教案的編寫需要綜合考慮教學理論和教學實踐。編寫教案時需要根據(jù)學生的學習需求和能力,精心設計教學活動。以下是小編為大家收集的教案范文,僅供參考,希望能給大家提供一些思路和借鑒。大家可以借鑒其中的教學思路和教學方法,根據(jù)自己的實際情況進行調(diào)整和改進。記得要靈活運用教案中的內(nèi)容,結合自己的教學經(jīng)驗和學生的特點,使教學更加生動有趣,提高學習效果。祝大家教案編寫順利,教學工作更上一層樓!
高三數(shù)學專題課教案篇一
數(shù)學是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學科。因此,在教學中,不僅要使學生“知其然”而且要使學生“知其所以然”。所以在學生為主體,教師為主導的原則下,要充分揭示獲取知識和方法的思維過程。因此本節(jié)課我以建構主義的“創(chuàng)設問題情境——提出數(shù)學問題——嘗試解決問題——驗證解決方法”為主,主要采用觀察、啟發(fā)、類比、引導、探索相結合的教學方法。在教學手段上,則采用多媒體輔助教學,將抽象問題形象化,使教學目標體現(xiàn)的更加完美。
二、教材分析
三角函數(shù)的誘導公式是普通高中課程標準實驗教科書(人教a版)數(shù)學必修四,第一章第三節(jié)的內(nèi)容,其主要內(nèi)容是三角函數(shù)誘導公式中的公式(二)至公式(六).本節(jié)是第一課時,教學內(nèi)容為公式(二)、(三)、(四).教材要求通過學生在已經(jīng)掌握的任意角的三角函數(shù)的定義和誘導公式(一)的基礎上,利用對稱思想發(fā)現(xiàn)任意角與、、終邊的對稱關系,發(fā)現(xiàn)他們與單位圓的交點坐標之間關系,進而發(fā)現(xiàn)他們的三角函數(shù)值的關系,即發(fā)現(xiàn)、掌握、應用三角函數(shù)的誘導公式公式(二)、(三)、(四).同時教材滲透了轉(zhuǎn)化與化歸等數(shù)學思想方法,為培養(yǎng)學生養(yǎng)成良好的學習習慣提出了要求.為此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位.
三、學情分析
本節(jié)課的授課對象是本校高一(1)班全體同學,本班學生水平處于中等偏下,但本班學生具有善于動手的良好學習習慣,所以采用發(fā)現(xiàn)的教學方法應該能輕松的完成本節(jié)課的教學內(nèi)容.
四、教學目標
(1).基礎知識目標:理解誘導公式的發(fā)現(xiàn)過程,掌握正弦、余弦、正切的誘導公式;
(4).個性品質(zhì)目標:通過誘導公式的學習和應用,感受事物之間的普通聯(lián)系規(guī)律,運用化歸等數(shù)學思想方法,揭示事物的本質(zhì)屬性,培養(yǎng)學生的唯物史觀.
五、教學重點和難點
1.教學重點
理解并掌握誘導公式.
2.教學難點
正確運用誘導公式,求三角函數(shù)值,化簡三角函數(shù)式.
六、教法學法以及預期效果分析
“授人以魚不如授之以魚”,作為一名老師,我們不僅要傳授給學生數(shù)學知識,更重要的是傳授給學生數(shù)學思想方法,如何實現(xiàn)這一目的,要求我們每一位教者苦心鉆研、認真探究.下面我從教法、學法、預期效果等三個方面做如下分析.
1.教法
數(shù)學教學是數(shù)學思維活動的教學,而不僅僅是數(shù)學活動的結果,數(shù)學學習的目的不僅僅是為了獲得數(shù)學知識,更主要作用是為了訓練人的思維技能,提高人的思維品質(zhì).
在本節(jié)課的教學過程中,本人以學生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結合等數(shù)學思想方法,采用提出問題、啟發(fā)引導、共同探究、綜合應用等教學模式,還給學生“時間”、“空間”,由易到難,由特殊到一般,盡力營造輕松的學習環(huán)境,讓學生體味學習的快樂和成功的喜悅.
2.學法
“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學習方法的人”,很多課堂教學常常以高起點、大容量、快推進的做法,以便教給學生更多的知識點,卻忽略了學生接受知識需要時間消化,進而泯滅了學生學習的興趣與熱情.如何能讓學生程度的消化知識,提高學習熱情是教者必須思考的問題.
在本節(jié)課的教學過程中,本人引導學生的學法為思考問題、共同探討、解決問題簡單應用、重現(xiàn)探索過程、練習鞏固。讓學生參與探索的全部過程,讓學生在獲取新知識及解決問題的方法后,合作交流、共同探索,使之由被動學習轉(zhuǎn)化為主動的自主學習.
3.預期效果
本節(jié)課預期讓學生能正確理解誘導公式的發(fā)現(xiàn)、證明過程,掌握誘導公式,并能熟練應用誘導公式了解一些簡單的化簡問題.
高三數(shù)學專題課教案篇二
本課文擬用一個教學時完成。如有可能,建議語、政、歷三科老師能集中一起備課,從各自學科的特點分析本課文,以講座的形式向同學們講授,亦可從文科綜合的角度,不光是從語文的角度,可以揉進哲學、歷史等學科知識,考查學生對本篇課文的理解。
教學目標
知識傳授目標:
1.初步了解孔孟思想觀點的異同點;
2.掌握本文中出現(xiàn)的詞和成語;
3.背誦孔孟的名言警句。
能力培養(yǎng)目標:
通過課文學習,培養(yǎng)學生從事物發(fā)生,問題產(chǎn)生的時代背景中去分析原因的能力。
情意目標:
為孔孟兩位偉大的哲人自豪,為祖國的悠久歷史和深厚文化積淀驕傲。
預習要求:
1.認真閱讀課文,搞懂課文中的注釋;
2.把課文中談及孔孟兩人不同思想觀點的語句畫出來。
教學過程
一、導入:
“大成至圣老師”大家都知道指的是孔子,在儒家學派中,地位僅次于他的就是孟子了,所以孟子被稱為“亞圣”。這兩位人物,常常是孔孟并舉,孔孟之道并提,被視為儒學的代表人物,孟子被認為完全繼承了孔子的學說和觀點。他們的學術觀點,生活理念被認為毫無二致。事實是這樣的嗎?請看課文—孔孟。引出板書課題。
二、簡介作者
(投影以下文字資料,并配以朗讀。也可不要配音朗讀。課堂教學時由教師或?qū)W生讀)
孔子:(前551—前479)春秋末期思想家、政治家、教育家。名丘,字仲尼。魯國陬邑(今山東曲阜東南)人。少“貪且賤”及長,做過“委吏”(會計)和“乘田”(管畜牧)等事。晚年致力于教育,整理《詩》、《書》等古代文獻?,F(xiàn)存《論語》一書,記有孔子的談話以及孔子與門人的問答。
孟子:(約前372—前289)戰(zhàn)國時思想家、政治家、教育家。名軻,字子輿。鄒(今山東鄒縣東南)人。受業(yè)于子思的門人。一度任齊宣王客卿,因主張不被采納,退而與弟子萬章等著書立說。他被認為是孔子學說的繼承人。
三、研習課文
1.讀第一自然段,思考:從哪里可以看出人們總認為孔孟是一體的?(形影相隨,孔稱“至圣”,孟稱“亞圣”,孔有《論語》,孟有《孟子》,孔主張“成仁”,孟主張“取義”—總之,從兩人“尊號”、著述、主張方面,都印證了這一點—形影相隨,孟隨孔,有孔則有孟。)(板書:形影相隨)
2.那么,真的是如影相隨,孔孟一體嗎?
(由此一問,導入第二、三、四自然段的閱讀)
1.請同學迅速閱讀這三個自然段,教師要分以下幾個方面—生活、人性、人際。學生按課文內(nèi)容找出答案。教師將答案以板書形式列出。
((1)相去兩百年,中國局勢,已起了很大變化;(2)此一時,彼一時)
2.孔子時代社會特點是什么?(雖有戰(zhàn)事,但不足以造成全社會的動蕩;禮的約束力雖不太大了,但仍有影響;孔子認為“克已復禮”可行)——板書:社會相對寧靜。
3.孟子時代社會特點是什么?(時代動亂,國君草菅民命,孟子認為,恢復過去是不可能了,要改弦更張)板書——社會十分動亂。
高三數(shù)學專題課教案篇三
一、教學目標
1.把握菱形的判定.
2.通過運用菱形知識解決具體問題,提高分析能力和觀察能力.
3.通過教具的演示培養(yǎng)學生的學習愛好.
4.根據(jù)平行四邊形與矩形、菱形的從屬關系,通過畫圖向?qū)W生滲透集合思想.
二、教法設計
觀察分析討論相結合的方法
三、重點·難點·疑點及解決辦法
1.教學重點:菱形的判定方法.
2.教學難點:菱形判定方法的綜合應用.
