教案的編寫需要結合教學目標,確保學習內容的有序展開。在教案中,教師應該注重培養(yǎng)學生的創(chuàng)新思維和實踐能力。教案是教師在備課過程中為了實現特定教學目標而制定的一種教學計劃,它可以使教學更加有條理。教案的編寫需要注意哪些要點呢?教案應該明確教學目標,讓學生知道自己將要學到什么。那么我們該如何寫一篇較為完美的教案呢?以下是一些優(yōu)秀教案的范例供大家參考,大家一起來看看吧。
二元一次方程教案講義篇一
1.會用加減法解一般地二元一次方程組。
2.進一步理解解方程組的消元思想,滲透轉化思想。
3.增強克服困難的勇力,提高學習興趣。
把方程組變形后用加減法消元。
根據方程組特點對方程組變形。
用加減消元法解方程組。
1.思考如何解方程組(用加減法)。
先觀察方程組中每個方程x的系數,y的系數,是否有一個相等?;蚧橄喾磾??
能否通過變形化成某個未知數的系數相等,或互為相反數?怎樣變形。
學生解方程組。
2.例1.解方程組
思考:能否使兩個方程中x(或y)的系數相等(或互為相反數)呢?
學生討論,小組合作解方程組。
提問:用加減消元法解方程組有哪些基本步驟?
1.p40練習題(3)、(5)、(6)。
2.分別用加減法,代入法解方程組。
解二元一次方程組的加減法,代入法有何異同?
p33.習題2.2a組第2題(3)~(6)。
b組第1題。
選作:閱讀信息時代小窗口,高斯消去法。
后記:
2.3二元一次方程組的應用(1)
二元一次方程教案講義篇二
1、使學生會借助二元一次方程組解決簡單的實際問題,讓學生再次體會二元一次方程組與現實生活的聯系和作用2、通過應用題教學使學生進一步使用代數中的方程去反映現實世界中等量關系,體會代數方法的優(yōu)越性。
重點:能根據題意列二元一次方程組;根據題意找出等量關系;
難點:正確發(fā)找出問題中的兩個等量關系
一、復習
列方程解應用題的步驟是什么?
審題、設未知數、列方程、解方程、檢驗并答
新課:
看一看課本99頁探究1
問題:
1題中有哪些已知量?哪些未知量?
2題中等量關系有哪些?
3如何解這個應用題?
本題的等量關系是(1)30只母牛和15只小牛一天需用飼料為675kg
(2)(30+12只母牛和(15+5)只小牛一天需用飼料為940
練一練:
二元一次方程教案講義篇三
(1)初步理解二元一次方程和一次函數的關系;
(2)掌握二元一次方程組和對應的兩條直線之間的關系;
(3)掌握二元一次方程組的圖像解法.
(2)通過“做一做”引入例1,進一步發(fā)展學生數形結合的意識和能力.
(1)在探究二元一次方程和一次函數的對應關系中,在體會近似解與準確解中,培養(yǎng)學生勤于思考、精益求精的精神.
(2)在經歷同一數學知識可用不同的數學方法解決的過程中,培養(yǎng)學生的創(chuàng)新意識和變式能力.
(1)二元一次方程和一次函數的關系;
(2)二元一次方程組和對應的兩條直線的關系.
數形結合和數學轉化的思想意識.
教具:多媒體課件、三角板.
學具:鉛筆、直尺、練習本、坐標紙.
內容:
1.方程x+y=5的解有多少個?是這個方程的解嗎?
2.點(0,5),(5,0),(2,3)在一次函數y=的圖像上嗎?
3.在一次函數y=的圖像上任取一點,它的坐標適合方程x+y=5嗎?
4.以方程x+y=5的解為坐標的所有點組成的圖像與一次函數y=的圖像相同嗎?
由此得到本節(jié)課的第一個知識點:
二元一次方程和一次函數的圖像有如下關系:
(1)以二元一次方程的解為坐標的點都在相應的函數圖像上;
(2)一次函數圖像上的點的坐標都適合相應的二元一次方程.
內容:
1.解方程組
2.上述方程移項變形轉化為兩個一次函數y=和y=2x,在同一直角坐標系內分別作出這兩個函數的圖像.
(1)求二元一次方程組的解可以轉化為求兩條直線的交點的橫縱坐標;
(2)求兩條直線的交點坐標可以轉化為求這兩條直線對應的函數表達式聯立的二元一次方程組的解.
(3)解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種.
注意:利用圖像法求二元一次方程組的解是近似解,要得到準確解,一般還是用代入消元法和加減消元法解方程組.
探究方程與函數的相互轉化
內容:
例1用作圖像的方法解方程組
例2如圖,直線與的交點坐標是.
內容:
1.已知一次函數與的圖像的交點為,則.
2.已知一次函數與的圖像都經過點a(—2,0),且與軸分別交于b,c兩點,則的面積為.
(a)4(b)5(c)6(d)7
3.求兩條直線與和軸所圍成的三角形面積.
4.如圖,兩條直線與的交點坐標可以看作哪個方程組的解?
內容:以“問題串”的形式,要求學生自主總結有關知識、方法:
1.二元一次方程和一次函數的圖像的關系;
(1)以二元一次方程的解為坐標的點都在相應的函數圖像上;
(2)一次函數圖像上的點的坐標都適合相應的二元一次方程.
2.方程組和對應的兩條直線的關系:
(1)方程組的解是對應的兩條直線的交點坐標;
(2)兩條直線的交點坐標是對應的方程組的解;
3.解二元一次方程組的方法有3種:
(1)代入消元法;
(2)加減消元法;
(3)圖像法.要強調的是由于作圖的不準確性,由圖像法求得的解是近似解.
習題7.7a組(優(yōu)等生)1、2、3b組(中等生)1、2c組1、2
二元一次方程教案講義篇四
教學目標:
知識與技能目標:
通過對實際問題的分析,使學生進一步體會方程組是刻畫現實世界的有效數學模型,初步掌握列二元一次方程組解應用題.初步體會解二元一次方程組的基本思想“消元”。
培養(yǎng)學生列方程組解決實際問題的意識,增強學生的數學應用能力。
過程與方法目標:
經歷和體驗列方程組解決實際問題的過程,進一步體會方程(組)是刻畫現實世界的有效數學模型。
情感態(tài)度與價值觀目標:
1.進一步豐富學生數學學習的成功體驗,激發(fā)學生對數學學習的好奇心,進一步形成積極參與數學活動、主動與他人合作交流的意識.
2.通過"雞兔同籠",把同學們帶入古代的數學問題情景,學生體會到數學中的"趣";進一步強調課堂與生活的聯系,突出顯示數學教學的實際價值,培養(yǎng)學生的人文精神。重點:
經歷和體驗列方程組解決實際問題的過程;增強學生的數學應用能力。
難點:
確立等量關系,列出正確的二元一次方程組。
教學流程:
課前回顧
復習:列一元一次方程解應用題的一般步驟
情境引入
探究1:今有雞兔同籠,
上有三十五頭,
下有九十四足,
問雞兔各幾何?
“雉兔同籠”題:今有雉(雞)兔同籠,上有35頭,下有94足,問雉兔各幾何?
(1)畫圖法
用表示頭,先畫35個頭
將所有頭都看作雞的,用表示腿,畫出了70只腿
還剩24只腿,在每個頭上在加兩只腿,共12個頭加了兩只腿
四條腿的是兔子(12只),兩條腿的是雞(23只)
(2)一元一次方程法:
雞頭+兔頭=35
雞腳+兔腳=94
設雞有x只,則兔有(35-x)只,據題意得:
2x+4(35-x)=94
比算術法容易理解
想一想:那我們能不能用更簡單的方法來解決這些問題呢?
回顧上節(jié)課學習過的二元一次方程,能不能解決這一問題?
(3)二元一次方程法
今有雞兔同籠,上有三十五頭,下有九十四足,問雞兔各幾何?
(1)上有三十五頭的意思是雞、兔共有頭35個,
下有九十四足的意思是雞、兔共有腳94只.
(2)如設雞有x只,兔有y只,那么雞兔共有(x+y)只;
雞足有2x只;兔足有4y只.
解:設籠中有雞x只,有兔y只,由題意可得:
雞兔合計頭xy35足2x4y94
解此方程組得:
練習1:
2.小剛有5角硬幣和1元硬幣各若干枚,幣值共有六元五角,設5角有x枚,1元有y枚,列出方程為05x+y=65.
合作探究
找出等量關系:
解:設繩長x尺,井深y尺,則由題意得
x=48
將x=48y=11。
所以繩長4811尺。
想一想:找出一種更簡單的創(chuàng)新解法嗎?
引導學生逐步得出更簡單的方法:
找出等量關系:
(井深+5)×3=繩長
(井深+1
解:設繩長x尺,井深y尺,則由題意得
3(y+5)=x
4(y+1)=x
x=48
y=11
所以繩長48尺,井深11尺。
練習2:甲、乙兩人賽跑,若乙先跑10米,甲跑5秒即可追上乙;若乙先跑2秒,則甲跑4秒就可追上乙.設甲速為x米/秒,乙速為y米/秒,則可列方程組為(b).
歸納:
列二元一次方程解決實際問題的一般步驟:
審:審清題目中的等量關系.
設:設未知數.
列:根據等量關系,列出方程組.
解:解方程組,求出未知數.
