總結(jié)有助于培養(yǎng)我們的思維能力和分析問題的能力,提高我們的學(xué)習(xí)效果。總結(jié)要具備可操作性,即能夠指導(dǎo)實際行動和改進方法。這些總結(jié)范文涵蓋了不同領(lǐng)域和不同主題,具有很高的參考價值。
大學(xué)數(shù)學(xué)建模論文篇一
“摘要”是對整篇論文的縮寫,建立在通讀全文、理解全文的基礎(chǔ)之上。評審專家評閱論文時,總是先看摘要,摘要給專家留下第一印象,是評獎的敲門磚。“摘要”包括:問題背景,要達到什么目標,解決問題的思路、方法和步驟,模型的主要內(nèi)容、算法和結(jié)論,模型的特色。好的“摘要”能很快吸引評審專家的注意力,它建立在多次修改、反復(fù)推敲的基礎(chǔ)之上,具有統(tǒng)攬全文、層次分明、重點突出、文筆流暢的特點。
“問題提出”也可寫作“問題重述”。是將競賽試題所給定的問題背景和解題要求用論文書寫者自己的語言重新表述。在美國的數(shù)學(xué)建模競賽中,這一部分稱為background或者introduction。
任何問題的求解都有它的背景和適用范圍,建模試題來自于現(xiàn)實問題,同樣受到各種外在因素的約束?!澳P图僭O(shè)”就是界定一個范圍,或給出幾個約束條件,一使得問題的解決過程不至于太復(fù)雜,二使得其他人在使用該模型時知曉它的適用范圍?!澳P图僭O(shè)”不是憑空臆造的,是在建立模型的過程中挖掘、提煉出來的。
數(shù)學(xué)符號是數(shù)學(xué)語言的基本元素,具有抽象性、準確性、簡潔性的特點。數(shù)學(xué)模型由數(shù)學(xué)符號組成,模型的求解通過符號的運算來完成??梢?,在建立數(shù)學(xué)模型時根據(jù)需要隨時引入必要的數(shù)學(xué)符號是多么重要的事情。根據(jù)競賽要求,在建立模型的過程中所引入的數(shù)學(xué)符號要在本模塊給出說明,最好的說明方式是列一個表格。
眾所周知,解決數(shù)學(xué)問題最難、最重要的一步就是明確解題思路,確定解題方法。而“分析”,則是邁出這一步的關(guān)鍵。數(shù)學(xué)建模也這樣。建模試題往往由幾個子問題組成,這時的“問題分析”既要有全局分析,也要有局部分析。“問題分析”包括:分析解決該問題需要用到哪些專業(yè)背景知識;分析解決問題的切入點、重點和難點;分析解決問題的思路、方法、工具和步驟。這樣的分析對于“如何建立模型?采用哪些數(shù)學(xué)理論或公式?怎樣求解?會遇到哪些困難?”具有指導(dǎo)作用。
“模型建立”就是將原問題抽象成數(shù)學(xué)的表示式,主要步驟:
第一步,根據(jù)問題的實際背景和專業(yè)背景,選擇適當?shù)臄?shù)學(xué)理論或工具。例如,如果是變化率問題,則考慮借助于導(dǎo)數(shù)或微分方程的手段;如果涉及面積、體積、曲線弧長、功、流量等幾何量或物理量,則考慮運用積分元素法,將問題轉(zhuǎn)化為定積分、或重積分、或曲線曲面積分;如果是隨機數(shù)據(jù)的處理,則考慮統(tǒng)計分析的方法。
第二步,確定常量、變量,用符號來表示這些量。
第三步,建立數(shù)學(xué)模型,即建立常量、變量之間的關(guān)系。這種關(guān)系可以是方程、函數(shù)或表格。
少數(shù)模型可能是簡單的數(shù)學(xué)式子,求解起來比較容易。有些模型雖然也可用數(shù)學(xué)式子表示,但其中含有難以析出的參數(shù),求解很困難,有的模型面對的就是一堆數(shù)據(jù),對于這兩種情形,就需要借助于軟件matlab,mathematic,maple,sas,spss中的某一個編程求解。
數(shù)學(xué)建模競賽的題目來自于科技、工程、經(jīng)濟、社會等領(lǐng)域的實際問題。由于問題的復(fù)雜性和方法的局限性,所建立的數(shù)學(xué)模型與實際情況之間會有差距,模型可靠性的檢驗成為必然。為了檢驗提交的數(shù)學(xué)模型與實際情況吻合的程度,競賽題中往往會提供一些來自于背景問題的實驗數(shù)據(jù)?!澳P蜋z驗”就是將給定的數(shù)據(jù)代入模型,計算相對誤差和絕對誤差,如果誤差較大,就要返回去調(diào)整模型以提高可靠性。
該標題也可寫成“模型的優(yōu)缺點分析”。分析模型有哪些優(yōu)點,缺點是什么。也有人將這里的標題改寫為“模型評價、推廣與改進”。其中的“推廣”是將前述“模型假設(shè)”中的某些條件適當放寬,看看結(jié)果會怎樣?!案倪M”是指對模型或算法做出某種改進。
列式參考的主要文獻。
詳細的軟件程序、程序運算過程、運算結(jié)果;用于模型檢驗的數(shù)據(jù)表格;其他不宜放在正文中的數(shù)據(jù)表格。
大學(xué)數(shù)學(xué)建模論文篇二
數(shù)學(xué)是一門應(yīng)用性較強的學(xué)科,與實際生活具有緊密的聯(lián)系,而數(shù)學(xué)建模主要是指將人們的現(xiàn)實問題演變?yōu)閷W(xué)生的數(shù)學(xué)學(xué)習(xí)問題的過程中,這種思想在教學(xué)過程中的有效應(yīng)用,有助于培養(yǎng)學(xué)生的數(shù)學(xué)思維能力和創(chuàng)新能力,有效提升數(shù)學(xué)教學(xué)質(zhì)量。所以對于數(shù)學(xué)建模思想在大學(xué)數(shù)學(xué)教學(xué)過程中應(yīng)用的探索具有重要意義。
一、建模思想在大學(xué)數(shù)學(xué)教學(xué)中應(yīng)用的重要性
(一)激發(fā)學(xué)生的學(xué)習(xí)興趣
建模思想在大學(xué)數(shù)學(xué)教學(xué)中的應(yīng)用,對于激發(fā)學(xué)生的數(shù)學(xué)學(xué)習(xí)興趣具有重要作用。文中提到,數(shù)學(xué)建模主要是指將人們的現(xiàn)實問題演變?yōu)閷W(xué)生的數(shù)學(xué)學(xué)習(xí)問題的過程中,通過這種教學(xué)方式,能夠?qū)?shù)學(xué)教學(xué)過程中的數(shù)學(xué)理論與學(xué)生的具體生活實踐有機結(jié)合,有利于學(xué)生對于數(shù)學(xué)理論知識的理解和把握,激發(fā)了學(xué)習(xí)興趣,增加了學(xué)習(xí)的主動性和積極性,提升了學(xué)生解決實際問題的能力。
(二)推進教學(xué)改革
在實際教學(xué)過程中,大學(xué)數(shù)學(xué)教學(xué)越來越注重理論性知識的教學(xué),導(dǎo)致數(shù)學(xué)教學(xué)內(nèi)容比較抽象,使得學(xué)生對數(shù)學(xué)知識的理解變得越來越困難。但是建模思想在數(shù)學(xué)教學(xué)中的應(yīng)用,有效破解了這一問題,將抽象的知識融合到解決實際問題中,提升學(xué)生對于難點知識的理解,促進學(xué)生吸收知識和消化知識。這種教學(xué)模式是傳統(tǒng)教學(xué)方法和教學(xué)手段的新突破。并且這種教學(xué)模式還打破了傳統(tǒng)的大學(xué)數(shù)學(xué)教學(xué)模式,對于推進大學(xué)數(shù)學(xué)教學(xué)工作的改革具有重要作用。
(三)培養(yǎng)學(xué)生的數(shù)學(xué)能力
一方面利用建模思想進行大學(xué)數(shù)學(xué)教學(xué)時,通過將學(xué)生的實際生活問題引入到教學(xué)之中,可以搭建起學(xué)生與數(shù)學(xué)知識之間的情感共鳴,激發(fā)學(xué)生探究數(shù)學(xué)知識的興趣,使學(xué)生主動地融入到課堂教學(xué)之中,從而培養(yǎng)學(xué)生的探索能力和創(chuàng)新精神。另一方面這種教學(xué)模式有利于學(xué)生吸收知識,消化知識,提升今后工作或?qū)W習(xí)中運用所學(xué)的數(shù)學(xué)知識解決實際問題的能力[1]。
二、建模思想在大學(xué)數(shù)學(xué)教學(xué)中的應(yīng)用探索
(一)注重引導(dǎo)學(xué)生的自主學(xué)習(xí)
實際應(yīng)用建模思想進行大學(xué)數(shù)學(xué)教學(xué)工作時,教師要注重引導(dǎo)學(xué)生進行自主學(xué)習(xí),以提高學(xué)生的實際學(xué)習(xí)質(zhì)量和效率,培養(yǎng)學(xué)生的探索精神和學(xué)習(xí)意識。當前我國的大學(xué)數(shù)學(xué)教學(xué)中主要有微積分、線性代數(shù)和概率論以及數(shù)理統(tǒng)計等三門主干課程。在實際教學(xué)中,教學(xué)框架和教學(xué)模式比較固定,數(shù)學(xué)教學(xué)概念比較抽象,數(shù)學(xué)公式的推導(dǎo)比較嚴謹。所以在應(yīng)用建模思想進行大學(xué)數(shù)學(xué)教學(xué)時,就需要在總體教學(xué)框架下,對教學(xué)內(nèi)容進行適當改進,注重對學(xué)生自主學(xué)習(xí)的引導(dǎo)。
(二)注重激發(fā)學(xué)生的學(xué)習(xí)興趣
合理激發(fā)學(xué)生的學(xué)習(xí)效果對于促進建模思想在大學(xué)數(shù)學(xué)教學(xué)中的應(yīng)用具有重要作用和意義。在實際教學(xué)過程中,教師可以針對學(xué)生感興趣的話題或數(shù)學(xué)知識點,導(dǎo)入相關(guān)的數(shù)學(xué)知識,以激發(fā)學(xué)生的學(xué)習(xí)興趣。例如:教師在進行大學(xué)數(shù)學(xué)的數(shù)學(xué)概率及其相關(guān)知識的實際教學(xué)工作時,可以引入學(xué)生比較感興趣的緣分話題,引導(dǎo)學(xué)生進行擇偶最佳法則的推導(dǎo)。通過這種教學(xué)模式,既能夠滿足學(xué)生的學(xué)習(xí)興趣,同時又能夠?qū)W(xué)生的數(shù)學(xué)知識應(yīng)用到實際的生活之中,可以起到事半功倍的教學(xué)效果,對于促進建模思想在大學(xué)數(shù)學(xué)教學(xué)中的應(yīng)用具有重要作用。
(三)注重改進教學(xué)考核形式
在大學(xué)數(shù)學(xué)教學(xué)中應(yīng)用數(shù)學(xué)建模思想,教師還應(yīng)注重對教學(xué)考核形式的`改革。當前大學(xué)的數(shù)學(xué)教學(xué)考核形式大都采用傳統(tǒng)的閉卷考試的考核形式,這種考核方式嚴重不利于教師對學(xué)生整體學(xué)習(xí)情況的了解,同時也沒有突出對學(xué)生的實際數(shù)學(xué)應(yīng)用能力和解決問題能力的考核。所以在應(yīng)用建模思想進行大學(xué)數(shù)學(xué)教學(xué)時,要注重對教學(xué)考核形式的改進。例如:教師在實際教學(xué)時可以突出學(xué)生的平時成績考核。教師可以對學(xué)生的課堂表現(xiàn)以及對數(shù)學(xué)問題的探索等進行記錄,將其作為學(xué)生的考核依據(jù),從而保障教學(xué)考核的有效性[2]。建模思想在大學(xué)數(shù)學(xué)教學(xué)中的引用,對于激發(fā)學(xué)生的學(xué)習(xí)興趣,提高教學(xué)質(zhì)量和效率具有重要作用。在大學(xué)數(shù)學(xué)教學(xué)大學(xué)未來發(fā)展中,要更加注重對建模思想的應(yīng)用和探索,促進大學(xué)數(shù)學(xué)教學(xué)工作的未來發(fā)展。
參考文獻:
[1]宋志廣.對高校數(shù)學(xué)建模方法教學(xué)策略的研究[j].教育,(2):82.
[2]王洋.如何激發(fā)高職院校學(xué)生對大學(xué)數(shù)學(xué)的學(xué)習(xí)興趣――以數(shù)學(xué)建模為突破口[j].時代教育,(7):249.
大學(xué)數(shù)學(xué)建模論文篇三
數(shù)學(xué)建模是指利用數(shù)學(xué)符號對數(shù)學(xué)實踐問題以公式形式表述出來,再通過相關(guān)計算解決實際問題。數(shù)學(xué)建??梢詾閷W(xué)生創(chuàng)設(shè)適宜的學(xué)習(xí)條件,讓學(xué)生在假設(shè)、研究、分析、比對中形成學(xué)習(xí)結(jié)論。教師要借助教學(xué)內(nèi)容展開滲透操作,利用實際問題為學(xué)生創(chuàng)設(shè)實踐機會,根據(jù)教法改進滲透建模思想,從而促進建模思想的全面滲透,提升學(xué)生的數(shù)學(xué)核心素養(yǎng)。
一、借助教學(xué)內(nèi)容滲透建模思想
在數(shù)學(xué)教學(xué)過程中,教師要對教材內(nèi)容進行篩選和剖析,找到文本思維和生本思維的對接點,讓學(xué)生順利介入數(shù)理討論學(xué)習(xí)之中。教師利用教學(xué)內(nèi)容對學(xué)生滲透數(shù)學(xué)建模思想,利用教輔手段創(chuàng)設(shè)教學(xué)環(huán)境,可以有效喚醒學(xué)生的數(shù)學(xué)思維。利用多媒體創(chuàng)設(shè)教學(xué)情境,運用數(shù)學(xué)公式進行數(shù)學(xué)推演操作,都涉及數(shù)學(xué)建模思想的滲透。因此,教師要積極整合教學(xué)內(nèi)容。借助教學(xué)內(nèi)容滲透建模思想時,教師要結(jié)合多種教學(xué)調(diào)查情況展開相關(guān)操作。篩選教學(xué)內(nèi)容時,教師需要觀照不同群體學(xué)生的不同學(xué)力基礎(chǔ)。如解讀定積分概念時,教師可以通過推導(dǎo)曲邊梯形的面積公式,鼓勵學(xué)生對曲邊梯形進行分割、歸類、求和、取極限等實際操作,建立定積分數(shù)學(xué)模型,并讓學(xué)生在實際操作中完成對物體體積和質(zhì)量的具體計算。這些數(shù)學(xué)模型具有廣泛性,學(xué)生在實踐中再遇到類似情境時,也會運用相關(guān)模型進行實際操作。推演數(shù)學(xué)公式時,教師可引入建模思想,讓學(xué)生參與問題的設(shè)計、推演、驗證,并利用推演結(jié)果反過來解決實際問題,給學(xué)生帶去全新的學(xué)習(xí)體驗。教師根據(jù)教學(xué)內(nèi)容滲透數(shù)學(xué)建模思想,能夠為學(xué)生提供更清晰的學(xué)習(xí)渠道,能夠促使學(xué)生運用現(xiàn)成的數(shù)學(xué)模型來解決數(shù)學(xué)問題,進而加深對知識的理解。
二、利用實際問題滲透建模思想
教師在數(shù)學(xué)建模教學(xué)實施過程中,需要有接軌生活的意識。數(shù)學(xué)來源于生活,教師結(jié)合生活實際問題滲透建模思想,可以有效提升學(xué)生的數(shù)學(xué)概念意識,并使學(xué)生在假設(shè)、推理、驗證過程中形成數(shù)學(xué)能力。利用生活實際問題滲透數(shù)學(xué)建模思想,符合學(xué)生數(shù)學(xué)認知成長的`實際需要,教師要結(jié)合學(xué)生的數(shù)學(xué)知識掌握情況展開設(shè)計,讓學(xué)生利用已知數(shù)學(xué)等量關(guān)系解決實際問題,這勢必能促使學(xué)生形成數(shù)理認知基礎(chǔ)。高職數(shù)學(xué)教學(xué)中,教師不妨鼓勵學(xué)生展開質(zhì)疑活動,讓學(xué)生列舉疑惑問題,對這些問題進行整合優(yōu)化處理,并結(jié)合數(shù)理知識進行實踐探索。這些也屬于數(shù)學(xué)建模思想的滲透。如教學(xué)“假設(shè)檢驗”時,教師可讓學(xué)生展開假設(shè)創(chuàng)設(shè),并通過多重操作實踐進行檢驗。另外,教師設(shè)計課外作業(yè)時,也可滲透數(shù)學(xué)建模思想,讓學(xué)生運用建模思想解決實際問題,以提升學(xué)生的數(shù)學(xué)綜合素質(zhì)。數(shù)學(xué)建模思想不僅是一種數(shù)學(xué)認知理論,還是一種解決數(shù)學(xué)問題的方法和措施。學(xué)生結(jié)合生活實際和學(xué)習(xí)認知基礎(chǔ)展開相關(guān)操作,自然能夠促進數(shù)學(xué)基本技能的提升。高職數(shù)學(xué)具有較強的抽象性,教師要針對學(xué)生的學(xué)力基礎(chǔ),為學(xué)生布設(shè)適宜的學(xué)習(xí)任務(wù)。結(jié)合學(xué)生生活實際提出問題,利用建模思想解決問題,需要關(guān)涉很多專業(yè)理論,教師應(yīng)該進行示范操作,讓學(xué)生有學(xué)習(xí)的榜樣,這樣才能提升數(shù)學(xué)課堂教學(xué)效度。
三、借助教法改進滲透建模思想
教師要重視數(shù)學(xué)學(xué)法的傳授,增加教學(xué)的靈活性、針對性和實踐性。由于高職學(xué)生學(xué)力基礎(chǔ)、學(xué)習(xí)悟性、學(xué)習(xí)習(xí)慣等存在差距,所以教師需要做好學(xué)情調(diào)查,降低數(shù)學(xué)學(xué)習(xí)難度,運用簡單通俗的語言解讀抽象的數(shù)學(xué)概念。這樣,學(xué)生才能聽得明白、學(xué)得好。滲透建模思想時,教師需要鼓勵學(xué)生主動參與數(shù)理討論互動,這不僅能引導(dǎo)學(xué)生展開質(zhì)疑、釋疑活動,還有利于學(xué)生樹立數(shù)學(xué)建模理念,形成良性學(xué)習(xí)認知。教師打破傳統(tǒng)教法束縛,采用先進的計算工具、數(shù)學(xué)軟件、多媒體等教學(xué)輔助手段,或者利用網(wǎng)絡(luò)搜集平臺展開教學(xué)設(shè)計,都可以為學(xué)生提供難得的學(xué)習(xí)契機。高職學(xué)生通常擁有一定的信息技術(shù)應(yīng)用能力,教師可借助信息媒體展開教學(xué)設(shè)計,與學(xué)生的生活認知接軌。如翻轉(zhuǎn)課堂的適時介入,便屬于數(shù)學(xué)建模典范設(shè)計。多數(shù)學(xué)生都有智能手機,可以隨時隨地參與網(wǎng)絡(luò)信息共享活動,因此,教師應(yīng)具備信息共享和網(wǎng)絡(luò)互動意識,為學(xué)生布設(shè)相關(guān)學(xué)習(xí)任務(wù),讓學(xué)生在多元互動操作中逐漸達成學(xué)習(xí)共識,進而建立數(shù)理綜合認知體系。將數(shù)學(xué)建模思想滲透到教學(xué)過程之中,每一個環(huán)節(jié)都有可能,教師要做好全面考量,針對學(xué)生實際進行科學(xué)設(shè)計。教師要加強對數(shù)學(xué)建模思想方法的研究,并將這些方法與學(xué)生學(xué)習(xí)實踐相結(jié)合,從而調(diào)動學(xué)生的數(shù)理學(xué)習(xí)思維,提升學(xué)生的數(shù)學(xué)應(yīng)用品質(zhì)??傊?,高職數(shù)學(xué)教學(xué)中滲透建模思想時,教師需要具備整合意識,對建模資源信息展開搜集整理,對學(xué)生學(xué)力基礎(chǔ)進行全面判斷,為建模思想的順利滲透創(chuàng)造良好條件。數(shù)學(xué)教學(xué)設(shè)計應(yīng)不斷更新,教師教學(xué)水平也亟待提升,而建模思想的全面滲透,給教師的教學(xué)帶來了全新契機。教師要根據(jù)教學(xué)實際展開創(chuàng)新設(shè)計,有效提升數(shù)學(xué)課堂教學(xué)效率。
參考文獻:
[1]李建杰.數(shù)學(xué)建模思想與高職數(shù)學(xué)教學(xué)[j].河北師范大學(xué)學(xué)報,2013(06).
[2]劉學(xué)才.高職數(shù)學(xué)建模教學(xué)的現(xiàn)狀及對策[j].湖北職業(yè)技術(shù)學(xué)院學(xué)報,(07).
大學(xué)數(shù)學(xué)建模論文篇四
【摘 要】本文重點分析了數(shù)學(xué)建模對當前數(shù)學(xué)教育教學(xué)改革的現(xiàn)實意義,探討了數(shù)學(xué)建模對學(xué)生應(yīng)用數(shù)學(xué)能力的培養(yǎng),闡述了計算機在數(shù)學(xué)建模競賽中的作用和地位,最后介紹了數(shù)學(xué)建模對數(shù)學(xué)教學(xué)改革的啟示意義。
【關(guān)鍵詞】數(shù)學(xué)建模;綜合素質(zhì);教學(xué)改革
長期以來,我國的數(shù)學(xué)教學(xué)中一直普遍存在著重結(jié)論而輕過程、重形式而輕內(nèi)容、重解法而輕應(yīng)用等弊端,不注重學(xué)生數(shù)學(xué)能力和素質(zhì)的培養(yǎng);過分強調(diào)對定義、定理、法則、公式等知識的灌輸與講授,不注重這些知識的應(yīng)用,割斷了理論與實際的聯(lián)系,造成學(xué)與用的嚴重脫節(jié),致使在我們的數(shù)學(xué)教育體制下培養(yǎng)出來的學(xué)生的能力結(jié)構(gòu)都形成了一種嚴重的病態(tài),主要表現(xiàn)在:數(shù)學(xué)理論知識掌握得還可以,但應(yīng)用知識的能力很差,不能學(xué)以致用,缺乏創(chuàng)造力和解決實際問題的能力,這些問題使我們的學(xué)生在走向工作崗位時上手速度慢,面對新的數(shù)學(xué)問題時束手無策,不能將所學(xué)的知識靈活運用到實際中去。顯然,這種教育體制和理念與現(xiàn)代教育理念是背道而馳的,是必須拋棄的。開展數(shù)學(xué)建模教學(xué)或數(shù)學(xué)建模競賽,能夠培養(yǎng)學(xué)生各方面的綜合能力,提高學(xué)生的綜合素質(zhì),對于當前數(shù)學(xué)教育教學(xué)改革有著極為重要的現(xiàn)實意義。
1 數(shù)學(xué)建模能夠豐富和優(yōu)化學(xué)生的知識結(jié)構(gòu),開拓學(xué)生的視野
數(shù)學(xué)建模所涉及到的許多問題都超出了學(xué)生所學(xué)的專業(yè),例如“基金的最佳適用”、“會議籌備”、“地震搜索”等許多建模問題,分別屬于不同的學(xué)科與專業(yè),為了解決這些問題,學(xué)生必須查閱和學(xué)習(xí)與該問題相關(guān)的專業(yè)書籍和科技資料,了解這些專業(yè)的相關(guān)知識,從而軟化或削弱了目前教育中僵死的專業(yè)界限,使學(xué)生掌握寬廣而扎實的基礎(chǔ)知識,使他們不斷拓寬分析問題、解決問題的思路,朝著復(fù)合型人才和具備全面綜合素質(zhì)人才的方向發(fā)展。
2 數(shù)學(xué)建??梢耘囵B(yǎng)學(xué)生利用數(shù)學(xué)知識解決實際問題的能力
數(shù)學(xué)建模要求建模者利用自己所掌握的數(shù)學(xué)知識及對實際問題的理解,通過積極主動的思維,提出適當?shù)募僭O(shè),并建立相應(yīng)的數(shù)學(xué)模型,進而利用恰當?shù)臄?shù)學(xué)方法(現(xiàn)有的或新創(chuàng)造的)求解此模型,并對解做出評價,必要時對模型做出改進。這一過程包括了歸納、整理、推理、深化等活動,因此把數(shù)學(xué)建模引入課堂教學(xué),必將改變目前數(shù)學(xué)教學(xué)只見定義、定理不見問題背景的局面,必將改變知識僵化、學(xué)而不用的局面,從而調(diào)動了學(xué)生學(xué)習(xí)的積極性,培養(yǎng)了學(xué)生解決實際問題的能力。
3 數(shù)學(xué)建模能夠培養(yǎng)學(xué)生的創(chuàng)造力、想象力、聯(lián)想力和洞察力
數(shù)學(xué)模型來源于客觀實際,錯綜復(fù)雜,沒有現(xiàn)成的答案和固定的模式,因此學(xué)生在建立和求解這類模型時,必須積極動腦,而且常常需要另辟蹊徑,在這里,常常會迸發(fā)出打破常規(guī)、突破傳統(tǒng)的思維火花,通過這種實踐活動,可以培養(yǎng)學(xué)生的創(chuàng)造能力,促使他們在頭腦中樹立推崇創(chuàng)新、追求創(chuàng)新和以創(chuàng)新為榮的意識。在從實際問題中抽象出數(shù)學(xué)模型的過程中,須把實際關(guān)系轉(zhuǎn)化為數(shù)學(xué)關(guān)系,這要求他們敢于想象和聯(lián)想,此外他們還要從貌似不同的問題中抓住其本質(zhì)的和共性的東西,這將培養(yǎng)他們把握問題內(nèi)在本質(zhì)的能力,即洞察力,可以說,培養(yǎng)學(xué)生的這些能力始終貫穿在數(shù)學(xué)建模的整個過程。
4 數(shù)學(xué)建??梢耘囵B(yǎng)學(xué)生熟練地運用計算機的能力
5 數(shù)學(xué)建??梢栽鰪姶髮W(xué)生的適應(yīng)能力
通過數(shù)學(xué)建模的學(xué)習(xí)及競賽訓(xùn)練,他們不僅受到了現(xiàn)代數(shù)學(xué)思維及方法的熏陶,更重要的是對不同的實際問題,如何進行分析、推理、概括以及如何利用數(shù)學(xué)方法與計算機知識,還有各方面的知識綜合起來解決它。因此,他們具有較高的素質(zhì),無論以后到哪個行業(yè)工作,都能很快適應(yīng)需要。不僅如此,由于建模決不是一件輕而易舉的事,需要學(xué)生對實際問題進行反復(fù)多次的研究、分析、觀察和對模型進行反復(fù)多次的計算、論證及修改等,整個過程是一個非常艱辛的探索過程,這可以培養(yǎng)學(xué)生高度的責(zé)任感、堅韌不拔的毅力、遭遇挫折后較強的心理承受能力以及孜孜不倦、精益求精的探索精神,使他們具有良好的心理素質(zhì)與精神狀態(tài)。同時數(shù)學(xué)建模一般都是由幾個人組成的團隊來完成的,其成功與否,完全取決于大家的密切合作,既要合理分工,又要密切配合,這樣又可以培養(yǎng)學(xué)生的組織管理能力、協(xié)調(diào)能力和相互協(xié)作的團隊精神,這些對他們今后走向工作崗位都是大有裨益的。
此外,數(shù)學(xué)建模從教育觀念、內(nèi)容、形式和手段都有一定的創(chuàng)新,對數(shù)學(xué)教學(xué)改革有積極的啟示意義。首先,數(shù)學(xué)建模突出了教與學(xué)的雙主體性關(guān)系。教師要根據(jù)學(xué)生的學(xué)習(xí)興趣、能力及特點,不斷修正自己的教育內(nèi)容和方法。學(xué)生要對教師所給予的信息有批判性地、創(chuàng)造性地、發(fā)展性地能動反映,要在相互討論、相互啟發(fā)下尋求更多更好的解答方案。這種雙主體的關(guān)系是對傳統(tǒng)教學(xué)方式的根本突破。
其次,數(shù)學(xué)建模促進了課程體系和教學(xué)內(nèi)容的改革。長期以來,我們的課程設(shè)置和教學(xué)內(nèi)容都具有強烈的理科特點:重基礎(chǔ)理論、輕實踐應(yīng)用;重傳統(tǒng)的經(jīng)典數(shù)學(xué)內(nèi)容、輕離散的數(shù)值計算。然而,數(shù)學(xué)建模所要用到的主要數(shù)學(xué)方法和數(shù)學(xué)知識恰好正是被我們長期所忽視的那些內(nèi)容。因此,這迫使我們調(diào)整課程體系和教學(xué)內(nèi)容。比如可增加一些應(yīng)用型、實踐類課程等等;在其余各門課程的教學(xué)中,也要盡量注意到使數(shù)學(xué)理論與應(yīng)用相結(jié)合,增加實際應(yīng)用方面的內(nèi)容和例題,從而使教學(xué)內(nèi)容也得到了更新。
再次,數(shù)學(xué)建模增加了教師對新興科技知識的傳授,拓寬了學(xué)生的知識面。這些特點對于目前數(shù)學(xué)教材中存在的內(nèi)容陳舊、知識面狹窄及形式呆板等問題,具有借鑒作用。數(shù)學(xué)建模的試題通常聯(lián)系新興的學(xué)科,在科學(xué)技術(shù)迅猛發(fā)展的今天,各種新興學(xué)科、邊緣學(xué)科、交叉學(xué)科不斷涌現(xiàn),廣博的知識面和對新興科學(xué)技術(shù)的追蹤能力是獲得成功的關(guān)鍵因素之一。
數(shù)學(xué)建模不僅有利于學(xué)生更好的掌握知識、運用知識,也有利于高校的科研和教學(xué),使學(xué)生和教師能在平時的學(xué)習(xí)、工作中自動形成勤于思考的好習(xí)慣,數(shù)學(xué)建模競賽與學(xué)生畢業(yè)以后工作時的條件非常相近,是對學(xué)生業(yè)務(wù)、能力和素質(zhì)的全面培養(yǎng),特別是開放性思維和創(chuàng)新意識,這項活動的開展有利于學(xué)生的全面素質(zhì)的培養(yǎng),既豐富、活躍了廣大學(xué)生的課外生活,也為優(yōu)秀學(xué)員脫穎而出創(chuàng)造了條件。
【參考文獻】
[1]顏筱紅,粱東穎。高職院校數(shù)學(xué)建模教學(xué)的研究[j].廣西教育,2013(2):54,134.
[3]李大潛。中國大學(xué)生數(shù)學(xué)建模競賽[m].2版。北京:高等教育出版社,2001.
[4]謝金星。2008高教社杯全國大學(xué)生數(shù)學(xué)建模競賽[j].工程數(shù)學(xué)學(xué)報,2008(25):1-2.
大學(xué)數(shù)學(xué)建模論文篇五
1、海選和優(yōu)選有機結(jié)合借助紙質(zhì)宣傳單、大型講座等方式進行數(shù)學(xué)建模競賽的宣傳,對其作用以及影響進行充分的講解,鼓勵校園內(nèi)的同學(xué)來積極的進行參加。倘若想要參與其中的同學(xué)人數(shù)過多時,畢竟參賽名額是有一定限制的,可以利用面試的方式對其進行篩選。為不打擊學(xué)生的積極性,在條件允許的情況下,可以盡可能保留更多的參賽者,通過面試成績把大家劃分為正式參賽隊和業(yè)余參賽隊。
2、充分利用現(xiàn)有資源在進行數(shù)學(xué)建模競賽組隊時,應(yīng)充分的全面考慮有效利用現(xiàn)有的資源。首先是要掌握不同隊伍中不同人員屬于什么年級,其次了解她們的每個人學(xué)習(xí)狀況以及所學(xué)專業(yè)等等,通常來說,同一隊伍中的每個人最理想的狀態(tài)是學(xué)習(xí)不同專業(yè)的,如此一來大家可以做到取長補短,理論知識與實踐動手兩手抓,一個團隊里需要出眾的知識更需要過人的文筆。如此一來才能保證隊伍的整體實力,力爭在建模競賽中取得好成績。
3、重點培訓(xùn)在對學(xué)生進行賽前相關(guān)培訓(xùn)時,在培訓(xùn)的過程中,教師可根據(jù)自身的擅長專題,來進行相關(guān)內(nèi)容的講解,與此同時結(jié)合不同隊伍的自身特點劃設(shè)側(cè)重點,同學(xué)之間的接受能力也是各不同的,能力強的可以開小灶,沒有相關(guān)競賽經(jīng)驗的要進行重點培訓(xùn),這種因人而異的講解模式確保不同能力的同學(xué),在培訓(xùn)中的過程中都能夠?qū)W有所獲。
4、合理分工密切合作在參加數(shù)學(xué)建模競賽的同學(xué)得到競賽試題之后,老師應(yīng)該及時幫助學(xué)生進行試題分析與指導(dǎo),根據(jù)團隊內(nèi)不同人員的實際情況以及試題的具體內(nèi)容難易,進行針對性的講解從而對同學(xué)們進行合理分工,確保每個人所負責(zé)的部分都是自己相較于其他人而言是最擅長的。值得注意的是,雖然進行分工,但這并不是絕對的分割,而是有側(cè)重的合理分工,彼此之間的密切合作才是核心,畢竟建模競賽中需要的是團隊協(xié)作,而不是英雄主義。
5、堅持可持續(xù)發(fā)展培訓(xùn)師資隊伍必須要有新鮮血液不斷注入,以老帶新最佳的血液注入方式,面對朝氣蓬勃的參賽學(xué)生,培訓(xùn)師資隊伍既要有身經(jīng)百戰(zhàn)經(jīng)驗豐富的老師,也要有跟他們擁有更多共同話題的青年教師。在此期間通過不斷的學(xué)習(xí),青年教師跟同學(xué)們共同成長,從而保證師資隊伍的可持續(xù)發(fā)展。
二、大學(xué)生數(shù)學(xué)建模競賽組織和管理方式的探索
1、進行課程教學(xué)并給出有效的教學(xué)計劃每個學(xué)生的知識儲備都有著各自的特點,借助良好的教育對學(xué)生們的知識架構(gòu)進行完善,實現(xiàn)培養(yǎng)出學(xué)生強大能力的目標,數(shù)學(xué)建模對學(xué)生來說裨益良多,被視作是大學(xué)校園中必備課程之一。但是進行課程開展的時候,要根據(jù)不同的培訓(xùn)對象大致分為以下兩類:第一、以選修課形式開設(shè)數(shù)學(xué)建模競賽課程,選修課程所面向的群體為整個學(xué)校的所有學(xué)生。第二、以必修課的方式開設(shè)數(shù)學(xué)建模競賽課程,必修課就要有針對性,因為并不是所有的學(xué)生都需要學(xué)習(xí)數(shù)學(xué),所以必修課針對的群體應(yīng)該是數(shù)學(xué)專業(yè)的學(xué)生。不同性質(zhì)的課程在教授上應(yīng)該有所區(qū)分,內(nèi)容的深淺也要有適當?shù)恼{(diào)整。
2、利用建模教學(xué)實現(xiàn)知識與能力雙培養(yǎng)有效的教學(xué)是獲得數(shù)學(xué)建模競賽好成績的最佳途徑,但是教學(xué)的過程中要注重數(shù)學(xué)知識與實踐能力的均衡共同培養(yǎng),不能過分的注重知識的灌輸,而忽略了建模相關(guān)能力的培養(yǎng),對二者的培養(yǎng)必須要并駕齊驅(qū),如此才能真正的'掌握數(shù)學(xué)建模的精髓,從而在競賽中取得良好的成績。
3、數(shù)學(xué)建模競賽隊員的篩選數(shù)學(xué)建模所需要的人才是全方面的人才,除此之外還要對數(shù)學(xué)建模有足夠的興趣,并且還要有足夠多的時間來參加培訓(xùn)。以上述條件為基礎(chǔ),報名之后通過面試的測試,然后再從中篩選出相對優(yōu)秀的學(xué)生組成參賽隊伍,在篩選的時候要充分的考慮到團隊整體知識的涵蓋面,不同人之間所擅長的專業(yè)不同為最佳。
4、培訓(xùn)培訓(xùn)工作通常被劃分為不同的階段:首先是初級階段,這一階段所注重的是對相關(guān)知識的培訓(xùn)。從初等模型、簡單優(yōu)化模型、常微分方程模型等建模的基礎(chǔ)知識和方法入手由淺入深;其次是拔高階段,主要以專家講座為主,邀請建模專家進行系統(tǒng)的講解,并結(jié)合精典范例進行深入剖析,在擴大學(xué)生的知識面和視野的同時提升學(xué)生的建模能力。
三、結(jié)語
通過以上的一系列論述,我們已經(jīng)對大學(xué)數(shù)學(xué)建模競賽的隊伍組織及管理方式,有了更加清晰的了解和掌握。大學(xué)數(shù)學(xué)建模競賽對于大學(xué)生來說好處頗多,一方面能夠使學(xué)生們對學(xué)習(xí)的數(shù)學(xué)知識有更深的理解與更為靈活的應(yīng)用,另一方面,通過競賽中的組隊讓大家感受到合作的重要性,為以后步入社會的工作打下基礎(chǔ)。希望這篇文章能夠?qū)︶槍?shù)學(xué)建模的研究有一定的借鑒作用!
