精選因數(shù)與倍數(shù)教案導(dǎo)入大全(12篇)

字號:

    教案的編寫需要遵循教學(xué)原則和教育教學(xué)規(guī)律。選擇適合的教學(xué)方法和教具,對于教案的設(shè)計至關(guān)重要。這些教案范例涵蓋了不同年級和學(xué)科的內(nèi)容,適用于各類教學(xué)場景。
    因數(shù)與倍數(shù)教案導(dǎo)入篇一
    7--16頁的學(xué)習(xí)內(nèi)容。
    1.進一步學(xué)習(xí)求一個數(shù)的所有因數(shù)和倍數(shù);掌握一般方法,學(xué)會用常見的幾種形式表達。
    2.經(jīng)過多次的求解經(jīng)歷過程,在事實面前讓學(xué)生進一步明確因數(shù)是可數(shù)的,自然得出因數(shù)的個數(shù)是有限的,其中最大的因數(shù)自己;而倍數(shù)是無法寫完全,也就是說倍數(shù)的個數(shù)是無限的,其中最小的倍數(shù)也是自己。
    掌握求一個數(shù)的因數(shù)和倍數(shù)的常用方法及常用的幾種書寫表達形式。
    完整地求出一個數(shù)的因數(shù)和倍數(shù)。
    實物投影。
    口答:
    根據(jù)下面算式,說說哪個數(shù)是哪個數(shù)的倍數(shù),哪個數(shù)是哪個數(shù)的因數(shù)?
    4×9=3625×40=100032×7=224。
    解答題:
    18的因數(shù)有哪些?10是哪些數(shù)的倍數(shù)?
    典型例題:
    1.教學(xué):
    (1)你還能找出18的因數(shù)碼?并說出你的找法(要板書)。
    (2)小比賽。看誰既快又能完整地把30和36所有因數(shù)找出來(基礎(chǔ)練習(xí))?
    (3)分享冠軍經(jīng)驗(介紹方法)。
    (4)我們再來一次尋找32和48的所有因數(shù)的比賽(基礎(chǔ)練習(xí))?
    (5)請你試著把18所有找出的因數(shù)表述出來。(如果學(xué)生能用常見的兩種表達最好;如果不能需要教師的引導(dǎo))。
    第一種習(xí)慣書面表達形式。18的'因數(shù)有(有可能是亂的):
    第二種集合圖的書面表達形式。18的因數(shù)。
    (6)通過眼看,自我感覺調(diào)整這些因數(shù)最好按序排列。
    第一種習(xí)慣書面表達形式。18的因數(shù)有(按大小順序):
    第二種集合圖的書面表達形式。18的因數(shù)。
    (7)做基礎(chǔ)練習(xí)第2題。
    小結(jié):
    1.尋找的方法。
    2.能否找全?
    3.教學(xué)。
    (1)讓學(xué)生自己嘗試找。
    (2)有沒有發(fā)什么問題?如何解決?
    (3)如何表達?
    (4)找出3和5的倍數(shù)。
    小結(jié):
    1.尋找的方法。
    2.能否找全?
    基礎(chǔ)練習(xí):
    1.用盡快的速度找出30、36、32和48的所有因數(shù)?
    2.填空。30的因數(shù)有:36的因數(shù)有:
    3.5的倍數(shù)有:3的倍數(shù)。
    提高練習(xí):
    1.分別寫出17的因數(shù)和倍數(shù),再寫出28。
    拓展練習(xí):數(shù)學(xué)小知識:了解完全數(shù)。
    有的學(xué)生認(rèn)為某個數(shù)的最小倍數(shù)是0倍,因此最小倍數(shù)是0。要向?qū)W生強調(diào),小學(xué)階段學(xué)倍數(shù)不涉及到0,因此,某個數(shù)的最小倍數(shù)應(yīng)該是它的1倍。
    因數(shù)與倍數(shù)教案導(dǎo)入篇二
    教科書第25頁,練習(xí)四第5~8題。
    1、通過練習(xí)與對比,使學(xué)生發(fā)現(xiàn)和掌握求兩個數(shù)最小公倍數(shù)的一些簡捷方法,進行有條理的思考。
    2、通過練習(xí),使學(xué)生建立合理的認(rèn)識結(jié)構(gòu),形成解決問題的多樣策略。
    3、在學(xué)生探索與交流的合作過程中,進一步發(fā)展學(xué)生與同伴合作交流的意識和能力,感受數(shù)學(xué)與生活的聯(lián)系。
    1、我們已經(jīng)掌握了找兩個數(shù)的公倍數(shù)和最小公倍數(shù)的方法,這節(jié)課我們繼續(xù)鞏固這方面的知識,并能夠利用這些知識解決一些實際問題。
    (板書課題:公倍數(shù)和最小公倍數(shù)練習(xí))。
    2、填空。
    5的倍數(shù)有:()。
    7的'倍數(shù)有:()。
    5和7的公倍數(shù)有:()。
    5和7的最小公倍數(shù)是:()。
    3、完成練習(xí)四第5題。
    (1)理解題意,獨立找出每組數(shù)的最小公倍數(shù)。
    (2)匯報結(jié)果,集體評講。
    (3)觀察第一組中兩個數(shù)的最小公倍數(shù),看看有什么發(fā)現(xiàn)?
    每題中的兩個數(shù)有什么特征呢?(倍數(shù)關(guān)系)可以得出什么結(jié)論?
    (4)第二組中兩個數(shù)的最小公倍數(shù)有什么特征?(是這兩個數(shù)的乘積)。
    在有些情況下,兩個數(shù)的最小公倍數(shù)是這兩個數(shù)的乘積。
    4、完成練習(xí)四第6題。
    你能運用上一題的規(guī)律直接寫出每題中兩個數(shù)的最小公倍數(shù)嗎?
    交流,匯報。
    說說你是怎么想的?
    1、完成練習(xí)四第7題。
    (1)理解題意,獨立完成填表。
    (2)你是怎樣找到這兩路車第二次同時發(fā)車的時間的?
    你還有其他方法解決這個問題嗎?(7和8的最小公倍數(shù)是56)。
    2、完成練習(xí)四第8題。
    (1)理解題意。
    你能說說,他們下次相遇,是在幾月幾日嗎?(8月24日)。
    你是怎樣知道的?
    要知道他們下次相遇的日期,其實就是求什么?(6和8的最小公倍數(shù))
    通過練習(xí),同學(xué)們又掌握了一些比較快的求兩個數(shù)最小公倍數(shù)的方法,并能運用這些方法解決一些實際問題。
    在小組中互相說說自己本節(jié)課的收獲。
    因數(shù)與倍數(shù)教案導(dǎo)入篇三
    知識與技能、過程與方法:
    從操作活動中理解因數(shù)和倍數(shù)的意義,會判斷一個數(shù)是不是另一個數(shù)的因數(shù)或倍數(shù)。
    2、培養(yǎng)學(xué)生抽象、概括的能力,滲透事物之間相互聯(lián)系、相互依存的觀點。
    3、培養(yǎng)學(xué)生的合作意識、探索意識,以及熱愛數(shù)學(xué)學(xué)習(xí)的情感。
    1、因數(shù)與倍數(shù)意義以及它們的相互依存關(guān)系。
    2、尋找一個數(shù)的因數(shù)或倍數(shù)的方法。
    教學(xué)準(zhǔn)備:課件
    教學(xué)流程:
    流程1:導(dǎo)入新課
    流程2:認(rèn)識倍數(shù)和因數(shù)
    流程3:探索求一個數(shù)的因數(shù)的方法
    流程4:完成“試一試”,總結(jié)一個數(shù)因數(shù)的特點
    流程5:探索求一個數(shù)的倍數(shù)的方法
    流程6:完成“試一試”,總結(jié)一個數(shù)倍數(shù)的特點
    流程7:完成智慧樂園
    流程8:完成質(zhì)疑樂園
    流程9:數(shù)學(xué)游戲
    流程11:課堂小結(jié)
    流程10:組織學(xué)生退場
    第一段:導(dǎo)入新課
    流程1:導(dǎo)入新課
    師:課前我們先來做個腦筋急轉(zhuǎn)彎,看看誰最聰明?
