心得體會(huì)的寫作過(guò)程可以讓我們更好地發(fā)現(xiàn)自己的成長(zhǎng)和進(jìn)步,同時(shí)也能夠?yàn)樗颂峁┙梃b和啟示。寫心得體會(huì)時(shí),要注重質(zhì)疑和思辨,勇于表達(dá)自己獨(dú)特的見解和觀點(diǎn)。心得體會(huì)是在學(xué)習(xí)和工作過(guò)程中總結(jié)經(jīng)驗(yàn)與教訓(xùn)的一種方式。那么我們?cè)撊绾螌懸黄^為完美的心得體會(huì)呢?以下是小編為大家整理的一些優(yōu)秀心得體會(huì)范文,供大家參考和學(xué)習(xí)。
數(shù)學(xué)思想方法心得體會(huì)篇一
《新課程標(biāo)準(zhǔn)》在總目標(biāo)中提出:通過(guò)義務(wù)教育階段的數(shù)學(xué)學(xué)習(xí),學(xué)生能獲得適應(yīng)社會(huì)生活和進(jìn)一步發(fā)展所必須的數(shù)學(xué)知識(shí)、基本技能、基本思想、基本活動(dòng)經(jīng)驗(yàn)。這句話對(duì)于我們新教師來(lái)已經(jīng)是爛熟于心,但對(duì)于這句話真正理解的少之又少,讀了王永春老師的《小學(xué)數(shù)學(xué)思想與數(shù)學(xué)思想方法》之后,對(duì)這句話才有了真正的認(rèn)識(shí)?!笆谌艘贼~不如授人以漁”,對(duì)于學(xué)生而言,數(shù)學(xué)知識(shí)在其次,數(shù)學(xué)方法才是最重要的,在這本書中,王老師為我們總結(jié)了小學(xué)數(shù)學(xué)知識(shí)中蘊(yùn)含的數(shù)學(xué)思想,這讓我們?cè)谌粘=虒W(xué)中可以結(jié)合所教知識(shí)很清楚地知道這些知識(shí)中蘊(yùn)含了哪些數(shù)學(xué)思想方法,為我們的教學(xué)提供了指導(dǎo)和幫助。
這學(xué)期我任三年級(jí)數(shù)學(xué),三年級(jí)上冊(cè)中的主要思想有:第3單元“測(cè)量”中學(xué)習(xí)的長(zhǎng)度單位:分米(dm)、毫米(mm)、千米(km)是符號(hào)化思想的應(yīng)用;第7單元“長(zhǎng)方形和正方形”中有些習(xí)題如本書中第25頁(yè)的“案例2”應(yīng)用了分類思想;第9單元“數(shù)學(xué)廣角――集合”中學(xué)習(xí)的重復(fù)問(wèn)題是集合思想的應(yīng)用;第8單元“分?jǐn)?shù)的初步認(rèn)識(shí)”中學(xué)生用一張正方形白紙可以折出不同的形狀表示它的1/4。在學(xué)生充分展示后,我們可以引導(dǎo)學(xué)生發(fā)現(xiàn)雖然形狀、大小不同,但都是把一張正方形白紙平均成4份,每份是它的1/4。這個(gè)教學(xué)過(guò)程中有變中有不變的思想的應(yīng)用。第8單元“分?jǐn)?shù)的初步認(rèn)識(shí)”中把一個(gè)圓形平均分,分的份數(shù)越多,分?jǐn)?shù)越小,如果一直分下去,可以對(duì)應(yīng)寫出無(wú)限多個(gè)分?jǐn)?shù)。
生活本身是一個(gè)巨大的數(shù)學(xué)課堂,生活中客觀存在著大量有價(jià)值的數(shù)學(xué)現(xiàn)象。指導(dǎo)學(xué)生運(yùn)用數(shù)學(xué)知識(shí)寫日記,能促使學(xué)生主動(dòng)地用數(shù)學(xué)的眼光去觀察生活,去思考生活問(wèn)題,讓生活問(wèn)題數(shù)學(xué)化。在教學(xué)中注重培養(yǎng)孩子運(yùn)用數(shù)學(xué)的意識(shí),增強(qiáng)學(xué)生運(yùn)用知識(shí)解決實(shí)際問(wèn)題的能力。由此可見,數(shù)學(xué)并不是靠老師教會(huì)的,而是在教師的指導(dǎo)下,靠學(xué)生自己學(xué)會(huì)的。在教學(xué)中教師要給學(xué)生創(chuàng)造情景、提供機(jī)會(huì),給學(xué)生充足的時(shí)間和空間,讓學(xué)生主動(dòng)探究新知,在探究中發(fā)現(xiàn)規(guī)律、歸納規(guī)律。因此,我們?cè)谡n堂教學(xué)中,多留些時(shí)間給學(xué)生,讓他們動(dòng)手操作;多留些時(shí)間給學(xué)生,自己的`意見;多留些時(shí)間給學(xué)生,讓他們質(zhì)疑問(wèn)難。保證充分的時(shí)間和空間,讓學(xué)生再課內(nèi)交流、討論、質(zhì)疑。
這本書教給了我們一種教學(xué)理念,教會(huì)了我們一種教學(xué)方法。讀書更是一種好的學(xué)習(xí)手段,它將帶領(lǐng)我們不斷更新、與時(shí)俱進(jìn),成為一名學(xué)生喜歡的、有專業(yè)素養(yǎng)的好老師。
數(shù)學(xué)思想方法心得體會(huì)篇二
其實(shí),這本書擱置在書架上已經(jīng)許久了,因?yàn)槔锩娓拍钚缘臇|西比較多,所以讀起來(lái)并不是那么趣味十足,之前讀了幾頁(yè),便沒(méi)有再讀下去。
之所以重讀這本書,緣于這幾天和學(xué)生一起收看《名師同步課堂》,在電視上做六年級(jí)數(shù)學(xué)直播課的是經(jīng)驗(yàn)豐富的魯向前老師,我發(fā)現(xiàn)他在講課的時(shí)候,特別注重?cái)?shù)學(xué)思想方法的滲透,在這方面正是我所欠缺的。
魯老師在講解求體積的解決問(wèn)題時(shí),提到了把一個(gè)體積轉(zhuǎn)化成另一個(gè)體積,正方體熔鑄成圓柱體,小石子放入水中水面升高等等,體現(xiàn)了恒等變形的思想。
魯老師特別提到一種數(shù)學(xué)思想方法,由圓柱體積的求法猜想并實(shí)驗(yàn)證明圓錐體積的求法,體現(xiàn)了類比的思想方法。類比思想是指依據(jù)兩類數(shù)學(xué)對(duì)象的相似性,將已知的一類數(shù)學(xué)對(duì)象的性質(zhì)遷移到另一類數(shù)學(xué)對(duì)象上去的思想。
經(jīng)常說(shuō)教方法比教知識(shí)重要,作為一名數(shù)學(xué)老師,需要系統(tǒng)的了解數(shù)學(xué)思想方法。所以我便想到了書架上的這本書。說(shuō)實(shí)話,讀這本書是有些枯燥的,而且如果你不動(dòng)腦子去思考書中的問(wèn)題的話,那你可能僅僅讀的就是字了。
在《小學(xué)數(shù)學(xué)與數(shù)學(xué)思想方法》這本書的封皮上寫著:
數(shù)學(xué)思想方法不同于一般的概念和技能,后者一般通過(guò)短期的訓(xùn)練便能掌握,數(shù)學(xué)思想方法的教學(xué)更應(yīng)該是一個(gè)通過(guò)長(zhǎng)期的滲透和影響才能夠形成思想和方法的過(guò)程。教師應(yīng)在每堂課的教學(xué)中適時(shí)、適當(dāng)?shù)伢w現(xiàn)思想方法的教學(xué)目標(biāo),使學(xué)生在潛移默化中日積月累,通過(guò)提高數(shù)學(xué)素養(yǎng)達(dá)到學(xué)好數(shù)學(xué)的目的。
這本書分上下兩篇,上篇介紹各類思想方法,下篇介紹各類思想方法在每一冊(cè)教材中的體現(xiàn),這本書可以當(dāng)成我們的一本工具書,在我們備課的時(shí)候,方便我們查閱。比如,在總結(jié)十以內(nèi)的加減法或者乘法口訣的推導(dǎo)過(guò)程中,都體現(xiàn)了函數(shù)思想,作為老師的我們,不必讓學(xué)生明確知道什么是函數(shù)思想,但是我們應(yīng)該明白這里面體現(xiàn)了函數(shù)思想,并且有意識(shí)地向?qū)W生滲透思想方法,讓學(xué)生在以后面對(duì)類似的問(wèn)題,能夠聯(lián)想到這種思想方法去解決問(wèn)題。
僅僅花費(fèi)兩三天的時(shí)間,匆匆讀完了這本書,書中的一些思想方法或者內(nèi)容,有些地方還不是太懂,需要慢慢去領(lǐng)悟,但是我知道,在以后備課,做教學(xué)設(shè)計(jì)時(shí),一定要思考一個(gè)問(wèn)題:這節(jié)課體現(xiàn)了哪些思想方法?我們應(yīng)該向?qū)W生滲透哪些思想方法?為學(xué)生考慮的再長(zhǎng)遠(yuǎn)一些。
數(shù)學(xué)思想方法心得體會(huì)篇三
學(xué)習(xí)和復(fù)習(xí)的主線不同。學(xué)習(xí)的主線我們應(yīng)該都很熟悉,看一看教材的目錄就非常明確了:高一高二兩年當(dāng)中一定是以章節(jié)為單位,一個(gè)知識(shí)點(diǎn)接一個(gè)知識(shí)點(diǎn)按部就班地介紹和學(xué)習(xí)。每個(gè)章節(jié)內(nèi)部也是基本遵循“定義—定理—公式—經(jīng)典例題—實(shí)際應(yīng)用—練習(xí)”這樣由簡(jiǎn)到繁的內(nèi)容安排。
而二次復(fù)習(xí)如果也采用這樣的模式,導(dǎo)致的直接結(jié)果就是,考生按知識(shí)點(diǎn)分塊的模式分章節(jié)去解題會(huì)很順利,一旦拿過(guò)來(lái)一份高考試卷,遇到里面的綜合性題目卻無(wú)從下手,這就是平時(shí)考生經(jīng)常遇到的問(wèn)題——沒(méi)有解題思路。
初次學(xué)習(xí)和再次復(fù)習(xí)不同。絕大部分考生在高一高二兩年的時(shí)間中進(jìn)行的都是新知識(shí)新理論的學(xué)習(xí),這是初次認(rèn)識(shí)初次接觸的過(guò)程,我們稱之為初次學(xué)習(xí),這個(gè)過(guò)程強(qiáng)調(diào)的是認(rèn)知、接受和掌握。而高三將近一年的時(shí)間考生幾乎接觸的都是之前兩年當(dāng)中見過(guò)的理解了的但是很多已經(jīng)遺忘的內(nèi)容,我們將這個(gè)過(guò)程稱之為再次復(fù)習(xí)。
再次復(fù)習(xí)除了恢復(fù)考生對(duì)相應(yīng)知識(shí)點(diǎn)的記憶之外,更重要的在于將知識(shí)點(diǎn)升華為考點(diǎn),這個(gè)過(guò)程重視的是理解、綜合與應(yīng)用。兩個(gè)過(guò)程截然不同,必然導(dǎo)致我們應(yīng)對(duì)的策略也要有所變化。
數(shù)學(xué)思想方法心得體會(huì)篇四
解:
根據(jù)乘法原理,分兩步:
第一步是把5對(duì)夫妻看作5個(gè)整體,進(jìn)行排列有5×4×3×2×1=120種不同的排法,但是因?yàn)槭菄梢粋€(gè)首尾相接的圈,就會(huì)產(chǎn)生5個(gè)5個(gè)重復(fù),因此實(shí)際排法只有120÷5=24種。
綜合兩步,就有24×32=768種。
解:
5全排列5*4*3*2*1=120
有兩個(gè)l所以120/2=60
原來(lái)有一種正確的所以60-1=59
答案為53秒
可以這樣理解:“快車從追上慢車的車尾到完全超過(guò)慢車”就是快車車尾上的點(diǎn)追及慢車車頭的點(diǎn),因此追及的路程應(yīng)該為兩個(gè)車長(zhǎng)的和。
答案為100米
300÷(5-4.4)=500秒,表示追及時(shí)間
5×500=2500米,表示甲追到乙時(shí)所行的路程
2500÷300=8圈……100米,表示甲追及總路程為8圈還多100米,就是在原來(lái)起跑線的前方100米處相遇。
5.一個(gè)人在鐵道邊,聽見遠(yuǎn)處傳來(lái)的火車汽笛聲后,在經(jīng)過(guò)57秒火車經(jīng)過(guò)她前面,已知火車?guó)Q笛時(shí)離他1360米,(軌道是直的),聲音每秒傳340米,求火車的速度(得出保留整數(shù))
答案為22米/秒
算式:1360÷(1360÷340+57)≈22米/秒
關(guān)鍵理解:人在聽到聲音后57秒才車到,說(shuō)明人聽到聲音時(shí)車已經(jīng)從發(fā)聲音的地方行出1360÷340=4秒的路程。也就是1360米一共用了4+57=61秒。
6.獵犬發(fā)現(xiàn)在離它10米遠(yuǎn)的前方有一只奔跑著的野兔,馬上緊追上去,獵犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的動(dòng)作快,獵犬跑2步的時(shí)間,兔子卻能跑3步,問(wèn)獵犬至少跑多少米才能追上兔子。
正確的答案是獵犬至少跑60米才能追上。
解:
答案:18分鐘
解:設(shè)全程為1,甲的速度為x乙的速度為y
列式40x+40y=1
x:y=5:4
得x=1/72y=1/90
走完全程甲需72分鐘,乙需90分鐘
故得解
答案是300千米。
解:通過(guò)畫線段圖可知,兩個(gè)人第一次相遇時(shí)一共行了1個(gè)ab的路程,從開始到第二次相遇,一共又行了3個(gè)ab的路程,可以推算出甲、乙各自共所行的路程分別是第一次相遇前各自所走的路程的3倍。即甲共走的路程是120*3=360千米,從線段圖可以看出,甲一共走了全程的(1+1/5)。
因此360÷(1+1/5)=300千米
解:(1/6-1/8)÷2=1/48表示水速的分率
2÷1/48=96千米表示總路程
10.快車和慢車同時(shí)從甲乙兩地相對(duì)開出,快車每小時(shí)行33千米,相遇是已行了全程的七分之四,已知慢車行完全程需要8小時(shí),求甲乙兩地的路程。
解:
相遇是已行了全程的七分之四表示甲乙的速度比是4:3
時(shí)間比為3:4
所以快車行全程的時(shí)間為8/4*3=6小時(shí)
6*33=198千米
解:
把路程看成1,得到時(shí)間系數(shù)
去時(shí)時(shí)間系數(shù):1/3÷12+2/3÷30
返回時(shí)間系數(shù):3/5÷12+2/5÷30
去時(shí)時(shí)間:1/2×(1/3÷12)÷1/75和1/2×(2/3÷30)1/75
路程:12×〔1/2×(1/3÷12)÷1/75〕+30×〔1/2×(2/3÷30)1/75〕=37.5(千米)
數(shù)學(xué)思想方法心得體會(huì)篇五
教師是落實(shí)數(shù)學(xué)思想方法的實(shí)施者,教師對(duì)數(shù)學(xué)思想方法的理解程度直接影響這一教學(xué)目標(biāo)的有效落實(shí)。因此,教師首先要認(rèn)真研讀小學(xué)階段所涉及的各種思想方法的內(nèi)涵。
教師深刻理解了各種數(shù)學(xué)思想方法的內(nèi)涵,在課前預(yù)設(shè)時(shí)把數(shù)學(xué)思想方法的滲透作為重要的教學(xué)目標(biāo),是小學(xué)生理解、掌握數(shù)學(xué)思想方法的前提。
二、在教學(xué)設(shè)計(jì)時(shí),有意識(shí)地挖掘教材中蘊(yùn)藏的數(shù)學(xué)思想方法
教材體系有兩條基本線索:一條是數(shù)學(xué)知識(shí),這是明線,另一條是數(shù)學(xué)思想方法,這是蘊(yùn)含在教材中的暗線?!稊?shù)學(xué)課程標(biāo)準(zhǔn)》在教材編寫建議上,要求根據(jù)學(xué)生已有經(jīng)驗(yàn)、心理發(fā)展規(guī)律以及所學(xué)內(nèi)容的特點(diǎn),一些重要的數(shù)學(xué)概念與數(shù)學(xué)思想方法采取逐步滲透編排的,以便逐步實(shí)現(xiàn)學(xué)習(xí)目標(biāo),為此,在小學(xué)數(shù)學(xué)教材中根據(jù)不同年級(jí)蘊(yùn)含著不同的數(shù)學(xué)思想方法。
小學(xué)生在解決問(wèn)題時(shí),往往要滲透“從有限中認(rèn)識(shí)無(wú)限,從精確中認(rèn)識(shí)近似,從量變中認(rèn)識(shí)質(zhì)變”的極限思想。四年級(jí)教材中“直線、射線和角”的知識(shí)點(diǎn),就蘊(yùn)含極限的思想:射線只有一個(gè)端點(diǎn),可以向一端無(wú)限延伸;直線由無(wú)數(shù)點(diǎn)組成,但沒(méi)有端點(diǎn),可以兩端無(wú)限延伸;角的兩邊可以無(wú)限延長(zhǎng),角的大小與角的兩邊畫出的長(zhǎng)短無(wú)關(guān)。