參考文獻:
[1]韓成標,賈進濤、高職院校參加數(shù)學(xué)建模競賽大有可為[j]、工程數(shù)學(xué)學(xué)報,(8)
[2]全國大學(xué)生數(shù)學(xué)建模競賽賽題講評與經(jīng)驗交流會在廣西大學(xué)舉行[j]、數(shù)學(xué)建模及其應(yīng)用,(04)
[3]錢方紅、基于數(shù)學(xué)模型解決數(shù)學(xué)建模競賽隊員選拔和組隊問題[j]、信息與電腦:理論版,(3)
[4]肖帆,張?zhí)m、高職院校數(shù)學(xué)建模競賽培訓(xùn)模式研究[j]、延安職業(yè)技術(shù)學(xué)院學(xué)報,2017(2)
大學(xué)數(shù)學(xué)建模論文篇六
通過對高中數(shù)學(xué)新教材的教學(xué),結(jié)合新教材的編寫特點和高中研究性學(xué)習(xí)的開展,對如何加強高中數(shù)學(xué)建模教學(xué),培養(yǎng)學(xué)生的創(chuàng)新能力方面進行探索。
創(chuàng)新能力;數(shù)學(xué)建模;研究性學(xué)習(xí)。
《全日制普通高級中學(xué)數(shù)學(xué)教學(xué)大綱(試驗修訂版)》對學(xué)生提出新的教學(xué)要求,要求學(xué)生:
(1)學(xué)會提出問題和明確探究方向;
(2)體驗數(shù)學(xué)活動的過程;
(3)培養(yǎng)創(chuàng)新精神和應(yīng)用能力。
其中,創(chuàng)新意識與實踐能力是新大綱中最突出的特點之一,數(shù)學(xué)學(xué)習(xí)不僅要在數(shù)學(xué)基礎(chǔ)知識,基本技能和思維能力,運算能力,空間想象能力等方面得到訓(xùn)練和提高,而且在應(yīng)用數(shù)學(xué)分析和解決實際問題的能力方面同樣需要得到訓(xùn)練和提高,而培養(yǎng)學(xué)生的分析和解決實際問題的能力僅僅靠課堂教學(xué)是不夠的,必須要有實踐、培養(yǎng)學(xué)生的創(chuàng)新意識和實踐能力是數(shù)學(xué)教學(xué)的一個重要目的和一條基本原則,要使學(xué)生學(xué)會提出問題并明確探究方向,能夠運用已有的知識進行交流,并將實際問題抽象為數(shù)學(xué)問題,就必須建立數(shù)學(xué)模型,從而形成比較完整的數(shù)學(xué)知識結(jié)構(gòu)。
數(shù)學(xué)模型是數(shù)學(xué)知識與數(shù)學(xué)應(yīng)用的橋梁,研究和學(xué)習(xí)數(shù)學(xué)模型,能幫助學(xué)生探索數(shù)學(xué)的應(yīng)用,產(chǎn)生對數(shù)學(xué)學(xué)習(xí)的興趣,培養(yǎng)學(xué)生的創(chuàng)新意識和實踐能力,加強數(shù)學(xué)建模教學(xué)與學(xué)習(xí)對學(xué)生的智力開發(fā)具有深遠的意義,現(xiàn)就如何加強高中數(shù)學(xué)建模教學(xué)談幾點體會。
教材的每一章都由一個有關(guān)的實際問題引入,可直接告訴學(xué)生,學(xué)了本章的教學(xué)內(nèi)容及方法后,這個實際問題就能用數(shù)學(xué)模型得到解決,這樣,學(xué)生就會產(chǎn)生創(chuàng)新意識,對新數(shù)學(xué)模型的渴求,實踐意識,學(xué)完要在實踐中試一試。
這是培養(yǎng)創(chuàng)新意識及實踐能力的好時機要注意引導(dǎo),對所考察的實際問題進行抽象分析,建立相應(yīng)的數(shù)學(xué)模型,并通過新舊兩種思路方法,提出新知識,激發(fā)學(xué)生的知欲,如不可挫傷學(xué)生的積極性,失去“亮點”。
這樣通過章前問題教學(xué),學(xué)生明白了數(shù)學(xué)就是學(xué)習(xí),研究和應(yīng)用數(shù)學(xué)模型,同時培養(yǎng)學(xué)生追求新方法的意識及參與實踐的意識。因此,要重視章前問題的教學(xué),還可據(jù)市場經(jīng)濟的建設(shè)與發(fā)展的需要及學(xué)生實踐活動中發(fā)現(xiàn)的問題,補充一些實例,強化這方面的教學(xué),使學(xué)生在日常生活及學(xué)習(xí)中重視數(shù)學(xué),培養(yǎng)學(xué)生數(shù)學(xué)建模意識。
學(xué)習(xí)幾何、三角的測量問題,使學(xué)生多方面全方位地感受數(shù)學(xué)建模思想,讓學(xué)生認識更多現(xiàn)在數(shù)學(xué)模型,鞏固數(shù)學(xué)建模思維過程、教學(xué)中對學(xué)生展示建模的如下過程:
現(xiàn)實原型問題
數(shù)學(xué)模型
數(shù)學(xué)抽象
簡化原則
演算推理
現(xiàn)實原型問題的解
數(shù)學(xué)模型的解
反映性原則
返回解釋
列方程解應(yīng)用題體現(xiàn)了在數(shù)學(xué)建模思維過程,要據(jù)所掌握的信息和背景材料,對問題加以變形,使其簡單化,以利于解答的思想。且解題過程中重要的步驟是據(jù)題意更出方程,從而使學(xué)生明白,數(shù)學(xué)建模過程的重點及難點就是據(jù)實際問題特點,通過觀察、類比、歸納、分析、概括等基本思想,聯(lián)想現(xiàn)成的數(shù)學(xué)模型或變換問題構(gòu)造新的數(shù)學(xué)模型來解決問題。如利息(復(fù)利)的數(shù)列模型、利潤計算的方程模型決策問題的函數(shù)模型以及不等式模型等。
高中新大綱要求每學(xué)期至少安排一個研究性課題,就是為了培養(yǎng)學(xué)生的數(shù)學(xué)建模能力,如“數(shù)列”章中的“分期付款問題”、“平面向是‘章中’向量在物理中的應(yīng)用”等,同時,還可設(shè)計類似利潤調(diào)查、洽談、采購、銷售等問題。設(shè)計了如下研究性問題。
分析:這是一個確定人口增長模型的問題,為使問題簡化,應(yīng)作如下假設(shè):
(1)該國的政治、經(jīng)濟、社會環(huán)境穩(wěn)定;
(2)該國的人口增長數(shù)由人口的生育,死亡引起;
(3)人口數(shù)量化是連續(xù)的。基于上述假設(shè),我們認為人口數(shù)量是時間函數(shù)。建模思路是根據(jù)給出的數(shù)據(jù)資料繪出散點圖,然后尋找一條直線或曲線,使它們盡可能與這些散點吻合,該直線或曲線就被認為近似地描述了該國人口增長規(guī)律,從而進一步作出預(yù)測。
通過上題的研究,既復(fù)習(xí)鞏固了函數(shù)知識更培養(yǎng)了學(xué)生的數(shù)學(xué)建模能力和實踐能力及創(chuàng)新意識。在日常教學(xué)中注意訓(xùn)練學(xué)生用數(shù)學(xué)模型來解決現(xiàn)實生活問題;培養(yǎng)學(xué)生做生活的有心人及生活中“數(shù)”意識和觀察實踐能力,如記住一些常用及常見的數(shù)據(jù),如:人行車、自行車的速度,自己的身高、體重等。利用學(xué)校條件,組織學(xué)生到操場進行實習(xí)活動,活動一結(jié)束,就回課堂把實際問題化成相應(yīng)的數(shù)學(xué)模型來解決。如:推鉛球的角度與距離關(guān)系;全班同學(xué)手拉手圍成矩形圈,怎樣圍使圍成的面積最大等,用磚塊搭成多米諾牌骨等。
由于數(shù)學(xué)模型這一思想方法幾乎貫穿于整個中小學(xué)數(shù)學(xué)學(xué)習(xí)過程之中,小學(xué)解算術(shù)運用題中學(xué)建立函數(shù)表達式及解析幾何里的軌跡方程等都孕育著數(shù)學(xué)模型的思想方法,熟練掌握和運用這種方法,是培養(yǎng)學(xué)生運用數(shù)學(xué)分析問題、解決問題能力的關(guān)鍵,我認為這就要求培養(yǎng)學(xué)生以下幾點能力,才能更好的完善數(shù)學(xué)建模思想:
(1)理解實際問題的能力;
(2)洞察能力,即關(guān)于抓住系統(tǒng)要點的能力;
(3)抽象分析問題的能力;
(5)運用數(shù)學(xué)知識的能力;
(6)通過實際加以檢驗的能力。
只有各方面能力加強了,才能對一些知識觸類旁通,舉一反三,化繁為簡,如下例就要用到各種能力,才能順利解出。
例2:解方程組
x+y+z=1
(1)x2+y2+z2=1/3
(2)x3+y3+z3=1/9
(3)分析:本題若用常規(guī)解法求相當繁難,仔細觀察題設(shè)條件,挖掘隱含信息,聯(lián)想各種知識,即可構(gòu)造各種等價數(shù)學(xué)模型解之。
t3-t2+1/3t-1/27=0
(4)函數(shù)模型:
由(1)(2)知若以xz(x+y+z)為一次項系數(shù),(x2+y2+z2)為常數(shù)項,則以3=(12+12+12)為二次項系數(shù)的二次函f(x)=(12+12+12)t2-2(x+y+z)t+(x2+y2+z2)=(t-x)2+(t-y)2+(t-z)2為完全平方函數(shù)3(t-1/3)2,從而有t-x=t-y=t-z,而x=y=z再由(1)得x=y=z=1/3,也適合(3)。
平面解析模型
方程(1)(2)有實數(shù)解的充要條件是直線x+y=1-z與圓x2+y2=1/3-z2有公共點后者有公共點的充要條件是圓心(o、o)到直線x+y的距離不大于半徑。
總之,只要教師在教學(xué)中通過自學(xué)出現(xiàn)的實際的問題,根據(jù)當?shù)丶皩W(xué)生的實際,使數(shù)學(xué)知識與生活、生產(chǎn)實際聯(lián)系起來,就能增強學(xué)生應(yīng)用數(shù)學(xué)模型解決實際問題的意識,從而提高學(xué)生的創(chuàng)新意識與實踐能力。
大學(xué)數(shù)學(xué)建模論文篇七
從現(xiàn)實現(xiàn)象到數(shù)學(xué)模型 .....................................................................................................................
數(shù)學(xué)建模的相關(guān)基本概念 ............................................................................. 錯誤!未定義書簽。
…… …… 余下全文
大學(xué)數(shù)學(xué)建模論文篇八
摘要:在當今社會數(shù)學(xué)已經(jīng)滲透向生活的各個領(lǐng)域,概率、比率、機會、誤差、圖像、邏輯、程序等等數(shù)學(xué)概念已進入日常生活;各行各業(yè)都在數(shù)量化、數(shù)字化、數(shù)學(xué)化,用到的數(shù)學(xué)知識越來越多。但傳統(tǒng)高等數(shù)學(xué)教學(xué)注重訓(xùn)練學(xué)生的邏輯推理能力,而沒有注意訓(xùn)練如何從實際問題中提煉出數(shù)學(xué)問題以及如何用數(shù)學(xué)來解決實際問題,本文從建模思想的重要性、教育現(xiàn)狀和改革思路以及已有的建模教學(xué)成果三個方面探討數(shù)學(xué)建模思想在高等數(shù)學(xué)教學(xué)中的作用。
關(guān)鍵詞:數(shù)學(xué)建模;高等數(shù)學(xué)教學(xué)
一、引言
11世紀的數(shù)學(xué)家、物理學(xué)家和天文學(xué)家高斯曾說:“數(shù)學(xué)是科學(xué)之王?!睌?shù)學(xué)貫穿于所有科學(xué)理論之中,任何科學(xué)理論如果不應(yīng)用數(shù)學(xué),它就是粗糙的,不懂數(shù)學(xué)的人是不能進行深層次的科學(xué)思維的。
在當今社會數(shù)學(xué)已經(jīng)滲透向生活的各個領(lǐng)域,概率、比率、機會、誤差、圖像、邏輯、程序等等數(shù)學(xué)概念已進入日常生活;各行各業(yè)都在數(shù)量化、數(shù)字化、數(shù)學(xué)化,用到的數(shù)學(xué)知識越來越多。從科學(xué)技術(shù)的角度來看,大量與數(shù)學(xué)相關(guān)的交叉學(xué)科相繼出現(xiàn)出現(xiàn),迅速發(fā)展例如:數(shù)學(xué)化學(xué)、數(shù)學(xué)生物、數(shù)學(xué)地質(zhì)學(xué)、數(shù)學(xué)心理學(xué)、數(shù)學(xué)語言學(xué)、數(shù)學(xué)社會學(xué)等。有研究者認為高科技技術(shù)本質(zhì)上就是一種數(shù)學(xué)技術(shù)。例如財物、會計專業(yè)軟件包都是大量應(yīng)用現(xiàn)有的相關(guān)數(shù)學(xué)知識,開發(fā)數(shù)學(xué)模型以及應(yīng)用數(shù)學(xué)技巧、方法的結(jié)果。高等數(shù)學(xué)對于培養(yǎng)大學(xué)生數(shù)學(xué)思維、數(shù)學(xué)意識提升邏輯思維能力有重要意義。
二、數(shù)學(xué)建模思想的重要性
傳統(tǒng)高等數(shù)學(xué)教學(xué)注重訓(xùn)練學(xué)生的邏輯推理能力,而沒有注意訓(xùn)練如何從實際問題中提煉出數(shù)學(xué)問題以及如何用數(shù)學(xué)來解決實際問題,其后果是學(xué)生們學(xué)了不少數(shù)學(xué),但不會用,為此在高等數(shù)學(xué)的教學(xué)過程中如何提升教學(xué)效果成為教學(xué)改革的一個重要研究問題。當前高等數(shù)學(xué)教學(xué)不重視應(yīng)用性,很多學(xué)生數(shù)學(xué)的學(xué)習(xí)僅僅以通過考試為目的,數(shù)學(xué)成為抽象的、枯燥的、無實際用途的科學(xué)。數(shù)學(xué)建模則以“數(shù)學(xué)的應(yīng)用與模型化”為主線,重視數(shù)學(xué)建模意識和應(yīng)用能力的培養(yǎng)。
數(shù)學(xué)建模的思想在高等數(shù)學(xué)發(fā)展的歷程中很早就有,但是現(xiàn)代教育技術(shù)環(huán)境的發(fā)展和大學(xué)生數(shù)學(xué)建模賽事的舉行為數(shù)學(xué)建模的教學(xué)發(fā)展提供了契機和更好的外部環(huán)境條件,同時也對現(xiàn)代高等數(shù)學(xué)的教學(xué)提出了新的要求。數(shù)學(xué)建模對于培養(yǎng)大學(xué)生數(shù)學(xué)能力的作用的相關(guān)研究較多,研究結(jié)果表明:數(shù)學(xué)建模能夠提升大學(xué)生理論聯(lián)系實際的能力、可以提升思維能力、概括能力、歸納能力、創(chuàng)新能力。
三、數(shù)學(xué)建模教育現(xiàn)狀和改革思路
全國大學(xué)生數(shù)學(xué)建模競賽創(chuàng)辦于1992年,每年一屆,目前已成為全國高校規(guī)模最大的基礎(chǔ)性學(xué)科競賽,也是世界上規(guī)模最大的數(shù)學(xué)建模競賽。2012年,來自全國33個省/市/自治區(qū)(包括香港和澳門特區(qū))及新加坡、美國的1284所院校、21219個隊(其中本科組17741隊、專科組3478隊)、63600多名大學(xué)生報名參加本項競賽。競賽能全面反應(yīng)學(xué)生解決實際問題的能力、數(shù)學(xué)創(chuàng)造力、計算機使用能力、書面表達寫作能力,特別強調(diào)創(chuàng)新意識、團隊精神。已經(jīng)成為我國大學(xué)生創(chuàng)新能力培養(yǎng)和提升的重要大型學(xué)術(shù)賽事之一。
鄭州航空工業(yè)管理學(xué)院,在2008年至2010年累計有67支隊伍,共計201名學(xué)生才加了全國的大學(xué)生建模大賽,并取得了良好的成績榮獲省級一等獎6項、省級二等獎8項、省級三等獎20項,但參賽學(xué)生來自全校各個不同院系,較多集中在數(shù)理與統(tǒng)計學(xué)院。
綜上可見:通過數(shù)學(xué)建模對提升高等數(shù)學(xué)教學(xué)效果的實踐研究,可以為高等數(shù)學(xué)的教學(xué)找到一條新模式,進而提升學(xué)生綜合素質(zhì),培養(yǎng)出能更好適應(yīng)社會的應(yīng)用型專業(yè)人才。另外,對于數(shù)學(xué)建模教學(xué)實踐還可提升高校的數(shù)學(xué)建模競賽成績,提升學(xué)校知名度,并影響到更多的學(xué)生,使學(xué)生們真正熱愛數(shù)學(xué)學(xué)習(xí),全面提升個人素質(zhì)。
四、數(shù)學(xué)建模教學(xué)研究的相關(guān)成果
關(guān)于數(shù)學(xué)建模與提升提升高等數(shù)學(xué)教學(xué)效果的實踐研究的相關(guān)研究主要集中在以下幾個方面:
(一)數(shù)學(xué)建模的教學(xué)方法研究
許多研究者對數(shù)學(xué)建模的教學(xué)從不同角度和方面進行探討,一些比較有影響的研究有:黃世華等,針對高專院系的建模教學(xué)現(xiàn)狀,提出從指導(dǎo)思想、教學(xué)理念、教學(xué)內(nèi)容、教學(xué)方法、考核方式出發(fā),課程教學(xué)應(yīng)采取以問題驅(qū)動研究式為主,以知識驅(qū)動講授式為輔的教學(xué)方法才是行之有效的。劉浩等,認為數(shù)學(xué)建模應(yīng)加強數(shù)學(xué)思維的互動訓(xùn)練,培養(yǎng)創(chuàng)新精神;加強信息素養(yǎng)的訓(xùn)練,開拓知識面;注重團隊訓(xùn)練,提高團隊合作意識。楊小鐘討論數(shù)學(xué)建模教育對高校數(shù)學(xué)教育改革的重要意義,以及存在的問題并提出了改變教學(xué)理念的改進措施。還有研究者通過具體的模型教學(xué),討論了建模思想的培養(yǎng)和相關(guān)的教學(xué)實踐心得。柴中林、王航平等針對美國大學(xué)生數(shù)學(xué)建模競賽提出了一些培訓(xùn)策略。
(二)數(shù)學(xué)建模教學(xué)意義研究
對數(shù)學(xué)建模的意義研究主要集中在數(shù)學(xué)建模與大學(xué)生能力培養(yǎng)和非智力因素發(fā)展等方面。沙元霞等提出學(xué)??梢酝ㄟ^增強數(shù)學(xué)建模意識、改進數(shù)學(xué)建模思想方法、提高數(shù)學(xué)建模能力,深化教育教學(xué)改革,培養(yǎng)數(shù)學(xué)應(yīng)用型人才。蔣莉分析了數(shù)學(xué)建模對培養(yǎng)大學(xué)生數(shù)學(xué)素質(zhì)的作用,并提出數(shù)學(xué)建模培養(yǎng)了大學(xué)生的抽象思維能力,提高了大學(xué)生的創(chuàng)新能力。楊太文等,研究數(shù)學(xué)建模競賽與大學(xué)數(shù)學(xué)課程間的效用發(fā)現(xiàn)數(shù)學(xué)建模的學(xué)習(xí)可以明顯提高學(xué)生的數(shù)學(xué)學(xué)習(xí)能力。
總之,當前我國大學(xué)生數(shù)學(xué)建模的教學(xué)水平相對落后,數(shù)學(xué)建模思想和高等數(shù)學(xué)相結(jié)合,可以提升學(xué)生的學(xué)習(xí)興趣,進而促進學(xué)生主動學(xué)習(xí)和思考,養(yǎng)成獨立思考學(xué)習(xí)的好習(xí)慣,從而培養(yǎng)學(xué)生的創(chuàng)新意識。數(shù)學(xué)建模大賽這個平臺,有給了學(xué)生一個團隊協(xié)作的機會,讓學(xué)生能夠提升自己的理論聯(lián)系實際能力、應(yīng)用寫作能力和創(chuàng)造力。數(shù)學(xué)建模思想可以提高教學(xué)效果,而高等數(shù)學(xué)課程的開展為數(shù)學(xué)建模奠定了理論基礎(chǔ),兩者相輔相成,密不可分。
參考文獻:
[1]范英梅。高等數(shù)學(xué)、計算機與數(shù)學(xué)建模教學(xué)的關(guān)系分析[j].廣西大學(xué)學(xué)報(自然科學(xué)版),2004,9.
[2]何偉。在高等數(shù)學(xué)教學(xué)中如何體現(xiàn)數(shù)學(xué)建模的思想[j].數(shù)學(xué)的實踐與認識,2003,10.
[3]馬戈等?,F(xiàn)代教育技術(shù)環(huán)境下高等數(shù)學(xué)教學(xué)改革的實踐與思考[j].高等數(shù)學(xué)研究,2004,5.
[4]蔣莉。淺談數(shù)學(xué)建模在培養(yǎng)大學(xué)生數(shù)學(xué)能力的作用[j].理論探索,2012,2.
[5]沙元霞?;跀?shù)學(xué)建模的應(yīng)用型人才培養(yǎng)[j].長春師范學(xué)院學(xué)報(自然科學(xué)版),2012,9.
[6]黃世華等。數(shù)學(xué)建模教學(xué)的方法研究[j].科教研究,2012,2.
[7]劉浩,楊艷梅。大學(xué)生數(shù)學(xué)建模教育的幾點思考[j].數(shù)學(xué)教育與研究,2012,4.
[8]楊小鐘。初探高校數(shù)學(xué)建模課程改革[j].大觀周刊。2012,8.
[9]徐茂良。在傳統(tǒng)數(shù)學(xué)課中滲透數(shù)學(xué)建模思想[j].數(shù)學(xué)的實踐與認知。2002,7.
[10]楊進峰。經(jīng)濟應(yīng)用數(shù)學(xué)教學(xué)研究[j].陜西教育,2012,7.
[11]吳秀蘭等。淺議數(shù)學(xué)建模思想如何與高等數(shù)學(xué)教學(xué)相結(jié)合[j].吉林省教育學(xué)院學(xué)報。2012,9.
[12]柴中林等。國際大學(xué)生數(shù)學(xué)建模競賽培訓(xùn)策略的一些探討[j].科技視界,2012,9.
[13]楊太文等。數(shù)學(xué)建模競賽與大學(xué)數(shù)學(xué)課程間的效用[j].高等教育,2012,10.
大學(xué)數(shù)學(xué)建模論文篇九
摘要:數(shù)學(xué)建模課堂中學(xué)生的自主探究、合作學(xué)習(xí)與教師的科學(xué)引導(dǎo)并不矛盾而是相輔相成的。只有在教師科學(xué)、適時、適當?shù)匾龑?dǎo)下才能更好地突出學(xué)生的主體地位,從而打造出自主探究、合作學(xué)習(xí)、愉悅發(fā)展的高效數(shù)學(xué)建模課堂。
關(guān)鍵詞:數(shù)學(xué)建模;教師
一、新課的引入需要發(fā)揮教師的作用
教師在數(shù)學(xué)建模課堂上的引導(dǎo)作用首先體現(xiàn)在教師對新課的引入上。教師一段精彩的導(dǎo)入會點燃學(xué)生學(xué)習(xí)的熱情、激發(fā)學(xué)生的學(xué)習(xí)興趣、喚起學(xué)生的好奇心,能把學(xué)生的注意力迅速集中到要學(xué)的知識上來。這對提高教學(xué)質(zhì)量、提高學(xué)生的學(xué)習(xí)效果起著不可估量的作用。同時,新課前的導(dǎo)入環(huán)節(jié)是對學(xué)生進行情感教育的最佳時刻。學(xué)生只有在教師的引導(dǎo)下才能夠體會到數(shù)學(xué)建模的價值、增強學(xué)好數(shù)學(xué)建模的信心。俗話說:“好的開始是成功的一半?!睌?shù)學(xué)建模課堂也是這樣。因此,在新課引入時要充分發(fā)揮教師的作用。
二、在教學(xué)任務(wù)的設(shè)計上需要發(fā)揮教師的作用
數(shù)學(xué)建模課堂一般應(yīng)采用任務(wù)型教學(xué)模式,是讓學(xué)生通過自主探究、合作學(xué)習(xí)、交流展示的方式完成一系列學(xué)習(xí)任務(wù)來達到特定的教學(xué)目標和學(xué)習(xí)目標。學(xué)生在課堂中的主體作用能否得到有效發(fā)揮取決于教師對問題設(shè)計質(zhì)量的高低。教師應(yīng)通過設(shè)計一系列高質(zhì)量的問題把復(fù)雜的數(shù)學(xué)建模問題分解成若干簡單問題來引導(dǎo)學(xué)生更好地發(fā)揮其主動性。學(xué)生也只有在這些問題的正確引導(dǎo)下才能突破難點并向著學(xué)習(xí)目標努力,有效防止學(xué)生思考、探究、交流的內(nèi)容偏離學(xué)習(xí)目標等現(xiàn)象的出現(xiàn)。這些任務(wù)的制訂需要充分發(fā)揮教師的作用。
三、在新舊知識的聯(lián)系點上需要發(fā)揮教師的作用
建構(gòu)主義強調(diào)新知識是在學(xué)生已有知識的基礎(chǔ)上通過學(xué)生自身有意義的建構(gòu)獲得的。筆者認為,學(xué)生自主建構(gòu)知識應(yīng)在教師的科學(xué)引導(dǎo)下進行。尤其是對于數(shù)學(xué)建模這樣高難度的知識更是這樣。失去了教師的科學(xué)引導(dǎo),學(xué)生易產(chǎn)生疲倦感,久而久之會喪失學(xué)習(xí)數(shù)學(xué)建模的興趣和信心。因此,在新舊知識聯(lián)系點上應(yīng)發(fā)揮教師的作用。教師應(yīng)在準確掌握教學(xué)目標、難點的基礎(chǔ)上,充分考慮學(xué)生的認知能力、習(xí)慣、思維方式,通過有針對性的具體問題喚起學(xué)生對舊知識的回憶,再通過啟發(fā)性問題引導(dǎo)學(xué)生去發(fā)現(xiàn)新知識,從而實現(xiàn)溫故知新的目的。在教師引領(lǐng)下學(xué)生自主建構(gòu)知識可以使學(xué)生少走彎路,從而使學(xué)生更加高效地自主探究、掌握新知識。
四、在教學(xué)重點、難點上需要教師的引導(dǎo)
教學(xué)的重點、難點是每一節(jié)課的核心和主線,只有準確把握了重點、突破了難點才能更好地掌握本節(jié)課的內(nèi)容。在強調(diào)學(xué)生自主探究、小組合作學(xué)習(xí)的課堂教學(xué)模式中,數(shù)學(xué)建模教材的重點、難點學(xué)生往往把握不準、難以突破。這就需要教師科學(xué)引導(dǎo)學(xué)生主動去發(fā)現(xiàn)重點、突破難點。教師引導(dǎo)學(xué)生發(fā)現(xiàn)重點、突破難點并不是讓教師直接告訴學(xué)生本節(jié)課的重點是什么、怎樣突破難點,而是通過具體問題的引導(dǎo)讓學(xué)生自己找到重點、并通過學(xué)生自己的思考、討論解決疑難問題。學(xué)生在教師的引導(dǎo)下通過自己的努力、討論解決了疑難后,學(xué)生會非常興奮,從而會越來越喜歡數(shù)學(xué)建模課。相反,在沒有教師引導(dǎo)的數(shù)學(xué)建模課堂中,學(xué)生經(jīng)常被困難嚇倒,從而對數(shù)學(xué)建模課產(chǎn)生畏懼感。由此可見,教師對學(xué)生的科學(xué)引導(dǎo)是學(xué)生學(xué)好數(shù)學(xué)建模必不可少的環(huán)節(jié)。在以學(xué)生為本、注重學(xué)生全面發(fā)展、提倡課堂中突出學(xué)生主體地位的背景下,教師的引導(dǎo)仍是數(shù)學(xué)建模課堂中不可缺失的要素。數(shù)學(xué)建模課堂中學(xué)生的自主探究、合作學(xué)習(xí)與教師的科學(xué)引導(dǎo)并不矛盾而是相輔相成的。只有在教師科學(xué)、適時、適當?shù)匾龑?dǎo)下才能更好地突出學(xué)生的主體地位,從而打造出自主探究、合作學(xué)習(xí)、愉悅發(fā)展的高效數(shù)學(xué)建模課堂。
大學(xué)數(shù)學(xué)建模論文篇十
1、從應(yīng)用數(shù)學(xué)出發(fā)數(shù)學(xué)建模主要是通過運用數(shù)學(xué)知識解決生活中遇到實際問題的全過程。要讓數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)教學(xué)課程進行有效的融合,最佳切入點就是課堂上把用數(shù)學(xué)解決生活中的實際問題與教學(xué)內(nèi)容相融合,以應(yīng)用數(shù)學(xué)為導(dǎo)向,訓(xùn)練學(xué)生綜合運用數(shù)學(xué)知識去刻畫實際問題、提煉數(shù)學(xué)模型、處理實際數(shù)據(jù)、分析解決實際問題的能力,培養(yǎng)學(xué)生運用數(shù)學(xué)原理解決生活問題的興趣和愛好。授課過程中,要改變以往單純地進行課堂灌輸?shù)男袨椋嘁霊?yīng)用數(shù)學(xué)的內(nèi)容,通過師生互動、課堂討論、小課題研究實踐等多種形式靈活多樣的教學(xué)方法,培養(yǎng)引導(dǎo)學(xué)生樹立應(yīng)用數(shù)學(xué)建模解決實際問題的思想。
2、從數(shù)學(xué)實驗做起要加強獨立學(xué)院學(xué)生進行數(shù)學(xué)實驗的行為,筆者認為數(shù)學(xué)建模與數(shù)學(xué)實驗有著密切的聯(lián)系,兩者都是從解決實際問題出發(fā),當前的大學(xué)生數(shù)學(xué)實驗基本上是應(yīng)用數(shù)學(xué)軟件、數(shù)值計算、建立模型、過程演算和圖形顯示等一系列過程,因此進行數(shù)學(xué)實驗的全過程就是數(shù)學(xué)建模思想的啟發(fā)過程。但是我國的教育資源和教學(xué)方針限制了獨立學(xué)院學(xué)生的學(xué)習(xí)環(huán)境和學(xué)習(xí)資源,能夠進行數(shù)學(xué)實驗的條件還是有限的。即使個別有實驗?zāi)芰Φ膶W(xué)校,也未能進行充分利用,數(shù)學(xué)實驗課的內(nèi)容隨意性較大,有些院校將其降格為軟件學(xué)習(xí)課程或初級算法課。根據(jù)調(diào)研,目前大部分獨立學(xué)院未開設(shè)此類課程,這是數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)教學(xué)課程融合的一大損失,不利于學(xué)生創(chuàng)新思維能力的提高。各校應(yīng)當積極創(chuàng)造條件,把數(shù)學(xué)實驗課設(shè)為大學(xué)數(shù)學(xué)的必修課,爭取設(shè)立數(shù)學(xué)建模選修課,并積極探索、逐步實現(xiàn)把數(shù)學(xué)建模的思想和方法融入大學(xué)數(shù)學(xué)的主干課程。
3、從計算機應(yīng)用切入數(shù)學(xué)是為理、工、經(jīng)、管、農(nóng)、醫(yī)、文等眾多學(xué)科服務(wù)的基礎(chǔ)工具,它在不同的領(lǐng)域因為應(yīng)用程度不同而導(dǎo)致被重視的程度不同。但在當今的信息化時代,計算機的廣泛應(yīng)用和計算技術(shù)的飛速發(fā)展,使科學(xué)計算和數(shù)值模擬已成為絕大多數(shù)學(xué)科的必要工具和常用手段。數(shù)學(xué)在不同學(xué)科領(lǐng)域有了共同的主題,即應(yīng)用數(shù)學(xué)建模,通過計算機對各自領(lǐng)域的科學(xué)研究、生活問題等進行模擬分析,這成為數(shù)學(xué)建模思想在跨學(xué)科領(lǐng)域交流和傳播的一個重要途徑。每個領(lǐng)域的教學(xué)可以計算機應(yīng)用為切入點,讓數(shù)學(xué)建模思想與數(shù)學(xué)授課無縫結(jié)合,在提高學(xué)生掌握知識能力、挖掘培養(yǎng)創(chuàng)新思維的同時,增加了大學(xué)數(shù)學(xué)課程內(nèi)容的豐富性、實用性,促進教學(xué)手段變革和創(chuàng)新。因此,大學(xué)應(yīng)以適應(yīng)現(xiàn)代信息技術(shù)發(fā)展的形勢和學(xué)生將來的需求為契機,加快改進大學(xué)數(shù)學(xué)課程教學(xué)方式,把數(shù)學(xué)建模的思想和方法以及現(xiàn)代計算技術(shù)和計算工具盡快融入大學(xué)數(shù)學(xué)的主干課程當中。
大學(xué)數(shù)學(xué)課程是大學(xué)工科各專業(yè)培養(yǎng)計劃中重要的公共基礎(chǔ)理論課,其目的在于培養(yǎng)工程技術(shù)人才所必備的數(shù)學(xué)素質(zhì),為培養(yǎng)我國現(xiàn)代化建設(shè)需要的高素質(zhì)人才服務(wù)。數(shù)學(xué)建模課程的必修化,要從能夠擴充學(xué)生的知識結(jié)構(gòu),培養(yǎng)學(xué)生的創(chuàng)造性思維能力、抽象概括能力、邏輯推理能力、自學(xué)能力、分析問題和解決問題能力的角度出發(fā),建立適合獨立學(xué)院學(xué)生的數(shù)學(xué)建模教學(xué)內(nèi)容。日前獨立學(xué)院開展數(shù)學(xué)建?;顒由婕皟?nèi)容較淺,缺少相應(yīng)的數(shù)學(xué)建模和數(shù)學(xué)實驗方而的教材。筆者近幾年通過承擔(dān)此類課題的研究,認為應(yīng)該加強以下內(nèi)容的建設(shè):
。2、開設(shè)選修課拓展知識領(lǐng)域,讓學(xué)生可以通過選修數(shù)學(xué)建模、運籌學(xué)、開設(shè)數(shù)學(xué)實驗(介紹matlab、maple等計算軟件課程),增加建立和解答數(shù)學(xué)模型的方法和技巧。比如以前用的“文曲星”電子詞典里的貸款計算,就是一個典型的運用數(shù)學(xué)模型方便百姓自己計算的應(yīng)用。這個模型單靠數(shù)學(xué)和經(jīng)濟學(xué)單方面的知識是不夠的,必須把數(shù)學(xué)與經(jīng)濟學(xué)聯(lián)系在一起,才能有效解決生活中的問題。