四、課時安排
1課時
五、教具學具預備
教具(做一個短邊可以運動的平行四邊形)、投影儀和膠片,常用畫圖工具
六、師生互動活動設計
教師演示教具、創(chuàng)設情境,引入新課,學生觀察討論;學生分析論證方法,教師適時點撥
七、教學步驟
復習提問
1.敘述菱形的定義與性質(zhì).
2.菱形兩鄰角的比為1:2,較長對角線為,則對角線交點到一邊距離為________.
引入新課
師問:要判定一個四邊形是不是菱形最基本的判定方法是什么方法?
生答:定義法.
此外還有別的兩種判定方法,下面就來學習這兩種方法.
講解新課
菱形判定定理1:四邊都相等的四邊形是菱形.
菱形判定定理2:對角錢互相垂直的'平行四邊形是菱形.圖1
分析判定1:首先證它是平行四邊形,再證一組鄰邊相等,依定義即知為菱形.
分析判定2:
師問:本定理有幾個條件?
生答:兩個.
師問:哪兩個?
生答:(1)是平行四邊形(2)兩條對角線互相垂直.
師問:再需要什么條件可證該平行四邊形是菱形?
生答:再證兩鄰邊相等.
(由學生口述證實)
證實時讓學生注重線段垂直平分線在這里的應用,
師問:對角線互相垂直的四邊形是菱形嗎?為什么?
可畫出圖,顯然對角線,但都不是菱形.
菱形常用的判定方法歸納為(學生討論歸納后,由教師板書):
注重:(2)與(4)的題設也是從四邊形出發(fā),和矩形一樣它們的題沒條件都包含有平行四邊形的判定條件.
例4已知:的對角錢的垂直平分線與邊、分別交于、,如圖.
求證:四邊形是菱形(按教材講解).
總結、擴展
1.小結:
(1)歸納判定菱形的四種常用方法.
(2)說明矩形、菱形之間的區(qū)別與聯(lián)系.
2.思考題:已知:如圖4△中,,平分,,,交于.
求證:四邊形為菱形.
八、布置作業(yè)
教材p159中9、10、11、13(2)
九、板書設計
十、隨堂練習
教材p153中1、2、3
高三數(shù)學專題課教案篇四
教學設計示例
一、素質(zhì)教育目標
(一)知識教學點
1.了解直線的概念.
2.掌握直線的表示方法,直線的公理和相交直線的概念.
3.使學生熟悉簡單的幾何語句,并能畫出正確的圖形表示幾何語句.
(二)能力訓練點
通過一些幾何語句(如:某點在直線上,即直線“經(jīng)過”這點;過兩點有且只有一條直線,“有且只有”的雙重含義,即存在性和惟一性)的教學,訓練學生準確地使用幾何語言,并能畫出正確的幾何圖形.學生通過“說”與“畫”的嘗試實踐,體驗領悟到“言”與“圖”的辯證統(tǒng)一.通過教學培養(yǎng)學生嚴謹?shù)膶W習作風、嚴密的思考方法及邏輯思維能力,這也是學習好數(shù)學必備的基本素質(zhì).
(三)德育滲透點
通過直線公理的講解,舉出實例說明它的應用.使學生體驗到從實踐到理論,在理論指導下再進行實踐的認識過程,潛移默化地影響學生,形成其理論聯(lián)系實際的思想方法,激勵學生要勤于動腦、敢于實踐.
(四)美育滲透點
通過對模型的觀察,使學生體會物體的對稱美,通過學生自己動手畫直線體會直線美,逐步培養(yǎng)學生的幾何美,激發(fā)學生的學習興趣.
二、學法引導
1.教師教法:引導學生發(fā)現(xiàn)知識,并嘗試指導與閱讀相結合.
2.學生學法:自主式學習方法(學生自己閱讀書本知識,總結學習成果)和小組討論式學習方法.
三、重點、難點、疑點及解決辦法
(-)重點
直線的表示方法,直線的公理及相交線.
(二)難點
兩直線相交為什么只有一個交點的理解,直線公理的理解.
(三)疑點
兩直線相交為什么只有一個交點?
(四)解決辦法
通過實驗法解決直線公理的理解;通過逆向思維解決兩直線相交為什么只有一個交點的疑點.
四、課時安排
1課時
五、教具學具準備
投影儀或電腦、自制膠片(軟盤)、三角板、木條、鐵釘.
六、師生互動活動設計
七、教學步驟
(一)明確目標
通過知識點教學,使學生理解和掌握直線及其性質(zhì),通過畫圖及對幾何語言的認識培養(yǎng)學生圖形結合的數(shù)學思維方式.
(二)整體感知
以情境教學為主,教師引導和指導,學生積極參與,逐步領悟,教師概括總結和學生自我學習評價相結合,提高課堂教學效益,充分體現(xiàn)以學為主的原則.
(三)教學過程
創(chuàng)設情境,引出課題
問題:投影儀顯示本章開始的正十二面體的模型,學生觀察這一復雜圖形中有哪些是我們認識的簡單圖形?(學生會很快找出線段和角.)
演示:投影從正十二面體的模型中分離出某一部分,即線段、角.
引出課題:要掌握比較復雜的圖形知識,需要從較簡單的圖形學起.本章我們就學習最簡單的圖形知識,即線段和角的知識,也就是我們從復雜圖形中分離出來的兩個圖形.在這個基礎上,以后我們再學習相交線、三角形、四邊形等等.
?板書】第一章線段角一、直線射線線段1.1直線
探究新知
1.直線的概念
?教法說明】學生有小學的基礎,會很快說出一些實際例子,如:黑板邊緣、書本邊緣、拉直的線、筆直的公路等等.教師要調(diào)動學生學習的積極性,引導學生展開想像的翅膀,充分發(fā)揮他們的想像力.
演示:學生發(fā)言的同時,教師利用電腦顯示一些實例,如:黑板、書本、筆直公路等等.然后變換抽象成一直線.
師:我們在代數(shù)中,常用一條特殊的直線,你知道嗎?
(學生會回想起數(shù)軸的概念,規(guī)定了原點、正方向和單位長度的直線.)
師小結:同學們回答得都很好,幾何中的“直線”是向兩方無限延伸的,我們可以用直尺畫直線,但畫出的只是直線的一部分.
2.直線的表示方法
學生活動:學生閱讀課本第9頁第四自然段,總結直線的表示方法.
?教法說明】對于直線的表示方法很簡單,教師直接告訴學生,學生也會理解.但記憶不一定深,這種采取讓學生自己閱讀的方法,一是培養(yǎng)學生看書的習慣;二是培養(yǎng)學生的閱讀能力,使學生愛看書且會看書.自己學到的知識要比教師直接告訴的記憶深刻得多.
由學生小結,得出直線的兩種表示方法:
(1)用直線上的兩個大寫字母表示.如圖:記作直線.
(2)用一個小寫字母表示.如圖:記作直線.
?教法說明】用字母表示圖形,小學沒有介紹,現(xiàn)在學生初步接觸,所以教師這里要補充說明點的表示方法.同時指出:以后學習中,常用字母表示幾何圖形,便于說明與研究.
3.點和直線的位置
師生共同總結:
(1)點在直線上,如圖,敘述方法:點在直線上,或直線經(jīng)過點.
(2)點在直線外,如圖,敘述方法:點在直線外,或直線不經(jīng)過點.
?教法說明】在點和直線的位置關系中,要注意幾何語言的訓練.點在直線上和點在直線外,各有兩種不同的敘述方法,要反復練習,以培養(yǎng)他們幾何語言的表達能力.
4.直線的公理
實驗嘗試:用一個鐵釘把木條釘在小黑板上,讓學生轉(zhuǎn)動木條,并觀察現(xiàn)象.教師在木條上加上一個釘子,再讓學生轉(zhuǎn)動,并觀察現(xiàn)象.
提出問題:以上實驗你認為說明了什么道理?
學生活動:學生分組討論,相互糾正或補充.
師小結:經(jīng)過一點有無數(shù)條直線,經(jīng)過兩點有一條直線,并且只有一條直線.同時板書公理內(nèi)容.
[板書]公理:經(jīng)過兩點有一條直線,并且只有一條直線.簡言之,過兩點有且只有一條直線.
體驗證實:教師小結后讓學生在練習本上分別經(jīng)過一點和兩點畫直線.
?教法說明】(1)學生通過實驗,對直線公理有認識,但欲言之而不能,或雖能表達出意思但不嚴密.此時離不開教師的引導,教師一定要強調(diào)幾何語言的嚴密性和準確性.向?qū)W生們講清“有且只有”的兩層含義.第一個“有”說明的是存在性,過兩點有直線存在.“只有”說明的是惟一性,經(jīng)過兩點的直線不會多,只有一條.如果把直線公理說成是:“經(jīng)過兩點有一條直線”就是錯誤的.了.(2)公理得出后,讓學生再次動手驗證,使學生體會到公理的科學性,培養(yǎng)學生對待事物的科學態(tài)度,也便于學生對公理的記憶.(3)通過教師指導下的實驗活動,激發(fā)了學生的學習興趣,培養(yǎng)了學生勇于探索的精神,提高獨立分析問題解決問題的能力.