總之,數(shù)學(xué)思想方法總是隱含在各知識(shí)版塊中,體現(xiàn)在應(yīng)用知識(shí)的過(guò)程中,沒(méi)有不包括數(shù)學(xué)思想方法的知識(shí),也沒(méi)有游離于知識(shí)之外的思想方法,教師在教學(xué)時(shí)要研究教材,遵照《教師教學(xué)用書》的教材編寫要求中“有步驟地滲透數(shù)學(xué)思想方法,培養(yǎng)學(xué)生思維能力和解決問(wèn)題的能力”的意見,認(rèn)真?zhèn)湔n,努力挖掘教材中進(jìn)行數(shù)學(xué)思想方法滲透的各種因素,按章節(jié)及知識(shí)板塊考慮應(yīng)滲透哪些,怎樣滲透,滲透到什么程度,并列為教學(xué)目標(biāo),使?jié)B透成為有意識(shí)的教學(xué)活動(dòng)。讓學(xué)生理解并初步掌握數(shù)學(xué)思想方法,不僅有利于提高他們用數(shù)學(xué)解決問(wèn)題的能力,同時(shí)也可使他們感受到數(shù)學(xué)思想方法的作用,受到思維訓(xùn)練,逐步形成有序地、嚴(yán)密地思考問(wèn)題的意識(shí),學(xué)生掌握了思想方法將終身受益。
三、小學(xué)數(shù)學(xué)教學(xué)應(yīng)如何加強(qiáng)數(shù)學(xué)思想方法的滲透
(一)提高滲透的自覺(jué)性
數(shù)學(xué)概念、法則、公式、性質(zhì)等知識(shí)都明顯地寫在教材中,是有“形”的,而數(shù)學(xué)思想方法卻隱含在數(shù)學(xué)知識(shí)體系里,是無(wú)“形”的,并且不成體系地散見于教材各章節(jié)中。教師講不講,講多講少,隨意性較大,常常因教學(xué)時(shí)間緊而將它作為一個(gè)“軟任務(wù)”擠掉。對(duì)于學(xué)生的要求是能領(lǐng)會(huì)多少算多少。因此,作為教師首先要更新觀念,從思想上不斷提高對(duì)滲透數(shù)學(xué)思想方法重要性的認(rèn)識(shí),把掌握數(shù)學(xué)知識(shí)和滲透數(shù)學(xué)思想方法同時(shí)納入教學(xué)目的,把數(shù)學(xué)思想方法教學(xué)的要求融入備課環(huán)節(jié)。其次要深入鉆研教材,努力挖掘教材中可以進(jìn)行數(shù)學(xué)思想方法滲透的各種因素,對(duì)于每一章每一節(jié),都要考慮如何結(jié)合具體內(nèi)容進(jìn)行數(shù)學(xué)思想方法滲透,滲透哪些數(shù)學(xué)思想方法,怎么滲透,滲透到什么程度,應(yīng)有一個(gè)總體設(shè)計(jì),提出不同階段的具體教學(xué)要求。
(二)把握滲透的可行性
數(shù)學(xué)思想方法的教學(xué)必須通過(guò)具體的教學(xué)過(guò)程加以實(shí)現(xiàn)。因此,必須把握好教學(xué)過(guò)程中進(jìn)行數(shù)學(xué)思想方法教學(xué)的契機(jī)——概念形成的過(guò)程,結(jié)論推導(dǎo)的過(guò)程,方法思考的過(guò)程,思路探索的過(guò)程,規(guī)律揭示的過(guò)程等。同時(shí),進(jìn)行數(shù)學(xué)思想方法的教學(xué)要注意有機(jī)結(jié)合、自然滲透,要有意識(shí)地潛移默化地啟發(fā)學(xué)生領(lǐng)悟蘊(yùn)含于數(shù)學(xué)知識(shí)之中的種.種數(shù)學(xué)思想方法,切忌生搬硬套、和盤托出、脫離實(shí)際等適得其反的做法。
(三)注重滲透的反復(fù)性
數(shù)學(xué)思想方法是在啟發(fā)學(xué)生思維過(guò)程中逐步積累和形成的。為此,在教學(xué)中,首先要特別強(qiáng)調(diào)解決問(wèn)題以后的“反思”,因?yàn)樵谶@個(gè)過(guò)程中提煉出來(lái)的數(shù)學(xué)思想方法,對(duì)學(xué)生來(lái)說(shuō)才是易于體會(huì)、易于接受的。如通過(guò)分?jǐn)?shù)和百分?jǐn)?shù)應(yīng)用題有規(guī)律的對(duì)比板演,指導(dǎo)學(xué)生小結(jié)解答這類應(yīng)用題的關(guān)鍵,找到具體數(shù)量的對(duì)應(yīng)分率,從而使學(xué)生自己體驗(yàn)到對(duì)應(yīng)思想和化歸思想。其次要注意滲透的長(zhǎng)期性,應(yīng)該看到,對(duì)學(xué)生數(shù)學(xué)思想方法的滲透不是一朝一夕就能見到學(xué)生數(shù)學(xué)能力提高的,而是有一個(gè)過(guò)程。數(shù)學(xué)思想方法必須經(jīng)過(guò)循序漸進(jìn)和反復(fù)訓(xùn)練,才能使學(xué)生真正地有所領(lǐng)悟。
綜上所述,小學(xué)數(shù)學(xué)教學(xué)中,教師重視數(shù)學(xué)思想方法的挖掘、提煉和研究,加強(qiáng)數(shù)學(xué)思想方法的指導(dǎo),有意識(shí)地把數(shù)學(xué)教學(xué)過(guò)程轉(zhuǎn)變?yōu)閿?shù)學(xué)思維活動(dòng)的過(guò)程,不斷強(qiáng)化訓(xùn)練思想方法,培養(yǎng)應(yīng)用思想方法探索問(wèn)題和解決問(wèn)題的良好習(xí)慣,從而提高學(xué)生數(shù)學(xué)思維素養(yǎng)。
數(shù)學(xué)思想方法心得體會(huì)篇六
生活中不是沒(méi)有美,只是缺乏發(fā)現(xiàn)美的眼睛。學(xué)習(xí)數(shù)學(xué)也是一樣,要帶著發(fā)現(xiàn)的眼睛去觀察。學(xué)好數(shù)學(xué)固然重要,但是要上學(xué)生意識(shí)的數(shù)學(xué)的美,發(fā)現(xiàn)數(shù)學(xué)的美才是學(xué)生持續(xù)學(xué)習(xí)數(shù)學(xué)的動(dòng)力,這樣才有利于學(xué)生的可持續(xù)法展。
聽過(guò)這樣一句話:“孩子在入學(xué)時(shí)是一個(gè)問(wèn)號(hào),卻在畢業(yè)時(shí)成了一個(gè)句號(hào)?!币簿褪窃诤⒆幼畛醯恼J(rèn)識(shí)里數(shù)學(xué)是美的,只是在逐漸的學(xué)習(xí)中改變了自己的想法。問(wèn)題究竟出在哪里呢?這值得我們深思,尤其是值得教育者深思。怎樣才能使孩子回到最初的認(rèn)識(shí),回歸數(shù)學(xué)美。
首先我覺(jué)得要對(duì)自己執(zhí)教的班級(jí)做一份問(wèn)卷調(diào)查,了解一下數(shù)學(xué)在學(xué)生心目中的現(xiàn)狀,及學(xué)生心目中數(shù)學(xué)美應(yīng)該隱藏在哪里,以及心目中的數(shù)學(xué)課應(yīng)該是怎么樣的。這樣的話教師可以做到心中有底,對(duì)癥下藥。還可以找到認(rèn)為數(shù)學(xué)是美的學(xué)生驚醒一次小的座談會(huì),讓他們說(shuō)說(shuō)自己的想法。
要想引導(dǎo)孩子認(rèn)識(shí)數(shù)學(xué)美,前提是教師本身認(rèn)為數(shù)學(xué)中的美,這樣才能教出認(rèn)為數(shù)學(xué)是美的學(xué)生。如何正確的引導(dǎo)孩子認(rèn)識(shí)到數(shù)學(xué)中的形形色色的美以及采用什么樣的方式是我們需要思考的問(wèn)題。楊正寧教授在中美學(xué)生的對(duì)比中談到:“中國(guó)學(xué)生學(xué)得多,悟得少;美國(guó)學(xué)生學(xué)得少,卻悟得多。這就是中國(guó)教育不出諾貝爾獎(jiǎng)得者的重要原因。縱觀我們的教學(xué),學(xué)生總是被塞得滿滿的,這就是我們的學(xué)生體會(huì)不到數(shù)學(xué)美的重要原因。因此我覺(jué)得首先要將學(xué)生從繁重的課業(yè)中解脫出來(lái),給孩子更多的思考和實(shí)踐的機(jī)會(huì)。以學(xué)生的直接經(jīng)驗(yàn)為主輔助以必要的間接經(jīng)驗(yàn)。就像著名的教育家杜威說(shuō)的那樣“在做中學(xué)”。讓孩子自己動(dòng)手自己體會(huì)自己總結(jié),進(jìn)而更加深刻的體會(huì)到成功感,以培養(yǎng)孩子欣賞數(shù)學(xué)美認(rèn)識(shí)數(shù)學(xué)美進(jìn)而創(chuàng)造數(shù)學(xué)美。另外,在日常的教學(xué)中要給學(xué)生一些啟發(fā)、一些思考的余地和自由掌握的時(shí)間,使學(xué)生可以自由地活動(dòng),從“無(wú)”中生出“有”。培養(yǎng)學(xué)生自己發(fā)現(xiàn)問(wèn)題,解決問(wèn)題的能力。讓學(xué)生自己去思考自己去領(lǐng)悟一些東西。
另外我認(rèn)為也要在日常的教學(xué)中給孩子營(yíng)造一個(gè)良好的感受數(shù)學(xué)美的氛圍。在學(xué)生的周圍時(shí)刻的感染學(xué)生,影響學(xué)生。教師可以準(zhǔn)備一些精美的反應(yīng)數(shù)學(xué)美的圖片,讓學(xué)生感受數(shù)學(xué)美。也可以讓學(xué)生自己去尋找一些自己認(rèn)為包含數(shù)學(xué)美的圖片或者視頻,讓學(xué)生自己分享一下?;蛘咦寣W(xué)生自己感悟一些偉大的數(shù)學(xué)家心目中的數(shù)學(xué)。
我想只有讓數(shù)學(xué)回歸自然回歸生活,才能喚醒孩子心中的數(shù)學(xué)美。
數(shù)學(xué)思想方法心得體會(huì)篇七
一、注重引導(dǎo),抓住學(xué)習(xí)關(guān)鍵
二、要正確處理本課程的自身邏輯系統(tǒng)與相關(guān)課程的關(guān)系
初數(shù)研究課在研究初等數(shù)學(xué)問(wèn)題時(shí),大多采用專題討論的方法,都有一套完整的體系。如果過(guò)分強(qiáng)調(diào)自身完整的邏輯系統(tǒng),容易導(dǎo)致不同學(xué)科、不同課程的內(nèi)客及方法有很多重復(fù)和交叉。
如數(shù)與初等數(shù)論中的相關(guān)內(nèi)容,解析式的恒等變形,方程、不等式的解法與證明,幾何證題法與證題術(shù)排列、組合及數(shù)列的一些解題方法等。如果不處理好它們之間的關(guān)系,只是簡(jiǎn)單地追求各門課程自身體系的完整,既不利于學(xué)生整體數(shù)學(xué)思想的建立,又制約了他們數(shù)學(xué)綜合運(yùn)用能力的提高,同時(shí)占用了很多的課時(shí),所以,對(duì)于相關(guān)課程中己作詳盡討論過(guò)的知識(shí)及理論,應(yīng)作為工具來(lái)應(yīng)用,避免一些不必要的重復(fù)。
三、變被動(dòng)式學(xué)習(xí)為主動(dòng)式學(xué)習(xí)
1.知識(shí)系統(tǒng)的探究
初數(shù)研究課涉及大量的理論,教師講、學(xué)生聽的傳統(tǒng)教學(xué)模式既占用課時(shí)多,又難以體現(xiàn)學(xué)生的主體性。因此對(duì)理論性較強(qiáng)的內(nèi)容,教師可以先提出一些切題的問(wèn)題作為一堂課的鍥子,留待后面逐個(gè)解決。這些問(wèn)題將整個(gè)教學(xué)內(nèi)容串起來(lái),起到提綱摯領(lǐng)的作用,使學(xué)生明確學(xué)習(xí)目標(biāo),集中學(xué)習(xí)資源(如本課程及相關(guān)課程的教村及參考書)有針對(duì)性地去探究問(wèn)題,然后教師組織學(xué)生對(duì)探究的結(jié)果進(jìn)行歸納整理,形成較完整的知識(shí)體系。當(dāng)然一個(gè)問(wèn)題的解訣并非探究的終結(jié),在探究過(guò)程中教師與學(xué)生都可以提出一些新問(wèn)題,延續(xù)學(xué)生探究的熱情,在合作交流的民主和諧的氛圍里,盡可能地讓學(xué)生走向自由探究。
2.解題方法的探究
從學(xué)生的認(rèn)知角度未說(shuō),解題過(guò)程是獨(dú)立的發(fā)現(xiàn)、探索與積極思考的過(guò)程,這種探索過(guò)程中所形成的意識(shí)和思維,就是真正的創(chuàng)造與發(fā)現(xiàn)。應(yīng)該說(shuō),解題教學(xué)是中學(xué)數(shù)學(xué)教學(xué)的主要任務(wù)之一,設(shè)置初數(shù)研究課程的目的之一,就是結(jié)合中學(xué)實(shí)際對(duì)解題作專門的訓(xùn)練。
3.條件與結(jié)論的探究
對(duì)一個(gè)問(wèn)題的條件或結(jié)論進(jìn)行探究是對(duì)問(wèn)題深入研究的重要組成部分,也是初數(shù)研究課程中具有挑戰(zhàn)性的任務(wù)之一,引導(dǎo)學(xué)生從不同角度、不同層面來(lái)看問(wèn)題,對(duì)學(xué)生的發(fā)散思維及創(chuàng)造思維的培養(yǎng),都能起到良好的推動(dòng)作用。
隨著教學(xué)改革的深化,教學(xué)思想方法不僅要在理論上做研究探討,更重要的是需要在實(shí)踐中不斷地創(chuàng)造與完善,才能使教學(xué)取得較好的效果。
[數(shù)學(xué)思想方法心得體會(huì)]
數(shù)學(xué)思想方法心得體會(huì)篇八
為了幫助小學(xué)數(shù)學(xué)教師轉(zhuǎn)變數(shù)學(xué)教育觀念,提高對(duì)數(shù)學(xué)思想方法的理解和運(yùn)用水平,進(jìn)而提高數(shù)學(xué)專業(yè)素養(yǎng),本書主編王永春于出版了專著《小學(xué)數(shù)學(xué)與數(shù)學(xué)思想方法》,該書一經(jīng)出版,便受到廣大小學(xué)數(shù)學(xué)教師的歡迎,參與學(xué)習(xí)活動(dòng)的老師們把自己的讀書心得寫出來(lái),在教學(xué)中去實(shí)踐自己的學(xué)習(xí)收獲,主編王永春把這些鮮活的學(xué)習(xí)體會(huì)和寶貴的教學(xué)經(jīng)驗(yàn)案例結(jié)集出版,形成了本書,讓更多的老師分享通俗而深刻的理論解讀和接地氣的實(shí)踐經(jīng)驗(yàn)。
本書作者王永春,作為人民教育出版社小學(xué)數(shù)學(xué)編輯室主任,長(zhǎng)期從事小學(xué)數(shù)學(xué)教材的編寫工作,致力于課程、教材的研究,對(duì)小學(xué)數(shù)學(xué)思想方法有深入的思考和探索?;趯?duì)提高教育質(zhì)量、落實(shí)教育目標(biāo)的強(qiáng)烈責(zé)任感,作者撰寫了系列文章,就有關(guān)數(shù)學(xué)思想方法在小學(xué)教學(xué)中的應(yīng)用作了專門的論述。在此基礎(chǔ)上,形成了本書。
本書是《小學(xué)數(shù)學(xué)與數(shù)學(xué)思想方法》一書的讀后感,是一線教師對(duì)數(shù)學(xué)思想方法的解讀和教學(xué)案例的研究。因此本書的內(nèi)容結(jié)構(gòu)和目錄與《小學(xué)數(shù)學(xué)與數(shù)學(xué)思想方法》的內(nèi)容結(jié)構(gòu)和目錄是基本相對(duì)應(yīng)的,其中第1章到第五章的目錄與《小學(xué)數(shù)學(xué)與數(shù)學(xué)思想方法》相對(duì)應(yīng),第六章教學(xué)案例部分,考慮到各年級(jí)案例分布不均,沒(méi)有按照冊(cè)數(shù)分節(jié),把一、二年級(jí)分為第1節(jié),三、四年級(jí)分為第二節(jié),五年級(jí)分為第三節(jié),六年級(jí)分為第四節(jié)。對(duì)學(xué)生來(lái)說(shuō),數(shù)學(xué)思想方法不同于一般的概念和技能,概念與技能通常可以通過(guò)短期的訓(xùn)練便能掌握,而數(shù)學(xué)思想方法則需要通過(guò)教師長(zhǎng)期的滲透和影響才能夠形成。教師應(yīng)在每堂課的教學(xué)中適時(shí)、適當(dāng)?shù)伢w現(xiàn)思想方法的教學(xué)目標(biāo),使學(xué)生在潛移默化中日積月累,通過(guò)提高數(shù)學(xué)素養(yǎng)達(dá)到學(xué)好數(shù)學(xué)的目的。
數(shù)學(xué)思想方法不同于一般的概念和技能,后者一般通過(guò)短期的訓(xùn)練便能掌握,而數(shù)學(xué)思想方法需要通過(guò)在教學(xué)中長(zhǎng)期地滲透和影響才能夠形成。古語(yǔ)云“泰山不讓土壤,故能成其大;河海不擇細(xì)流,故能就其深?!苯處煈?yīng)在每堂課的教學(xué)中適時(shí)、適當(dāng)?shù)伢w現(xiàn)思想方法的教學(xué)目標(biāo),使學(xué)生在潛移默化中日積月累,通過(guò)提高數(shù)學(xué)素養(yǎng)達(dá)到學(xué)好數(shù)學(xué)的目的。希望數(shù)學(xué)思想方法的教學(xué)能夠像春雨一樣,滋潤(rùn)著學(xué)生的心田。