3、積極組織學(xué)生開展或是參加數(shù)學(xué)建模大賽比賽是各個選手充分發(fā)揮水平、展示自己智慧的途徑,也是數(shù)學(xué)建模思想傳播的最好手段。比賽可以讓各個選手發(fā)現(xiàn)自己的不足,尋找自身數(shù)學(xué)建模出發(fā)點的缺陷,通過交流,還可以拓展學(xué)生思維。因此,有必要積極組織學(xué)生參入初等數(shù)學(xué)知識可以解決的數(shù)學(xué)模型、線性規(guī)劃模型、指派問題模型、存儲問題模型、圖論應(yīng)用題等方面的模擬競賽,通過參賽積累大量數(shù)學(xué)建模知識,促進數(shù)學(xué)建模在教學(xué)中扮演更重要的`角色。教師應(yīng)該對歷年的全國大學(xué)生數(shù)學(xué)建模競賽真題進行認真的解讀分析,通過對有意義的題目,如20xx年的《葡萄酒的評價》、《太陽能小屋的設(shè)計》,20xx年的《交巡警服務(wù)平臺的設(shè)置與調(diào)度車燈線光源的計算》、20xx年的《眼科病床的合理安排》等,與生活相關(guān)的例子進行講解分析,提高學(xué)生對數(shù)學(xué)建模的興趣和對模型應(yīng)用的直觀的認識,實現(xiàn)學(xué)校應(yīng)用型人才的培養(yǎng)。
4、加快教育方式的轉(zhuǎn)變高等教育設(shè)立數(shù)學(xué)這門學(xué)科就是為了應(yīng)用服務(wù),內(nèi)容應(yīng)重點放在基本概念、定理、公式等在生活中的應(yīng)用上。而傳統(tǒng)的高等數(shù)學(xué),除了推導(dǎo)就是證明,因此,要對傳統(tǒng)內(nèi)容進行優(yōu)化組合,根據(jù)教學(xué)特點和學(xué)生情況推陳出新,要注重數(shù)學(xué)思想的滲透和數(shù)學(xué)方法的介紹,對高等數(shù)學(xué)精髓的求導(dǎo)、微分方法、積分方法等的授課要重點放在解決實際生活的應(yīng)用上。要結(jié)合一些社會實踐問題與函數(shù)建立的關(guān)系,分析確定變量、參數(shù),加強有關(guān)函數(shù)關(guān)系式建立的日常訓(xùn)練。培養(yǎng)學(xué)生對一些問題的邏輯分析、抽象、簡化并用數(shù)學(xué)語言表達的能力,逐步將學(xué)生帶入遇到問題就能自然地去轉(zhuǎn)化成數(shù)學(xué)模型進行處理的境界,并能將數(shù)學(xué)結(jié)論又能很好反向轉(zhuǎn)化成實際應(yīng)用。
21世紀我國進入了大眾教育時期,高校招生人數(shù)劇增,學(xué)生水平差距較大,需要學(xué)校瞄準正確的培養(yǎng)方向。通過對美國教學(xué)改革的研究,筆者認為我國的數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)教學(xué)課程融合必須盡快在大學(xué)中廣泛推進,但要注意一些問題:第一,數(shù)學(xué)教學(xué)改革一定要基于學(xué)生的現(xiàn)實水平,數(shù)學(xué)建模思想融入要與時俱進。第二,教學(xué)目標要正確定位,融合過程一定要與教學(xué)研究相結(jié)合,要在加強交流的基礎(chǔ)上不斷改進。第三,大學(xué)生數(shù)學(xué)建模競賽的舉辦和參入,要給予正確的理解和引導(dǎo),形成良性循環(huán)。要根據(jù)個人興趣愛好,注重個性,不應(yīng)面面強求。第四,傳統(tǒng)數(shù)學(xué)思想與現(xiàn)在數(shù)學(xué)建模思想必須互補,必修與選修課程的作用與角色要分清。數(shù)學(xué)主干課程的教學(xué)水平是大學(xué)教學(xué)質(zhì)量的關(guān)鍵指標之一,具備數(shù)學(xué)建模思想是理工類大學(xué)生能否成為創(chuàng)新人才的重要條件之一。兩者的融合必將促進我國教學(xué)水平和質(zhì)量的提高,為社會輸送更多的實用型、創(chuàng)新型人才。
大學(xué)數(shù)學(xué)建模論文篇十一
信息化時代,數(shù)學(xué)科學(xué)與其他學(xué)科交叉融合,使得數(shù)學(xué)技術(shù)變成了一種普適性的關(guān)鍵技術(shù)。大學(xué)加強數(shù)學(xué)課程的應(yīng)用功能,不但可以為學(xué)生提供解決問題的思想和方法,而且更為重要的是可以培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)科學(xué)進行定量化、精確化思維的意識,學(xué)會創(chuàng)造性地解決問題的應(yīng)用能力。數(shù)學(xué)建模課程將數(shù)學(xué)的基本原理、現(xiàn)代優(yōu)化算法以及程序設(shè)計知識很好地融合在一起,有助于培養(yǎng)學(xué)生綜合應(yīng)用數(shù)學(xué)知識將現(xiàn)實問題化為數(shù)學(xué)問題,并進行求解運算的能力,激發(fā)學(xué)生對解決現(xiàn)實問題的探索欲望,強化數(shù)學(xué)課程本身的應(yīng)用功能,凸顯數(shù)學(xué)課程的教育價值,適應(yīng)大學(xué)數(shù)學(xué)課程以培養(yǎng)學(xué)生創(chuàng)新意識為宗旨的教育改革需要。
大學(xué)傳統(tǒng)的數(shù)學(xué)主干課程,如高等數(shù)學(xué)、線性代數(shù)、概率論與數(shù)理統(tǒng)計在奠定學(xué)生的數(shù)學(xué)基礎(chǔ)、培養(yǎng)自學(xué)能力以及為后續(xù)課程的學(xué)習(xí)在基礎(chǔ)方面發(fā)揮奠基作用。但是,這種原有的教學(xué)模式重在突出培養(yǎng)學(xué)生嚴格的邏輯思維能力,而對數(shù)學(xué)的應(yīng)用重視不夠,這使得學(xué)生即使掌握了較為高深的數(shù)學(xué)理論,卻并不能將其靈活應(yīng)用于現(xiàn)實生活解決實際問題,更是缺乏將數(shù)學(xué)應(yīng)用于專業(yè)研究和軍事工程的能力,與創(chuàng)新教育的基本要求差距甚遠。教育轉(zhuǎn)型要求數(shù)學(xué)教學(xué)模式從傳統(tǒng)的傳授知識為主向以培養(yǎng)能力素質(zhì)為主轉(zhuǎn)變,特別是將數(shù)學(xué)建模的思想方法融入到數(shù)學(xué)主干課程之中,在教學(xué)過程中引導(dǎo)學(xué)生將數(shù)學(xué)知識內(nèi)化為學(xué)生的應(yīng)用能力,充分發(fā)揮數(shù)學(xué)建模思想在數(shù)學(xué)教學(xué)過程中的引領(lǐng)作用。數(shù)學(xué)課程教學(xué)改革要適應(yīng)這一教學(xué)模式轉(zhuǎn)型需要,深入探究融入式教學(xué)模式的理論與方式,是推進數(shù)學(xué)教育改革的重要舉措。
2.1理清數(shù)學(xué)建模思想方法與數(shù)學(xué)主干課程的關(guān)系。數(shù)學(xué)主干課程提供了大學(xué)數(shù)學(xué)的基礎(chǔ)理論與基本原理,將數(shù)學(xué)建模的思想方法有機地融入到數(shù)學(xué)主干課程中,不但可以有效地提升數(shù)學(xué)課程的應(yīng)用功能,而且有利于深化學(xué)生對數(shù)學(xué)本原知識的理解,培養(yǎng)學(xué)生的綜合應(yīng)用能力。深入研究數(shù)學(xué)主干課程的功能定位,主要從課程目標上的一致性、課程內(nèi)容上的互補性、學(xué)習(xí)形式上的互促性、功能上的整體優(yōu)化性等方面,研究數(shù)學(xué)建模本身所承載的思想、方法與數(shù)學(xué)主干課程的內(nèi)容與邏輯關(guān)系,闡述數(shù)學(xué)建模思想方法對提高學(xué)生創(chuàng)新能力和對數(shù)學(xué)教育改革的重要意義,探索開展融入式教學(xué)及創(chuàng)新數(shù)學(xué)課程教學(xué)模式的有效途徑。
2.2探索融入式教學(xué)模式提升數(shù)學(xué)主干課程應(yīng)用功能的方式。融入式教學(xué)主要有輕度融入、中度融入和完全融入三種方式。根據(jù)主干課程的基本特點,對課程體系進行調(diào)整,在問題解決過程中安排需要融入的知識體系,按照三種方式融入數(shù)學(xué)建模的思想與方法。以學(xué)生能力訓(xùn)練為主導(dǎo),在培養(yǎng)深厚的數(shù)學(xué)基礎(chǔ)和嚴格的邏輯思維能力的基礎(chǔ)上,充分發(fā)揮數(shù)學(xué)建模思想方法對學(xué)生思維方式的培養(yǎng)功能和引導(dǎo)作用,培養(yǎng)學(xué)生敏銳的分析能力、深刻的'歸納演繹能力以及將數(shù)學(xué)知識應(yīng)用于工程問題的創(chuàng)新能力。
2.3建立數(shù)學(xué)建模思想方法融入數(shù)學(xué)主干課程的評價方式。融入式教學(xué)是處于探索中的教學(xué)模式,教學(xué)成效有待于實踐檢驗。選取開展融入式教學(xué)的實驗班級,對數(shù)學(xué)建模思想方法融入主干課程進行教學(xué)效果實踐驗證。設(shè)計相應(yīng)的考察量表,從運用直覺思維深入理解背景知識、符號翻譯開展邏輯思維、依托圖表理順數(shù)量關(guān)系、大膽嘗試進行建模求解等多方面對實驗課程的教學(xué)效果進行檢驗,深入分析融入式教學(xué)模式的成效與不足,為探索有效的教學(xué)模式提出改進的對策。
3.1改革課程教學(xué)內(nèi)容,滲透數(shù)學(xué)建模的思想方法。傳統(tǒng)的數(shù)學(xué)主干課程教學(xué)內(nèi)容,將數(shù)學(xué)看作嚴謹?shù)难堇[體系,教學(xué)過程中著力于對學(xué)生傳授大學(xué)數(shù)學(xué)的基礎(chǔ)知識,而對應(yīng)用能力的培養(yǎng)卻重視不夠。使得本應(yīng)能夠發(fā)揮應(yīng)用功能的數(shù)學(xué)知識則淪為僵死的教條性數(shù)學(xué)原理,這失去了教學(xué)的活力。學(xué)生即使掌握了再高深的數(shù)學(xué)知識,仍難以學(xué)會用數(shù)學(xué)的基本方法解決現(xiàn)實問題?,F(xiàn)行的大學(xué)數(shù)學(xué)課程教學(xué)內(nèi)容中,適當?shù)貪B透一些應(yīng)用性比較廣泛的數(shù)學(xué)方法,如微元法、迭代法及最佳逼近等方法,有利于促進學(xué)生對數(shù)學(xué)基礎(chǔ)知識的掌握,同時理解數(shù)學(xué)原理所蘊涵的思想與方法。
這樣,在解決實際問題的時候,學(xué)生就會有意識地從數(shù)學(xué)的角度進行思考,嘗試建立相應(yīng)的數(shù)學(xué)模型并進行求解,拓展了數(shù)學(xué)知識的深度與廣度,提升了學(xué)生的數(shù)學(xué)應(yīng)用能力四、結(jié)語數(shù)學(xué)建模是數(shù)學(xué)科學(xué)在科技、經(jīng)濟、軍事等領(lǐng)域廣泛應(yīng)用的接口,是數(shù)學(xué)科學(xué)轉(zhuǎn)化成科學(xué)技術(shù)的重要途徑。在數(shù)學(xué)主干課程中融入數(shù)學(xué)建模的思想與方法,可以推動大學(xué)數(shù)學(xué)教育改革的深入發(fā)展,加深學(xué)生對相關(guān)知識的理解和掌握,有助于從思維方式上培養(yǎng)學(xué)生的創(chuàng)新意識與創(chuàng)新能力。
此外,數(shù)學(xué)建模思想方法融入教學(xué)主干課程還涉及到許多問題,比如數(shù)學(xué)建模與計算技術(shù)如何有效結(jié)合以進行模擬仿真、融入式教學(xué)模式的基本理論、構(gòu)建新的課程體系等問題,仍將有待于更深入的研究。
大學(xué)數(shù)學(xué)建模論文篇十二
高校學(xué)生社團是一種具有共同興趣愛好的學(xué)生自發(fā)組織的開展一些藝術(shù)、娛樂和學(xué)術(shù)型的活動的團體。學(xué)生社團以其鮮明的開放性、自主性以及多樣性等特點,為一些有特長的學(xué)生提供了廣闊的舞臺,讓這些學(xué)生可以更好的發(fā)揮自己的才能,促進其更好的成才。全國大學(xué)生數(shù)學(xué)建模競賽是最早由教育部工業(yè)與數(shù)學(xué)應(yīng)用學(xué)會共同承辦的一個科技性的賽事,該比賽要通過數(shù)學(xué)和計算機的知識來解決實際生活中的問題,由于其特有的比賽形式,使得高職院校在全校范圍內(nèi)直接選拔參賽隊員是件費神的事情,因此,為了更好的為數(shù)學(xué)建模競賽選拔人才,激發(fā)學(xué)生的學(xué)習(xí)興趣,學(xué)術(shù)性社團“數(shù)學(xué)建模協(xié)會”也就應(yīng)運而生。數(shù)學(xué)建模協(xié)會的成立,可以更好的為學(xué)生提供一個展示自己的機會,可以增強學(xué)生對數(shù)學(xué)的學(xué)習(xí)興趣,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)解決實際問題的能力,激發(fā)學(xué)生的創(chuàng)新思維,為數(shù)學(xué)建模競賽選拔人才。本文主要以西安航空職業(yè)技術(shù)學(xué)院數(shù)學(xué)建模協(xié)會為例,探討高職數(shù)學(xué)建模社團活動開展的形式和意義。
(一)數(shù)學(xué)建模社團有利于數(shù)學(xué)建模競賽的開展。高職數(shù)學(xué)建模協(xié)會為數(shù)學(xué)建模競賽搭建了一個平臺,是數(shù)學(xué)建模競賽強有力的后盾,數(shù)學(xué)建模競賽成績的取得與這個平臺密不可分,只有充分發(fā)揮數(shù)學(xué)建模社團的作用,才能源源不斷的為數(shù)學(xué)建模提供人力和智力保障,才能更好的推動高職數(shù)學(xué)的學(xué)習(xí)氛圍。1、數(shù)學(xué)建模協(xié)會起著動員宣傳的作用從沒聽過,到知道,在到熟悉,只有通過大力宣傳和動員,才能讓更多的人了解數(shù)學(xué)建模,讓更多優(yōu)秀學(xué)生參加到數(shù)學(xué)建模競賽中。大學(xué)校園中有許多數(shù)學(xué)愛好者,他們對數(shù)學(xué)建模也有一定的認識,只要有參加數(shù)學(xué)建模活動的愿望的,都可以利用數(shù)學(xué)建模協(xié)會招新的機會,加入數(shù)學(xué)建模創(chuàng)新協(xié)會。將成績優(yōu)秀的學(xué)生邀請加入數(shù)學(xué)建模協(xié)會,對進一步擴大數(shù)學(xué)建模協(xié)會,夯實數(shù)學(xué)建模基礎(chǔ),起著舉足輕重的作用。2、數(shù)學(xué)建模協(xié)會起著知識傳播的作用高職院校學(xué)生在校學(xué)習(xí)時間較短,學(xué)業(yè)較為繁重,課余時間較少,數(shù)學(xué)建模培訓(xùn)的時間不足,無法讓學(xué)生在短時期內(nèi)掌握較多的數(shù)學(xué)建模相關(guān)知識。因此,利用數(shù)學(xué)建模協(xié)會活動可以開展數(shù)學(xué)建模課程的培訓(xùn)工作,普及數(shù)學(xué)建模相關(guān)知識。采用“老帶新”的模式進行數(shù)學(xué)建模知識的普及。通過制定系統(tǒng)的培訓(xùn)方案,在每年秋季競賽后,參加過競賽的同學(xué)對新入?yún)f(xié)會的成員可以進行初級培訓(xùn),為今后的競賽奠定基礎(chǔ)。3、數(shù)學(xué)建模社團起著選拔學(xué)生的作用每年數(shù)學(xué)建模競賽的隊員需要通過校內(nèi)賽等形式進行選拔,此時,數(shù)學(xué)建模協(xié)會就起著校內(nèi)賽命題及選拔隊員的作用,當然這種選拔方式也有的弊端,就是所有隊員都是來自校內(nèi)賽成績優(yōu)秀的學(xué)生,而校內(nèi)賽發(fā)揮不理想但建模能力突出或計算機技術(shù)水平優(yōu)秀的學(xué)生就沒法參加數(shù)學(xué)建模競賽。為確保每一位有能力的學(xué)生都能夠加入到建模競賽隊伍中來,可以通過校內(nèi)競賽與建模協(xié)會推薦兩者相結(jié)合的方式選拔建模競賽學(xué)生,以確保最優(yōu)優(yōu)秀的學(xué)生參加數(shù)學(xué)建模競賽。(二)數(shù)學(xué)建模社團有利于大學(xué)生綜合素質(zhì)的培養(yǎng)。(1)數(shù)學(xué)建模社團屬于專業(yè)的學(xué)術(shù)性社團,成立的目的是為了參加全國大學(xué)生數(shù)學(xué)建模競賽,數(shù)學(xué)建模社團活動的趣味性和實踐性可以提高學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生自主學(xué)習(xí)的能力,增加學(xué)生參與競賽的熱情。社團活動中的培訓(xùn)使學(xué)生可以更好的應(yīng)對競賽,取得更好的成績。另外,競賽之余還可以進行其他領(lǐng)域的學(xué)術(shù)交流,比如計算機,經(jīng)濟,工程等領(lǐng)域,良好的交流氛圍激發(fā)學(xué)生的創(chuàng)新思維和意識,從而培養(yǎng)他們的創(chuàng)新能力。(2)數(shù)學(xué)建模社團是學(xué)生自發(fā)組織的服務(wù)學(xué)生的群體,除了學(xué)術(shù)研究之外,還可以進行一些創(chuàng)新創(chuàng)業(yè)的活動,具有更多的實踐的機會。比如,可以利用平時社團所學(xué)的知識,以團體的形式進行一些數(shù)據(jù)處理的校企合作;也可以以微信平臺和微信群等發(fā)布一些數(shù)學(xué)建模相關(guān)的微課等,進行一些微信群講座等等。這樣可以讓學(xué)生真正體會到數(shù)學(xué)的用處,達到學(xué)以致用的效果。(3)數(shù)學(xué)建模社團是學(xué)生自發(fā)組織的學(xué)術(shù)性社團,社團的組織機構(gòu)都是學(xué)生在擔(dān)任,社團的活動也都是學(xué)生在協(xié)調(diào)策劃,甚至很多時候社團的老成員都可以輔助老師進行社團的一些學(xué)術(shù)性的講座。因此,在學(xué)習(xí)的同時還鍛煉了他們的處事應(yīng)變能力團隊合作的能力,可以說提高了學(xué)生的綜合素質(zhì)。
(一)數(shù)學(xué)建模社團的管理形式。數(shù)學(xué)建模協(xié)會作為一個學(xué)生群體組織,需要好的制度和管理模式。以筆者所在學(xué)校為例,數(shù)學(xué)建模創(chuàng)新協(xié)會具有自己的一套規(guī)章管理制度;在管理形式方面是以“三個管理面”來進行社團管理和學(xué)術(shù)交流的,具體如下:1、學(xué)術(shù)交流面這個主要是通過“社團內(nèi)部進行學(xué)術(shù)交流活動”和“老帶新培訓(xùn)”兩部分組成,內(nèi)部的交流活動主要是學(xué)生之間的相互溝通和交流,以及不定期的邀請指導(dǎo)教師和外校專家做一些數(shù)學(xué)建模報告。老帶新培訓(xùn)是指社團主席團成員(一般是參加過前一年全國大學(xué)生數(shù)學(xué)建模競賽的學(xué)生)為新入社團的學(xué)生進行培訓(xùn),培訓(xùn)的內(nèi)容基本上都是之前指導(dǎo)教師對他們集訓(xùn)時的內(nèi)容,這種培訓(xùn)方式可以提升社團成員的授課和理解問題的能力,對于在校大學(xué)生來說是一次很好的鍛煉。2、網(wǎng)絡(luò)交流面采用qq群,網(wǎng)絡(luò)空間和微信公眾平臺等開展社團成員之間的交流互動,社團宣傳。筆者所在學(xué)校的數(shù)學(xué)建模創(chuàng)新協(xié)會每一屆社團都有相應(yīng)的qq群,另外,在20xx年也積極申請了微信平臺,目前的'關(guān)注量也在800余人,微信平臺的建立可以更方面使大學(xué)生關(guān)注數(shù)學(xué)建模相關(guān)信息,尤其是對大一新生可以更多的取了解數(shù)學(xué)建模,擴大數(shù)學(xué)建模的受益面和影響力。力求在大學(xué)生中營造一種“人人知數(shù)模,人人愛數(shù)模,人人參與數(shù)?!钡牧己玫慕逃h(huán)境,使建?;顒訌V泛化、群眾化。3、交流互訪面開展研討會,專家報告會,社團聯(lián)誼會等交流活動,既可以豐富數(shù)學(xué)建模社團學(xué)生的知識面,又能促進數(shù)學(xué)知識的理解和吸收,通過與其他社團的聯(lián)誼,豐富了社團學(xué)生的業(yè)余生活,又能學(xué)習(xí)其他社團好的管理經(jīng)驗,促進社團管理的制度化、規(guī)范化、專業(yè)化,也只有通過不斷的學(xué)習(xí),不斷的交流,才能真正“走出去”,建立一個管理完善,富有成效的學(xué)生社團。(二)數(shù)學(xué)建模社團的特色活動。數(shù)學(xué)建模社團在開展學(xué)術(shù)活動和輔助教師進行競賽培訓(xùn)的同時,還不定期的舉行一些活動,在提高學(xué)生學(xué)習(xí)興趣的同時也以擴大了數(shù)學(xué)建模的影響力。以筆者坐在學(xué)校為例,每年可以開展一系列的數(shù)學(xué)建?;顒?。比如,數(shù)學(xué)建模創(chuàng)新協(xié)會納新,數(shù)學(xué)建模創(chuàng)新協(xié)會趣味運動會,數(shù)學(xué)科技節(jié),趣味數(shù)學(xué)知識競賽,數(shù)學(xué)建模經(jīng)驗交流會,數(shù)學(xué)建模校內(nèi)賽,數(shù)學(xué)輔導(dǎo)周,數(shù)學(xué)建模專題講座。這些社團活動貫穿整個學(xué)年,不僅可以“由點及面、由淺入深”的對全國大學(xué)生數(shù)學(xué)建模競賽進行宣傳,在最大的范圍內(nèi),提升數(shù)學(xué)建模大賽的影響力及參與度,成效較好。而且讓枯燥的學(xué)術(shù)型社團變得豐富多彩,成為學(xué)生課后獲取知識的一種平臺,同時也是社團蓬勃發(fā)展的利器。
總之,數(shù)學(xué)建模社團活動的開展,有利于培養(yǎng)學(xué)生的創(chuàng)新意識和思維,有利于激發(fā)了學(xué)生的學(xué)習(xí)興趣,有利于豐富學(xué)生的課后生活,有利于調(diào)動了學(xué)生參加學(xué)術(shù)型社團的積極性,同時也是高職院校組織參加數(shù)學(xué)建模競賽的強有力的后盾。
[1]胡建茹,王搖娟.加強專業(yè)社團建設(shè)推進大學(xué)生創(chuàng)新實踐能力培養(yǎng)[j].中國石油大學(xué)學(xué)報:社會科學(xué)版,20xx(12)
[2]王珍娥,宋維,孫潔.數(shù)學(xué)社團建設(shè)的探索與實踐[j].機械職業(yè)教育,20xx(7)
[3]李湘玲,王泳興.大學(xué)生社團發(fā)展與創(chuàng)新型人才培養(yǎng)互動機制研究:以吉首大學(xué)為例[j].黑龍江教育,20xx(11)
[4]孫浩,葉正麟.西北工業(yè)大學(xué)數(shù)學(xué)建模創(chuàng)新教育之探索[j].高等數(shù)學(xué)研究,20xx(4)
作者:張?zhí)m單位:西安航空職業(yè)技術(shù)學(xué)院通識教育學(xué)院
大學(xué)數(shù)學(xué)建模論文篇十三
優(yōu)秀高教社杯全國大學(xué)生數(shù)學(xué)建模競賽題目
(請先閱讀“全國大學(xué)生數(shù)學(xué)建模競賽論文格式規(guī)范”)
a題城市表層土壤重金屬污染分析
隨著城市經(jīng)濟的快速發(fā)展和城市人口的不斷增加,人類活動對城市環(huán)境質(zhì)量的影響日顯突出。對城市土壤地質(zhì)環(huán)境異常的查證,以及如何應(yīng)用查證獲得的海量數(shù)據(jù)資料開展城市環(huán)境質(zhì)量評價,研究人類活動影響下城市地質(zhì)環(huán)境的演變模式,日益成為人們關(guān)注的焦點。
按照功能劃分,城區(qū)一般可分為生活區(qū)、工業(yè)區(qū)、山區(qū)、主干道路區(qū)及公園綠地區(qū)等,分別記為1類區(qū)、2類區(qū)、??、5類區(qū),不同的區(qū)域環(huán)境受人類活動影響的程度不同。
現(xiàn)對某城市城區(qū)土壤地質(zhì)環(huán)境進行調(diào)查。為此,將所考察的城區(qū)劃分為間距1公里左右的網(wǎng)格子區(qū)域,按照每平方公里1個采樣點對表層土(0~10厘米深度)進行取樣、編號,并用gps記錄采樣點的位置。應(yīng)用專門儀器測試分析,獲得了每個樣本所含的多種化學(xué)元素的濃度數(shù)據(jù)。另一方面,按照2公里的間距在那些遠離人群及工業(yè)活動的自然區(qū)取樣,將其作為該城區(qū)表層土壤中元素的背景值。
附件1列出了采樣點的位置、海拔高度及其所屬功能區(qū)等信息,附件2列出了8種主要重金屬元素在采樣點處的濃度,附件3列出了8種主要重金屬元素的背景值。
現(xiàn)要求你們通過數(shù)學(xué)建模來完成以下任務(wù):
(1)給出8種主要重金屬元素在該城區(qū)的空間分布,并分析該城區(qū)內(nèi)不同區(qū)域重金屬的污染程度。
(2)通過數(shù)據(jù)分析,說明重金屬污染的主要原因。
(3)分析重金屬污染物的傳播特征,由此建立模型,確定污染源的位置。
大學(xué)數(shù)學(xué)建模論文篇十四
摘要:數(shù)學(xué)作為很多學(xué)科的計算工具,可以說是現(xiàn)代科學(xué)的基礎(chǔ),要想利用數(shù)學(xué)來解決實際問題,首先要建立相應(yīng)的數(shù)學(xué)模型,本文在數(shù)學(xué)建模思想概念和特點的基礎(chǔ)上,從計算機軟件、實際生活中的應(yīng)用等方面,對其應(yīng)用的發(fā)展進行了分析,最后從分析問題、建立模型、校驗?zāi)P腿齻€階段,對數(shù)學(xué)建模的方法,進行了深入的研究。
關(guān)鍵詞:數(shù)學(xué)建模;思想;應(yīng)用;方法;分析
引言
隨著自然科學(xué)的發(fā)展,利用數(shù)學(xué)等思想來解決實際問題,越來越受到人們的重視,數(shù)學(xué)作為一門歷史悠久的自然科學(xué),是在實際應(yīng)用的基礎(chǔ)上發(fā)展起來,但是隨著理論研究的深入,現(xiàn)在數(shù)學(xué)理論已經(jīng)非常先進,很多理論都無法付諸實踐,在這種背景下,如何利用現(xiàn)有的數(shù)學(xué)理論來解決實際問題,成為了很多專家和學(xué)者研究的問題。通過實際的調(diào)查發(fā)現(xiàn),要想利用數(shù)學(xué)來解決實際問題,首先要建立相應(yīng)的數(shù)學(xué)模型,將實際的問題轉(zhuǎn)化成數(shù)學(xué)符號的表達方式,這樣才能夠通過數(shù)學(xué)計算,來解決一些實際問題,從某種意義上來說,計算機就是由若干個數(shù)學(xué)模型組成的,計算機軟件之所以能夠解決實際問題,就是根據(jù)實際應(yīng)用的需要,建立了一個相應(yīng)的數(shù)學(xué)模型,這樣才能夠讓計算機來解決。
1數(shù)學(xué)建模思想分析
1.1數(shù)學(xué)建模思想的概念
數(shù)學(xué)是一門歷史悠久的自然科學(xué),在古時候,由于實際應(yīng)用的需要,人們就已經(jīng)開始使用數(shù)學(xué)來解決實際問題,但是受到當時技術(shù)條件的限制,數(shù)學(xué)理論的水平比較低,只是利用數(shù)學(xué)來進行計數(shù)等,隨著經(jīng)濟和科技水平的提高,尤其是在工業(yè)革命之后,自然科學(xué)得到了極大的發(fā)展,對于利用自然科學(xué)來解決實際問題,也成為了人們研究的重點,在市場經(jīng)濟的推動下,人們將這些理論知識轉(zhuǎn)化成為產(chǎn)品。計算機就是在這種背景下產(chǎn)生的,在數(shù)學(xué)理論的基礎(chǔ)上,將電路的通和不通兩種狀態(tài),與數(shù)學(xué)的二進制相結(jié)合,這樣就能夠讓計算機來處理實際問題,從本質(zhì)上來說,這就是數(shù)學(xué)建模思想的范疇,但是在計算機出現(xiàn)的早期,數(shù)學(xué)建模的理論還沒有形成,隨著計算機軟件技術(shù)的發(fā)展,人們逐漸的意識到數(shù)學(xué)建模的重要性,發(fā)現(xiàn)利用數(shù)學(xué)建模思想,可以解決很多實際的問題,而數(shù)學(xué)建模的概念,就是將遇到的實際問題,利用特定的數(shù)學(xué)符號進行描述,這樣實際問題就轉(zhuǎn)化為數(shù)學(xué)問題,可以利用數(shù)學(xué)的計算方法來解決。
1.2數(shù)學(xué)建模思想的特點
如何解決實際問題,從有人類文明開始,就成為了人們研究的重點,隨著自然科學(xué)的發(fā)展,出現(xiàn)了很多具體的學(xué)科,利用這些不同的學(xué)科,可以解決不同的實際問題,而數(shù)學(xué)就是其中最重要的一門學(xué)科,而且是其他學(xué)科的基礎(chǔ),如物理學(xué)科中,數(shù)學(xué)就是一個計算的工具,由此可以看出數(shù)學(xué)的重要性,進入到信息時代后,計算機得到了普及應(yīng)用,無論是日常生活中還是工作中,計算機都有非常重要的應(yīng)用,而在信息時代,注重的是解決問題的效率。與其他解決問題的方式相比,數(shù)學(xué)建模顯然更加科學(xué),現(xiàn)在數(shù)學(xué)建模已經(jīng)成為了一門獨立的學(xué)科,很多高校中都開設(shè)了這門課程,為了培養(yǎng)學(xué)生們利用數(shù)學(xué)解決實際問題的能力,我國每年都會舉辦全國性的數(shù)學(xué)建模大賽,采用開放式的參賽方式,對學(xué)生們的數(shù)學(xué)建模能力進行考驗,而大賽的題目,很多都是一些實際問題,對于比賽的結(jié)果,每個參賽隊伍的建模方式都有一定的差異,其中選出一個最有效的方式成為冠軍。由此可以看出,對于一個實際的問題,可以建立多個數(shù)學(xué)模型進行解決,但是執(zhí)行的效率具有一定的差異,如有些計算的步驟較少,而有些計算的過程比較簡單,而如何評價一個模型的效率,必須從各個方面進行綜合的考慮。
2數(shù)學(xué)建模思想的應(yīng)用
2.1計算機軟件中數(shù)學(xué)建模思想的應(yīng)用
通過深入的分析可以知道,計算機之所以能夠解決實際問題,很大程度上依賴與計算機軟件,而計算機軟件自身就是一個或幾個數(shù)學(xué)模型,在軟件開發(fā)的過程中,首先要進行需求的分析,這其實就是數(shù)學(xué)建模的第一個環(huán)節(jié),對問題進行分析,在了解到問題之后,就要通過計算機語言,對問題進行描述,而計算機語言是人與計算機進行溝通的語言,最終這些語言都要轉(zhuǎn)化成0和1二進制的方式,這樣計算機才能夠進行具體的計算。由此可以看出,計算機就是依靠數(shù)學(xué)來解決實際問題,而每個計算機軟件,都可以認為是一個數(shù)學(xué)模型,如在早期的計算機程序設(shè)計中,受到當時計算機技術(shù)水平的限制,采用的還是低級語言,由于低級語言人們很難理解,因此在程序編寫之前,都會先建立一個數(shù)學(xué)模型,然后將這個模型轉(zhuǎn)化成相應(yīng)的計算機語言,這樣計算機就可以解決實際的問題,由于計算機能夠自行計算的特點,只要輸入相應(yīng)的參數(shù)后,就可以直接得到結(jié)果,不再需要人為的計算。
2.2數(shù)學(xué)建模思想直接解決實際問題
經(jīng)過了多年的發(fā)展,現(xiàn)在數(shù)學(xué)建模自身已經(jīng)非常完善,為了培養(yǎng)我國的數(shù)學(xué)建模人才,從1992年開始,每年我國都會舉辦一屆全國數(shù)學(xué)建模大賽,所有的高校學(xué)生都可以參加,大賽采用了開放性的參賽方式,通常情況下,對于題目設(shè)置的也比較靈活,會有多個題目提供給隊員選擇,學(xué)生可以根據(jù)自己的實際情況,來選擇一個最適合自己的問題。而數(shù)學(xué)建模大賽舉辦的主要目的,就是讓學(xué)生們掌握如何利用數(shù)學(xué)理論,來解決實際問題,在學(xué)習(xí)數(shù)學(xué)知識的過程中,很多學(xué)生會認為,數(shù)學(xué)與實踐的距離很遠,學(xué)習(xí)的都是純理論的知識,學(xué)習(xí)的興趣很低,與一些實踐密切相關(guān)的學(xué)科相比,選擇數(shù)學(xué)專業(yè)的學(xué)生很少,而數(shù)學(xué)建模的出現(xiàn),在很大程度上改善了這種情況,讓人們真正的了解數(shù)學(xué),并利用數(shù)學(xué)來解決復(fù)雜的問題。受到特殊的歷史因素影響,我國自然科學(xué)發(fā)展的起步較晚,在建國后經(jīng)歷了很長一段時間封,閉發(fā)展,與西方發(fā)達國家之間的交流比較少,因此對于數(shù)學(xué)建模等現(xiàn)代科學(xué),研究的時間比較短,導(dǎo)致目前我國很少會利用數(shù)學(xué)建模來解決實際問題,相比之下,發(fā)達國家在很多領(lǐng)域中,經(jīng)常會用到數(shù)學(xué)建模的知識,如在企業(yè)日常運營中,需要進行市場調(diào)研等工作,而對于這些調(diào)研工作的處理,在進行之前都會建立一個數(shù)學(xué)模型,然后按照這個建立的模型來處理。
2.3數(shù)學(xué)建模思想應(yīng)用的發(fā)展