    (學(xué)生發(fā)表自己的看法)
    今天,我們就把這三個人請到我教室里來好嗎?(課件出示圖片)你能不能以大李為中心,來介紹一下小老和老李。(學(xué)生說一說)
    師:我們能不能單獨地來說,大李是爸爸?(不能)為什么?
    引出相互依存(板書)
    第二段:認(rèn)識倍數(shù)和因數(shù)
    流程2:認(rèn)識倍數(shù)和因數(shù)
    (一)學(xué)習(xí)因數(shù)和倍數(shù)的概念
    1、用課前準(zhǔn)備的12張同樣大的正方形紙片拼成一個長方形。前后四人一組
    要求:
    (1)、看一共能擺出幾種完全不同的長方形。
    (2)、想一想怎樣用乘法算式表示你的擺法。
    (3)、為了便于展示,請在你的課本反面來擺。
    (學(xué)生動手操作、匯報)
    師:請你用乘法算式表示你的擺法?
    生:1×12=12 2×6=12 3×4=12
    師:為了避免重復(fù),我們可經(jīng)只選擇其中一個算式。我們以前學(xué)過,在乘法算式里,乘號前面和后面的數(shù)都叫什么?(因數(shù))等號后面的數(shù)叫什么?(積)這里的因數(shù)和積是乘法算式各部分的名稱。其實,因數(shù)和積之間就存在我們課前提到的相互依存關(guān)系。以3×4=12為例,數(shù)學(xué)上說12是4的倍數(shù),12也是3的倍數(shù),4和3都是12的因數(shù)。這里因數(shù)和倍數(shù)就具有相互依存的關(guān)系。不能孤立地說3是因數(shù),也不能孤立地說12的倍數(shù),這就是今天這節(jié)課我們研究:倍數(shù)和因數(shù)。
    師:那根據(jù)另外兩個乘法算式,同學(xué)們會說哪個數(shù)是哪個數(shù)的倍數(shù),哪個數(shù)是哪個數(shù)的因數(shù)嗎?請同桌相互說一說(學(xué)生活動)。
    老師這是里有兩道算式,你會說嗎?
    8×9=72 18÷3=6
    (請學(xué)生來說一說)
    師:同學(xué)們,倍數(shù)、因數(shù)指的是兩個自然數(shù)之間的一種關(guān)系,所以我們一定要說清楚誰是誰的倍數(shù),誰是誰的因數(shù),老師還要補充說一點,為了方便,我們在研究時,所說的數(shù)一般指不是0的自然數(shù)。
    第三段:探索求倍數(shù)和因數(shù)的方法
    流程3:探索求一個數(shù)的因數(shù)的方法
    師:同學(xué)們怎樣找一個數(shù)的因數(shù)呢?同學(xué)們愿意獨立思考,嘗試解決嗎?面對新問題,看看誰能挑戰(zhàn)成功。
    師:你能找出36所有的因數(shù)嗎?請同學(xué)們試著在練習(xí)本上寫一寫。
    (學(xué)生活動)學(xué)生匯報
    師:從1開始,想哪兩個數(shù)相乘得36,我們就可以成對地寫出36的因數(shù),一直找到兩個乘數(shù)最接近為止。解決這個問題首先要考慮什么樣的數(shù)是36的因數(shù)。如果有兩個數(shù)相乘的積是36,那么這兩個數(shù)都是36的因數(shù)。例如,1×36=36,那么1和36都是36的因數(shù)。
    師:看看老師的填法和你一樣嗎?
    師:求一個數(shù)的因數(shù),可以想乘法算式,也可以想除法算式,但都要有序思考,做到不重復(fù)、不遺漏。
    流程4:完成“試一試”,總結(jié)一個數(shù)的因數(shù)的特點
    師:下面請同學(xué)們用你喜歡或熟悉的方法寫出你自己所喜歡的數(shù)字的因數(shù)。(學(xué)生活動)相機尋找學(xué)生板書。
    師:通過觀察上面同學(xué)所寫的數(shù)的因數(shù),你發(fā)現(xiàn)了什么?學(xué)生說一說(完成表格)
    師小結(jié):一個數(shù)最小的因數(shù)是1,最大的因數(shù)是它本身;一個數(shù)因數(shù)的個數(shù)是有限的。
    寫出你的學(xué)號的所有因數(shù)。
    流程5:探索求一個數(shù)的倍數(shù)的方法
    師:同學(xué)們先想一想,什么樣的數(shù)是3的倍數(shù)?怎樣才能準(zhǔn)確地寫出3的倍數(shù)?把你的想法和小組里的同學(xué)交流一下。(學(xué)生活動)
    師:同學(xué)們一定能想到,3的倍數(shù)就是3和除0以外的一個自然數(shù)相乘的積。例如3×1=(3),3×2=(6),3×3=(9),括號里的數(shù)都是3的倍數(shù)。這樣我們按從小到大的順序,用乘法就可以有條理地說出3的倍數(shù)了,它們是:3、6、9、12、15、18。能把3的倍數(shù)全部說完嗎? 說不完,那應(yīng)該怎樣表示問題的答案呢? 因為3 的倍數(shù)的個數(shù)是無限的,所以寫的時候要借助省略號來完整地表示出結(jié)果。
    流程6:完成“試一試”,總結(jié)一個數(shù)的倍數(shù)的特點
    師:下面就請同學(xué)們用這種方法分別寫出2的倍數(shù)和5的倍數(shù)。注意要有順序地思考,并且規(guī)范地表示出結(jié)果。(學(xué)生活動)
    師:老師和同學(xué)們核對一下答案,如果出錯了,一定要分析原因,再訂正。(核對答案)
    師:現(xiàn)在我們已經(jīng)找到了求一個數(shù)的倍數(shù)的方法,并用這樣的方法分別求出3、2、5的倍數(shù),請同學(xué)們觀察上面的例子,你們能發(fā)現(xiàn)一個數(shù)的倍數(shù)有什么特點嗎?大膽地說出你們的想法。(學(xué)生活動)
    師小結(jié):仔細觀察,同學(xué)們會發(fā)現(xiàn):一個數(shù)最小的.倍數(shù)是它本身,沒有最大的倍數(shù);一個數(shù)倍數(shù)的個數(shù)是無限的。
    第四段:深化認(rèn)識,鞏固方法
    流程7:完成智慧樂園
    師:請看想想做做第3題。先填表,再討論回答下面的問題: 表中每欄的“每排人數(shù)”各是怎樣算出來的?“排數(shù)”和“每排人數(shù)”都是24的什么數(shù)?在填表的過程中你還受到了什么啟發(fā)?(學(xué)生活動)
    師: 24÷3=8,÷4=6,÷6=4,÷8=3,÷12=2,÷24=1,表中“排數(shù)”和“每排人數(shù)”都是24的因數(shù)。在填表的過程中我們會發(fā)現(xiàn)一對一對地找一個數(shù)的因數(shù)比較方便。
    流程8:完成質(zhì)疑樂園
    先判斷對錯,再說一說自己的判斷理由。
    第五段:數(shù)學(xué)游戲
    流程9:數(shù)學(xué)游戲
    師:請同學(xué)們拿出寫有自己學(xué)號的卡片,我們一起來做個游戲??匆豢?,想一想,你卡片上的數(shù)是否符合下面的條件,符合的請舉起卡片,揮一揮。(課件出示)我是5,我找我的倍數(shù);(學(xué)生活動)我是24,我找我的因數(shù);(學(xué)生活動)我是1,我找我的倍數(shù);(學(xué)生活動)我是30,我找我的因數(shù)。(學(xué)生活動)
    第六段:全課總結(jié)
    流程 10:課堂總結(jié)
