發(fā)展學(xué)生的分析問題、解決問題能力和應(yīng)用意識;有些探究活動具有一定的難度,需要學(xué)生相互間的合作交流,有助于發(fā)展學(xué)生合作交流的能力。
    本節(jié)課的教學(xué)目標是:
    1、能正確運用勾股定理及其逆定理解決簡單的實際問題。
    2、經(jīng)歷實際問題抽象成數(shù)學(xué)問題的過程,學(xué)會選擇適當(dāng)?shù)臄?shù)學(xué)模型解決實際問題,提高學(xué)生分析問題、解決問題的能力并體會數(shù)學(xué)建模的思想。
    教學(xué)重點和難點:
    應(yīng)用勾股定理及其逆定理解決實際問題是重點。
    把實際問題化歸成數(shù)學(xué)模型是難點。
    二、教學(xué)設(shè)想
    根據(jù)新課標提出的“要從學(xué)生已有的生活經(jīng)驗出發(fā),讓學(xué)生親身經(jīng)歷將實際問題抽象成數(shù)學(xué)模型并進行解釋和運用的同時,在思維能力情感態(tài)度和價值觀等方面得到進步和發(fā)展”的理念,我想盡量給學(xué)生創(chuàng)設(shè)豐富的.實際問題情境,使教學(xué)活動充滿趣味性和吸引力,讓他們在自主探究,合作交流中分析問題,建立數(shù)學(xué)模型,利用勾股定理及其逆定理解決問題。在教學(xué)過程中,采用一題多變的形式拓寬學(xué)生視野,訓(xùn)練學(xué)生思維的靈活性,滲透化歸的思想以及分類討論思想,方程思想等,使學(xué)生在獲得知識的同時提高能力。
    在教學(xué)設(shè)計中,盡量考慮到不同學(xué)習(xí)水平的學(xué)生,注意知識由易到難的層次性,在課堂上,要照顧到接受較慢的學(xué)生。使不同學(xué)生有不同的收獲和發(fā)展。
    三、教學(xué)過程分析
    本節(jié)課設(shè)計了七個環(huán)教學(xué)設(shè)計節(jié)、第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):變式訓(xùn)練;第四環(huán)節(jié):議一議;第五環(huán)節(jié):做一做;第六環(huán)節(jié):交流小結(jié);第七環(huán)節(jié):布置作業(yè)。
    第一環(huán)節(jié):情境引入
    情景1:復(fù)習(xí)提問:勾股定理的語言表述以及幾何語言表達?
    設(shè)計意圖:溫習(xí)舊知識,規(guī)范語言及數(shù)學(xué)表達,體現(xiàn)數(shù)學(xué)的嚴謹性和規(guī)范性?!豆垂啥ɡ淼膽?yīng)用》。
    情景2:腦筋急轉(zhuǎn)彎一個三角形的兩條邊是3和4,第三邊是多少?
    設(shè)計意圖:既靈活考察學(xué)生對勾股定理的理解,又增加了趣味性,還能考察學(xué)生三角形三邊關(guān)系。
    第二環(huán)節(jié):合作探究(圓柱體表面路程最短問題)
    情景3:課本引例(螞蟻怎樣走最近)
    第三環(huán)節(jié):變式訓(xùn)練(由圓柱體表面路程最短問題逐步變?yōu)殚L方體表面的距離最短問題)
    設(shè)計意圖:將問題的條件稍做改變,讓學(xué)生嘗試獨立解決,拓展學(xué)生視野,又加深他們對知識的理解和鞏固。再將圓柱問題變?yōu)檎襟w長方體問題,學(xué)生有了之前的經(jīng)驗,自然而然的將立體轉(zhuǎn)化為平面,利用勾股定理解決,此處長方體問題中學(xué)生會有不同的做法,正好透分類討論思想。
    第四環(huán)節(jié):議一議
    內(nèi)容:李叔叔想要檢測雕塑底座正面的ad邊和bc邊是否分別垂直于底邊ab,但他隨身只帶了卷尺,《勾股定理的應(yīng)用》教。
    你能替他想辦法完成任務(wù)嗎?
    設(shè)計意圖:
    第五環(huán)節(jié):方程與勾股定理
    在我國古代數(shù)學(xué)著作《九章算術(shù)》中記載了一道有趣的問題,這個問題的意思是:有一個水池,水面是一個邊長為10尺的正方形,在水池的中央有《勾股定理的應(yīng)用》教學(xué)設(shè)計一根新生的蘆葦,它高出水面1尺,如果把這根蘆葦垂直拉向岸邊,它的頂端恰好到達岸邊的水面,請問這個水池的深度和這根蘆葦?shù)拈L度各是多少尺?《勾股定理的應(yīng)用》教學(xué)設(shè)計意圖:學(xué)生可以進一步了解勾股定理的悠久歷史和廣泛應(yīng)用,了解我國古代人民的聰明才智;學(xué)會運用方程的思想借助勾股定理解決實際問題。
    第六環(huán)節(jié):交流小結(jié)內(nèi)容:師生相互交流總結(jié):
    1、解決實際問題的方法是建立數(shù)學(xué)模型求解。
    2、在尋求最短路徑時,往往把空間問題平面化,利用勾股定理及其逆定理解決實際問題。
    3、在直角三角形中,已知一條邊和另外兩條邊的關(guān)系,借助方程可以求出另外兩條邊。
    意圖:鼓勵學(xué)生結(jié)合本節(jié)課的學(xué)習(xí)談自己的收獲和感想,體會到勾股定理及其逆定理的廣泛應(yīng)用及它們的悠久歷史。
    定理教學(xué)設(shè)計篇三
    師:同學(xué)們,到目前為止,你所知道的有關(guān)直角三角形三邊數(shù)量關(guān)系的結(jié)論有哪些?
    生:首先是任意兩邊大于第三邊。
    師:任意兩邊大于第三邊?
    生:任意兩邊之和大于第三邊。
    生:a加上b大于c。
    師:好的。a+bc,我們選擇兩條直角邊的和大于斜邊。非常好,還有沒有?
    生:還有斜邊一定是大于a或者b。
    生(齊):有!
    師:大家都很有信心。但是,直接去找它的數(shù)量關(guān)系是不是感到有些困難,無從入手?我給大家一些提示,嘗試學(xué)習(xí)一下古人用面積法來探究直角三角形三邊的數(shù)量關(guān)系。
    請同學(xué)們在方格紙上三角形abc外,畫一個以ac為一邊的正方形,畫一個以bc為邊的正方形;再求出這兩個正方形的面積。(如圖1--1)。
    (一名學(xué)生上黑板畫圖,教師巡視、指導(dǎo)。)學(xué)生畫好后。
    師:怎樣畫以ab為邊的正方形呢?(學(xué)生思考,部分學(xué)生竊竊私語)。
    師:哪位同學(xué)愿意上來畫?(少數(shù)同學(xué)欲舉手,但還猶豫)。
    師:請李斯婷上黑板畫一下;。
    教師巡視中發(fā)現(xiàn):許多同學(xué)畫“以ab為邊的正方形”時,正方形的另外兩個頂點不是格點,使求面積發(fā)生困難。
    師:請同學(xué)們思考:以ab為邊的正方形的另兩個頂點是不是格點?為什么?
    學(xué)生遇到困難,教師及時點拔、指導(dǎo),這是學(xué)生自主學(xué)習(xí)過程中不可忽缺的,也是學(xué)生自主探究活動取得實效,教師應(yīng)做的工作。)。
    師:請同學(xué)們思考:怎樣求出圖1-2中,以ab為一邊的正方形的面積?(由于不知道邊長,學(xué)生“冷場”)。
    師:假設(shè)每格的長為1,請每組前后兩桌四位同學(xué)為一小組討論,然后我們一起交流!(課堂氣氛活躍、熱烈起來。約一分鐘后有學(xué)生舉手,教師和他進行了個別交流,隨后舉手的同學(xué)又有一些。)。
    師:請同學(xué)們來交流思路與方法。
    生(阮穎旋):我用割補法。
    師:請把你的方法用圖展示一下。
    阮穎旋走上講臺,教師用展示平臺投影出該生的示意圖(如圖3)。
    生(劉世航):我用補形法,在正方形各邊上補一個直角三角形在形外,變成一個大的正方形。
    師:請把你的方法用圖展示一下。
    生(劉世航):走上講臺,教師用展示平臺投影出該生的示意圖(如圖4)。
    生(劉世航):等于25。
    師:圖2--2中,以pq為一邊的正方形的面積等于多少?