?教法說明】通過公理在日常生活中的應用舉例,使學生明白科學來源于生活并服務于生活的道理.只有現(xiàn)在好好學習,積累本領,長大后才能更好地報效祖國.并體會從實踐到理論,再回到實踐的認識過程.
5.相交線
師:根據(jù)直線公理,過兩點有幾條直線?
(學生會答出:有且只有一條.)
師:反過來,兩條不同的直線可能同時經(jīng)過兩個點嗎?
(學生容易答出:不能)
[板書]如果兩條直線有一個交點,我們叫這兩條直線相交.這個公共點叫做它們的交點,這兩條直線叫相交直線.
如圖,直線和直線相交于點,點是直線和直線的交點.
?教法說明】兩直線相交為什么只有一個交點,是本節(jié)課的難點.從公理入手提出問題,再反過來考慮,這種逆向思維的方法使學生易于理解,突破難點,問題得以解決.
反饋練習
(出示投影1)
1.問答題
(1)經(jīng)過一點能否畫直線?能畫幾條?
(2)經(jīng)過兩點能否畫直線?能畫幾條?
(3)只用直線上的一個點來表示直線是否可以?用直線上的兩個點表示直線呢?
2.讀出下列語句,并按照這些語句畫圖
(1)直線經(jīng)過點.
(2)點在直線外.
(3)經(jīng)過點的三條直線.
(4)直線與相交于點.
(5)直線經(jīng)過、、三點,點在點與點之間.
(6)是直線外一點,過點有一直線與直線相交于點.
?教法說明】問答題的目的是進一步理解鞏固直線公理,作圖的目的是訓練學生的“言”與“圖”的轉(zhuǎn)化能力.
(四)總結、擴展
以提問的形式,歸納出以下知識點:
八、布置作業(yè)
預習下節(jié)內(nèi)容
補充:按照下面的圖形說出幾何語句.
(1)(2)
(3)(4)
(5)
附答案
補充:(1)直線過(點在直線上).
(2)點在直線外(直線不過點).
(3)直線、相交于點.
(4)直線過、、三點.
(5)直線、、、都過點.
思考題:課本第16頁b組的第2題.
高三數(shù)學專題課教案篇五
理解數(shù)列的概念,掌握數(shù)列的運用
理解數(shù)列的'概念,掌握數(shù)列的運用
【知識點精講】
1、數(shù)列:按照一定次序排列的一列數(shù)(與順序有關)
2、通項公式:數(shù)列的第n項an與n之間的函數(shù)關系用一個公式來表示an=f(n)。
(通項公式不)
3、數(shù)列的表示:
(1)列舉法:如1,3,5,7,9……;
(2)圖解法:由(n,an)點構成;
(3)解析法:用通項公式表示,如an=2n+1
5、任意數(shù)列{an}的前n項和的性質(zhì)
高三數(shù)學專題課教案篇六
復習:
1、(課本p28a13)填空:
(1)有三張參觀卷,要在5人中確定3人去參觀,不同方法的種數(shù)是;
(2)要從5件不同的禮物中選出3件分送3為同學,不同方法的種數(shù)是;
(3)5名工人要在3天中各自選擇1天休息,不同方法的種數(shù)是;
探究新知(復習教材p14~p25,找出疑惑之處)
問題1:判斷下列問題哪個是排列問題,哪個是組合問題:
(1)從4個風景點中選出2個安排游覽,有多少種不同的方法?
(2)從4個風景點中選出2個,并確定這2個風景點的游覽順序,有多少種不同的方法?
應用示例
例2、7位同學站成一排,分別求出符合下列要求的不同排法的種數(shù)、
(1)甲站在中間;
(2)甲、乙必須相鄰;
(3)甲在乙的左邊(但不一定相鄰);
(4)甲、乙必須相鄰,且丙不能站在排頭和排尾;
(5)甲、乙、丙相鄰;
(6)甲、乙不相鄰;
(7)甲、乙、丙兩兩不相鄰。
反饋練習
當堂檢測
1、某班新年聯(lián)歡會原定的5個節(jié)目已排成節(jié)目單,開演前又增加了兩個新節(jié)目、如果將這兩個節(jié)目插入原節(jié)目單中,那么不同插法的種數(shù)為()
a、42b、30c、20d、12
課后作業(yè)
高三數(shù)學專題課教案篇七
教學目標:
1、知識與技能:
1)了解導數(shù)概念的實際背景;
2)理解導數(shù)的概念、掌握簡單函數(shù)導數(shù)符號表示和基本導數(shù)求解方法;
3)理解導數(shù)的幾何意義;
4)能進行簡單的導數(shù)四則運算。
2、過程與方法:
先理解導數(shù)概念背景,培養(yǎng)觀察問題的能力;再掌握定義和幾何意義,培養(yǎng)轉(zhuǎn)化問題的能力;最后求切線方程及運算,培養(yǎng)解決問題的能力。
3、情態(tài)及價值觀;
讓學生感受數(shù)學與生活之間的聯(lián)系,體會數(shù)學的美,激發(fā)學生學習興趣與主動性。
教學重點:
1、導數(shù)的求解方法和過程;
2、導數(shù)公式及運算法則的熟練運用。
教學難點:
1、導數(shù)概念及其幾何意義的理解;
2、數(shù)形結合思想的靈活運用。
教學課型:復習課(高三一輪)
教學課時:約1課時
高三數(shù)學專題課教案篇八
(一)導入
引出數(shù)形結合思想方法,強調(diào)其含義和重要性,告訴學生,本節(jié)課將利用數(shù)形結合方法來研究,會使學習變得輕松有趣。
采用這樣的引入方法,目的是打消學生對函數(shù)學習的畏難情緒,引起學生注意,也激起學生好奇和興趣。
(二)新知探索主要環(huán)節(jié),分為兩個部分
教學過程如下:
第一部分————師生共同研究得出正弦函數(shù)的性質(zhì)
1.定義域、值域2.周期性
3.單調(diào)性(重難點內(nèi)容)
為了突出重點、克服難點,采用以下手段和方法:
(1)利用多媒體動態(tài)演示函數(shù)性質(zhì),充分體現(xiàn)數(shù)形結合的重要作用;
(2)以層層深入,環(huán)環(huán)相扣的課堂提問,啟發(fā)學生思維,反饋課堂信息,使問題成為探索新知的線索和動力,隨著問題的解決,學生的積極性將被調(diào)動起來。
(3)單調(diào)區(qū)間的探索過程是:
先在靠近原點的一個單調(diào)周期內(nèi)找出正弦函數(shù)的一個增區(qū)間,由此表示出所有的增區(qū)間,體現(xiàn)從特殊到一般的知識認識過程。
**教師結合圖象幫助學生理解并強調(diào)“距離”(“長度”)是周期的多少倍
為什么要這樣強調(diào)呢?