數(shù)學(xué)思想方法心得體會(huì)篇九
數(shù)學(xué)關(guān)鍵就在一個(gè)悟字,所謂悟,就是開竅,如何開竅,就要求講師不要只講題目的做法,而是包括,是怎么想到要這么做的,以引導(dǎo)學(xué)生去理解,去悟,對(duì)于初等數(shù)學(xué),本人的看法是隨便怎么做,因?yàn)槌醯葦?shù)學(xué)的試題必然有解,必然是可以通過(guò)所給條件經(jīng)過(guò)n多步驟推出來(lái),不信可以試試,拿一道,先什么都不要管,只管把已知條件以全排列方式組合,以推出新的條件,再將所得條件組合,再推,直到最后推無(wú)可推,你會(huì)發(fā)現(xiàn)題目所求就在其中,甚至簡(jiǎn)單的可能是離最終結(jié)論還有n步,復(fù)雜的估計(jì)也就是最終結(jié)論了,所以以高考為目的的初等數(shù)學(xué)題目是不經(jīng)做的,因?yàn)橹灰阕?,就一定能做出?lái),而之所以很多學(xué)生覺(jué)得難,沒(méi)處著筆,不知道改該怎么做,很大一部分是因?yàn)閼?,不愿?dòng)筆,而只是呆看,簡(jiǎn)單的能看出來(lái),復(fù)雜的是很難看出來(lái)的,如果說(shuō)那種直接推導(dǎo)的辦法太耗時(shí)間,那么只能說(shuō)是因?yàn)椴皇炀?,一旦題目做多了,思維形成了,差不多就可以一眼看出來(lái),頂多推兩步,就知道后面的怎么推了,從而省略了n多的分支,古往今來(lái)的題海戰(zhàn)術(shù)不是沒(méi)有依據(jù)的,熟能生巧,見得多了,做的多了,自然可以找到某種規(guī)律。
初數(shù)研究課在研究初等數(shù)學(xué)問(wèn)題時(shí),大多采用專題討論的方法,都有一套完整的體系。如果過(guò)分強(qiáng)調(diào)自身完整的邏輯系統(tǒng),容易導(dǎo)致不同學(xué)科、不同課程的內(nèi)客及方法有很多重復(fù)和交叉。
如數(shù)與初等數(shù)論中的相關(guān)內(nèi)容,解析式的恒等變形,方程、不等式的解法與證明,幾何證題法與證題術(shù)排列、組合及數(shù)列的一些解題方法等。如果不處理好它們之間的'關(guān)系,只是簡(jiǎn)單地追求各門課程自身體系的完整,既不利于學(xué)生整體數(shù)學(xué)思想的建立,又制約了他們數(shù)學(xué)綜合運(yùn)用能力的提高,同時(shí)占用了很多的課時(shí),所以,對(duì)于相關(guān)課程中己作詳盡討論過(guò)的知識(shí)及理論,應(yīng)作為工具來(lái)應(yīng)用,避免一些不必要的重復(fù)。
1.知識(shí)系統(tǒng)的探究
初數(shù)研究課涉及大量的理論,教師講、學(xué)生聽的傳統(tǒng)教學(xué)模式既占用課時(shí)多,又難以體現(xiàn)學(xué)生的主體性。因此對(duì)理論性較強(qiáng)的內(nèi)容,教師可以先提出一些切題的問(wèn)題作為一堂課的鍥子,留待后面逐個(gè)解決。這些問(wèn)題將整個(gè)教學(xué)內(nèi)容串起來(lái),起到提綱摯領(lǐng)的作用,使學(xué)生明確學(xué)習(xí)目標(biāo),集中學(xué)習(xí)資源(如本課程及相關(guān)課程的教村及參考書)有針對(duì)性地去探究問(wèn)題,然后教師組織學(xué)生對(duì)探究的結(jié)果進(jìn)行歸納整理,形成較完整的知識(shí)體系。當(dāng)然一個(gè)問(wèn)題的解訣并非探究的終結(jié),在探究過(guò)程中教師與學(xué)生都可以提出一些新問(wèn)題,延續(xù)學(xué)生探究的熱情,在合作交流的民主和諧的氛圍里,盡可能地讓學(xué)生走向自由探究。
2.解題方法的探究
從學(xué)生的認(rèn)知角度未說(shuō),解題過(guò)程是獨(dú)立的發(fā)現(xiàn)、探索與積極思考的過(guò)程,這種探索過(guò)程中所形成的意識(shí)和思維,就是真正的創(chuàng)造與發(fā)現(xiàn)。應(yīng)該說(shuō),解題教學(xué)是中學(xué)數(shù)學(xué)教學(xué)的主要任務(wù)之一,設(shè)置初數(shù)研究課程的目的之一,就是結(jié)合中學(xué)實(shí)際對(duì)解題作專門的訓(xùn)練。
3.條件與結(jié)論的探究
對(duì)一個(gè)問(wèn)題的條件或結(jié)論進(jìn)行探究是對(duì)問(wèn)題深入研究的重要組成部分,也是初數(shù)研究課程中具有挑戰(zhàn)性的任務(wù)之一,引導(dǎo)學(xué)生從不同角度、不同層面來(lái)看問(wèn)題,對(duì)學(xué)生的發(fā)散思維及創(chuàng)造思維的培養(yǎng),都能起到良好的推動(dòng)作用。
隨著教學(xué)改革的深化,教學(xué)思想方法不僅要在理論上做研究探討,更重要的是需要在實(shí)踐中不斷地創(chuàng)造與完善,才能使教學(xué)取得較好的效果。
數(shù)學(xué)思想方法心得體會(huì)篇十
(一)引導(dǎo)學(xué)生做到數(shù)形有機(jī)結(jié)合
數(shù)形結(jié)合是將抽象與具體相融合的過(guò)程,在這一過(guò)程中能夠有效實(shí)現(xiàn)數(shù)與形的優(yōu)勢(shì)互補(bǔ),將二者之間的本質(zhì)聯(lián)系凸顯出來(lái)。如在學(xué)習(xí)《圓的面積》一節(jié)時(shí),之前學(xué)生已對(duì)圓有了基本認(rèn)識(shí),因此,在教學(xué)如何計(jì)算圓的面積時(shí),教師可先引導(dǎo)學(xué)生猜想圓的面積同什么要素有關(guān)。為了讓學(xué)生有更為直觀的感受,教師還可要求學(xué)生自己在練習(xí)本上分別畫出半徑是3cm、4cm和5cm的圓。然后,再詢問(wèn)學(xué)生,這三個(gè)圓的大小不一樣,那它們的面積大小是什么關(guān)系呢?是等于還是半徑越小的面積越大,或是半徑越大圓的面積越大?學(xué)生在思考了一下后大都認(rèn)為半徑為5cm的那個(gè)圓最大,半徑是3cm的圓的面積最小。在有了這樣的認(rèn)識(shí)后,學(xué)生就會(huì)在頭腦中形成圓的'面積同半徑有關(guān)這樣一個(gè)認(rèn)識(shí),之后教師就可據(jù)此引導(dǎo)學(xué)生如何求得圓的面積。綜上所述,在引入圓的面積之前,我先讓學(xué)生對(duì)圓同半徑之間的關(guān)系有了一個(gè)清晰的了解,為了達(dá)到這個(gè)目的采取的是讓學(xué)生自己動(dòng)手將頭腦中抽象的東西通過(guò)圖形展示出來(lái)并結(jié)合具體的數(shù)字印證出來(lái)的方法。這種數(shù)形結(jié)合的思想方法能夠使問(wèn)題直觀化,將學(xué)生學(xué)習(xí)的積極性和主動(dòng)性調(diào)動(dòng)起來(lái),提高了課堂教學(xué)質(zhì)量。
(二)學(xué)會(huì)轉(zhuǎn)化,化難為易
轉(zhuǎn)化的思想就是用聯(lián)系、運(yùn)動(dòng)和發(fā)展的觀點(diǎn)去看問(wèn)題,通過(guò)變換問(wèn)題的形式,把未解決的或復(fù)雜的問(wèn)題歸結(jié)到已經(jīng)能解決的或簡(jiǎn)單的問(wèn)題中,從而獲得對(duì)原問(wèn)題的解決,因此轉(zhuǎn)化的思想方法也叫劃歸的思想方法。在數(shù)學(xué)教學(xué)中轉(zhuǎn)化的思想方法隨處可見,特別是在解題時(shí),我們可根據(jù)已知條件將問(wèn)題轉(zhuǎn)化,從另一個(gè)角度進(jìn)行思考將難化易。如在講完《圓的周長(zhǎng)》這一節(jié)后,課后習(xí)題中有一道題是將長(zhǎng)方形和正方形同圓結(jié)合起來(lái),讓學(xué)生在已知半徑的情況下分別求出圓、長(zhǎng)方形和正方形的周長(zhǎng)。我將這道題中的一個(gè)小題做了改編,讓學(xué)生在已知正方形周長(zhǎng)的情況下去求圓的周長(zhǎng)。圓位于正方形內(nèi),二者是相切的關(guān)系,這就要求學(xué)生能夠根據(jù)正方形的周長(zhǎng)求出正方形的邊長(zhǎng),而正方形的邊長(zhǎng)就是圓的直徑,再套用周長(zhǎng)c=d的公式就能求得圓的周長(zhǎng)。這套題目要求學(xué)生能根據(jù)已知條件對(duì)問(wèn)題進(jìn)行轉(zhuǎn)化,從而創(chuàng)造出更多的已知條件。在這個(gè)過(guò)程中,學(xué)生一方面將新舊知識(shí)聯(lián)系了起來(lái),另一方面也擴(kuò)散了思維,對(duì)于學(xué)生學(xué)習(xí)能力和解決問(wèn)題能力的提升有積極的促進(jìn)作用。
(三)及時(shí)做到歸納、總結(jié)
及時(shí)地歸納和總結(jié)既能夠使知識(shí)更加系統(tǒng)化,又便于學(xué)生更好地發(fā)現(xiàn)各個(gè)知識(shí)點(diǎn)之間的聯(lián)系與區(qū)別,對(duì)于鞏固學(xué)生知識(shí)具有十分重要的作用。在數(shù)學(xué)中歸納的思想方法指通過(guò)對(duì)特殊示例、題材的觀察和分析,攝取非本質(zhì)的、次要的要素,從中發(fā)現(xiàn)事物的本質(zhì)聯(lián)系,并概括普遍性的結(jié)論。在講完《圓》這一節(jié)后,我會(huì)及時(shí)要求學(xué)生將跟圓有關(guān)的知識(shí)總結(jié)出來(lái),并在總結(jié)的同時(shí)思考自己在這一部分的學(xué)習(xí)中哪里還沒(méi)有真正掌握,哪里還存在欠缺。此外,我還要求學(xué)生將自己之前做過(guò)的練習(xí)題也做一個(gè)總結(jié),甚至是再多做一遍。總結(jié)知識(shí)點(diǎn)有利于學(xué)生做好知識(shí)的鞏固與梳理工作,練習(xí)題的歸納則是讓學(xué)生對(duì)于不同題目的不同解題思路和技巧有一個(gè)更明確的認(rèn)識(shí)。而學(xué)生在總結(jié)的過(guò)程中能不斷提升自己的概括能力,這也是數(shù)學(xué)思想方法滲入到學(xué)生思維中的一個(gè)良好的表現(xiàn)與結(jié)果。
數(shù)學(xué)思想方法心得體會(huì)篇十一
一、集合的思想方法
把一組對(duì)象放在一起,作為討論的范圍,這是人類早期就有的思想方法,繼而把一定程度抽象了的思維對(duì)象,如數(shù)學(xué)上的點(diǎn)、數(shù)、式放在一起作為研究對(duì)象,這種思想就是集合思想。集合思想作為一種思想,在小學(xué)數(shù)學(xué)中就有所體現(xiàn)。在小學(xué)數(shù)學(xué)中,集合概念是通過(guò)畫集合圖的辦法來(lái)滲透的。
如用圓圈圖(韋恩圖)向?qū)W生直觀的滲透集合概念。讓他們感知圈內(nèi)的物體具有某種共同的屬性,可以看作一個(gè)整體,這個(gè)整體就是一個(gè)集合。利用圖形間的關(guān)系則可向?qū)W生滲透集合之間的關(guān)系,如長(zhǎng)方形集合包含正方形集合,平行四邊形集合包含長(zhǎng)方形集合,四邊形集合又包含平行四邊行集合等。
二、對(duì)應(yīng)的思想方法
對(duì)應(yīng)是人的思維對(duì)兩個(gè)集合間問(wèn)題聯(lián)系的把握,是現(xiàn)代數(shù)學(xué)的一個(gè)最基本的概念。小學(xué)數(shù)學(xué)教學(xué)中主要利用虛線、實(shí)線、箭頭、計(jì)數(shù)器等圖形將元素與元素、實(shí)物與實(shí)物、數(shù)與算式、量與量聯(lián)系起來(lái),滲透對(duì)應(yīng)思想。
如人教版一年級(jí)上冊(cè)教材中,分別將小兔和磚頭、小豬和木頭、小白兔和蘿卜、蘋果和梨一一對(duì)應(yīng)后,進(jìn)行多少的比較學(xué)習(xí),向?qū)W生滲透了事物間的對(duì)應(yīng)關(guān)系,為學(xué)生解決問(wèn)題提供了思想方法。
三、數(shù)形結(jié)合的思想方法
數(shù)與形是數(shù)學(xué)教學(xué)研究對(duì)象的兩個(gè)側(cè)面,把數(shù)量關(guān)系和空間形式結(jié)合起來(lái)去分析問(wèn)題、解決問(wèn)題,就是數(shù)形結(jié)合思想?!皵?shù)形結(jié)合”可以借助簡(jiǎn)單的圖形、符號(hào)和文字所作的示意圖,促進(jìn)學(xué)生形象思維和抽象思維的協(xié)調(diào)發(fā)展,溝通數(shù)學(xué)知識(shí)之間的聯(lián)系,從復(fù)雜的數(shù)量關(guān)系中凸顯最本質(zhì)的特征。它是小學(xué)數(shù)學(xué)教材編排的重要原則,也是小學(xué)數(shù)學(xué)教材的一個(gè)重要特點(diǎn),更是解決問(wèn)題時(shí)常用的.方法。
例如,我們常用畫線段圖的方法來(lái)解答應(yīng)用題,這是用圖形來(lái)代替數(shù)量關(guān)系的一種方法。我們又可以通過(guò)代數(shù)方法來(lái)研究幾何圖形的周長(zhǎng)、面積、體積等,這些都體現(xiàn)了數(shù)形結(jié)合的思想。
四、函數(shù)的思想方法
恩格斯說(shuō):“數(shù)學(xué)中的轉(zhuǎn)折點(diǎn)是笛卡兒的變數(shù)。有了變數(shù),運(yùn)動(dòng)進(jìn)入了數(shù)學(xué),有了變數(shù),辯證法進(jìn)入了數(shù)學(xué),有了變數(shù),微分和積分也就立刻成為必要的了?!蔽覀冎溃\(yùn)動(dòng)、變化是客觀事物的本質(zhì)屬性。函數(shù)思想的可貴之處正在于它是運(yùn)動(dòng)、變化的觀點(diǎn)去反映客觀事物數(shù)量間的相互聯(lián)系和內(nèi)在規(guī)律的。學(xué)生對(duì)函數(shù)概念的理解有一個(gè)過(guò)程。在小學(xué)數(shù)學(xué)教學(xué)中,教師在處理一些問(wèn)題時(shí)就要做到心中有函數(shù)思想,注意滲透函數(shù)思想。
函數(shù)思想在人教版一年級(jí)上冊(cè)教材中就有滲透。如讓學(xué)生觀察《20以內(nèi)進(jìn)位加法表》,發(fā)現(xiàn)加數(shù)的變化引起的和的變化的規(guī)律等,都較好的滲透了函數(shù)的思想,其目的都在于幫助學(xué)生形成初步的函數(shù)概念。
這就是我們精心為大家準(zhǔn)備的小升初學(xué)習(xí)數(shù)學(xué)思想方法,希望對(duì)大家有用!更多小升初復(fù)習(xí)資料及相關(guān)資訊,盡在數(shù)學(xué)網(wǎng),請(qǐng)大家及時(shí)關(guān)注!
數(shù)學(xué)思想方法心得體會(huì)篇十二
“讓讀書成為師生的習(xí)慣,讓書香浸潤(rùn)全校師生的心靈”是莒南縣第一小學(xué)倡導(dǎo)師生閱讀的初衷。20xx年,學(xué)校提出了“六年影響一生”的辦學(xué)理念,著力打造內(nèi)涵發(fā)展的學(xué)校。作為師生成長(zhǎng)發(fā)展的重要措施,學(xué)校啟動(dòng)了“書香校園”的建設(shè)。學(xué)校試行“長(zhǎng)短課結(jié)合”,開設(shè)大閱讀課,統(tǒng)一制定學(xué)生閱讀計(jì)劃,按班級(jí)人數(shù)購(gòu)置《中國(guó)小學(xué)生基礎(chǔ)閱讀書目》等100種近萬(wàn)冊(cè)圖書,周二至周五下午,在老師的指導(dǎo)下集體閱讀,保障了閱讀時(shí)間和效果。教師讀書交流會(huì)、師生讀書才藝展示、重陽(yáng)節(jié)經(jīng)典誦讀活動(dòng)、“書香伴我成長(zhǎng)”主題教育活動(dòng)、讀書征文活動(dòng)等一系列形式多樣的讀書交流活動(dòng),豐富了廣大師生的讀書生活,使讀書成為一種享受,成為一種快樂(lè)!在國(guó)家倡導(dǎo)“全民閱讀”的大背景下,3月30日,學(xué)校舉行了“首屆讀書節(jié)”活動(dòng)啟動(dòng)儀式,拉開了學(xué)校讀書活動(dòng)新的啟程。作為此次活動(dòng)的重要組成部分,凝結(jié)了廣大教師在寒假中讀書的所感所想,是教師專業(yè)幸福成長(zhǎng)的又一見證!