    生:等于4××4×2+22=20。
    師:圖2--2中,三個正方形的面積有什么關(guān)系?
    二、定理探索。
    師:請同學(xué)們在圖5中,考察各直角三角形周圍的三個正方形的面積之間的關(guān)系。(學(xué)生獨立操作,教師巡視。)。
    生(李梅):大正方形減小正方形等于第三個正方形。
    生(潔婷):兩個小正方形相加等于大正方形。
    生(炯輝):兩個小正方形面積相加等于大正方形面積。
    ……。
    生(李梅):兩邊平方和等于第三邊的平方。
    生(潔婷):兩直角邊的平方和等于斜邊的平方。
    師:你真棒!這就是在數(shù)學(xué)史上具有里程碑意義、非常著名的勾股定理(板書課題),即:直角三角形中,兩直角邊的平方和等于斜邊的平方。(投影)但這僅僅是在幾個直角三角形(有具體數(shù)值)中發(fā)現(xiàn)的,在任意一個直角三角形(斜邊為c、兩直角邊為a、b)中是否仍成立(a2+b2=c2)呢?(投影)。
    師:請同學(xué)們用課前準備好的四個全等的直角三角形在桌面上拼圖,圍成一個正方形可以嗎?(教師巡視)。
    師:比一比,誰的圖形漂亮?(教師繼續(xù)巡視)。
    師:誰愿把自己拼(圍)得到的優(yōu)美圖案與大家共享?(同學(xué)們紛紛舉手。)。
    師:同學(xué)們自由上臺展示(可一起上臺)。
    教師拿出課前準備的“雙面膠”供學(xué)生在黑板上粘貼。
    生(潘思婷):面積為c2+2ab。
    師:介紹一下算法。
    生(潘思婷):中間小正方形的面積為c2,再加四個直角三角形的面積就行了。
    師:還有什么不同方法呢?
    生(宋彬賢):大正方形的邊長就是a+b,所以大正方形的面積就等于(a+b)2。
    生(潘思婷):c2+2ab=(a+b)2。
    師:能簡化嗎?
    生(潘思婷):能,結(jié)果是c2=a2+b2。
    生(齊):哇!就是勾股定理哎。學(xué)生的臉上流露出欣喜、愉悅的表情。這就是成就感!是教師課堂教學(xué)的最大成功。
    師:剛才我們通過圖6的面積計算,驗證了勾股定理;能否在圖7中,通過面積計算,驗證勾股定理?圖7中,大正方形的面積=c2或4(ab)+(a-b)2.步驟類似于圖6中的驗證過程。
    師:至此,我們已用兩種方法證明了勾股定理,從勾股定理的發(fā)現(xiàn)到今,已有了400多種證明方法,同學(xué)們課后有興趣可查閱有關(guān)資料。
    三、小結(jié)。
    師:什么樣的三角形適合用勾股定理?如何用代數(shù)式表示勾股定理?你能用一種方法證明勾股定理?(鄭曉珊、蘇俊輝在黑板做)。
    生:(齊)點評。
    (布置作業(yè):書后69頁第1,2,3題)。
    (鈴響,圓滿完成教學(xué)任務(wù))師生下課。
    定理教學(xué)設(shè)計篇四
    一、教材分析
    教材所處的地位與作用
    “探索勾股定理”是人教版八年級《數(shù)學(xué)》下冊內(nèi)容。“勾股定理”是安排在學(xué)生學(xué)習(xí)了三角形、全等三角形、等腰三角形等有關(guān)知識之后,它揭示了直角三角形三邊之間的一種美妙關(guān)系,將數(shù)與形密切聯(lián)系起來,在幾何學(xué)中占有非常重要的位置。同時勾股定理在生產(chǎn)、生活中也有很大的用途。
    二、教學(xué)目標
    綜上分析及教學(xué)大綱要求,本課時教學(xué)目標制定如下:
    1、知識目標
    知道勾股定理的由來,初步理解割補拼接的面積證法。
    掌握勾股定理,通過動手操作利用等積法理解勾股定理的證明過程。
    2、能力目標
    在探索勾股定理的過程中,讓學(xué)生經(jīng)歷“觀察——合理猜想——歸納——驗證”的數(shù)學(xué)思想,并體會數(shù)形結(jié)合以及由特殊到一般的思想方法,培養(yǎng)學(xué)生的觀察力、抽象概括能力、創(chuàng)造想象能力以及科學(xué)探究問題的能力。
    3、情感目標
    通過觀察、猜想、拼圖、證明等操作,使學(xué)生深刻感受到數(shù)學(xué)知識的發(fā)生、發(fā)展過程。
    介紹“趙爽弦圖”,讓學(xué)生感受到中國古代在勾股定理研究方面所取得的偉大成就,激發(fā)學(xué)生的數(shù)學(xué)激情及愛國情感。
    三、教學(xué)重難點
    本課重點是掌握勾股定理,讓學(xué)生深刻感悟到直角三角形三邊所具備的特殊關(guān)系。由于八年級學(xué)生構(gòu)造能力較低以及對面積證法的不熟悉,因此本課的難點便是勾股定理的證明。
    四、教學(xué)問題診斷
    本節(jié)主要攻克的問題就是本節(jié)的難點:勾股定理的證明。我打算采用面積法來講解,但這種借助于圖形的面積來探索、驗證數(shù)學(xué)結(jié)論的數(shù)形結(jié)合思想,對于學(xué)生來說,有些陌生,難以理解,又加之?dāng)?shù)學(xué)課本身的課程特征,在講解時,沒有文科那么深動形象,所以針對這一現(xiàn)狀,我在教法和學(xué)法上都進行了改進。
    五、教法與學(xué)法分析
    [教學(xué)方法與手段]針對八年級學(xué)生的知識結(jié)構(gòu)和心理特征,本節(jié)課選擇引導(dǎo)探索法,由淺入深,由特殊到一般地提出問題,引導(dǎo)學(xué)生自主探索,合作交流,并利用多媒體進行教學(xué)。
    [學(xué)法分析]在教師組織引導(dǎo)下,采用自主探索、合作交流的方式,讓學(xué)生自己實驗,自己獲取知識,并感悟?qū)W習(xí)方法,借此培養(yǎng)學(xué)生動手、動口、動腦能力,使學(xué)生真正成為學(xué)習(xí)的主體。讓學(xué)生感受到自己是學(xué)習(xí)的主體,增強他們的主動感和責(zé)任感,這樣對掌握新知會事半功倍。
    六、教學(xué)流程設(shè)計
    1、創(chuàng)設(shè)情境,引入新課
    本節(jié)課開始利用多媒體介紹了在北京召開的國際數(shù)學(xué)家大會的會標,其圖案為“趙爽弦圖”,由此導(dǎo)入新課,是為了激發(fā)學(xué)生的興趣和民族自豪感,它是課堂教學(xué)的重要一環(huán)?!昂玫拈_始是成功的一半”,在課的起始階段迅速集中學(xué)生注意力,把他們的思緒帶進特定的學(xué)習(xí)情境中,激發(fā)學(xué)生濃厚的學(xué)習(xí)興趣和強烈的求知欲。多媒體展示這一有意義的圖案,可有效開啟學(xué)生思維的閘門,激勵探究,使學(xué)生的學(xué)習(xí)狀態(tài)由被動變?yōu)橹鲃?,在輕松愉悅的氛圍中學(xué)到知識。
    2、觀察發(fā)現(xiàn),類比猜想
    讓學(xué)生仔細觀察畢達哥拉斯朋友家的瓷磚(圖1),從而得到特殊的等腰直角三角形三邊關(guān)系,緊接著由特殊到一般,讓學(xué)生合理猜測:是否任意直角三角形都符合這個“三邊關(guān)系”的結(jié)論?同學(xué)們很輕易的得到了結(jié)論。最后對此結(jié)論通過在網(wǎng)格中數(shù)格子進行驗證,讓學(xué)生經(jīng)歷了“觀察——合理猜測——歸納——驗證”的這一數(shù)學(xué)思想。在數(shù)格子的驗證過程中,發(fā)現(xiàn)任意直角三角形(圖2)斜邊上長出的正方形中網(wǎng)格不規(guī)則,沒法數(shù)出。通過同學(xué)們的.討論,發(fā)現(xiàn)數(shù)不出來的原因是格子不規(guī)則,從而想到了用補或割的方法進行計算,其原則就是由不規(guī)則經(jīng)過割補變?yōu)橐?guī)則。
    3、實驗探究,證明結(jié)論
    因為勾股定理的出現(xiàn),使數(shù)學(xué)從單一的純計算進入了幾何圖形的證明,所以為了讓學(xué)生感受數(shù)形結(jié)合這一數(shù)學(xué)思想,讓學(xué)生親自動手,互相協(xié)作,拿一塊由a2和b2組成的不規(guī)則的平面圖形經(jīng)割補,變?yōu)橐?guī)則的c2,又因兩塊割補前后面積相等,從而得到勾股定理:a2+b2=c2,也因此引入了“等積法”證明勾股定理。
    4、練兵之際
    這是“總統(tǒng)證法”,此時讓學(xué)生自己探索,然后討論。選用“總統(tǒng)證法”,第一是為了讓同學(xué)們熟悉“等積法”,第二讓學(xué)生感受數(shù)學(xué)的地位之高,第三在沒有講解的情況下,學(xué)生自己得出了“總統(tǒng)證法”,大大增強了學(xué)生的自信心和自豪感。
    5、自己動手,拼出弦圖