答:檢驗所求出未知數是否符合題意,寫出答案。
二元一次方程教案講義篇五
1、本節(jié)課是一堂概念課,設計時按照“實例研究、初步體會―類比分析,把握實質――歸納概括,形成定義――應用提高,發(fā)展能力”的思路進行,讓學生體會到因為“需要”而學習新知識,逐步滲透應用意識。
2、二元一次方程及其解的意義類比一元一次方程進行學習,一方面加深學生對方程中“元”與“次”的理解,另一方面易于理清一元一次方程組有關概念的學習掃清障礙。
3、分層遞進,循環(huán)上升,學生對知識的理解,教師對學生的要求,都是由低到高,逐步提升,題目設計從單一知識點的直接用,逐漸對多個知識點的靈活運用,給學生設置必要的'臺階,使其一步步向前,最終達到教學目標,充分尊重學生的認識規(guī)律。
4、教師始終把自己放策劃者,引志者,引導者,促進者的位置,注重學法指導,把學生推向前臺,使學生以探索者,研究者的身份穿梭于課堂,充分突出其主體地位,讓學生在學習中獲得成功,收獲自信,使其德智雙贏。
二元一次方程教案講義篇六
1.認知目標:
1)了解二元一次方程組的概念。
2)理解二元一次方程組的解的概念。
3)會用列表嘗試的方法找二元一次方程組的解。
2.能力目標:
1)滲透把實際問題抽象成數學模型的思想。
2)通過嘗試求解,培養(yǎng)學生的探索能力。
3.情感目標:
1)培養(yǎng)學生細致,認真的學習習慣。
2)在積極的教學評價中,促進師生的情感交流。
重點:二元一次方程組及其解的概念
難點:用列表嘗試的方法求出方程組的解。
(一)創(chuàng)設情景,引入課題
1.本班共有40人,請問能確定男女各幾人嗎?為什么?
(1)如果設本班男生x人,女生y人,用方程如何表示?(x+y=40)
(2)這是什么方程?根據什么?
2.男生比女生多了2人。設男生x人,女生y人.方程如何表示?x,y的值是多少?
兩個方程中的x表示什么?類似的兩個方程中的y都表示?
象這樣,同一個未知數表示相同的量,我們就應用大括號把它們連起來組成一個方程組。
4.點明課題:二元一次方程組。
[設計意圖:從學生身邊取數據,讓他們感受到生活中處處有數學]
(二)探究新知,練習鞏固
1.二元一次方程組的概念
(1)請同學們看課本,了解二元一次方程組的的概念,并找出關鍵詞由教師板書。
[讓學生看書,引起他們對教材重視。找關鍵詞,加深他們對概念的了解.]
(2)練習:判斷下列是不是二元一次方程組:
x+y=3,x+y=200,
2x-3=7,3x+4y=3
y+z=5,x=y+10,
2y+1=5,4x-y2=2
學生作出判斷并要說明理由。
2.二元一次方程組的解的概念
(1)由學生給出引例的答案,教師指出這就是此方程組的解。
(2)練習:把下列各組數的題序填入圖中適當的位置:
x=1;x=-2;x=;-x=
y=0;y=2;y=1;y=
方程x+y=0的解,方程2x+3y=2的解,方程組x+y=0的解。
2x+3y=2
(3)既滿足第一個方程也滿足第二個方程的解叫作二元一次方程組的解。
(4)練習:已知x=0是方程組x-b=y的解,求a,b的值。
y=0.55x+2a=2y
(三)合作探索,嘗試求解
現在我們一起來探索如何尋找方程組的解呢?
1.已知兩個整數x,y,試找出方程組3x+y=8的解.
2x+3y=10
學生兩人一小組合作探索。并讓已經找出方程組解的學生利用實物投影,講明自己的解題思路。
提煉方法:列表嘗試法。
一般思路:由一個方程取適當的xy的值,代到另一個方程嘗試.
2.據了解,某商店出售兩種不同星號的“紅雙喜”牌乒乓球。其中“紅雙喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同學一共買了4盒,剛好有15個球。
(1)設該同學“紅雙喜”二星乒乓球買了x盒,三星乒乓球買了y盒,請根據問題中的條件列出關于x、y的方程組。(2)用列表嘗試的方法解出這個方程組的解。
由學生獨立完成,并分析講解。
(四)課堂小結,布置作業(yè)
1.這節(jié)課學哪些知識和方法?(二元一次方程組及解概念,列表嘗試法)
2.你還有什么問題或想法需要和大家交流?
3.作業(yè)本。
1.本課設計主線有兩條。其一是知識線,內容從二元一次方程組的概念到二元一次方程組解的概念再到列表嘗試法,環(huán)環(huán)相扣,層層遞進;第二是能力培養(yǎng)線,學生從看書理解二元一次方程組的概念到學會歸納解的概念,再到自主探索,用列表嘗試法解題,循序漸進,逐步提高。
2.“讓學生成為課堂的真正主體”是本課設計的主要理念。由學生給出數據,得出結果,再讓他們在積極嘗試后進行講解,實現生生互評。把課堂的一切交給學生,相信他們能在已有的知識上進一步學習提高,教師只是點播和引導者。
3.本課在設計時對教材也進行了適當改動。例題方面考慮到數女生時代,學生對膠卷已漸失興趣,所以改為學生比較熟悉的乒乓球為體裁。另一方面,充分挖掘練習的作用,為知識的落實打下軋實的基礎,為學生今后的進一步學習做好鋪墊。
二元一次方程教案講義篇七
知識與技能
掌握二元一次方程和二元一次方程組及它們的解的概念,會用消元法解方程組。
過程與方法
能根據方程組的特點選擇合適的方法解方程組;并能把相應問題轉化為解方程組
情感、態(tài)度與價值觀
培養(yǎng)學生分析問題,解決問題的能力,體驗學習數學的快樂。
掌握二元一次方程和二元一次方程組及它們的解的概念,會用消元法解方程組。
選擇合適的方法解方程組;并能把相應問題轉化為解方程組。
多媒體,小組評比。
以小組為單位討論二元一次方程組已經學了哪些知識?
1、什么是二元一次方程?什么是二元一次方程的解?
2、什么是二元一次方程組?什么是二元一次方程組的解?
3、解二元一次方程組的基本思想是什么?消元的方法有哪些?
設計意圖:知識回顧,掌握知識要點,為順利完成練習打下基礎
教學手段與方法:每小組必答題,答對為小組的一分,調動學習的積極性。
基礎知識達標訓練。
教學手段與方法:
毎小組選代表講解為小組加分,充分調動學生的積極性。學生講解不到位的老師補充。
對二元一次方程組解法的靈活應用。
二元一次方程教案講義篇八
執(zhí)教者錢嘉穎時間xxxx年6月12日
1、選自初一年級(下)數學學科第八章(第一單元)第一節(jié)(課)(1課時45分鐘)
2、教材內容簡要分析
教材以引言中的一個實際例子,“一班和二班進行籃球比賽,總共打了22場。每勝一場得2分,每負一場得1分,已知比賽結束一班累計得了40分,思考:一班勝了多少場,負了多少場”來開展這次課程。以本例來首先回憶已學過的一元一次方程的知識內容,以此作為切入點,引導學生思考用兩個未知數來表示方程,借此進入二元一次方程的介紹。之后,引導學生利用一元一次方程的解法特點來思考二元一次方程組的解答方法,本次課程內容主要介紹了代入解答法(也稱消元法)的詳細解答過程,以及二元一次方程組的實際運用及解答,讓學習者更好的吸收及掌握二元一次方程組和二元一次方程組的消元法。另外,在本單元結束介紹了作為課外知識的“二元一次方程古代表示方法”。
3、學習內容分析表:
知識點
重點
難點
編號
內容
1
二元一次方程組定義及特點
二元一次方程組的兩個特點
二元一次方程組成立的條件(未知數要同時滿足兩個條件)
2
二元一次方程組
代入消元法
代入消元法的具體解法
消元法與一元一次方程解法間的聯系
3
二元一次方程組實際運用
以實際例題列出方程并解答
未知數的假設以及運用已知條件列出正確方程。
本次教學的對象是云南省某中學的初中一年級學生,平均年齡12歲。初一年級是學生由幼稚的童年向青年轉化和個性逐漸成型的重要轉折點,初一年級學生具有其特殊性。初一年級學生由于剛剛接觸完全不同于小學的學習生活而有手足無措的情況。而在這個時期的學生生理和心理飛速發(fā)展變化,自我意識開始強烈,有了自己的興趣,獨立性增強,感情趨于豐富復雜化,有一定獨立思考的能力、一定程度的抽象思維能力和邏輯思維能力,處于識記能力最強的時期。此時,進行的教育可以更加重視獨立思考,在數學教學中更加重視引導教學,致使學習者能夠更加深刻的理解所學知識,達到教學目標。
1、教學順序
(1)復習已學過的一元一次方程知識引入開篇實例。
(2)以一元一次方程解釋實例引導對于二元的思考。
(3)以二元一次方程的方法建立方程,進而介紹二元一次方程組的定義及特點并鞏固。
(4)以本例引發(fā)思考二元一次方程組的解法。
(5)介紹二元一次方程組消元法的運用,并進行隨堂練習以及隨堂解答。
(6)在確定學生掌握消元法后進入二元一次方程組的實例運用講解以及隨堂練習。
(7)復習、回憶、鞏固本次課程的主要內容,介紹課外延伸內容。
2、教學活動程序
(1)引起注意
以“上課”號令以及播放ppt喚起學習者的注意。
(2)告訴學習者目標
以ppt的播放以及言語刺激,明確告訴學習者本次課的內容是學習二元一次方程組,本次學習的目標是掌握二元一次方程組的消元法以及二元一次方程的實例運用。
(3)刺激對先前知識的回憶
回憶之前學過的一元一次方程的主要內容(定義、解法、實際運用),以實例進行先前內容的回憶并且充分利用原有的認知結構中關于一元一次方程的列式觀念來與新學的二元一次方程產生共鳴。
(4)呈現刺激材料
在講解過程中伴隨著ppt的播放,并在關鍵需要注意的部分進行板書強調,在語調上有所突出。