讀了王永春老師的《小學(xué)數(shù)學(xué)與數(shù)學(xué)思想方法》,我對(duì)小學(xué)數(shù)學(xué)與數(shù)學(xué)思想方法有了更進(jìn)一步的認(rèn)識(shí)。下面是我梳理一些知識(shí)。
數(shù)學(xué)思想是數(shù)學(xué)知識(shí)內(nèi)容的精髓,是對(duì)數(shù)學(xué)的本質(zhì)認(rèn)識(shí)。是從某些具體的數(shù)學(xué)內(nèi)容和對(duì)數(shù)學(xué)的認(rèn)識(shí)過(guò)程中提煉上升的.數(shù)學(xué)觀點(diǎn),是構(gòu)建數(shù)學(xué)理論和用數(shù)學(xué)理論解決問(wèn)題的指導(dǎo)思想。
數(shù)學(xué)方法是指從數(shù)學(xué)角度提出問(wèn)題、解決問(wèn)題時(shí)所采用的各種方式和手段。數(shù)學(xué)思想和數(shù)學(xué)方法既有區(qū)別又有密切聯(lián)系。數(shù)學(xué)思想的理論和抽象程度要高一些,而數(shù)學(xué)方法的實(shí)踐性更強(qiáng)一些。人們實(shí)現(xiàn)數(shù)學(xué)思想往往要靠一定的數(shù)學(xué)方法;而人們選擇數(shù)學(xué)方法,又要以一定的數(shù)學(xué)思想為依據(jù)。因此,二者是有密切聯(lián)系的。我們把二者合稱為數(shù)學(xué)思想方法。
數(shù)學(xué)思想方法是數(shù)學(xué)的靈魂,那么,要想學(xué)好數(shù)學(xué)、用好數(shù)學(xué),就要深入到數(shù)學(xué)的“靈魂深處”。
1、有利于建立現(xiàn)代數(shù)學(xué)教育觀、落實(shí)新課程理念
2、有利于提高教師專業(yè)素養(yǎng)、提高教學(xué)水平
《標(biāo)準(zhǔn)(20xx版)》把數(shù)學(xué)基本思想作為“四基”之一之后,我面臨更大的挑戰(zhàn),一方面是關(guān)于數(shù)學(xué)思想方法的專業(yè)知識(shí)方面的欠缺,另一方面是課堂教學(xué)中應(yīng)該具備的數(shù)學(xué)思想方法的意識(shí)、經(jīng)驗(yàn)、策略等的不足。
3、有利于提高學(xué)生的思維水平。培養(yǎng)“四能”完善認(rèn)知結(jié)構(gòu),指導(dǎo)學(xué)習(xí)遷移,促進(jìn)思維發(fā)展。
因此,在小學(xué)數(shù)學(xué)階段有意識(shí)的向?qū)W生滲透一些基本的數(shù)學(xué)想方法可以加深學(xué)生對(duì)數(shù)學(xué)概念、公式、法則、定律等知識(shí)的數(shù)學(xué)本質(zhì)的理解,提高學(xué)生發(fā)現(xiàn)問(wèn)題、提出問(wèn)題、分析問(wèn)題和解決問(wèn)題的能力及思維能力,也是小學(xué)數(shù)學(xué)進(jìn)行素質(zhì)教育的真正內(nèi)涵之所在。同時(shí),也能為初中數(shù)學(xué)的學(xué)習(xí)打下較好的基礎(chǔ)。
1、重視思想方法目標(biāo)的落實(shí)。
2、在知識(shí)形成過(guò)程中體現(xiàn)數(shù)學(xué)思想方法。
3、在知識(shí)的應(yīng)用過(guò)程中體現(xiàn)數(shù)學(xué)思想方法。
4、在整理和復(fù)習(xí)、總復(fù)習(xí)中體現(xiàn)數(shù)學(xué)思想方法。
5、潛移默化、明確呈現(xiàn)、長(zhǎng)期堅(jiān)持
數(shù)學(xué)思想方法心得體會(huì)篇十三
新課標(biāo)明確提出開展數(shù)學(xué)思想方法的教學(xué)要求,旨在引導(dǎo)學(xué)生去把握數(shù)學(xué)知識(shí)結(jié)構(gòu)的.核心和靈魂,其重要意義顯而易見.數(shù)學(xué)思想方法是從數(shù)學(xué)內(nèi)容中提煉出來(lái)的數(shù)學(xué)學(xué)科的精髓,是將數(shù)學(xué)知識(shí)轉(zhuǎn)化為數(shù)學(xué)能力的橋梁.
作者:朱毅作者單位:四川省榮縣富北學(xué)校,四川,榮縣,643100刊名:讀寫算(教育教學(xué)研究)英文刊名:duyuxie年,卷(期):“”(7)分類號(hào):關(guān)鍵詞:
數(shù)學(xué)思想方法心得體會(huì)篇十四
豆角是人們喜食的蔬菜之一,但如果吃了沒(méi)有煮熟炒熟的豆角會(huì)導(dǎo)致中毒。近期外地有豆角中毒事件頻繁發(fā)生。為此,記者近日采訪了市衛(wèi)生監(jiān)督所有關(guān)專家。
據(jù)介紹,食用生豆角或未炒熟的豆角易引起中毒,是由于生豆角中含有兩種對(duì)人體有害的物質(zhì):溶血素和毒蛋白。這兩種毒素對(duì)胃腸道有強(qiáng)烈的刺激作用,一般食用未熟豆角十幾分鐘到4小時(shí)發(fā)病。輕者感到腹部不適、惡心、嘔吐、腹痛、腹瀉;嚴(yán)重者發(fā)生頭暈、頭痛、出冷汗、心慌、胸悶、四肢麻木等中毒癥狀,尤其是兒童。
雖然豆角中的這兩種物質(zhì)對(duì)人體有毒,但它有自身的特點(diǎn)和弱點(diǎn),即不耐高溫。所以,做菜時(shí)一定要把豆角充分加熱煮熟。兩種毒素在高溫中可被分解而破壞,尤其是集體食堂食用豆角菜時(shí),應(yīng)作為食品衛(wèi)生來(lái)強(qiáng)調(diào)執(zhí)行。豆角兩頭及兩旁的絲要去除,因?yàn)檫@些部位的毒素含量較高。
市衛(wèi)生監(jiān)督所專家提醒:一旦發(fā)生豆角中毒,輕癥者對(duì)癥治療,及時(shí)補(bǔ)充因頻繁嘔吐、腹瀉而丟失的水分。中度以上的中毒者及時(shí)送醫(yī)院救治。采取催吐、洗胃、利尿、導(dǎo)瀉、補(bǔ)液等多種方法治療,一般很快恢復(fù)正常,不會(huì)造成其他影響。集體中毒事件應(yīng)及時(shí)報(bào)告衛(wèi)生監(jiān)督部門。
數(shù)學(xué)思想方法心得體會(huì)篇十五
《新課程標(biāo)準(zhǔn)》在總目標(biāo)中提出:通過(guò)義務(wù)教育階段的數(shù)學(xué)學(xué)習(xí),學(xué)生能獲得適應(yīng)社會(huì)生活和進(jìn)一步發(fā)展所必須的數(shù)學(xué)知識(shí)、基本技能、基本思想、基本活動(dòng)經(jīng)驗(yàn)。這句話對(duì)于我們新教師來(lái)已經(jīng)是爛熟于心,但對(duì)于這句話真正理解的少之又少,讀了王永春老師的《小學(xué)數(shù)學(xué)思想與數(shù)學(xué)思想方法》之后,對(duì)這句話才有了真正的認(rèn)識(shí)?!笆谌艘贼~不如授人以漁”,對(duì)于學(xué)生而言,數(shù)學(xué)知識(shí)在其次,數(shù)學(xué)方法才是最重要的,在這本書中,王老師為我們總結(jié)了小學(xué)數(shù)學(xué)知識(shí)中蘊(yùn)含的數(shù)學(xué)思想,這讓我們?cè)谌粘=虒W(xué)中可以結(jié)合所教知識(shí)很清楚地知道這些知識(shí)中蘊(yùn)含了哪些數(shù)學(xué)思想方法,為我們的教學(xué)提供了指導(dǎo)和幫助。
這學(xué)期我任三年級(jí)數(shù)學(xué),三年級(jí)上冊(cè)中的主要思想有:第3單元“測(cè)量”中學(xué)習(xí)的長(zhǎng)度單位:分米(dm)、毫米(mm)、千米(km)是符號(hào)化思想的應(yīng)用;第7單元“長(zhǎng)方形和正方形”中有些習(xí)題如本書中第25頁(yè)的“案例2”應(yīng)用了分類思想;第9單元“數(shù)學(xué)廣角――集合”中學(xué)習(xí)的重復(fù)問(wèn)題是集合思想的應(yīng)用;第8單元“分?jǐn)?shù)的初步認(rèn)識(shí)”中學(xué)生用一張正方形白紙可以折出不同的形狀表示它的1/4。在學(xué)生充分展示后,我們可以引導(dǎo)學(xué)生發(fā)現(xiàn)雖然形狀、大小不同,但都是把一張正方形白紙平均成4份,每份是它的1/4。這個(gè)教學(xué)過(guò)程中有變中有不變的思想的應(yīng)用。第8單元“分?jǐn)?shù)的初步認(rèn)識(shí)”中把一個(gè)圓形平均分,分的份數(shù)越多,分?jǐn)?shù)越小,如果一直分下去,可以對(duì)應(yīng)寫出無(wú)限多個(gè)分?jǐn)?shù)。
生活本身是一個(gè)巨大的數(shù)學(xué)課堂,生活中客觀存在著大量有價(jià)值的數(shù)學(xué)現(xiàn)象。指導(dǎo)學(xué)生運(yùn)用數(shù)學(xué)知識(shí)寫日記,能促使學(xué)生主動(dòng)地用數(shù)學(xué)的眼光去觀察生活,去思考生活問(wèn)題,讓生活問(wèn)題數(shù)學(xué)化。在教學(xué)中注重培養(yǎng)孩子運(yùn)用數(shù)學(xué)的意識(shí),增強(qiáng)學(xué)生運(yùn)用知識(shí)解決實(shí)際問(wèn)題的能力。由此可見,數(shù)學(xué)并不是靠老師教會(huì)的,而是在教師的指導(dǎo)下,靠學(xué)生自己學(xué)會(huì)的。在教學(xué)中教師要給學(xué)生創(chuàng)造情景、提供機(jī)會(huì),給學(xué)生充足的時(shí)間和空間,讓學(xué)生主動(dòng)探究新知,在探究中發(fā)現(xiàn)規(guī)律、歸納規(guī)律。因此,我們?cè)谡n堂教學(xué)中,多留些時(shí)間給學(xué)生,讓他們動(dòng)手操作;多留些時(shí)間給學(xué)生,自己的`意見;多留些時(shí)間給學(xué)生,讓他們質(zhì)疑問(wèn)難。保證充分的時(shí)間和空間,讓學(xué)生再課內(nèi)交流、討論、質(zhì)疑。
這本書教給了我們一種教學(xué)理念,教會(huì)了我們一種教學(xué)方法。讀書更是一種好的學(xué)習(xí)手段,它將帶領(lǐng)我們不斷更新、與時(shí)俱進(jìn),成為一名學(xué)生喜歡的、有專業(yè)素養(yǎng)的好老師。
數(shù)學(xué)思想方法心得體會(huì)篇十六
高考試題重在考查對(duì)知識(shí)理解的準(zhǔn)確性、深刻性,重在考查知識(shí)的綜合靈活運(yùn)用。它著眼于知識(shí)點(diǎn)新穎巧妙的組合,試題新而不偏,活而不過(guò)難;著眼于對(duì)數(shù)學(xué)思想方法、數(shù)學(xué)能力的考查。尤其是近幾年的高考試題加大了對(duì)考生應(yīng)用能力的考查,高考《考試說(shuō)明》中明確指出:“能綜合應(yīng)用所學(xué)數(shù)學(xué)知識(shí)、思想方法解決問(wèn)題,包括解決在相關(guān)學(xué)科、生產(chǎn)生活中的數(shù)學(xué)問(wèn)題……”、“有效地檢測(cè)考生對(duì)中學(xué)數(shù)學(xué)知識(shí)中所蘊(yùn)涵的數(shù)學(xué)思想和方法的掌握程度……”。高考的這種積極導(dǎo)向,決定了我們的數(shù)學(xué)復(fù)習(xí)中必須以數(shù)學(xué)思想指導(dǎo)知識(shí)、方法的運(yùn)用,整體把握各部分知識(shí)的內(nèi)在聯(lián)系。
高考復(fù)習(xí)有別于新知識(shí)的教學(xué)。它是在學(xué)生基本掌握了中學(xué)數(shù)學(xué)知識(shí)體系、具備了一定的解題經(jīng)驗(yàn)的基礎(chǔ)上的復(fù)課數(shù)學(xué),也是在學(xué)生基本認(rèn)識(shí)了各種數(shù)學(xué)基本方法、思維方法及數(shù)學(xué)思想的基礎(chǔ)上的復(fù)課數(shù)學(xué)。其目的在于深化學(xué)生對(duì)基礎(chǔ)知識(shí)的理解,完善學(xué)生的知識(shí)結(jié)構(gòu),在綜合性強(qiáng)的練習(xí)中進(jìn)一步形成基本技能,優(yōu)化思維品質(zhì),使學(xué)生在多次的練習(xí)中充分運(yùn)用數(shù)學(xué)思想方法,提高數(shù)學(xué)能力。高考復(fù)習(xí)是學(xué)生發(fā)展數(shù)學(xué)思想,熟練掌握數(shù)學(xué)方法理想的難得的深化過(guò)程。
數(shù)學(xué)思想方法心得體會(huì)篇十七
復(fù)習(xí)備考需要足夠數(shù)量的習(xí)題,只有針對(duì)性訓(xùn)練才能在中考得以正常發(fā)揮,只有每天動(dòng)筆適當(dāng)?shù)淖鲂┝?xí)題才能保持思維的連貫性。但僅僅做題還是遠(yuǎn)遠(yuǎn)不夠,需要解題后的反思與總結(jié)。在反思中才能進(jìn)一步看透問(wèn)題的本質(zhì),體會(huì)命題的意圖。在總結(jié)的過(guò)程中也才能優(yōu)化解題的思路,探索處理問(wèn)題規(guī)律,形成有自己特色的經(jīng)驗(yàn)。
在復(fù)習(xí)中既要注重?cái)?shù)學(xué)概念、法則、定理等基礎(chǔ)知識(shí)的梳理,更要關(guān)注解題后的反思與總結(jié),領(lǐng)會(huì)解題中蘊(yùn)含的數(shù)學(xué)思想方法,并通過(guò)不斷積累逐漸的納入自己已有的知識(shí)體系。在反思總結(jié)中可以從兩方面考慮:一是宏觀層面,如每復(fù)習(xí)一塊內(nèi)容后可以從主要知識(shí)考點(diǎn)、考點(diǎn)之間的聯(lián)系等去反思;二是微觀層面,如解題后的可以對(duì)所解題的結(jié)構(gòu)是否理解清楚,解題過(guò)程中運(yùn)用了哪些基礎(chǔ)知識(shí)和基本技能?哪些步驟易出錯(cuò)?原因何在?如何防止?也可以對(duì)解題的方法進(jìn)行評(píng)價(jià)找出最優(yōu)的解法,考慮解題中運(yùn)用了哪些思維方式、數(shù)學(xué)思想方法?想法是如何分析出來(lái)的?有無(wú)規(guī)律可循?也可以對(duì)解題步驟進(jìn)行分析,抓住解題的關(guān)鍵。如解題的難點(diǎn)在哪?我是如何突破的?能否用其他方法也得到同樣結(jié)果?其方法的優(yōu)劣所在?若能把反思與總結(jié)當(dāng)作一個(gè)經(jīng)常性、自覺(jué)性的學(xué)習(xí)行為,就會(huì)在不斷地積累和總結(jié)基本的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)中,提高數(shù)學(xué)知識(shí)的運(yùn)用能力。
......
函數(shù)思想,是指用函數(shù)的概念和性質(zhì)去分析問(wèn)題、轉(zhuǎn)化問(wèn)題和解決問(wèn)題。方程思想,是從問(wèn)題中的數(shù)量關(guān)系入手,運(yùn)用數(shù)學(xué)語(yǔ)言將問(wèn)題中的條件轉(zhuǎn)化為數(shù)學(xué)模型(方程、不......