因為這是對知識的一種意義建構,有助于以后理解記憶正弦型函數(shù)的相關性質(zhì)。
4.對稱性
設計意圖:
(1)因為奇偶性是特殊的對稱性,掌握了對稱性,容易得出奇偶性,所以著重講清對稱性。體現(xiàn)了從一般到特殊的知識再現(xiàn)過程。
(2)從正弦函數(shù)的對稱性看到了數(shù)學的對稱之美、和諧之美,體現(xiàn)了數(shù)學的審美功能。
5.最值點和零值點
有了對稱性的理解,容易得出此性質(zhì)。
第二部分————學習任務轉(zhuǎn)移給學生
設計意圖:
(3)通過課堂教學結構的改革,提高課堂教學效率,最終使學生成為獨立的學習者,這也符合建構主義的教學原則。
(三)鞏固練習
補充和選作題體現(xiàn)了課堂要求的差異性。
(四)結課
高三數(shù)學專題課教案篇九
理解數(shù)列的概念,掌握數(shù)列的運用
教學重難點
理解數(shù)列的概念,掌握數(shù)列的運用
教學過程
【知識點精講】
1、數(shù)列:按照一定次序排列的一列數(shù)(與順序有關)
2、通項公式:數(shù)列的第n項an與n之間的函數(shù)關系用一個公式來表示an=f(n)。
(通項公式不)
3、數(shù)列的表示:
(1)列舉法:如1,3,5,7,9……;
(2)圖解法:由(n,an)點構成;
(3)解析法:用通項公式表示,如an=2n+1
5、任意數(shù)列{an}的前n項和的性質(zhì)
高三數(shù)學專題課教案篇十
一、過程目標
1通過師生之間、學生與學生之間的互相交流,培養(yǎng)學生的數(shù)學交流能力和與人合作的精神。
2通過對對數(shù)函數(shù)的學習,樹立相互聯(lián)系、相互轉(zhuǎn)化的觀點,滲透數(shù)形結合的數(shù)學思想。
3通過對對數(shù)函數(shù)有關性質(zhì)的研究,培養(yǎng)學生觀察、分析、歸納的思維能力。
二、識技能目標
1理解對數(shù)函數(shù)的概念,能正確描繪對數(shù)函數(shù)的圖象,感受研究對數(shù)函數(shù)的意義。
2掌握對數(shù)函數(shù)的性質(zhì),并能初步應用對數(shù)的性質(zhì)解決簡單問題。
三、情感目標
1通過學習對數(shù)函數(shù)的概念、圖象和性質(zhì),使學生體會知識之間的有機聯(lián)系,激發(fā)學生的學習興趣。
2在教學過程中,通過對數(shù)函數(shù)有關性質(zhì)的研究,培養(yǎng)觀察、分析、歸納的思維能力以及數(shù)學交流能力,增強學習的積極性,同時培養(yǎng)學生傾聽、接受別人意見的優(yōu)良品質(zhì)。
教學重點難點:
1對數(shù)函數(shù)的定義、圖象和性質(zhì)。
2對數(shù)函數(shù)性質(zhì)的初步應用。
教學工具:多媒體
【學前準備】對照指數(shù)函數(shù)試研究對數(shù)函數(shù)的定義、圖象和性質(zhì)。
高三數(shù)學專題課教案篇十一
(二)評價說明
1.針對本班學生情況對課本進行了適當改編、細化,有利于難點克服和學生主體性的調(diào)動。
2.根據(jù)課堂上師生的雙邊活動,作出適時調(diào)整、補充(反饋評價);根據(jù)學生課后作業(yè)、提問等情況,反復修改并指導下節(jié)課的設計(反復評價)。
3.本節(jié)課充分體現(xiàn)了面向全體學生、以問題解決為中心、注重知識的建構過程與方法、重視學生思想與情感的'設計理念,積極地探索和實踐我校的科研課題——努力推進課堂教學結構改革。
通過這樣的探索過程,相信學生能從中有所體會,對后續(xù)內(nèi)容的學習和學生的可持續(xù)發(fā)展會有一定的幫助。希望很久以后留在學生記憶中的不是知識本身,而是方法與思想,是學習的習慣和熱情,這正是我們教育工作者追求的結果。
高三數(shù)學專題課教案篇十二
教學目標:
結合已學過的數(shù)學實例和生活中的實例,體會演繹推理的重要性,掌握演繹推理的基本模式,并能運用它們進行一些簡單推理。
教學重點:
掌握演繹推理的基本模式,并能運用它們進行一些簡單推理。
教學過程
一、復習
二、引入新課
1.假言推理
假言推理是以假言判斷為前提的演繹推理。假言推理分為充分條件假言推理和必要條件假言推理兩種。
(1)充分條件假言推理的基本原則是:小前提肯定大前提的前件,結論就肯定大前提的后件;小前提否定大前提的后件,結論就否定大前提的前件。
(2)必要條件假言推理的基本原則是:小前提肯定大前提的后件,結論就要肯定大前提的前件;小前提否定大前提的前件,結論就要否定大前提的后件。
2.三段論
三段論是指由兩個簡單判斷作前提和一個簡單判斷作結論組成的演繹推理。三段論中三個簡單判斷只包含三個不同的概念,每個概念都重復出現(xiàn)一次。這三個概念都有專門名稱:結論中的賓詞叫“大詞”,結論中的主詞叫“小詞”,結論不出現(xiàn)的那個概念叫“中詞”,在兩個前提中,包含大詞的叫“大前提”,包含小詞的叫“小前提”。
3.關系推理指前提中至少有一個是關系判斷的推理,它是根據(jù)關系的邏輯性質(zhì)進行推演的。可分為純關系推理和混合關系推理。純關系推理就是前提和結論都是關系判斷的推理,包括對稱性關系推理、反對稱性關系推理、傳遞性關系推理和反傳遞性關系推理。
(1)對稱性關系推理是根據(jù)關系的對稱性進行的推理。
(2)反對稱性關系推理是根據(jù)關系的反對稱性進行的推理。
(3)傳遞性關系推理是根據(jù)關系的傳遞性進行的推理。
(4)反傳遞性關系推理是根據(jù)關系的反傳遞性進行的推理。
4.完全歸納推理是這樣一種歸納推理:根據(jù)對某類事物的全部個別對象的考察,已知它們都具有某種性質(zhì),由此得出結論說:該類事物都具有某種性質(zhì)。
オネ耆歸納推理可用公式表示如下:
オs1具有(或不具有)性質(zhì)p
オs2具有(或不具有)性質(zhì)p……
オsn具有(或不具有)性質(zhì)p
オ(s1s2……sn是s類的所有個別對象)
オニ以,所有s都具有(或不具有)性質(zhì)p
オタ杉,完全歸納推理的基本特點在于:前提中所考察的個別對象,必須是該類事物的全部個別對象。否則,只要其中有一個個別對象沒有考察,這樣的歸納推理就不能稱做完全歸納推理。完全歸納推理的結論所斷定的范圍,并未超出前提所斷定的范圍。所以,結論是由前提必然得出的。應用完全歸納推理,只要遵循以下兩點,那末結論就必然是真實的:(1)對于個別對象的斷定都是真實的;(2)被斷定的個別對象是該類的全部個別對象。
小結:本節(jié)課學習了演繹推理的基本模式.
高三數(shù)學專題課教案篇十三
20__年是江蘇高考進入新課程的第三年,我們應當在體現(xiàn)新課程多樣性、選擇性和探究性的特點的同時,結合__、__年高考數(shù)學試卷分析,在夯實基礎的前提下讓學生全面而有個性的發(fā)展。
根據(jù)20__屆高三的特殊情況制定的我市高中數(shù)學教學進度建議,望各校能按照這個進度制定詳細的學科教學進度計劃,突出重點,在有效復習時間大大縮短的前提下,確保高三復習工作的順利完成。
一、教學進度
理科復習順序
文科復習順序
測試建議
新授坐標系和參數(shù)方程;復習集合(含常用邏輯用語)、函數(shù)的概念與基本初等函數(shù)、導數(shù)及其應用(含定積分)、三角函數(shù)(含三角恒等變換、解三角形)、平面向量、數(shù)列、不等式、平面解析幾何(含圓錐曲線方程)。
立體幾何初步(含空間向量與立體幾何)、推理與證明(含數(shù)學歸納法)、算法初步、概率統(tǒng)計、數(shù)系的擴充與復數(shù)的引入。
計數(shù)原理、概率。
矩陣與變換、坐標系與參數(shù)方程(或不等式選講、幾何證明選講)。
復習集合與常用邏輯用語、函數(shù)的概念與基本初等函數(shù)、導數(shù)及其應用、三角函數(shù)(含三角恒等變換、解三角形)、平面向量、數(shù)列、不等式、平面解析幾何(含圓錐曲線方程)。
立體幾何初步、推理與證明、數(shù)系的擴充與復數(shù)的引入。
算法初步、概率統(tǒng)計。
9月底進行高三第一次統(tǒng)測,主要目的是摸底,范圍均為全部必修
1月中旬進行高三第二次統(tǒng)測,范圍為全部必修和選修內(nèi)容。
3月底進行高三第三次統(tǒng)測,范圍為全部必修和選修內(nèi)容
計劃到3月底第一輪復習全部結束。
第二、三輪復習
專題復習、專題訓練、
綜合訓練、模擬訓練
充分利用其它市等信息試卷模擬,迎接高考。
說明:統(tǒng)測全部內(nèi)容的目的有二,一是各校可根據(jù)本校實際情況確定教學進度,不受統(tǒng)測進度的影響;二是有利于老師和學生準確了解高考,清楚把握難度,盡快適應高考。
二、復習策略