(5)提供學習指導
以教材內容為指導,以及教師的提示語和示范性行為等進行引導。
(6)誘導行為
在重點部分題型注意,進行隨堂練習,分為詳細解答和對答案兩種方式。在詳細解答時要求同學與老師一同進行,必要時提問同學,讓學習者參與進來,更好的理解信息并掌握學習內容。
(7)提供反饋
在學習者作出反應、表現出行為之后,及時讓學習者知道學習結果,從而使學習者能肯定自己的理解與行為正確與否,以便及時更正。
(8)評定行為
以隨堂測驗的方式進行隨堂評定,并且在課后布置習題讓同學們課后完成,再由教師進行評定。
(9)增強記憶與促進遷移
設置教學活動(見附錄),強化刺激,為學習者加深印象,并且促使其發(fā)散思維,將學習的知識廣泛運用。
3、教學組織形式
本次教學中選擇運用了以下幾種教學組織形式
(1)講解的形式
以教師的說明和解釋為主,向學生傳輸新信息,是本次教學主要形式,因本次教學內容的特征,這種形式能夠全面詳細的解釋本次教學內容,并能充分發(fā)揮教師的引導作用。
(2)提問的形式
這一形式能夠在教學過程中起到刺激課堂,引起學習者注意的作用,并且是對學習者某一知識學習情況的抽樣調查,由教師找出學習者存在的問題進行解決。
(3)師生共同解答的形式
采用這個形式能夠在師生之間產生共鳴,提起課堂氣氛,產生共鳴,引起注意,使大部分學習者都參與進來,也是一個小型頭腦風暴過程,在學習者之間互相影響,從而對知識得到正確理解。
4、教學方法的選擇
本次課程選擇運用了講授法、演示法、練習法的教學方法。
(1)語言的方法—講授法,主要是根據教學目標和教學任務,數學這門學科的解釋性強的特點以及這個學習階段的學習者的自學能力不夠然而接受能力很強的特點而選擇的。
(2)直觀的方法—演示法,順應時代的發(fā)展,教學中出現了利用新媒體的需要,并且,對于這個階段的學習者,在課程開展中利用ppt來進行演示可以更加有效的刺激學習者感官,并且配合適當的板書,對于這個年齡段的學習者更加容易接受,同時也由于我們已經具備了采用新媒體的條件。在課后,會以電子雜志的形式形成重點復習資料留給學習者課后復習。
(3)實踐的方法—練習法,包括了口頭練習和書面練習??陬^練習是這個年齡段學習者心理特征的需要,因為他們獨立性還不夠強,在進行口頭練習的時候,比較能夠跟上大多數人的思維,產生共鳴。書面練習是這個學科特征的需要,必須進行書面練習才能讓同學們更好的掌握所學知識,隨堂練習能及時反映出當場學習的狀況。
二元一次方程教案講義篇九
學生的知識技能基礎:七年級時,學生已經學習了一元一次方程及其應用。本章中,學生又學習了二元一次方程、二元一次方程組、列二元一次方程組解應用題等,能熟練地解二元一次方程組,已初步具備了用方程組刻畫實際問題的經驗和基礎,能正確地分析和理解題意,尋求題中的各種數量關系,具備了繼續(xù)學習本節(jié)內容的知識和能力。
學生的活動經驗基礎:在相關知識的學習過程中,學生已經經歷了一些編題活動,同時也具備了一些生活經驗,知道列方程解應用題的一些規(guī)律、特點和方法,具備了一些解決實際問題的經驗和能力。在以前的數學學習中,學生已經經歷很多合作學習的過程,具備了一定的'合作學習經驗,具備了一定的合作與交流的能力。
地位和作用:本節(jié)內容是在學生學習了二元一次方程組的解法和部分二元一次方程組的應用后,緊接著學習的有關數字問題的應用題。這部分內容的學習,有助于加深學生對數字問題的理解,進一步掌握列方程組解應用題的方法(相等關系),提高學生解決實際問題的能力。本節(jié)課的教學目標為:
1.歸納出用二元一次方程組解決實際問題的一般步驟。
2.讓學生進一步經歷和體驗列方程組解決實際問題的過程,體會方程(組)是刻畫現實世界的有效數學模型。
3.在解決問題過程中,學會借助圖表分析問題,感受化歸思想。
4.讓學生體驗把復雜問題化為簡單問題策略的同時,培養(yǎng)學生克服困難的意志和勇氣。
本節(jié)課的重點是教學生會用圖表分析數字問題。難點是將實際問題轉化成二元一次方程組的數學模型;設間接未知數轉化解決實際問題。
教學準備
flah播放器;若flash不能播放,請按絕對路徑重新插入后播放。
本課設計了六個教學環(huán)節(jié):第一環(huán)節(jié):知識回顧;第二環(huán)節(jié):情境引入,新課講解;第三環(huán)節(jié):練習提高;第四環(huán)節(jié):合作學習;第五環(huán)節(jié):學習反思;第六環(huán)節(jié):布置作業(yè)。
1.一個兩位數的十位數字是x,個位數字是y,則這個兩位數可表示為:10x+y.
2.一個三位數,若百位數字為a,十位數字為b,個位數字為c,則這個三位數為:100a+10b+c.
3.一個兩位數,十位數字為a,個位數字為b,若在這兩位數中間加一個0,得到一個三位數,則這個三位數可表示為:100a+b.
4.a為兩位數,b是一個三位數,若把a放在b的左邊得到一個五位數,則這個五位數可表示為:
1000a+b.
設計意圖:通過復習,為本節(jié)課的繼續(xù)學習做好鋪墊。
實際效果:提問學生,教師加以點評,這樣經過知識的回顧,學生基本能熟練地用代數式表示有關數字問題。
動畫,情景展示。
12:00是一個兩位數,它的兩個數字之和為7;
13:00十位與個位數字與12:00所看到的正好顛倒了;
14:00比12:00時看到的兩位數中間多了個0.
5.5應用二元一次方程組——里程碑上的數同步練習含答案
小明和小華在一起玩數字游戲,他們每人取了一張數字卡片,拼成了一個兩位數。小明說:“哇!這個兩位數的十位數字與個位數字之和恰好是9.”他們又把這兩張卡片對調,得到了一個新的兩位數,小華說:“這個兩位數恰好也比原來的兩位數大9.”
那么,你能回答以下問題嗎?
(1)他們取出的兩張卡片上的數字分別是幾?
(2)第一次,他們拼出的兩位數是多少?
(3)第二次,他們拼成的兩位數又是多少呢?請你好好動動腦筋喲!
二元一次方程教案講義篇十
知識與技能
(1)初步理解二元一次方程和一次函數的關系;
(2)掌握二元一次方程組和對應的兩條直線之間的關系;
(3)掌握二元一次方程組的圖像解法.
(2)通過“做一做”引入例1,進一步發(fā)展學生數形結合的意識和能力.
(1)在探究二元一次方程和一次函數的對應關系中,在體會近似解與準確解中,培養(yǎng)學生勤于思考、精益求精的精神.
(2)在經歷同一數學知識可用不同的數學方法解決的過程中,培養(yǎng)學生的創(chuàng)新意識和變式能力.
(1)二元一次方程和一次函數的關系;
(2)二元一次方程組和對應的兩條直線的關系.
數形結合和數學轉化的思想意識.
教具:多媒體課件、三角板.
學具:鉛筆、直尺、練習本、坐標紙.
第一環(huán)節(jié):設置問題情境,啟發(fā)引導(5分鐘,學生回答問題回顧知識)
內容:1.方程x+y=5的解有多少個?是這個方程的解嗎?
2.點(0,5),(5,0),(2,3)在一次函數y=的圖像上嗎?
3.在一次函數y=的圖像上任取一點,它的坐標適合方程x+y=5嗎?
4.以方程x+y=5的解為坐標的所有點組成的圖像與一次函數y=的圖像相同嗎?
由此得到本節(jié)課的第一個知識點:
(1)以二元一次方程的解為坐標的點都在相應的函數圖像上;
(2)一次函數圖像上的點的坐標都適合相應的二元一次方程.
第二環(huán)節(jié)自主探索方程組的解與圖像之間的關系(10分鐘,教師引導學生解決)
內容:1.解方程組
2.上述方程移項變形轉化為兩個一次函數y=和y=2x,在同一直角坐標系內分別作出這兩個函數的圖像.
(1)求二元一次方程組的.解可以轉化為求兩條直線的交點的橫縱坐標;
(2)求兩條直線的交點坐標可以轉化為求這兩條直線對應的函數表達式聯立的二元一次方程組的解.
(3)解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種.
注意:利用圖像法求二元一次方程組的解是近似解,要得到準確解,一般還是用代入消元法和加減消元法解方程組.
第三環(huán)節(jié)典型例題(10分鐘,學生獨立解決)
探究方程與函數的相互轉化
內容:例1用作圖像的方法解方程組
例2如圖,直線與的交點坐標是.
第四環(huán)節(jié)反饋練習(10分鐘,學生解決全班交流)
內容:1.已知一次函數與的圖像的交點為,則.
2.已知一次函數與的圖像都經過點a(—2,0),且與軸分別交于b,c兩點,則的面積為().
(a)4(b)5(c)6(d)7
3.求兩條直線與和軸所圍成的三角形面積.
4.如圖,兩條直線與的交點坐標可以看作哪個方程組的解?
第五環(huán)節(jié)課堂小結(5分鐘,師生共同總結)
內容:以“問題串”的形式,要求學生自主總結有關知識、方法:
1.二元一次方程和一次函數的圖像的關系;
(1)以二元一次方程的解為坐標的點都在相應的函數圖像上;
(2)一次函數圖像上的點的坐標都適合相應的二元一次方程.
2.方程組和對應的兩條直線的關系:
(1)方程組的解是對應的兩條直線的交點坐標;
(2)兩條直線的交點坐標是對應的方程組的解;
3.解二元一次方程組的方法有3種:
(1)代入消元法;
(2)加減消元法;
(3)圖像法.要強調的是由于作圖的不準確性,由圖像法求得的解是近似解.