    讓同學(xué)們拿出了提前準備好的四個全等的邊長為a、b、c的直角三角形進行拼圖,小組活動,拼出自己喜愛的圖形,但有一個前提是所拼出的圖形必須能夠用等積法證明勾股定理。此時已經(jīng)是把課堂全部還給了學(xué)生,讓他們在數(shù)學(xué)的海洋中馳騁,提供這種學(xué)習(xí)方式就是為了讓孩子們更加開闊,更加自主,更方便于他們到廣闊的海洋中去尋找寶藏,學(xué)生們拼得很好,并且都給出了正確的證明,在黑板上盡情地展示了一番。
    6、總結(jié)反思
    通過這一堂課,我認為數(shù)學(xué)教學(xué)的核心不是知識本身,而是數(shù)學(xué)的思維方式,而培養(yǎng)這種數(shù)學(xué)思維方式需要豐富的數(shù)學(xué)活動。在活動中學(xué)生可以用自己創(chuàng)造與體驗的方法來學(xué)習(xí)數(shù)學(xué),這樣才能真正的掌握數(shù)學(xué),真正擁有數(shù)學(xué)的思維方式,這一課的學(xué)習(xí)就是通過讓學(xué)生自主探索知識,從而將其轉(zhuǎn)化為自己的,真正做到了先激發(fā)興趣,再合作交流,最后展示成果的自主學(xué)習(xí),教學(xué)模式也從教師講授為主轉(zhuǎn)為了學(xué)生動腦、動手、自主研究,小組學(xué)習(xí)討論交流為主,把數(shù)學(xué)課堂轉(zhuǎn)化為“數(shù)學(xué)實驗室”,學(xué)生通過自己活動得出結(jié)論,使創(chuàng)新精神與實踐能力得到了發(fā)展。
    七、設(shè)計說明
    1、根據(jù)學(xué)生的知識結(jié)構(gòu),我采用的數(shù)學(xué)流程是:創(chuàng)設(shè)情境引入新課——觀察發(fā)現(xiàn)類比猜想——實驗探究證明結(jié)論——自己動手拼出弦圖——總結(jié)反思這五部分。這一流程體現(xiàn)了知識的發(fā)生、形成和發(fā)展的過程,讓學(xué)生經(jīng)歷了觀察——猜想——歸納——驗證的思想和數(shù)形結(jié)合的思想。
    2、探索定理采用了面積法,引導(dǎo)學(xué)生利用實驗由特殊到一般的數(shù)學(xué)思想對直角三角形三邊關(guān)系進行了研究,并得出了結(jié)論。這種方法是認識事物規(guī)律的重要方法之一,通過教學(xué)讓學(xué)生初步掌握這種方法,對于學(xué)生良好的思維品質(zhì)的形成有重要作用,對學(xué)生終身發(fā)展也有很大作用。
    定理教學(xué)設(shè)計篇五
    教學(xué)方法與教材處理:我選用引導(dǎo)發(fā)現(xiàn)法和直觀演示法。讓學(xué)生在課堂上多活動、多觀察、多合作、多交流,主動參與到整個教學(xué)活動中來,組織學(xué)生參與“實驗―――觀察―――猜想―――證明”的活動,最后得出定理,這符合新課程理念下的“要把學(xué)生學(xué)習(xí)知識當(dāng)作認識事物的過程來進行教學(xué)”的觀點,也符合教師的主導(dǎo)作用與學(xué)生的主體地位相統(tǒng)一的原則。同時,在教學(xué)中,我充分利用學(xué)校新安裝的班班通工程,利用課件,既增強了學(xué)生的學(xué)習(xí)興趣,又提高教學(xué)效果,在實驗,演示,操作,觀察,練習(xí)等師生的共同活動中啟發(fā)學(xué)生,讓每個學(xué)生動手、動口、動眼、動腦,培養(yǎng)學(xué)生直覺思維能力,這符合新課程理念下的.直觀性與可接受性原則。另外,教學(xué)中我還注重用不同圖片的顏色對比來啟發(fā)學(xué)生。
    設(shè)計的特色:為了給學(xué)生營造一個民主、平等而又富有詩意的課堂,我以新數(shù)學(xué)課程標準下的基本理念和總體目標為指導(dǎo)思想在教學(xué)過程中始終面向全體學(xué)生,依據(jù)學(xué)生的實際水平,選擇適當(dāng)?shù)慕虒W(xué)起點和教學(xué)方法,充分讓學(xué)生參與教學(xué),在合作交流的過程中,獲得良好的情感體驗。通過“實驗――觀察――猜想――證明”的思想,讓每個學(xué)生都有所得,我注意前后知識的鏈接,進行各學(xué)科間的整合,為學(xué)生提供了廣闊的思考空間,同時輔以相應(yīng)的音樂,為學(xué)生創(chuàng)設(shè)輕松、愉快、高雅的學(xué)習(xí)氛圍,在學(xué)習(xí)中感悟生活中的數(shù)學(xué)美。
    定理教學(xué)設(shè)計篇六
    高三第一階段復(fù)習(xí),也稱“知識篇”。在這一階段,學(xué)生重溫高一、高二所學(xué)課程,全面復(fù)習(xí)鞏固各個知識點,熟練掌握基本方法和技能;然后站在全局的高度,對學(xué)過的知識產(chǎn)生全新認識。在高一、高二時,是以知識點為主線索,依次傳授講解的,由于后面的相關(guān)知識還沒有學(xué)到,不能進行縱向聯(lián)系,所以,學(xué)的知識往往是零碎和散亂,而在第一輪復(fù)習(xí)時,以章節(jié)為單位,將那些零碎的、散亂的知識點串聯(lián)起來,并將他們系統(tǒng)化、綜合化,把各個知識點融會貫通。對于普通高中的學(xué)生,第一輪復(fù)習(xí)更為重要,我們希望能做高考試題中一些基礎(chǔ)題目,必須側(cè)重基礎(chǔ),加強復(fù)習(xí)的針對性,講求實效。
    一、內(nèi)容分析說明
    1、本小節(jié)內(nèi)容是初中學(xué)習(xí)的多項式乘法的繼續(xù),它所研究的二項式的`乘方的展開式,與數(shù)學(xué)的其他部分有密切的聯(lián)系:
    (1)二項展開式與多項式乘法有聯(lián)系,本小節(jié)復(fù)習(xí)可對多項式的變形起到復(fù)習(xí)深化作用。
    (2)二項式定理與概率理論中的二項分布有內(nèi)在聯(lián)系,利用二項式定理可得到一些組合數(shù)的恒等式,因此,本小節(jié)復(fù)習(xí)可加深知識間縱橫聯(lián)系,形成知識網(wǎng)絡(luò)。
    (3)二項式定理是解決某些整除性、近似計算等問題的一種方法。
    試題,考察的題型穩(wěn)定,通常以選擇題或填空題出現(xiàn),有時也與應(yīng)用題結(jié)合在一起求某些數(shù)、式的近似值。
    定理教學(xué)設(shè)計篇七
    勾股定理是平面幾何有關(guān)度量的最基本定理,它從邊的角度進一步刻畫了直角三角形的特點。學(xué)習(xí)勾股定理極其逆定理是進一步認識和理解直角三角形的需要,也是后續(xù)有關(guān)幾何度量運算和代數(shù)學(xué)習(xí)的必然基礎(chǔ)?!?0xx版數(shù)學(xué)課程標準》對勾股定理教學(xué)內(nèi)容的要求是:
    1、在研究圖形性質(zhì)和運動等過程中,進一步發(fā)展空間觀念;
    2、在多種形式的數(shù)學(xué)活動中,發(fā)展合情推理能力;
    3、經(jīng)歷從不同角度分析問題和解決問題的方法的過程,體驗解決問題方法的多樣性;
    4、探索勾股定理及其逆定理,并能運用它們解決一些簡單的實際問題。
    本節(jié)課的教學(xué)目標是:
    1、能正確運用勾股定理及其逆定理解決簡單的實際問題。
    教學(xué)重點和難點:
    應(yīng)用勾股定理及其逆定理解決實際問題是重點。
    把實際問題化歸成數(shù)學(xué)模型是難點。
    根據(jù)新課標提出的“要從學(xué)生已有的生活經(jīng)驗出發(fā),讓學(xué)生親身經(jīng)歷將實際問題抽象成數(shù)學(xué)模型并進行解釋和運用的同時,在思維能力情感態(tài)度和價值觀等方面得到進步和發(fā)展”的理念,我想盡量給學(xué)生創(chuàng)設(shè)豐富的實際問題情境,使教學(xué)活動充滿趣味性和吸引力,讓他們在自主探究,合作交流中分析問題,建立數(shù)學(xué)模型,利用勾股定理及其逆定理解決問題。在教學(xué)過程中,采用一題多變的形式拓寬學(xué)生視野,訓(xùn)練學(xué)生思維的靈活性,滲透化歸的思想以及分類討論思想,方程思想等,使學(xué)生在獲得知識的同時提高能力。
    在教學(xué)設(shè)計中,盡量考慮到不同學(xué)習(xí)水平的學(xué)生,注意知識由易到難的層次性,在課堂上,要照顧到接受較慢的學(xué)生。使不同學(xué)生有不同的收獲和發(fā)展。
    第一環(huán)節(jié):情境引入
    情景1:復(fù)習(xí)提問:勾股定理的語言表述以及幾何語言表達?