    師:同學(xué)們,這節(jié)課我們認(rèn)識了倍數(shù)和因數(shù),探索了找一個數(shù)的倍數(shù)和因數(shù)的方法,根據(jù)乘法算式,用這一個數(shù)分別乘1、乘2、乘3……可以有順序地找到它的倍數(shù)。一個數(shù)倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù)。找一個數(shù)的因數(shù)可以想乘法算式,把一個數(shù)寫成兩個數(shù)相乘的積,乘數(shù)就是這個數(shù)的因數(shù);也可以想除法算式,用一個數(shù)依次去除以1、2、3……能得到整數(shù)商的,除數(shù)和商就是它的因數(shù)。寫因數(shù)時根據(jù)算式有順序的一對一對地寫比較方便,不容易遺漏或重復(fù)。一個數(shù)的因數(shù)的個數(shù)是有限的,最小的因數(shù)是1,最大的因數(shù)是它本身。
    流程11:組織下課
    組織學(xué)生分批退場。
    (1)請學(xué)號數(shù)不少于三個因數(shù)的同學(xué)先退場;
    (2)請學(xué)號數(shù)只有兩個因數(shù)的同學(xué)退場;
    (3)請學(xué)號數(shù)只有一個因數(shù)的同學(xué)跟我一起離場。
    因數(shù)與倍數(shù)教案導(dǎo)入篇四
    教材第6頁例3及練習(xí)二第3~8題及思考題。
    1.通過學(xué)習(xí),使學(xué)生能自主探究,找出求一個數(shù)的倍數(shù)的方法。
    2.結(jié)合具體情境,使學(xué)生進一步認(rèn)識自然數(shù)之間存在因數(shù)和倍數(shù)的關(guān)系,掌握求一個數(shù)的因數(shù)和倍數(shù)的方法。
    3.初步學(xué)會從數(shù)學(xué)的角度提出問題、理解問題,并能用所學(xué)知識解決問題。在解決問題的過程中,培養(yǎng)學(xué)生概括、分析和比較的能力,使學(xué)生體會數(shù)學(xué)知識的內(nèi)在聯(lián)系。
    重點:掌握求一個數(shù)的倍數(shù)的方法。
    難點:理解因數(shù)和倍數(shù)兩者之間的關(guān)系。
    1、探索找倍數(shù)的方法。(教學(xué)例3)。
    出示例3:2的倍數(shù)有哪些?
    師:你會找2的倍數(shù)嗎?給你們1分鐘的時間,看誰寫得又對、又快、又多!準(zhǔn)備好了嗎?開始!
    師:時間到,你寫了多少個2的倍數(shù)?生1:15個。生2:24個。
    師:大家都是用的什么方法呢?
    生1:我是用乘法口訣,一二得二,二二得四……這樣寫下去的。
    生2:我也是用乘法,用2去乘1、乘2……。
    師:哪些同學(xué)也是用乘法做的?
    師:你們都是用2去乘一個數(shù),所得的積就是2的倍數(shù)。還有不同的方法嗎?
    生3:我用的'是除法,用2÷2=1,4÷2=2,6÷2=3,……依次除下去。
    師:很好!如果給你更長的時間,你能把2的倍數(shù)全部寫出來嗎?(不能)。
    師:為什么?(因為2的倍數(shù)有無數(shù)個)。
    師:怎么辦?(用省略號)。
    師:通過交流,你有什么發(fā)現(xiàn)?
    引導(dǎo)學(xué)生初步體會2的倍數(shù)的個數(shù)是無限的。
    追問:你能用集合圖表示2的倍數(shù)嗎?
    學(xué)生填完后,教師組織學(xué)生進行核對。
    (4)即時練習(xí)。讓學(xué)生找出3的倍數(shù)和5的倍數(shù),并組織交流。學(xué)生舉例時可能會產(chǎn)生錯誤,教師要引導(dǎo)學(xué)生根據(jù)錯例進行適時剖析。
    2、反思提煉。師:從前面找因數(shù)和倍數(shù)的過程中,你有什么發(fā)現(xiàn)?
    先讓學(xué)生在小組內(nèi)交流,再組織全班集體交流,通過全班交流,引導(dǎo)學(xué)生認(rèn)識以下三點:
    (1)一個數(shù)的最小因數(shù)是1,最大因數(shù)是它本身。
    (2)一個數(shù)的最小倍數(shù)是它本身,沒有最大倍數(shù)。
    (3)一個數(shù)的因數(shù)的個數(shù)是有限的,一個數(shù)的倍數(shù)的個數(shù)是無限的。
    1、指導(dǎo)學(xué)生完成教材第7~8頁練習(xí)二第3~8題及思考題。
    學(xué)生獨立完成全部練習(xí)后教師組織學(xué)生進行集體訂正。
    集體訂正時,教師著重引導(dǎo)學(xué)生認(rèn)識以下幾點:
    (1)第4題“15的因數(shù)有哪些?”和“15是哪些數(shù)的倍數(shù)”答案是一樣的。
    (2)第5題中的第(2)小題是錯的,因為一個數(shù)的倍數(shù)的個數(shù)是無限的,第(4)小題也是錯的,因為在研究因數(shù)和倍數(shù)時,我們所說的數(shù)指的是自然數(shù),不含小數(shù)。
    (3)思考題:兩數(shù)如果都是7(或9)倍數(shù),它們的和也一定是7(或9)的倍數(shù),即如果兩數(shù)都是n的倍數(shù),它的和也是n的倍數(shù)。
    2、利用求倍數(shù)的方法解決生活中的實際問題。
    理解題意,分析解答。
    教師提示“2個2個地數(shù),正好數(shù)完,說明西瓜的個數(shù)是2的倍數(shù),5個5個地數(shù),也正好數(shù)完,說明西瓜的個數(shù)是5的倍數(shù),所以西瓜的個數(shù)同時是2和5的倍數(shù)。
    交流匯報:2的倍數(shù)有2,4,6,8,10,12,14,16,18,20,…。
    5的倍數(shù)有5,10,15,20,25,30,…。
    2和5共同的倍數(shù)有10,20,…所以2和5共同的倍數(shù)最小的是10。
    答:這些西瓜最少有10個。
    1、師:通過本節(jié)課的學(xué)習(xí),你有什么收獲?(學(xué)生交流)。
    2、讓學(xué)生自學(xué)“你知道嗎?”
    2×1=22÷2=1。
    2×2=44÷2=2。
    2×3=66÷2=3。
    2×4=88÷2=4。
    2的倍數(shù)有2,4,6,……。
    一個數(shù)的因數(shù)的個數(shù)是有限的,一個數(shù)的倍數(shù)的個數(shù)是無限的。
    因數(shù)與倍數(shù)教案導(dǎo)入篇五
    人教版小學(xué)數(shù)學(xué)五年級下冊第17、18頁。
    1.我能掌握2、5的倍數(shù)的特征,并利用特征判斷一個數(shù)是不是2、5的倍數(shù)。
    2.我知道什么是奇數(shù)和偶數(shù)。
    了解2、5的倍數(shù)的特征及奇數(shù)和偶數(shù)的含義。
    能正確地求出符合要求的數(shù)。
    收集電影票。
    1.互動,檢查獨學(xué)部分第1、2題完成情況。
    2.質(zhì)疑探討。
    (一)2、5的倍數(shù)的特征。
    1.小組合作。
    仔細回顧獨學(xué)題2,再與同伴分享自己的收獲。
    2.小組代表展示匯報。
    3.小組合作交流,驗證規(guī)律。
    我們的想法:
    小組代表匯報、總結(jié)。
    4.試試身手。
    (1)獨立完成第18頁“做一做”。
    (2)集體交流。我又發(fā)現(xiàn)了:
    (二)奇數(shù)和偶數(shù)。
    1.自主閱讀教材。根據(jù)自學(xué)內(nèi)容,我知道:
    根據(jù)是否是2的倍數(shù),可把自然數(shù)分為和兩類。是2的.倍數(shù)的數(shù)叫做,不是2的倍數(shù)的數(shù)叫做。
    2.組內(nèi)交流,并討論:0是不是2的倍數(shù)?為什么?