第六環(huán)節(jié)作業(yè)布置
習題7.7a組(優(yōu)等生)1、2、3b組(中等生)1、2c組1、2
附:板書設計
六、教學反思
二元一次方程教案講義篇十一
3體會列方程組比列一元一次方程容易
4進一步培養(yǎng)學生化實際問題為數學問題的能力和分析問題,解決問題的能力
重點:能根據題意列二元一次方程組;根據題意找出等量關系;
難點:正確發(fā)找出問題中的兩個等量關系
課前自主學習
1.列方程組解應用題是把“未知”轉化為“已知”的重要方法,它的關鍵是把已知量和未知量聯系起來,找出題目中的()
2.一般來說,有幾個未知量就必須列幾個方程,所列方程必須滿足:
(1)方程兩邊表示的'是()量
(2)同類量的單位要()
(3)方程兩邊的數值要相符。
3.列方程組解應用題要注意檢驗和作答,檢驗不僅要求所得的解是否(),更重要的是要檢驗所求得的結果是否()
4.一個籠中裝有雞兔若干只,從上面看共42個頭,從下面看共有132只腳,則雞有(),兔有()
新課探究
看一看
1題中有哪些已知量?哪些未知量?
2題中等量關系有哪些?
3如何解這個應用題?
本題的等量關系是
(1)()
(2)()
解:設平均每只母牛和每只小牛1天各需用飼料為xkg和ykg
根據題意列方程,得
解這個方程組得
答:每只母牛和每只小牛1天各需用飼料為()和(),飼料員李大叔估計每天母牛需用飼料18—20千克,每只小牛一天需用7到8千克與計算()出入。(“有”或“沒有”)
練一練:
小結
用方程組解應用題的一般步驟是什么?
二元一次方程教案講義篇十二
一、精心選一選!一定能選對!(每小題3分,共30分)
1.下列方程是二元一次方程的是().
(a)(b)(c)(d)
2.方程組解的個數有().
(a)一個(b)2個(c)3個(d)4個
3.若方程組的解是,那么、的值是().
(a)(b)(c)(d)
4.若、滿足,則的值等于().
(a)-1(b)1(c)-2(d)2
5.若方程是關于、的二元一次方程,則、的值是().
(a)(b)(c)(d)
6.下列說法中正確的是().
(a)二元一次方程的解為有限個
(b)方程的解、為自然數的有無數對
(c)方程組的解為0
(d)方程組中各個方程的公共解叫做這個方程組的解
7.在等式中,當時,,當時,,則這個等式是().
(a)(b)(c)(d)
8.(靈武)方程組的解是
(a)(b)(c)(d)
9.(20寧夏)買甲、乙兩種純凈水共用250元,其中甲種水每桶8元,乙種水每桶6元,乙種水的`桶數是甲種水的桶數的75%,設買甲種水x桶,乙種水y桶,則所列方程組中正確的是()
(a)(b)(c)(d)
10.(年福建福州)如圖,射線oc的端點o在直線ab上,1的度數比2的度數的2倍多10,則可列正確的方程組為().
(a)(b)(c)(d)
二、耐心填一填!一定能填對!(每小題3分,共30分)
11.已知方程,用含的式子表示的式子是____,用含的式子表示的式子是___________.
12.已知是方程的一個解,那么__________.
13.已知,,則________.
14.若同時滿足方程和方程,則_________.
15.解二元一次方程組用________-法消去未知數________比較方便.
16.(2005年江蘇鹽城)若一個二元一次方程的一個解為,則這個方程可以是_______________(只要求寫出一個)
17.已知方程組與的解相同,那么_______.
18.若,都是方程的解,則______,________.
19.(山東濰坊)蔬菜種植專業(yè)戶王先生要辦一個小型蔬菜加工廠,分別向銀行申請甲、乙兩種貸款,共13萬元,王先生每年須付利息6075元,已知甲種貸款的年利率為6%,乙種貸款的年利率為3.5%,則甲、乙兩種貸款分別是________________.
20.(2005年南寧)根據下圖提供的信息,求出每支網球拍的單價為
元,每支乒乓球拍的單價為元.
200元160元
三、用心想一想!一定能做對!(共60分)
21.(本小題8分)(2005年江蘇蘇州)解方程組:
26.(本小題12分)(,黃岡)已知某電腦公司有a型、b型、c型三種型號的電腦,其價格分別為a型每臺6000元,b型每臺4000元,c型每臺2500元.我市東坡中學計劃將100500元錢全部用于從該公司購進其中兩種不同型號的電腦共36臺,請你設計出幾種不同的購買方案供該校選擇,并說明理由.
參考答案:
一、1~10daaacdbcbb
二、11.,;12.0;13.-42;14.4;15.加減消元,;16.等;17.1.5;18.2,1;19.6.1萬元,6.9萬元;20.80,20.
三、
21.;22.;23.;24.54人挖土,18人運土;
25.解:設這種礦泉水在甲、乙兩處每桶的價格分別為元,根據題意,得
解這個方程組,得
因為.
所以到甲供水點購買便宜一些.
26.解:設從該電腦公司購進a型電腦x臺,購進b型電腦y臺,購進c型電腦z臺.則可分以下三種情況考慮:
(1)只購進a型電腦和b型電腦,依題意可列方程組解得不合題意,應該舍去;
(2)只購進a型電腦和c型電腦,依題意可列方程組解得
(3)只購進b型電腦和c型電腦,依題意可列方程組
解得
二元一次方程教案講義篇十三
3體會列方程組比列一元一次方程容易
4進一步培養(yǎng)學生化實際問題為數學問題的能力和分析問題,解決問題的能力
重點:能根據題意列二元一次方程組;根據題意找出等量關系;
難點:正確發(fā)找出問題中的兩個等量關系
課前自主學習
1.列方程組解應用題是把“未知”轉化為“已知”的`重要方法,它的關鍵是把已知量和未知量聯系起來,找出題目中的()
2.一般來說,有幾個未知量就必須列幾個方程,所列方程必須滿足:
(1)方程兩邊表示的是()量
(2)同類量的單位要()
(3)方程兩邊的數值要相符。
3.列方程組解應用題要注意檢驗和作答,檢驗不僅要求所得的解是否( ),更重要的是要檢驗所求得的結果是否( )
4.一個籠中裝有雞兔若干只,從上面看共42個頭,從下面看共有132只腳,則雞有( ),兔有( )
新課探究
看一看
1題中有哪些已知量?哪些未知量?
2題中等量關系有哪些?
3如何解這個應用題?
本題的等量關系是(1)()
(2)()
解:設平均每只母牛和每只小牛1天各需用飼料為xkg和ykg
根據題意列方程,得
解這個方程組得
答:每只母牛和每只小牛1天各需用飼料為( )和( ),飼料員李大叔估計每天母牛需用飼料18—20千克,每只小牛一天需用7到8千克與計算()出入。(“有”或“沒有”)
練一練:
小結
用方程組解應用題的一般步驟是什么?
8.3實際問題與二元一次方程組(2)
1、經歷用方程組解決實際問題的過程,體會方程組是刻畫現實世界的有效數學模型;
2、能夠找出實際問題中的已知數和未知數,分析它們之間的數量關系,列出方程組;
3、學會開放性地尋求設計方案,培養(yǎng)分析問題,解決問題的能力
重點:能根據題意列二元一次方程組;根據題意找出等量關系;
難點:正確發(fā)找出問題中的兩個等量關系
課前自主學習
1.甲乙兩人的年收入之比為4:3,支出之比為8:5,一年間兩人各存了5000元(兩人剩余的錢都存入了銀行),則甲乙兩人的年收入分別為()元和()元。
2.在一堆球中,籃球與排球之比為贊助單位又送來籃球隊10個排球10個,這時籃球與排球的數量之比為27:40,則原有籃球()個,排球()個。
二元一次方程教案講義篇十四
2、通過應用題教學使學生進一步使用代數中的方程去反映現實世界中等量關系,體會代數方法的優(yōu)越性。
能根據題意列二元一次方程組;根據題意找出等量關系;
正確發(fā)找出問題中的兩個等量關系
一、復習
列方程解應用題的步驟是什么?
審題、設未知數、列方程、解方程、檢驗并答
新課:
看一看課本99頁探究1
問題:
1題中有哪些已知量?哪些未知量?
2題中等量關系有哪些?
3如何解這個應用題?
本題的等量關系是(1)30只母牛和15只小牛一天需用飼料為675kg
(2)(30+12只母牛和(15+5)只小牛一天需用飼料為940
練一練:
二元一次方程教案講義篇十五
尋找等量關系
看一看:課本99頁探究2
問題:1“甲、乙兩種作物的單位面積產量比是1:1、5”是什么意思?
2、“甲、乙兩種作物的總產量比為3:4”是什么意思?
3、本題中有哪些等量關系?
提示:若甲種作物單位產量是a,那么乙種作物單位產量是多少?
思考:這塊地還可以怎樣分?
練一練
一、某農場300名職工耕種51公頃土地,計劃種植水稻、棉花、和蔬菜,已知種植植物每公頃所需的勞動力人數及投入的設備獎金如下表:
農作物品種每公頃需勞動力每公頃需投入獎金
水稻4人1萬元
棉花8人1萬元
蔬菜5人2萬元
問題:題中有幾個已知量?題中求什么?分別安排多少公頃種水稻、棉花、和蔬菜?
二元一次方程教案講義篇十六
1.會列出二元一次方程組解簡單應用題,并能檢驗結果的合理性。
2.知道二元一次方程組是反映現實世界量之間相等關系的一種有效的數學模型。
3.引導學生關注身邊的數學,滲透將來未知轉達化為已知的辯證思想。
1.列二元一次方程組解簡單問題。
2.徹底理解題意
找等量關系列二元一次方程組。
1.怎樣設未知數?
2.找本題等量關系?從哪句話中找到的?
3.列方程組。
4.解方程組。
5.檢驗寫答案。
思考:怎樣用一元一次方程求解?
比較用一元一次方程求解,用二元一次方程組求解誰更容易?