    設(shè)計意圖:溫習(xí)舊知識,規(guī)范語言及數(shù)學(xué)表達,體現(xiàn)
    設(shè)計意圖:既靈活考察學(xué)生對勾股定理的理解,又增加了趣味性,還能考察學(xué)生三角形三邊關(guān)系。
    第二環(huán)節(jié):合作探究(圓柱體表面路程最短問題)
    情景3:課本引例(螞蟻怎樣走最近)
    第三環(huán)節(jié):變式訓(xùn)練(由圓柱體表面路程最短問題逐步變?yōu)殚L方體表面的距離最短問題)
    設(shè)計意圖:將問題的條件稍做改變,讓學(xué)生嘗試獨立解決,拓展學(xué)生視野,又加深他們對知識的理解和鞏固。再將圓柱問題變?yōu)檎襟w長方體問題,學(xué)生有了之前的經(jīng)驗,自然而然的將立體轉(zhuǎn)化為平面,利用勾股定理解決,此處長方體問題中學(xué)生會有不同的做法,正好透分類討論思想。
    第四環(huán)節(jié):議一議
    設(shè)計意圖:
    第五環(huán)節(jié):方程與勾股定理
    第六環(huán)節(jié):交流小結(jié)內(nèi)容:師生相互交流總結(jié):
    1、解決實際問題的方法是建立數(shù)學(xué)模型求解、
    2、在尋求最短路徑時,往往把空間問題平面化,利用勾股定理及其逆定理解決實際問題。
    3、在直角三角形中,已知一條邊和另外兩條邊的關(guān)系,借助方程可以求出另外兩條邊。
    第七環(huán)作業(yè)設(shè)計:
    第一道題難度較小,大部分學(xué)生可以獨立完成,第二道題有較大難度,可以交流討論完成。
    知識技能:了解勾股定理的文化背景,體驗勾股定理的探索過程、
    數(shù)學(xué)思考:在勾股定理的探索過程中,發(fā)展合情推理能力,體會數(shù)形結(jié)合的思想、解決問題:
    1、通過拼圖活動,體驗數(shù)學(xué)思維的嚴謹性,發(fā)展形象思維、
    2、在探究活動中,學(xué)會與人合作并能與他人交流思維的過程和探究結(jié)果、
    情感態(tài)度:
    1、通過對勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)熱情、
    2、在探究活動中,體驗解決問題方法的多樣性,培養(yǎng)學(xué)生的合作交流意識和探索精神、
    1、重點是探索和證明勾股定理、
    2、難點是用拼圖的方法證明勾股定理、
    定理教學(xué)設(shè)計篇八
    1.勾股定理的逆定理是研究特殊三角形——直角三角形的一種判定方法,體現(xiàn)了數(shù)形結(jié)合的思想。
    2.通過勾股定理與它的逆定理的學(xué)習(xí),加深了學(xué)生對性質(zhì)與判定之間辨證統(tǒng)一關(guān)系的認識。
    3.完善了知識結(jié)構(gòu),為后繼學(xué)習(xí)打下基礎(chǔ)。
    初中生已經(jīng)具備一定的獨立思考和探索能力,并能在探索過程中形成自已的觀點,能在傾聽別人意見的過程中逐漸完善自已的想法,而且本班學(xué)生比較上進,思維活躍,愿意表達自已的見解,有一定的互動互助基礎(chǔ)。
    1.知識與技能:
    (2)掌握勾股定理的逆定理,并能應(yīng)用勾股定理的逆定理判定一個三角形是不是直角三角形。
    2.過程與方法。
    (1)通過對勾股定理的逆定理的探索,經(jīng)歷知識的發(fā)生、發(fā)展與形成過程。
    (2)通過用三角形三邊的數(shù)量關(guān)系來判斷三角形的形狀,體驗數(shù)形結(jié)合方法的應(yīng)用。
    (3)通過對勾股定理的逆定理的證明,體會數(shù)形結(jié)合方法在問題解決中的作用,并能應(yīng)用勾股定理的逆定理來解決相關(guān)問題。
    3.情感態(tài)度。
    (2)在探索勾股定理的逆定理的活動中,通過一系列的富有探究性的問題,滲透與他人交流、合作的意識和探究精神。
    定理教學(xué)設(shè)計篇九
    本節(jié)課夏老師先復(fù)習(xí)了上節(jié)課學(xué)習(xí)的圓的概念及弧、弦等概念。然后比較三幅圖,找出共同點---軸對稱圖形。這節(jié)課的目的性很強,圍繞一個知識系統(tǒng)“垂徑定理及其逆定理”展開。首先,夏老師讓學(xué)生畫圓折紙,設(shè)計的問題都是典型問題,而且巧妙開放,層層遞進,有效的調(diào)動學(xué)生學(xué)習(xí)興趣,喚起學(xué)生的求知欲,激起了學(xué)生的積極思考。整節(jié)課抓住相關(guān)的基本圖形、基本輔助線、基本幾何結(jié)論的應(yīng)用,使學(xué)生的思維得到訓(xùn)練和提升。
    夏教師的課堂調(diào)控能力很強,課堂中問題的處理過程,大都是學(xué)生先有一定的時間自己思考,提出想法并向大家展示交流,然后共同解決問題,教師絕不包辦,很好地體現(xiàn)了以學(xué)為主體的課標要求。教師肯花時間讓學(xué)生大膽說出自己在思考過程中遇到的困難和障礙,呈現(xiàn)學(xué)生的思維盲點,然后通過學(xué)生之間的合作交流和教師的點撥啟發(fā)幫助學(xué)生理清思路。
    在教學(xué)方法與教材處理方面,夏老師能根據(jù)現(xiàn)在的教材特點及學(xué)情,在新課標理念的指導(dǎo)下,讓學(xué)生在課堂上多動手、多觀察、多交流,最后得出定理,這個方法符合新課程理念觀點,也符合教師的主導(dǎo)作用與學(xué)生的主體地位相統(tǒng)一的原則。
    定理教學(xué)設(shè)計篇十
    【教學(xué)目標】
    1、知識與技能目標
    能運用勾股定理及直角三角形的判定條件解決實際問題.2、能力達成目標
    (1)會用勾股定理及直角三角形的判定條件解決實際問題,逐步培養(yǎng)“數(shù)形結(jié)合”和“轉(zhuǎn)化”數(shù)學(xué)能力。(2)發(fā)展學(xué)生的分析問題能力和表達能力。
    3、情感態(tài)度目標
    (1)在提升分析問題能力和完整表達解題過程能力的同時,感受“數(shù)形結(jié)合”和“轉(zhuǎn)化”的數(shù)學(xué)思想,體會數(shù)學(xué)的應(yīng)用價值和滲透數(shù)學(xué)思想給解題帶來的便利。
    (2)積極參加數(shù)學(xué)學(xué)習(xí)活動,增強自主、合作意識,培養(yǎng)熱愛科學(xué)的高尚品質(zhì)。
    (一)創(chuàng)設(shè)情景,引入新課;
    (二)引入實例,體會勾股定在現(xiàn)實生活中的作用,體現(xiàn)數(shù)學(xué)來源于現(xiàn)實生活
    如放映的:可愛的小鳥、幫一幫消防員、電視的大小問題,這些都是現(xiàn)實生活中體現(xiàn)勾股定理應(yīng)用的很好的例子。進而引入勾股定理的應(yīng)用。
    (三)實戰(zhàn)濱示
    生活中路徑最短問題轉(zhuǎn)化為幾何中的解直角三角形問題,即勾股定理的應(yīng)用。先演示在長方體中,小螞蟻吃農(nóng)食物這個情境問題,在分析問題的過程中由學(xué)生討論分析會出現(xiàn)幾種情況,最后師生共同
    總結(jié)
    ,合作完成,不但很好地應(yīng)用了勾股定理,而且還鞏固了把幾何體展開為平面圖形的知識,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。
    由繞一圈到兩圈,最后提出問題:到多圈該怎么處理?學(xué)生課后自行討論完成。給學(xué)生以自己思考的空間,體現(xiàn)不同的學(xué)生在數(shù)學(xué)上有不同的發(fā)展。
    (七)練習(xí),以上面的形式分層次出現(xiàn)
    (八)感悟與反思(讓學(xué)生來小結(jié)本節(jié)課的內(nèi)容):
    1、通過這節(jié)課的學(xué)習(xí)活動你有哪些收獲?