1、第一輪復習的基礎性。第一輪復習是整個數(shù)學復習的基礎工程,其主要任務是在老師的指導下,讓學生自己對基礎知識、基本技能進行梳理,使之達到系統(tǒng)化、結構化、完整化;在老師的組織下通過對基礎題的系統(tǒng)訓練和規(guī)范訓練,使學生準確理解每一個概念,能從不同角度把握所學的每一個知識點,及知識點所有可能涉及到的題型,熟練掌握各種典型問題的通性、通法。第一輪復習務必要做到細而實,統(tǒng)籌計劃。切不可因輕重不分而出現(xiàn)“前緊后松,前松后緊”的現(xiàn)象,也不可因趕進度而出現(xiàn)“點到為止,草草了事”的現(xiàn)象,只有真正實現(xiàn)低起點、小坡度、嚴要求,真正改變教師一包到底,實施學生自主學習,才能達到夯實“雙基”的目的。
2、第一輪復習的全面性。第一輪復習必須面向全體學生。降低復習起點,在夯實“雙基”的前提下,注重培養(yǎng)學生的能力,包括:空間想像、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本能力。提高學生對實際問題的閱讀理解、思考判斷能力;以及數(shù)學地提出、分析和解決問題(包括簡單的實際問題)的能力,數(shù)學表達和交流的能力,發(fā)展獨立獲取數(shù)學知識的能力。復習教學要充分考慮到課標的教學要求和本校、本班學生的實際水平,堅決反對脫離學生實際的任意拔高和只抓幾個“優(yōu)生”放棄大部分“差生”的不良做法,不做或少做無效勞動,同時加大分層教學和個別指導的力度,狠抓復習的針對性、實效性,提高復習效果。
3、第一輪復習的針對性。06年、07年、__年的江蘇高考試題,__年上海、廣東、寧夏、海南的新課程試題,已經(jīng)在暗示我們__年江蘇高考數(shù)學考什么、怎么考,提醒我們要在將基礎問題學實學活的同時,重視數(shù)學思想方法的復習。數(shù)形結合、函數(shù)方程、等價化歸、分類討論等數(shù)學思想依然是新課程數(shù)學高考的重點、熱點、難點,因此一定要把復習內(nèi)容中反映出來的數(shù)學思想方法的教學體現(xiàn)在第一輪復習的全過程中,使學生真證領悟到如何靈活運用數(shù)學思想方法解題。必須讓學生明白復習的最終目標是新題會解,而不能單單立足于陳題的熟練。
4、第一輪復習的科學性。要強化運算能力、表達能力和閱讀理解能力的訓練,復習時要有意識地提供給學生自主思考的時間和空間,安排時間讓學生定期、定時、定量地進行完整的、規(guī)范的解題訓練。對解題過程和書面表達提出明確具體的要求,在一開始就注重培養(yǎng)學生良好的解題習慣、考試習慣,從而提高解題的成功率和得分率。同時要加強處理信息與數(shù)據(jù)、和尋求設計合理。簡捷的運算途徑萬面的訓練,提高閱讀理解的水平和運算技能。盡管命題組一再強調(diào)“多考一點想的,少考一點算的”,事實上許多學生仍然因運算量大而無法完成。因此對運算技能的培養(yǎng)必須重視和加強。另外,網(wǎng)上閱卷對解題規(guī)范、書寫輕重、表述完整等的新的要求必須人人清楚。
5、第一輪復習的學習性。在認真研究、學__年高考試題江蘇卷以及全國卷、上海、廣東、寧夏、海南的新課程卷,以及考試中心對各地__年高考試題的評價報告的同時,針對新課程的《數(shù)學課程標準的教學要求》,進一步加強對數(shù)學解題教學的學習研究,提高自身教學水平。我們既反對題海戰(zhàn)術,又提倡做一定數(shù)量的有代表性的基礎題、綜合題和應用題。只有通過做一定量的題,才能讓學生牢固掌握基本題型的通性、通法,以及其中的數(shù)學思想方法,才能提高學生尋求最佳解法、解題反思、歸納總結的能力,才能探索解各類數(shù)學題的一般規(guī)律,積累解題經(jīng)驗,進而提升獨立解題的能力。
6、第一輪復習的研究性。要進一步加強對知識復習課和試卷講評課的研究。各校的集體備課要多重實效少重形式,教學案一體化要保證質(zhì)量控制數(shù)量,嚴格責任制、把關制。每周要通過獨立作業(yè)等形式安排一次課內(nèi)質(zhì)量檢測,主要檢查本周內(nèi)復習教學情況,而不是與復習內(nèi)容無關的綜合檢測。檢測題的難度要適合本班中下等生的水平,面向全體學生,有利于提高每個學生學習數(shù)學的興趣。檢測要注意滾動發(fā)展,防止前學后忘,對于每次檢測,要做到定時收,及時改,改必評,錯必糾,充分發(fā)揮講評課的有效功能。講評時切忌不做任何分析的對答案,講評要專題化。要重點突出,以點觸面,舉一反三。二要進一步加強對復習資料的研究。我們提倡認真選用好復習資料,堅持教師擁有多種資料,學生用一本資料。在實際教學中,教師可以根據(jù)學生的實際水平對多種資料進行有針對性的選擇、改編和重組,使之更符合本?;虮景鄬W生的實際水平,從而達到提高復習的針對性和復習效率的目的。大力提倡各校使用教學案一體化,要求凡使用教學案一體化的學校務必實行嚴格的分工、研討、審核制度,同時重視經(jīng)過個人精加工的二次備課,以確保教學案的針對性、科學性和實用性,堅決反對使用僅由個人盲目拼湊的(只有分工,沒有研討、審核、二次備課)錯誤百出的教學案。凡是給學生訓練的題,教師都必須至少親自做一遍,只有這樣才能真正做到對學生解題的有針對性的訓練和指導。
7、第二輪復習的專題性。要強化綜合訓練,上好專題訓練課。要突出如何運用數(shù)學思想萬法分析、解決問題;要聯(lián)系社會、生活實際設置一些新穎情景題,強化學生在閱讀理解、審題、探索思路等萬面的訓練;要多證學生獨立思考,充分重視審顴的科學性、運算的準確性、解題的規(guī)范性、表述的精確性、以及解題速度的提高等,堅決克服懂而不會,全而不對,對而不全,全而不快的現(xiàn)象。同時要注意心理疏導,確保在各種意想不到的情況下有——個良好的心態(tài);注意應試技巧的訓練,確保在最短的時間內(nèi)以最優(yōu)的.萬法拿到所有可能拿到的分數(shù),使學生在高考中,充分發(fā)揮自已的水平,取得理想的成績。
8、第二輪復習的針對性。為了更好地提高學生的解題能力,適應新課程高考的新題型,二輪復習務必加強計劃性。開什么樣的專題,開那些專題;練什么樣的模擬卷,練幾份模擬卷,都必須在進行深入細致的調(diào)研的前提下科學的決策。另外,還需強調(diào)的是為了確保第三次統(tǒng)測時,一輪復習全部結束,各校的理科必須增加課時,加快進度,而文科必須控制進度,按計劃復習。
三、復習建議
1、系統(tǒng)構建知識網(wǎng)絡,準確把握教學要求。要按《數(shù)學課程標準和教學要求》理解掌握好每一個知識點,決不能顧此失彼,無端忽視自以為簡單或不重要的知識點,直接導致應缺少某個必要的知識而失分;也不能無端的拓寬和加深,導致由于過多地無用功而影響教學成績。
2、自始至終培養(yǎng)能力,夯實基礎開拓視野。要不斷提高學生的運算能力、空間想象能力、邏輯思維能力,以及運用知識解決實際問題的實踐能力和創(chuàng)新意識。以不變應萬變,而不應該以獲得高考信息為借口,猜題、押題、盲目訓練,導致學生對基本題型、通性通法的忽視。如閱讀理解題、運算題、空間想象題、分類討論題等。應按照新課程理念的要求,把學生推到問題的前沿。盡可能讓他們主動的多角度的去分析、去探索、去發(fā)現(xiàn)、去研究、去創(chuàng)新,缺少反思的盲目訓練絕不可能在高考中取得好成績。
(1)對于處理問題的重要的數(shù)學思想方法,如函數(shù)與方程、變換與轉(zhuǎn)化、分類與歸納、數(shù)形的結合與分離、定常與變化的對立與統(tǒng)一等思想觀點和方法,高考將通過具體問題,測試考生掌握的程度。
(2)對思維能力的考查要求,與試題的解答過程結合起來就是:能正確領會題意,明確解題的目標與方向,會采用適當?shù)牟襟E,合乎邏輯地進行推理和演算,實現(xiàn)解題目標并加以正確表述。今年的試題之所以難,思維能力的要求高是一個重要原因。
(3)對運算能力的考查要求,數(shù)值計算、字符運算,以及各種式子的變換運算,都是重要的考查內(nèi)容。應懂得恰當?shù)貞霉浪恪D算、近似計算和精確計算進行解題。今后的試題對運算能力和估算能力的要求會比較高。
(4)對空間想像能力的考查要求,強調(diào)的是對圖形的認識、理解和應用,既會用圖形表現(xiàn)空間形體,又會由圖形想像出直觀的形象;既會觀察、分析各種幾何要素(點、線、面、體)的相互位置關系,又能對圖形進行變換分解和組合。為了增強和發(fā)展空間想像能力,必須強化空間觀念,培養(yǎng)直覺思維的習慣,把抽象思維與形象思維結合起來。