1.根據問題建立二元一次方程組。
(1)甲、乙兩數和是40差是6,求這兩數。
(2)80班共有64名學生,其中男生比女生多8人,求這個班男生人數,女生人數。
(3)已知關于求x、y的方程,
是二元一次方程。求a、b的值。
2.p38練習第1題。
小組討論:列二元一次方程組解應用題有哪些基本步驟?
p42。習題2.3a組第1題。
后記:
2.3二元一次方程組的應用(2)
二元一次方程教案講義篇一
1.會用加減法解一般地二元一次方程組。
2.進一步理解解方程組的消元思想,滲透轉化思想。
3.增強克服困難的勇力,提高學習興趣。
把方程組變形后用加減法消元。
根據方程組特點對方程組變形。
用加減消元法解方程組。
1.思考如何解方程組(用加減法)。
先觀察方程組中每個方程x的系數,y的系數,是否有一個相等?;蚧橄喾磾??
能否通過變形化成某個未知數的系數相等,或互為相反數?怎樣變形。
學生解方程組。
2.例1.解方程組
思考:能否使兩個方程中x(或y)的系數相等(或互為相反數)呢?
學生討論,小組合作解方程組。
提問:用加減消元法解方程組有哪些基本步驟?
1.p40練習題(3)、(5)、(6)。
2.分別用加減法,代入法解方程組。
解二元一次方程組的加減法,代入法有何異同?
p33.習題2.2a組第2題(3)~(6)。
b組第1題。
選作:閱讀信息時代小窗口,高斯消去法。
后記:
2.3二元一次方程組的應用(1)
二元一次方程教案講義篇二
1、使學生會借助二元一次方程組解決簡單的實際問題,讓學生再次體會二元一次方程組與現實生活的聯系和作用2、通過應用題教學使學生進一步使用代數中的方程去反映現實世界中等量關系,體會代數方法的優(yōu)越性。
重點:能根據題意列二元一次方程組;根據題意找出等量關系;
難點:正確發(fā)找出問題中的兩個等量關系
一、復習
列方程解應用題的步驟是什么?
審題、設未知數、列方程、解方程、檢驗并答
新課:
看一看課本99頁探究1
問題:
1題中有哪些已知量?哪些未知量?
2題中等量關系有哪些?
3如何解這個應用題?
本題的等量關系是(1)30只母牛和15只小牛一天需用飼料為675kg
(2)(30+12只母牛和(15+5)只小牛一天需用飼料為940
練一練:
二元一次方程教案講義篇三
(1)初步理解二元一次方程和一次函數的關系;
(2)掌握二元一次方程組和對應的兩條直線之間的關系;
(3)掌握二元一次方程組的圖像解法.
(2)通過“做一做”引入例1,進一步發(fā)展學生數形結合的意識和能力.
(1)在探究二元一次方程和一次函數的對應關系中,在體會近似解與準確解中,培養(yǎng)學生勤于思考、精益求精的精神.
(2)在經歷同一數學知識可用不同的數學方法解決的過程中,培養(yǎng)學生的創(chuàng)新意識和變式能力.
(1)二元一次方程和一次函數的關系;
(2)二元一次方程組和對應的兩條直線的關系.
數形結合和數學轉化的思想意識.
教具:多媒體課件、三角板.
學具:鉛筆、直尺、練習本、坐標紙.
內容:
1.方程x+y=5的解有多少個?是這個方程的解嗎?
2.點(0,5),(5,0),(2,3)在一次函數y=的圖像上嗎?
3.在一次函數y=的圖像上任取一點,它的坐標適合方程x+y=5嗎?
4.以方程x+y=5的解為坐標的所有點組成的圖像與一次函數y=的圖像相同嗎?
由此得到本節(jié)課的第一個知識點:
二元一次方程和一次函數的圖像有如下關系:
(1)以二元一次方程的解為坐標的點都在相應的函數圖像上;
(2)一次函數圖像上的點的坐標都適合相應的二元一次方程.
內容:
1.解方程組
2.上述方程移項變形轉化為兩個一次函數y=和y=2x,在同一直角坐標系內分別作出這兩個函數的圖像.
(1)求二元一次方程組的解可以轉化為求兩條直線的交點的橫縱坐標;
(2)求兩條直線的交點坐標可以轉化為求這兩條直線對應的函數表達式聯立的二元一次方程組的解.
(3)解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種.
注意:利用圖像法求二元一次方程組的解是近似解,要得到準確解,一般還是用代入消元法和加減消元法解方程組.
探究方程與函數的相互轉化
內容:
例1用作圖像的方法解方程組
例2如圖,直線與的交點坐標是.
內容:
1.已知一次函數與的圖像的交點為,則.
2.已知一次函數與的圖像都經過點a(—2,0),且與軸分別交于b,c兩點,則的面積為.
(a)4(b)5(c)6(d)7
3.求兩條直線與和軸所圍成的三角形面積.
4.如圖,兩條直線與的交點坐標可以看作哪個方程組的解?
內容:以“問題串”的形式,要求學生自主總結有關知識、方法:
1.二元一次方程和一次函數的圖像的關系;
(1)以二元一次方程的解為坐標的點都在相應的函數圖像上;
(2)一次函數圖像上的點的坐標都適合相應的二元一次方程.
2.方程組和對應的兩條直線的關系:
(1)方程組的解是對應的兩條直線的交點坐標;
(2)兩條直線的交點坐標是對應的方程組的解;
3.解二元一次方程組的方法有3種:
(1)代入消元法;
(2)加減消元法;
(3)圖像法.要強調的是由于作圖的不準確性,由圖像法求得的解是近似解.
習題7.7a組(優(yōu)等生)1、2、3b組(中等生)1、2c組1、2
二元一次方程教案講義篇四
教學目標:
知識與技能目標:
通過對實際問題的分析,使學生進一步體會方程組是刻畫現實世界的有效數學模型,初步掌握列二元一次方程組解應用題.初步體會解二元一次方程組的基本思想“消元”。
培養(yǎng)學生列方程組解決實際問題的意識,增強學生的數學應用能力。
過程與方法目標:
經歷和體驗列方程組解決實際問題的過程,進一步體會方程(組)是刻畫現實世界的有效數學模型。
情感態(tài)度與價值觀目標:
1.進一步豐富學生數學學習的成功體驗,激發(fā)學生對數學學習的好奇心,進一步形成積極參與數學活動、主動與他人合作交流的意識.
2.通過"雞兔同籠",把同學們帶入古代的數學問題情景,學生體會到數學中的"趣";進一步強調課堂與生活的聯系,突出顯示數學教學的實際價值,培養(yǎng)學生的人文精神。重點:
經歷和體驗列方程組解決實際問題的過程;增強學生的數學應用能力。
難點:
確立等量關系,列出正確的二元一次方程組。
教學流程:
課前回顧
復習:列一元一次方程解應用題的一般步驟
情境引入
探究1:今有雞兔同籠,
上有三十五頭,
下有九十四足,
問雞兔各幾何?
“雉兔同籠”題:今有雉(雞)兔同籠,上有35頭,下有94足,問雉兔各幾何?
(1)畫圖法
用表示頭,先畫35個頭
將所有頭都看作雞的,用表示腿,畫出了70只腿
還剩24只腿,在每個頭上在加兩只腿,共12個頭加了兩只腿
四條腿的是兔子(12只),兩條腿的是雞(23只)
(2)一元一次方程法:
雞頭+兔頭=35
雞腳+兔腳=94
設雞有x只,則兔有(35-x)只,據題意得:
2x+4(35-x)=94
比算術法容易理解
想一想:那我們能不能用更簡單的方法來解決這些問題呢?
回顧上節(jié)課學習過的二元一次方程,能不能解決這一問題?
(3)二元一次方程法
今有雞兔同籠,上有三十五頭,下有九十四足,問雞兔各幾何?
(1)上有三十五頭的意思是雞、兔共有頭35個,
下有九十四足的意思是雞、兔共有腳94只.
(2)如設雞有x只,兔有y只,那么雞兔共有(x+y)只;
雞足有2x只;兔足有4y只.
解:設籠中有雞x只,有兔y只,由題意可得:
雞兔合計頭xy35足2x4y94
解此方程組得:
練習1:
2.小剛有5角硬幣和1元硬幣各若干枚,幣值共有六元五角,設5角有x枚,1元有y枚,列出方程為05x+y=65.
合作探究
找出等量關系:
解:設繩長x尺,井深y尺,則由題意得
x=48
將x=48y=11。
所以繩長4811尺。
想一想:找出一種更簡單的創(chuàng)新解法嗎?
引導學生逐步得出更簡單的方法:
找出等量關系:
(井深+5)×3=繩長
(井深+1
解:設繩長x尺,井深y尺,則由題意得
3(y+5)=x
4(y+1)=x
x=48
y=11
所以繩長48尺,井深11尺。
練習2:甲、乙兩人賽跑,若乙先跑10米,甲跑5秒即可追上乙;若乙先跑2秒,則甲跑4秒就可追上乙.設甲速為x米/秒,乙速為y米/秒,則可列方程組為(b).
歸納:
列二元一次方程解決實際問題的一般步驟:
審:審清題目中的等量關系.
設:設未知數.
列:根據等量關系,列出方程組.
解:解方程組,求出未知數.