數(shù)學(xué)思想方法心得體會(huì)篇十八
中學(xué)數(shù)學(xué)內(nèi)容從總體上可以分為兩個(gè)層次:一個(gè)稱為基礎(chǔ)知識(shí),另一個(gè)稱為深層知識(shí).基礎(chǔ)知識(shí)包括概念、性質(zhì)、法則、公式、公理、定理等數(shù)學(xué)的基本知識(shí)和基本技能,深層知識(shí)主要指數(shù)學(xué)思想和數(shù)學(xué)方法。
基礎(chǔ)知識(shí)是深層知識(shí)的基礎(chǔ),是教學(xué)大綱中明確規(guī)定的,教材中明確給出的,以及具有較強(qiáng)操作性的知識(shí).學(xué)生只有通過(guò)對(duì)教材的學(xué)習(xí),在掌握和理解了一定的基礎(chǔ)知識(shí)后,才能進(jìn)一步的學(xué)習(xí)和領(lǐng)悟相關(guān)的深層知識(shí)。
那種只重視講授基礎(chǔ)知識(shí),而不注重滲透數(shù)學(xué)思想、方法的復(fù)習(xí),是不完備的,它不利于對(duì)所學(xué)知識(shí)的真正理解和掌握,使學(xué)生的知識(shí)水平永遠(yuǎn)停留在一個(gè)初級(jí)階段,難以提高;反之,如果單純強(qiáng)調(diào)數(shù)學(xué)思想和方法,而忽略基礎(chǔ)知識(shí)的教學(xué),就會(huì)使復(fù)習(xí)流于形式,成為無(wú)源之水,無(wú)本之木,學(xué)生也難以領(lǐng)略到深層知識(shí)的真諦.因此,數(shù)學(xué)思想、方法的復(fù)習(xí)應(yīng)與整個(gè)基礎(chǔ)知識(shí)的融為一體,使學(xué)生逐步掌握有關(guān)的深層知識(shí),提高數(shù)學(xué)能力,形成良好的數(shù)學(xué)素質(zhì)。這也是數(shù)學(xué)思想方法復(fù)習(xí)的基本原則。
數(shù)學(xué)思想方法心得體會(huì)篇一
《新課程標(biāo)準(zhǔn)》在總目標(biāo)中提出:通過(guò)義務(wù)教育階段的數(shù)學(xué)學(xué)習(xí),學(xué)生能獲得適應(yīng)社會(huì)生活和進(jìn)一步發(fā)展所必須的數(shù)學(xué)知識(shí)、基本技能、基本思想、基本活動(dòng)經(jīng)驗(yàn)。這句話對(duì)于我們新教師來(lái)已經(jīng)是爛熟于心,但對(duì)于這句話真正理解的少之又少,讀了王永春老師的《小學(xué)數(shù)學(xué)思想與數(shù)學(xué)思想方法》之后,對(duì)這句話才有了真正的認(rèn)識(shí)?!笆谌艘贼~不如授人以漁”,對(duì)于學(xué)生而言,數(shù)學(xué)知識(shí)在其次,數(shù)學(xué)方法才是最重要的,在這本書中,王老師為我們總結(jié)了小學(xué)數(shù)學(xué)知識(shí)中蘊(yùn)含的數(shù)學(xué)思想,這讓我們?cè)谌粘=虒W(xué)中可以結(jié)合所教知識(shí)很清楚地知道這些知識(shí)中蘊(yùn)含了哪些數(shù)學(xué)思想方法,為我們的教學(xué)提供了指導(dǎo)和幫助。
這學(xué)期我任三年級(jí)數(shù)學(xué),三年級(jí)上冊(cè)中的主要思想有:第3單元“測(cè)量”中學(xué)習(xí)的長(zhǎng)度單位:分米(dm)、毫米(mm)、千米(km)是符號(hào)化思想的應(yīng)用;第7單元“長(zhǎng)方形和正方形”中有些習(xí)題如本書中第25頁(yè)的“案例2”應(yīng)用了分類思想;第9單元“數(shù)學(xué)廣角――集合”中學(xué)習(xí)的重復(fù)問(wèn)題是集合思想的應(yīng)用;第8單元“分?jǐn)?shù)的初步認(rèn)識(shí)”中學(xué)生用一張正方形白紙可以折出不同的形狀表示它的1/4。在學(xué)生充分展示后,我們可以引導(dǎo)學(xué)生發(fā)現(xiàn)雖然形狀、大小不同,但都是把一張正方形白紙平均成4份,每份是它的1/4。這個(gè)教學(xué)過(guò)程中有變中有不變的思想的應(yīng)用。第8單元“分?jǐn)?shù)的初步認(rèn)識(shí)”中把一個(gè)圓形平均分,分的份數(shù)越多,分?jǐn)?shù)越小,如果一直分下去,可以對(duì)應(yīng)寫出無(wú)限多個(gè)分?jǐn)?shù)。
生活本身是一個(gè)巨大的數(shù)學(xué)課堂,生活中客觀存在著大量有價(jià)值的數(shù)學(xué)現(xiàn)象。指導(dǎo)學(xué)生運(yùn)用數(shù)學(xué)知識(shí)寫日記,能促使學(xué)生主動(dòng)地用數(shù)學(xué)的眼光去觀察生活,去思考生活問(wèn)題,讓生活問(wèn)題數(shù)學(xué)化。在教學(xué)中注重培養(yǎng)孩子運(yùn)用數(shù)學(xué)的意識(shí),增強(qiáng)學(xué)生運(yùn)用知識(shí)解決實(shí)際問(wèn)題的能力。由此可見,數(shù)學(xué)并不是靠老師教會(huì)的,而是在教師的指導(dǎo)下,靠學(xué)生自己學(xué)會(huì)的。在教學(xué)中教師要給學(xué)生創(chuàng)造情景、提供機(jī)會(huì),給學(xué)生充足的時(shí)間和空間,讓學(xué)生主動(dòng)探究新知,在探究中發(fā)現(xiàn)規(guī)律、歸納規(guī)律。因此,我們?cè)谡n堂教學(xué)中,多留些時(shí)間給學(xué)生,讓他們動(dòng)手操作;多留些時(shí)間給學(xué)生,自己的`意見;多留些時(shí)間給學(xué)生,讓他們質(zhì)疑問(wèn)難。保證充分的時(shí)間和空間,讓學(xué)生再課內(nèi)交流、討論、質(zhì)疑。
這本書教給了我們一種教學(xué)理念,教會(huì)了我們一種教學(xué)方法。讀書更是一種好的學(xué)習(xí)手段,它將帶領(lǐng)我們不斷更新、與時(shí)俱進(jìn),成為一名學(xué)生喜歡的、有專業(yè)素養(yǎng)的好老師。
數(shù)學(xué)思想方法心得體會(huì)篇二
其實(shí),這本書擱置在書架上已經(jīng)許久了,因?yàn)槔锩娓拍钚缘臇|西比較多,所以讀起來(lái)并不是那么趣味十足,之前讀了幾頁(yè),便沒(méi)有再讀下去。
之所以重讀這本書,緣于這幾天和學(xué)生一起收看《名師同步課堂》,在電視上做六年級(jí)數(shù)學(xué)直播課的是經(jīng)驗(yàn)豐富的魯向前老師,我發(fā)現(xiàn)他在講課的時(shí)候,特別注重?cái)?shù)學(xué)思想方法的滲透,在這方面正是我所欠缺的。
魯老師在講解求體積的解決問(wèn)題時(shí),提到了把一個(gè)體積轉(zhuǎn)化成另一個(gè)體積,正方體熔鑄成圓柱體,小石子放入水中水面升高等等,體現(xiàn)了恒等變形的思想。
魯老師特別提到一種數(shù)學(xué)思想方法,由圓柱體積的求法猜想并實(shí)驗(yàn)證明圓錐體積的求法,體現(xiàn)了類比的思想方法。類比思想是指依據(jù)兩類數(shù)學(xué)對(duì)象的相似性,將已知的一類數(shù)學(xué)對(duì)象的性質(zhì)遷移到另一類數(shù)學(xué)對(duì)象上去的思想。
經(jīng)常說(shuō)教方法比教知識(shí)重要,作為一名數(shù)學(xué)老師,需要系統(tǒng)的了解數(shù)學(xué)思想方法。所以我便想到了書架上的這本書。說(shuō)實(shí)話,讀這本書是有些枯燥的,而且如果你不動(dòng)腦子去思考書中的問(wèn)題的話,那你可能僅僅讀的就是字了。
在《小學(xué)數(shù)學(xué)與數(shù)學(xué)思想方法》這本書的封皮上寫著:
數(shù)學(xué)思想方法不同于一般的概念和技能,后者一般通過(guò)短期的訓(xùn)練便能掌握,數(shù)學(xué)思想方法的教學(xué)更應(yīng)該是一個(gè)通過(guò)長(zhǎng)期的滲透和影響才能夠形成思想和方法的過(guò)程。教師應(yīng)在每堂課的教學(xué)中適時(shí)、適當(dāng)?shù)伢w現(xiàn)思想方法的教學(xué)目標(biāo),使學(xué)生在潛移默化中日積月累,通過(guò)提高數(shù)學(xué)素養(yǎng)達(dá)到學(xué)好數(shù)學(xué)的目的。
這本書分上下兩篇,上篇介紹各類思想方法,下篇介紹各類思想方法在每一冊(cè)教材中的體現(xiàn),這本書可以當(dāng)成我們的一本工具書,在我們備課的時(shí)候,方便我們查閱。比如,在總結(jié)十以內(nèi)的加減法或者乘法口訣的推導(dǎo)過(guò)程中,都體現(xiàn)了函數(shù)思想,作為老師的我們,不必讓學(xué)生明確知道什么是函數(shù)思想,但是我們應(yīng)該明白這里面體現(xiàn)了函數(shù)思想,并且有意識(shí)地向?qū)W生滲透思想方法,讓學(xué)生在以后面對(duì)類似的問(wèn)題,能夠聯(lián)想到這種思想方法去解決問(wèn)題。
僅僅花費(fèi)兩三天的時(shí)間,匆匆讀完了這本書,書中的一些思想方法或者內(nèi)容,有些地方還不是太懂,需要慢慢去領(lǐng)悟,但是我知道,在以后備課,做教學(xué)設(shè)計(jì)時(shí),一定要思考一個(gè)問(wèn)題:這節(jié)課體現(xiàn)了哪些思想方法?我們應(yīng)該向?qū)W生滲透哪些思想方法?為學(xué)生考慮的再長(zhǎng)遠(yuǎn)一些。
數(shù)學(xué)思想方法心得體會(huì)篇三
學(xué)習(xí)和復(fù)習(xí)的主線不同。學(xué)習(xí)的主線我們應(yīng)該都很熟悉,看一看教材的目錄就非常明確了:高一高二兩年當(dāng)中一定是以章節(jié)為單位,一個(gè)知識(shí)點(diǎn)接一個(gè)知識(shí)點(diǎn)按部就班地介紹和學(xué)習(xí)。每個(gè)章節(jié)內(nèi)部也是基本遵循“定義—定理—公式—經(jīng)典例題—實(shí)際應(yīng)用—練習(xí)”這樣由簡(jiǎn)到繁的內(nèi)容安排。
而二次復(fù)習(xí)如果也采用這樣的模式,導(dǎo)致的直接結(jié)果就是,考生按知識(shí)點(diǎn)分塊的模式分章節(jié)去解題會(huì)很順利,一旦拿過(guò)來(lái)一份高考試卷,遇到里面的綜合性題目卻無(wú)從下手,這就是平時(shí)考生經(jīng)常遇到的問(wèn)題——沒(méi)有解題思路。
初次學(xué)習(xí)和再次復(fù)習(xí)不同。絕大部分考生在高一高二兩年的時(shí)間中進(jìn)行的都是新知識(shí)新理論的學(xué)習(xí),這是初次認(rèn)識(shí)初次接觸的過(guò)程,我們稱之為初次學(xué)習(xí),這個(gè)過(guò)程強(qiáng)調(diào)的是認(rèn)知、接受和掌握。而高三將近一年的時(shí)間考生幾乎接觸的都是之前兩年當(dāng)中見過(guò)的理解了的但是很多已經(jīng)遺忘的內(nèi)容,我們將這個(gè)過(guò)程稱之為再次復(fù)習(xí)。
再次復(fù)習(xí)除了恢復(fù)考生對(duì)相應(yīng)知識(shí)點(diǎn)的記憶之外,更重要的在于將知識(shí)點(diǎn)升華為考點(diǎn),這個(gè)過(guò)程重視的是理解、綜合與應(yīng)用。兩個(gè)過(guò)程截然不同,必然導(dǎo)致我們應(yīng)對(duì)的策略也要有所變化。
數(shù)學(xué)思想方法心得體會(huì)篇四
解:
根據(jù)乘法原理,分兩步:
第一步是把5對(duì)夫妻看作5個(gè)整體,進(jìn)行排列有5×4×3×2×1=120種不同的排法,但是因?yàn)槭菄梢粋€(gè)首尾相接的圈,就會(huì)產(chǎn)生5個(gè)5個(gè)重復(fù),因此實(shí)際排法只有120÷5=24種。
綜合兩步,就有24×32=768種。
解:
5全排列5*4*3*2*1=120
有兩個(gè)l所以120/2=60
原來(lái)有一種正確的所以60-1=59
答案為53秒
可以這樣理解:“快車從追上慢車的車尾到完全超過(guò)慢車”就是快車車尾上的點(diǎn)追及慢車車頭的點(diǎn),因此追及的路程應(yīng)該為兩個(gè)車長(zhǎng)的和。
答案為100米
300÷(5-4.4)=500秒,表示追及時(shí)間
5×500=2500米,表示甲追到乙時(shí)所行的路程
2500÷300=8圈……100米,表示甲追及總路程為8圈還多100米,就是在原來(lái)起跑線的前方100米處相遇。
5.一個(gè)人在鐵道邊,聽見遠(yuǎn)處傳來(lái)的火車汽笛聲后,在經(jīng)過(guò)57秒火車經(jīng)過(guò)她前面,已知火車?guó)Q笛時(shí)離他1360米,(軌道是直的),聲音每秒傳340米,求火車的速度(得出保留整數(shù))
答案為22米/秒
算式:1360÷(1360÷340+57)≈22米/秒
關(guān)鍵理解:人在聽到聲音后57秒才車到,說(shuō)明人聽到聲音時(shí)車已經(jīng)從發(fā)聲音的地方行出1360÷340=4秒的路程。也就是1360米一共用了4+57=61秒。
6.獵犬發(fā)現(xiàn)在離它10米遠(yuǎn)的前方有一只奔跑著的野兔,馬上緊追上去,獵犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的動(dòng)作快,獵犬跑2步的時(shí)間,兔子卻能跑3步,問(wèn)獵犬至少跑多少米才能追上兔子。
正確的答案是獵犬至少跑60米才能追上。
解:
答案:18分鐘
解:設(shè)全程為1,甲的速度為x乙的速度為y
列式40x+40y=1
x:y=5:4
得x=1/72y=1/90
走完全程甲需72分鐘,乙需90分鐘
故得解
答案是300千米。
解:通過(guò)畫線段圖可知,兩個(gè)人第一次相遇時(shí)一共行了1個(gè)ab的路程,從開始到第二次相遇,一共又行了3個(gè)ab的路程,可以推算出甲、乙各自共所行的路程分別是第一次相遇前各自所走的路程的3倍。即甲共走的路程是120*3=360千米,從線段圖可以看出,甲一共走了全程的(1+1/5)。
因此360÷(1+1/5)=300千米
解:(1/6-1/8)÷2=1/48表示水速的分率
2÷1/48=96千米表示總路程
10.快車和慢車同時(shí)從甲乙兩地相對(duì)開出,快車每小時(shí)行33千米,相遇是已行了全程的七分之四,已知慢車行完全程需要8小時(shí),求甲乙兩地的路程。
解:
相遇是已行了全程的七分之四表示甲乙的速度比是4:3
時(shí)間比為3:4
所以快車行全程的時(shí)間為8/4*3=6小時(shí)
6*33=198千米
解:
把路程看成1,得到時(shí)間系數(shù)
去時(shí)時(shí)間系數(shù):1/3÷12+2/3÷30
返回時(shí)間系數(shù):3/5÷12+2/5÷30
去時(shí)時(shí)間:1/2×(1/3÷12)÷1/75和1/2×(2/3÷30)1/75
路程:12×〔1/2×(1/3÷12)÷1/75〕+30×〔1/2×(2/3÷30)1/75〕=37.5(千米)
數(shù)學(xué)思想方法心得體會(huì)篇五
教師是落實(shí)數(shù)學(xué)思想方法的實(shí)施者,教師對(duì)數(shù)學(xué)思想方法的理解程度直接影響這一教學(xué)目標(biāo)的有效落實(shí)。因此,教師首先要認(rèn)真研讀小學(xué)階段所涉及的各種思想方法的內(nèi)涵。
教師深刻理解了各種數(shù)學(xué)思想方法的內(nèi)涵,在課前預(yù)設(shè)時(shí)把數(shù)學(xué)思想方法的滲透作為重要的教學(xué)目標(biāo),是小學(xué)生理解、掌握數(shù)學(xué)思想方法的前提。
二、在教學(xué)設(shè)計(jì)時(shí),有意識(shí)地挖掘教材中蘊(yùn)藏的數(shù)學(xué)思想方法
教材體系有兩條基本線索:一條是數(shù)學(xué)知識(shí),這是明線,另一條是數(shù)學(xué)思想方法,這是蘊(yùn)含在教材中的暗線?!稊?shù)學(xué)課程標(biāo)準(zhǔn)》在教材編寫建議上,要求根據(jù)學(xué)生已有經(jīng)驗(yàn)、心理發(fā)展規(guī)律以及所學(xué)內(nèi)容的特點(diǎn),一些重要的數(shù)學(xué)概念與數(shù)學(xué)思想方法采取逐步滲透編排的,以便逐步實(shí)現(xiàn)學(xué)習(xí)目標(biāo),為此,在小學(xué)數(shù)學(xué)教材中根據(jù)不同年級(jí)蘊(yùn)含著不同的數(shù)學(xué)思想方法。