    3.匯報總結(jié)。
    4.我能說出身邊的奇數(shù)和偶數(shù)。
    5.做一做(第17頁)。
    因數(shù)與倍數(shù)教案導(dǎo)入篇六
    教學(xué)內(nèi)容:
    蘇教版義務(wù)教育教科書《數(shù)學(xué)五年級下冊第47~48頁整理與練習(xí)“回顧與整理”和“練習(xí)與應(yīng)用”第1~7題。
    教學(xué)目標(biāo):
    1.使學(xué)生加深認(rèn)識因數(shù)和倍數(shù),能找一個數(shù)的因數(shù)或倍數(shù),進一步認(rèn)識質(zhì)數(shù)和合數(shù);掌握2、5、3的倍數(shù)的特征,進一步認(rèn)識偶數(shù)和奇數(shù);加深理解質(zhì)因數(shù),能正確分解質(zhì)因數(shù)。
    2.使學(xué)生能整理因數(shù)和倍數(shù)的知識內(nèi)容,感受知識之間的內(nèi)在聯(lián)系;能應(yīng)用相關(guān)概念進行分析、判斷、推理,進一步掌握思考、解決數(shù)學(xué)問題的方法,積累數(shù)學(xué)思維的初步經(jīng)驗,提高分析、推理、判斷等思維能力;加深對數(shù)的認(rèn)識,進一步發(fā)展數(shù)感。
    3.使學(xué)生主動參與回顧、整理知識和分析、解決問題等活動,培養(yǎng)樂于思考的品質(zhì)和與同伴互相交流、傾聽等合作意識和能力;感受數(shù)學(xué)方面的知識積累和進步,提高學(xué)好數(shù)學(xué)的自信心。
    教學(xué)重點:
    整理、應(yīng)用因數(shù)和倍數(shù)的知識。
    教學(xué)難點:
    應(yīng)用概念正確判斷、推理。
    教學(xué)過程:
    一、揭示課題
    談話:最近的數(shù)學(xué)課,我們學(xué)習(xí)了哪方面的內(nèi)容?回憶一下,都學(xué)到了哪些知識?
    揭題:我們已經(jīng)學(xué)完了因數(shù)和倍數(shù)這一單元的內(nèi)容,今天開始主要整理與練習(xí)這一單元內(nèi)容。(板書課題)通過整理與練習(xí),我們要進一多認(rèn)識因數(shù)與倍數(shù),2.5.3的倍數(shù)的特征,能熟練掌握找一個數(shù)的因數(shù)或倍數(shù)的方法;能判斷偶數(shù)和奇數(shù)、質(zhì)數(shù)和合數(shù),了解這些概念之間的聯(lián)系與區(qū)別,能正確分解質(zhì)因數(shù),提高對數(shù)的特征的認(rèn)識,加深對數(shù)的認(rèn)識。
    二、回顧與整理
    1.回顧討論。
    出示討論題:
    (1)你是怎樣理解因數(shù)和倍數(shù)的?舉例說明你的認(rèn)識。
    (2)2、5、3的倍數(shù)有什么特征?我們是怎樣發(fā)現(xiàn)的?
    (3)自然數(shù)可以怎樣分類,各能分成哪幾類?舉例說說什么是質(zhì)因數(shù)和分解質(zhì)因數(shù)。
    (4)什么是兩個數(shù)的公因數(shù)和最大公因數(shù),公倍數(shù)和最小公倍數(shù)?
    讓學(xué)生在小組里討論,結(jié)合討論適當(dāng)記錄自己的認(rèn)識或例子。
    2.交流整理。
    圍繞討論題,引導(dǎo)學(xué)生展開交流,結(jié)合交流板書主要內(nèi)容。
    (1)提問:能說說什么是因數(shù)和倍數(shù)嗎?可以用例子說明。(結(jié)合交流板書一兩個乘法或除法算式)
    (指名學(xué)生說一說,再集體說一說)
    你能找出6的因數(shù)嗎?(板書因數(shù))6的倍數(shù)呢?(板書倍數(shù))
    能說說找一個數(shù)的因數(shù)或倍數(shù)的方法嗎?
    說明:一個數(shù)的因數(shù)可以從小到大一對一對地找,到中間兩個因數(shù)之間沒有因數(shù)為止;一個數(shù)的倍數(shù)可以用依次乘1、2、3……這樣的方法找,注意一個數(shù)的倍數(shù)是無限的,寫一個數(shù)的倍數(shù)要注意用省略號。
    (2)提問:2、5、3的倍數(shù)各有什么特征?我們是怎樣發(fā)現(xiàn)的?
    自然數(shù)可以怎樣分類,各可以分成哪幾類?
    你能舉出偶數(shù)和奇數(shù)、質(zhì)數(shù)和合數(shù)的一些例子嗎?(學(xué)生舉出各類數(shù)的例子)
    說明:按是不是2的倍數(shù)可以把自然數(shù)分成偶數(shù)和奇數(shù)兩類,是2的倍數(shù)的是偶數(shù),不是2的倍數(shù)的是奇數(shù);按因數(shù)的個數(shù)可以把自然數(shù)分成1和質(zhì)數(shù)、合數(shù)三類,只有兩個因數(shù)的是質(zhì)數(shù),有兩個以上因數(shù)的是合數(shù),1既不是質(zhì)數(shù)也不是合數(shù)。
    什么是質(zhì)因數(shù)和分解質(zhì)因數(shù)?6有哪些質(zhì)因數(shù)?怎樣把6分解質(zhì)因數(shù)?(板書式子,并說明其中的質(zhì)因數(shù))
    (3)提問:什么是公因數(shù)和最大公因數(shù),什么是公倍數(shù)和最小公倍數(shù)?
    說明:兩個數(shù)公有的因數(shù)叫公因數(shù),其中最大的叫最大公因數(shù);兩個數(shù)公有的倍數(shù)叫公倍數(shù),其中最小的叫最小公倍數(shù)。
    結(jié)合交流內(nèi)容,逐步板書成:
    l
    質(zhì)數(shù)質(zhì)因數(shù)
    合數(shù)分解質(zhì)因數(shù)
    因數(shù)公因數(shù)最大公因數(shù)
    (互相依存)
    倍數(shù)公倍數(shù)最小公倍數(shù)
    2、5、3的倍數(shù)的特征
    偶數(shù)
    奇數(shù)
    (4)引導(dǎo):請同學(xué)們現(xiàn)在觀察我們整理的這一單元學(xué)過的內(nèi)容,了解知識之間的聯(lián)系,同桌互相說說知識是怎樣發(fā)展的。
    學(xué)生互相交流,教師巡視、傾聽。
    交流:哪位同學(xué)能看黑板上整理的內(nèi)容,說說我們怎樣逐步認(rèn)識這些知識的,知識是怎樣發(fā)展起來的。
    三、練習(xí)與應(yīng)用
    1.做“練習(xí)與應(yīng)用”第1題。
    指名學(xué)生交流,說說每組里因數(shù)和倍數(shù)關(guān)系。
    提問:3和7有沒有因數(shù)和倍數(shù)關(guān)系?為什么沒有?