3、加強教學模式研究,形成有效教學手段。個人認為,抓基礎落實,應從以下三個方面入手,一是回歸課本、教材,理清知識本原,構建知識網(wǎng)絡;二是以課本習題為素材,深入淺出、舉一反三地加以推敲、延伸和變形,形成典型例題,借助啟發(fā)式講解、自主式訓練幫助學生融會貫通;三是精心選擇習題,悉心設置問題,充分挖掘題目的內(nèi)涵和外延,引導學生變題為類,便所選習題的功能得到最大發(fā)揮,同時著重抓好應變能力的培養(yǎng)和解題規(guī)范化訓練。在第一輪復習中要對每一章數(shù)學基礎知識,作幾次系統(tǒng)的回顧與總結,對所學內(nèi)容能按類別形成知識網(wǎng)絡,清理考點,清理錯解,清理題型,消理方法。每一單元選5個左右的典型問題進行評點與反思。專題復習課、試卷講評課是高三數(shù)學復習課中的兩種主要教學模式,如何改進兩課教學模式,促進課堂教學效益的提高,是永遠不變的話題。首先要加強集體備課,通過集體智慧的凝聚,實現(xiàn)優(yōu)勢互補、資源共享。在高中擴招、師資大量流失的今天,尤其顯得必要,可以說__年、__年之所以能取得較好的成績,其關鍵在于各校在這一點上做得實,希望繼續(xù)保持和發(fā)揚;其次是在使用教學案一體化的同時,重視針對所帶學生實際情況的個人備課,雖然所有學生都用同一張試卷考數(shù)學,但各種不同選課的學生學數(shù)學的基礎和基本素質(zhì)相差太大,使我們不得不準對學生的實際情況實施有效教學,因此個人備課馬虎不得;最后要在教學過程中不斷地、自覺地研究考情、學情、教材、大綱,針對學生的情況變化、教學設備的變化等,制定確實可行的教學方案,并隨時進行修訂、完善,細節(jié)決定成敗,只有把握好教學的每——個環(huán)節(jié),才能真正提高教學效益。我們強調(diào):注重視知識梳理、網(wǎng)絡構建的同時,不能忽視方法教學和能力培養(yǎng),要求在復習重點知識時適時滲透數(shù)學思想方法,在專題復習時提煉數(shù)學思想方法,在綜合訓練是鞏固和深化數(shù)學思想方法,用細水長流的方式將閱讀理解能力和應用意識融入平常教學的每一環(huán)節(jié),使通性通法的運用在數(shù)學思想方法的指導下變得更加靈活、自如,使學生能自覺地用數(shù)學眼光去觀察、去分析生產(chǎn)、生活和其他學科的一些具體問題,真正實現(xiàn)創(chuàng)新意識和數(shù)學素養(yǎng)的提高。復習中務必注意選擇習題,做題要重質(zhì)量,不要貪多。要選擇反映數(shù)學學科特點的題目,如存在性,唯一性,充要條件,不變量,參數(shù)問題,恒成立的立向題,軌跡問題等,要針對學生的薄弱環(huán)節(jié)設制習題,不做偏題,怪題,不要覺得學生做不好的題就一定要考,犯疑心病,要重思想、重方法,務必做到每題弄懂弄透。
4、認真研究高考試卷,準確把握高考導向。通過新課程理念的學習,實現(xiàn)教學觀念和教學思想的真正轉(zhuǎn)變,即變只懂書本內(nèi)容、只會解題的單一型教學目標為重實踐能力和創(chuàng)新精神的綜合素質(zhì)教育目標;變只重知識積累、只重學習結果的質(zhì)量體系為反映學生全面素質(zhì)的綜合學習評價;變陳舊、落后、傳統(tǒng)的教學手段為先進、快捷、激趣式的現(xiàn)代教育技術方式。通過各項工作的有序進行,實現(xiàn)教學目標和教學效果的真正統(tǒng)一,即教學內(nèi)容的重難點和高考內(nèi)容重難點的真正統(tǒng)一;知識點的難易度和高考難易度的真正統(tǒng)一;教學能力要求和高考能力要求的真正統(tǒng)一,爭創(chuàng)高考成績的再輝煌。創(chuàng)新意識和創(chuàng)造能力是理性思維的高層次表現(xiàn)。在數(shù)學學習和研究過程中,知識的遷移、組合、融匯的程度越高,展示能力的區(qū)域就越寬泛,顯現(xiàn)出的創(chuàng)造意識也就越強。
5、加強新增內(nèi)容研究,注意新的考查點。新課程在過去的基礎上增加了“簡易邏輯”、“平面向量”、“導數(shù)”、“概率統(tǒng)計”等內(nèi)容。這些內(nèi)容是切合時代需要和數(shù)學發(fā)展的。增加這些內(nèi)容,是先進教育理念指導的結果。高考既是選拔性考試可也是對中學教育的一種評價,這些極富生命力的課程內(nèi)容必須考查。新增內(nèi)容的相關試題在試卷中起點提高,難度加大,并形成了以向量、導數(shù)、概率為紐帶的新的知識網(wǎng)絡交匯點。但是,對新內(nèi)容的命題考查并不是一步到位,而是采取逐步遞進、最終完善的方法,在20__、__年的高考命題中,新增內(nèi)容的相關試題所占的分值占有較大份額。新增內(nèi)容在高考中絕對不是數(shù)學知識的簡單復制,而是趨向于能力的考查。因此要特別關注:
(1)導數(shù)與函數(shù)的結合。函數(shù)是高中數(shù)學的主干內(nèi)容,導數(shù)作為新課程中160分的重要內(nèi)容之一,為研究函數(shù)提供了有力的工具,便函數(shù)的釣單調(diào)性、極值、最值等問題都得到了有效而較為徹底的解決。因此,用導數(shù)方法研究函數(shù)問題是數(shù)學學習的必然,也是高考命題的方向。
(2)平面向量與解析幾何的結合。平面向量與解析幾何都涉及坐標表示和坐標運算,坐標法可以將二者有機結合起來,高考命題必然會抓住這一契機。
(4)概率統(tǒng)計與排列組合的結合。概率與統(tǒng)計是近代數(shù)學的重要分支,在現(xiàn)實中應用廣泛,同時概率統(tǒng)計與排列組合又有著緊密的聯(lián)系,將它們有機結合應該是新課程高考的熱點和亮點,但我們注意到概率及計數(shù)原理均為40分的學習內(nèi)容,160分中的概率是非常簡單的,所以這一塊的高考難度不會大。
6、高考求新求變求穩(wěn),訓練速度規(guī)范質(zhì)量。立足教材、重視基礎、突出知識主干、不回避知識重點是歷年高考命題的不變之策,20__年如此,20__年也不例外,傳統(tǒng)題目還將占大多數(shù),創(chuàng)新問題占少數(shù),減少運算量,增大思維量,是新課程標準的既定目標要求。個人認為__年題目的總體難易程度,應比20__年易一點但也不會太易,填充題側(cè)重于雙基的考查,其中有一些小技巧,注意合情思維(猜想、真覺等)、數(shù)形結合、化歸與分類等思想方法的應用,也將出現(xiàn)定量分析與定性分析型的問題;通過計算與分析推理解決的問題是定量分析問題,憑直覺進行觀察分析解決的問題是定性分析問題,會出現(xiàn)開放題與小綜合題,主要表現(xiàn)在多項選擇、試驗發(fā)現(xiàn)、歸納猜想等問題中。解答題的考查空間較寬廣,不僅形式靈活多樣,而且內(nèi)涵極其深刻,既可在多個層次上考查基本知識、基本技能和基本思想方法,又能深入地考查數(shù)學能力和數(shù)學素質(zhì)。在設問方式上,可能出現(xiàn)串連式小步設問模式,其間會有遞推條件型的開放性題目與材料分析型的開放性題目;在知識點的考查上,要加強知識點之間的綜合聯(lián)系,包括橫向的與縱向的聯(lián)系,比如立幾與函數(shù)、解幾與函數(shù)、數(shù)列與函數(shù)、向量與解幾、三角與向量、不等式與函數(shù)等知識網(wǎng)絡間的聯(lián)系;在綜合能力的考查上,除繼續(xù)注重數(shù)學觀察能力、數(shù)學記憶力、數(shù)學語言的轉(zhuǎn)換能力外,還要增強探索試驗能力、歸納概括能力及非智力因素的考查。
在后期的復習中,首先可考慮選幾套模擬卷,只審題,不做題。題目本身是“怎樣解這道題”的信息源,題目中的信息往往通過語言文字,公式符號,以及它們之間的關系間接告訴你,所以審題一定要逐字逐句看清楚,力求從語法結構,邏輯關系,數(shù)學含義等方面真正看懂題意,弄清條件是什么(告訴你從何處入手)?結論是什么(告訴你向何方前進)?它們分別與哪些知識有聯(lián)系?從自己已掌握的知識方法模塊中提取與之相適應的解題方法,通過已建立的思維鏈,把知識方法輸入大腦,并在大腦中進行整合,找到解題途徑,并留心易錯點,想出解案。只有細致的審題才能從題目本身獲得盡可能多的信息,這一步,開始不要怕“慢”,這是訓練思維敏捷性必經(jīng)的一步。其次做5套左右的高考模擬題,最好做幾套近兩年中上海、山東、廣東、寧夏、海南以及南通、南京等地區(qū)的高考仿真題,不在于能得多少分;而在于真實感受一下“新課程高考”的難度,熟悉一下解答題評卷規(guī)則,以改進自已的書面表述習慣,進而了解在哪些問題上是得分的強項,哪些是得分的弱項。另外,網(wǎng)上閱卷所反映的解題規(guī)范、字跡工整方面導致的失分仍應在平常的教學中給予足夠的重視。
20__年高考復習已經(jīng)拉開帷幕,希望我們的設想和建議能給各校的復習帶來一些幫助,在20__年高考中有所收獲,讓我們大家共同努力,辛勤的汗水定能澆灌出豐碩的果實。預祝20__年高考再創(chuàng)輝煌!