答:檢驗所求出未知數是否符合題意,寫出答案。
二元一次方程教案講義篇五
1、本節(jié)課是一堂概念課,設計時按照“實例研究、初步體會―類比分析,把握實質――歸納概括,形成定義――應用提高,發(fā)展能力”的思路進行,讓學生體會到因為“需要”而學習新知識,逐步滲透應用意識。
2、二元一次方程及其解的意義類比一元一次方程進行學習,一方面加深學生對方程中“元”與“次”的理解,另一方面易于理清一元一次方程組有關概念的學習掃清障礙。
3、分層遞進,循環(huán)上升,學生對知識的理解,教師對學生的要求,都是由低到高,逐步提升,題目設計從單一知識點的直接用,逐漸對多個知識點的靈活運用,給學生設置必要的'臺階,使其一步步向前,最終達到教學目標,充分尊重學生的認識規(guī)律。
4、教師始終把自己放策劃者,引志者,引導者,促進者的位置,注重學法指導,把學生推向前臺,使學生以探索者,研究者的身份穿梭于課堂,充分突出其主體地位,讓學生在學習中獲得成功,收獲自信,使其德智雙贏。
二元一次方程教案講義篇六
1.認知目標:
1)了解二元一次方程組的概念。
2)理解二元一次方程組的解的概念。
3)會用列表嘗試的方法找二元一次方程組的解。
2.能力目標:
1)滲透把實際問題抽象成數學模型的思想。
2)通過嘗試求解,培養(yǎng)學生的探索能力。
3.情感目標:
1)培養(yǎng)學生細致,認真的學習習慣。
2)在積極的教學評價中,促進師生的情感交流。
重點:二元一次方程組及其解的概念
難點:用列表嘗試的方法求出方程組的解。
(一)創(chuàng)設情景,引入課題
1.本班共有40人,請問能確定男女各幾人嗎?為什么?
(1)如果設本班男生x人,女生y人,用方程如何表示?(x+y=40)
(2)這是什么方程?根據什么?
2.男生比女生多了2人。設男生x人,女生y人.方程如何表示?x,y的值是多少?
兩個方程中的x表示什么?類似的兩個方程中的y都表示?
象這樣,同一個未知數表示相同的量,我們就應用大括號把它們連起來組成一個方程組。
4.點明課題:二元一次方程組。
[設計意圖:從學生身邊取數據,讓他們感受到生活中處處有數學]
(二)探究新知,練習鞏固
1.二元一次方程組的概念
(1)請同學們看課本,了解二元一次方程組的的概念,并找出關鍵詞由教師板書。
[讓學生看書,引起他們對教材重視。找關鍵詞,加深他們對概念的了解.]
(2)練習:判斷下列是不是二元一次方程組:
x+y=3,x+y=200,
2x-3=7,3x+4y=3
y+z=5,x=y+10,
2y+1=5,4x-y2=2
學生作出判斷并要說明理由。
2.二元一次方程組的解的概念
(1)由學生給出引例的答案,教師指出這就是此方程組的解。
(2)練習:把下列各組數的題序填入圖中適當的位置:
x=1;x=-2;x=;-x=
y=0;y=2;y=1;y=
方程x+y=0的解,方程2x+3y=2的解,方程組x+y=0的解。
2x+3y=2
(3)既滿足第一個方程也滿足第二個方程的解叫作二元一次方程組的解。
(4)練習:已知x=0是方程組x-b=y的解,求a,b的值。
y=0.55x+2a=2y
(三)合作探索,嘗試求解
現在我們一起來探索如何尋找方程組的解呢?
1.已知兩個整數x,y,試找出方程組3x+y=8的解.
2x+3y=10
學生兩人一小組合作探索。并讓已經找出方程組解的學生利用實物投影,講明自己的解題思路。
提煉方法:列表嘗試法。
一般思路:由一個方程取適當的xy的值,代到另一個方程嘗試.
2.據了解,某商店出售兩種不同星號的“紅雙喜”牌乒乓球。其中“紅雙喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同學一共買了4盒,剛好有15個球。
(1)設該同學“紅雙喜”二星乒乓球買了x盒,三星乒乓球買了y盒,請根據問題中的條件列出關于x、y的方程組。(2)用列表嘗試的方法解出這個方程組的解。
由學生獨立完成,并分析講解。
(四)課堂小結,布置作業(yè)
1.這節(jié)課學哪些知識和方法?(二元一次方程組及解概念,列表嘗試法)
2.你還有什么問題或想法需要和大家交流?
3.作業(yè)本。
1.本課設計主線有兩條。其一是知識線,內容從二元一次方程組的概念到二元一次方程組解的概念再到列表嘗試法,環(huán)環(huán)相扣,層層遞進;第二是能力培養(yǎng)線,學生從看書理解二元一次方程組的概念到學會歸納解的概念,再到自主探索,用列表嘗試法解題,循序漸進,逐步提高。
2.“讓學生成為課堂的真正主體”是本課設計的主要理念。由學生給出數據,得出結果,再讓他們在積極嘗試后進行講解,實現生生互評。把課堂的一切交給學生,相信他們能在已有的知識上進一步學習提高,教師只是點播和引導者。
3.本課在設計時對教材也進行了適當改動。例題方面考慮到數女生時代,學生對膠卷已漸失興趣,所以改為學生比較熟悉的乒乓球為體裁。另一方面,充分挖掘練習的作用,為知識的落實打下軋實的基礎,為學生今后的進一步學習做好鋪墊。
二元一次方程教案講義篇七
知識與技能
掌握二元一次方程和二元一次方程組及它們的解的概念,會用消元法解方程組。
過程與方法
能根據方程組的特點選擇合適的方法解方程組;并能把相應問題轉化為解方程組
情感、態(tài)度與價值觀
培養(yǎng)學生分析問題,解決問題的能力,體驗學習數學的快樂。
掌握二元一次方程和二元一次方程組及它們的解的概念,會用消元法解方程組。
選擇合適的方法解方程組;并能把相應問題轉化為解方程組。
多媒體,小組評比。
以小組為單位討論二元一次方程組已經學了哪些知識?
1、什么是二元一次方程?什么是二元一次方程的解?
2、什么是二元一次方程組?什么是二元一次方程組的解?
3、解二元一次方程組的基本思想是什么?消元的方法有哪些?
設計意圖:知識回顧,掌握知識要點,為順利完成練習打下基礎
教學手段與方法:每小組必答題,答對為小組的一分,調動學習的積極性。
基礎知識達標訓練。
教學手段與方法:
毎小組選代表講解為小組加分,充分調動學生的積極性。學生講解不到位的老師補充。
對二元一次方程組解法的靈活應用。
二元一次方程教案講義篇八
執(zhí)教者錢嘉穎時間xxxx年6月12日
1、選自初一年級(下)數學學科第八章(第一單元)第一節(jié)(課)(1課時45分鐘)
2、教材內容簡要分析
教材以引言中的一個實際例子,“一班和二班進行籃球比賽,總共打了22場。每勝一場得2分,每負一場得1分,已知比賽結束一班累計得了40分,思考:一班勝了多少場,負了多少場”來開展這次課程。以本例來首先回憶已學過的一元一次方程的知識內容,以此作為切入點,引導學生思考用兩個未知數來表示方程,借此進入二元一次方程的介紹。之后,引導學生利用一元一次方程的解法特點來思考二元一次方程組的解答方法,本次課程內容主要介紹了代入解答法(也稱消元法)的詳細解答過程,以及二元一次方程組的實際運用及解答,讓學習者更好的吸收及掌握二元一次方程組和二元一次方程組的消元法。另外,在本單元結束介紹了作為課外知識的“二元一次方程古代表示方法”。
3、學習內容分析表:
知識點
重點
難點
編號
內容
1
二元一次方程組定義及特點
二元一次方程組的兩個特點
二元一次方程組成立的條件(未知數要同時滿足兩個條件)
2
二元一次方程組
代入消元法
代入消元法的具體解法
消元法與一元一次方程解法間的聯系
3
二元一次方程組實際運用
以實際例題列出方程并解答
未知數的假設以及運用已知條件列出正確方程。
本次教學的對象是云南省某中學的初中一年級學生,平均年齡12歲。初一年級是學生由幼稚的童年向青年轉化和個性逐漸成型的重要轉折點,初一年級學生具有其特殊性。初一年級學生由于剛剛接觸完全不同于小學的學習生活而有手足無措的情況。而在這個時期的學生生理和心理飛速發(fā)展變化,自我意識開始強烈,有了自己的興趣,獨立性增強,感情趨于豐富復雜化,有一定獨立思考的能力、一定程度的抽象思維能力和邏輯思維能力,處于識記能力最強的時期。此時,進行的教育可以更加重視獨立思考,在數學教學中更加重視引導教學,致使學習者能夠更加深刻的理解所學知識,達到教學目標。
1、教學順序
(1)復習已學過的一元一次方程知識引入開篇實例。
(2)以一元一次方程解釋實例引導對于二元的思考。
(3)以二元一次方程的方法建立方程,進而介紹二元一次方程組的定義及特點并鞏固。
(4)以本例引發(fā)思考二元一次方程組的解法。
(5)介紹二元一次方程組消元法的運用,并進行隨堂練習以及隨堂解答。
(6)在確定學生掌握消元法后進入二元一次方程組的實例運用講解以及隨堂練習。
(7)復習、回憶、鞏固本次課程的主要內容,介紹課外延伸內容。
2、教學活動程序
(1)引起注意
以“上課”號令以及播放ppt喚起學習者的注意。
(2)告訴學習者目標
以ppt的播放以及言語刺激,明確告訴學習者本次課的內容是學習二元一次方程組,本次學習的目標是掌握二元一次方程組的消元法以及二元一次方程的實例運用。
(3)刺激對先前知識的回憶
回憶之前學過的一元一次方程的主要內容(定義、解法、實際運用),以實例進行先前內容的回憶并且充分利用原有的認知結構中關于一元一次方程的列式觀念來與新學的二元一次方程產生共鳴。
(4)呈現刺激材料
在講解過程中伴隨著ppt的播放,并在關鍵需要注意的部分進行板書強調,在語調上有所突出。