    2.做“練習(xí)與應(yīng)用”第2題。
    (1)讓學(xué)生獨立寫出前四個數(shù)的所有因數(shù),指名兩人板演。
    交流:你是怎樣找它們的因數(shù)的?(檢查板演題)
    (2)口答后三個數(shù)的因數(shù)。
    引導(dǎo):能說出后面每個數(shù)的全部因數(shù)嗎?(學(xué)生口答,教師板書)
    提問:一個數(shù)的因數(shù)有什么特點?
    說明:一個數(shù)因數(shù)的個數(shù)是有限的,最小的是1.最大的是它本身。
    3.分別說出下面各數(shù)的倍數(shù)。
    581217
    分別指名學(xué)生說出各數(shù)的倍數(shù),教師板書。
    提問:為什么要寫省略號?一個數(shù)的倍數(shù)有什么特點?
    說明:一個數(shù)倍數(shù)的個數(shù)是無限的,最小的是它本身,沒有最大的倍數(shù)。
    4.做“練習(xí)與應(yīng)用”第3題。
    (1)讓學(xué)生獨立完成填數(shù)。
    交流:題里各是怎樣填的?(呈現(xiàn)結(jié)果)填數(shù)時怎樣想的?
    提問:哪些數(shù)既是3的倍數(shù),又是5的倍數(shù)?你是怎樣想的?
    同時是2和5的倍數(shù)的數(shù)有什么特征?
    哪些數(shù)既是2的倍數(shù),又是5和3的倍數(shù)?說說你的判斷方法。
    (2)這里哪些數(shù)是偶數(shù)?奇數(shù)呢?
    你是怎樣判斷偶數(shù)和奇數(shù)的?
    5.做“練習(xí)與應(yīng)用”第4題。
    要求學(xué)生獨立思考,自己選出兩張卡片,按各題的要求分別組成兩位數(shù),把能組成的數(shù)記錄下來。
    交流:同時是5和3的倍數(shù)的數(shù)有哪些?(板書:30)如果是三位數(shù)呢?
    (板書:180810)
    組成的兩位數(shù)中最大的偶數(shù)是多少?(板書:80)最小的奇數(shù)呢?(板書:13)
    6.做“練習(xí)與應(yīng)用”第5題。
    讓學(xué)生把質(zhì)數(shù)圈出來,在合數(shù)下面畫線。
    交流:哪些是質(zhì)數(shù),哪些是合數(shù)?(板書成兩類)質(zhì)數(shù)和合數(shù)是按什么分的?
    說明:質(zhì)數(shù)只有2個因數(shù),合數(shù)至少有3個因數(shù)。
    7.做“練習(xí)與應(yīng)用’’第6題。
    讓學(xué)生選出質(zhì)數(shù)和偶數(shù)。
    交流、呈現(xiàn)結(jié)果。
    提問:觀察表里選出的質(zhì)數(shù)和偶數(shù),所有的質(zhì)數(shù)都是奇數(shù)嗎?請舉出一個具體例子。
    所有的合數(shù)都是偶數(shù)嗎?你能舉例子說明嗎?
    指出:如果要說明一個結(jié)論是錯誤的,只要舉一個反例。比如,要判斷質(zhì)數(shù)都是奇數(shù)的說法是錯的,只要舉出質(zhì)數(shù)2是偶數(shù)這個例子。這里質(zhì)數(shù)2是偶數(shù)就是一個反例。要判斷合數(shù)都是偶數(shù)是錯的,也只要舉一個反例,比如合數(shù)9就是奇數(shù)。
    8.下面的說法正確嗎?
    (1)大于0的自然數(shù)不是奇數(shù)就是偶數(shù)。
    (2)大于0的自然數(shù)不是質(zhì)數(shù)就是合數(shù)。
    (3)奇數(shù)都是質(zhì)數(shù),偶數(shù)都是合數(shù)。
    (4)自然數(shù)中最小的偶數(shù)是2,最小的合數(shù)是4。
    (5)一個數(shù)本身既是它的因數(shù),又是它的倍數(shù)。
    9.做“練習(xí)與應(yīng)用”第7題。
    (1)讓學(xué)生填空,指名板演。交流并確認(rèn)結(jié)果。
    提問:這里填寫的質(zhì)數(shù)都叫積的什么數(shù)?為什么稱它是積的質(zhì)因數(shù)?
    說明:這里把合數(shù)寫成這種質(zhì)數(shù)相乘的形式,叫什么?
    (2)把30、42分別分解質(zhì)因數(shù)。
    學(xué)生完成,交流板書,檢查訂正。
    四、全課總結(jié)
    提問:這節(jié)課主要復(fù)習(xí)的哪些內(nèi)容?你有哪些收獲?
    將本文的word文檔下載到電腦,方便收藏和打印
    推薦度:
    點擊下載文檔
    搜索文檔
    因數(shù)與倍數(shù)教案導(dǎo)入篇七
    1.我能理解什么是質(zhì)數(shù)和合數(shù),掌握了判斷質(zhì)數(shù)、合數(shù)的方法。
    2.我知道100以內(nèi)的質(zhì)數(shù),記住了20以內(nèi)的質(zhì)數(shù)。
    3.我能在自主探究中獨立思考,合作探究時暢所欲言。
    能理解質(zhì)數(shù)、合數(shù)的意義,正確判斷一個數(shù)是質(zhì)數(shù)還是合數(shù)。
    用恰當(dāng)?shù)姆椒ㄕ页?00以內(nèi)的質(zhì)數(shù);會給自然數(shù)分類。
    一、導(dǎo)入新課
    二、檢查獨學(xué)
    1.互動分享收獲。
    2.質(zhì)疑探討。
    3.試試身手:第23頁做一做。
    三、合作探究
    1.小組合作,利用課本24頁的表格,用恰當(dāng)?shù)姆椒ㄕ页?00以內(nèi)的質(zhì)數(shù),做一個質(zhì)數(shù)表。
    2.展示、交流:你們是怎樣找出100以內(nèi)質(zhì)數(shù)的?
    3.小組討論:
    (1)有沒有最大的質(zhì)數(shù)或合數(shù)?
    (2)根據(jù)因數(shù)的個數(shù),可把非零自然數(shù)分成哪幾類?
    4.我能很快熟記20以內(nèi)的質(zhì)數(shù)。
    5.獨立思考:
    (1)是不是所有的`質(zhì)數(shù)都是奇數(shù)?
    (2)是不是所有的奇數(shù)都是質(zhì)數(shù)?
    (3)是不是所有的合數(shù)都是偶數(shù)?
    (4)是不是所有的偶數(shù)都是合數(shù)?
    6.組內(nèi)交流。
    因數(shù)與倍數(shù)教案導(dǎo)入篇八
    師:誰愿意把自己擺長方形的方法和列出的算式講給大家聽?
    師:還有其它擺法嗎?還有不同的乘法算式嗎?猜一猜,他是怎樣擺的?
    學(xué)生交流幾種不同的擺法。隨著學(xué)生交流一一演示。
    師:12個同樣大小的正方形能擺出不同的的長方形,可以用乘法算式來表示。千萬別小看這些乘法算式,我們這節(jié)課的研究就從這些算式中開始。我們就以最后一道乘法算式為例,(板書:3×4=12,3和4在乘法算式叫(因數(shù)),那12呢?(積)因為:3×4=12,我們可以說3是12的因數(shù),那4(也是12的因數(shù),),3和4都是12的因數(shù),反過來呢?12是3的倍數(shù),12(也是4的倍數(shù))。同學(xué)們很有遷移的能力。這就是我們今天所要研究的兩個重要的概念:因數(shù)與倍數(shù)。(板書課題)(齊說3、4、12)。
    師:剛才這位同學(xué)的發(fā)言就象繞口令,你們聽明白了嗎?誰再來說說?