從本質(zhì)上來說,數(shù)學(xué)是在實際應(yīng)用的基礎(chǔ)上,逐漸形成的一門學(xué)科,但是受到當時技術(shù)水平的限制,雖然人們已經(jīng)懂得去計算,卻并知道自己使用的是數(shù)學(xué)知識,隨著自然科學(xué)的發(fā)展,對數(shù)學(xué)的應(yīng)用越來越多,而數(shù)學(xué)自身理論的發(fā)展速度很快,遠遠超過了實際應(yīng)用的范圍,同時隨著其他學(xué)科的發(fā)展,數(shù)學(xué)變成了一種計算的工具,因此數(shù)學(xué)應(yīng)用的第一個階段中,主要是作為一種工具。隨著電子計算機的出現(xiàn),對數(shù)學(xué)的應(yīng)用達到了一個極限,人們在數(shù)學(xué)和物理的基礎(chǔ)上,制作出了能夠自動計算的機器,在計算機出現(xiàn)的早期,受到性能和體積上的限制,只能進行一些簡單的數(shù)學(xué)計算,還不能解決實際的問題,但是計算機語言和軟件技術(shù)的.發(fā)展,使其在很多領(lǐng)域得到了應(yīng)用,在計算的基礎(chǔ)上,能夠解決很多問題,而軟件程序的開發(fā),其實就是建立數(shù)學(xué)模型的過程,由此可以看出,數(shù)學(xué)建模思想應(yīng)用的第二階段中,主要是以現(xiàn)代計算機等電子設(shè)備的方式,來解決實際的問題。
3數(shù)學(xué)建模思想應(yīng)用的方法
3.1分析問題
數(shù)學(xué)模型的應(yīng)用都是為了解決實際問題,雖然很多問題都可以通過建模的方式來解決,但是并不是所有的問題,因此在遇到實際問題時,首先要對問題進行具體的分析,首先就是看是否能夠轉(zhuǎn)化成數(shù)學(xué)符號,如果能夠直接用數(shù)學(xué)語言來進行描述,那么就可以容易的建立相應(yīng)的數(shù)學(xué)模型,但是通過實際的調(diào)查發(fā)現(xiàn),隨著經(jīng)濟和科技的發(fā)展,遇到的問題越來越復(fù)雜,其中很多都無法直接用數(shù)學(xué)語言來描述,這就增加了數(shù)學(xué)建模的難度。由此可以看出,分析問題作為數(shù)學(xué)建模的第一個環(huán)節(jié),也是最重要的一個環(huán)節(jié),如果問題分析的不夠具體,那么將無法建立出數(shù)學(xué)模型,同時對數(shù)學(xué)模型的建立也具有非常重要的影響,通過實際的調(diào)查發(fā)現(xiàn),能夠建立高效率的數(shù)學(xué)模型,都是對問題分析的比較徹底,甚至有些獨特的理解,只有這樣才能夠采用建立一個最簡單的模型,而隨著數(shù)學(xué)建模自身的發(fā)展,現(xiàn)在建立模型的過程中,對于一個實際的問題,經(jīng)常需要建立多個模型,這樣通過多個數(shù)學(xué)模型協(xié)同來解決一個問題。
3.2數(shù)學(xué)模型的建立
在分析實際問題后,就要用數(shù)學(xué)符號來描述要解決的問題,這是建立數(shù)學(xué)模型的準備環(huán)節(jié),要想利用數(shù)學(xué)來解決實際問題,無論采用哪種方式,都要轉(zhuǎn)化成數(shù)學(xué)語言,然后才能夠通過計算的方式解決,而數(shù)學(xué)模型的過程,就是在描述完成后,建立相應(yīng)的數(shù)學(xué)表達式,通常情況下,在分析問題時,都能夠發(fā)現(xiàn)某種內(nèi)在的規(guī)律,這個規(guī)律是數(shù)學(xué)建模的基礎(chǔ)。如果無法找到這個規(guī)律,顯然就不能利用現(xiàn)有的一些數(shù)學(xué)定律,從而建立相應(yīng)的表達式,最后解決相應(yīng)的問題,由此可以看出,分析問題的內(nèi)在規(guī)律,是影響數(shù)學(xué)建模的重要因素,而這個規(guī)律的發(fā)現(xiàn),除了在現(xiàn)有的數(shù)學(xué)知識外,也可以結(jié)合其他學(xué)科的知識,尤其是現(xiàn)在遇到的問題越來越復(fù)雜,對于以往簡單的問題,只需要建立一個簡單的模型即可解決,而現(xiàn)在復(fù)雜的問題,經(jīng)常需要建立多個模型。因此現(xiàn)在數(shù)學(xué)建模的難度越來越大,從近些年全國數(shù)學(xué)建模大賽的題目就可以看出,對于問題的描述越來越模糊,甚至出現(xiàn)了一些歷史上的難題,而不同學(xué)生根據(jù)自己的理解,建立的模型也具有很大的差異,其中一些模型非常新穎,為實際問題的解決提供了良好的參考,目前我國對數(shù)學(xué)建模的研究有限,尤其是與西方發(fā)達國家相比,實踐的機會還比較少。
3.3數(shù)學(xué)模型的校驗
在數(shù)學(xué)模型建立之后,對于這個模型是否能夠解決實際問題,具體的執(zhí)行效率如何,都需要進行校驗,因此檢驗是數(shù)學(xué)模型建立最后的一個環(huán)節(jié),也是非常重要的一個步驟,通常情況下,經(jīng)過校驗都能夠發(fā)現(xiàn)模型中存在的一些問題,從而進行完善,這樣才能夠保證嚴謹性,在實際校驗的過程中,要對數(shù)學(xué)模型的每個部分進行驗證,通過輸入特定的數(shù)據(jù),看得到的結(jié)果是否符合理論值,如果沒有問題,就說明該模型可以解決實際問題。除了檢驗?zāi)P偷臏蚀_外,校驗還有另外一個作用,就是優(yōu)化模型,在選定數(shù)據(jù)后,能夠看到數(shù)學(xué)模型計算的整個過程,這時就可以對具體的細節(jié)進行優(yōu)化,如哪部分可以減少計算的步驟,或者簡化計算的方式等,這樣可以使整個模型更加科學(xué)、合理,由此可以看出,校驗工作對于數(shù)學(xué)模型的建立,具有非常重要的意義。
4結(jié)語
通過全文的分析可以知道,對于數(shù)學(xué)理論的應(yīng)用,從很久之前就已經(jīng)開始了,但是數(shù)學(xué)建模思想的出現(xiàn),卻是隨著計算機技術(shù)的發(fā)展,逐漸形成的一門學(xué)科,電子計算機的出現(xiàn),在很大程度上改變了處理事情的方式,利用計算機軟件,只要輸入相應(yīng)的參數(shù),就可以直接得到結(jié)果,這正是數(shù)學(xué)模型完成的任務(wù),只是計算機的出現(xiàn),省略了中間的計算過程,因此計算機軟件的方式,是數(shù)學(xué)建模思想最好的應(yīng)用方法,要想解決不同的問題,只要建立不同的模型,然后編寫相應(yīng)的程序。
大學(xué)數(shù)學(xué)建模論文篇十五
(一)教學(xué)觀念陳舊化
就當前高等數(shù)學(xué)的教育教學(xué)而言,高數(shù)老師對學(xué)生的計算能力、思考能力以及邏輯思維能力過于重視,一切以課本為基礎(chǔ)開展教學(xué)活動。作為一門充滿活力并讓人感到新奇的學(xué)科,由于教育觀念和思想的落后,課堂教學(xué)之中沒有穿插應(yīng)用實例,在工作的時候?qū)W生不知道怎樣把問題解決,工作效率無法進一步提升,不僅如此,陳舊的教學(xué)理念和思想讓學(xué)生漸漸的失去學(xué)習(xí)的興趣和動力。
(二)教學(xué)方法傳統(tǒng)化
教學(xué)方法的優(yōu)秀與否在學(xué)生學(xué)習(xí)的過程中發(fā)揮著重要的作用,也直接影響著學(xué)生的學(xué)習(xí)成績。一般高數(shù)老師在授課的時候都是以課本的順次進行,也就意味著老師“由定義到定理”、“由習(xí)題到練習(xí)”,這種默守陳規(guī)的教學(xué)方式無法為學(xué)生營造活躍的學(xué)習(xí)氛圍,讓學(xué)生獨自學(xué)習(xí)、思考的能力進一步下降。這就要求教師致力于和諧課堂氛圍營造以及使用新穎的教育教學(xué)方法,讓學(xué)生在課堂中主動參與學(xué)習(xí)。
二、建模在高等數(shù)學(xué)教學(xué)中的作用
對學(xué)生的想象力、觀察力、發(fā)現(xiàn)、分析并解決問題的能力進行培養(yǎng)的過程中,數(shù)學(xué)建模發(fā)揮著重要的作用。最近幾年,國內(nèi)出現(xiàn)很多以數(shù)學(xué)建模為主體的賽事活動以及教研活動,其在學(xué)生學(xué)習(xí)興趣的提升、激發(fā)學(xué)生主動學(xué)習(xí)的積極性上扮演著重要的角色,發(fā)揮著突出的作用,在高等數(shù)學(xué)教學(xué)中引入數(shù)學(xué)建模還能培養(yǎng)學(xué)生不畏困難的品質(zhì),培養(yǎng)踏實的工作精神,在協(xié)調(diào)學(xué)生學(xué)習(xí)的知識、實際應(yīng)用能力等上有突出的作用。雖然國內(nèi)高等院校大都開設(shè)了數(shù)學(xué)建模選修課或者培訓(xùn)班,但是由于課程的要求和學(xué)生的認知水平差異較大,所以課程無法普及為大眾化的教育。如今,高等院校都在積極的尋找一種載體,對學(xué)生的整體素質(zhì)進行培養(yǎng),提升學(xué)生的創(chuàng)新精神以及創(chuàng)造力,讓學(xué)生滿足社會對復(fù)合型人才的需求,而最好的載體則是高等數(shù)學(xué)。
高等數(shù)學(xué)作為工科類學(xué)生的一門基礎(chǔ)課,由于其必修課的性質(zhì),把數(shù)學(xué)建模引入高等數(shù)學(xué)課堂中具有較廣的影響力。把數(shù)學(xué)建模思想滲入高等數(shù)學(xué)教學(xué)中,不僅能讓數(shù)學(xué)知識的本來面貌得以還原,更讓學(xué)生在日常中應(yīng)用數(shù)學(xué)知識的能力得到很好的培養(yǎng)。數(shù)學(xué)建模要求學(xué)生在簡化、抽象、翻譯部分現(xiàn)實世界信息的過程中使用數(shù)學(xué)的語言以及工具,把內(nèi)在的聯(lián)系使用圖形、表格等方式表現(xiàn)出來,以便于提升學(xué)生的表達能力。在實際的學(xué)習(xí)數(shù)學(xué)建模之后,需要檢驗現(xiàn)實的信息,確定最后的結(jié)果是否正確,通過這一過程中的鍛煉,學(xué)生在分析問題的過程中可以主動地、客觀的辯證的運用數(shù)學(xué)方法,最終得出解決問題的最好方法。因此,在高等數(shù)學(xué)教學(xué)中引入數(shù)學(xué)建模思想具有重要的意義。
三、將建模思想應(yīng)用在高等數(shù)學(xué)教學(xué)中的具體措施
(一)在公式中使用建模思想
在高數(shù)教材中占有重要位置的是公式,也是要求學(xué)生必須掌握的內(nèi)容之一。為了讓教師的'教學(xué)效果進一步提升,在課堂上老師不僅要讓學(xué)生對計算的技巧進一步提升之余,還要和建模思想結(jié)合在一起,讓解題難度更容易,還讓課堂氛圍更活躍。為了讓學(xué)生對公式中使用建模思想理解的更透徹,老師還應(yīng)該結(jié)合實例開展教學(xué)。
(二)講解習(xí)題的時候使用數(shù)學(xué)模型的方式
課本例題使用建模思想進行解決,老師通過對例題的講解,很好的講述使用數(shù)學(xué)建模解決問題的方式,讓學(xué)生清醒的認識在解決問題的過程中怎樣使用數(shù)學(xué)建模。完成每章學(xué)習(xí)的內(nèi)容之后,充分的利用時間為學(xué)生解疑答惑,以學(xué)生所學(xué)的專業(yè)情況和學(xué)生水平的高低選擇合適的例題,完成建模、解決問題的全部過程,提升學(xué)生解決問題的效率。
(三)組織學(xué)生積極參加數(shù)學(xué)建模競賽
一般而言,在競賽中可以很好地鍛煉學(xué)生競爭意識以及獨立思考的能力。這就要求學(xué)校充分的利用資源并廣泛的宣傳,讓學(xué)生積極的參加競賽,在實踐中鍛煉學(xué)生的實際能力。在日常生活中使用數(shù)學(xué)建模解決問題,讓學(xué)生獨自思考,然后在競爭的過程中意識到自己的不足,今后也會努力學(xué)習(xí),改正錯誤,提升自身的能力。
四、結(jié)束語
高等數(shù)學(xué)主要對學(xué)生從理論學(xué)習(xí)走向解決實際問題的能力進行培養(yǎng),在高等數(shù)學(xué)中應(yīng)用建模思想,促使學(xué)生對高數(shù)知識更充分的理解,學(xué)習(xí)的難度進一步降低,提升應(yīng)用能力和探索能力。當前,在高等教學(xué)過程中引入建模思想還存在一定的不足,需要高校高等數(shù)學(xué)老師進行深入的研究和探索的同時也需要學(xué)生很好的配合,以便于今后的教學(xué)中進一步提升教學(xué)的質(zhì)量。
參考文獻
[1]謝鳳艷,楊永艷。高等數(shù)學(xué)教學(xué)中融入數(shù)學(xué)建模思想[j]。齊齊哈爾師范高等??茖W(xué)校學(xué)報,20xx(02):119—120。
[2]李薇。在高等數(shù)學(xué)教學(xué)中融入數(shù)學(xué)建模思想的探索與實踐[j]。教育實踐與改革,20xx(04):177—178,189。
[3]楊四香。淺析高等數(shù)學(xué)教學(xué)中數(shù)學(xué)建模思想的滲透[j]。長春教育學(xué)院學(xué)報,20xx(30):89,95。
[4]劉合財。在高等數(shù)學(xué)教學(xué)中融入數(shù)學(xué)建模思想[j]。貴陽學(xué)院學(xué)報,20xx(03):63—65。
大學(xué)數(shù)學(xué)建模論文篇十六
摘要:在新課改以后,要求教師要在教學(xué)中重視學(xué)生的主體地位,提升學(xué)生學(xué)習(xí)興趣,培養(yǎng)他們的自主學(xué)習(xí)能力。本文從小學(xué)數(shù)學(xué)教學(xué)過程中數(shù)學(xué)建模入手,對如何將數(shù)學(xué)建模運用到學(xué)生解題過程中進行了分析。
關(guān)鍵詞:小學(xué)數(shù)學(xué);建模;運用
數(shù)學(xué)建模是指利用數(shù)學(xué)模型的形式去解決實際中遇到的問題,換句話說,就是利用數(shù)學(xué)思維、數(shù)學(xué)方法解決各種數(shù)學(xué)問題。數(shù)學(xué)建模是在新課程改革后出現(xiàn)的新概念,經(jīng)過一段時間的觀察我們可以發(fā)現(xiàn),數(shù)學(xué)建模的方法能夠有效的提高學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生的數(shù)學(xué)能力。這種方式能夠?qū)?fù)雜的數(shù)學(xué)問題利用簡單的方式找到解決方案,是提高小學(xué)數(shù)學(xué)課堂效率及課堂質(zhì)量的有效手段。小學(xué)數(shù)學(xué)是小學(xué)學(xué)習(xí)中的重要課程之一,也是培養(yǎng)學(xué)生數(shù)學(xué)思維的重要階段??梢哉f,小學(xué)數(shù)學(xué)的學(xué)習(xí)是學(xué)生學(xué)習(xí)數(shù)學(xué)的關(guān)鍵,對今后的學(xué)習(xí)起到極大的影響。因此,對于小學(xué)數(shù)學(xué)教師來說,不斷的完善教學(xué)手段,提高數(shù)學(xué)課堂質(zhì)量是教學(xué)工作中的重中之重。而數(shù)學(xué)建模就是為了解決數(shù)學(xué)在生活中的實際問題,能夠讓學(xué)生感受到數(shù)學(xué)本身的魅力,培養(yǎng)他們的數(shù)學(xué)思維,提高數(shù)學(xué)學(xué)習(xí)能力,從而讓小學(xué)數(shù)學(xué)教學(xué)質(zhì)量也得到大幅度的提升。小學(xué)數(shù)學(xué)與數(shù)學(xué)建模之間有著密不可分的作用,兩者相互聯(lián)系、相互促進,如何有效的將數(shù)學(xué)建模運用在小學(xué)數(shù)學(xué)教學(xué)過程中,是每個小學(xué)數(shù)學(xué)教師都值得思考的問題。
一、培養(yǎng)學(xué)生數(shù)學(xué)建模意識
數(shù)學(xué)建模是為了解決數(shù)學(xué)中遇到的問題,數(shù)學(xué)本身特別是小學(xué)數(shù)學(xué)也是一門較貼近學(xué)生生活的學(xué)科。因此在數(shù)學(xué)學(xué)習(xí)中,教師要首先培養(yǎng)學(xué)生的數(shù)學(xué)學(xué)習(xí)意識,讓他們感受到數(shù)學(xué)與生活的緊密聯(lián)系,然后再引導(dǎo)學(xué)生用數(shù)學(xué)建模去解決遇到的問題。在這一過程中,數(shù)學(xué)教師要注意以下兩個問題:(一)在教學(xué)中一定要貼近學(xué)生的生活,課堂中所提出的問題也必須要符合生活實際,讓學(xué)生對所學(xué)內(nèi)容感到親切。積極引導(dǎo)學(xué)生利用多種方式解決同一問題,尤其是利用數(shù)學(xué)建模的方式,以達到培養(yǎng)他們的數(shù)學(xué)思維以及想象能力的目的。(二)在學(xué)生進行數(shù)學(xué)建模的過程中要利用多鼓勵的方式調(diào)動他們對數(shù)學(xué)學(xué)習(xí)的積極性,讓他們在數(shù)學(xué)建模中獲得成就感,增加自信心,以此來提高學(xué)生在今后學(xué)習(xí)中使用數(shù)學(xué)建模方法的熱情。
二、提高學(xué)生想象力,用數(shù)學(xué)建模簡化問題
對于小學(xué)生來說,他們的思維與其他年齡段相比極其活躍,擁有了豐富的想象力。在數(shù)學(xué)學(xué)習(xí)中,如果能將想象力與數(shù)學(xué)學(xué)習(xí)結(jié)合在一起,一定會得到意想不到的效果。教師可以根據(jù)小學(xué)生這一特點,提高他們的想象力,然后再引導(dǎo)他們利用數(shù)學(xué)建模解決問題,讓題目簡單化。具體來說,就是在面對復(fù)雜的'數(shù)學(xué)問題時,教師可以先為學(xué)生創(chuàng)建教學(xué)情境,以這樣的方式提高學(xué)生的學(xué)習(xí)興趣,讓他們愿意主動去深入的研究遇到的題目。之后教師再去對他們進行引導(dǎo),讓他們能夠理解題目中所提問題的含義,并能夠運用他們的想象能力思考解決問題的方式。最后再引導(dǎo)他們進行數(shù)學(xué)建模,解決問題。這樣的方式充分的利用了學(xué)生的想象能力,將所需解決的問題簡單化。
三、選擇合適的題目作為建模案例
在數(shù)學(xué)建模過程中,教師也要時刻牢記題目應(yīng)該貼近學(xué)生的生活,符合實際,并且具有一定的趣味性,讓他們有興趣投入到數(shù)學(xué)建模的過程中去,然后再反復(fù)練習(xí)之后達到提高他們建模能力的目的。在選擇數(shù)學(xué)建模案例時教師主要應(yīng)該注意以下兩點:首先,教師在選擇建模案例時要盡量選擇比較典型的問題,能夠讓學(xué)生在學(xué)習(xí)了該題目以后掌握這一類的解題方法,達到小學(xué)數(shù)學(xué)教學(xué)的目的。所以,這就需要教師對題目進行深入的分析,看是否在擁有趣味性、真實性的同時符合教學(xué)要求。其次,題目最好能夠擁有可變性,教師能夠通過對題目中已知條件的改變讓學(xué)生進行不同方面的建模練習(xí),以此提高他們數(shù)學(xué)建模的能力。
四、引導(dǎo)學(xué)生主動進行數(shù)學(xué)建模
在教師經(jīng)過反復(fù)的教學(xué)后,學(xué)生都已經(jīng)擁有了基本的數(shù)學(xué)建模知識,了解了數(shù)學(xué)建模過程,并且能夠在解題過程中簡單的使用數(shù)學(xué)建模。此時,教師在教學(xué)中就可以引導(dǎo)學(xué)生利用數(shù)學(xué)建模解決數(shù)學(xué)題目了。引導(dǎo)學(xué)生用數(shù)學(xué)建模方法解決數(shù)學(xué)問題,就要在解題過程中多對學(xué)生進行這一方面的鼓勵,讓他們提高建模信心。在這一過程中,教師還可以嘗試讓學(xué)生之間利用合作的方式讓他們進行數(shù)學(xué)建模方法的探討,并在探討的過程中吸取他人的經(jīng)驗,提高自己數(shù)學(xué)建模水平,同時這樣的方式能夠讓數(shù)學(xué)建模深入到每一個學(xué)生的心中,逐漸影響每一個學(xué)生的解題思路,讓他們能夠在解題過程中熟練運用建模的方式,提高解題能力。數(shù)學(xué)建模的方法能夠有效的改變過去的傳統(tǒng)教學(xué)思路,增加學(xué)生對數(shù)學(xué)的學(xué)習(xí)興趣,提高數(shù)學(xué)解題能力。這種教學(xué)方法對于小學(xué)數(shù)學(xué)教師來說,值得不斷的探討研究,并應(yīng)用在教學(xué)中,以此提高數(shù)學(xué)課堂的教學(xué)效率和教學(xué)質(zhì)量。
大學(xué)數(shù)學(xué)建模論文篇十七
一、在高等數(shù)學(xué)教學(xué)中運用數(shù)學(xué)建模思想的重要性
(1)將教材中的數(shù)學(xué)知識運用現(xiàn)實生活中的對象進行還原,讓學(xué)生樹立數(shù)學(xué)知識來源于現(xiàn)實生活的思想觀念。
(2)數(shù)學(xué)建模思想要求學(xué)生能夠通過運用相應(yīng)的數(shù)學(xué)工具和數(shù)學(xué)語言,對現(xiàn)實生活中的特定對象的信息、數(shù)據(jù)或者現(xiàn)象進行簡化,對抽象的數(shù)學(xué)對象進行翻譯和歸納,將所求解的數(shù)學(xué)問題中的數(shù)量關(guān)系運用數(shù)學(xué)關(guān)系式、數(shù)學(xué)圖形或者數(shù)學(xué)表格等形式進行表達,這種方式有利于培養(yǎng)、鍛煉學(xué)生的數(shù)學(xué)表達能力。
(3)在運用數(shù)學(xué)建模思想獲得實際的答案后,需要運用現(xiàn)實生活對象的相關(guān)信息對其進行檢驗,對計算結(jié)果的準確性進行檢驗和確定。該流程能夠培養(yǎng)學(xué)生運用合理的數(shù)學(xué)方法對數(shù)學(xué)問題進行主動性、客觀性以及辯證性的分析,最后得到最有效的解決問題的方法。
二、高等數(shù)學(xué)教學(xué)中數(shù)學(xué)建模能力的培養(yǎng)策略
1.教師要具備數(shù)學(xué)建模思想意識
在對高等數(shù)學(xué)進行教學(xué)的過程中,培養(yǎng)學(xué)生運用數(shù)學(xué)建模思想,首先教師要具備足夠的數(shù)學(xué)建模意識。教師在進行高等數(shù)學(xué)教學(xué)之前,首先,要對所講數(shù)學(xué)內(nèi)容的相關(guān)實例進行查找,有意識的實現(xiàn)高等數(shù)學(xué)內(nèi)容和各個不同領(lǐng)域之間的聯(lián)系;其次,教師要實現(xiàn)高等數(shù)學(xué)教學(xué)內(nèi)容與教學(xué)要求的轉(zhuǎn)變,及時的更新自身的教學(xué)觀念和教學(xué)思想。例如,教師細心發(fā)現(xiàn)現(xiàn)實生活中的小事,然后運用這些小事建造相應(yīng)的數(shù)學(xué)模型,這樣不僅有利于營造活躍的課堂環(huán)境,而且還有利于激發(fā)學(xué)生的學(xué)習(xí)興趣。
2.實現(xiàn)數(shù)學(xué)建模思想和高等數(shù)學(xué)教材的互相結(jié)合
教師在講解高等數(shù)學(xué)時,對其中能夠引入數(shù)學(xué)模型的章節(jié),要構(gòu)建相關(guān)的數(shù)學(xué)模型,對其提出相應(yīng)的問題,進行分析和處理。在該基礎(chǔ)上,提出假設(shè),實現(xiàn)數(shù)學(xué)模型的完善。教師在高等數(shù)學(xué)的教學(xué)中融入建模意識,讓學(xué)生潛移默化的感受到建模思想在高等數(shù)學(xué)教學(xué)中應(yīng)用的效果。這樣有利于提高學(xué)生數(shù)學(xué)知識的運用能力和學(xué)習(xí)興趣。例如,在進行教學(xué)時,針對學(xué)生所學(xué)專業(yè)的特點,選擇科學(xué)、合理的數(shù)學(xué)案例,運用數(shù)學(xué)建模思想對其進行相應(yīng)的加工后,作為高等數(shù)學(xué)講授的應(yīng)用例題。這樣不僅能夠讓學(xué)生發(fā)現(xiàn)數(shù)學(xué)發(fā)揮的巨大作用,而且還能夠有效的提高學(xué)生的數(shù)學(xué)解題水平。另外,數(shù)學(xué)課結(jié)束后,轉(zhuǎn)變以往的作業(yè)模式,給學(xué)生布置一些具有專業(yè)性、數(shù)學(xué)性的習(xí)題,讓學(xué)生充分利用網(wǎng)絡(luò)資源,自主建立數(shù)學(xué)模型,有效的解決問題。
3.理清高等數(shù)學(xué)名詞的概念
教材中,導(dǎo)數(shù)和定積分是其中的比較重要的概念,因此,教師在進行教學(xué)時,要引導(dǎo)學(xué)生理清這兩個的概念。比如導(dǎo)數(shù)概念是由幾何曲線中的切線斜率引導(dǎo)出來的,定積分的概念是由局部取近似值引出的,將常量轉(zhuǎn)變?yōu)樽兞俊?BR> 4.加強數(shù)學(xué)應(yīng)用問題的培養(yǎng)
高等數(shù)學(xué)中,主要有以下幾種應(yīng)用問題:
(1)最值問題
在高等數(shù)學(xué)教材中,最值問題是導(dǎo)數(shù)應(yīng)用中最重要的問題。教師在教學(xué)過程中通過對最值問題的解題步驟進行歸納,能夠有效地將數(shù)學(xué)建模的基本思想進行反映。因此,在對這部分內(nèi)容進行教學(xué)時,要增加例題,加大學(xué)生的練習(xí),開拓學(xué)生的思維,讓學(xué)生熟練掌握最值問題的解決辦法。
(2)微分方程
在微分方程的教學(xué)中運用數(shù)學(xué)建模思想,能夠有效地解決實際問題。微分方程所構(gòu)建的數(shù)學(xué)模型不具有通用的規(guī)則。首先,要確定方程中的變量,對變量和變化率、微元之間的關(guān)系進行分析,然后運用相關(guān)的物理理論、化學(xué)理論或者工程學(xué)理論對其進行實驗,運用所得出的定理、規(guī)律來構(gòu)建微分方程;其次,對其進行求解和驗證結(jié)果。微分方程的概念主要從實際引入,堅持由淺入深的原則,來對現(xiàn)實問題進行解決。例如,在對學(xué)生講解外有引力定律時,讓學(xué)生對萬有引力的提出、猜想進行探究,了解到在其發(fā)展的整個過程中,數(shù)學(xué)發(fā)揮著十分重要的作用。
(3)定積分
微元法思想用途比較廣泛,其主要以定積分概念為基礎(chǔ),在數(shù)學(xué)中滲入定積分概念,讓學(xué)生對定積分概念的意義進行分析和了解,這樣有利于在對實際問題進行解決時,樹立“欲積先分”意識,意識到運用定積分是解決微元實際問題的重要方法。教師在布置作業(yè)題時,要增加該問題的實例。
三、結(jié)語
總之,在高等數(shù)學(xué)中對學(xué)生的數(shù)學(xué)建模能力進行培養(yǎng),讓學(xué)生在解題的過程中運用數(shù)學(xué)建模思想和數(shù)學(xué)建模方法,能夠有效地激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生的分析、解決問題的能力以及提高學(xué)生數(shù)學(xué)知識的運用能力。
大學(xué)數(shù)學(xué)建模論文篇十八
1培養(yǎng)創(chuàng)造性思維學(xué)生在學(xué)習(xí)數(shù)學(xué)知識的過程中,雖然其接受的知識和經(jīng)驗是前人研究和發(fā)現(xiàn)的成果,但對于學(xué)生來說,其處于知識再發(fā)現(xiàn)的地位。教師向?qū)W生教授數(shù)學(xué)發(fā)現(xiàn)的思維和方法,換言之就是重點引導(dǎo)學(xué)生重溫數(shù)學(xué)經(jīng)驗和知識的研究道路,進而保證學(xué)生的再發(fā)現(xiàn)能夠順利實現(xiàn)。這也是培養(yǎng)學(xué)生創(chuàng)新思維和能力的一個重要途徑。利用數(shù)學(xué)建模能夠有效地彌補數(shù)學(xué)教學(xué)過程中存在的缺陷,使學(xué)生充分體會到數(shù)學(xué)發(fā)現(xiàn)過程中的樂趣,進而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情和積極性,培養(yǎng)其創(chuàng)造性思維。
2選擇經(jīng)典案例開展數(shù)學(xué)建模討論、分析教師在實際的數(shù)學(xué)課堂教學(xué)中,可選擇一些社會實際案例為講授分析的主要對象,如實際生活和高科技的熱點話題。教師可對此類實例進行必要的分析與講解,在此過程中,積極引導(dǎo)學(xué)生獨立鉆研和研究問題,并培養(yǎng)學(xué)生主動查閱相關(guān)資料、自主討論的能力。與此同時,教師還要及時與學(xué)生進行交流,答疑釋難,并要求學(xué)生在自己實際能力的基礎(chǔ)上構(gòu)建恰當?shù)哪P?,由易到難,循序漸進。除此之外,還要使學(xué)生充分發(fā)揮其主觀能動性,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,思考問題以及處理問題的能力。以微積分方程為例,教師在課堂教學(xué)中,可以“經(jīng)濟增長”作為主要案例,向?qū)W生系統(tǒng)地闡述微積分方程的實際應(yīng)用過程,進一步加深學(xué)生對知識的理解、掌握和應(yīng)用。
3同時開設(shè)數(shù)學(xué)建模與高等數(shù)學(xué)課程在職業(yè)院校數(shù)學(xué)教學(xué)過程中,同時開設(shè)數(shù)學(xué)建模與高等數(shù)學(xué)課程,能夠有效提高學(xué)生對基礎(chǔ)知識的理解能力和掌握程度,促進學(xué)生實踐動手能力的培養(yǎng)。在數(shù)學(xué)建模課程的開設(shè)中,應(yīng)該在教師的指導(dǎo)下,充分利用教學(xué)軟件,引導(dǎo)學(xué)生動手實驗和計算,加深學(xué)生對知識的掌握。在此過程中,使學(xué)生充分了解到運用數(shù)學(xué)理論和方法去分析和解決實際問題的全過程,進一步提高學(xué)生的積極性和思維意識能力,使他們意識到數(shù)學(xué)在實際生活應(yīng)用中的關(guān)鍵作用。同時,促使學(xué)生將計算機技術(shù)融入數(shù)學(xué)學(xué)習(xí)中去,以現(xiàn)代化的高新科技為媒介,著手實際社會問題的解決。
4創(chuàng)新教學(xué)模式根據(jù)職業(yè)院校學(xué)生學(xué)習(xí)的特點和知識水平,重點提高學(xué)生運用數(shù)學(xué)的技能和思維方式來處理實際生活和專業(yè)問題的能力。要想從根本上培養(yǎng)學(xué)生的創(chuàng)新能力,一定要改變原來單一固定的教學(xué)模式,嘗試和探索基于學(xué)生實際情況的教學(xué)措施和方式。經(jīng)過長期的實踐經(jīng)驗研究,討論式教學(xué)和雙向教學(xué)方式對培養(yǎng)學(xué)生的能力非常有效。這兩種教學(xué)模式能夠加深學(xué)生參與課堂教學(xué)的程度,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的'主動性,最終達到提高教學(xué)效率的目的。所以,數(shù)學(xué)建??梢砸跃唧w問題為媒介,采用小組集體討論解決問題的方法,培養(yǎng)學(xué)生的創(chuàng)新能力和意識,進一步加快職業(yè)技術(shù)院校數(shù)學(xué)教學(xué)模式的創(chuàng)新。
5組建數(shù)學(xué)建模團隊在實際的數(shù)學(xué)教學(xué)中,教師可引導(dǎo)學(xué)生構(gòu)建數(shù)學(xué)建模團隊。在教師對數(shù)學(xué)建模的深入分析為基礎(chǔ),充分調(diào)動學(xué)生參與問題解決的主動性,師生積極互動,最終完成數(shù)學(xué)建模。如此一來,不僅能夠有效培養(yǎng)學(xué)生積極進取的良好學(xué)習(xí)態(tài)度,而且還能夠促進學(xué)生數(shù)學(xué)邏輯思維能力的提高。
6搭建校內(nèi)數(shù)學(xué)建模網(wǎng)絡(luò)平臺在職業(yè)技術(shù)院校中構(gòu)建校內(nèi)數(shù)學(xué)建模網(wǎng)絡(luò)平臺,積極宣傳與數(shù)學(xué)建模有關(guān)的知識經(jīng)驗,為學(xué)生主動獲取數(shù)學(xué)建模信息提供各種數(shù)據(jù)資料。數(shù)學(xué)建模網(wǎng)絡(luò)平臺的搭建,能夠有效促進教師和學(xué)生,學(xué)生與學(xué)生之間的交流與溝通,大大縮短學(xué)生和數(shù)學(xué)建模之間的距離,進而促進學(xué)生自主學(xué)習(xí)能力的提高和培養(yǎng)。
總而言之,數(shù)學(xué)建模思想是學(xué)生將基礎(chǔ)理論知識與實際解決問題的方法相結(jié)合的最佳途徑。將數(shù)學(xué)建模融入職業(yè)院校數(shù)學(xué)中,全面培養(yǎng)學(xué)生的創(chuàng)新意識和數(shù)學(xué)應(yīng)用能力,進一步使數(shù)學(xué)為達成學(xué)院的教學(xué)和培養(yǎng)計劃奠定基礎(chǔ),為培養(yǎng)更多更優(yōu)秀的現(xiàn)代化社會人才服務(wù)。
大學(xué)數(shù)學(xué)建模論文篇一
“摘要”是對整篇論文的縮寫,建立在通讀全文、理解全文的基礎(chǔ)之上。評審專家評閱論文時,總是先看摘要,摘要給專家留下第一印象,是評獎的敲門磚。“摘要”包括:問題背景,要達到什么目標,解決問題的思路、方法和步驟,模型的主要內(nèi)容、算法和結(jié)論,模型的特色。好的“摘要”能很快吸引評審專家的注意力,它建立在多次修改、反復(fù)推敲的基礎(chǔ)之上,具有統(tǒng)攬全文、層次分明、重點突出、文筆流暢的特點。
“問題提出”也可寫作“問題重述”。是將競賽試題所給定的問題背景和解題要求用論文書寫者自己的語言重新表述。在美國的數(shù)學(xué)建模競賽中,這一部分稱為background或者introduction。