小學(xué)生在解決問(wèn)題時(shí),往往要滲透“從有限中認(rèn)識(shí)無(wú)限,從精確中認(rèn)識(shí)近似,從量變中認(rèn)識(shí)質(zhì)變”的極限思想。四年級(jí)教材中“直線、射線和角”的知識(shí)點(diǎn),就蘊(yùn)含極限的思想:射線只有一個(gè)端點(diǎn),可以向一端無(wú)限延伸;直線由無(wú)數(shù)點(diǎn)組成,但沒(méi)有端點(diǎn),可以兩端無(wú)限延伸;角的兩邊可以無(wú)限延長(zhǎng),角的大小與角的兩邊畫出的長(zhǎng)短無(wú)關(guān)。
總之,數(shù)學(xué)思想方法總是隱含在各知識(shí)版塊中,體現(xiàn)在應(yīng)用知識(shí)的過(guò)程中,沒(méi)有不包括數(shù)學(xué)思想方法的知識(shí),也沒(méi)有游離于知識(shí)之外的思想方法,教師在教學(xué)時(shí)要研究教材,遵照《教師教學(xué)用書》的教材編寫要求中“有步驟地滲透數(shù)學(xué)思想方法,培養(yǎng)學(xué)生思維能力和解決問(wèn)題的能力”的意見,認(rèn)真?zhèn)湔n,努力挖掘教材中進(jìn)行數(shù)學(xué)思想方法滲透的各種因素,按章節(jié)及知識(shí)板塊考慮應(yīng)滲透哪些,怎樣滲透,滲透到什么程度,并列為教學(xué)目標(biāo),使?jié)B透成為有意識(shí)的教學(xué)活動(dòng)。讓學(xué)生理解并初步掌握數(shù)學(xué)思想方法,不僅有利于提高他們用數(shù)學(xué)解決問(wèn)題的能力,同時(shí)也可使他們感受到數(shù)學(xué)思想方法的作用,受到思維訓(xùn)練,逐步形成有序地、嚴(yán)密地思考問(wèn)題的意識(shí),學(xué)生掌握了思想方法將終身受益。
三、小學(xué)數(shù)學(xué)教學(xué)應(yīng)如何加強(qiáng)數(shù)學(xué)思想方法的滲透
(一)提高滲透的自覺(jué)性
數(shù)學(xué)概念、法則、公式、性質(zhì)等知識(shí)都明顯地寫在教材中,是有“形”的,而數(shù)學(xué)思想方法卻隱含在數(shù)學(xué)知識(shí)體系里,是無(wú)“形”的,并且不成體系地散見于教材各章節(jié)中。教師講不講,講多講少,隨意性較大,常常因教學(xué)時(shí)間緊而將它作為一個(gè)“軟任務(wù)”擠掉。對(duì)于學(xué)生的要求是能領(lǐng)會(huì)多少算多少。因此,作為教師首先要更新觀念,從思想上不斷提高對(duì)滲透數(shù)學(xué)思想方法重要性的認(rèn)識(shí),把掌握數(shù)學(xué)知識(shí)和滲透數(shù)學(xué)思想方法同時(shí)納入教學(xué)目的,把數(shù)學(xué)思想方法教學(xué)的要求融入備課環(huán)節(jié)。其次要深入鉆研教材,努力挖掘教材中可以進(jìn)行數(shù)學(xué)思想方法滲透的各種因素,對(duì)于每一章每一節(jié),都要考慮如何結(jié)合具體內(nèi)容進(jìn)行數(shù)學(xué)思想方法滲透,滲透哪些數(shù)學(xué)思想方法,怎么滲透,滲透到什么程度,應(yīng)有一個(gè)總體設(shè)計(jì),提出不同階段的具體教學(xué)要求。
(二)把握滲透的可行性
數(shù)學(xué)思想方法的教學(xué)必須通過(guò)具體的教學(xué)過(guò)程加以實(shí)現(xiàn)。因此,必須把握好教學(xué)過(guò)程中進(jìn)行數(shù)學(xué)思想方法教學(xué)的契機(jī)——概念形成的過(guò)程,結(jié)論推導(dǎo)的過(guò)程,方法思考的過(guò)程,思路探索的過(guò)程,規(guī)律揭示的過(guò)程等。同時(shí),進(jìn)行數(shù)學(xué)思想方法的教學(xué)要注意有機(jī)結(jié)合、自然滲透,要有意識(shí)地潛移默化地啟發(fā)學(xué)生領(lǐng)悟蘊(yùn)含于數(shù)學(xué)知識(shí)之中的種.種數(shù)學(xué)思想方法,切忌生搬硬套、和盤托出、脫離實(shí)際等適得其反的做法。
(三)注重滲透的反復(fù)性
數(shù)學(xué)思想方法是在啟發(fā)學(xué)生思維過(guò)程中逐步積累和形成的。為此,在教學(xué)中,首先要特別強(qiáng)調(diào)解決問(wèn)題以后的“反思”,因?yàn)樵谶@個(gè)過(guò)程中提煉出來(lái)的數(shù)學(xué)思想方法,對(duì)學(xué)生來(lái)說(shuō)才是易于體會(huì)、易于接受的。如通過(guò)分?jǐn)?shù)和百分?jǐn)?shù)應(yīng)用題有規(guī)律的對(duì)比板演,指導(dǎo)學(xué)生小結(jié)解答這類應(yīng)用題的關(guān)鍵,找到具體數(shù)量的對(duì)應(yīng)分率,從而使學(xué)生自己體驗(yàn)到對(duì)應(yīng)思想和化歸思想。其次要注意滲透的長(zhǎng)期性,應(yīng)該看到,對(duì)學(xué)生數(shù)學(xué)思想方法的滲透不是一朝一夕就能見到學(xué)生數(shù)學(xué)能力提高的,而是有一個(gè)過(guò)程。數(shù)學(xué)思想方法必須經(jīng)過(guò)循序漸進(jìn)和反復(fù)訓(xùn)練,才能使學(xué)生真正地有所領(lǐng)悟。
綜上所述,小學(xué)數(shù)學(xué)教學(xué)中,教師重視數(shù)學(xué)思想方法的挖掘、提煉和研究,加強(qiáng)數(shù)學(xué)思想方法的指導(dǎo),有意識(shí)地把數(shù)學(xué)教學(xué)過(guò)程轉(zhuǎn)變?yōu)閿?shù)學(xué)思維活動(dòng)的過(guò)程,不斷強(qiáng)化訓(xùn)練思想方法,培養(yǎng)應(yīng)用思想方法探索問(wèn)題和解決問(wèn)題的良好習(xí)慣,從而提高學(xué)生數(shù)學(xué)思維素養(yǎng)。
數(shù)學(xué)思想方法心得體會(huì)篇六
生活中不是沒(méi)有美,只是缺乏發(fā)現(xiàn)美的眼睛。學(xué)習(xí)數(shù)學(xué)也是一樣,要帶著發(fā)現(xiàn)的眼睛去觀察。學(xué)好數(shù)學(xué)固然重要,但是要上學(xué)生意識(shí)的數(shù)學(xué)的美,發(fā)現(xiàn)數(shù)學(xué)的美才是學(xué)生持續(xù)學(xué)習(xí)數(shù)學(xué)的動(dòng)力,這樣才有利于學(xué)生的可持續(xù)法展。
聽過(guò)這樣一句話:“孩子在入學(xué)時(shí)是一個(gè)問(wèn)號(hào),卻在畢業(yè)時(shí)成了一個(gè)句號(hào)?!币簿褪窃诤⒆幼畛醯恼J(rèn)識(shí)里數(shù)學(xué)是美的,只是在逐漸的學(xué)習(xí)中改變了自己的想法。問(wèn)題究竟出在哪里呢?這值得我們深思,尤其是值得教育者深思。怎樣才能使孩子回到最初的認(rèn)識(shí),回歸數(shù)學(xué)美。
首先我覺(jué)得要對(duì)自己執(zhí)教的班級(jí)做一份問(wèn)卷調(diào)查,了解一下數(shù)學(xué)在學(xué)生心目中的現(xiàn)狀,及學(xué)生心目中數(shù)學(xué)美應(yīng)該隱藏在哪里,以及心目中的數(shù)學(xué)課應(yīng)該是怎么樣的。這樣的話教師可以做到心中有底,對(duì)癥下藥。還可以找到認(rèn)為數(shù)學(xué)是美的學(xué)生驚醒一次小的座談會(huì),讓他們說(shuō)說(shuō)自己的想法。
要想引導(dǎo)孩子認(rèn)識(shí)數(shù)學(xué)美,前提是教師本身認(rèn)為數(shù)學(xué)中的美,這樣才能教出認(rèn)為數(shù)學(xué)是美的學(xué)生。如何正確的引導(dǎo)孩子認(rèn)識(shí)到數(shù)學(xué)中的形形色色的美以及采用什么樣的方式是我們需要思考的問(wèn)題。楊正寧教授在中美學(xué)生的對(duì)比中談到:“中國(guó)學(xué)生學(xué)得多,悟得少;美國(guó)學(xué)生學(xué)得少,卻悟得多。這就是中國(guó)教育不出諾貝爾獎(jiǎng)得者的重要原因。縱觀我們的教學(xué),學(xué)生總是被塞得滿滿的,這就是我們的學(xué)生體會(huì)不到數(shù)學(xué)美的重要原因。因此我覺(jué)得首先要將學(xué)生從繁重的課業(yè)中解脫出來(lái),給孩子更多的思考和實(shí)踐的機(jī)會(huì)。以學(xué)生的直接經(jīng)驗(yàn)為主輔助以必要的間接經(jīng)驗(yàn)。就像著名的教育家杜威說(shuō)的那樣“在做中學(xué)”。讓孩子自己動(dòng)手自己體會(huì)自己總結(jié),進(jìn)而更加深刻的體會(huì)到成功感,以培養(yǎng)孩子欣賞數(shù)學(xué)美認(rèn)識(shí)數(shù)學(xué)美進(jìn)而創(chuàng)造數(shù)學(xué)美。另外,在日常的教學(xué)中要給學(xué)生一些啟發(fā)、一些思考的余地和自由掌握的時(shí)間,使學(xué)生可以自由地活動(dòng),從“無(wú)”中生出“有”。培養(yǎng)學(xué)生自己發(fā)現(xiàn)問(wèn)題,解決問(wèn)題的能力。讓學(xué)生自己去思考自己去領(lǐng)悟一些東西。
另外我認(rèn)為也要在日常的教學(xué)中給孩子營(yíng)造一個(gè)良好的感受數(shù)學(xué)美的氛圍。在學(xué)生的周圍時(shí)刻的感染學(xué)生,影響學(xué)生。教師可以準(zhǔn)備一些精美的反應(yīng)數(shù)學(xué)美的圖片,讓學(xué)生感受數(shù)學(xué)美。也可以讓學(xué)生自己去尋找一些自己認(rèn)為包含數(shù)學(xué)美的圖片或者視頻,讓學(xué)生自己分享一下?;蛘咦寣W(xué)生自己感悟一些偉大的數(shù)學(xué)家心目中的數(shù)學(xué)。
我想只有讓數(shù)學(xué)回歸自然回歸生活,才能喚醒孩子心中的數(shù)學(xué)美。
數(shù)學(xué)思想方法心得體會(huì)篇七
一、注重引導(dǎo),抓住學(xué)習(xí)關(guān)鍵
二、要正確處理本課程的自身邏輯系統(tǒng)與相關(guān)課程的關(guān)系
初數(shù)研究課在研究初等數(shù)學(xué)問(wèn)題時(shí),大多采用專題討論的方法,都有一套完整的體系。如果過(guò)分強(qiáng)調(diào)自身完整的邏輯系統(tǒng),容易導(dǎo)致不同學(xué)科、不同課程的內(nèi)客及方法有很多重復(fù)和交叉。
如數(shù)與初等數(shù)論中的相關(guān)內(nèi)容,解析式的恒等變形,方程、不等式的解法與證明,幾何證題法與證題術(shù)排列、組合及數(shù)列的一些解題方法等。如果不處理好它們之間的關(guān)系,只是簡(jiǎn)單地追求各門課程自身體系的完整,既不利于學(xué)生整體數(shù)學(xué)思想的建立,又制約了他們數(shù)學(xué)綜合運(yùn)用能力的提高,同時(shí)占用了很多的課時(shí),所以,對(duì)于相關(guān)課程中己作詳盡討論過(guò)的知識(shí)及理論,應(yīng)作為工具來(lái)應(yīng)用,避免一些不必要的重復(fù)。
三、變被動(dòng)式學(xué)習(xí)為主動(dòng)式學(xué)習(xí)
1.知識(shí)系統(tǒng)的探究
初數(shù)研究課涉及大量的理論,教師講、學(xué)生聽的傳統(tǒng)教學(xué)模式既占用課時(shí)多,又難以體現(xiàn)學(xué)生的主體性。因此對(duì)理論性較強(qiáng)的內(nèi)容,教師可以先提出一些切題的問(wèn)題作為一堂課的鍥子,留待后面逐個(gè)解決。這些問(wèn)題將整個(gè)教學(xué)內(nèi)容串起來(lái),起到提綱摯領(lǐng)的作用,使學(xué)生明確學(xué)習(xí)目標(biāo),集中學(xué)習(xí)資源(如本課程及相關(guān)課程的教村及參考書)有針對(duì)性地去探究問(wèn)題,然后教師組織學(xué)生對(duì)探究的結(jié)果進(jìn)行歸納整理,形成較完整的知識(shí)體系。當(dāng)然一個(gè)問(wèn)題的解訣并非探究的終結(jié),在探究過(guò)程中教師與學(xué)生都可以提出一些新問(wèn)題,延續(xù)學(xué)生探究的熱情,在合作交流的民主和諧的氛圍里,盡可能地讓學(xué)生走向自由探究。
2.解題方法的探究
從學(xué)生的認(rèn)知角度未說(shuō),解題過(guò)程是獨(dú)立的發(fā)現(xiàn)、探索與積極思考的過(guò)程,這種探索過(guò)程中所形成的意識(shí)和思維,就是真正的創(chuàng)造與發(fā)現(xiàn)。應(yīng)該說(shuō),解題教學(xué)是中學(xué)數(shù)學(xué)教學(xué)的主要任務(wù)之一,設(shè)置初數(shù)研究課程的目的之一,就是結(jié)合中學(xué)實(shí)際對(duì)解題作專門的訓(xùn)練。
3.條件與結(jié)論的探究
對(duì)一個(gè)問(wèn)題的條件或結(jié)論進(jìn)行探究是對(duì)問(wèn)題深入研究的重要組成部分,也是初數(shù)研究課程中具有挑戰(zhàn)性的任務(wù)之一,引導(dǎo)學(xué)生從不同角度、不同層面來(lái)看問(wèn)題,對(duì)學(xué)生的發(fā)散思維及創(chuàng)造思維的培養(yǎng),都能起到良好的推動(dòng)作用。
隨著教學(xué)改革的深化,教學(xué)思想方法不僅要在理論上做研究探討,更重要的是需要在實(shí)踐中不斷地創(chuàng)造與完善,才能使教學(xué)取得較好的效果。
[數(shù)學(xué)思想方法心得體會(huì)]
數(shù)學(xué)思想方法心得體會(huì)篇八
為了幫助小學(xué)數(shù)學(xué)教師轉(zhuǎn)變數(shù)學(xué)教育觀念,提高對(duì)數(shù)學(xué)思想方法的理解和運(yùn)用水平,進(jìn)而提高數(shù)學(xué)專業(yè)素養(yǎng),本書主編王永春于出版了專著《小學(xué)數(shù)學(xué)與數(shù)學(xué)思想方法》,該書一經(jīng)出版,便受到廣大小學(xué)數(shù)學(xué)教師的歡迎,參與學(xué)習(xí)活動(dòng)的老師們把自己的讀書心得寫出來(lái),在教學(xué)中去實(shí)踐自己的學(xué)習(xí)收獲,主編王永春把這些鮮活的學(xué)習(xí)體會(huì)和寶貴的教學(xué)經(jīng)驗(yàn)案例結(jié)集出版,形成了本書,讓更多的老師分享通俗而深刻的理論解讀和接地氣的實(shí)踐經(jīng)驗(yàn)。
本書作者王永春,作為人民教育出版社小學(xué)數(shù)學(xué)編輯室主任,長(zhǎng)期從事小學(xué)數(shù)學(xué)教材的編寫工作,致力于課程、教材的研究,對(duì)小學(xué)數(shù)學(xué)思想方法有深入的思考和探索?;趯?duì)提高教育質(zhì)量、落實(shí)教育目標(biāo)的強(qiáng)烈責(zé)任感,作者撰寫了系列文章,就有關(guān)數(shù)學(xué)思想方法在小學(xué)教學(xué)中的應(yīng)用作了專門的論述。在此基礎(chǔ)上,形成了本書。
本書是《小學(xué)數(shù)學(xué)與數(shù)學(xué)思想方法》一書的讀后感,是一線教師對(duì)數(shù)學(xué)思想方法的解讀和教學(xué)案例的研究。因此本書的內(nèi)容結(jié)構(gòu)和目錄與《小學(xué)數(shù)學(xué)與數(shù)學(xué)思想方法》的內(nèi)容結(jié)構(gòu)和目錄是基本相對(duì)應(yīng)的,其中第1章到第五章的目錄與《小學(xué)數(shù)學(xué)與數(shù)學(xué)思想方法》相對(duì)應(yīng),第六章教學(xué)案例部分,考慮到各年級(jí)案例分布不均,沒(méi)有按照冊(cè)數(shù)分節(jié),把一、二年級(jí)分為第1節(jié),三、四年級(jí)分為第二節(jié),五年級(jí)分為第三節(jié),六年級(jí)分為第四節(jié)。對(duì)學(xué)生來(lái)說(shuō),數(shù)學(xué)思想方法不同于一般的概念和技能,概念與技能通常可以通過(guò)短期的訓(xùn)練便能掌握,而數(shù)學(xué)思想方法則需要通過(guò)教師長(zhǎng)期的滲透和影響才能夠形成。教師應(yīng)在每堂課的教學(xué)中適時(shí)、適當(dāng)?shù)伢w現(xiàn)思想方法的教學(xué)目標(biāo),使學(xué)生在潛移默化中日積月累,通過(guò)提高數(shù)學(xué)素養(yǎng)達(dá)到學(xué)好數(shù)學(xué)的目的。