高三數(shù)學專題課教案篇十四
近年來的高考數(shù)學試題逐步做到科學化、規(guī)范化,堅持了穩(wěn)中求改、穩(wěn)中創(chuàng)新的原則。考試題不但堅持了考查全面,比例適當,布局合理的特點,也突出體現(xiàn)了變知識立意為能力立意這一舉措。更加注重考查考生進入高校學習所需的基本素養(yǎng),這些問題應引起我們在教學中的關注和重視。
20__年是湖南省新課標命題的第二年,數(shù)學試卷充分發(fā)揮數(shù)學作為基礎學科的作用,既重視考查中學數(shù)學基礎知識的掌握程度,又注意考查進入高校繼續(xù)學習的潛能。在前二年命題工作的基礎上做到了總體保持穩(wěn)定,深化能力立意,積極改革創(chuàng)新,兼顧了數(shù)學基礎、思想方法、思維、應用和潛能等多方面的考查,融入課程改革的理念,拓寬題材,選材多樣化,寬角度、多視點地考查數(shù)學素養(yǎng),多層次地考查思想能力,充分體現(xiàn)出湖南卷的特色:
1、試題題型平穩(wěn)突出對主干知識的考查重視對新增內(nèi)容的考查
2、充分考慮文、理科考生的思維水平與不同的學習要求,體現(xiàn)出良好的層次性
3、重視對數(shù)學思想方法的考查
4、深化能力立意,考查考生的學習潛能
5、重視基礎,以教材為本
6、重視應用題設計,考查考生數(shù)學應用意識
二、教學計劃與要求
新課已授完,高三將進入全面復習階段,全年復習分兩輪進行。
第一輪為系統(tǒng)復習(第一學期),此輪要求突出知識結構,扎實打好基礎知識,全面落實考點,要做到每個知識點,方法點,能力點無一遺漏。在此基礎上,注意各部分知識點在各自發(fā)展過程中的縱向聯(lián)系,以及各個部分之間的橫向聯(lián)系,理清脈絡,抓住知識主干,構建知識網(wǎng)絡。在教學中重點抓好各中通性、通法以及常規(guī)方法的復習,是學生形成一些最基本的數(shù)學意識,掌握一些最基本的數(shù)學方法。同時有意識進行一定的綜合訓練,先小綜合再大綜合,逐步提高學生解題能力。
三、具體方法措施
1、認真學習《考試說明》,研究高考試題,提高復習課的效率。
《考試說明》是命題的依據(jù),復習的依據(jù)、高考試題是《考試說明》的具體體現(xiàn)。只有研究近年來的考試試題,才能加深對《考試說明》的理解,找到我們與命題專家在認識《考試說明》上的差距。并力求在復習中縮小這一差距,更好地指導我們的復習。
2、高質(zhì)量備課,
參考網(wǎng)上的課件資料,結合我校學生實際,高度重視基礎知識,基本技能和基本方法的復習。充分發(fā)揮全組老師的集體智慧,確保每節(jié)課件都是高質(zhì)量的。統(tǒng)一的教案、統(tǒng)一的課件。
3、高效率的上好每節(jié)課,
重視通性、通法的落實。要把復習的重點放在教材中典型例題、習題上;放在體現(xiàn)通性、通法的例題、習題上;放在各部分知識網(wǎng)絡之間的內(nèi)在聯(lián)系上抓好課堂教學質(zhì)量,定出實施方法和評價方案。
4、狠抓作業(yè)批改、講評,教材作業(yè)、練習課內(nèi)完成,課外作業(yè)認真批改、講評。一題多思多解,提煉思想方法,提升學生解題能力。
5、認真落實月考,考前作好指導復習,試卷講評起到補缺長智的作用。
6、結合實際,了解學生,分類指導。
高考復習要結合高考的實際,也要結合學生的實際,要了解學生的全面情況,實行綜合指導??赡苡械膶W生應專攻薄弱環(huán)節(jié),而另一些學生則應揚長避短。了解學生要加強量的分析,建立檔案、了解學生,才有利于個別輔導,因材施教,對于好的學生,重在提高;對于差的學生,重在補缺。
四、復習參考資料
1、20__年數(shù)學科《考試說明》(全國)及湖南省《補充說明》。
2、《創(chuàng)新設計》高考第一輪總復習數(shù)學及《學海導航》高考第一輪總復習數(shù)學。
五、教學參考進度
第一輪的復習要以基礎知識、基本技能、基本方法為主,為高三數(shù)學會考做好準備。
高三數(shù)學專題課教案篇十五
我發(fā)現(xiàn),許多學生的學習方法是:直接記住函數(shù)性質(zhì),在解題中套用結論,對結論的來源不理解,知其然不知其所以然,應用中不能變通和遷移。
本節(jié)的學習方法對后續(xù)內(nèi)容的學習具有指導意義。為了培養(yǎng)學法,充分關注學生的可持續(xù)發(fā)展,教師要轉(zhuǎn)換角色,站在初學者的位置上,和學生共同探索新知,共同體驗數(shù)形結合的研究方法,體驗周期函數(shù)的研究思路;幫助學生實現(xiàn)知識的意義建構,幫助學生發(fā)現(xiàn)和總結學習方法,使教師成為學生學習的高級合作伙伴。
教師要做到:
授之以漁,與之合作而漁,使學生享受漁之樂趣。因此
1.本節(jié)要教給學生看圖象、找規(guī)律、思考提問、交流協(xié)作、探索歸納的學習方法。
2.通過本課的探索過程,培養(yǎng)學生觀察、分析、交流、合作、類比、歸納的學習能力及數(shù)形結合(看圖說話)的意識和能力。
高三數(shù)學專題課教案篇十六
1.板書要基本體現(xiàn)整堂課的內(nèi)容與方法,體現(xiàn)課堂進程,能簡明扼要反映知識結構及其相互聯(lián)系;能指導教師的教學進程、引導學生探索知識;同時不完全按課本上的呈現(xiàn)方式來編排板書。即體現(xiàn)系統(tǒng)性、程序性、概括性、指導性、啟發(fā)性、創(chuàng)造性的原則;(原則性)
2.使用幻燈片輔助板書,節(jié)省課堂時間,使課堂進程更加連貫。(靈活性)
高三數(shù)學專題課教案篇一
數(shù)學是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學科。因此,在教學中,不僅要使學生“知其然”而且要使學生“知其所以然”。所以在學生為主體,教師為主導的原則下,要充分揭示獲取知識和方法的思維過程。因此本節(jié)課我以建構主義的“創(chuàng)設問題情境——提出數(shù)學問題——嘗試解決問題——驗證解決方法”為主,主要采用觀察、啟發(fā)、類比、引導、探索相結合的教學方法。在教學手段上,則采用多媒體輔助教學,將抽象問題形象化,使教學目標體現(xiàn)的更加完美。
二、教材分析
三角函數(shù)的誘導公式是普通高中課程標準實驗教科書(人教a版)數(shù)學必修四,第一章第三節(jié)的內(nèi)容,其主要內(nèi)容是三角函數(shù)誘導公式中的公式(二)至公式(六).本節(jié)是第一課時,教學內(nèi)容為公式(二)、(三)、(四).教材要求通過學生在已經(jīng)掌握的任意角的三角函數(shù)的定義和誘導公式(一)的基礎上,利用對稱思想發(fā)現(xiàn)任意角與、、終邊的對稱關系,發(fā)現(xiàn)他們與單位圓的交點坐標之間關系,進而發(fā)現(xiàn)他們的三角函數(shù)值的關系,即發(fā)現(xiàn)、掌握、應用三角函數(shù)的誘導公式公式(二)、(三)、(四).同時教材滲透了轉(zhuǎn)化與化歸等數(shù)學思想方法,為培養(yǎng)學生養(yǎng)成良好的學習習慣提出了要求.為此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位.
三、學情分析
本節(jié)課的授課對象是本校高一(1)班全體同學,本班學生水平處于中等偏下,但本班學生具有善于動手的良好學習習慣,所以采用發(fā)現(xiàn)的教學方法應該能輕松的完成本節(jié)課的教學內(nèi)容.