    2、對這節(jié)課的學(xué)習(xí),你還有什么想法嗎?
    (九)作業(yè):見卷子
    (十)緊扣主題,觀看給出的勾股定理的應(yīng)用的圖片,體會本節(jié)課的教學(xué)內(nèi)容,以及勾股定理在現(xiàn)實生活中的具大作用。
    定理教學(xué)設(shè)計篇十一
    各位專家、評委:
    你們好!很高興能有機會參加這次活動,并得到您的指導(dǎo)。
    我說課的題目是:圓的軸對稱性——垂徑定理及其推論。它是人教版義務(wù)教育課程標準實驗教科書《數(shù)學(xué)》九年級上冊第二十四章第一節(jié)的第二部分《垂直于弦的直徑》的內(nèi)容。。
    這部分內(nèi)容教材安排了兩課時,其中第一課時講圓的軸對稱性,第二課時講圓的旋轉(zhuǎn)不變性。
    結(jié)合我對教材的理解和我所任教班級學(xué)生的實際情況,我將圓的軸對稱性一課時內(nèi)容調(diào)整為兩課時,今天我所講的是第一課時——垂徑定理及其推論。
    下面,我就從教學(xué)內(nèi)容,教學(xué)目標、教學(xué)方法與手段、教學(xué)過程設(shè)計等四個方面進行說明。
    一、教學(xué)內(nèi)容的說明。
    教師只有對教材有較為準確、深刻、本質(zhì)的理解,并從“假如我是學(xué)生”的角度審視學(xué)生的可接受性,才能處理好教材。
    垂徑定理及其推論反映了圓的重要性質(zhì),是證明線段相等、弧相等、垂直關(guān)系的重要依據(jù),為進行圓的計算和作圖提供了重要依據(jù),因此這部分內(nèi)容是學(xué)習(xí)的重點,垂徑定理及其推論的題設(shè)和結(jié)論較為復(fù)雜,容易混淆,因此也是學(xué)習(xí)的難點。
    鑒于這種理解,通覽教材,我確定出如下教學(xué)內(nèi)容:
    (1)了解圓的軸對稱性。
    (2)弄清垂徑定理及其推論的題設(shè)和結(jié)論。(3)運用垂徑定理及其推論進行有關(guān)的計算和證明。
    (4)學(xué)會與垂徑定理有關(guān)的添加輔助線的方法。
    定理教學(xué)設(shè)計篇十二
    1、知識與技能目標:會用勾股定理及直角三角形的判定條件解決實際問題。
    2、過程與方法目標:經(jīng)歷勾股定理的應(yīng)用過程,熟練掌握其應(yīng)用方法,明確應(yīng)用的條件。
    3、情感態(tài)度與價值觀目標:通過自主學(xué)習(xí)的發(fā)展體驗獲取數(shù)學(xué)知識的感受;通過有關(guān)勾股定理的歷史講解,對學(xué)生進行德育。
    勾股定理的應(yīng)用
    勾股定理的應(yīng)用
    知識點1:(已知兩邊求第三邊)
    1.在直角三角形中,若兩直角邊的長分別為1cm,2cm,則斜邊長為xx。
    2.已知直角三角形的兩邊長為3、4,則另一條邊長是xx。
    3.三角形abc中,ab=10,ac=17,bc邊上的高線ad=8,求bc的長?
    知識點2:
    利用方程求線段長
    (1)使得c,d兩村到e站的距離相等,e站建在離a站多少km處?
    (2)de與ce的位置關(guān)系
    (3)使得c,d兩村到e站的距離最短,e站建在離a站多少km處?
    利用方程解決翻折問題
    3、在矩形紙片abcd中,ad=4cm,ab=10cm,按圖所示方式折疊,使點b與點d重合,折痕為ef,求de的長。
    談一談你這節(jié)課都有哪些收獲?
    應(yīng)用勾股定理解決實際問題
    本節(jié)課是人教版數(shù)學(xué)八年級下冊第十七章第一節(jié)第二課時的內(nèi)容,是學(xué)生在學(xué)習(xí)了三角形的'有關(guān)知識,了解了直角三角形的概念,掌握了直角三角形的性質(zhì)和一個三角形是直角三角形的條件的基礎(chǔ)上學(xué)習(xí)勾股定理,加深對勾股定理的理解,提高學(xué)生對數(shù)形結(jié)合的應(yīng)用與理解。本節(jié)第一課時安排了對勾股定理的觀察、計算、猜想、證明及簡單應(yīng)用的過程;第二課時是通過例題分析與講解,讓學(xué)生感受勾股定理在實際生活中的應(yīng)用,通過從實際問題中抽象出直角三角形這一模型,強化轉(zhuǎn)化思想,培養(yǎng)學(xué)生解決問題的意識和應(yīng)用能力。
    定理教學(xué)設(shè)計篇十三
    導(dǎo)學(xué)案前置,學(xué)生是復(fù)習(xí)的引領(lǐng)者。通過及時批改導(dǎo)學(xué)案,發(fā)現(xiàn)學(xué)生在復(fù)習(xí)過程中的對知識理解的薄弱之處,對知識應(yīng)用的欠缺之處。主要存在的問題:對瞬時功率的定義式應(yīng)用不熟練;書寫動能定理公式不是很熟練,主要表現(xiàn)在對變力做功束手無策。另外,學(xué)生剛參加完運動會,興奮之余,學(xué)習(xí)狀態(tài)還需要調(diào)整。
    1.鞏固強化瞬時功率的計算公式,會運用瞬時功率的公式準確解決問題;
    2.鞏固強化摩擦力做功的特點,熟練書寫動能定理公式。
    1.精心設(shè)計問題,引導(dǎo)學(xué)生發(fā)現(xiàn)規(guī)律。
    通過設(shè)計問題:物體沿粗糙斜面下滑,求物體下滑過程中摩擦力做的功?讓學(xué)生運用功的公式計算出物體下滑過程中摩擦力做的功。教師引導(dǎo)學(xué)生對計算結(jié)果進行分析,讓學(xué)生發(fā)現(xiàn)一個重要規(guī)律,物體沿斜面下滑摩擦力做的功與物體在相應(yīng)的水平面上滑動摩擦力做的功是相等的。通過變式訓(xùn)練題,鞏固這個規(guī)律的應(yīng)用,學(xué)生收獲很大。
    2.精心設(shè)計問題,提升學(xué)生對新舊知識的辨析能力。
    初中學(xué)生學(xué)過功率,但是不對功率進行分類,并且力和速度的方向始終同向。高中階段,根據(jù)時間長短,把功率分為平均功率和瞬時功率,并且力和速度的方向不在同一直線上。因此,計算瞬時功率時,一定要考慮力和速度的方向夾角。學(xué)生受已有知識的影響頗深,很難意識到這個問題。由此我精心設(shè)計問題:飛行員抓住秋千桿在豎直面內(nèi)從高處擺下,求飛行員所受重力的瞬時功率的變化情況?要求學(xué)生嚴格按照瞬時功率的定義,計算出各個關(guān)鍵位置的重力的瞬時功率。通過計算發(fā)現(xiàn)重力的瞬時功率是從零變到不是零,最后再變到零。因此,重力的瞬時功率是先增大后減小,學(xué)生感到茅塞頓開。
    1.復(fù)習(xí)課就要放手,讓學(xué)生去發(fā)現(xiàn)。
    導(dǎo)學(xué)案前置,讓學(xué)生發(fā)現(xiàn)問題,展示問題,討論問題,最后解決問題。這樣極大的提高了課堂效率,學(xué)生的學(xué)習(xí)困惑得到了解決,學(xué)生對物理學(xué)習(xí)的自信心有了很大的提升,學(xué)生學(xué)習(xí)物理的積極性更強了。
    2.精益求精,不斷改善。
    通過本節(jié)課的學(xué)習(xí),學(xué)生能夠正確使用瞬時功率的公式,摩擦力做功的計算更加熟練,題目正確率大幅上升。像這種復(fù)習(xí)課堂怎么設(shè)計,怎么上,我和老教師經(jīng)常交流,老教師的建議是根據(jù)學(xué)情,精心設(shè)計導(dǎo)學(xué)案,調(diào)動學(xué)生對物理問題的探究欲。響應(yīng)學(xué)校號召,做好導(dǎo)學(xué)案,多讓學(xué)生講解,真正讓學(xué)生做課堂的主人。