任何問題的求解都有它的背景和適用范圍,建模試題來自于現(xiàn)實問題,同樣受到各種外在因素的約束?!澳P图僭O(shè)”就是界定一個范圍,或給出幾個約束條件,一使得問題的解決過程不至于太復(fù)雜,二使得其他人在使用該模型時知曉它的適用范圍?!澳P图僭O(shè)”不是憑空臆造的,是在建立模型的過程中挖掘、提煉出來的。
數(shù)學(xué)符號是數(shù)學(xué)語言的基本元素,具有抽象性、準確性、簡潔性的特點。數(shù)學(xué)模型由數(shù)學(xué)符號組成,模型的求解通過符號的運算來完成??梢?,在建立數(shù)學(xué)模型時根據(jù)需要隨時引入必要的數(shù)學(xué)符號是多么重要的事情。根據(jù)競賽要求,在建立模型的過程中所引入的數(shù)學(xué)符號要在本模塊給出說明,最好的說明方式是列一個表格。
眾所周知,解決數(shù)學(xué)問題最難、最重要的一步就是明確解題思路,確定解題方法。而“分析”,則是邁出這一步的關(guān)鍵。數(shù)學(xué)建模也這樣。建模試題往往由幾個子問題組成,這時的“問題分析”既要有全局分析,也要有局部分析。“問題分析”包括:分析解決該問題需要用到哪些專業(yè)背景知識;分析解決問題的切入點、重點和難點;分析解決問題的思路、方法、工具和步驟。這樣的分析對于“如何建立模型?采用哪些數(shù)學(xué)理論或公式?怎樣求解?會遇到哪些困難?”具有指導(dǎo)作用。
“模型建立”就是將原問題抽象成數(shù)學(xué)的表示式,主要步驟:
第一步,根據(jù)問題的實際背景和專業(yè)背景,選擇適當?shù)臄?shù)學(xué)理論或工具。例如,如果是變化率問題,則考慮借助于導(dǎo)數(shù)或微分方程的手段;如果涉及面積、體積、曲線弧長、功、流量等幾何量或物理量,則考慮運用積分元素法,將問題轉(zhuǎn)化為定積分、或重積分、或曲線曲面積分;如果是隨機數(shù)據(jù)的處理,則考慮統(tǒng)計分析的方法。
第二步,確定常量、變量,用符號來表示這些量。
第三步,建立數(shù)學(xué)模型,即建立常量、變量之間的關(guān)系。這種關(guān)系可以是方程、函數(shù)或表格。
少數(shù)模型可能是簡單的數(shù)學(xué)式子,求解起來比較容易。有些模型雖然也可用數(shù)學(xué)式子表示,但其中含有難以析出的參數(shù),求解很困難,有的模型面對的就是一堆數(shù)據(jù),對于這兩種情形,就需要借助于軟件matlab,mathematic,maple,sas,spss中的某一個編程求解。
數(shù)學(xué)建模競賽的題目來自于科技、工程、經(jīng)濟、社會等領(lǐng)域的實際問題。由于問題的復(fù)雜性和方法的局限性,所建立的數(shù)學(xué)模型與實際情況之間會有差距,模型可靠性的檢驗成為必然。為了檢驗提交的數(shù)學(xué)模型與實際情況吻合的程度,競賽題中往往會提供一些來自于背景問題的實驗數(shù)據(jù)?!澳P蜋z驗”就是將給定的數(shù)據(jù)代入模型,計算相對誤差和絕對誤差,如果誤差較大,就要返回去調(diào)整模型以提高可靠性。
該標題也可寫成“模型的優(yōu)缺點分析”。分析模型有哪些優(yōu)點,缺點是什么。也有人將這里的標題改寫為“模型評價、推廣與改進”。其中的“推廣”是將前述“模型假設(shè)”中的某些條件適當放寬,看看結(jié)果會怎樣?!案倪M”是指對模型或算法做出某種改進。
列式參考的主要文獻。
詳細的軟件程序、程序運算過程、運算結(jié)果;用于模型檢驗的數(shù)據(jù)表格;其他不宜放在正文中的數(shù)據(jù)表格。
大學(xué)數(shù)學(xué)建模論文篇二
數(shù)學(xué)是一門應(yīng)用性較強的學(xué)科,與實際生活具有緊密的聯(lián)系,而數(shù)學(xué)建模主要是指將人們的現(xiàn)實問題演變?yōu)閷W(xué)生的數(shù)學(xué)學(xué)習(xí)問題的過程中,這種思想在教學(xué)過程中的有效應(yīng)用,有助于培養(yǎng)學(xué)生的數(shù)學(xué)思維能力和創(chuàng)新能力,有效提升數(shù)學(xué)教學(xué)質(zhì)量。所以對于數(shù)學(xué)建模思想在大學(xué)數(shù)學(xué)教學(xué)過程中應(yīng)用的探索具有重要意義。
一、建模思想在大學(xué)數(shù)學(xué)教學(xué)中應(yīng)用的重要性
(一)激發(fā)學(xué)生的學(xué)習(xí)興趣
建模思想在大學(xué)數(shù)學(xué)教學(xué)中的應(yīng)用,對于激發(fā)學(xué)生的數(shù)學(xué)學(xué)習(xí)興趣具有重要作用。文中提到,數(shù)學(xué)建模主要是指將人們的現(xiàn)實問題演變?yōu)閷W(xué)生的數(shù)學(xué)學(xué)習(xí)問題的過程中,通過這種教學(xué)方式,能夠?qū)?shù)學(xué)教學(xué)過程中的數(shù)學(xué)理論與學(xué)生的具體生活實踐有機結(jié)合,有利于學(xué)生對于數(shù)學(xué)理論知識的理解和把握,激發(fā)了學(xué)習(xí)興趣,增加了學(xué)習(xí)的主動性和積極性,提升了學(xué)生解決實際問題的能力。
(二)推進教學(xué)改革
在實際教學(xué)過程中,大學(xué)數(shù)學(xué)教學(xué)越來越注重理論性知識的教學(xué),導(dǎo)致數(shù)學(xué)教學(xué)內(nèi)容比較抽象,使得學(xué)生對數(shù)學(xué)知識的理解變得越來越困難。但是建模思想在數(shù)學(xué)教學(xué)中的應(yīng)用,有效破解了這一問題,將抽象的知識融合到解決實際問題中,提升學(xué)生對于難點知識的理解,促進學(xué)生吸收知識和消化知識。這種教學(xué)模式是傳統(tǒng)教學(xué)方法和教學(xué)手段的新突破。并且這種教學(xué)模式還打破了傳統(tǒng)的大學(xué)數(shù)學(xué)教學(xué)模式,對于推進大學(xué)數(shù)學(xué)教學(xué)工作的改革具有重要作用。
(三)培養(yǎng)學(xué)生的數(shù)學(xué)能力
一方面利用建模思想進行大學(xué)數(shù)學(xué)教學(xué)時,通過將學(xué)生的實際生活問題引入到教學(xué)之中,可以搭建起學(xué)生與數(shù)學(xué)知識之間的情感共鳴,激發(fā)學(xué)生探究數(shù)學(xué)知識的興趣,使學(xué)生主動地融入到課堂教學(xué)之中,從而培養(yǎng)學(xué)生的探索能力和創(chuàng)新精神。另一方面這種教學(xué)模式有利于學(xué)生吸收知識,消化知識,提升今后工作或?qū)W習(xí)中運用所學(xué)的數(shù)學(xué)知識解決實際問題的能力[1]。
二、建模思想在大學(xué)數(shù)學(xué)教學(xué)中的應(yīng)用探索
(一)注重引導(dǎo)學(xué)生的自主學(xué)習(xí)
實際應(yīng)用建模思想進行大學(xué)數(shù)學(xué)教學(xué)工作時,教師要注重引導(dǎo)學(xué)生進行自主學(xué)習(xí),以提高學(xué)生的實際學(xué)習(xí)質(zhì)量和效率,培養(yǎng)學(xué)生的探索精神和學(xué)習(xí)意識。當前我國的大學(xué)數(shù)學(xué)教學(xué)中主要有微積分、線性代數(shù)和概率論以及數(shù)理統(tǒng)計等三門主干課程。在實際教學(xué)中,教學(xué)框架和教學(xué)模式比較固定,數(shù)學(xué)教學(xué)概念比較抽象,數(shù)學(xué)公式的推導(dǎo)比較嚴謹。所以在應(yīng)用建模思想進行大學(xué)數(shù)學(xué)教學(xué)時,就需要在總體教學(xué)框架下,對教學(xué)內(nèi)容進行適當改進,注重對學(xué)生自主學(xué)習(xí)的引導(dǎo)。
(二)注重激發(fā)學(xué)生的學(xué)習(xí)興趣
合理激發(fā)學(xué)生的學(xué)習(xí)效果對于促進建模思想在大學(xué)數(shù)學(xué)教學(xué)中的應(yīng)用具有重要作用和意義。在實際教學(xué)過程中,教師可以針對學(xué)生感興趣的話題或數(shù)學(xué)知識點,導(dǎo)入相關(guān)的數(shù)學(xué)知識,以激發(fā)學(xué)生的學(xué)習(xí)興趣。例如:教師在進行大學(xué)數(shù)學(xué)的數(shù)學(xué)概率及其相關(guān)知識的實際教學(xué)工作時,可以引入學(xué)生比較感興趣的緣分話題,引導(dǎo)學(xué)生進行擇偶最佳法則的推導(dǎo)。通過這種教學(xué)模式,既能夠滿足學(xué)生的學(xué)習(xí)興趣,同時又能夠?qū)W(xué)生的數(shù)學(xué)知識應(yīng)用到實際的生活之中,可以起到事半功倍的教學(xué)效果,對于促進建模思想在大學(xué)數(shù)學(xué)教學(xué)中的應(yīng)用具有重要作用。
(三)注重改進教學(xué)考核形式
在大學(xué)數(shù)學(xué)教學(xué)中應(yīng)用數(shù)學(xué)建模思想,教師還應(yīng)注重對教學(xué)考核形式的`改革。當前大學(xué)的數(shù)學(xué)教學(xué)考核形式大都采用傳統(tǒng)的閉卷考試的考核形式,這種考核方式嚴重不利于教師對學(xué)生整體學(xué)習(xí)情況的了解,同時也沒有突出對學(xué)生的實際數(shù)學(xué)應(yīng)用能力和解決問題能力的考核。所以在應(yīng)用建模思想進行大學(xué)數(shù)學(xué)教學(xué)時,要注重對教學(xué)考核形式的改進。例如:教師在實際教學(xué)時可以突出學(xué)生的平時成績考核。教師可以對學(xué)生的課堂表現(xiàn)以及對數(shù)學(xué)問題的探索等進行記錄,將其作為學(xué)生的考核依據(jù),從而保障教學(xué)考核的有效性[2]。建模思想在大學(xué)數(shù)學(xué)教學(xué)中的引用,對于激發(fā)學(xué)生的學(xué)習(xí)興趣,提高教學(xué)質(zhì)量和效率具有重要作用。在大學(xué)數(shù)學(xué)教學(xué)大學(xué)未來發(fā)展中,要更加注重對建模思想的應(yīng)用和探索,促進大學(xué)數(shù)學(xué)教學(xué)工作的未來發(fā)展。
參考文獻:
[1]宋志廣.對高校數(shù)學(xué)建模方法教學(xué)策略的研究[j].教育,(2):82.
[2]王洋.如何激發(fā)高職院校學(xué)生對大學(xué)數(shù)學(xué)的學(xué)習(xí)興趣――以數(shù)學(xué)建模為突破口[j].時代教育,(7):249.
大學(xué)數(shù)學(xué)建模論文篇三
數(shù)學(xué)建模是指利用數(shù)學(xué)符號對數(shù)學(xué)實踐問題以公式形式表述出來,再通過相關(guān)計算解決實際問題。數(shù)學(xué)建??梢詾閷W(xué)生創(chuàng)設(shè)適宜的學(xué)習(xí)條件,讓學(xué)生在假設(shè)、研究、分析、比對中形成學(xué)習(xí)結(jié)論。教師要借助教學(xué)內(nèi)容展開滲透操作,利用實際問題為學(xué)生創(chuàng)設(shè)實踐機會,根據(jù)教法改進滲透建模思想,從而促進建模思想的全面滲透,提升學(xué)生的數(shù)學(xué)核心素養(yǎng)。
一、借助教學(xué)內(nèi)容滲透建模思想
在數(shù)學(xué)教學(xué)過程中,教師要對教材內(nèi)容進行篩選和剖析,找到文本思維和生本思維的對接點,讓學(xué)生順利介入數(shù)理討論學(xué)習(xí)之中。教師利用教學(xué)內(nèi)容對學(xué)生滲透數(shù)學(xué)建模思想,利用教輔手段創(chuàng)設(shè)教學(xué)環(huán)境,可以有效喚醒學(xué)生的數(shù)學(xué)思維。利用多媒體創(chuàng)設(shè)教學(xué)情境,運用數(shù)學(xué)公式進行數(shù)學(xué)推演操作,都涉及數(shù)學(xué)建模思想的滲透。因此,教師要積極整合教學(xué)內(nèi)容。借助教學(xué)內(nèi)容滲透建模思想時,教師要結(jié)合多種教學(xué)調(diào)查情況展開相關(guān)操作。篩選教學(xué)內(nèi)容時,教師需要觀照不同群體學(xué)生的不同學(xué)力基礎(chǔ)。如解讀定積分概念時,教師可以通過推導(dǎo)曲邊梯形的面積公式,鼓勵學(xué)生對曲邊梯形進行分割、歸類、求和、取極限等實際操作,建立定積分數(shù)學(xué)模型,并讓學(xué)生在實際操作中完成對物體體積和質(zhì)量的具體計算。這些數(shù)學(xué)模型具有廣泛性,學(xué)生在實踐中再遇到類似情境時,也會運用相關(guān)模型進行實際操作。推演數(shù)學(xué)公式時,教師可引入建模思想,讓學(xué)生參與問題的設(shè)計、推演、驗證,并利用推演結(jié)果反過來解決實際問題,給學(xué)生帶去全新的學(xué)習(xí)體驗。教師根據(jù)教學(xué)內(nèi)容滲透數(shù)學(xué)建模思想,能夠為學(xué)生提供更清晰的學(xué)習(xí)渠道,能夠促使學(xué)生運用現(xiàn)成的數(shù)學(xué)模型來解決數(shù)學(xué)問題,進而加深對知識的理解。
二、利用實際問題滲透建模思想
教師在數(shù)學(xué)建模教學(xué)實施過程中,需要有接軌生活的意識。數(shù)學(xué)來源于生活,教師結(jié)合生活實際問題滲透建模思想,可以有效提升學(xué)生的數(shù)學(xué)概念意識,并使學(xué)生在假設(shè)、推理、驗證過程中形成數(shù)學(xué)能力。利用生活實際問題滲透數(shù)學(xué)建模思想,符合學(xué)生數(shù)學(xué)認知成長的`實際需要,教師要結(jié)合學(xué)生的數(shù)學(xué)知識掌握情況展開設(shè)計,讓學(xué)生利用已知數(shù)學(xué)等量關(guān)系解決實際問題,這勢必能促使學(xué)生形成數(shù)理認知基礎(chǔ)。高職數(shù)學(xué)教學(xué)中,教師不妨鼓勵學(xué)生展開質(zhì)疑活動,讓學(xué)生列舉疑惑問題,對這些問題進行整合優(yōu)化處理,并結(jié)合數(shù)理知識進行實踐探索。這些也屬于數(shù)學(xué)建模思想的滲透。如教學(xué)“假設(shè)檢驗”時,教師可讓學(xué)生展開假設(shè)創(chuàng)設(shè),并通過多重操作實踐進行檢驗。另外,教師設(shè)計課外作業(yè)時,也可滲透數(shù)學(xué)建模思想,讓學(xué)生運用建模思想解決實際問題,以提升學(xué)生的數(shù)學(xué)綜合素質(zhì)。數(shù)學(xué)建模思想不僅是一種數(shù)學(xué)認知理論,還是一種解決數(shù)學(xué)問題的方法和措施。學(xué)生結(jié)合生活實際和學(xué)習(xí)認知基礎(chǔ)展開相關(guān)操作,自然能夠促進數(shù)學(xué)基本技能的提升。高職數(shù)學(xué)具有較強的抽象性,教師要針對學(xué)生的學(xué)力基礎(chǔ),為學(xué)生布設(shè)適宜的學(xué)習(xí)任務(wù)。結(jié)合學(xué)生生活實際提出問題,利用建模思想解決問題,需要關(guān)涉很多專業(yè)理論,教師應(yīng)該進行示范操作,讓學(xué)生有學(xué)習(xí)的榜樣,這樣才能提升數(shù)學(xué)課堂教學(xué)效度。
三、借助教法改進滲透建模思想
教師要重視數(shù)學(xué)學(xué)法的傳授,增加教學(xué)的靈活性、針對性和實踐性。由于高職學(xué)生學(xué)力基礎(chǔ)、學(xué)習(xí)悟性、學(xué)習(xí)習(xí)慣等存在差距,所以教師需要做好學(xué)情調(diào)查,降低數(shù)學(xué)學(xué)習(xí)難度,運用簡單通俗的語言解讀抽象的數(shù)學(xué)概念。這樣,學(xué)生才能聽得明白、學(xué)得好。滲透建模思想時,教師需要鼓勵學(xué)生主動參與數(shù)理討論互動,這不僅能引導(dǎo)學(xué)生展開質(zhì)疑、釋疑活動,還有利于學(xué)生樹立數(shù)學(xué)建模理念,形成良性學(xué)習(xí)認知。教師打破傳統(tǒng)教法束縛,采用先進的計算工具、數(shù)學(xué)軟件、多媒體等教學(xué)輔助手段,或者利用網(wǎng)絡(luò)搜集平臺展開教學(xué)設(shè)計,都可以為學(xué)生提供難得的學(xué)習(xí)契機。高職學(xué)生通常擁有一定的信息技術(shù)應(yīng)用能力,教師可借助信息媒體展開教學(xué)設(shè)計,與學(xué)生的生活認知接軌。如翻轉(zhuǎn)課堂的適時介入,便屬于數(shù)學(xué)建模典范設(shè)計。多數(shù)學(xué)生都有智能手機,可以隨時隨地參與網(wǎng)絡(luò)信息共享活動,因此,教師應(yīng)具備信息共享和網(wǎng)絡(luò)互動意識,為學(xué)生布設(shè)相關(guān)學(xué)習(xí)任務(wù),讓學(xué)生在多元互動操作中逐漸達成學(xué)習(xí)共識,進而建立數(shù)理綜合認知體系。將數(shù)學(xué)建模思想滲透到教學(xué)過程之中,每一個環(huán)節(jié)都有可能,教師要做好全面考量,針對學(xué)生實際進行科學(xué)設(shè)計。教師要加強對數(shù)學(xué)建模思想方法的研究,并將這些方法與學(xué)生學(xué)習(xí)實踐相結(jié)合,從而調(diào)動學(xué)生的數(shù)理學(xué)習(xí)思維,提升學(xué)生的數(shù)學(xué)應(yīng)用品質(zhì)??傊?,高職數(shù)學(xué)教學(xué)中滲透建模思想時,教師需要具備整合意識,對建模資源信息展開搜集整理,對學(xué)生學(xué)力基礎(chǔ)進行全面判斷,為建模思想的順利滲透創(chuàng)造良好條件。數(shù)學(xué)教學(xué)設(shè)計應(yīng)不斷更新,教師教學(xué)水平也亟待提升,而建模思想的全面滲透,給教師的教學(xué)帶來了全新契機。教師要根據(jù)教學(xué)實際展開創(chuàng)新設(shè)計,有效提升數(shù)學(xué)課堂教學(xué)效率。
參考文獻:
[1]李建杰.數(shù)學(xué)建模思想與高職數(shù)學(xué)教學(xué)[j].河北師范大學(xué)學(xué)報,2013(06).
[2]劉學(xué)才.高職數(shù)學(xué)建模教學(xué)的現(xiàn)狀及對策[j].湖北職業(yè)技術(shù)學(xué)院學(xué)報,(07).
大學(xué)數(shù)學(xué)建模論文篇四
【摘 要】本文重點分析了數(shù)學(xué)建模對當前數(shù)學(xué)教育教學(xué)改革的現(xiàn)實意義,探討了數(shù)學(xué)建模對學(xué)生應(yīng)用數(shù)學(xué)能力的培養(yǎng),闡述了計算機在數(shù)學(xué)建模競賽中的作用和地位,最后介紹了數(shù)學(xué)建模對數(shù)學(xué)教學(xué)改革的啟示意義。
【關(guān)鍵詞】數(shù)學(xué)建模;綜合素質(zhì);教學(xué)改革
長期以來,我國的數(shù)學(xué)教學(xué)中一直普遍存在著重結(jié)論而輕過程、重形式而輕內(nèi)容、重解法而輕應(yīng)用等弊端,不注重學(xué)生數(shù)學(xué)能力和素質(zhì)的培養(yǎng);過分強調(diào)對定義、定理、法則、公式等知識的灌輸與講授,不注重這些知識的應(yīng)用,割斷了理論與實際的聯(lián)系,造成學(xué)與用的嚴重脫節(jié),致使在我們的數(shù)學(xué)教育體制下培養(yǎng)出來的學(xué)生的能力結(jié)構(gòu)都形成了一種嚴重的病態(tài),主要表現(xiàn)在:數(shù)學(xué)理論知識掌握得還可以,但應(yīng)用知識的能力很差,不能學(xué)以致用,缺乏創(chuàng)造力和解決實際問題的能力,這些問題使我們的學(xué)生在走向工作崗位時上手速度慢,面對新的數(shù)學(xué)問題時束手無策,不能將所學(xué)的知識靈活運用到實際中去。顯然,這種教育體制和理念與現(xiàn)代教育理念是背道而馳的,是必須拋棄的。開展數(shù)學(xué)建模教學(xué)或數(shù)學(xué)建模競賽,能夠培養(yǎng)學(xué)生各方面的綜合能力,提高學(xué)生的綜合素質(zhì),對于當前數(shù)學(xué)教育教學(xué)改革有著極為重要的現(xiàn)實意義。
1 數(shù)學(xué)建模能夠豐富和優(yōu)化學(xué)生的知識結(jié)構(gòu),開拓學(xué)生的視野
數(shù)學(xué)建模所涉及到的許多問題都超出了學(xué)生所學(xué)的專業(yè),例如“基金的最佳適用”、“會議籌備”、“地震搜索”等許多建模問題,分別屬于不同的學(xué)科與專業(yè),為了解決這些問題,學(xué)生必須查閱和學(xué)習(xí)與該問題相關(guān)的專業(yè)書籍和科技資料,了解這些專業(yè)的相關(guān)知識,從而軟化或削弱了目前教育中僵死的專業(yè)界限,使學(xué)生掌握寬廣而扎實的基礎(chǔ)知識,使他們不斷拓寬分析問題、解決問題的思路,朝著復(fù)合型人才和具備全面綜合素質(zhì)人才的方向發(fā)展。
2 數(shù)學(xué)建??梢耘囵B(yǎng)學(xué)生利用數(shù)學(xué)知識解決實際問題的能力
數(shù)學(xué)建模要求建模者利用自己所掌握的數(shù)學(xué)知識及對實際問題的理解,通過積極主動的思維,提出適當?shù)募僭O(shè),并建立相應(yīng)的數(shù)學(xué)模型,進而利用恰當?shù)臄?shù)學(xué)方法(現(xiàn)有的或新創(chuàng)造的)求解此模型,并對解做出評價,必要時對模型做出改進。這一過程包括了歸納、整理、推理、深化等活動,因此把數(shù)學(xué)建模引入課堂教學(xué),必將改變目前數(shù)學(xué)教學(xué)只見定義、定理不見問題背景的局面,必將改變知識僵化、學(xué)而不用的局面,從而調(diào)動了學(xué)生學(xué)習(xí)的積極性,培養(yǎng)了學(xué)生解決實際問題的能力。
3 數(shù)學(xué)建模能夠培養(yǎng)學(xué)生的創(chuàng)造力、想象力、聯(lián)想力和洞察力
數(shù)學(xué)模型來源于客觀實際,錯綜復(fù)雜,沒有現(xiàn)成的答案和固定的模式,因此學(xué)生在建立和求解這類模型時,必須積極動腦,而且常常需要另辟蹊徑,在這里,常常會迸發(fā)出打破常規(guī)、突破傳統(tǒng)的思維火花,通過這種實踐活動,可以培養(yǎng)學(xué)生的創(chuàng)造能力,促使他們在頭腦中樹立推崇創(chuàng)新、追求創(chuàng)新和以創(chuàng)新為榮的意識。在從實際問題中抽象出數(shù)學(xué)模型的過程中,須把實際關(guān)系轉(zhuǎn)化為數(shù)學(xué)關(guān)系,這要求他們敢于想象和聯(lián)想,此外他們還要從貌似不同的問題中抓住其本質(zhì)的和共性的東西,這將培養(yǎng)他們把握問題內(nèi)在本質(zhì)的能力,即洞察力,可以說,培養(yǎng)學(xué)生的這些能力始終貫穿在數(shù)學(xué)建模的整個過程。
4 數(shù)學(xué)建??梢耘囵B(yǎng)學(xué)生熟練地運用計算機的能力
5 數(shù)學(xué)建??梢栽鰪姶髮W(xué)生的適應(yīng)能力
通過數(shù)學(xué)建模的學(xué)習(xí)及競賽訓(xùn)練,他們不僅受到了現(xiàn)代數(shù)學(xué)思維及方法的熏陶,更重要的是對不同的實際問題,如何進行分析、推理、概括以及如何利用數(shù)學(xué)方法與計算機知識,還有各方面的知識綜合起來解決它。因此,他們具有較高的素質(zhì),無論以后到哪個行業(yè)工作,都能很快適應(yīng)需要。不僅如此,由于建模決不是一件輕而易舉的事,需要學(xué)生對實際問題進行反復(fù)多次的研究、分析、觀察和對模型進行反復(fù)多次的計算、論證及修改等,整個過程是一個非常艱辛的探索過程,這可以培養(yǎng)學(xué)生高度的責(zé)任感、堅韌不拔的毅力、遭遇挫折后較強的心理承受能力以及孜孜不倦、精益求精的探索精神,使他們具有良好的心理素質(zhì)與精神狀態(tài)。同時數(shù)學(xué)建模一般都是由幾個人組成的團隊來完成的,其成功與否,完全取決于大家的密切合作,既要合理分工,又要密切配合,這樣又可以培養(yǎng)學(xué)生的組織管理能力、協(xié)調(diào)能力和相互協(xié)作的團隊精神,這些對他們今后走向工作崗位都是大有裨益的。
此外,數(shù)學(xué)建模從教育觀念、內(nèi)容、形式和手段都有一定的創(chuàng)新,對數(shù)學(xué)教學(xué)改革有積極的啟示意義。首先,數(shù)學(xué)建模突出了教與學(xué)的雙主體性關(guān)系。教師要根據(jù)學(xué)生的學(xué)習(xí)興趣、能力及特點,不斷修正自己的教育內(nèi)容和方法。學(xué)生要對教師所給予的信息有批判性地、創(chuàng)造性地、發(fā)展性地能動反映,要在相互討論、相互啟發(fā)下尋求更多更好的解答方案。這種雙主體的關(guān)系是對傳統(tǒng)教學(xué)方式的根本突破。
其次,數(shù)學(xué)建模促進了課程體系和教學(xué)內(nèi)容的改革。長期以來,我們的課程設(shè)置和教學(xué)內(nèi)容都具有強烈的理科特點:重基礎(chǔ)理論、輕實踐應(yīng)用;重傳統(tǒng)的經(jīng)典數(shù)學(xué)內(nèi)容、輕離散的數(shù)值計算。然而,數(shù)學(xué)建模所要用到的主要數(shù)學(xué)方法和數(shù)學(xué)知識恰好正是被我們長期所忽視的那些內(nèi)容。因此,這迫使我們調(diào)整課程體系和教學(xué)內(nèi)容。比如可增加一些應(yīng)用型、實踐類課程等等;在其余各門課程的教學(xué)中,也要盡量注意到使數(shù)學(xué)理論與應(yīng)用相結(jié)合,增加實際應(yīng)用方面的內(nèi)容和例題,從而使教學(xué)內(nèi)容也得到了更新。
再次,數(shù)學(xué)建模增加了教師對新興科技知識的傳授,拓寬了學(xué)生的知識面。這些特點對于目前數(shù)學(xué)教材中存在的內(nèi)容陳舊、知識面狹窄及形式呆板等問題,具有借鑒作用。數(shù)學(xué)建模的試題通常聯(lián)系新興的學(xué)科,在科學(xué)技術(shù)迅猛發(fā)展的今天,各種新興學(xué)科、邊緣學(xué)科、交叉學(xué)科不斷涌現(xiàn),廣博的知識面和對新興科學(xué)技術(shù)的追蹤能力是獲得成功的關(guān)鍵因素之一。
數(shù)學(xué)建模不僅有利于學(xué)生更好的掌握知識、運用知識,也有利于高校的科研和教學(xué),使學(xué)生和教師能在平時的學(xué)習(xí)、工作中自動形成勤于思考的好習(xí)慣,數(shù)學(xué)建模競賽與學(xué)生畢業(yè)以后工作時的條件非常相近,是對學(xué)生業(yè)務(wù)、能力和素質(zhì)的全面培養(yǎng),特別是開放性思維和創(chuàng)新意識,這項活動的開展有利于學(xué)生的全面素質(zhì)的培養(yǎng),既豐富、活躍了廣大學(xué)生的課外生活,也為優(yōu)秀學(xué)員脫穎而出創(chuàng)造了條件。
【參考文獻】
[1]顏筱紅,粱東穎。高職院校數(shù)學(xué)建模教學(xué)的研究[j].廣西教育,2013(2):54,134.
[3]李大潛。中國大學(xué)生數(shù)學(xué)建模競賽[m].2版。北京:高等教育出版社,2001.
[4]謝金星。2008高教社杯全國大學(xué)生數(shù)學(xué)建模競賽[j].工程數(shù)學(xué)學(xué)報,2008(25):1-2.
大學(xué)數(shù)學(xué)建模論文篇五
1、海選和優(yōu)選有機結(jié)合借助紙質(zhì)宣傳單、大型講座等方式進行數(shù)學(xué)建模競賽的宣傳,對其作用以及影響進行充分的講解,鼓勵校園內(nèi)的同學(xué)來積極的進行參加。倘若想要參與其中的同學(xué)人數(shù)過多時,畢竟參賽名額是有一定限制的,可以利用面試的方式對其進行篩選。為不打擊學(xué)生的積極性,在條件允許的情況下,可以盡可能保留更多的參賽者,通過面試成績把大家劃分為正式參賽隊和業(yè)余參賽隊。
2、充分利用現(xiàn)有資源在進行數(shù)學(xué)建模競賽組隊時,應(yīng)充分的全面考慮有效利用現(xiàn)有的資源。首先是要掌握不同隊伍中不同人員屬于什么年級,其次了解她們的每個人學(xué)習(xí)狀況以及所學(xué)專業(yè)等等,通常來說,同一隊伍中的每個人最理想的狀態(tài)是學(xué)習(xí)不同專業(yè)的,如此一來大家可以做到取長補短,理論知識與實踐動手兩手抓,一個團隊里需要出眾的知識更需要過人的文筆。如此一來才能保證隊伍的整體實力,力爭在建模競賽中取得好成績。
3、重點培訓(xùn)在對學(xué)生進行賽前相關(guān)培訓(xùn)時,在培訓(xùn)的過程中,教師可根據(jù)自身的擅長專題,來進行相關(guān)內(nèi)容的講解,與此同時結(jié)合不同隊伍的自身特點劃設(shè)側(cè)重點,同學(xué)之間的接受能力也是各不同的,能力強的可以開小灶,沒有相關(guān)競賽經(jīng)驗的要進行重點培訓(xùn),這種因人而異的講解模式確保不同能力的同學(xué),在培訓(xùn)中的過程中都能夠?qū)W有所獲。
4、合理分工密切合作在參加數(shù)學(xué)建模競賽的同學(xué)得到競賽試題之后,老師應(yīng)該及時幫助學(xué)生進行試題分析與指導(dǎo),根據(jù)團隊內(nèi)不同人員的實際情況以及試題的具體內(nèi)容難易,進行針對性的講解從而對同學(xué)們進行合理分工,確保每個人所負責(zé)的部分都是自己相較于其他人而言是最擅長的。值得注意的是,雖然進行分工,但這并不是絕對的分割,而是有側(cè)重的合理分工,彼此之間的密切合作才是核心,畢竟建模競賽中需要的是團隊協(xié)作,而不是英雄主義。
5、堅持可持續(xù)發(fā)展培訓(xùn)師資隊伍必須要有新鮮血液不斷注入,以老帶新最佳的血液注入方式,面對朝氣蓬勃的參賽學(xué)生,培訓(xùn)師資隊伍既要有身經(jīng)百戰(zhàn)經(jīng)驗豐富的老師,也要有跟他們擁有更多共同話題的青年教師。在此期間通過不斷的學(xué)習(xí),青年教師跟同學(xué)們共同成長,從而保證師資隊伍的可持續(xù)發(fā)展。
二、大學(xué)生數(shù)學(xué)建模競賽組織和管理方式的探索
1、進行課程教學(xué)并給出有效的教學(xué)計劃每個學(xué)生的知識儲備都有著各自的特點,借助良好的教育對學(xué)生們的知識架構(gòu)進行完善,實現(xiàn)培養(yǎng)出學(xué)生強大能力的目標,數(shù)學(xué)建模對學(xué)生來說裨益良多,被視作是大學(xué)校園中必備課程之一。但是進行課程開展的時候,要根據(jù)不同的培訓(xùn)對象大致分為以下兩類:第一、以選修課形式開設(shè)數(shù)學(xué)建模競賽課程,選修課程所面向的群體為整個學(xué)校的所有學(xué)生。第二、以必修課的方式開設(shè)數(shù)學(xué)建模競賽課程,必修課就要有針對性,因為并不是所有的學(xué)生都需要學(xué)習(xí)數(shù)學(xué),所以必修課針對的群體應(yīng)該是數(shù)學(xué)專業(yè)的學(xué)生。不同性質(zhì)的課程在教授上應(yīng)該有所區(qū)分,內(nèi)容的深淺也要有適當?shù)恼{(diào)整。
2、利用建模教學(xué)實現(xiàn)知識與能力雙培養(yǎng)有效的教學(xué)是獲得數(shù)學(xué)建模競賽好成績的最佳途徑,但是教學(xué)的過程中要注重數(shù)學(xué)知識與實踐能力的均衡共同培養(yǎng),不能過分的注重知識的灌輸,而忽略了建模相關(guān)能力的培養(yǎng),對二者的培養(yǎng)必須要并駕齊驅(qū),如此才能真正的'掌握數(shù)學(xué)建模的精髓,從而在競賽中取得良好的成績。
3、數(shù)學(xué)建模競賽隊員的篩選數(shù)學(xué)建模所需要的人才是全方面的人才,除此之外還要對數(shù)學(xué)建模有足夠的興趣,并且還要有足夠多的時間來參加培訓(xùn)。以上述條件為基礎(chǔ),報名之后通過面試的測試,然后再從中篩選出相對優(yōu)秀的學(xué)生組成參賽隊伍,在篩選的時候要充分的考慮到團隊整體知識的涵蓋面,不同人之間所擅長的專業(yè)不同為最佳。
4、培訓(xùn)培訓(xùn)工作通常被劃分為不同的階段:首先是初級階段,這一階段所注重的是對相關(guān)知識的培訓(xùn)。從初等模型、簡單優(yōu)化模型、常微分方程模型等建模的基礎(chǔ)知識和方法入手由淺入深;其次是拔高階段,主要以專家講座為主,邀請建模專家進行系統(tǒng)的講解,并結(jié)合精典范例進行深入剖析,在擴大學(xué)生的知識面和視野的同時提升學(xué)生的建模能力。
三、結(jié)語
通過以上的一系列論述,我們已經(jīng)對大學(xué)數(shù)學(xué)建模競賽的隊伍組織及管理方式,有了更加清晰的了解和掌握。大學(xué)數(shù)學(xué)建模競賽對于大學(xué)生來說好處頗多,一方面能夠使學(xué)生們對學(xué)習(xí)的數(shù)學(xué)知識有更深的理解與更為靈活的應(yīng)用,另一方面,通過競賽中的組隊讓大家感受到合作的重要性,為以后步入社會的工作打下基礎(chǔ)。希望這篇文章能夠?qū)︶槍?shù)學(xué)建模的研究有一定的借鑒作用!