數(shù)學(xué)思想方法不同于一般的概念和技能,后者一般通過(guò)短期的訓(xùn)練便能掌握,而數(shù)學(xué)思想方法需要通過(guò)在教學(xué)中長(zhǎng)期地滲透和影響才能夠形成。古語(yǔ)云“泰山不讓土壤,故能成其大;河海不擇細(xì)流,故能就其深?!苯處煈?yīng)在每堂課的教學(xué)中適時(shí)、適當(dāng)?shù)伢w現(xiàn)思想方法的教學(xué)目標(biāo),使學(xué)生在潛移默化中日積月累,通過(guò)提高數(shù)學(xué)素養(yǎng)達(dá)到學(xué)好數(shù)學(xué)的目的。希望數(shù)學(xué)思想方法的教學(xué)能夠像春雨一樣,滋潤(rùn)著學(xué)生的心田。
數(shù)學(xué)思想方法心得體會(huì)篇九
數(shù)學(xué)關(guān)鍵就在一個(gè)悟字,所謂悟,就是開竅,如何開竅,就要求講師不要只講題目的做法,而是包括,是怎么想到要這么做的,以引導(dǎo)學(xué)生去理解,去悟,對(duì)于初等數(shù)學(xué),本人的看法是隨便怎么做,因?yàn)槌醯葦?shù)學(xué)的試題必然有解,必然是可以通過(guò)所給條件經(jīng)過(guò)n多步驟推出來(lái),不信可以試試,拿一道,先什么都不要管,只管把已知條件以全排列方式組合,以推出新的條件,再將所得條件組合,再推,直到最后推無(wú)可推,你會(huì)發(fā)現(xiàn)題目所求就在其中,甚至簡(jiǎn)單的可能是離最終結(jié)論還有n步,復(fù)雜的估計(jì)也就是最終結(jié)論了,所以以高考為目的的初等數(shù)學(xué)題目是不經(jīng)做的,因?yàn)橹灰阕?,就一定能做出?lái),而之所以很多學(xué)生覺(jué)得難,沒(méi)處著筆,不知道改該怎么做,很大一部分是因?yàn)閼?,不愿?dòng)筆,而只是呆看,簡(jiǎn)單的能看出來(lái),復(fù)雜的是很難看出來(lái)的,如果說(shuō)那種直接推導(dǎo)的辦法太耗時(shí)間,那么只能說(shuō)是因?yàn)椴皇炀?,一旦題目做多了,思維形成了,差不多就可以一眼看出來(lái),頂多推兩步,就知道后面的怎么推了,從而省略了n多的分支,古往今來(lái)的題海戰(zhàn)術(shù)不是沒(méi)有依據(jù)的,熟能生巧,見得多了,做的多了,自然可以找到某種規(guī)律。
初數(shù)研究課在研究初等數(shù)學(xué)問(wèn)題時(shí),大多采用專題討論的方法,都有一套完整的體系。如果過(guò)分強(qiáng)調(diào)自身完整的邏輯系統(tǒng),容易導(dǎo)致不同學(xué)科、不同課程的內(nèi)客及方法有很多重復(fù)和交叉。
如數(shù)與初等數(shù)論中的相關(guān)內(nèi)容,解析式的恒等變形,方程、不等式的解法與證明,幾何證題法與證題術(shù)排列、組合及數(shù)列的一些解題方法等。如果不處理好它們之間的'關(guān)系,只是簡(jiǎn)單地追求各門課程自身體系的完整,既不利于學(xué)生整體數(shù)學(xué)思想的建立,又制約了他們數(shù)學(xué)綜合運(yùn)用能力的提高,同時(shí)占用了很多的課時(shí),所以,對(duì)于相關(guān)課程中己作詳盡討論過(guò)的知識(shí)及理論,應(yīng)作為工具來(lái)應(yīng)用,避免一些不必要的重復(fù)。
1.知識(shí)系統(tǒng)的探究
初數(shù)研究課涉及大量的理論,教師講、學(xué)生聽的傳統(tǒng)教學(xué)模式既占用課時(shí)多,又難以體現(xiàn)學(xué)生的主體性。因此對(duì)理論性較強(qiáng)的內(nèi)容,教師可以先提出一些切題的問(wèn)題作為一堂課的鍥子,留待后面逐個(gè)解決。這些問(wèn)題將整個(gè)教學(xué)內(nèi)容串起來(lái),起到提綱摯領(lǐng)的作用,使學(xué)生明確學(xué)習(xí)目標(biāo),集中學(xué)習(xí)資源(如本課程及相關(guān)課程的教村及參考書)有針對(duì)性地去探究問(wèn)題,然后教師組織學(xué)生對(duì)探究的結(jié)果進(jìn)行歸納整理,形成較完整的知識(shí)體系。當(dāng)然一個(gè)問(wèn)題的解訣并非探究的終結(jié),在探究過(guò)程中教師與學(xué)生都可以提出一些新問(wèn)題,延續(xù)學(xué)生探究的熱情,在合作交流的民主和諧的氛圍里,盡可能地讓學(xué)生走向自由探究。
2.解題方法的探究
從學(xué)生的認(rèn)知角度未說(shuō),解題過(guò)程是獨(dú)立的發(fā)現(xiàn)、探索與積極思考的過(guò)程,這種探索過(guò)程中所形成的意識(shí)和思維,就是真正的創(chuàng)造與發(fā)現(xiàn)。應(yīng)該說(shuō),解題教學(xué)是中學(xué)數(shù)學(xué)教學(xué)的主要任務(wù)之一,設(shè)置初數(shù)研究課程的目的之一,就是結(jié)合中學(xué)實(shí)際對(duì)解題作專門的訓(xùn)練。
3.條件與結(jié)論的探究
對(duì)一個(gè)問(wèn)題的條件或結(jié)論進(jìn)行探究是對(duì)問(wèn)題深入研究的重要組成部分,也是初數(shù)研究課程中具有挑戰(zhàn)性的任務(wù)之一,引導(dǎo)學(xué)生從不同角度、不同層面來(lái)看問(wèn)題,對(duì)學(xué)生的發(fā)散思維及創(chuàng)造思維的培養(yǎng),都能起到良好的推動(dòng)作用。
隨著教學(xué)改革的深化,教學(xué)思想方法不僅要在理論上做研究探討,更重要的是需要在實(shí)踐中不斷地創(chuàng)造與完善,才能使教學(xué)取得較好的效果。
數(shù)學(xué)思想方法心得體會(huì)篇十
(一)引導(dǎo)學(xué)生做到數(shù)形有機(jī)結(jié)合
數(shù)形結(jié)合是將抽象與具體相融合的過(guò)程,在這一過(guò)程中能夠有效實(shí)現(xiàn)數(shù)與形的優(yōu)勢(shì)互補(bǔ),將二者之間的本質(zhì)聯(lián)系凸顯出來(lái)。如在學(xué)習(xí)《圓的面積》一節(jié)時(shí),之前學(xué)生已對(duì)圓有了基本認(rèn)識(shí),因此,在教學(xué)如何計(jì)算圓的面積時(shí),教師可先引導(dǎo)學(xué)生猜想圓的面積同什么要素有關(guān)。為了讓學(xué)生有更為直觀的感受,教師還可要求學(xué)生自己在練習(xí)本上分別畫出半徑是3cm、4cm和5cm的圓。然后,再詢問(wèn)學(xué)生,這三個(gè)圓的大小不一樣,那它們的面積大小是什么關(guān)系呢?是等于還是半徑越小的面積越大,或是半徑越大圓的面積越大?學(xué)生在思考了一下后大都認(rèn)為半徑為5cm的那個(gè)圓最大,半徑是3cm的圓的面積最小。在有了這樣的認(rèn)識(shí)后,學(xué)生就會(huì)在頭腦中形成圓的'面積同半徑有關(guān)這樣一個(gè)認(rèn)識(shí),之后教師就可據(jù)此引導(dǎo)學(xué)生如何求得圓的面積。綜上所述,在引入圓的面積之前,我先讓學(xué)生對(duì)圓同半徑之間的關(guān)系有了一個(gè)清晰的了解,為了達(dá)到這個(gè)目的采取的是讓學(xué)生自己動(dòng)手將頭腦中抽象的東西通過(guò)圖形展示出來(lái)并結(jié)合具體的數(shù)字印證出來(lái)的方法。這種數(shù)形結(jié)合的思想方法能夠使問(wèn)題直觀化,將學(xué)生學(xué)習(xí)的積極性和主動(dòng)性調(diào)動(dòng)起來(lái),提高了課堂教學(xué)質(zhì)量。
(二)學(xué)會(huì)轉(zhuǎn)化,化難為易
轉(zhuǎn)化的思想就是用聯(lián)系、運(yùn)動(dòng)和發(fā)展的觀點(diǎn)去看問(wèn)題,通過(guò)變換問(wèn)題的形式,把未解決的或復(fù)雜的問(wèn)題歸結(jié)到已經(jīng)能解決的或簡(jiǎn)單的問(wèn)題中,從而獲得對(duì)原問(wèn)題的解決,因此轉(zhuǎn)化的思想方法也叫劃歸的思想方法。在數(shù)學(xué)教學(xué)中轉(zhuǎn)化的思想方法隨處可見,特別是在解題時(shí),我們可根據(jù)已知條件將問(wèn)題轉(zhuǎn)化,從另一個(gè)角度進(jìn)行思考將難化易。如在講完《圓的周長(zhǎng)》這一節(jié)后,課后習(xí)題中有一道題是將長(zhǎng)方形和正方形同圓結(jié)合起來(lái),讓學(xué)生在已知半徑的情況下分別求出圓、長(zhǎng)方形和正方形的周長(zhǎng)。我將這道題中的一個(gè)小題做了改編,讓學(xué)生在已知正方形周長(zhǎng)的情況下去求圓的周長(zhǎng)。圓位于正方形內(nèi),二者是相切的關(guān)系,這就要求學(xué)生能夠根據(jù)正方形的周長(zhǎng)求出正方形的邊長(zhǎng),而正方形的邊長(zhǎng)就是圓的直徑,再套用周長(zhǎng)c=d的公式就能求得圓的周長(zhǎng)。這套題目要求學(xué)生能根據(jù)已知條件對(duì)問(wèn)題進(jìn)行轉(zhuǎn)化,從而創(chuàng)造出更多的已知條件。在這個(gè)過(guò)程中,學(xué)生一方面將新舊知識(shí)聯(lián)系了起來(lái),另一方面也擴(kuò)散了思維,對(duì)于學(xué)生學(xué)習(xí)能力和解決問(wèn)題能力的提升有積極的促進(jìn)作用。
(三)及時(shí)做到歸納、總結(jié)
及時(shí)地歸納和總結(jié)既能夠使知識(shí)更加系統(tǒng)化,又便于學(xué)生更好地發(fā)現(xiàn)各個(gè)知識(shí)點(diǎn)之間的聯(lián)系與區(qū)別,對(duì)于鞏固學(xué)生知識(shí)具有十分重要的作用。在數(shù)學(xué)中歸納的思想方法指通過(guò)對(duì)特殊示例、題材的觀察和分析,攝取非本質(zhì)的、次要的要素,從中發(fā)現(xiàn)事物的本質(zhì)聯(lián)系,并概括普遍性的結(jié)論。在講完《圓》這一節(jié)后,我會(huì)及時(shí)要求學(xué)生將跟圓有關(guān)的知識(shí)總結(jié)出來(lái),并在總結(jié)的同時(shí)思考自己在這一部分的學(xué)習(xí)中哪里還沒(méi)有真正掌握,哪里還存在欠缺。此外,我還要求學(xué)生將自己之前做過(guò)的練習(xí)題也做一個(gè)總結(jié),甚至是再多做一遍。總結(jié)知識(shí)點(diǎn)有利于學(xué)生做好知識(shí)的鞏固與梳理工作,練習(xí)題的歸納則是讓學(xué)生對(duì)于不同題目的不同解題思路和技巧有一個(gè)更明確的認(rèn)識(shí)。而學(xué)生在總結(jié)的過(guò)程中能不斷提升自己的概括能力,這也是數(shù)學(xué)思想方法滲入到學(xué)生思維中的一個(gè)良好的表現(xiàn)與結(jié)果。
數(shù)學(xué)思想方法心得體會(huì)篇十一
一、集合的思想方法
把一組對(duì)象放在一起,作為討論的范圍,這是人類早期就有的思想方法,繼而把一定程度抽象了的思維對(duì)象,如數(shù)學(xué)上的點(diǎn)、數(shù)、式放在一起作為研究對(duì)象,這種思想就是集合思想。集合思想作為一種思想,在小學(xué)數(shù)學(xué)中就有所體現(xiàn)。在小學(xué)數(shù)學(xué)中,集合概念是通過(guò)畫集合圖的辦法來(lái)滲透的。
如用圓圈圖(韋恩圖)向?qū)W生直觀的滲透集合概念。讓他們感知圈內(nèi)的物體具有某種共同的屬性,可以看作一個(gè)整體,這個(gè)整體就是一個(gè)集合。利用圖形間的關(guān)系則可向?qū)W生滲透集合之間的關(guān)系,如長(zhǎng)方形集合包含正方形集合,平行四邊形集合包含長(zhǎng)方形集合,四邊形集合又包含平行四邊行集合等。
二、對(duì)應(yīng)的思想方法
對(duì)應(yīng)是人的思維對(duì)兩個(gè)集合間問(wèn)題聯(lián)系的把握,是現(xiàn)代數(shù)學(xué)的一個(gè)最基本的概念。小學(xué)數(shù)學(xué)教學(xué)中主要利用虛線、實(shí)線、箭頭、計(jì)數(shù)器等圖形將元素與元素、實(shí)物與實(shí)物、數(shù)與算式、量與量聯(lián)系起來(lái),滲透對(duì)應(yīng)思想。
如人教版一年級(jí)上冊(cè)教材中,分別將小兔和磚頭、小豬和木頭、小白兔和蘿卜、蘋果和梨一一對(duì)應(yīng)后,進(jìn)行多少的比較學(xué)習(xí),向?qū)W生滲透了事物間的對(duì)應(yīng)關(guān)系,為學(xué)生解決問(wèn)題提供了思想方法。
三、數(shù)形結(jié)合的思想方法
數(shù)與形是數(shù)學(xué)教學(xué)研究對(duì)象的兩個(gè)側(cè)面,把數(shù)量關(guān)系和空間形式結(jié)合起來(lái)去分析問(wèn)題、解決問(wèn)題,就是數(shù)形結(jié)合思想?!皵?shù)形結(jié)合”可以借助簡(jiǎn)單的圖形、符號(hào)和文字所作的示意圖,促進(jìn)學(xué)生形象思維和抽象思維的協(xié)調(diào)發(fā)展,溝通數(shù)學(xué)知識(shí)之間的聯(lián)系,從復(fù)雜的數(shù)量關(guān)系中凸顯最本質(zhì)的特征。它是小學(xué)數(shù)學(xué)教材編排的重要原則,也是小學(xué)數(shù)學(xué)教材的一個(gè)重要特點(diǎn),更是解決問(wèn)題時(shí)常用的.方法。
例如,我們常用畫線段圖的方法來(lái)解答應(yīng)用題,這是用圖形來(lái)代替數(shù)量關(guān)系的一種方法。我們又可以通過(guò)代數(shù)方法來(lái)研究幾何圖形的周長(zhǎng)、面積、體積等,這些都體現(xiàn)了數(shù)形結(jié)合的思想。
四、函數(shù)的思想方法
恩格斯說(shuō):“數(shù)學(xué)中的轉(zhuǎn)折點(diǎn)是笛卡兒的變數(shù)。有了變數(shù),運(yùn)動(dòng)進(jìn)入了數(shù)學(xué),有了變數(shù),辯證法進(jìn)入了數(shù)學(xué),有了變數(shù),微分和積分也就立刻成為必要的了?!蔽覀冎溃\(yùn)動(dòng)、變化是客觀事物的本質(zhì)屬性。函數(shù)思想的可貴之處正在于它是運(yùn)動(dòng)、變化的觀點(diǎn)去反映客觀事物數(shù)量間的相互聯(lián)系和內(nèi)在規(guī)律的。學(xué)生對(duì)函數(shù)概念的理解有一個(gè)過(guò)程。在小學(xué)數(shù)學(xué)教學(xué)中,教師在處理一些問(wèn)題時(shí)就要做到心中有函數(shù)思想,注意滲透函數(shù)思想。
函數(shù)思想在人教版一年級(jí)上冊(cè)教材中就有滲透。如讓學(xué)生觀察《20以內(nèi)進(jìn)位加法表》,發(fā)現(xiàn)加數(shù)的變化引起的和的變化的規(guī)律等,都較好的滲透了函數(shù)的思想,其目的都在于幫助學(xué)生形成初步的函數(shù)概念。
這就是我們精心為大家準(zhǔn)備的小升初學(xué)習(xí)數(shù)學(xué)思想方法,希望對(duì)大家有用!更多小升初復(fù)習(xí)資料及相關(guān)資訊,盡在數(shù)學(xué)網(wǎng),請(qǐng)大家及時(shí)關(guān)注!
數(shù)學(xué)思想方法心得體會(huì)篇十二
“讓讀書成為師生的習(xí)慣,讓書香浸潤(rùn)全校師生的心靈”是莒南縣第一小學(xué)倡導(dǎo)師生閱讀的初衷。20xx年,學(xué)校提出了“六年影響一生”的辦學(xué)理念,著力打造內(nèi)涵發(fā)展的學(xué)校。作為師生成長(zhǎng)發(fā)展的重要措施,學(xué)校啟動(dòng)了“書香校園”的建設(shè)。學(xué)校試行“長(zhǎng)短課結(jié)合”,開設(shè)大閱讀課,統(tǒng)一制定學(xué)生閱讀計(jì)劃,按班級(jí)人數(shù)購(gòu)置《中國(guó)小學(xué)生基礎(chǔ)閱讀書目》等100種近萬(wàn)冊(cè)圖書,周二至周五下午,在老師的指導(dǎo)下集體閱讀,保障了閱讀時(shí)間和效果。教師讀書交流會(huì)、師生讀書才藝展示、重陽(yáng)節(jié)經(jīng)典誦讀活動(dòng)、“書香伴我成長(zhǎng)”主題教育活動(dòng)、讀書征文活動(dòng)等一系列形式多樣的讀書交流活動(dòng),豐富了廣大師生的讀書生活,使讀書成為一種享受,成為一種快樂(lè)!在國(guó)家倡導(dǎo)“全民閱讀”的大背景下,3月30日,學(xué)校舉行了“首屆讀書節(jié)”活動(dòng)啟動(dòng)儀式,拉開了學(xué)校讀書活動(dòng)新的啟程。作為此次活動(dòng)的重要組成部分,凝結(jié)了廣大教師在寒假中讀書的所感所想,是教師專業(yè)幸福成長(zhǎng)的又一見證!