(5)提供學習指導
以教材內容為指導,以及教師的提示語和示范性行為等進行引導。
(6)誘導行為
在重點部分題型注意,進行隨堂練習,分為詳細解答和對答案兩種方式。在詳細解答時要求同學與老師一同進行,必要時提問同學,讓學習者參與進來,更好的理解信息并掌握學習內容。
(7)提供反饋
在學習者作出反應、表現出行為之后,及時讓學習者知道學習結果,從而使學習者能肯定自己的理解與行為正確與否,以便及時更正。
(8)評定行為
以隨堂測驗的方式進行隨堂評定,并且在課后布置習題讓同學們課后完成,再由教師進行評定。
(9)增強記憶與促進遷移
設置教學活動(見附錄),強化刺激,為學習者加深印象,并且促使其發(fā)散思維,將學習的知識廣泛運用。
3、教學組織形式
本次教學中選擇運用了以下幾種教學組織形式
(1)講解的形式
以教師的說明和解釋為主,向學生傳輸新信息,是本次教學主要形式,因本次教學內容的特征,這種形式能夠全面詳細的解釋本次教學內容,并能充分發(fā)揮教師的引導作用。
(2)提問的形式
這一形式能夠在教學過程中起到刺激課堂,引起學習者注意的作用,并且是對學習者某一知識學習情況的抽樣調查,由教師找出學習者存在的問題進行解決。
(3)師生共同解答的形式
采用這個形式能夠在師生之間產生共鳴,提起課堂氣氛,產生共鳴,引起注意,使大部分學習者都參與進來,也是一個小型頭腦風暴過程,在學習者之間互相影響,從而對知識得到正確理解。
4、教學方法的選擇
本次課程選擇運用了講授法、演示法、練習法的教學方法。
(1)語言的方法—講授法,主要是根據教學目標和教學任務,數學這門學科的解釋性強的特點以及這個學習階段的學習者的自學能力不夠然而接受能力很強的特點而選擇的。
(2)直觀的方法—演示法,順應時代的發(fā)展,教學中出現了利用新媒體的需要,并且,對于這個階段的學習者,在課程開展中利用ppt來進行演示可以更加有效的刺激學習者感官,并且配合適當的板書,對于這個年齡段的學習者更加容易接受,同時也由于我們已經具備了采用新媒體的條件。在課后,會以電子雜志的形式形成重點復習資料留給學習者課后復習。
(3)實踐的方法—練習法,包括了口頭練習和書面練習??陬^練習是這個年齡段學習者心理特征的需要,因為他們獨立性還不夠強,在進行口頭練習的時候,比較能夠跟上大多數人的思維,產生共鳴。書面練習是這個學科特征的需要,必須進行書面練習才能讓同學們更好的掌握所學知識,隨堂練習能及時反映出當場學習的狀況。
二元一次方程教案講義篇九
學生的知識技能基礎:七年級時,學生已經學習了一元一次方程及其應用。本章中,學生又學習了二元一次方程、二元一次方程組、列二元一次方程組解應用題等,能熟練地解二元一次方程組,已初步具備了用方程組刻畫實際問題的經驗和基礎,能正確地分析和理解題意,尋求題中的各種數量關系,具備了繼續(xù)學習本節(jié)內容的知識和能力。
學生的活動經驗基礎:在相關知識的學習過程中,學生已經經歷了一些編題活動,同時也具備了一些生活經驗,知道列方程解應用題的一些規(guī)律、特點和方法,具備了一些解決實際問題的經驗和能力。在以前的數學學習中,學生已經經歷很多合作學習的過程,具備了一定的'合作學習經驗,具備了一定的合作與交流的能力。
地位和作用:本節(jié)內容是在學生學習了二元一次方程組的解法和部分二元一次方程組的應用后,緊接著學習的有關數字問題的應用題。這部分內容的學習,有助于加深學生對數字問題的理解,進一步掌握列方程組解應用題的方法(相等關系),提高學生解決實際問題的能力。本節(jié)課的教學目標為:
1.歸納出用二元一次方程組解決實際問題的一般步驟。
2.讓學生進一步經歷和體驗列方程組解決實際問題的過程,體會方程(組)是刻畫現實世界的有效數學模型。
3.在解決問題過程中,學會借助圖表分析問題,感受化歸思想。
4.讓學生體驗把復雜問題化為簡單問題策略的同時,培養(yǎng)學生克服困難的意志和勇氣。
本節(jié)課的重點是教學生會用圖表分析數字問題。難點是將實際問題轉化成二元一次方程組的數學模型;設間接未知數轉化解決實際問題。
教學準備
flah播放器;若flash不能播放,請按絕對路徑重新插入后播放。
本課設計了六個教學環(huán)節(jié):第一環(huán)節(jié):知識回顧;第二環(huán)節(jié):情境引入,新課講解;第三環(huán)節(jié):練習提高;第四環(huán)節(jié):合作學習;第五環(huán)節(jié):學習反思;第六環(huán)節(jié):布置作業(yè)。
1.一個兩位數的十位數字是x,個位數字是y,則這個兩位數可表示為:10x+y.
2.一個三位數,若百位數字為a,十位數字為b,個位數字為c,則這個三位數為:100a+10b+c.
3.一個兩位數,十位數字為a,個位數字為b,若在這兩位數中間加一個0,得到一個三位數,則這個三位數可表示為:100a+b.
4.a為兩位數,b是一個三位數,若把a放在b的左邊得到一個五位數,則這個五位數可表示為:
1000a+b.
設計意圖:通過復習,為本節(jié)課的繼續(xù)學習做好鋪墊。
實際效果:提問學生,教師加以點評,這樣經過知識的回顧,學生基本能熟練地用代數式表示有關數字問題。
動畫,情景展示。
12:00是一個兩位數,它的兩個數字之和為7;
13:00十位與個位數字與12:00所看到的正好顛倒了;
14:00比12:00時看到的兩位數中間多了個0.
5.5應用二元一次方程組——里程碑上的數同步練習含答案
小明和小華在一起玩數字游戲,他們每人取了一張數字卡片,拼成了一個兩位數。小明說:“哇!這個兩位數的十位數字與個位數字之和恰好是9.”他們又把這兩張卡片對調,得到了一個新的兩位數,小華說:“這個兩位數恰好也比原來的兩位數大9.”
那么,你能回答以下問題嗎?
(1)他們取出的兩張卡片上的數字分別是幾?
(2)第一次,他們拼出的兩位數是多少?
(3)第二次,他們拼成的兩位數又是多少呢?請你好好動動腦筋喲!
二元一次方程教案講義篇十
知識與技能
(1)初步理解二元一次方程和一次函數的關系;
(2)掌握二元一次方程組和對應的兩條直線之間的關系;
(3)掌握二元一次方程組的圖像解法.
(2)通過“做一做”引入例1,進一步發(fā)展學生數形結合的意識和能力.
(1)在探究二元一次方程和一次函數的對應關系中,在體會近似解與準確解中,培養(yǎng)學生勤于思考、精益求精的精神.
(2)在經歷同一數學知識可用不同的數學方法解決的過程中,培養(yǎng)學生的創(chuàng)新意識和變式能力.
(1)二元一次方程和一次函數的關系;
(2)二元一次方程組和對應的兩條直線的關系.
數形結合和數學轉化的思想意識.
教具:多媒體課件、三角板.
學具:鉛筆、直尺、練習本、坐標紙.
第一環(huán)節(jié):設置問題情境,啟發(fā)引導(5分鐘,學生回答問題回顧知識)
內容:1.方程x+y=5的解有多少個?是這個方程的解嗎?
2.點(0,5),(5,0),(2,3)在一次函數y=的圖像上嗎?
3.在一次函數y=的圖像上任取一點,它的坐標適合方程x+y=5嗎?
4.以方程x+y=5的解為坐標的所有點組成的圖像與一次函數y=的圖像相同嗎?
由此得到本節(jié)課的第一個知識點:
(1)以二元一次方程的解為坐標的點都在相應的函數圖像上;
(2)一次函數圖像上的點的坐標都適合相應的二元一次方程.
第二環(huán)節(jié)自主探索方程組的解與圖像之間的關系(10分鐘,教師引導學生解決)
內容:1.解方程組
2.上述方程移項變形轉化為兩個一次函數y=和y=2x,在同一直角坐標系內分別作出這兩個函數的圖像.
(1)求二元一次方程組的.解可以轉化為求兩條直線的交點的橫縱坐標;
(2)求兩條直線的交點坐標可以轉化為求這兩條直線對應的函數表達式聯立的二元一次方程組的解.
(3)解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種.
注意:利用圖像法求二元一次方程組的解是近似解,要得到準確解,一般還是用代入消元法和加減消元法解方程組.
第三環(huán)節(jié)典型例題(10分鐘,學生獨立解決)
探究方程與函數的相互轉化
內容:例1用作圖像的方法解方程組
例2如圖,直線與的交點坐標是.
第四環(huán)節(jié)反饋練習(10分鐘,學生解決全班交流)
內容:1.已知一次函數與的圖像的交點為,則.
2.已知一次函數與的圖像都經過點a(—2,0),且與軸分別交于b,c兩點,則的面積為().
(a)4(b)5(c)6(d)7
3.求兩條直線與和軸所圍成的三角形面積.
4.如圖,兩條直線與的交點坐標可以看作哪個方程組的解?
第五環(huán)節(jié)課堂小結(5分鐘,師生共同總結)
內容:以“問題串”的形式,要求學生自主總結有關知識、方法:
1.二元一次方程和一次函數的圖像的關系;
(1)以二元一次方程的解為坐標的點都在相應的函數圖像上;
(2)一次函數圖像上的點的坐標都適合相應的二元一次方程.
2.方程組和對應的兩條直線的關系:
(1)方程組的解是對應的兩條直線的交點坐標;
(2)兩條直線的交點坐標是對應的方程組的解;
3.解二元一次方程組的方法有3種:
(1)代入消元法;
(2)加減消元法;
(3)圖像法.要強調的是由于作圖的不準確性,由圖像法求得的解是近似解.