    定理教學(xué)設(shè)計篇十四
    1、體驗勾股定理的探索過程,由特例猜想勾股定理,再由特例驗證勾股定理。
    2、會利用勾股定理解釋生活中的簡單現(xiàn)象。
    (二)能力訓(xùn)練要求。
    1、在學(xué)生充分觀察、歸納、猜想、探索勾股定理的過程中,發(fā)展合情推理能力,體會數(shù)形結(jié)合的思想。
    2、在探索勾股定理的過程中,發(fā)展學(xué)生歸納、概括和有條理地表達活動過程及結(jié)論的能力。
    (三)情感與價值觀要求。
    1、培養(yǎng)學(xué)生積極參與、合作交流的意識。
    2、在探索勾股定理的過程中,體驗獲得成功的快樂,鍛煉學(xué)生克服困難的勇氣。
    重點:探索和驗證勾股定理。
    難點:在方格紙上通過計算面積的方法探索勾股定理。
    交流探索猜想。
    在方格紙上,同學(xué)們通過計算以直角三角形的三邊為邊長的三個正方形的面積,在合作交流的過程中,比較這三個正方形的面積,由此猜想出直角三角形的三邊關(guān)系。
    1、學(xué)生每人課前準備若干張方格紙。
    2、投影片三張:
    第一張:填空(記作1.1.1a);。
    第二張:問題串(記作1.1.1b);。
    第三張:做一做(記作1.1.1c)。
    創(chuàng)設(shè)問題情境,引入新課。
    出示投影片(1.1.1a)。
    (1)三角形按角分類,可分為xx。
    (2)對于一般的三角形來說,判斷它們?nèi)鹊臈l件有哪些?對于直角三角形呢?
    (3)有兩個直角三角形,如果有兩條邊對應(yīng)相等,那么這兩個直角三角形一定全等嗎?
    定理教學(xué)設(shè)計篇十五
    《動能和動能定理》是高中物理必修2第五章《機械能及其守恒定律》第七節(jié)的內(nèi)容,我從:教材分析、目標分析、教法學(xué)法、教學(xué)過程、板書設(shè)計和教學(xué)反思六個緯度作如下匯報:
    1.內(nèi)容分析。
    《動能和動能定理》主要學(xué)習(xí)一個物理概念:動能;一個物理規(guī)律:動能定理。從知識與技能上要掌握動能表達式及其相關(guān)決定因素,動能定理的物理意義和實際的應(yīng)用。
    通過例題2的探究,理解正負功的物理意義,初步從能量守恒與轉(zhuǎn)化的角度認識功。在態(tài)度情感與價值觀上,在嘗試解決程序性問題的過程中,體驗物理學(xué)科既是基于實驗探究的一門實驗性學(xué)科,同時也是嚴密數(shù)學(xué)語言邏輯的學(xué)科,只有兩種方法體系并重,才能有效地認識自然,揭示客觀世界存在的物理規(guī)律。
    2.內(nèi)容地位。
    通過初中的學(xué)習(xí),對功和動能概念已經(jīng)有了相關(guān)的認識,通過第六節(jié)的實驗探究,認識到做功與物體速度變化的關(guān)系。將本節(jié)課設(shè)計成一堂理論探究課有著積極的意義。因為通過“動能定理”的學(xué)習(xí),深入理解“功是能量轉(zhuǎn)化的量度”,并在解釋功能關(guān)系上有著深遠的意義。為此設(shè)計如下目標:
    1、三維教學(xué)目標。
    (一)、知識與技能。
    1.理解動能的概念,并能進行相關(guān)計算;
    (二)、過程與方法。
    1.掌握恒力作用下動能定理的推導(dǎo);
    2.體會變力作用下動能定理解決問題的優(yōu)越性;
    (三)、情感態(tài)度與價值觀。
    體會“狀態(tài)的變化量量度復(fù)雜過程量”這一物理思想;感受數(shù)學(xué)語言對物理過程描述的。
    簡潔美;
    2.教學(xué)重點、難點:
    重點:對動能公式和動能定理的理解與應(yīng)用。
    難點:通過對動能定理的理解,加深對功、能關(guān)系的認識。
    學(xué)生的學(xué)法采?。喝蝿?wù)驅(qū)動和合作探究;
    選取多媒體展示、嘗試練習(xí)題和“任務(wù)驅(qū)動問題”本節(jié)課為一課時。
    設(shè)計成6個教學(xué)環(huán)節(jié):提出問題,導(dǎo)入新課;任務(wù)驅(qū)動,感知教材;合作探究,分享交流;精講點撥,釋疑解惑;典例引領(lǐng),內(nèi)化反思;課堂總結(jié),布置作業(yè)。
    定理教學(xué)設(shè)計篇十六
    教材分析:勾股定理是直角三角形的重要性質(zhì),它把三角形有一個直角的“形”的特點,轉(zhuǎn)化為三邊之間的“數(shù)”的關(guān)系,它是數(shù)形結(jié)合的典范。它可以解決許多直角三角形中的計算問題,它是直角三角形特有的性質(zhì),是初中數(shù)學(xué)教學(xué)內(nèi)容重點之一。本節(jié)課的重點是發(fā)現(xiàn)勾股定理,難點是說明勾股定理的正確性。
    學(xué)生分析:
    1、考慮到三角尺學(xué)生天天在用,較為熟悉,但真正能仔細研究過三角尺的同學(xué)并不多,通過這樣的情景設(shè)計,能非常簡單地將學(xué)生的注意力引向本節(jié)課的本質(zhì)。
    2、以與勾股定理有關(guān)的人文歷史知識為背景展開對直角三角形三邊關(guān)系的討論,能激發(fā)學(xué)生的學(xué)習(xí)興趣。
    設(shè)計理念:本教案以學(xué)生手中舞動的三角尺為知識背景展開,以勾股定理在古今中外的發(fā)展史為主線貫穿課堂始終,讓學(xué)生對勾股定理的發(fā)展過程有所了解,讓他們感受勾股定理的豐富文化內(nèi)涵,體驗勾股定理的探索和運用過程,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,特別是通過向?qū)W生介紹我國古代在勾股定理研究和運用方面的成就,激發(fā)學(xué)生熱愛祖國,熱愛祖國悠久文化的思想感情,培養(yǎng)他們的自豪感和探究創(chuàng)新的精神。
    教學(xué)目標:
    1、經(jīng)歷用面積割、補法探索勾股定理的過程,培養(yǎng)學(xué)生主動探究意識,發(fā)展合理推理能力,體現(xiàn)數(shù)形結(jié)合思想。
    2、經(jīng)歷用多種割、補圖形的方法驗證勾股定理的過程,發(fā)展用數(shù)學(xué)的眼光觀察現(xiàn)實世界和有條理地思考能力以及語言表達能力等,感受勾股定理的'文化價值。
    3、培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和愛國熱情。
    4、欣賞設(shè)計圖形美。
    教學(xué)準備階段:
    學(xué)生準備:正方形網(wǎng)格紙若干,全等的直角三角形紙片若干,彩筆、直角三角尺、鉛筆等。
    老師準備:畢達哥拉斯、趙爽、劉徽等證明勾股定理的圖片以及其它有關(guān)人物歷史資料等投影圖片。
    (一)引入
    同學(xué)們,當(dāng)你每天手握三角尺繪制自己的宏偉藍圖時,你是否想過:他們的邊有什么關(guān)系呢?今天我們來探索這一小秘密。(板書課題:探索直角三角形三邊關(guān)系)
    (二)實驗探究
    設(shè)網(wǎng)格正方形的邊長為1,直角三角形的直角邊分別為a、b,斜邊為c,觀察并計算每個正方形的面積,以四人小組為單位填寫下表:
    (討論難點:以斜邊為邊的正方形的面積找法)
    交流后得出一般結(jié)論:(用關(guān)于a、b、c的式子表示)
    (三)探索所得結(jié)論的正確性
    當(dāng)直角三角形的直角邊分別為a、b,斜邊為c時,是否一定成立?