參考文獻:
[1]韓成標,賈進濤、高職院校參加數(shù)學(xué)建模競賽大有可為[j]、工程數(shù)學(xué)學(xué)報,(8)
[2]全國大學(xué)生數(shù)學(xué)建模競賽賽題講評與經(jīng)驗交流會在廣西大學(xué)舉行[j]、數(shù)學(xué)建模及其應(yīng)用,(04)
[3]錢方紅、基于數(shù)學(xué)模型解決數(shù)學(xué)建模競賽隊員選拔和組隊問題[j]、信息與電腦:理論版,(3)
[4]肖帆,張?zhí)m、高職院校數(shù)學(xué)建模競賽培訓(xùn)模式研究[j]、延安職業(yè)技術(shù)學(xué)院學(xué)報,2017(2)
大學(xué)數(shù)學(xué)建模論文篇六
通過對高中數(shù)學(xué)新教材的教學(xué),結(jié)合新教材的編寫特點和高中研究性學(xué)習(xí)的開展,對如何加強高中數(shù)學(xué)建模教學(xué),培養(yǎng)學(xué)生的創(chuàng)新能力方面進行探索。
創(chuàng)新能力;數(shù)學(xué)建模;研究性學(xué)習(xí)。
《全日制普通高級中學(xué)數(shù)學(xué)教學(xué)大綱(試驗修訂版)》對學(xué)生提出新的教學(xué)要求,要求學(xué)生:
(1)學(xué)會提出問題和明確探究方向;
(2)體驗數(shù)學(xué)活動的過程;
(3)培養(yǎng)創(chuàng)新精神和應(yīng)用能力。
其中,創(chuàng)新意識與實踐能力是新大綱中最突出的特點之一,數(shù)學(xué)學(xué)習(xí)不僅要在數(shù)學(xué)基礎(chǔ)知識,基本技能和思維能力,運算能力,空間想象能力等方面得到訓(xùn)練和提高,而且在應(yīng)用數(shù)學(xué)分析和解決實際問題的能力方面同樣需要得到訓(xùn)練和提高,而培養(yǎng)學(xué)生的分析和解決實際問題的能力僅僅靠課堂教學(xué)是不夠的,必須要有實踐、培養(yǎng)學(xué)生的創(chuàng)新意識和實踐能力是數(shù)學(xué)教學(xué)的一個重要目的和一條基本原則,要使學(xué)生學(xué)會提出問題并明確探究方向,能夠運用已有的知識進行交流,并將實際問題抽象為數(shù)學(xué)問題,就必須建立數(shù)學(xué)模型,從而形成比較完整的數(shù)學(xué)知識結(jié)構(gòu)。
數(shù)學(xué)模型是數(shù)學(xué)知識與數(shù)學(xué)應(yīng)用的橋梁,研究和學(xué)習(xí)數(shù)學(xué)模型,能幫助學(xué)生探索數(shù)學(xué)的應(yīng)用,產(chǎn)生對數(shù)學(xué)學(xué)習(xí)的興趣,培養(yǎng)學(xué)生的創(chuàng)新意識和實踐能力,加強數(shù)學(xué)建模教學(xué)與學(xué)習(xí)對學(xué)生的智力開發(fā)具有深遠的意義,現(xiàn)就如何加強高中數(shù)學(xué)建模教學(xué)談幾點體會。
教材的每一章都由一個有關(guān)的實際問題引入,可直接告訴學(xué)生,學(xué)了本章的教學(xué)內(nèi)容及方法后,這個實際問題就能用數(shù)學(xué)模型得到解決,這樣,學(xué)生就會產(chǎn)生創(chuàng)新意識,對新數(shù)學(xué)模型的渴求,實踐意識,學(xué)完要在實踐中試一試。
這是培養(yǎng)創(chuàng)新意識及實踐能力的好時機要注意引導(dǎo),對所考察的實際問題進行抽象分析,建立相應(yīng)的數(shù)學(xué)模型,并通過新舊兩種思路方法,提出新知識,激發(fā)學(xué)生的知欲,如不可挫傷學(xué)生的積極性,失去“亮點”。
這樣通過章前問題教學(xué),學(xué)生明白了數(shù)學(xué)就是學(xué)習(xí),研究和應(yīng)用數(shù)學(xué)模型,同時培養(yǎng)學(xué)生追求新方法的意識及參與實踐的意識。因此,要重視章前問題的教學(xué),還可據(jù)市場經(jīng)濟的建設(shè)與發(fā)展的需要及學(xué)生實踐活動中發(fā)現(xiàn)的問題,補充一些實例,強化這方面的教學(xué),使學(xué)生在日常生活及學(xué)習(xí)中重視數(shù)學(xué),培養(yǎng)學(xué)生數(shù)學(xué)建模意識。
學(xué)習(xí)幾何、三角的測量問題,使學(xué)生多方面全方位地感受數(shù)學(xué)建模思想,讓學(xué)生認識更多現(xiàn)在數(shù)學(xué)模型,鞏固數(shù)學(xué)建模思維過程、教學(xué)中對學(xué)生展示建模的如下過程:
現(xiàn)實原型問題
數(shù)學(xué)模型
數(shù)學(xué)抽象
簡化原則
演算推理
現(xiàn)實原型問題的解
數(shù)學(xué)模型的解
反映性原則
返回解釋
列方程解應(yīng)用題體現(xiàn)了在數(shù)學(xué)建模思維過程,要據(jù)所掌握的信息和背景材料,對問題加以變形,使其簡單化,以利于解答的思想。且解題過程中重要的步驟是據(jù)題意更出方程,從而使學(xué)生明白,數(shù)學(xué)建模過程的重點及難點就是據(jù)實際問題特點,通過觀察、類比、歸納、分析、概括等基本思想,聯(lián)想現(xiàn)成的數(shù)學(xué)模型或變換問題構(gòu)造新的數(shù)學(xué)模型來解決問題。如利息(復(fù)利)的數(shù)列模型、利潤計算的方程模型決策問題的函數(shù)模型以及不等式模型等。
高中新大綱要求每學(xué)期至少安排一個研究性課題,就是為了培養(yǎng)學(xué)生的數(shù)學(xué)建模能力,如“數(shù)列”章中的“分期付款問題”、“平面向是‘章中’向量在物理中的應(yīng)用”等,同時,還可設(shè)計類似利潤調(diào)查、洽談、采購、銷售等問題。設(shè)計了如下研究性問題。
分析:這是一個確定人口增長模型的問題,為使問題簡化,應(yīng)作如下假設(shè):
(1)該國的政治、經(jīng)濟、社會環(huán)境穩(wěn)定;
(2)該國的人口增長數(shù)由人口的生育,死亡引起;
(3)人口數(shù)量化是連續(xù)的。基于上述假設(shè),我們認為人口數(shù)量是時間函數(shù)。建模思路是根據(jù)給出的數(shù)據(jù)資料繪出散點圖,然后尋找一條直線或曲線,使它們盡可能與這些散點吻合,該直線或曲線就被認為近似地描述了該國人口增長規(guī)律,從而進一步作出預(yù)測。
通過上題的研究,既復(fù)習(xí)鞏固了函數(shù)知識更培養(yǎng)了學(xué)生的數(shù)學(xué)建模能力和實踐能力及創(chuàng)新意識。在日常教學(xué)中注意訓(xùn)練學(xué)生用數(shù)學(xué)模型來解決現(xiàn)實生活問題;培養(yǎng)學(xué)生做生活的有心人及生活中“數(shù)”意識和觀察實踐能力,如記住一些常用及常見的數(shù)據(jù),如:人行車、自行車的速度,自己的身高、體重等。利用學(xué)校條件,組織學(xué)生到操場進行實習(xí)活動,活動一結(jié)束,就回課堂把實際問題化成相應(yīng)的數(shù)學(xué)模型來解決。如:推鉛球的角度與距離關(guān)系;全班同學(xué)手拉手圍成矩形圈,怎樣圍使圍成的面積最大等,用磚塊搭成多米諾牌骨等。
由于數(shù)學(xué)模型這一思想方法幾乎貫穿于整個中小學(xué)數(shù)學(xué)學(xué)習(xí)過程之中,小學(xué)解算術(shù)運用題中學(xué)建立函數(shù)表達式及解析幾何里的軌跡方程等都孕育著數(shù)學(xué)模型的思想方法,熟練掌握和運用這種方法,是培養(yǎng)學(xué)生運用數(shù)學(xué)分析問題、解決問題能力的關(guān)鍵,我認為這就要求培養(yǎng)學(xué)生以下幾點能力,才能更好的完善數(shù)學(xué)建模思想:
(1)理解實際問題的能力;
(2)洞察能力,即關(guān)于抓住系統(tǒng)要點的能力;
(3)抽象分析問題的能力;
(5)運用數(shù)學(xué)知識的能力;
(6)通過實際加以檢驗的能力。
只有各方面能力加強了,才能對一些知識觸類旁通,舉一反三,化繁為簡,如下例就要用到各種能力,才能順利解出。
例2:解方程組
x+y+z=1
(1)x2+y2+z2=1/3
(2)x3+y3+z3=1/9
(3)分析:本題若用常規(guī)解法求相當繁難,仔細觀察題設(shè)條件,挖掘隱含信息,聯(lián)想各種知識,即可構(gòu)造各種等價數(shù)學(xué)模型解之。
t3-t2+1/3t-1/27=0
(4)函數(shù)模型:
由(1)(2)知若以xz(x+y+z)為一次項系數(shù),(x2+y2+z2)為常數(shù)項,則以3=(12+12+12)為二次項系數(shù)的二次函f(x)=(12+12+12)t2-2(x+y+z)t+(x2+y2+z2)=(t-x)2+(t-y)2+(t-z)2為完全平方函數(shù)3(t-1/3)2,從而有t-x=t-y=t-z,而x=y=z再由(1)得x=y=z=1/3,也適合(3)。
平面解析模型
方程(1)(2)有實數(shù)解的充要條件是直線x+y=1-z與圓x2+y2=1/3-z2有公共點后者有公共點的充要條件是圓心(o、o)到直線x+y的距離不大于半徑。
總之,只要教師在教學(xué)中通過自學(xué)出現(xiàn)的實際的問題,根據(jù)當?shù)丶皩W(xué)生的實際,使數(shù)學(xué)知識與生活、生產(chǎn)實際聯(lián)系起來,就能增強學(xué)生應(yīng)用數(shù)學(xué)模型解決實際問題的意識,從而提高學(xué)生的創(chuàng)新意識與實踐能力。
大學(xué)數(shù)學(xué)建模論文篇七
從現(xiàn)實現(xiàn)象到數(shù)學(xué)模型 .....................................................................................................................
數(shù)學(xué)建模的相關(guān)基本概念 ............................................................................. 錯誤!未定義書簽。
…… …… 余下全文
大學(xué)數(shù)學(xué)建模論文篇八
摘要:在當今社會數(shù)學(xué)已經(jīng)滲透向生活的各個領(lǐng)域,概率、比率、機會、誤差、圖像、邏輯、程序等等數(shù)學(xué)概念已進入日常生活;各行各業(yè)都在數(shù)量化、數(shù)字化、數(shù)學(xué)化,用到的數(shù)學(xué)知識越來越多。但傳統(tǒng)高等數(shù)學(xué)教學(xué)注重訓(xùn)練學(xué)生的邏輯推理能力,而沒有注意訓(xùn)練如何從實際問題中提煉出數(shù)學(xué)問題以及如何用數(shù)學(xué)來解決實際問題,本文從建模思想的重要性、教育現(xiàn)狀和改革思路以及已有的建模教學(xué)成果三個方面探討數(shù)學(xué)建模思想在高等數(shù)學(xué)教學(xué)中的作用。
關(guān)鍵詞:數(shù)學(xué)建模;高等數(shù)學(xué)教學(xué)
一、引言
11世紀的數(shù)學(xué)家、物理學(xué)家和天文學(xué)家高斯曾說:“數(shù)學(xué)是科學(xué)之王?!睌?shù)學(xué)貫穿于所有科學(xué)理論之中,任何科學(xué)理論如果不應(yīng)用數(shù)學(xué),它就是粗糙的,不懂數(shù)學(xué)的人是不能進行深層次的科學(xué)思維的。
在當今社會數(shù)學(xué)已經(jīng)滲透向生活的各個領(lǐng)域,概率、比率、機會、誤差、圖像、邏輯、程序等等數(shù)學(xué)概念已進入日常生活;各行各業(yè)都在數(shù)量化、數(shù)字化、數(shù)學(xué)化,用到的數(shù)學(xué)知識越來越多。從科學(xué)技術(shù)的角度來看,大量與數(shù)學(xué)相關(guān)的交叉學(xué)科相繼出現(xiàn)出現(xiàn),迅速發(fā)展例如:數(shù)學(xué)化學(xué)、數(shù)學(xué)生物、數(shù)學(xué)地質(zhì)學(xué)、數(shù)學(xué)心理學(xué)、數(shù)學(xué)語言學(xué)、數(shù)學(xué)社會學(xué)等。有研究者認為高科技技術(shù)本質(zhì)上就是一種數(shù)學(xué)技術(shù)。例如財物、會計專業(yè)軟件包都是大量應(yīng)用現(xiàn)有的相關(guān)數(shù)學(xué)知識,開發(fā)數(shù)學(xué)模型以及應(yīng)用數(shù)學(xué)技巧、方法的結(jié)果。高等數(shù)學(xué)對于培養(yǎng)大學(xué)生數(shù)學(xué)思維、數(shù)學(xué)意識提升邏輯思維能力有重要意義。
二、數(shù)學(xué)建模思想的重要性
傳統(tǒng)高等數(shù)學(xué)教學(xué)注重訓(xùn)練學(xué)生的邏輯推理能力,而沒有注意訓(xùn)練如何從實際問題中提煉出數(shù)學(xué)問題以及如何用數(shù)學(xué)來解決實際問題,其后果是學(xué)生們學(xué)了不少數(shù)學(xué),但不會用,為此在高等數(shù)學(xué)的教學(xué)過程中如何提升教學(xué)效果成為教學(xué)改革的一個重要研究問題。當前高等數(shù)學(xué)教學(xué)不重視應(yīng)用性,很多學(xué)生數(shù)學(xué)的學(xué)習(xí)僅僅以通過考試為目的,數(shù)學(xué)成為抽象的、枯燥的、無實際用途的科學(xué)。數(shù)學(xué)建模則以“數(shù)學(xué)的應(yīng)用與模型化”為主線,重視數(shù)學(xué)建模意識和應(yīng)用能力的培養(yǎng)。
數(shù)學(xué)建模的思想在高等數(shù)學(xué)發(fā)展的歷程中很早就有,但是現(xiàn)代教育技術(shù)環(huán)境的發(fā)展和大學(xué)生數(shù)學(xué)建模賽事的舉行為數(shù)學(xué)建模的教學(xué)發(fā)展提供了契機和更好的外部環(huán)境條件,同時也對現(xiàn)代高等數(shù)學(xué)的教學(xué)提出了新的要求。數(shù)學(xué)建模對于培養(yǎng)大學(xué)生數(shù)學(xué)能力的作用的相關(guān)研究較多,研究結(jié)果表明:數(shù)學(xué)建模能夠提升大學(xué)生理論聯(lián)系實際的能力、可以提升思維能力、概括能力、歸納能力、創(chuàng)新能力。
三、數(shù)學(xué)建模教育現(xiàn)狀和改革思路
全國大學(xué)生數(shù)學(xué)建模競賽創(chuàng)辦于1992年,每年一屆,目前已成為全國高校規(guī)模最大的基礎(chǔ)性學(xué)科競賽,也是世界上規(guī)模最大的數(shù)學(xué)建模競賽。2012年,來自全國33個省/市/自治區(qū)(包括香港和澳門特區(qū))及新加坡、美國的1284所院校、21219個隊(其中本科組17741隊、專科組3478隊)、63600多名大學(xué)生報名參加本項競賽。競賽能全面反應(yīng)學(xué)生解決實際問題的能力、數(shù)學(xué)創(chuàng)造力、計算機使用能力、書面表達寫作能力,特別強調(diào)創(chuàng)新意識、團隊精神。已經(jīng)成為我國大學(xué)生創(chuàng)新能力培養(yǎng)和提升的重要大型學(xué)術(shù)賽事之一。
鄭州航空工業(yè)管理學(xué)院,在2008年至2010年累計有67支隊伍,共計201名學(xué)生才加了全國的大學(xué)生建模大賽,并取得了良好的成績榮獲省級一等獎6項、省級二等獎8項、省級三等獎20項,但參賽學(xué)生來自全校各個不同院系,較多集中在數(shù)理與統(tǒng)計學(xué)院。
綜上可見:通過數(shù)學(xué)建模對提升高等數(shù)學(xué)教學(xué)效果的實踐研究,可以為高等數(shù)學(xué)的教學(xué)找到一條新模式,進而提升學(xué)生綜合素質(zhì),培養(yǎng)出能更好適應(yīng)社會的應(yīng)用型專業(yè)人才。另外,對于數(shù)學(xué)建模教學(xué)實踐還可提升高校的數(shù)學(xué)建模競賽成績,提升學(xué)校知名度,并影響到更多的學(xué)生,使學(xué)生們真正熱愛數(shù)學(xué)學(xué)習(xí),全面提升個人素質(zhì)。
四、數(shù)學(xué)建模教學(xué)研究的相關(guān)成果
關(guān)于數(shù)學(xué)建模與提升提升高等數(shù)學(xué)教學(xué)效果的實踐研究的相關(guān)研究主要集中在以下幾個方面:
(一)數(shù)學(xué)建模的教學(xué)方法研究
許多研究者對數(shù)學(xué)建模的教學(xué)從不同角度和方面進行探討,一些比較有影響的研究有:黃世華等,針對高專院系的建模教學(xué)現(xiàn)狀,提出從指導(dǎo)思想、教學(xué)理念、教學(xué)內(nèi)容、教學(xué)方法、考核方式出發(fā),課程教學(xué)應(yīng)采取以問題驅(qū)動研究式為主,以知識驅(qū)動講授式為輔的教學(xué)方法才是行之有效的。劉浩等,認為數(shù)學(xué)建模應(yīng)加強數(shù)學(xué)思維的互動訓(xùn)練,培養(yǎng)創(chuàng)新精神;加強信息素養(yǎng)的訓(xùn)練,開拓知識面;注重團隊訓(xùn)練,提高團隊合作意識。楊小鐘討論數(shù)學(xué)建模教育對高校數(shù)學(xué)教育改革的重要意義,以及存在的問題并提出了改變教學(xué)理念的改進措施。還有研究者通過具體的模型教學(xué),討論了建模思想的培養(yǎng)和相關(guān)的教學(xué)實踐心得。柴中林、王航平等針對美國大學(xué)生數(shù)學(xué)建模競賽提出了一些培訓(xùn)策略。
(二)數(shù)學(xué)建模教學(xué)意義研究
對數(shù)學(xué)建模的意義研究主要集中在數(shù)學(xué)建模與大學(xué)生能力培養(yǎng)和非智力因素發(fā)展等方面。沙元霞等提出學(xué)??梢酝ㄟ^增強數(shù)學(xué)建模意識、改進數(shù)學(xué)建模思想方法、提高數(shù)學(xué)建模能力,深化教育教學(xué)改革,培養(yǎng)數(shù)學(xué)應(yīng)用型人才。蔣莉分析了數(shù)學(xué)建模對培養(yǎng)大學(xué)生數(shù)學(xué)素質(zhì)的作用,并提出數(shù)學(xué)建模培養(yǎng)了大學(xué)生的抽象思維能力,提高了大學(xué)生的創(chuàng)新能力。楊太文等,研究數(shù)學(xué)建模競賽與大學(xué)數(shù)學(xué)課程間的效用發(fā)現(xiàn)數(shù)學(xué)建模的學(xué)習(xí)可以明顯提高學(xué)生的數(shù)學(xué)學(xué)習(xí)能力。
總之,當前我國大學(xué)生數(shù)學(xué)建模的教學(xué)水平相對落后,數(shù)學(xué)建模思想和高等數(shù)學(xué)相結(jié)合,可以提升學(xué)生的學(xué)習(xí)興趣,進而促進學(xué)生主動學(xué)習(xí)和思考,養(yǎng)成獨立思考學(xué)習(xí)的好習(xí)慣,從而培養(yǎng)學(xué)生的創(chuàng)新意識。數(shù)學(xué)建模大賽這個平臺,有給了學(xué)生一個團隊協(xié)作的機會,讓學(xué)生能夠提升自己的理論聯(lián)系實際能力、應(yīng)用寫作能力和創(chuàng)造力。數(shù)學(xué)建模思想可以提高教學(xué)效果,而高等數(shù)學(xué)課程的開展為數(shù)學(xué)建模奠定了理論基礎(chǔ),兩者相輔相成,密不可分。
參考文獻:
[1]范英梅。高等數(shù)學(xué)、計算機與數(shù)學(xué)建模教學(xué)的關(guān)系分析[j].廣西大學(xué)學(xué)報(自然科學(xué)版),2004,9.
[2]何偉。在高等數(shù)學(xué)教學(xué)中如何體現(xiàn)數(shù)學(xué)建模的思想[j].數(shù)學(xué)的實踐與認識,2003,10.
[3]馬戈等?,F(xiàn)代教育技術(shù)環(huán)境下高等數(shù)學(xué)教學(xué)改革的實踐與思考[j].高等數(shù)學(xué)研究,2004,5.
[4]蔣莉。淺談數(shù)學(xué)建模在培養(yǎng)大學(xué)生數(shù)學(xué)能力的作用[j].理論探索,2012,2.
[5]沙元霞?;跀?shù)學(xué)建模的應(yīng)用型人才培養(yǎng)[j].長春師范學(xué)院學(xué)報(自然科學(xué)版),2012,9.
[6]黃世華等。數(shù)學(xué)建模教學(xué)的方法研究[j].科教研究,2012,2.
[7]劉浩,楊艷梅。大學(xué)生數(shù)學(xué)建模教育的幾點思考[j].數(shù)學(xué)教育與研究,2012,4.
[8]楊小鐘。初探高校數(shù)學(xué)建模課程改革[j].大觀周刊。2012,8.
[9]徐茂良。在傳統(tǒng)數(shù)學(xué)課中滲透數(shù)學(xué)建模思想[j].數(shù)學(xué)的實踐與認知。2002,7.
[10]楊進峰。經(jīng)濟應(yīng)用數(shù)學(xué)教學(xué)研究[j].陜西教育,2012,7.
[11]吳秀蘭等。淺議數(shù)學(xué)建模思想如何與高等數(shù)學(xué)教學(xué)相結(jié)合[j].吉林省教育學(xué)院學(xué)報。2012,9.
[12]柴中林等。國際大學(xué)生數(shù)學(xué)建模競賽培訓(xùn)策略的一些探討[j].科技視界,2012,9.
[13]楊太文等。數(shù)學(xué)建模競賽與大學(xué)數(shù)學(xué)課程間的效用[j].高等教育,2012,10.
大學(xué)數(shù)學(xué)建模論文篇九
摘要:數(shù)學(xué)建模課堂中學(xué)生的自主探究、合作學(xué)習(xí)與教師的科學(xué)引導(dǎo)并不矛盾而是相輔相成的。只有在教師科學(xué)、適時、適當?shù)匾龑?dǎo)下才能更好地突出學(xué)生的主體地位,從而打造出自主探究、合作學(xué)習(xí)、愉悅發(fā)展的高效數(shù)學(xué)建模課堂。
關(guān)鍵詞:數(shù)學(xué)建模;教師
一、新課的引入需要發(fā)揮教師的作用
教師在數(shù)學(xué)建模課堂上的引導(dǎo)作用首先體現(xiàn)在教師對新課的引入上。教師一段精彩的導(dǎo)入會點燃學(xué)生學(xué)習(xí)的熱情、激發(fā)學(xué)生的學(xué)習(xí)興趣、喚起學(xué)生的好奇心,能把學(xué)生的注意力迅速集中到要學(xué)的知識上來。這對提高教學(xué)質(zhì)量、提高學(xué)生的學(xué)習(xí)效果起著不可估量的作用。同時,新課前的導(dǎo)入環(huán)節(jié)是對學(xué)生進行情感教育的最佳時刻。學(xué)生只有在教師的引導(dǎo)下才能夠體會到數(shù)學(xué)建模的價值、增強學(xué)好數(shù)學(xué)建模的信心。俗話說:“好的開始是成功的一半?!睌?shù)學(xué)建模課堂也是這樣。因此,在新課引入時要充分發(fā)揮教師的作用。
二、在教學(xué)任務(wù)的設(shè)計上需要發(fā)揮教師的作用
數(shù)學(xué)建模課堂一般應(yīng)采用任務(wù)型教學(xué)模式,是讓學(xué)生通過自主探究、合作學(xué)習(xí)、交流展示的方式完成一系列學(xué)習(xí)任務(wù)來達到特定的教學(xué)目標和學(xué)習(xí)目標。學(xué)生在課堂中的主體作用能否得到有效發(fā)揮取決于教師對問題設(shè)計質(zhì)量的高低。教師應(yīng)通過設(shè)計一系列高質(zhì)量的問題把復(fù)雜的數(shù)學(xué)建模問題分解成若干簡單問題來引導(dǎo)學(xué)生更好地發(fā)揮其主動性。學(xué)生也只有在這些問題的正確引導(dǎo)下才能突破難點并向著學(xué)習(xí)目標努力,有效防止學(xué)生思考、探究、交流的內(nèi)容偏離學(xué)習(xí)目標等現(xiàn)象的出現(xiàn)。這些任務(wù)的制訂需要充分發(fā)揮教師的作用。
三、在新舊知識的聯(lián)系點上需要發(fā)揮教師的作用
建構(gòu)主義強調(diào)新知識是在學(xué)生已有知識的基礎(chǔ)上通過學(xué)生自身有意義的建構(gòu)獲得的。筆者認為,學(xué)生自主建構(gòu)知識應(yīng)在教師的科學(xué)引導(dǎo)下進行。尤其是對于數(shù)學(xué)建模這樣高難度的知識更是這樣。失去了教師的科學(xué)引導(dǎo),學(xué)生易產(chǎn)生疲倦感,久而久之會喪失學(xué)習(xí)數(shù)學(xué)建模的興趣和信心。因此,在新舊知識聯(lián)系點上應(yīng)發(fā)揮教師的作用。教師應(yīng)在準確掌握教學(xué)目標、難點的基礎(chǔ)上,充分考慮學(xué)生的認知能力、習(xí)慣、思維方式,通過有針對性的具體問題喚起學(xué)生對舊知識的回憶,再通過啟發(fā)性問題引導(dǎo)學(xué)生去發(fā)現(xiàn)新知識,從而實現(xiàn)溫故知新的目的。在教師引領(lǐng)下學(xué)生自主建構(gòu)知識可以使學(xué)生少走彎路,從而使學(xué)生更加高效地自主探究、掌握新知識。
四、在教學(xué)重點、難點上需要教師的引導(dǎo)
教學(xué)的重點、難點是每一節(jié)課的核心和主線,只有準確把握了重點、突破了難點才能更好地掌握本節(jié)課的內(nèi)容。在強調(diào)學(xué)生自主探究、小組合作學(xué)習(xí)的課堂教學(xué)模式中,數(shù)學(xué)建模教材的重點、難點學(xué)生往往把握不準、難以突破。這就需要教師科學(xué)引導(dǎo)學(xué)生主動去發(fā)現(xiàn)重點、突破難點。教師引導(dǎo)學(xué)生發(fā)現(xiàn)重點、突破難點并不是讓教師直接告訴學(xué)生本節(jié)課的重點是什么、怎樣突破難點,而是通過具體問題的引導(dǎo)讓學(xué)生自己找到重點、并通過學(xué)生自己的思考、討論解決疑難問題。學(xué)生在教師的引導(dǎo)下通過自己的努力、討論解決了疑難后,學(xué)生會非常興奮,從而會越來越喜歡數(shù)學(xué)建模課。相反,在沒有教師引導(dǎo)的數(shù)學(xué)建模課堂中,學(xué)生經(jīng)常被困難嚇倒,從而對數(shù)學(xué)建模課產(chǎn)生畏懼感。由此可見,教師對學(xué)生的科學(xué)引導(dǎo)是學(xué)生學(xué)好數(shù)學(xué)建模必不可少的環(huán)節(jié)。在以學(xué)生為本、注重學(xué)生全面發(fā)展、提倡課堂中突出學(xué)生主體地位的背景下,教師的引導(dǎo)仍是數(shù)學(xué)建模課堂中不可缺失的要素。數(shù)學(xué)建模課堂中學(xué)生的自主探究、合作學(xué)習(xí)與教師的科學(xué)引導(dǎo)并不矛盾而是相輔相成的。只有在教師科學(xué)、適時、適當?shù)匾龑?dǎo)下才能更好地突出學(xué)生的主體地位,從而打造出自主探究、合作學(xué)習(xí)、愉悅發(fā)展的高效數(shù)學(xué)建模課堂。
大學(xué)數(shù)學(xué)建模論文篇十
1、從應(yīng)用數(shù)學(xué)出發(fā)數(shù)學(xué)建模主要是通過運用數(shù)學(xué)知識解決生活中遇到實際問題的全過程。要讓數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)教學(xué)課程進行有效的融合,最佳切入點就是課堂上把用數(shù)學(xué)解決生活中的實際問題與教學(xué)內(nèi)容相融合,以應(yīng)用數(shù)學(xué)為導(dǎo)向,訓(xùn)練學(xué)生綜合運用數(shù)學(xué)知識去刻畫實際問題、提煉數(shù)學(xué)模型、處理實際數(shù)據(jù)、分析解決實際問題的能力,培養(yǎng)學(xué)生運用數(shù)學(xué)原理解決生活問題的興趣和愛好。授課過程中,要改變以往單純地進行課堂灌輸?shù)男袨椋嘁霊?yīng)用數(shù)學(xué)的內(nèi)容,通過師生互動、課堂討論、小課題研究實踐等多種形式靈活多樣的教學(xué)方法,培養(yǎng)引導(dǎo)學(xué)生樹立應(yīng)用數(shù)學(xué)建模解決實際問題的思想。
2、從數(shù)學(xué)實驗做起要加強獨立學(xué)院學(xué)生進行數(shù)學(xué)實驗的行為,筆者認為數(shù)學(xué)建模與數(shù)學(xué)實驗有著密切的聯(lián)系,兩者都是從解決實際問題出發(fā),當前的大學(xué)生數(shù)學(xué)實驗基本上是應(yīng)用數(shù)學(xué)軟件、數(shù)值計算、建立模型、過程演算和圖形顯示等一系列過程,因此進行數(shù)學(xué)實驗的全過程就是數(shù)學(xué)建模思想的啟發(fā)過程。但是我國的教育資源和教學(xué)方針限制了獨立學(xué)院學(xué)生的學(xué)習(xí)環(huán)境和學(xué)習(xí)資源,能夠進行數(shù)學(xué)實驗的條件還是有限的。即使個別有實驗?zāi)芰Φ膶W(xué)校,也未能進行充分利用,數(shù)學(xué)實驗課的內(nèi)容隨意性較大,有些院校將其降格為軟件學(xué)習(xí)課程或初級算法課。根據(jù)調(diào)研,目前大部分獨立學(xué)院未開設(shè)此類課程,這是數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)教學(xué)課程融合的一大損失,不利于學(xué)生創(chuàng)新思維能力的提高。各校應(yīng)當積極創(chuàng)造條件,把數(shù)學(xué)實驗課設(shè)為大學(xué)數(shù)學(xué)的必修課,爭取設(shè)立數(shù)學(xué)建模選修課,并積極探索、逐步實現(xiàn)把數(shù)學(xué)建模的思想和方法融入大學(xué)數(shù)學(xué)的主干課程。
3、從計算機應(yīng)用切入數(shù)學(xué)是為理、工、經(jīng)、管、農(nóng)、醫(yī)、文等眾多學(xué)科服務(wù)的基礎(chǔ)工具,它在不同的領(lǐng)域因為應(yīng)用程度不同而導(dǎo)致被重視的程度不同。但在當今的信息化時代,計算機的廣泛應(yīng)用和計算技術(shù)的飛速發(fā)展,使科學(xué)計算和數(shù)值模擬已成為絕大多數(shù)學(xué)科的必要工具和常用手段。數(shù)學(xué)在不同學(xué)科領(lǐng)域有了共同的主題,即應(yīng)用數(shù)學(xué)建模,通過計算機對各自領(lǐng)域的科學(xué)研究、生活問題等進行模擬分析,這成為數(shù)學(xué)建模思想在跨學(xué)科領(lǐng)域交流和傳播的一個重要途徑。每個領(lǐng)域的教學(xué)可以計算機應(yīng)用為切入點,讓數(shù)學(xué)建模思想與數(shù)學(xué)授課無縫結(jié)合,在提高學(xué)生掌握知識能力、挖掘培養(yǎng)創(chuàng)新思維的同時,增加了大學(xué)數(shù)學(xué)課程內(nèi)容的豐富性、實用性,促進教學(xué)手段變革和創(chuàng)新。因此,大學(xué)應(yīng)以適應(yīng)現(xiàn)代信息技術(shù)發(fā)展的形勢和學(xué)生將來的需求為契機,加快改進大學(xué)數(shù)學(xué)課程教學(xué)方式,把數(shù)學(xué)建模的思想和方法以及現(xiàn)代計算技術(shù)和計算工具盡快融入大學(xué)數(shù)學(xué)的主干課程當中。
大學(xué)數(shù)學(xué)課程是大學(xué)工科各專業(yè)培養(yǎng)計劃中重要的公共基礎(chǔ)理論課,其目的在于培養(yǎng)工程技術(shù)人才所必備的數(shù)學(xué)素質(zhì),為培養(yǎng)我國現(xiàn)代化建設(shè)需要的高素質(zhì)人才服務(wù)。數(shù)學(xué)建模課程的必修化,要從能夠擴充學(xué)生的知識結(jié)構(gòu),培養(yǎng)學(xué)生的創(chuàng)造性思維能力、抽象概括能力、邏輯推理能力、自學(xué)能力、分析問題和解決問題能力的角度出發(fā),建立適合獨立學(xué)院學(xué)生的數(shù)學(xué)建模教學(xué)內(nèi)容。日前獨立學(xué)院開展數(shù)學(xué)建?;顒由婕皟?nèi)容較淺,缺少相應(yīng)的數(shù)學(xué)建模和數(shù)學(xué)實驗方而的教材。筆者近幾年通過承擔(dān)此類課題的研究,認為應(yīng)該加強以下內(nèi)容的建設(shè):
。2、開設(shè)選修課拓展知識領(lǐng)域,讓學(xué)生可以通過選修數(shù)學(xué)建模、運籌學(xué)、開設(shè)數(shù)學(xué)實驗(介紹matlab、maple等計算軟件課程),增加建立和解答數(shù)學(xué)模型的方法和技巧。比如以前用的“文曲星”電子詞典里的貸款計算,就是一個典型的運用數(shù)學(xué)模型方便百姓自己計算的應(yīng)用。這個模型單靠數(shù)學(xué)和經(jīng)濟學(xué)單方面的知識是不夠的,必須把數(shù)學(xué)與經(jīng)濟學(xué)聯(lián)系在一起,才能有效解決生活中的問題。