    (4)質(zhì)疑:如果我說12是倍數(shù),1是因數(shù),行嗎?引導(dǎo)學(xué)生說出12是誰的倍數(shù),1是誰的因數(shù)。
    小結(jié):倍數(shù)和因數(shù)是指兩個數(shù)之間的關(guān)系,所以不能單獨說誰是倍數(shù),誰是因數(shù)。一定要說“誰是誰的倍數(shù),誰是誰的因數(shù)?!?BR>    (5)舉例內(nèi)化。
    1、同桌出題互說。
    師:你能寫一道乘法算式,讓同桌說說(?)是(?)的倍數(shù),(??)是(??)的因數(shù)嗎?生匯報。
    2、老師根據(jù)學(xué)生出的一道乘法算式隨機得到一道除法算式讓學(xué)生說一說:(??)是(??)的倍數(shù),(?)是(??)的因數(shù)。
    小結(jié):看來,乘法算式和除法算式中都存在著倍數(shù)和因數(shù)關(guān)系。
    師指明:,為了研究方便,我們在說倍數(shù)和因數(shù)時,所說的數(shù)一般指不是0的自然數(shù)。因此以后小數(shù)與分?jǐn)?shù)就不討論因數(shù)倍數(shù)關(guān)系。
    (3)、小結(jié):好了,剛才我們已經(jīng)初步研究了因數(shù)和倍數(shù),下面我們進一步來研究因數(shù)和倍數(shù)。
    二、創(chuàng)設(shè)情境,自主探究找因數(shù)和倍數(shù)的方法.
    (一)探索找因數(shù)的方法。
    生說略。還有補充的嗎?能不能說3是20的因數(shù)?
    師:3、18、36都是36的因數(shù),只有這3個嗎?(1、2、……)。
    師:看來要找出36的一個因數(shù)并不難,難就難在你能不能把36的所有因數(shù)既不重復(fù)又不遺漏地全部找出來呢?因為這個問題有點難度,你可以獨立完成也可以同桌合作完成,請你選擇你喜歡的方式,找出36的所有因數(shù),想一想怎么找不會遺漏?如果你全部找到了,填在作業(yè)紙的橫線上。同時將你找因數(shù)的方法寫在橫線的下方框內(nèi)。
    生寫后小組內(nèi)交流。學(xué)生填寫時師巡視搜集作業(yè)。
    2、交流作業(yè)。(略)。
    出示學(xué)生的不同作業(yè)。交流找因數(shù)的方法。
    師:出示36的因數(shù)有:1、36;2、18;3、12;4,9;6。
    你知道這個同學(xué)是怎樣找出36的因數(shù)的嗎?看著這個答案你能猜出一點嗎?
    生:他是有規(guī)律,一對一對找的,哪兩個整數(shù)相乘得36,就寫上。
    師:找到什么時候為止?那為什么算到6,你們就不往后找了呢?相同的只寫一個6。
    師:他是用乘法找的,其他同學(xué)還有補充嗎???。
    師:老師發(fā)現(xiàn)不管是用乘法還是用除法,你們都是從幾開始的?。繛槭裁??(板書:有序)。
    師:36的因數(shù)還可以這樣表示。(小黑板:板書集合圈圖)。
    4、啟迪思考。
    師:現(xiàn)在你找一個數(shù)的因數(shù)有辦法了嗎?怎樣才能有序地、既不重復(fù)、又不遺漏地找出一個數(shù)的所有因數(shù)呢?在小組里說一說。
    學(xué)生想到的方法可能是:從小到大找;一對一對找;找到兩個數(shù)接近為止。
    3、學(xué)生小結(jié)。好,我們已經(jīng)說了那么多,誰能完整地說一說?
    4、嘗試練習(xí):
    5、發(fā)現(xiàn)一個數(shù)因數(shù)的特征。
    師:剛才我們找了36、20、18和5的因數(shù),請大家仔細觀察這4個數(shù)的所有因數(shù)。你發(fā)現(xiàn)這些數(shù)的因數(shù)有什么共同的特點?把你的發(fā)現(xiàn)告訴小組里的同學(xué)。
    (先思考,再交流)還有嗎?36的因數(shù)除了這些還有嗎?說明一個數(shù)因數(shù)的個數(shù)是(有限的)(板書)。
    四、鞏固練習(xí)。
    1、判一判。(小黑板出示)。
    2、填一填。
    因數(shù)與倍數(shù)教案導(dǎo)入篇九
    1.使學(xué)生初步掌握2、5的倍數(shù)的特征。
    2.使學(xué)生知道奇數(shù)、偶數(shù)的概念。
    能力目標(biāo)
    1.會判斷一個數(shù)是否能被2、5整除。
    2.會判斷奇數(shù)、偶數(shù)。
    3.培養(yǎng)類推能力及主動獲取知識的能力。
    情感目標(biāo)
    激發(fā)學(xué)生的學(xué)習(xí)興趣。
    因數(shù)與倍數(shù)教案導(dǎo)入篇十
    1.理解因數(shù)和倍數(shù)的意義以及兩者之間相互依存的關(guān)系,掌握找一個數(shù)的因數(shù)和倍數(shù)的方法。
    2.在探究的過程中體會數(shù)學(xué)知識之間的內(nèi)在聯(lián)系,在解決問題的過程中培養(yǎng)學(xué)生思維的有序性和條理性。
    3.培養(yǎng)學(xué)生的探索意識以及熱愛數(shù)學(xué)學(xué)習(xí)的情感。
    因數(shù)與倍數(shù)教案導(dǎo)入篇十一
    1.理解因數(shù)和倍數(shù)的意義以及兩者之間相互依存的關(guān)系,掌握找一個數(shù)的因數(shù)和倍數(shù)的方法。
    2.在探究的過程中體會數(shù)學(xué)知識之間的內(nèi)在聯(lián)系,在解決問題的過程中培養(yǎng)學(xué)生思維的有序性和條理性。
    3.培養(yǎng)學(xué)生的探索意識以及熱愛數(shù)學(xué)學(xué)習(xí)的情感。
    1.理解因數(shù)和倍數(shù)的意義以及兩者之間相互依存的關(guān)系。
    2.掌握找一個數(shù)的因數(shù)和倍數(shù)的方法。
    教學(xué)課件。
    (一)創(chuàng)設(shè)情境,引入新課。
    人與人之間存在著許多種關(guān)系,你們和爸爸(媽媽)的關(guān)系是?
    (父子、母子、母女關(guān)系)我和你們的關(guān)系是?(師生關(guān)系)。
    在數(shù)學(xué)中,數(shù)與數(shù)之間也存在著多種關(guān)系,這節(jié)課,我們一起研究兩數(shù)之間的因數(shù)與倍數(shù)關(guān)系。
    (二)探究新知-理解因數(shù)和倍數(shù)的意義。
    教學(xué)例1:
    1.觀察算式的特點,進行分類。
    (1)仔細觀察算式的特點,你能把這些算式分類嗎?
    (2)交流學(xué)生的分類情況。(預(yù)設(shè):學(xué)生會根據(jù)算式的計算結(jié)果分成兩類)。
    第一類是被除數(shù)、除數(shù)、商都是整數(shù);第二類是被除數(shù)、除數(shù)都是整數(shù),而商不是整數(shù)。
    2.明確因數(shù)和倍數(shù)的意義。
    (1)同學(xué)們,在整數(shù)除法中,如果商是整數(shù)而沒有余數(shù),我們就說被除數(shù)是除數(shù)的倍數(shù),除數(shù)是被除數(shù)的因數(shù)。例如,12÷2=6,我們就說12是2的倍數(shù),2是12的因數(shù)。12÷6=2,我們就說12是6的倍數(shù),6是12的因數(shù)。
    (2)在第一類算式中找一個算式,說一說,誰是誰的因數(shù)?誰是誰的倍數(shù)?