    1、指導(dǎo)學(xué)生運用拼圖、或正方形網(wǎng)格紙構(gòu)造或設(shè)計合理分割(或補全)圖形,去探索本結(jié)論的正確性:(以四人小組為單位進行)
    在學(xué)生所創(chuàng)作圖形中選擇有代表性的割、補圖,展示出來交流講解,并引導(dǎo)學(xué)生進行說理:
    如圖2(用補的方法說明)
    師介紹:(出示圖片)畢達哥拉斯,公元前約500年左右,古西臘一位哲學(xué)家、數(shù)學(xué)家。一天,他應(yīng)邀到一位朋友家做客,他一進朋友家門就被朋友家的豪華的方形大理石地磚的形狀深深吸引住了,于是他立刻找來尺子和筆又量又畫,他發(fā)現(xiàn)以每塊大理石地磚的相鄰兩直角邊向三角形外作正方形,它們的面積和等于以這塊大理石地磚的對角線為邊向形外作正方形的面積。于是他回到家里立刻對他的這一發(fā)現(xiàn)進行了探究證明……,終獲成功。后來西方人們?yōu)榱思o念他的這一發(fā)現(xiàn),將這一定理命名為“畢達哥拉斯定理”。1952年,希臘政府為了紀念這位偉大的數(shù)學(xué)家,特別選用他設(shè)計的這種圖形為主圖發(fā)行了一枚紀念郵票。(見課本52頁彩圖2―1,欣賞圖片)
    如圖3(用割的方法去探索)
    師介紹:(出示圖片)中國古代數(shù)學(xué)家們很早就發(fā)現(xiàn)并運用這個結(jié)論。早在公元前20xx年左右,大禹治水時期,就曾經(jīng)用過此方法測量土地的等高差,公元前1100年左右,西周的數(shù)學(xué)家商高就曾用“勾三、股四、弦五”測量土地,他們對這一結(jié)論的運用至少比古希臘人早500多年。公元200年左右,三國時期吳國數(shù)學(xué)家趙爽曾構(gòu)造此圖驗證了這一結(jié)論的正確性。他的這個證明,可謂別具匠心,極富創(chuàng)新意識,他用幾何圖形的割、來證明代數(shù)式之間的相等關(guān)系,既嚴密,又直觀,為中國古代以“形”證“數(shù)”,形、數(shù)統(tǒng)一的獨特風(fēng)格樹立了一個典范。他是我國有記載以來第一個證明這一結(jié)論的數(shù)學(xué)家。我國數(shù)學(xué)家們?yōu)榱思o念我國在這方面的數(shù)學(xué)成就,將這一結(jié)論命名為“勾股定理”。(點題)
    20xx年,世界數(shù)學(xué)家大會在中國北京召開,當(dāng)時選用這個圖案作為會場主圖,它標志著我國古代數(shù)學(xué)的輝煌成就。(見課本50頁彩圖,欣賞圖片)
    如圖4(構(gòu)造新圖形的方法去探索)
    本節(jié)課學(xué)習(xí)的勾股定理用語言敘說為:
    1、繼續(xù)收集、整理有關(guān)勾股定理的證明方的探索問題并交流。
    2、探索勾股定理的運用。
    定理教學(xué)設(shè)計篇十七
    教材分析:勾股定理是直角三角形的重要性質(zhì),它把三角形有一個直角的"形"的特點,轉(zhuǎn)化為三邊之間的"數(shù)"的關(guān)系,它是數(shù)形結(jié)合的典范。它可以解決許多直角三角形中的計算問題,它是直角三角形特有的性質(zhì),是初中數(shù)學(xué)教學(xué)內(nèi)容重點之一。本節(jié)課的重點是發(fā)現(xiàn)勾股定理,難點是說明勾股定理的正確性。
    學(xué)生分析:
    1、考慮到三角尺學(xué)生天天在用,較為熟悉,但真正能仔細研究過三角尺的同學(xué)并不多,通過這樣的情景設(shè)計,能非常簡單地將學(xué)生的注意力引向本節(jié)課的本質(zhì)。
    2、以與勾股定理有關(guān)的人文歷史知識為背景展開對直角三角形三邊關(guān)系的討論,能激發(fā)學(xué)生的學(xué)習(xí)興趣。
    設(shè)計理念:本教案以學(xué)生手中舞動的三角尺為知識背景展開,以勾股定理在古今中外的發(fā)展史為主線貫穿課堂始終,讓學(xué)生對勾股定理的發(fā)展過程有所了解,讓他們感受勾股定理的豐富文化內(nèi)涵,體驗勾股定理的探索和運用過程,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,特別是通過向?qū)W生介紹我國古代在勾股定理研究和運用方面的成就,激發(fā)學(xué)生熱愛祖國,熱愛祖國悠久文化的思想感情,培養(yǎng)他們的`民族自豪感和探究創(chuàng)新的精神。
    教學(xué)目標:
    1、經(jīng)歷用面積割、補法探索勾股定理的過程,培養(yǎng)學(xué)生主動探究意識,發(fā)展合理推理能力,體現(xiàn)數(shù)形結(jié)合思想。
    2、經(jīng)歷用多種割、補圖形的方法驗證勾股定理的過程,發(fā)展用數(shù)學(xué)的眼光觀察現(xiàn)實世界和有條理地思考能力以及語言表達能力等,感受勾股定理的文化價值。
    3、培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和愛國熱情。
    4、欣賞設(shè)計圖形美。
    教學(xué)準備階段:
    學(xué)生準備:正方形網(wǎng)格紙若干,全等的直角三角形紙片若干,彩筆、直角三角尺、鉛筆等。
    老師準備:畢達哥拉斯、趙爽、劉徽等證明勾股定理的圖片以及其它有關(guān)人物歷史資料等投影圖片。
    (一)引入。
    同學(xué)們,當(dāng)你每天手握三角尺繪制自己的宏偉藍圖時,你是否想過:他們的邊有什么關(guān)系呢?今天我們來探索這一小秘密。(板書課題:探索直角三角形三邊關(guān)系)。
    (二)實驗探究。
    1、取方格紙片,在上面先設(shè)計任意格點直角三角形,再以它們的每一邊分別向三角形外作正方形,設(shè)網(wǎng)格正方形的邊長為1,直角三角形的直角邊分別為a、b,斜邊為c,觀察并計算每個正方形的面積,以四人小組為單位填寫下表:
    (討論難點:以斜邊為邊的正方形的面積找法)。
    交流后得出一般結(jié)論:(用關(guān)于a、b、c的式子表示)。
    (三)探索所得結(jié)論的正確性。
    當(dāng)直角三角形的直角邊分別為a、b,斜邊為c時,是否一定成立?