3、積極組織學(xué)生開展或是參加數(shù)學(xué)建模大賽比賽是各個選手充分發(fā)揮水平、展示自己智慧的途徑,也是數(shù)學(xué)建模思想傳播的最好手段。比賽可以讓各個選手發(fā)現(xiàn)自己的不足,尋找自身數(shù)學(xué)建模出發(fā)點的缺陷,通過交流,還可以拓展學(xué)生思維。因此,有必要積極組織學(xué)生參入初等數(shù)學(xué)知識可以解決的數(shù)學(xué)模型、線性規(guī)劃模型、指派問題模型、存儲問題模型、圖論應(yīng)用題等方面的模擬競賽,通過參賽積累大量數(shù)學(xué)建模知識,促進數(shù)學(xué)建模在教學(xué)中扮演更重要的`角色。教師應(yīng)該對歷年的全國大學(xué)生數(shù)學(xué)建模競賽真題進行認真的解讀分析,通過對有意義的題目,如20xx年的《葡萄酒的評價》、《太陽能小屋的設(shè)計》,20xx年的《交巡警服務(wù)平臺的設(shè)置與調(diào)度車燈線光源的計算》、20xx年的《眼科病床的合理安排》等,與生活相關(guān)的例子進行講解分析,提高學(xué)生對數(shù)學(xué)建模的興趣和對模型應(yīng)用的直觀的認識,實現(xiàn)學(xué)校應(yīng)用型人才的培養(yǎng)。
4、加快教育方式的轉(zhuǎn)變高等教育設(shè)立數(shù)學(xué)這門學(xué)科就是為了應(yīng)用服務(wù),內(nèi)容應(yīng)重點放在基本概念、定理、公式等在生活中的應(yīng)用上。而傳統(tǒng)的高等數(shù)學(xué),除了推導(dǎo)就是證明,因此,要對傳統(tǒng)內(nèi)容進行優(yōu)化組合,根據(jù)教學(xué)特點和學(xué)生情況推陳出新,要注重數(shù)學(xué)思想的滲透和數(shù)學(xué)方法的介紹,對高等數(shù)學(xué)精髓的求導(dǎo)、微分方法、積分方法等的授課要重點放在解決實際生活的應(yīng)用上。要結(jié)合一些社會實踐問題與函數(shù)建立的關(guān)系,分析確定變量、參數(shù),加強有關(guān)函數(shù)關(guān)系式建立的日常訓(xùn)練。培養(yǎng)學(xué)生對一些問題的邏輯分析、抽象、簡化并用數(shù)學(xué)語言表達的能力,逐步將學(xué)生帶入遇到問題就能自然地去轉(zhuǎn)化成數(shù)學(xué)模型進行處理的境界,并能將數(shù)學(xué)結(jié)論又能很好反向轉(zhuǎn)化成實際應(yīng)用。
21世紀我國進入了大眾教育時期,高校招生人數(shù)劇增,學(xué)生水平差距較大,需要學(xué)校瞄準正確的培養(yǎng)方向。通過對美國教學(xué)改革的研究,筆者認為我國的數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)教學(xué)課程融合必須盡快在大學(xué)中廣泛推進,但要注意一些問題:第一,數(shù)學(xué)教學(xué)改革一定要基于學(xué)生的現(xiàn)實水平,數(shù)學(xué)建模思想融入要與時俱進。第二,教學(xué)目標要正確定位,融合過程一定要與教學(xué)研究相結(jié)合,要在加強交流的基礎(chǔ)上不斷改進。第三,大學(xué)生數(shù)學(xué)建模競賽的舉辦和參入,要給予正確的理解和引導(dǎo),形成良性循環(huán)。要根據(jù)個人興趣愛好,注重個性,不應(yīng)面面強求。第四,傳統(tǒng)數(shù)學(xué)思想與現(xiàn)在數(shù)學(xué)建模思想必須互補,必修與選修課程的作用與角色要分清。數(shù)學(xué)主干課程的教學(xué)水平是大學(xué)教學(xué)質(zhì)量的關(guān)鍵指標之一,具備數(shù)學(xué)建模思想是理工類大學(xué)生能否成為創(chuàng)新人才的重要條件之一。兩者的融合必將促進我國教學(xué)水平和質(zhì)量的提高,為社會輸送更多的實用型、創(chuàng)新型人才。
大學(xué)數(shù)學(xué)建模論文篇十一
信息化時代,數(shù)學(xué)科學(xué)與其他學(xué)科交叉融合,使得數(shù)學(xué)技術(shù)變成了一種普適性的關(guān)鍵技術(shù)。大學(xué)加強數(shù)學(xué)課程的應(yīng)用功能,不但可以為學(xué)生提供解決問題的思想和方法,而且更為重要的是可以培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)科學(xué)進行定量化、精確化思維的意識,學(xué)會創(chuàng)造性地解決問題的應(yīng)用能力。數(shù)學(xué)建模課程將數(shù)學(xué)的基本原理、現(xiàn)代優(yōu)化算法以及程序設(shè)計知識很好地融合在一起,有助于培養(yǎng)學(xué)生綜合應(yīng)用數(shù)學(xué)知識將現(xiàn)實問題化為數(shù)學(xué)問題,并進行求解運算的能力,激發(fā)學(xué)生對解決現(xiàn)實問題的探索欲望,強化數(shù)學(xué)課程本身的應(yīng)用功能,凸顯數(shù)學(xué)課程的教育價值,適應(yīng)大學(xué)數(shù)學(xué)課程以培養(yǎng)學(xué)生創(chuàng)新意識為宗旨的教育改革需要。
大學(xué)傳統(tǒng)的數(shù)學(xué)主干課程,如高等數(shù)學(xué)、線性代數(shù)、概率論與數(shù)理統(tǒng)計在奠定學(xué)生的數(shù)學(xué)基礎(chǔ)、培養(yǎng)自學(xué)能力以及為后續(xù)課程的學(xué)習(xí)在基礎(chǔ)方面發(fā)揮奠基作用。但是,這種原有的教學(xué)模式重在突出培養(yǎng)學(xué)生嚴格的邏輯思維能力,而對數(shù)學(xué)的應(yīng)用重視不夠,這使得學(xué)生即使掌握了較為高深的數(shù)學(xué)理論,卻并不能將其靈活應(yīng)用于現(xiàn)實生活解決實際問題,更是缺乏將數(shù)學(xué)應(yīng)用于專業(yè)研究和軍事工程的能力,與創(chuàng)新教育的基本要求差距甚遠。教育轉(zhuǎn)型要求數(shù)學(xué)教學(xué)模式從傳統(tǒng)的傳授知識為主向以培養(yǎng)能力素質(zhì)為主轉(zhuǎn)變,特別是將數(shù)學(xué)建模的思想方法融入到數(shù)學(xué)主干課程之中,在教學(xué)過程中引導(dǎo)學(xué)生將數(shù)學(xué)知識內(nèi)化為學(xué)生的應(yīng)用能力,充分發(fā)揮數(shù)學(xué)建模思想在數(shù)學(xué)教學(xué)過程中的引領(lǐng)作用。數(shù)學(xué)課程教學(xué)改革要適應(yīng)這一教學(xué)模式轉(zhuǎn)型需要,深入探究融入式教學(xué)模式的理論與方式,是推進數(shù)學(xué)教育改革的重要舉措。
2.1理清數(shù)學(xué)建模思想方法與數(shù)學(xué)主干課程的關(guān)系。數(shù)學(xué)主干課程提供了大學(xué)數(shù)學(xué)的基礎(chǔ)理論與基本原理,將數(shù)學(xué)建模的思想方法有機地融入到數(shù)學(xué)主干課程中,不但可以有效地提升數(shù)學(xué)課程的應(yīng)用功能,而且有利于深化學(xué)生對數(shù)學(xué)本原知識的理解,培養(yǎng)學(xué)生的綜合應(yīng)用能力。深入研究數(shù)學(xué)主干課程的功能定位,主要從課程目標上的一致性、課程內(nèi)容上的互補性、學(xué)習(xí)形式上的互促性、功能上的整體優(yōu)化性等方面,研究數(shù)學(xué)建模本身所承載的思想、方法與數(shù)學(xué)主干課程的內(nèi)容與邏輯關(guān)系,闡述數(shù)學(xué)建模思想方法對提高學(xué)生創(chuàng)新能力和對數(shù)學(xué)教育改革的重要意義,探索開展融入式教學(xué)及創(chuàng)新數(shù)學(xué)課程教學(xué)模式的有效途徑。
2.2探索融入式教學(xué)模式提升數(shù)學(xué)主干課程應(yīng)用功能的方式。融入式教學(xué)主要有輕度融入、中度融入和完全融入三種方式。根據(jù)主干課程的基本特點,對課程體系進行調(diào)整,在問題解決過程中安排需要融入的知識體系,按照三種方式融入數(shù)學(xué)建模的思想與方法。以學(xué)生能力訓(xùn)練為主導(dǎo),在培養(yǎng)深厚的數(shù)學(xué)基礎(chǔ)和嚴格的邏輯思維能力的基礎(chǔ)上,充分發(fā)揮數(shù)學(xué)建模思想方法對學(xué)生思維方式的培養(yǎng)功能和引導(dǎo)作用,培養(yǎng)學(xué)生敏銳的分析能力、深刻的'歸納演繹能力以及將數(shù)學(xué)知識應(yīng)用于工程問題的創(chuàng)新能力。
2.3建立數(shù)學(xué)建模思想方法融入數(shù)學(xué)主干課程的評價方式。融入式教學(xué)是處于探索中的教學(xué)模式,教學(xué)成效有待于實踐檢驗。選取開展融入式教學(xué)的實驗班級,對數(shù)學(xué)建模思想方法融入主干課程進行教學(xué)效果實踐驗證。設(shè)計相應(yīng)的考察量表,從運用直覺思維深入理解背景知識、符號翻譯開展邏輯思維、依托圖表理順數(shù)量關(guān)系、大膽嘗試進行建模求解等多方面對實驗課程的教學(xué)效果進行檢驗,深入分析融入式教學(xué)模式的成效與不足,為探索有效的教學(xué)模式提出改進的對策。
3.1改革課程教學(xué)內(nèi)容,滲透數(shù)學(xué)建模的思想方法。傳統(tǒng)的數(shù)學(xué)主干課程教學(xué)內(nèi)容,將數(shù)學(xué)看作嚴謹?shù)难堇[體系,教學(xué)過程中著力于對學(xué)生傳授大學(xué)數(shù)學(xué)的基礎(chǔ)知識,而對應(yīng)用能力的培養(yǎng)卻重視不夠。使得本應(yīng)能夠發(fā)揮應(yīng)用功能的數(shù)學(xué)知識則淪為僵死的教條性數(shù)學(xué)原理,這失去了教學(xué)的活力。學(xué)生即使掌握了再高深的數(shù)學(xué)知識,仍難以學(xué)會用數(shù)學(xué)的基本方法解決現(xiàn)實問題?,F(xiàn)行的大學(xué)數(shù)學(xué)課程教學(xué)內(nèi)容中,適當?shù)貪B透一些應(yīng)用性比較廣泛的數(shù)學(xué)方法,如微元法、迭代法及最佳逼近等方法,有利于促進學(xué)生對數(shù)學(xué)基礎(chǔ)知識的掌握,同時理解數(shù)學(xué)原理所蘊涵的思想與方法。
這樣,在解決實際問題的時候,學(xué)生就會有意識地從數(shù)學(xué)的角度進行思考,嘗試建立相應(yīng)的數(shù)學(xué)模型并進行求解,拓展了數(shù)學(xué)知識的深度與廣度,提升了學(xué)生的數(shù)學(xué)應(yīng)用能力四、結(jié)語數(shù)學(xué)建模是數(shù)學(xué)科學(xué)在科技、經(jīng)濟、軍事等領(lǐng)域廣泛應(yīng)用的接口,是數(shù)學(xué)科學(xué)轉(zhuǎn)化成科學(xué)技術(shù)的重要途徑。在數(shù)學(xué)主干課程中融入數(shù)學(xué)建模的思想與方法,可以推動大學(xué)數(shù)學(xué)教育改革的深入發(fā)展,加深學(xué)生對相關(guān)知識的理解和掌握,有助于從思維方式上培養(yǎng)學(xué)生的創(chuàng)新意識與創(chuàng)新能力。
此外,數(shù)學(xué)建模思想方法融入教學(xué)主干課程還涉及到許多問題,比如數(shù)學(xué)建模與計算技術(shù)如何有效結(jié)合以進行模擬仿真、融入式教學(xué)模式的基本理論、構(gòu)建新的課程體系等問題,仍將有待于更深入的研究。
大學(xué)數(shù)學(xué)建模論文篇十二
高校學(xué)生社團是一種具有共同興趣愛好的學(xué)生自發(fā)組織的開展一些藝術(shù)、娛樂和學(xué)術(shù)型的活動的團體。學(xué)生社團以其鮮明的開放性、自主性以及多樣性等特點,為一些有特長的學(xué)生提供了廣闊的舞臺,讓這些學(xué)生可以更好的發(fā)揮自己的才能,促進其更好的成才。全國大學(xué)生數(shù)學(xué)建模競賽是最早由教育部工業(yè)與數(shù)學(xué)應(yīng)用學(xué)會共同承辦的一個科技性的賽事,該比賽要通過數(shù)學(xué)和計算機的知識來解決實際生活中的問題,由于其特有的比賽形式,使得高職院校在全校范圍內(nèi)直接選拔參賽隊員是件費神的事情,因此,為了更好的為數(shù)學(xué)建模競賽選拔人才,激發(fā)學(xué)生的學(xué)習(xí)興趣,學(xué)術(shù)性社團“數(shù)學(xué)建模協(xié)會”也就應(yīng)運而生。數(shù)學(xué)建模協(xié)會的成立,可以更好的為學(xué)生提供一個展示自己的機會,可以增強學(xué)生對數(shù)學(xué)的學(xué)習(xí)興趣,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)解決實際問題的能力,激發(fā)學(xué)生的創(chuàng)新思維,為數(shù)學(xué)建模競賽選拔人才。本文主要以西安航空職業(yè)技術(shù)學(xué)院數(shù)學(xué)建模協(xié)會為例,探討高職數(shù)學(xué)建模社團活動開展的形式和意義。
(一)數(shù)學(xué)建模社團有利于數(shù)學(xué)建模競賽的開展。高職數(shù)學(xué)建模協(xié)會為數(shù)學(xué)建模競賽搭建了一個平臺,是數(shù)學(xué)建模競賽強有力的后盾,數(shù)學(xué)建模競賽成績的取得與這個平臺密不可分,只有充分發(fā)揮數(shù)學(xué)建模社團的作用,才能源源不斷的為數(shù)學(xué)建模提供人力和智力保障,才能更好的推動高職數(shù)學(xué)的學(xué)習(xí)氛圍。1、數(shù)學(xué)建模協(xié)會起著動員宣傳的作用從沒聽過,到知道,在到熟悉,只有通過大力宣傳和動員,才能讓更多的人了解數(shù)學(xué)建模,讓更多優(yōu)秀學(xué)生參加到數(shù)學(xué)建模競賽中。大學(xué)校園中有許多數(shù)學(xué)愛好者,他們對數(shù)學(xué)建模也有一定的認識,只要有參加數(shù)學(xué)建模活動的愿望的,都可以利用數(shù)學(xué)建模協(xié)會招新的機會,加入數(shù)學(xué)建模創(chuàng)新協(xié)會。將成績優(yōu)秀的學(xué)生邀請加入數(shù)學(xué)建模協(xié)會,對進一步擴大數(shù)學(xué)建模協(xié)會,夯實數(shù)學(xué)建模基礎(chǔ),起著舉足輕重的作用。2、數(shù)學(xué)建模協(xié)會起著知識傳播的作用高職院校學(xué)生在校學(xué)習(xí)時間較短,學(xué)業(yè)較為繁重,課余時間較少,數(shù)學(xué)建模培訓(xùn)的時間不足,無法讓學(xué)生在短時期內(nèi)掌握較多的數(shù)學(xué)建模相關(guān)知識。因此,利用數(shù)學(xué)建模協(xié)會活動可以開展數(shù)學(xué)建模課程的培訓(xùn)工作,普及數(shù)學(xué)建模相關(guān)知識。采用“老帶新”的模式進行數(shù)學(xué)建模知識的普及。通過制定系統(tǒng)的培訓(xùn)方案,在每年秋季競賽后,參加過競賽的同學(xué)對新入?yún)f(xié)會的成員可以進行初級培訓(xùn),為今后的競賽奠定基礎(chǔ)。3、數(shù)學(xué)建模社團起著選拔學(xué)生的作用每年數(shù)學(xué)建模競賽的隊員需要通過校內(nèi)賽等形式進行選拔,此時,數(shù)學(xué)建模協(xié)會就起著校內(nèi)賽命題及選拔隊員的作用,當然這種選拔方式也有的弊端,就是所有隊員都是來自校內(nèi)賽成績優(yōu)秀的學(xué)生,而校內(nèi)賽發(fā)揮不理想但建模能力突出或計算機技術(shù)水平優(yōu)秀的學(xué)生就沒法參加數(shù)學(xué)建模競賽。為確保每一位有能力的學(xué)生都能夠加入到建模競賽隊伍中來,可以通過校內(nèi)競賽與建模協(xié)會推薦兩者相結(jié)合的方式選拔建模競賽學(xué)生,以確保最優(yōu)優(yōu)秀的學(xué)生參加數(shù)學(xué)建模競賽。(二)數(shù)學(xué)建模社團有利于大學(xué)生綜合素質(zhì)的培養(yǎng)。(1)數(shù)學(xué)建模社團屬于專業(yè)的學(xué)術(shù)性社團,成立的目的是為了參加全國大學(xué)生數(shù)學(xué)建模競賽,數(shù)學(xué)建模社團活動的趣味性和實踐性可以提高學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生自主學(xué)習(xí)的能力,增加學(xué)生參與競賽的熱情。社團活動中的培訓(xùn)使學(xué)生可以更好的應(yīng)對競賽,取得更好的成績。另外,競賽之余還可以進行其他領(lǐng)域的學(xué)術(shù)交流,比如計算機,經(jīng)濟,工程等領(lǐng)域,良好的交流氛圍激發(fā)學(xué)生的創(chuàng)新思維和意識,從而培養(yǎng)他們的創(chuàng)新能力。(2)數(shù)學(xué)建模社團是學(xué)生自發(fā)組織的服務(wù)學(xué)生的群體,除了學(xué)術(shù)研究之外,還可以進行一些創(chuàng)新創(chuàng)業(yè)的活動,具有更多的實踐的機會。比如,可以利用平時社團所學(xué)的知識,以團體的形式進行一些數(shù)據(jù)處理的校企合作;也可以以微信平臺和微信群等發(fā)布一些數(shù)學(xué)建模相關(guān)的微課等,進行一些微信群講座等等。這樣可以讓學(xué)生真正體會到數(shù)學(xué)的用處,達到學(xué)以致用的效果。(3)數(shù)學(xué)建模社團是學(xué)生自發(fā)組織的學(xué)術(shù)性社團,社團的組織機構(gòu)都是學(xué)生在擔(dān)任,社團的活動也都是學(xué)生在協(xié)調(diào)策劃,甚至很多時候社團的老成員都可以輔助老師進行社團的一些學(xué)術(shù)性的講座。因此,在學(xué)習(xí)的同時還鍛煉了他們的處事應(yīng)變能力團隊合作的能力,可以說提高了學(xué)生的綜合素質(zhì)。
(一)數(shù)學(xué)建模社團的管理形式。數(shù)學(xué)建模協(xié)會作為一個學(xué)生群體組織,需要好的制度和管理模式。以筆者所在學(xué)校為例,數(shù)學(xué)建模創(chuàng)新協(xié)會具有自己的一套規(guī)章管理制度;在管理形式方面是以“三個管理面”來進行社團管理和學(xué)術(shù)交流的,具體如下:1、學(xué)術(shù)交流面這個主要是通過“社團內(nèi)部進行學(xué)術(shù)交流活動”和“老帶新培訓(xùn)”兩部分組成,內(nèi)部的交流活動主要是學(xué)生之間的相互溝通和交流,以及不定期的邀請指導(dǎo)教師和外校專家做一些數(shù)學(xué)建模報告。老帶新培訓(xùn)是指社團主席團成員(一般是參加過前一年全國大學(xué)生數(shù)學(xué)建模競賽的學(xué)生)為新入社團的學(xué)生進行培訓(xùn),培訓(xùn)的內(nèi)容基本上都是之前指導(dǎo)教師對他們集訓(xùn)時的內(nèi)容,這種培訓(xùn)方式可以提升社團成員的授課和理解問題的能力,對于在校大學(xué)生來說是一次很好的鍛煉。2、網(wǎng)絡(luò)交流面采用qq群,網(wǎng)絡(luò)空間和微信公眾平臺等開展社團成員之間的交流互動,社團宣傳。筆者所在學(xué)校的數(shù)學(xué)建模創(chuàng)新協(xié)會每一屆社團都有相應(yīng)的qq群,另外,在20xx年也積極申請了微信平臺,目前的'關(guān)注量也在800余人,微信平臺的建立可以更方面使大學(xué)生關(guān)注數(shù)學(xué)建模相關(guān)信息,尤其是對大一新生可以更多的取了解數(shù)學(xué)建模,擴大數(shù)學(xué)建模的受益面和影響力。力求在大學(xué)生中營造一種“人人知數(shù)模,人人愛數(shù)模,人人參與數(shù)?!钡牧己玫慕逃h(huán)境,使建?;顒訌V泛化、群眾化。3、交流互訪面開展研討會,專家報告會,社團聯(lián)誼會等交流活動,既可以豐富數(shù)學(xué)建模社團學(xué)生的知識面,又能促進數(shù)學(xué)知識的理解和吸收,通過與其他社團的聯(lián)誼,豐富了社團學(xué)生的業(yè)余生活,又能學(xué)習(xí)其他社團好的管理經(jīng)驗,促進社團管理的制度化、規(guī)范化、專業(yè)化,也只有通過不斷的學(xué)習(xí),不斷的交流,才能真正“走出去”,建立一個管理完善,富有成效的學(xué)生社團。(二)數(shù)學(xué)建模社團的特色活動。數(shù)學(xué)建模社團在開展學(xué)術(shù)活動和輔助教師進行競賽培訓(xùn)的同時,還不定期的舉行一些活動,在提高學(xué)生學(xué)習(xí)興趣的同時也以擴大了數(shù)學(xué)建模的影響力。以筆者坐在學(xué)校為例,每年可以開展一系列的數(shù)學(xué)建?;顒?。比如,數(shù)學(xué)建模創(chuàng)新協(xié)會納新,數(shù)學(xué)建模創(chuàng)新協(xié)會趣味運動會,數(shù)學(xué)科技節(jié),趣味數(shù)學(xué)知識競賽,數(shù)學(xué)建模經(jīng)驗交流會,數(shù)學(xué)建模校內(nèi)賽,數(shù)學(xué)輔導(dǎo)周,數(shù)學(xué)建模專題講座。這些社團活動貫穿整個學(xué)年,不僅可以“由點及面、由淺入深”的對全國大學(xué)生數(shù)學(xué)建模競賽進行宣傳,在最大的范圍內(nèi),提升數(shù)學(xué)建模大賽的影響力及參與度,成效較好。而且讓枯燥的學(xué)術(shù)型社團變得豐富多彩,成為學(xué)生課后獲取知識的一種平臺,同時也是社團蓬勃發(fā)展的利器。
總之,數(shù)學(xué)建模社團活動的開展,有利于培養(yǎng)學(xué)生的創(chuàng)新意識和思維,有利于激發(fā)了學(xué)生的學(xué)習(xí)興趣,有利于豐富學(xué)生的課后生活,有利于調(diào)動了學(xué)生參加學(xué)術(shù)型社團的積極性,同時也是高職院校組織參加數(shù)學(xué)建模競賽的強有力的后盾。
[1]胡建茹,王搖娟.加強專業(yè)社團建設(shè)推進大學(xué)生創(chuàng)新實踐能力培養(yǎng)[j].中國石油大學(xué)學(xué)報:社會科學(xué)版,20xx(12)
[2]王珍娥,宋維,孫潔.數(shù)學(xué)社團建設(shè)的探索與實踐[j].機械職業(yè)教育,20xx(7)
[3]李湘玲,王泳興.大學(xué)生社團發(fā)展與創(chuàng)新型人才培養(yǎng)互動機制研究:以吉首大學(xué)為例[j].黑龍江教育,20xx(11)
[4]孫浩,葉正麟.西北工業(yè)大學(xué)數(shù)學(xué)建模創(chuàng)新教育之探索[j].高等數(shù)學(xué)研究,20xx(4)
作者:張?zhí)m單位:西安航空職業(yè)技術(shù)學(xué)院通識教育學(xué)院
大學(xué)數(shù)學(xué)建模論文篇十三
優(yōu)秀高教社杯全國大學(xué)生數(shù)學(xué)建模競賽題目
(請先閱讀“全國大學(xué)生數(shù)學(xué)建模競賽論文格式規(guī)范”)
a題城市表層土壤重金屬污染分析
隨著城市經(jīng)濟的快速發(fā)展和城市人口的不斷增加,人類活動對城市環(huán)境質(zhì)量的影響日顯突出。對城市土壤地質(zhì)環(huán)境異常的查證,以及如何應(yīng)用查證獲得的海量數(shù)據(jù)資料開展城市環(huán)境質(zhì)量評價,研究人類活動影響下城市地質(zhì)環(huán)境的演變模式,日益成為人們關(guān)注的焦點。
按照功能劃分,城區(qū)一般可分為生活區(qū)、工業(yè)區(qū)、山區(qū)、主干道路區(qū)及公園綠地區(qū)等,分別記為1類區(qū)、2類區(qū)、??、5類區(qū),不同的區(qū)域環(huán)境受人類活動影響的程度不同。
現(xiàn)對某城市城區(qū)土壤地質(zhì)環(huán)境進行調(diào)查。為此,將所考察的城區(qū)劃分為間距1公里左右的網(wǎng)格子區(qū)域,按照每平方公里1個采樣點對表層土(0~10厘米深度)進行取樣、編號,并用gps記錄采樣點的位置。應(yīng)用專門儀器測試分析,獲得了每個樣本所含的多種化學(xué)元素的濃度數(shù)據(jù)。另一方面,按照2公里的間距在那些遠離人群及工業(yè)活動的自然區(qū)取樣,將其作為該城區(qū)表層土壤中元素的背景值。
附件1列出了采樣點的位置、海拔高度及其所屬功能區(qū)等信息,附件2列出了8種主要重金屬元素在采樣點處的濃度,附件3列出了8種主要重金屬元素的背景值。
現(xiàn)要求你們通過數(shù)學(xué)建模來完成以下任務(wù):
(1)給出8種主要重金屬元素在該城區(qū)的空間分布,并分析該城區(qū)內(nèi)不同區(qū)域重金屬的污染程度。
(2)通過數(shù)據(jù)分析,說明重金屬污染的主要原因。
(3)分析重金屬污染物的傳播特征,由此建立模型,確定污染源的位置。
大學(xué)數(shù)學(xué)建模論文篇十四
摘要:數(shù)學(xué)作為很多學(xué)科的計算工具,可以說是現(xiàn)代科學(xué)的基礎(chǔ),要想利用數(shù)學(xué)來解決實際問題,首先要建立相應(yīng)的數(shù)學(xué)模型,本文在數(shù)學(xué)建模思想概念和特點的基礎(chǔ)上,從計算機軟件、實際生活中的應(yīng)用等方面,對其應(yīng)用的發(fā)展進行了分析,最后從分析問題、建立模型、校驗?zāi)P腿齻€階段,對數(shù)學(xué)建模的方法,進行了深入的研究。
關(guān)鍵詞:數(shù)學(xué)建模;思想;應(yīng)用;方法;分析
引言
隨著自然科學(xué)的發(fā)展,利用數(shù)學(xué)等思想來解決實際問題,越來越受到人們的重視,數(shù)學(xué)作為一門歷史悠久的自然科學(xué),是在實際應(yīng)用的基礎(chǔ)上發(fā)展起來,但是隨著理論研究的深入,現(xiàn)在數(shù)學(xué)理論已經(jīng)非常先進,很多理論都無法付諸實踐,在這種背景下,如何利用現(xiàn)有的數(shù)學(xué)理論來解決實際問題,成為了很多專家和學(xué)者研究的問題。通過實際的調(diào)查發(fā)現(xiàn),要想利用數(shù)學(xué)來解決實際問題,首先要建立相應(yīng)的數(shù)學(xué)模型,將實際的問題轉(zhuǎn)化成數(shù)學(xué)符號的表達方式,這樣才能夠通過數(shù)學(xué)計算,來解決一些實際問題,從某種意義上來說,計算機就是由若干個數(shù)學(xué)模型組成的,計算機軟件之所以能夠解決實際問題,就是根據(jù)實際應(yīng)用的需要,建立了一個相應(yīng)的數(shù)學(xué)模型,這樣才能夠讓計算機來解決。
1數(shù)學(xué)建模思想分析
1.1數(shù)學(xué)建模思想的概念
數(shù)學(xué)是一門歷史悠久的自然科學(xué),在古時候,由于實際應(yīng)用的需要,人們就已經(jīng)開始使用數(shù)學(xué)來解決實際問題,但是受到當時技術(shù)條件的限制,數(shù)學(xué)理論的水平比較低,只是利用數(shù)學(xué)來進行計數(shù)等,隨著經(jīng)濟和科技水平的提高,尤其是在工業(yè)革命之后,自然科學(xué)得到了極大的發(fā)展,對于利用自然科學(xué)來解決實際問題,也成為了人們研究的重點,在市場經(jīng)濟的推動下,人們將這些理論知識轉(zhuǎn)化成為產(chǎn)品。計算機就是在這種背景下產(chǎn)生的,在數(shù)學(xué)理論的基礎(chǔ)上,將電路的通和不通兩種狀態(tài),與數(shù)學(xué)的二進制相結(jié)合,這樣就能夠讓計算機來處理實際問題,從本質(zhì)上來說,這就是數(shù)學(xué)建模思想的范疇,但是在計算機出現(xiàn)的早期,數(shù)學(xué)建模的理論還沒有形成,隨著計算機軟件技術(shù)的發(fā)展,人們逐漸的意識到數(shù)學(xué)建模的重要性,發(fā)現(xiàn)利用數(shù)學(xué)建模思想,可以解決很多實際的問題,而數(shù)學(xué)建模的概念,就是將遇到的實際問題,利用特定的數(shù)學(xué)符號進行描述,這樣實際問題就轉(zhuǎn)化為數(shù)學(xué)問題,可以利用數(shù)學(xué)的計算方法來解決。
1.2數(shù)學(xué)建模思想的特點
如何解決實際問題,從有人類文明開始,就成為了人們研究的重點,隨著自然科學(xué)的發(fā)展,出現(xiàn)了很多具體的學(xué)科,利用這些不同的學(xué)科,可以解決不同的實際問題,而數(shù)學(xué)就是其中最重要的一門學(xué)科,而且是其他學(xué)科的基礎(chǔ),如物理學(xué)科中,數(shù)學(xué)就是一個計算的工具,由此可以看出數(shù)學(xué)的重要性,進入到信息時代后,計算機得到了普及應(yīng)用,無論是日常生活中還是工作中,計算機都有非常重要的應(yīng)用,而在信息時代,注重的是解決問題的效率。與其他解決問題的方式相比,數(shù)學(xué)建模顯然更加科學(xué),現(xiàn)在數(shù)學(xué)建模已經(jīng)成為了一門獨立的學(xué)科,很多高校中都開設(shè)了這門課程,為了培養(yǎng)學(xué)生們利用數(shù)學(xué)解決實際問題的能力,我國每年都會舉辦全國性的數(shù)學(xué)建模大賽,采用開放式的參賽方式,對學(xué)生們的數(shù)學(xué)建模能力進行考驗,而大賽的題目,很多都是一些實際問題,對于比賽的結(jié)果,每個參賽隊伍的建模方式都有一定的差異,其中選出一個最有效的方式成為冠軍。由此可以看出,對于一個實際的問題,可以建立多個數(shù)學(xué)模型進行解決,但是執(zhí)行的效率具有一定的差異,如有些計算的步驟較少,而有些計算的過程比較簡單,而如何評價一個模型的效率,必須從各個方面進行綜合的考慮。
2數(shù)學(xué)建模思想的應(yīng)用
2.1計算機軟件中數(shù)學(xué)建模思想的應(yīng)用
通過深入的分析可以知道,計算機之所以能夠解決實際問題,很大程度上依賴與計算機軟件,而計算機軟件自身就是一個或幾個數(shù)學(xué)模型,在軟件開發(fā)的過程中,首先要進行需求的分析,這其實就是數(shù)學(xué)建模的第一個環(huán)節(jié),對問題進行分析,在了解到問題之后,就要通過計算機語言,對問題進行描述,而計算機語言是人與計算機進行溝通的語言,最終這些語言都要轉(zhuǎn)化成0和1二進制的方式,這樣計算機才能夠進行具體的計算。由此可以看出,計算機就是依靠數(shù)學(xué)來解決實際問題,而每個計算機軟件,都可以認為是一個數(shù)學(xué)模型,如在早期的計算機程序設(shè)計中,受到當時計算機技術(shù)水平的限制,采用的還是低級語言,由于低級語言人們很難理解,因此在程序編寫之前,都會先建立一個數(shù)學(xué)模型,然后將這個模型轉(zhuǎn)化成相應(yīng)的計算機語言,這樣計算機就可以解決實際的問題,由于計算機能夠自行計算的特點,只要輸入相應(yīng)的參數(shù)后,就可以直接得到結(jié)果,不再需要人為的計算。
2.2數(shù)學(xué)建模思想直接解決實際問題
經(jīng)過了多年的發(fā)展,現(xiàn)在數(shù)學(xué)建模自身已經(jīng)非常完善,為了培養(yǎng)我國的數(shù)學(xué)建模人才,從1992年開始,每年我國都會舉辦一屆全國數(shù)學(xué)建模大賽,所有的高校學(xué)生都可以參加,大賽采用了開放性的參賽方式,通常情況下,對于題目設(shè)置的也比較靈活,會有多個題目提供給隊員選擇,學(xué)生可以根據(jù)自己的實際情況,來選擇一個最適合自己的問題。而數(shù)學(xué)建模大賽舉辦的主要目的,就是讓學(xué)生們掌握如何利用數(shù)學(xué)理論,來解決實際問題,在學(xué)習(xí)數(shù)學(xué)知識的過程中,很多學(xué)生會認為,數(shù)學(xué)與實踐的距離很遠,學(xué)習(xí)的都是純理論的知識,學(xué)習(xí)的興趣很低,與一些實踐密切相關(guān)的學(xué)科相比,選擇數(shù)學(xué)專業(yè)的學(xué)生很少,而數(shù)學(xué)建模的出現(xiàn),在很大程度上改善了這種情況,讓人們真正的了解數(shù)學(xué),并利用數(shù)學(xué)來解決復(fù)雜的問題。受到特殊的歷史因素影響,我國自然科學(xué)發(fā)展的起步較晚,在建國后經(jīng)歷了很長一段時間封,閉發(fā)展,與西方發(fā)達國家之間的交流比較少,因此對于數(shù)學(xué)建模等現(xiàn)代科學(xué),研究的時間比較短,導(dǎo)致目前我國很少會利用數(shù)學(xué)建模來解決實際問題,相比之下,發(fā)達國家在很多領(lǐng)域中,經(jīng)常會用到數(shù)學(xué)建模的知識,如在企業(yè)日常運營中,需要進行市場調(diào)研等工作,而對于這些調(diào)研工作的處理,在進行之前都會建立一個數(shù)學(xué)模型,然后按照這個建立的模型來處理。