第六環(huán)節(jié)作業(yè)布置
習題7.7a組(優(yōu)等生)1、2、3b組(中等生)1、2c組1、2
附:板書設計
六、教學反思
二元一次方程教案講義篇十一
3體會列方程組比列一元一次方程容易
4進一步培養(yǎng)學生化實際問題為數學問題的能力和分析問題,解決問題的能力
重點:能根據題意列二元一次方程組;根據題意找出等量關系;
難點:正確發(fā)找出問題中的兩個等量關系
課前自主學習
1.列方程組解應用題是把“未知”轉化為“已知”的重要方法,它的關鍵是把已知量和未知量聯系起來,找出題目中的()
2.一般來說,有幾個未知量就必須列幾個方程,所列方程必須滿足:
(1)方程兩邊表示的'是()量
(2)同類量的單位要()
(3)方程兩邊的數值要相符。
3.列方程組解應用題要注意檢驗和作答,檢驗不僅要求所得的解是否(),更重要的是要檢驗所求得的結果是否()
4.一個籠中裝有雞兔若干只,從上面看共42個頭,從下面看共有132只腳,則雞有(),兔有()
新課探究
看一看
1題中有哪些已知量?哪些未知量?
2題中等量關系有哪些?
3如何解這個應用題?
本題的等量關系是
(1)()
(2)()
解:設平均每只母牛和每只小牛1天各需用飼料為xkg和ykg
根據題意列方程,得
解這個方程組得
答:每只母牛和每只小牛1天各需用飼料為()和(),飼料員李大叔估計每天母牛需用飼料18—20千克,每只小牛一天需用7到8千克與計算()出入。(“有”或“沒有”)
練一練:
小結
用方程組解應用題的一般步驟是什么?
二元一次方程教案講義篇十二
一、精心選一選!一定能選對!(每小題3分,共30分)
1.下列方程是二元一次方程的是().
(a)(b)(c)(d)
2.方程組解的個數有().
(a)一個(b)2個(c)3個(d)4個
3.若方程組的解是,那么、的值是().
(a)(b)(c)(d)
4.若、滿足,則的值等于().
(a)-1(b)1(c)-2(d)2
5.若方程是關于、的二元一次方程,則、的值是().
(a)(b)(c)(d)
6.下列說法中正確的是().
(a)二元一次方程的解為有限個
(b)方程的解、為自然數的有無數對
(c)方程組的解為0
(d)方程組中各個方程的公共解叫做這個方程組的解
7.在等式中,當時,,當時,,則這個等式是().
(a)(b)(c)(d)
8.(靈武)方程組的解是
(a)(b)(c)(d)
9.(20寧夏)買甲、乙兩種純凈水共用250元,其中甲種水每桶8元,乙種水每桶6元,乙種水的`桶數是甲種水的桶數的75%,設買甲種水x桶,乙種水y桶,則所列方程組中正確的是()
(a)(b)(c)(d)
10.(年福建福州)如圖,射線oc的端點o在直線ab上,1的度數比2的度數的2倍多10,則可列正確的方程組為().
(a)(b)(c)(d)
二、耐心填一填!一定能填對!(每小題3分,共30分)
11.已知方程,用含的式子表示的式子是____,用含的式子表示的式子是___________.
12.已知是方程的一個解,那么__________.
13.已知,,則________.
14.若同時滿足方程和方程,則_________.
15.解二元一次方程組用________-法消去未知數________比較方便.
16.(2005年江蘇鹽城)若一個二元一次方程的一個解為,則這個方程可以是_______________(只要求寫出一個)
17.已知方程組與的解相同,那么_______.
18.若,都是方程的解,則______,________.
19.(山東濰坊)蔬菜種植專業(yè)戶王先生要辦一個小型蔬菜加工廠,分別向銀行申請甲、乙兩種貸款,共13萬元,王先生每年須付利息6075元,已知甲種貸款的年利率為6%,乙種貸款的年利率為3.5%,則甲、乙兩種貸款分別是________________.
20.(2005年南寧)根據下圖提供的信息,求出每支網球拍的單價為
元,每支乒乓球拍的單價為元.
200元160元
三、用心想一想!一定能做對!(共60分)
21.(本小題8分)(2005年江蘇蘇州)解方程組:
26.(本小題12分)(,黃岡)已知某電腦公司有a型、b型、c型三種型號的電腦,其價格分別為a型每臺6000元,b型每臺4000元,c型每臺2500元.我市東坡中學計劃將100500元錢全部用于從該公司購進其中兩種不同型號的電腦共36臺,請你設計出幾種不同的購買方案供該校選擇,并說明理由.
參考答案:
一、1~10daaacdbcbb
二、11.,;12.0;13.-42;14.4;15.加減消元,;16.等;17.1.5;18.2,1;19.6.1萬元,6.9萬元;20.80,20.
三、
21.;22.;23.;24.54人挖土,18人運土;
25.解:設這種礦泉水在甲、乙兩處每桶的價格分別為元,根據題意,得
解這個方程組,得
因為.
所以到甲供水點購買便宜一些.
26.解:設從該電腦公司購進a型電腦x臺,購進b型電腦y臺,購進c型電腦z臺.則可分以下三種情況考慮:
(1)只購進a型電腦和b型電腦,依題意可列方程組解得不合題意,應該舍去;
(2)只購進a型電腦和c型電腦,依題意可列方程組解得
(3)只購進b型電腦和c型電腦,依題意可列方程組
解得
二元一次方程教案講義篇十三
3體會列方程組比列一元一次方程容易
4進一步培養(yǎng)學生化實際問題為數學問題的能力和分析問題,解決問題的能力
重點:能根據題意列二元一次方程組;根據題意找出等量關系;
難點:正確發(fā)找出問題中的兩個等量關系
課前自主學習
1.列方程組解應用題是把“未知”轉化為“已知”的`重要方法,它的關鍵是把已知量和未知量聯系起來,找出題目中的()
2.一般來說,有幾個未知量就必須列幾個方程,所列方程必須滿足:
(1)方程兩邊表示的是()量
(2)同類量的單位要()
(3)方程兩邊的數值要相符。
3.列方程組解應用題要注意檢驗和作答,檢驗不僅要求所得的解是否( ),更重要的是要檢驗所求得的結果是否( )
4.一個籠中裝有雞兔若干只,從上面看共42個頭,從下面看共有132只腳,則雞有( ),兔有( )
新課探究
看一看
1題中有哪些已知量?哪些未知量?
2題中等量關系有哪些?
3如何解這個應用題?
本題的等量關系是(1)()
(2)()
解:設平均每只母牛和每只小牛1天各需用飼料為xkg和ykg
根據題意列方程,得
解這個方程組得
答:每只母牛和每只小牛1天各需用飼料為( )和( ),飼料員李大叔估計每天母牛需用飼料18—20千克,每只小牛一天需用7到8千克與計算()出入。(“有”或“沒有”)
練一練:
小結
用方程組解應用題的一般步驟是什么?
8.3實際問題與二元一次方程組(2)
1、經歷用方程組解決實際問題的過程,體會方程組是刻畫現實世界的有效數學模型;
2、能夠找出實際問題中的已知數和未知數,分析它們之間的數量關系,列出方程組;
3、學會開放性地尋求設計方案,培養(yǎng)分析問題,解決問題的能力
重點:能根據題意列二元一次方程組;根據題意找出等量關系;
難點:正確發(fā)找出問題中的兩個等量關系
課前自主學習
1.甲乙兩人的年收入之比為4:3,支出之比為8:5,一年間兩人各存了5000元(兩人剩余的錢都存入了銀行),則甲乙兩人的年收入分別為()元和()元。
2.在一堆球中,籃球與排球之比為贊助單位又送來籃球隊10個排球10個,這時籃球與排球的數量之比為27:40,則原有籃球()個,排球()個。
二元一次方程教案講義篇十四
2、通過應用題教學使學生進一步使用代數中的方程去反映現實世界中等量關系,體會代數方法的優(yōu)越性。
能根據題意列二元一次方程組;根據題意找出等量關系;
正確發(fā)找出問題中的兩個等量關系
一、復習
列方程解應用題的步驟是什么?
審題、設未知數、列方程、解方程、檢驗并答
新課:
看一看課本99頁探究1
問題:
1題中有哪些已知量?哪些未知量?
2題中等量關系有哪些?
3如何解這個應用題?
本題的等量關系是(1)30只母牛和15只小牛一天需用飼料為675kg
(2)(30+12只母牛和(15+5)只小牛一天需用飼料為940
練一練:
二元一次方程教案講義篇十五
尋找等量關系
看一看:課本99頁探究2
問題:1“甲、乙兩種作物的單位面積產量比是1:1、5”是什么意思?
2、“甲、乙兩種作物的總產量比為3:4”是什么意思?
3、本題中有哪些等量關系?
提示:若甲種作物單位產量是a,那么乙種作物單位產量是多少?
思考:這塊地還可以怎樣分?
練一練
一、某農場300名職工耕種51公頃土地,計劃種植水稻、棉花、和蔬菜,已知種植植物每公頃所需的勞動力人數及投入的設備獎金如下表:
農作物品種每公頃需勞動力每公頃需投入獎金
水稻4人1萬元
棉花8人1萬元
蔬菜5人2萬元
問題:題中有幾個已知量?題中求什么?分別安排多少公頃種水稻、棉花、和蔬菜?
二元一次方程教案講義篇十六
1.會列出二元一次方程組解簡單應用題,并能檢驗結果的合理性。
2.知道二元一次方程組是反映現實世界量之間相等關系的一種有效的數學模型。
3.引導學生關注身邊的數學,滲透將來未知轉達化為已知的辯證思想。
1.列二元一次方程組解簡單問題。
2.徹底理解題意
找等量關系列二元一次方程組。
1.怎樣設未知數?
2.找本題等量關系?從哪句話中找到的?
3.列方程組。
4.解方程組。
5.檢驗寫答案。
思考:怎樣用一元一次方程求解?
比較用一元一次方程求解,用二元一次方程組求解誰更容易?
1.根據問題建立二元一次方程組。
(1)甲、乙兩數和是40差是6,求這兩數。
(2)80班共有64名學生,其中男生比女生多8人,求這個班男生人數,女生人數。
(3)已知關于求x、y的方程,
是二元一次方程。求a、b的值。
2.p38練習第1題。
小組討論:列二元一次方程組解應用題有哪些基本步驟?
p42。習題2.3a組第1題。
后記:
2.3二元一次方程組的應用(2)