    (3)強調(diào)一點:為了方便,在研究倍數(shù)與因數(shù)的時候,我們所說的數(shù)指的是自然數(shù)(一般不包括0)。
    3.理解因數(shù)和倍數(shù)的依存關(guān)系。
    (1)獨立完成教材第5頁“做一做”。
    (2)我們能不能說“4是因數(shù)”“24是倍數(shù)”呢?表述時應(yīng)該注意什么?
    4.理解一個數(shù)的“因數(shù)”和乘法算式中的“因數(shù)”的區(qū)別以及一個數(shù)的“倍數(shù)”與“倍”的區(qū)別。
    (1)今天學(xué)的一個數(shù)的“因數(shù)”與以前乘法算式中的“因數(shù)”有什么區(qū)別呢?
    課件出示:
    乘法算式中的“因數(shù)”是相對于“積”而言的,可以是整數(shù),也可以是小數(shù)、分?jǐn)?shù);而一個數(shù)的“因數(shù)”是相對于“倍數(shù)”而言的,它只能是整數(shù)。
    (2)今天學(xué)的“倍數(shù)”與以前的“倍”又有什么不同呢?
    “倍數(shù)”是相對于“因數(shù)”而言的,只適用于整數(shù);而“倍”適用于小數(shù)、分?jǐn)?shù)、整數(shù)。
    (3)交流匯報。
    (三)探究新知-找一個數(shù)的因數(shù)。
    教學(xué)例2:
    1.探究找18的因數(shù)的方法。
    (1)18的因數(shù)有哪些?你是怎么找的?
    (2)交流方法。
    預(yù)設(shè):方法一:根據(jù)因數(shù)和倍數(shù)的意義,通過除法算式找18的因數(shù)。
    因為18÷1=18,所以1和18是18的因數(shù)。
    因為18÷2=9,所以2和9是18的因數(shù)。
    因為18÷3=6,所以3和6是18的因數(shù)。
    方法二:根據(jù)尋找哪兩個整數(shù)相乘的積是18,尋找18的因數(shù)。
    因為1×18=18,所以1和18是18的因數(shù)。
    因為2×9=18,所以2和9是18的因數(shù)。
    因為3×6=18,所以3和6是18的因數(shù)。
    2.明確18的因數(shù)的表示方法。
    (1)我們怎樣來表示18的因數(shù)有哪些呢?怎樣表示簡潔明了?
    (2)交流方法。
    預(yù)設(shè):列舉法,18的因數(shù)有:1,2,3,6,9,18。
    集合圖的方法(如下圖所示)。
    3.練習(xí)找一個數(shù)的因數(shù)。
    (1)你能找出30的因數(shù)有哪些嗎?36的因數(shù)呢?
    (2)怎樣找才能不遺漏、不重復(fù)地找出一個數(shù)的所有因數(shù)?
    (四)探究新知-找一個數(shù)的倍數(shù)。
    教學(xué)例3:
    1.探究找2的倍數(shù)的方法。
    (1)2的倍數(shù)有哪些?你是怎么找的?
    (2)想方法:利用乘法算式找2的倍數(shù)。
    因為2×1=2,所以2是2的倍數(shù)。
    因為2×2=4,所以4是2的倍數(shù)。
    因為2×3=6,所以6是2的倍數(shù)?!?BR>    (3)2的倍數(shù)能寫完嗎?你能繼續(xù)找嗎?寫不完怎么辦?
    (4)根據(jù)前面的經(jīng)驗,試著表示出2的倍數(shù)有哪些?(預(yù)設(shè):列舉法、集合圖的方法)。
    2.練習(xí)找一個數(shù)的倍數(shù)。
    你能找出3的倍數(shù)有哪些嗎?5的倍數(shù)呢?
    (五)我的發(fā)現(xiàn)-因數(shù)與倍數(shù)的特征。
    舉例子,找規(guī)律,勾畫知識點,讀一讀。
    預(yù)設(shè):一個數(shù)的因數(shù)的個數(shù)是有限的`,最小的因數(shù)是1,最大的因數(shù)是它本身;一個數(shù)的倍數(shù)的個數(shù)是無限的,沒有最大的倍數(shù),最小的倍數(shù)是它本身。1是所有非零自然數(shù)的因數(shù)。
    (六)智慧樂園。
    1.在練習(xí)本上完成下列填空題。(獨立完成后,師訂正答案)。
    一個數(shù)的最大因數(shù)是17,這個數(shù)是(),它的最小的因數(shù)是()。
    一個數(shù)的最小倍數(shù)是17,這個數(shù)是(),它()最大的倍數(shù),17的倍數(shù)的個數(shù)是().
    一個數(shù)既是12的因數(shù),又是12的倍數(shù),這個數(shù)是()。
    2.在練習(xí)本上完成下列判斷題。(獨立完成后,師訂正答案)。
    (1)在算式6×4=24中,6是因數(shù),24是倍數(shù)。()。
    (2)15的倍數(shù)一定大于15。()。
    (3)1是除0以外所有自然數(shù)的因數(shù)。()。
    (4)40以內(nèi)6的倍數(shù)有12、18、24、30、36這5個。()。
    (5)34的最小倍數(shù)是34;34的最小因數(shù)是17。()。
    (6)1.2是3的倍數(shù)。()。
    (七)全課總結(jié),交流收獲。
    這節(jié)課我們學(xué)了哪些知識?你有什么收獲?