2.3數(shù)學(xué)建模思想應(yīng)用的發(fā)展
從本質(zhì)上來說,數(shù)學(xué)是在實際應(yīng)用的基礎(chǔ)上,逐漸形成的一門學(xué)科,但是受到當時技術(shù)水平的限制,雖然人們已經(jīng)懂得去計算,卻并知道自己使用的是數(shù)學(xué)知識,隨著自然科學(xué)的發(fā)展,對數(shù)學(xué)的應(yīng)用越來越多,而數(shù)學(xué)自身理論的發(fā)展速度很快,遠遠超過了實際應(yīng)用的范圍,同時隨著其他學(xué)科的發(fā)展,數(shù)學(xué)變成了一種計算的工具,因此數(shù)學(xué)應(yīng)用的第一個階段中,主要是作為一種工具。隨著電子計算機的出現(xiàn),對數(shù)學(xué)的應(yīng)用達到了一個極限,人們在數(shù)學(xué)和物理的基礎(chǔ)上,制作出了能夠自動計算的機器,在計算機出現(xiàn)的早期,受到性能和體積上的限制,只能進行一些簡單的數(shù)學(xué)計算,還不能解決實際的問題,但是計算機語言和軟件技術(shù)的.發(fā)展,使其在很多領(lǐng)域得到了應(yīng)用,在計算的基礎(chǔ)上,能夠解決很多問題,而軟件程序的開發(fā),其實就是建立數(shù)學(xué)模型的過程,由此可以看出,數(shù)學(xué)建模思想應(yīng)用的第二階段中,主要是以現(xiàn)代計算機等電子設(shè)備的方式,來解決實際的問題。
3數(shù)學(xué)建模思想應(yīng)用的方法
3.1分析問題
數(shù)學(xué)模型的應(yīng)用都是為了解決實際問題,雖然很多問題都可以通過建模的方式來解決,但是并不是所有的問題,因此在遇到實際問題時,首先要對問題進行具體的分析,首先就是看是否能夠轉(zhuǎn)化成數(shù)學(xué)符號,如果能夠直接用數(shù)學(xué)語言來進行描述,那么就可以容易的建立相應(yīng)的數(shù)學(xué)模型,但是通過實際的調(diào)查發(fā)現(xiàn),隨著經(jīng)濟和科技的發(fā)展,遇到的問題越來越復(fù)雜,其中很多都無法直接用數(shù)學(xué)語言來描述,這就增加了數(shù)學(xué)建模的難度。由此可以看出,分析問題作為數(shù)學(xué)建模的第一個環(huán)節(jié),也是最重要的一個環(huán)節(jié),如果問題分析的不夠具體,那么將無法建立出數(shù)學(xué)模型,同時對數(shù)學(xué)模型的建立也具有非常重要的影響,通過實際的調(diào)查發(fā)現(xiàn),能夠建立高效率的數(shù)學(xué)模型,都是對問題分析的比較徹底,甚至有些獨特的理解,只有這樣才能夠采用建立一個最簡單的模型,而隨著數(shù)學(xué)建模自身的發(fā)展,現(xiàn)在建立模型的過程中,對于一個實際的問題,經(jīng)常需要建立多個模型,這樣通過多個數(shù)學(xué)模型協(xié)同來解決一個問題。
3.2數(shù)學(xué)模型的建立
在分析實際問題后,就要用數(shù)學(xué)符號來描述要解決的問題,這是建立數(shù)學(xué)模型的準備環(huán)節(jié),要想利用數(shù)學(xué)來解決實際問題,無論采用哪種方式,都要轉(zhuǎn)化成數(shù)學(xué)語言,然后才能夠通過計算的方式解決,而數(shù)學(xué)模型的過程,就是在描述完成后,建立相應(yīng)的數(shù)學(xué)表達式,通常情況下,在分析問題時,都能夠發(fā)現(xiàn)某種內(nèi)在的規(guī)律,這個規(guī)律是數(shù)學(xué)建模的基礎(chǔ)。如果無法找到這個規(guī)律,顯然就不能利用現(xiàn)有的一些數(shù)學(xué)定律,從而建立相應(yīng)的表達式,最后解決相應(yīng)的問題,由此可以看出,分析問題的內(nèi)在規(guī)律,是影響數(shù)學(xué)建模的重要因素,而這個規(guī)律的發(fā)現(xiàn),除了在現(xiàn)有的數(shù)學(xué)知識外,也可以結(jié)合其他學(xué)科的知識,尤其是現(xiàn)在遇到的問題越來越復(fù)雜,對于以往簡單的問題,只需要建立一個簡單的模型即可解決,而現(xiàn)在復(fù)雜的問題,經(jīng)常需要建立多個模型。因此現(xiàn)在數(shù)學(xué)建模的難度越來越大,從近些年全國數(shù)學(xué)建模大賽的題目就可以看出,對于問題的描述越來越模糊,甚至出現(xiàn)了一些歷史上的難題,而不同學(xué)生根據(jù)自己的理解,建立的模型也具有很大的差異,其中一些模型非常新穎,為實際問題的解決提供了良好的參考,目前我國對數(shù)學(xué)建模的研究有限,尤其是與西方發(fā)達國家相比,實踐的機會還比較少。
3.3數(shù)學(xué)模型的校驗
在數(shù)學(xué)模型建立之后,對于這個模型是否能夠解決實際問題,具體的執(zhí)行效率如何,都需要進行校驗,因此檢驗是數(shù)學(xué)模型建立最后的一個環(huán)節(jié),也是非常重要的一個步驟,通常情況下,經(jīng)過校驗都能夠發(fā)現(xiàn)模型中存在的一些問題,從而進行完善,這樣才能夠保證嚴謹性,在實際校驗的過程中,要對數(shù)學(xué)模型的每個部分進行驗證,通過輸入特定的數(shù)據(jù),看得到的結(jié)果是否符合理論值,如果沒有問題,就說明該模型可以解決實際問題。除了檢驗?zāi)P偷臏蚀_外,校驗還有另外一個作用,就是優(yōu)化模型,在選定數(shù)據(jù)后,能夠看到數(shù)學(xué)模型計算的整個過程,這時就可以對具體的細節(jié)進行優(yōu)化,如哪部分可以減少計算的步驟,或者簡化計算的方式等,這樣可以使整個模型更加科學(xué)、合理,由此可以看出,校驗工作對于數(shù)學(xué)模型的建立,具有非常重要的意義。
4結(jié)語
通過全文的分析可以知道,對于數(shù)學(xué)理論的應(yīng)用,從很久之前就已經(jīng)開始了,但是數(shù)學(xué)建模思想的出現(xiàn),卻是隨著計算機技術(shù)的發(fā)展,逐漸形成的一門學(xué)科,電子計算機的出現(xiàn),在很大程度上改變了處理事情的方式,利用計算機軟件,只要輸入相應(yīng)的參數(shù),就可以直接得到結(jié)果,這正是數(shù)學(xué)模型完成的任務(wù),只是計算機的出現(xiàn),省略了中間的計算過程,因此計算機軟件的方式,是數(shù)學(xué)建模思想最好的應(yīng)用方法,要想解決不同的問題,只要建立不同的模型,然后編寫相應(yīng)的程序。
大學(xué)數(shù)學(xué)建模論文篇十五
(一)教學(xué)觀念陳舊化
就當前高等數(shù)學(xué)的教育教學(xué)而言,高數(shù)老師對學(xué)生的計算能力、思考能力以及邏輯思維能力過于重視,一切以課本為基礎(chǔ)開展教學(xué)活動。作為一門充滿活力并讓人感到新奇的學(xué)科,由于教育觀念和思想的落后,課堂教學(xué)之中沒有穿插應(yīng)用實例,在工作的時候?qū)W生不知道怎樣把問題解決,工作效率無法進一步提升,不僅如此,陳舊的教學(xué)理念和思想讓學(xué)生漸漸的失去學(xué)習(xí)的興趣和動力。
(二)教學(xué)方法傳統(tǒng)化
教學(xué)方法的優(yōu)秀與否在學(xué)生學(xué)習(xí)的過程中發(fā)揮著重要的作用,也直接影響著學(xué)生的學(xué)習(xí)成績。一般高數(shù)老師在授課的時候都是以課本的順次進行,也就意味著老師“由定義到定理”、“由習(xí)題到練習(xí)”,這種默守陳規(guī)的教學(xué)方式無法為學(xué)生營造活躍的學(xué)習(xí)氛圍,讓學(xué)生獨自學(xué)習(xí)、思考的能力進一步下降。這就要求教師致力于和諧課堂氛圍營造以及使用新穎的教育教學(xué)方法,讓學(xué)生在課堂中主動參與學(xué)習(xí)。
二、建模在高等數(shù)學(xué)教學(xué)中的作用
對學(xué)生的想象力、觀察力、發(fā)現(xiàn)、分析并解決問題的能力進行培養(yǎng)的過程中,數(shù)學(xué)建模發(fā)揮著重要的作用。最近幾年,國內(nèi)出現(xiàn)很多以數(shù)學(xué)建模為主體的賽事活動以及教研活動,其在學(xué)生學(xué)習(xí)興趣的提升、激發(fā)學(xué)生主動學(xué)習(xí)的積極性上扮演著重要的角色,發(fā)揮著突出的作用,在高等數(shù)學(xué)教學(xué)中引入數(shù)學(xué)建模還能培養(yǎng)學(xué)生不畏困難的品質(zhì),培養(yǎng)踏實的工作精神,在協(xié)調(diào)學(xué)生學(xué)習(xí)的知識、實際應(yīng)用能力等上有突出的作用。雖然國內(nèi)高等院校大都開設(shè)了數(shù)學(xué)建模選修課或者培訓(xùn)班,但是由于課程的要求和學(xué)生的認知水平差異較大,所以課程無法普及為大眾化的教育。如今,高等院校都在積極的尋找一種載體,對學(xué)生的整體素質(zhì)進行培養(yǎng),提升學(xué)生的創(chuàng)新精神以及創(chuàng)造力,讓學(xué)生滿足社會對復(fù)合型人才的需求,而最好的載體則是高等數(shù)學(xué)。
高等數(shù)學(xué)作為工科類學(xué)生的一門基礎(chǔ)課,由于其必修課的性質(zhì),把數(shù)學(xué)建模引入高等數(shù)學(xué)課堂中具有較廣的影響力。把數(shù)學(xué)建模思想滲入高等數(shù)學(xué)教學(xué)中,不僅能讓數(shù)學(xué)知識的本來面貌得以還原,更讓學(xué)生在日常中應(yīng)用數(shù)學(xué)知識的能力得到很好的培養(yǎng)。數(shù)學(xué)建模要求學(xué)生在簡化、抽象、翻譯部分現(xiàn)實世界信息的過程中使用數(shù)學(xué)的語言以及工具,把內(nèi)在的聯(lián)系使用圖形、表格等方式表現(xiàn)出來,以便于提升學(xué)生的表達能力。在實際的學(xué)習(xí)數(shù)學(xué)建模之后,需要檢驗現(xiàn)實的信息,確定最后的結(jié)果是否正確,通過這一過程中的鍛煉,學(xué)生在分析問題的過程中可以主動地、客觀的辯證的運用數(shù)學(xué)方法,最終得出解決問題的最好方法。因此,在高等數(shù)學(xué)教學(xué)中引入數(shù)學(xué)建模思想具有重要的意義。
三、將建模思想應(yīng)用在高等數(shù)學(xué)教學(xué)中的具體措施
(一)在公式中使用建模思想
在高數(shù)教材中占有重要位置的是公式,也是要求學(xué)生必須掌握的內(nèi)容之一。為了讓教師的'教學(xué)效果進一步提升,在課堂上老師不僅要讓學(xué)生對計算的技巧進一步提升之余,還要和建模思想結(jié)合在一起,讓解題難度更容易,還讓課堂氛圍更活躍。為了讓學(xué)生對公式中使用建模思想理解的更透徹,老師還應(yīng)該結(jié)合實例開展教學(xué)。
(二)講解習(xí)題的時候使用數(shù)學(xué)模型的方式
課本例題使用建模思想進行解決,老師通過對例題的講解,很好的講述使用數(shù)學(xué)建模解決問題的方式,讓學(xué)生清醒的認識在解決問題的過程中怎樣使用數(shù)學(xué)建模。完成每章學(xué)習(xí)的內(nèi)容之后,充分的利用時間為學(xué)生解疑答惑,以學(xué)生所學(xué)的專業(yè)情況和學(xué)生水平的高低選擇合適的例題,完成建模、解決問題的全部過程,提升學(xué)生解決問題的效率。
(三)組織學(xué)生積極參加數(shù)學(xué)建模競賽
一般而言,在競賽中可以很好地鍛煉學(xué)生競爭意識以及獨立思考的能力。這就要求學(xué)校充分的利用資源并廣泛的宣傳,讓學(xué)生積極的參加競賽,在實踐中鍛煉學(xué)生的實際能力。在日常生活中使用數(shù)學(xué)建模解決問題,讓學(xué)生獨自思考,然后在競爭的過程中意識到自己的不足,今后也會努力學(xué)習(xí),改正錯誤,提升自身的能力。
四、結(jié)束語
高等數(shù)學(xué)主要對學(xué)生從理論學(xué)習(xí)走向解決實際問題的能力進行培養(yǎng),在高等數(shù)學(xué)中應(yīng)用建模思想,促使學(xué)生對高數(shù)知識更充分的理解,學(xué)習(xí)的難度進一步降低,提升應(yīng)用能力和探索能力。當前,在高等教學(xué)過程中引入建模思想還存在一定的不足,需要高校高等數(shù)學(xué)老師進行深入的研究和探索的同時也需要學(xué)生很好的配合,以便于今后的教學(xué)中進一步提升教學(xué)的質(zhì)量。
參考文獻
[1]謝鳳艷,楊永艷。高等數(shù)學(xué)教學(xué)中融入數(shù)學(xué)建模思想[j]。齊齊哈爾師范高等??茖W(xué)校學(xué)報,20xx(02):119—120。
[2]李薇。在高等數(shù)學(xué)教學(xué)中融入數(shù)學(xué)建模思想的探索與實踐[j]。教育實踐與改革,20xx(04):177—178,189。
[3]楊四香。淺析高等數(shù)學(xué)教學(xué)中數(shù)學(xué)建模思想的滲透[j]。長春教育學(xué)院學(xué)報,20xx(30):89,95。
[4]劉合財。在高等數(shù)學(xué)教學(xué)中融入數(shù)學(xué)建模思想[j]。貴陽學(xué)院學(xué)報,20xx(03):63—65。
大學(xué)數(shù)學(xué)建模論文篇十六
摘要:在新課改以后,要求教師要在教學(xué)中重視學(xué)生的主體地位,提升學(xué)生學(xué)習(xí)興趣,培養(yǎng)他們的自主學(xué)習(xí)能力。本文從小學(xué)數(shù)學(xué)教學(xué)過程中數(shù)學(xué)建模入手,對如何將數(shù)學(xué)建模運用到學(xué)生解題過程中進行了分析。
關(guān)鍵詞:小學(xué)數(shù)學(xué);建模;運用
數(shù)學(xué)建模是指利用數(shù)學(xué)模型的形式去解決實際中遇到的問題,換句話說,就是利用數(shù)學(xué)思維、數(shù)學(xué)方法解決各種數(shù)學(xué)問題。數(shù)學(xué)建模是在新課程改革后出現(xiàn)的新概念,經(jīng)過一段時間的觀察我們可以發(fā)現(xiàn),數(shù)學(xué)建模的方法能夠有效的提高學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生的數(shù)學(xué)能力。這種方式能夠?qū)?fù)雜的數(shù)學(xué)問題利用簡單的方式找到解決方案,是提高小學(xué)數(shù)學(xué)課堂效率及課堂質(zhì)量的有效手段。小學(xué)數(shù)學(xué)是小學(xué)學(xué)習(xí)中的重要課程之一,也是培養(yǎng)學(xué)生數(shù)學(xué)思維的重要階段??梢哉f,小學(xué)數(shù)學(xué)的學(xué)習(xí)是學(xué)生學(xué)習(xí)數(shù)學(xué)的關(guān)鍵,對今后的學(xué)習(xí)起到極大的影響。因此,對于小學(xué)數(shù)學(xué)教師來說,不斷的完善教學(xué)手段,提高數(shù)學(xué)課堂質(zhì)量是教學(xué)工作中的重中之重。而數(shù)學(xué)建模就是為了解決數(shù)學(xué)在生活中的實際問題,能夠讓學(xué)生感受到數(shù)學(xué)本身的魅力,培養(yǎng)他們的數(shù)學(xué)思維,提高數(shù)學(xué)學(xué)習(xí)能力,從而讓小學(xué)數(shù)學(xué)教學(xué)質(zhì)量也得到大幅度的提升。小學(xué)數(shù)學(xué)與數(shù)學(xué)建模之間有著密不可分的作用,兩者相互聯(lián)系、相互促進,如何有效的將數(shù)學(xué)建模運用在小學(xué)數(shù)學(xué)教學(xué)過程中,是每個小學(xué)數(shù)學(xué)教師都值得思考的問題。
一、培養(yǎng)學(xué)生數(shù)學(xué)建模意識
數(shù)學(xué)建模是為了解決數(shù)學(xué)中遇到的問題,數(shù)學(xué)本身特別是小學(xué)數(shù)學(xué)也是一門較貼近學(xué)生生活的學(xué)科。因此在數(shù)學(xué)學(xué)習(xí)中,教師要首先培養(yǎng)學(xué)生的數(shù)學(xué)學(xué)習(xí)意識,讓他們感受到數(shù)學(xué)與生活的緊密聯(lián)系,然后再引導(dǎo)學(xué)生用數(shù)學(xué)建模去解決遇到的問題。在這一過程中,數(shù)學(xué)教師要注意以下兩個問題:(一)在教學(xué)中一定要貼近學(xué)生的生活,課堂中所提出的問題也必須要符合生活實際,讓學(xué)生對所學(xué)內(nèi)容感到親切。積極引導(dǎo)學(xué)生利用多種方式解決同一問題,尤其是利用數(shù)學(xué)建模的方式,以達到培養(yǎng)他們的數(shù)學(xué)思維以及想象能力的目的。(二)在學(xué)生進行數(shù)學(xué)建模的過程中要利用多鼓勵的方式調(diào)動他們對數(shù)學(xué)學(xué)習(xí)的積極性,讓他們在數(shù)學(xué)建模中獲得成就感,增加自信心,以此來提高學(xué)生在今后學(xué)習(xí)中使用數(shù)學(xué)建模方法的熱情。
二、提高學(xué)生想象力,用數(shù)學(xué)建模簡化問題
對于小學(xué)生來說,他們的思維與其他年齡段相比極其活躍,擁有了豐富的想象力。在數(shù)學(xué)學(xué)習(xí)中,如果能將想象力與數(shù)學(xué)學(xué)習(xí)結(jié)合在一起,一定會得到意想不到的效果。教師可以根據(jù)小學(xué)生這一特點,提高他們的想象力,然后再引導(dǎo)他們利用數(shù)學(xué)建模解決問題,讓題目簡單化。具體來說,就是在面對復(fù)雜的'數(shù)學(xué)問題時,教師可以先為學(xué)生創(chuàng)建教學(xué)情境,以這樣的方式提高學(xué)生的學(xué)習(xí)興趣,讓他們愿意主動去深入的研究遇到的題目。之后教師再去對他們進行引導(dǎo),讓他們能夠理解題目中所提問題的含義,并能夠運用他們的想象能力思考解決問題的方式。最后再引導(dǎo)他們進行數(shù)學(xué)建模,解決問題。這樣的方式充分的利用了學(xué)生的想象能力,將所需解決的問題簡單化。
三、選擇合適的題目作為建模案例
在數(shù)學(xué)建模過程中,教師也要時刻牢記題目應(yīng)該貼近學(xué)生的生活,符合實際,并且具有一定的趣味性,讓他們有興趣投入到數(shù)學(xué)建模的過程中去,然后再反復(fù)練習(xí)之后達到提高他們建模能力的目的。在選擇數(shù)學(xué)建模案例時教師主要應(yīng)該注意以下兩點:首先,教師在選擇建模案例時要盡量選擇比較典型的問題,能夠讓學(xué)生在學(xué)習(xí)了該題目以后掌握這一類的解題方法,達到小學(xué)數(shù)學(xué)教學(xué)的目的。所以,這就需要教師對題目進行深入的分析,看是否在擁有趣味性、真實性的同時符合教學(xué)要求。其次,題目最好能夠擁有可變性,教師能夠通過對題目中已知條件的改變讓學(xué)生進行不同方面的建模練習(xí),以此提高他們數(shù)學(xué)建模的能力。
四、引導(dǎo)學(xué)生主動進行數(shù)學(xué)建模
在教師經(jīng)過反復(fù)的教學(xué)后,學(xué)生都已經(jīng)擁有了基本的數(shù)學(xué)建模知識,了解了數(shù)學(xué)建模過程,并且能夠在解題過程中簡單的使用數(shù)學(xué)建模。此時,教師在教學(xué)中就可以引導(dǎo)學(xué)生利用數(shù)學(xué)建模解決數(shù)學(xué)題目了。引導(dǎo)學(xué)生用數(shù)學(xué)建模方法解決數(shù)學(xué)問題,就要在解題過程中多對學(xué)生進行這一方面的鼓勵,讓他們提高建模信心。在這一過程中,教師還可以嘗試讓學(xué)生之間利用合作的方式讓他們進行數(shù)學(xué)建模方法的探討,并在探討的過程中吸取他人的經(jīng)驗,提高自己數(shù)學(xué)建模水平,同時這樣的方式能夠讓數(shù)學(xué)建模深入到每一個學(xué)生的心中,逐漸影響每一個學(xué)生的解題思路,讓他們能夠在解題過程中熟練運用建模的方式,提高解題能力。數(shù)學(xué)建模的方法能夠有效的改變過去的傳統(tǒng)教學(xué)思路,增加學(xué)生對數(shù)學(xué)的學(xué)習(xí)興趣,提高數(shù)學(xué)解題能力。這種教學(xué)方法對于小學(xué)數(shù)學(xué)教師來說,值得不斷的探討研究,并應(yīng)用在教學(xué)中,以此提高數(shù)學(xué)課堂的教學(xué)效率和教學(xué)質(zhì)量。
大學(xué)數(shù)學(xué)建模論文篇十七
一、在高等數(shù)學(xué)教學(xué)中運用數(shù)學(xué)建模思想的重要性
(1)將教材中的數(shù)學(xué)知識運用現(xiàn)實生活中的對象進行還原,讓學(xué)生樹立數(shù)學(xué)知識來源于現(xiàn)實生活的思想觀念。
(2)數(shù)學(xué)建模思想要求學(xué)生能夠通過運用相應(yīng)的數(shù)學(xué)工具和數(shù)學(xué)語言,對現(xiàn)實生活中的特定對象的信息、數(shù)據(jù)或者現(xiàn)象進行簡化,對抽象的數(shù)學(xué)對象進行翻譯和歸納,將所求解的數(shù)學(xué)問題中的數(shù)量關(guān)系運用數(shù)學(xué)關(guān)系式、數(shù)學(xué)圖形或者數(shù)學(xué)表格等形式進行表達,這種方式有利于培養(yǎng)、鍛煉學(xué)生的數(shù)學(xué)表達能力。
(3)在運用數(shù)學(xué)建模思想獲得實際的答案后,需要運用現(xiàn)實生活對象的相關(guān)信息對其進行檢驗,對計算結(jié)果的準確性進行檢驗和確定。該流程能夠培養(yǎng)學(xué)生運用合理的數(shù)學(xué)方法對數(shù)學(xué)問題進行主動性、客觀性以及辯證性的分析,最后得到最有效的解決問題的方法。
二、高等數(shù)學(xué)教學(xué)中數(shù)學(xué)建模能力的培養(yǎng)策略
1.教師要具備數(shù)學(xué)建模思想意識
在對高等數(shù)學(xué)進行教學(xué)的過程中,培養(yǎng)學(xué)生運用數(shù)學(xué)建模思想,首先教師要具備足夠的數(shù)學(xué)建模意識。教師在進行高等數(shù)學(xué)教學(xué)之前,首先,要對所講數(shù)學(xué)內(nèi)容的相關(guān)實例進行查找,有意識的實現(xiàn)高等數(shù)學(xué)內(nèi)容和各個不同領(lǐng)域之間的聯(lián)系;其次,教師要實現(xiàn)高等數(shù)學(xué)教學(xué)內(nèi)容與教學(xué)要求的轉(zhuǎn)變,及時的更新自身的教學(xué)觀念和教學(xué)思想。例如,教師細心發(fā)現(xiàn)現(xiàn)實生活中的小事,然后運用這些小事建造相應(yīng)的數(shù)學(xué)模型,這樣不僅有利于營造活躍的課堂環(huán)境,而且還有利于激發(fā)學(xué)生的學(xué)習(xí)興趣。
2.實現(xiàn)數(shù)學(xué)建模思想和高等數(shù)學(xué)教材的互相結(jié)合
教師在講解高等數(shù)學(xué)時,對其中能夠引入數(shù)學(xué)模型的章節(jié),要構(gòu)建相關(guān)的數(shù)學(xué)模型,對其提出相應(yīng)的問題,進行分析和處理。在該基礎(chǔ)上,提出假設(shè),實現(xiàn)數(shù)學(xué)模型的完善。教師在高等數(shù)學(xué)的教學(xué)中融入建模意識,讓學(xué)生潛移默化的感受到建模思想在高等數(shù)學(xué)教學(xué)中應(yīng)用的效果。這樣有利于提高學(xué)生數(shù)學(xué)知識的運用能力和學(xué)習(xí)興趣。例如,在進行教學(xué)時,針對學(xué)生所學(xué)專業(yè)的特點,選擇科學(xué)、合理的數(shù)學(xué)案例,運用數(shù)學(xué)建模思想對其進行相應(yīng)的加工后,作為高等數(shù)學(xué)講授的應(yīng)用例題。這樣不僅能夠讓學(xué)生發(fā)現(xiàn)數(shù)學(xué)發(fā)揮的巨大作用,而且還能夠有效的提高學(xué)生的數(shù)學(xué)解題水平。另外,數(shù)學(xué)課結(jié)束后,轉(zhuǎn)變以往的作業(yè)模式,給學(xué)生布置一些具有專業(yè)性、數(shù)學(xué)性的習(xí)題,讓學(xué)生充分利用網(wǎng)絡(luò)資源,自主建立數(shù)學(xué)模型,有效的解決問題。
3.理清高等數(shù)學(xué)名詞的概念
教材中,導(dǎo)數(shù)和定積分是其中的比較重要的概念,因此,教師在進行教學(xué)時,要引導(dǎo)學(xué)生理清這兩個的概念。比如導(dǎo)數(shù)概念是由幾何曲線中的切線斜率引導(dǎo)出來的,定積分的概念是由局部取近似值引出的,將常量轉(zhuǎn)變?yōu)樽兞俊?BR> 4.加強數(shù)學(xué)應(yīng)用問題的培養(yǎng)
高等數(shù)學(xué)中,主要有以下幾種應(yīng)用問題:
(1)最值問題
在高等數(shù)學(xué)教材中,最值問題是導(dǎo)數(shù)應(yīng)用中最重要的問題。教師在教學(xué)過程中通過對最值問題的解題步驟進行歸納,能夠有效地將數(shù)學(xué)建模的基本思想進行反映。因此,在對這部分內(nèi)容進行教學(xué)時,要增加例題,加大學(xué)生的練習(xí),開拓學(xué)生的思維,讓學(xué)生熟練掌握最值問題的解決辦法。
(2)微分方程
在微分方程的教學(xué)中運用數(shù)學(xué)建模思想,能夠有效地解決實際問題。微分方程所構(gòu)建的數(shù)學(xué)模型不具有通用的規(guī)則。首先,要確定方程中的變量,對變量和變化率、微元之間的關(guān)系進行分析,然后運用相關(guān)的物理理論、化學(xué)理論或者工程學(xué)理論對其進行實驗,運用所得出的定理、規(guī)律來構(gòu)建微分方程;其次,對其進行求解和驗證結(jié)果。微分方程的概念主要從實際引入,堅持由淺入深的原則,來對現(xiàn)實問題進行解決。例如,在對學(xué)生講解外有引力定律時,讓學(xué)生對萬有引力的提出、猜想進行探究,了解到在其發(fā)展的整個過程中,數(shù)學(xué)發(fā)揮著十分重要的作用。
(3)定積分
微元法思想用途比較廣泛,其主要以定積分概念為基礎(chǔ),在數(shù)學(xué)中滲入定積分概念,讓學(xué)生對定積分概念的意義進行分析和了解,這樣有利于在對實際問題進行解決時,樹立“欲積先分”意識,意識到運用定積分是解決微元實際問題的重要方法。教師在布置作業(yè)題時,要增加該問題的實例。
三、結(jié)語
總之,在高等數(shù)學(xué)中對學(xué)生的數(shù)學(xué)建模能力進行培養(yǎng),讓學(xué)生在解題的過程中運用數(shù)學(xué)建模思想和數(shù)學(xué)建模方法,能夠有效地激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生的分析、解決問題的能力以及提高學(xué)生數(shù)學(xué)知識的運用能力。
大學(xué)數(shù)學(xué)建模論文篇十八
1培養(yǎng)創(chuàng)造性思維學(xué)生在學(xué)習(xí)數(shù)學(xué)知識的過程中,雖然其接受的知識和經(jīng)驗是前人研究和發(fā)現(xiàn)的成果,但對于學(xué)生來說,其處于知識再發(fā)現(xiàn)的地位。教師向?qū)W生教授數(shù)學(xué)發(fā)現(xiàn)的思維和方法,換言之就是重點引導(dǎo)學(xué)生重溫數(shù)學(xué)經(jīng)驗和知識的研究道路,進而保證學(xué)生的再發(fā)現(xiàn)能夠順利實現(xiàn)。這也是培養(yǎng)學(xué)生創(chuàng)新思維和能力的一個重要途徑。利用數(shù)學(xué)建模能夠有效地彌補數(shù)學(xué)教學(xué)過程中存在的缺陷,使學(xué)生充分體會到數(shù)學(xué)發(fā)現(xiàn)過程中的樂趣,進而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情和積極性,培養(yǎng)其創(chuàng)造性思維。
2選擇經(jīng)典案例開展數(shù)學(xué)建模討論、分析教師在實際的數(shù)學(xué)課堂教學(xué)中,可選擇一些社會實際案例為講授分析的主要對象,如實際生活和高科技的熱點話題。教師可對此類實例進行必要的分析與講解,在此過程中,積極引導(dǎo)學(xué)生獨立鉆研和研究問題,并培養(yǎng)學(xué)生主動查閱相關(guān)資料、自主討論的能力。與此同時,教師還要及時與學(xué)生進行交流,答疑釋難,并要求學(xué)生在自己實際能力的基礎(chǔ)上構(gòu)建恰當?shù)哪P?,由易到難,循序漸進。除此之外,還要使學(xué)生充分發(fā)揮其主觀能動性,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,思考問題以及處理問題的能力。以微積分方程為例,教師在課堂教學(xué)中,可以“經(jīng)濟增長”作為主要案例,向?qū)W生系統(tǒng)地闡述微積分方程的實際應(yīng)用過程,進一步加深學(xué)生對知識的理解、掌握和應(yīng)用。
3同時開設(shè)數(shù)學(xué)建模與高等數(shù)學(xué)課程在職業(yè)院校數(shù)學(xué)教學(xué)過程中,同時開設(shè)數(shù)學(xué)建模與高等數(shù)學(xué)課程,能夠有效提高學(xué)生對基礎(chǔ)知識的理解能力和掌握程度,促進學(xué)生實踐動手能力的培養(yǎng)。在數(shù)學(xué)建模課程的開設(shè)中,應(yīng)該在教師的指導(dǎo)下,充分利用教學(xué)軟件,引導(dǎo)學(xué)生動手實驗和計算,加深學(xué)生對知識的掌握。在此過程中,使學(xué)生充分了解到運用數(shù)學(xué)理論和方法去分析和解決實際問題的全過程,進一步提高學(xué)生的積極性和思維意識能力,使他們意識到數(shù)學(xué)在實際生活應(yīng)用中的關(guān)鍵作用。同時,促使學(xué)生將計算機技術(shù)融入數(shù)學(xué)學(xué)習(xí)中去,以現(xiàn)代化的高新科技為媒介,著手實際社會問題的解決。
4創(chuàng)新教學(xué)模式根據(jù)職業(yè)院校學(xué)生學(xué)習(xí)的特點和知識水平,重點提高學(xué)生運用數(shù)學(xué)的技能和思維方式來處理實際生活和專業(yè)問題的能力。要想從根本上培養(yǎng)學(xué)生的創(chuàng)新能力,一定要改變原來單一固定的教學(xué)模式,嘗試和探索基于學(xué)生實際情況的教學(xué)措施和方式。經(jīng)過長期的實踐經(jīng)驗研究,討論式教學(xué)和雙向教學(xué)方式對培養(yǎng)學(xué)生的能力非常有效。這兩種教學(xué)模式能夠加深學(xué)生參與課堂教學(xué)的程度,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的'主動性,最終達到提高教學(xué)效率的目的。所以,數(shù)學(xué)建??梢砸跃唧w問題為媒介,采用小組集體討論解決問題的方法,培養(yǎng)學(xué)生的創(chuàng)新能力和意識,進一步加快職業(yè)技術(shù)院校數(shù)學(xué)教學(xué)模式的創(chuàng)新。
5組建數(shù)學(xué)建模團隊在實際的數(shù)學(xué)教學(xué)中,教師可引導(dǎo)學(xué)生構(gòu)建數(shù)學(xué)建模團隊。在教師對數(shù)學(xué)建模的深入分析為基礎(chǔ),充分調(diào)動學(xué)生參與問題解決的主動性,師生積極互動,最終完成數(shù)學(xué)建模。如此一來,不僅能夠有效培養(yǎng)學(xué)生積極進取的良好學(xué)習(xí)態(tài)度,而且還能夠促進學(xué)生數(shù)學(xué)邏輯思維能力的提高。
6搭建校內(nèi)數(shù)學(xué)建模網(wǎng)絡(luò)平臺在職業(yè)技術(shù)院校中構(gòu)建校內(nèi)數(shù)學(xué)建模網(wǎng)絡(luò)平臺,積極宣傳與數(shù)學(xué)建模有關(guān)的知識經(jīng)驗,為學(xué)生主動獲取數(shù)學(xué)建模信息提供各種數(shù)據(jù)資料。數(shù)學(xué)建模網(wǎng)絡(luò)平臺的搭建,能夠有效促進教師和學(xué)生,學(xué)生與學(xué)生之間的交流與溝通,大大縮短學(xué)生和數(shù)學(xué)建模之間的距離,進而促進學(xué)生自主學(xué)習(xí)能力的提高和培養(yǎng)。
總而言之,數(shù)學(xué)建模思想是學(xué)生將基礎(chǔ)理論知識與實際解決問題的方法相結(jié)合的最佳途徑。將數(shù)學(xué)建模融入職業(yè)院校數(shù)學(xué)中,全面培養(yǎng)學(xué)生的創(chuàng)新意識和數(shù)學(xué)應(yīng)用能力,進一步使數(shù)學(xué)為達成學(xué)院的教學(xué)和培養(yǎng)計劃奠定基礎(chǔ),為培養(yǎng)更多更優(yōu)秀的現(xiàn)代化社會人才服務(wù)。