    1、指導(dǎo)學(xué)生運用拼圖、或正方形網(wǎng)格紙構(gòu)造或設(shè)計合理分割(或補全)圖形,去探索本結(jié)論的正確性:(以四人小組為單位進行)。
    在學(xué)生所創(chuàng)作圖形中選擇有代表性的割、補圖,展示出來交流講解,并引導(dǎo)學(xué)生進行說理:
    如圖2(用補的方法說明)。
    師介紹:(出示圖片)畢達哥拉斯,公元前約500年左右,古西臘一位哲學(xué)家、數(shù)學(xué)家。一天,他應(yīng)邀到一位朋友家做客,他一進朋友家門就被朋友家的豪華的方形大理石地磚的形狀深深吸引住了,于是他立刻找來尺子和筆又量又畫,他發(fā)現(xiàn)以每塊大理石地磚的相鄰兩直角邊向三角形外作正方形,它們的面積和等于以這塊大理石地磚的對角線為邊向形外作正方形的面積。于是他回到家里立刻對他的這一發(fā)現(xiàn)進行了探究證明……,終獲成功。后來西方人們?yōu)榱思o念他的這一發(fā)現(xiàn),將這一定理命名為"畢達哥拉斯定理"。1952年,希臘政府為了紀念這位偉大的數(shù)學(xué)家,特別選用他設(shè)計的這種圖形為主圖發(fā)行了一枚紀念郵票。(見課本52頁彩圖2—1,欣賞圖片)。
    如圖3(用割的方法去探索)。
    師介紹:(出示圖片)中國古代數(shù)學(xué)家們很早就發(fā)現(xiàn)并運用這個結(jié)論。早在公元前2000年左右,大禹治水時期,就曾經(jīng)用過此方法測量土地的等高差,公元前1100年左右,西周的數(shù)學(xué)家商高就曾用"勾三、股四、弦五"測量土地,他們對這一結(jié)論的運用至少比古希臘人早500多年。公元200年左右,三國時期吳國數(shù)學(xué)家趙爽曾構(gòu)造此圖驗證了這一結(jié)論的正確性。他的這個證明,可謂別具匠心,極富創(chuàng)新意識,他用幾何圖形的割、來證明代數(shù)式之間的相等關(guān)系,既嚴密,又直觀,為中國古代以"形"證"數(shù)",形、數(shù)統(tǒng)一的獨特風(fēng)格樹立了一個典范。他是我國有記載以來第一個證明這一結(jié)論的數(shù)學(xué)家。我國數(shù)學(xué)家們?yōu)榱思o念我國在這方面的數(shù)學(xué)成就,將這一結(jié)論命名為"勾股定理"。
    20xx年,世界數(shù)學(xué)家大會在中國北京召開,當(dāng)時選用這個圖案作為會場主圖,它標志著我國古代數(shù)學(xué)的輝煌成就。
    本節(jié)課學(xué)習(xí)的勾股定理用語言敘說為:
    1、繼續(xù)收集、整理有關(guān)勾股定理的證明方的探索問題并交流。
    定理教學(xué)設(shè)計篇十八
    本節(jié)課是高中數(shù)學(xué)教材北師大版必修5第二章《解三角形》余弦定理的第一課時內(nèi)容,《課程標準》和教材把解三角形這部分內(nèi)容安排在必修5,位置相對靠后,在此前學(xué)生已經(jīng)學(xué)習(xí)了三角函數(shù)、平面向量、直線和圓的方程等與本章知識聯(lián)系密切的內(nèi)容,使得這部分知識的處理有了比較多的工具,某些內(nèi)容處理的更加簡潔。學(xué)數(shù)學(xué)的最終目的是應(yīng)用數(shù)學(xué),可是比較突出的是,學(xué)生應(yīng)用數(shù)學(xué)的意識不強,創(chuàng)造能力弱,往往不能把實際問題抽象成數(shù)學(xué)問題,不能把所學(xué)的知識應(yīng)用到實際問題中去,盡管對一些常見數(shù)學(xué)問題解法的能力較強,但當(dāng)面臨一種新的問題時卻辦法不多,對于諸如觀察、分析、歸納、類比、抽象、概括、猜想等發(fā)現(xiàn)問題、解決問題的思維方法了解不夠,針對這些情況,教學(xué)中要重視從實際問題出發(fā),引入數(shù)學(xué)課題,最后把數(shù)學(xué)知識應(yīng)用于實際問題。
    余弦定理是關(guān)于任意三角形邊角之間的另一定理,是解決有關(guān)三角形問題與實際問題(如測量等)的重要定理,它將三角形的邊角有機的結(jié)合起來,實現(xiàn)了邊與角的互化,從而使三角和幾何有機的結(jié)合起來,為求與三角形有關(guān)的問題提供了理論依據(jù)。
    教科書直接從三角形三邊的向量出發(fā),將向量等式轉(zhuǎn)化為數(shù)量關(guān)系,得到余弦定理,言簡意賅,簡潔明快,但給人感覺似乎跳躍較大,不夠自然,因此在創(chuàng)設(shè)問題情境中加了一個鋪墊,即讓學(xué)生想用向量方法證明勾股定理,再由特殊到一般,將直角三角形推廣為任意三角形,余弦定理水到渠成,并與勾股定理統(tǒng)一起來,這一嘗試是想回答:一個結(jié)論源自何處,是怎樣想到的。正弦定理和余弦定理源于向量的加減法運算,其實向量的加減法的三角法則和平行四四邊形法則從形上揭示了三角形的邊角關(guān)系,而正弦定理與余弦定理是從數(shù)量關(guān)系上揭示了三角形的邊角關(guān)系,向量的數(shù)量積則打通了三角形邊角的數(shù)形聯(lián)系,因此用向量方法證明正、余弦定理比較簡潔,在證明余弦定理時,讓學(xué)生自主探究,尋找新的證法,拓展思維,打通余弦定理與正弦定理、向量、解析幾何、平面幾何的聯(lián)系,在比較各種證法后體會到向量證法的優(yōu)美簡潔,使知識交融、方法熟練、能力提升。
    數(shù)學(xué)教學(xué)的主要目標是激發(fā)學(xué)生的潛能,教會學(xué)生思考,讓學(xué)生變得聰明,學(xué)會數(shù)學(xué)的發(fā)現(xiàn)問題,具有創(chuàng)新品質(zhì),具備數(shù)學(xué)文化素養(yǎng)是題中之義,想一想,成人工作以后,有多少人會再用到余弦定理,但圍繞余弦定理學(xué)生學(xué)到的發(fā)現(xiàn)方法、思維方式、探究創(chuàng)造與數(shù)學(xué)精神則會受用不盡。數(shù)學(xué)教學(xué)活動首先應(yīng)圍繞培養(yǎng)學(xué)生興趣、激發(fā)原動力,讓學(xué)生想學(xué)數(shù)學(xué)這門課,同時指導(dǎo)學(xué)生掌握數(shù)學(xué)學(xué)習(xí)的一般方法,具備終身學(xué)習(xí)的基礎(chǔ)。教師要不斷提出好的數(shù)學(xué)問題,還要教會學(xué)生提出問題,培養(yǎng)學(xué)生發(fā)現(xiàn)問題的意識和方法,并逐步將發(fā)現(xiàn)問題的意識變成直覺和習(xí)慣,在本節(jié)課中,通過余弦定理的發(fā)現(xiàn)過程,培養(yǎng)學(xué)生觀察、類比、發(fā)現(xiàn)、推理的能力,學(xué)生在教師引導(dǎo)下,自主思考、探究、小組合作相互交流啟發(fā)、思維碰撞,尋找不同的證明方法,既培養(yǎng)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,同時掌握了學(xué)習(xí)概念、定理的基本方法,增強了學(xué)生的問題意識。其次,掌握正確的學(xué)習(xí)方法,沒有正確的'學(xué)習(xí)方法,興趣不可能持久,概念、定理、公式、法則的學(xué)習(xí)方法是學(xué)習(xí)數(shù)學(xué)的主要方法,學(xué)習(xí)的過程就是知其然,知其所以然、舉一反三的過程,學(xué)習(xí)余弦定理的過程正是指導(dǎo)學(xué)生掌握學(xué)習(xí)數(shù)學(xué)的良好學(xué)習(xí)方法的范例,引導(dǎo)學(xué)生發(fā)現(xiàn)余弦定理的來龍去脈,掌握余弦定理證明方法,理解余弦定理與其他知識的密切聯(lián)系,應(yīng)用余弦定理解決其他問題。在余弦定理教學(xué)中,尋求一題多解,探究證明余弦定理的多種方法,指導(dǎo)一題多變,改變余弦定理的形式,如已知兩邊夾角求第三邊的公式、已知三邊求角的余弦值的公式,啟發(fā)學(xué)生一題多想,引導(dǎo)學(xué)生思考余弦定理與正弦定理的聯(lián)系,與勾股定理的聯(lián)系、與向量的聯(lián)系、與三角知識的聯(lián)系以及與其他知識方法的聯(lián)系,通過不斷改變方法、改變形式、改變思維方式,夯實了數(shù)學(xué)基礎(chǔ),打通了知識聯(lián)系,掌握了數(shù)學(xué)的基本方法,豐富了數(shù)學(xué)基本活動經(jīng)驗,激發(fā)了數(shù)學(xué)創(chuàng)造思維和潛能。
    教學(xué)中也會有很多遺憾,有許多的漏洞,在創(chuàng)設(shè)情境,引導(dǎo)學(xué)生發(fā)現(xiàn)推導(dǎo)方法、鼓勵學(xué)生質(zhì)疑提問、猜想等方面有很多遺憾,比如:如何引入向量,解釋的不夠。最后,希望各位同仁批評指正。