    (八)布置作業(yè)。
    完成課時練第3、4頁,提交家校本。
    因數(shù)與倍數(shù)教案導(dǎo)入篇十二
    在學(xué)習(xí)本單元之前,學(xué)生已經(jīng)分階段認(rèn)識了百以內(nèi)、千以內(nèi)、萬以內(nèi)、億以內(nèi)以及一些整億的數(shù)。較為系統(tǒng)地掌握了十進制計數(shù)法,同時也基本完成了整數(shù)四則運算的學(xué)習(xí)。但這只是對數(shù)字的淺在認(rèn)識,為學(xué)生進一步學(xué)習(xí)公倍數(shù)和公因數(shù),以及分?jǐn)?shù)的約分、通分和四則運算奠定基礎(chǔ)。
    教學(xué)目標(biāo)定為以下幾點:
    (一)知識、技能目標(biāo):
    1、使學(xué)生結(jié)合整數(shù)乘、除法運算初步認(rèn)識倍數(shù)和因數(shù)的含義,探索并掌握找一個數(shù)的倍數(shù)和因數(shù)的方法,發(fā)現(xiàn)一個數(shù)的倍數(shù)、因數(shù)中最大的數(shù)、最小的數(shù)及其個數(shù)方面的特征。能在1到100的自然數(shù)中找出10以內(nèi)某個數(shù)的所有倍數(shù),能找出100以內(nèi)某個數(shù)的所有因數(shù)。
    2、使學(xué)生在認(rèn)識倍數(shù)和因數(shù)以及探索一個數(shù)的倍數(shù)或者因數(shù)的過程中,進一步體會數(shù)學(xué)知識之間的內(nèi)在聯(lián)系,提高數(shù)學(xué)思考的水平。
    (二)情感、價值目標(biāo):
    讓學(xué)生初步意識到可以從一個新的角度來研究非零自然數(shù)的特征及其相互關(guān)系,培養(yǎng)學(xué)生的觀察、分析和抽象概括能力,體會教學(xué)內(nèi)容的奇妙、有趣,產(chǎn)生對數(shù)學(xué)的好奇心。
    本課的教學(xué)重點是理解倍數(shù)和因數(shù)的含義與方法。
    教學(xué)難點是掌握找一個數(shù)的倍數(shù)和因數(shù)的方法。
    二、學(xué)生學(xué)習(xí)情況分析。
    本班多數(shù)學(xué)生在平時的學(xué)習(xí)中缺少主動性,目的性。一部分學(xué)生怕困難,缺乏獨立思考的習(xí)慣,同時,考慮問題也不夠全面。在本堂課的教學(xué)中,主要調(diào)動學(xué)生的學(xué)習(xí)積極性提高學(xué)生課堂活動的參與性,體驗成功的樂趣,通過學(xué)生的親自探索和體驗來達到學(xué)習(xí)知識,掌握所學(xué)知識的目的。同時,感受數(shù)學(xué)中的奧妙,增加學(xué)習(xí)數(shù)學(xué)的興趣。
    三、教法與學(xué)法指導(dǎo)。
    當(dāng)今社會、人類的發(fā)展離不開素質(zhì)教育,而實施素質(zhì)教育必須“以學(xué)生為本”,課堂教學(xué)要圍繞培養(yǎng)學(xué)生的探索精神、創(chuàng)新精神出發(fā),為全面提高學(xué)生的綜合素質(zhì)打下一定的基礎(chǔ)。本節(jié)課根據(jù)學(xué)生的認(rèn)知能力與心理特征來進行教學(xué)策略和方法的設(shè)計。
    1、本節(jié)課理論性的知識比較多,課前讓學(xué)生結(jié)合學(xué)案進行自學(xué)教師適當(dāng)點撥。
    2、遵循學(xué)生主體、教師主導(dǎo)(組織),學(xué)生操作、探究為主線的理念,首先從學(xué)生的操作入手,由淺入深,利用學(xué)生對乘法運算的已有認(rèn)識,在操作中引出倍數(shù)和因數(shù)的概念。
    3、小組合作討論法。以學(xué)生討論、交流、相互評價,促成學(xué)生對找一個數(shù)的倍數(shù)、一個數(shù)的因數(shù)的方法進行優(yōu)化處理,提升、鞏固學(xué)生方法表達的完整性、有效性,避免學(xué)生只掌握了方法的理解,而不能全面的正確的表達。
    4、在教學(xué)過程的設(shè)計上,根據(jù)學(xué)生的興趣,認(rèn)知規(guī)律,自己采取用教材,而不搬教材的教學(xué)設(shè)計。
    四、教學(xué)過程:
    (一)激發(fā)興趣,引入新課:讓學(xué)生針對12個正方形的擺法討論,激發(fā)學(xué)生興趣,引入數(shù)學(xué)中自然數(shù)和自然數(shù)之間也有各種關(guān)系,初步體會數(shù)和數(shù)的對應(yīng)關(guān)系,既拉近了數(shù)學(xué)和生活的聯(lián)系,又培養(yǎng)了學(xué)生的興趣。
    (二)情境體驗,理解概念:分三個層次進行教學(xué)。(1)情境體驗,初步感知倍數(shù)和因數(shù)的意義。讓學(xué)生根據(jù)12個正方形的不同擺放方式寫出算式,讓學(xué)生充分經(jīng)歷了“由形到數(shù)、再由數(shù)到形”的過程,既為倍數(shù)和因數(shù)概念的提出積累了素材,又初步感知倍數(shù)和因數(shù)的關(guān)系,為正確理解概念提供了幫助。(2)在具體的乘法算式中,理解倍數(shù)和因意義。這樣做不僅降低了難度,而且為學(xué)生的后續(xù)學(xué)習(xí)拓展了空間。根據(jù)算式介紹倍數(shù)和因數(shù)的意義,然后讓學(xué)生根據(jù)其余兩道乘法算式模仿的說一說,充分的讀一讀,在通過“能說4是因數(shù),36是倍數(shù)嗎?這一反例的教學(xué),充分感受倍數(shù)和因數(shù)是相互依存的。
    明確:倍數(shù)和因數(shù)表示的是兩個數(shù)之間的關(guān)系,所以不能單說誰是倍數(shù),誰是因數(shù)。
    (設(shè)計意圖:結(jié)合具體的乘法算式介紹倍數(shù)和因數(shù)時,讓學(xué)生充分地讀一讀,使學(xué)生初步感受倍數(shù)和因數(shù)是相互依存的,再通過對反例的辨析,使學(xué)生的感受更加深刻。)。
    接下來結(jié)合板書算式,考考大家誰是誰的倍數(shù),誰是誰的因數(shù)?
    若學(xué)生沒有舉到除法算式,就由老師舉例一道除法算式?!澳苷f誰是誰的倍數(shù),誰是誰的因數(shù)嗎?”
    學(xué)生自由發(fā)言,統(tǒng)一認(rèn)識。
    小結(jié):除法可以轉(zhuǎn)化成乘法,只要滿足兩個自然數(shù)的乘積等于另外一個自然數(shù),它們之間就存在倍數(shù)和因數(shù)的關(guān)系。
    第三個環(huán)節(jié)是探索方法,發(fā)現(xiàn)特征:分兩個層次進行,首先找一個數(shù)的因數(shù),為了考查學(xué)生的動手有的可能是用乘法想(乘積是20的兩個數(shù)是20的因數(shù))有的可能是用除法想(除數(shù)和商都是20的因數(shù))這兩種方法都出現(xiàn)一個問題:無序。從而導(dǎo)致重復(fù)、遺漏現(xiàn)象。為了解決問題,我再次放手,小組交流,并在此基礎(chǔ)上讓學(xué)生自主探求”怎樣找才會有序,找到什么時候為止”?用自己的語言總結(jié),最后師生達成共識:按一定的順序一對對的找,找到兩個數(shù)接近為止。并通過找三個數(shù)的所有因數(shù),而找出引述的特征,從而在互相評價、充分比較、集體交流中感悟有序思考的必要性和科學(xué)性。
    (“從學(xué)生的角度看問題是教學(xué)取得實效的關(guān)鍵”。本環(huán)節(jié)對學(xué)生可能出現(xiàn)的情況做了充分的預(yù)設(shè),并通過兩次針對性的比較,使學(xué)生學(xué)會靈活地、有序地思考,及時引導(dǎo)學(xué)生用自己的語言總結(jié)找一個數(shù)因數(shù)的方法。然后通過嘗試做題鞏固方法。)。
    接下來找一個數(shù)的倍數(shù)。我將教學(xué)過程設(shè)計成了一個個問題鏈,什么樣的數(shù)是3的倍數(shù)?,怎樣找才能有條理?比一比誰找的倍數(shù)多?能把3的倍數(shù)全找完嗎,應(yīng)該怎樣表示問題的答案?你有什么竅門找一個數(shù)的倍數(shù)?在學(xué)生自主探索的基礎(chǔ)上,小組合作,全班交流,并在找因數(shù)特征的基礎(chǔ)找到倍數(shù)的特征。
    五、課后反思。
    學(xué)生在找一個數(shù)的因數(shù)時最常犯的錯誤就是漏找,即找不全。學(xué)生怎樣按一定順序找全因數(shù)這也正是本課教學(xué)的難點。所以在學(xué)生交流匯報時,我應(yīng)該結(jié)合學(xué)生所敘思維過程,相機引導(dǎo)并形成有條理的板書,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9。這樣的板書幫助學(xué)生有序的思考,形成明晰的解題思路的作用是毋庸質(zhì)疑的。但由于時間緊,我只口頭說了一下這樣學(xué)生找出所有的因數(shù)可能會慢些。如果能書寫下來,既避免了教師羅嗦的講解,又有效突破了教學(xué)難點,我相信像這樣潤物無聲的細節(jié),無論于學(xué)生、于課堂都是有利無弊的,今后這方面要多注意。