讀了王永春老師的《小學(xué)數(shù)學(xué)與數(shù)學(xué)思想方法》,我對(duì)小學(xué)數(shù)學(xué)與數(shù)學(xué)思想方法有了更進(jìn)一步的認(rèn)識(shí)。下面是我梳理一些知識(shí)。
數(shù)學(xué)思想是數(shù)學(xué)知識(shí)內(nèi)容的精髓,是對(duì)數(shù)學(xué)的本質(zhì)認(rèn)識(shí)。是從某些具體的數(shù)學(xué)內(nèi)容和對(duì)數(shù)學(xué)的認(rèn)識(shí)過(guò)程中提煉上升的.數(shù)學(xué)觀點(diǎn),是構(gòu)建數(shù)學(xué)理論和用數(shù)學(xué)理論解決問(wèn)題的指導(dǎo)思想。
數(shù)學(xué)方法是指從數(shù)學(xué)角度提出問(wèn)題、解決問(wèn)題時(shí)所采用的各種方式和手段。數(shù)學(xué)思想和數(shù)學(xué)方法既有區(qū)別又有密切聯(lián)系。數(shù)學(xué)思想的理論和抽象程度要高一些,而數(shù)學(xué)方法的實(shí)踐性更強(qiáng)一些。人們實(shí)現(xiàn)數(shù)學(xué)思想往往要靠一定的數(shù)學(xué)方法;而人們選擇數(shù)學(xué)方法,又要以一定的數(shù)學(xué)思想為依據(jù)。因此,二者是有密切聯(lián)系的。我們把二者合稱為數(shù)學(xué)思想方法。
數(shù)學(xué)思想方法是數(shù)學(xué)的靈魂,那么,要想學(xué)好數(shù)學(xué)、用好數(shù)學(xué),就要深入到數(shù)學(xué)的“靈魂深處”。
1、有利于建立現(xiàn)代數(shù)學(xué)教育觀、落實(shí)新課程理念
2、有利于提高教師專業(yè)素養(yǎng)、提高教學(xué)水平
《標(biāo)準(zhǔn)(20xx版)》把數(shù)學(xué)基本思想作為“四基”之一之后,我面臨更大的挑戰(zhàn),一方面是關(guān)于數(shù)學(xué)思想方法的專業(yè)知識(shí)方面的欠缺,另一方面是課堂教學(xué)中應(yīng)該具備的數(shù)學(xué)思想方法的意識(shí)、經(jīng)驗(yàn)、策略等的不足。
3、有利于提高學(xué)生的思維水平。培養(yǎng)“四能”完善認(rèn)知結(jié)構(gòu),指導(dǎo)學(xué)習(xí)遷移,促進(jìn)思維發(fā)展。
因此,在小學(xué)數(shù)學(xué)階段有意識(shí)的向?qū)W生滲透一些基本的數(shù)學(xué)想方法可以加深學(xué)生對(duì)數(shù)學(xué)概念、公式、法則、定律等知識(shí)的數(shù)學(xué)本質(zhì)的理解,提高學(xué)生發(fā)現(xiàn)問(wèn)題、提出問(wèn)題、分析問(wèn)題和解決問(wèn)題的能力及思維能力,也是小學(xué)數(shù)學(xué)進(jìn)行素質(zhì)教育的真正內(nèi)涵之所在。同時(shí),也能為初中數(shù)學(xué)的學(xué)習(xí)打下較好的基礎(chǔ)。
1、重視思想方法目標(biāo)的落實(shí)。
2、在知識(shí)形成過(guò)程中體現(xiàn)數(shù)學(xué)思想方法。
3、在知識(shí)的應(yīng)用過(guò)程中體現(xiàn)數(shù)學(xué)思想方法。
4、在整理和復(fù)習(xí)、總復(fù)習(xí)中體現(xiàn)數(shù)學(xué)思想方法。
5、潛移默化、明確呈現(xiàn)、長(zhǎng)期堅(jiān)持
數(shù)學(xué)思想方法心得體會(huì)篇十三
新課標(biāo)明確提出開展數(shù)學(xué)思想方法的教學(xué)要求,旨在引導(dǎo)學(xué)生去把握數(shù)學(xué)知識(shí)結(jié)構(gòu)的.核心和靈魂,其重要意義顯而易見.數(shù)學(xué)思想方法是從數(shù)學(xué)內(nèi)容中提煉出來(lái)的數(shù)學(xué)學(xué)科的精髓,是將數(shù)學(xué)知識(shí)轉(zhuǎn)化為數(shù)學(xué)能力的橋梁.
作者:朱毅作者單位:四川省榮縣富北學(xué)校,四川,榮縣,643100刊名:讀寫算(教育教學(xué)研究)英文刊名:duyuxie年,卷(期):“”(7)分類號(hào):關(guān)鍵詞:
數(shù)學(xué)思想方法心得體會(huì)篇十四
豆角是人們喜食的蔬菜之一,但如果吃了沒(méi)有煮熟炒熟的豆角會(huì)導(dǎo)致中毒。近期外地有豆角中毒事件頻繁發(fā)生。為此,記者近日采訪了市衛(wèi)生監(jiān)督所有關(guān)專家。
據(jù)介紹,食用生豆角或未炒熟的豆角易引起中毒,是由于生豆角中含有兩種對(duì)人體有害的物質(zhì):溶血素和毒蛋白。這兩種毒素對(duì)胃腸道有強(qiáng)烈的刺激作用,一般食用未熟豆角十幾分鐘到4小時(shí)發(fā)病。輕者感到腹部不適、惡心、嘔吐、腹痛、腹瀉;嚴(yán)重者發(fā)生頭暈、頭痛、出冷汗、心慌、胸悶、四肢麻木等中毒癥狀,尤其是兒童。
雖然豆角中的這兩種物質(zhì)對(duì)人體有毒,但它有自身的特點(diǎn)和弱點(diǎn),即不耐高溫。所以,做菜時(shí)一定要把豆角充分加熱煮熟。兩種毒素在高溫中可被分解而破壞,尤其是集體食堂食用豆角菜時(shí),應(yīng)作為食品衛(wèi)生來(lái)強(qiáng)調(diào)執(zhí)行。豆角兩頭及兩旁的絲要去除,因?yàn)檫@些部位的毒素含量較高。
市衛(wèi)生監(jiān)督所專家提醒:一旦發(fā)生豆角中毒,輕癥者對(duì)癥治療,及時(shí)補(bǔ)充因頻繁嘔吐、腹瀉而丟失的水分。中度以上的中毒者及時(shí)送醫(yī)院救治。采取催吐、洗胃、利尿、導(dǎo)瀉、補(bǔ)液等多種方法治療,一般很快恢復(fù)正常,不會(huì)造成其他影響。集體中毒事件應(yīng)及時(shí)報(bào)告衛(wèi)生監(jiān)督部門。
數(shù)學(xué)思想方法心得體會(huì)篇十五
《新課程標(biāo)準(zhǔn)》在總目標(biāo)中提出:通過(guò)義務(wù)教育階段的數(shù)學(xué)學(xué)習(xí),學(xué)生能獲得適應(yīng)社會(huì)生活和進(jìn)一步發(fā)展所必須的數(shù)學(xué)知識(shí)、基本技能、基本思想、基本活動(dòng)經(jīng)驗(yàn)。這句話對(duì)于我們新教師來(lái)已經(jīng)是爛熟于心,但對(duì)于這句話真正理解的少之又少,讀了王永春老師的《小學(xué)數(shù)學(xué)思想與數(shù)學(xué)思想方法》之后,對(duì)這句話才有了真正的認(rèn)識(shí)?!笆谌艘贼~不如授人以漁”,對(duì)于學(xué)生而言,數(shù)學(xué)知識(shí)在其次,數(shù)學(xué)方法才是最重要的,在這本書中,王老師為我們總結(jié)了小學(xué)數(shù)學(xué)知識(shí)中蘊(yùn)含的數(shù)學(xué)思想,這讓我們?cè)谌粘=虒W(xué)中可以結(jié)合所教知識(shí)很清楚地知道這些知識(shí)中蘊(yùn)含了哪些數(shù)學(xué)思想方法,為我們的教學(xué)提供了指導(dǎo)和幫助。
這學(xué)期我任三年級(jí)數(shù)學(xué),三年級(jí)上冊(cè)中的主要思想有:第3單元“測(cè)量”中學(xué)習(xí)的長(zhǎng)度單位:分米(dm)、毫米(mm)、千米(km)是符號(hào)化思想的應(yīng)用;第7單元“長(zhǎng)方形和正方形”中有些習(xí)題如本書中第25頁(yè)的“案例2”應(yīng)用了分類思想;第9單元“數(shù)學(xué)廣角――集合”中學(xué)習(xí)的重復(fù)問(wèn)題是集合思想的應(yīng)用;第8單元“分?jǐn)?shù)的初步認(rèn)識(shí)”中學(xué)生用一張正方形白紙可以折出不同的形狀表示它的1/4。在學(xué)生充分展示后,我們可以引導(dǎo)學(xué)生發(fā)現(xiàn)雖然形狀、大小不同,但都是把一張正方形白紙平均成4份,每份是它的1/4。這個(gè)教學(xué)過(guò)程中有變中有不變的思想的應(yīng)用。第8單元“分?jǐn)?shù)的初步認(rèn)識(shí)”中把一個(gè)圓形平均分,分的份數(shù)越多,分?jǐn)?shù)越小,如果一直分下去,可以對(duì)應(yīng)寫出無(wú)限多個(gè)分?jǐn)?shù)。
生活本身是一個(gè)巨大的數(shù)學(xué)課堂,生活中客觀存在著大量有價(jià)值的數(shù)學(xué)現(xiàn)象。指導(dǎo)學(xué)生運(yùn)用數(shù)學(xué)知識(shí)寫日記,能促使學(xué)生主動(dòng)地用數(shù)學(xué)的眼光去觀察生活,去思考生活問(wèn)題,讓生活問(wèn)題數(shù)學(xué)化。在教學(xué)中注重培養(yǎng)孩子運(yùn)用數(shù)學(xué)的意識(shí),增強(qiáng)學(xué)生運(yùn)用知識(shí)解決實(shí)際問(wèn)題的能力。由此可見,數(shù)學(xué)并不是靠老師教會(huì)的,而是在教師的指導(dǎo)下,靠學(xué)生自己學(xué)會(huì)的。在教學(xué)中教師要給學(xué)生創(chuàng)造情景、提供機(jī)會(huì),給學(xué)生充足的時(shí)間和空間,讓學(xué)生主動(dòng)探究新知,在探究中發(fā)現(xiàn)規(guī)律、歸納規(guī)律。因此,我們?cè)谡n堂教學(xué)中,多留些時(shí)間給學(xué)生,讓他們動(dòng)手操作;多留些時(shí)間給學(xué)生,自己的`意見;多留些時(shí)間給學(xué)生,讓他們質(zhì)疑問(wèn)難。保證充分的時(shí)間和空間,讓學(xué)生再課內(nèi)交流、討論、質(zhì)疑。
這本書教給了我們一種教學(xué)理念,教會(huì)了我們一種教學(xué)方法。讀書更是一種好的學(xué)習(xí)手段,它將帶領(lǐng)我們不斷更新、與時(shí)俱進(jìn),成為一名學(xué)生喜歡的、有專業(yè)素養(yǎng)的好老師。
數(shù)學(xué)思想方法心得體會(huì)篇十六
高考試題重在考查對(duì)知識(shí)理解的準(zhǔn)確性、深刻性,重在考查知識(shí)的綜合靈活運(yùn)用。它著眼于知識(shí)點(diǎn)新穎巧妙的組合,試題新而不偏,活而不過(guò)難;著眼于對(duì)數(shù)學(xué)思想方法、數(shù)學(xué)能力的考查。尤其是近幾年的高考試題加大了對(duì)考生應(yīng)用能力的考查,高考《考試說(shuō)明》中明確指出:“能綜合應(yīng)用所學(xué)數(shù)學(xué)知識(shí)、思想方法解決問(wèn)題,包括解決在相關(guān)學(xué)科、生產(chǎn)生活中的數(shù)學(xué)問(wèn)題……”、“有效地檢測(cè)考生對(duì)中學(xué)數(shù)學(xué)知識(shí)中所蘊(yùn)涵的數(shù)學(xué)思想和方法的掌握程度……”。高考的這種積極導(dǎo)向,決定了我們的數(shù)學(xué)復(fù)習(xí)中必須以數(shù)學(xué)思想指導(dǎo)知識(shí)、方法的運(yùn)用,整體把握各部分知識(shí)的內(nèi)在聯(lián)系。
高考復(fù)習(xí)有別于新知識(shí)的教學(xué)。它是在學(xué)生基本掌握了中學(xué)數(shù)學(xué)知識(shí)體系、具備了一定的解題經(jīng)驗(yàn)的基礎(chǔ)上的復(fù)課數(shù)學(xué),也是在學(xué)生基本認(rèn)識(shí)了各種數(shù)學(xué)基本方法、思維方法及數(shù)學(xué)思想的基礎(chǔ)上的復(fù)課數(shù)學(xué)。其目的在于深化學(xué)生對(duì)基礎(chǔ)知識(shí)的理解,完善學(xué)生的知識(shí)結(jié)構(gòu),在綜合性強(qiáng)的練習(xí)中進(jìn)一步形成基本技能,優(yōu)化思維品質(zhì),使學(xué)生在多次的練習(xí)中充分運(yùn)用數(shù)學(xué)思想方法,提高數(shù)學(xué)能力。高考復(fù)習(xí)是學(xué)生發(fā)展數(shù)學(xué)思想,熟練掌握數(shù)學(xué)方法理想的難得的深化過(guò)程。
數(shù)學(xué)思想方法心得體會(huì)篇十七
復(fù)習(xí)備考需要足夠數(shù)量的習(xí)題,只有針對(duì)性訓(xùn)練才能在中考得以正常發(fā)揮,只有每天動(dòng)筆適當(dāng)?shù)淖鲂┝?xí)題才能保持思維的連貫性。但僅僅做題還是遠(yuǎn)遠(yuǎn)不夠,需要解題后的反思與總結(jié)。在反思中才能進(jìn)一步看透問(wèn)題的本質(zhì),體會(huì)命題的意圖。在總結(jié)的過(guò)程中也才能優(yōu)化解題的思路,探索處理問(wèn)題規(guī)律,形成有自己特色的經(jīng)驗(yàn)。
在復(fù)習(xí)中既要注重?cái)?shù)學(xué)概念、法則、定理等基礎(chǔ)知識(shí)的梳理,更要關(guān)注解題后的反思與總結(jié),領(lǐng)會(huì)解題中蘊(yùn)含的數(shù)學(xué)思想方法,并通過(guò)不斷積累逐漸的納入自己已有的知識(shí)體系。在反思總結(jié)中可以從兩方面考慮:一是宏觀層面,如每復(fù)習(xí)一塊內(nèi)容后可以從主要知識(shí)考點(diǎn)、考點(diǎn)之間的聯(lián)系等去反思;二是微觀層面,如解題后的可以對(duì)所解題的結(jié)構(gòu)是否理解清楚,解題過(guò)程中運(yùn)用了哪些基礎(chǔ)知識(shí)和基本技能?哪些步驟易出錯(cuò)?原因何在?如何防止?也可以對(duì)解題的方法進(jìn)行評(píng)價(jià)找出最優(yōu)的解法,考慮解題中運(yùn)用了哪些思維方式、數(shù)學(xué)思想方法?想法是如何分析出來(lái)的?有無(wú)規(guī)律可循?也可以對(duì)解題步驟進(jìn)行分析,抓住解題的關(guān)鍵。如解題的難點(diǎn)在哪?我是如何突破的?能否用其他方法也得到同樣結(jié)果?其方法的優(yōu)劣所在?若能把反思與總結(jié)當(dāng)作一個(gè)經(jīng)常性、自覺(jué)性的學(xué)習(xí)行為,就會(huì)在不斷地積累和總結(jié)基本的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)中,提高數(shù)學(xué)知識(shí)的運(yùn)用能力。
......
函數(shù)思想,是指用函數(shù)的概念和性質(zhì)去分析問(wèn)題、轉(zhuǎn)化問(wèn)題和解決問(wèn)題。方程思想,是從問(wèn)題中的數(shù)量關(guān)系入手,運(yùn)用數(shù)學(xué)語(yǔ)言將問(wèn)題中的條件轉(zhuǎn)化為數(shù)學(xué)模型(方程、不......
數(shù)學(xué)思想方法心得體會(huì)篇十八
中學(xué)數(shù)學(xué)內(nèi)容從總體上可以分為兩個(gè)層次:一個(gè)稱為基礎(chǔ)知識(shí),另一個(gè)稱為深層知識(shí).基礎(chǔ)知識(shí)包括概念、性質(zhì)、法則、公式、公理、定理等數(shù)學(xué)的基本知識(shí)和基本技能,深層知識(shí)主要指數(shù)學(xué)思想和數(shù)學(xué)方法。
基礎(chǔ)知識(shí)是深層知識(shí)的基礎(chǔ),是教學(xué)大綱中明確規(guī)定的,教材中明確給出的,以及具有較強(qiáng)操作性的知識(shí).學(xué)生只有通過(guò)對(duì)教材的學(xué)習(xí),在掌握和理解了一定的基礎(chǔ)知識(shí)后,才能進(jìn)一步的學(xué)習(xí)和領(lǐng)悟相關(guān)的深層知識(shí)。
那種只重視講授基礎(chǔ)知識(shí),而不注重滲透數(shù)學(xué)思想、方法的復(fù)習(xí),是不完備的,它不利于對(duì)所學(xué)知識(shí)的真正理解和掌握,使學(xué)生的知識(shí)水平永遠(yuǎn)停留在一個(gè)初級(jí)階段,難以提高;反之,如果單純強(qiáng)調(diào)數(shù)學(xué)思想和方法,而忽略基礎(chǔ)知識(shí)的教學(xué),就會(huì)使復(fù)習(xí)流于形式,成為無(wú)源之水,無(wú)本之木,學(xué)生也難以領(lǐng)略到深層知識(shí)的真諦.因此,數(shù)學(xué)思想、方法的復(fù)習(xí)應(yīng)與整個(gè)基礎(chǔ)知識(shí)的融為一體,使學(xué)生逐步掌握有關(guān)的深層知識(shí),提高數(shù)學(xué)能力,形成良好的數(shù)學(xué)素質(zhì)。這也是數(shù)學(xué)思想方法復(fù)習(xí)的基本原則。