四、教學目標
(1).基礎知識目標:理解誘導公式的發(fā)現(xiàn)過程,掌握正弦、余弦、正切的誘導公式;
(4).個性品質(zhì)目標:通過誘導公式的學習和應用,感受事物之間的普通聯(lián)系規(guī)律,運用化歸等數(shù)學思想方法,揭示事物的本質(zhì)屬性,培養(yǎng)學生的唯物史觀.
五、教學重點和難點
1.教學重點
理解并掌握誘導公式.
2.教學難點
正確運用誘導公式,求三角函數(shù)值,化簡三角函數(shù)式.
六、教法學法以及預期效果分析
“授人以魚不如授之以魚”,作為一名老師,我們不僅要傳授給學生數(shù)學知識,更重要的是傳授給學生數(shù)學思想方法,如何實現(xiàn)這一目的,要求我們每一位教者苦心鉆研、認真探究.下面我從教法、學法、預期效果等三個方面做如下分析.
1.教法
數(shù)學教學是數(shù)學思維活動的教學,而不僅僅是數(shù)學活動的結果,數(shù)學學習的目的不僅僅是為了獲得數(shù)學知識,更主要作用是為了訓練人的思維技能,提高人的思維品質(zhì).
在本節(jié)課的教學過程中,本人以學生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結合等數(shù)學思想方法,采用提出問題、啟發(fā)引導、共同探究、綜合應用等教學模式,還給學生“時間”、“空間”,由易到難,由特殊到一般,盡力營造輕松的學習環(huán)境,讓學生體味學習的快樂和成功的喜悅.
2.學法
“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學習方法的人”,很多課堂教學常常以高起點、大容量、快推進的做法,以便教給學生更多的知識點,卻忽略了學生接受知識需要時間消化,進而泯滅了學生學習的興趣與熱情.如何能讓學生程度的消化知識,提高學習熱情是教者必須思考的問題.
在本節(jié)課的教學過程中,本人引導學生的學法為思考問題、共同探討、解決問題簡單應用、重現(xiàn)探索過程、練習鞏固。讓學生參與探索的全部過程,讓學生在獲取新知識及解決問題的方法后,合作交流、共同探索,使之由被動學習轉(zhuǎn)化為主動的自主學習.
3.預期效果
本節(jié)課預期讓學生能正確理解誘導公式的發(fā)現(xiàn)、證明過程,掌握誘導公式,并能熟練應用誘導公式了解一些簡單的化簡問題.
高三數(shù)學專題課教案篇二
本課文擬用一個教學時完成。如有可能,建議語、政、歷三科老師能集中一起備課,從各自學科的特點分析本課文,以講座的形式向同學們講授,亦可從文科綜合的角度,不光是從語文的角度,可以揉進哲學、歷史等學科知識,考查學生對本篇課文的理解。
教學目標
知識傳授目標:
1.初步了解孔孟思想觀點的異同點;
2.掌握本文中出現(xiàn)的詞和成語;
3.背誦孔孟的名言警句。
能力培養(yǎng)目標:
通過課文學習,培養(yǎng)學生從事物發(fā)生,問題產(chǎn)生的時代背景中去分析原因的能力。
情意目標:
為孔孟兩位偉大的哲人自豪,為祖國的悠久歷史和深厚文化積淀驕傲。
預習要求:
1.認真閱讀課文,搞懂課文中的注釋;
2.把課文中談及孔孟兩人不同思想觀點的語句畫出來。
教學過程
一、導入:
“大成至圣老師”大家都知道指的是孔子,在儒家學派中,地位僅次于他的就是孟子了,所以孟子被稱為“亞圣”。這兩位人物,常常是孔孟并舉,孔孟之道并提,被視為儒學的代表人物,孟子被認為完全繼承了孔子的學說和觀點。他們的學術觀點,生活理念被認為毫無二致。事實是這樣的嗎?請看課文—孔孟。引出板書課題。
二、簡介作者
(投影以下文字資料,并配以朗讀。也可不要配音朗讀。課堂教學時由教師或?qū)W生讀)
孔子:(前551—前479)春秋末期思想家、政治家、教育家。名丘,字仲尼。魯國陬邑(今山東曲阜東南)人。少“貪且賤”及長,做過“委吏”(會計)和“乘田”(管畜牧)等事。晚年致力于教育,整理《詩》、《書》等古代文獻?,F(xiàn)存《論語》一書,記有孔子的談話以及孔子與門人的問答。
孟子:(約前372—前289)戰(zhàn)國時思想家、政治家、教育家。名軻,字子輿。鄒(今山東鄒縣東南)人。受業(yè)于子思的門人。一度任齊宣王客卿,因主張不被采納,退而與弟子萬章等著書立說。他被認為是孔子學說的繼承人。
三、研習課文
1.讀第一自然段,思考:從哪里可以看出人們總認為孔孟是一體的?(形影相隨,孔稱“至圣”,孟稱“亞圣”,孔有《論語》,孟有《孟子》,孔主張“成仁”,孟主張“取義”—總之,從兩人“尊號”、著述、主張方面,都印證了這一點—形影相隨,孟隨孔,有孔則有孟。)(板書:形影相隨)
2.那么,真的是如影相隨,孔孟一體嗎?
(由此一問,導入第二、三、四自然段的閱讀)
1.請同學迅速閱讀這三個自然段,教師要分以下幾個方面—生活、人性、人際。學生按課文內(nèi)容找出答案。教師將答案以板書形式列出。
((1)相去兩百年,中國局勢,已起了很大變化;(2)此一時,彼一時)
2.孔子時代社會特點是什么?(雖有戰(zhàn)事,但不足以造成全社會的動蕩;禮的約束力雖不太大了,但仍有影響;孔子認為“克已復禮”可行)——板書:社會相對寧靜。
3.孟子時代社會特點是什么?(時代動亂,國君草菅民命,孟子認為,恢復過去是不可能了,要改弦更張)板書——社會十分動亂。
高三數(shù)學專題課教案篇三
一、教學目標
1.把握菱形的判定.
2.通過運用菱形知識解決具體問題,提高分析能力和觀察能力.
3.通過教具的演示培養(yǎng)學生的學習愛好.
4.根據(jù)平行四邊形與矩形、菱形的從屬關系,通過畫圖向?qū)W生滲透集合思想.
二、教法設計
觀察分析討論相結合的方法
三、重點·難點·疑點及解決辦法
1.教學重點:菱形的判定方法.
2.教學難點:菱形判定方法的綜合應用.
四、課時安排
1課時
五、教具學具預備
教具(做一個短邊可以運動的平行四邊形)、投影儀和膠片,常用畫圖工具
六、師生互動活動設計
教師演示教具、創(chuàng)設情境,引入新課,學生觀察討論;學生分析論證方法,教師適時點撥
七、教學步驟
復習提問
1.敘述菱形的定義與性質(zhì).
2.菱形兩鄰角的比為1:2,較長對角線為,則對角線交點到一邊距離為________.
引入新課
師問:要判定一個四邊形是不是菱形最基本的判定方法是什么方法?
生答:定義法.
此外還有別的兩種判定方法,下面就來學習這兩種方法.
講解新課
菱形判定定理1:四邊都相等的四邊形是菱形.
菱形判定定理2:對角錢互相垂直的'平行四邊形是菱形.圖1
分析判定1:首先證它是平行四邊形,再證一組鄰邊相等,依定義即知為菱形.
分析判定2:
師問:本定理有幾個條件?
生答:兩個.
師問:哪兩個?
生答:(1)是平行四邊形(2)兩條對角線互相垂直.
師問:再需要什么條件可證該平行四邊形是菱形?
生答:再證兩鄰邊相等.
(由學生口述證實)
證實時讓學生注重線段垂直平分線在這里的應用,
師問:對角線互相垂直的四邊形是菱形嗎?為什么?
可畫出圖,顯然對角線,但都不是菱形.
菱形常用的判定方法歸納為(學生討論歸納后,由教師板書):
注重:(2)與(4)的題設也是從四邊形出發(fā),和矩形一樣它們的題沒條件都包含有平行四邊形的判定條件.
例4已知:的對角錢的垂直平分線與邊、分別交于、,如圖.
求證:四邊形是菱形(按教材講解).
總結、擴展
1.小結:
(1)歸納判定菱形的四種常用方法.
(2)說明矩形、菱形之間的區(qū)別與聯(lián)系.
2.思考題:已知:如圖4△中,,平分,,,交于.
求證:四邊形為菱形.
八、布置作業(yè)
教材p159中9、10、11、13(2)
九、板書設計
十、隨堂練習
教材p153中1、2、3
高三數(shù)學專題課教案篇四
教學設計示例
一、素質(zhì)教育目標
(一)知識教學點
1.了解直線的概念.
2.掌握直線的表示方法,直線的公理和相交直線的概念.
3.使學生熟悉簡單的幾何語句,并能畫出正確的圖形表示幾何語句.
(二)能力訓練點
通過一些幾何語句(如:某點在直線上,即直線“經(jīng)過”這點;過兩點有且只有一條直線,“有且只有”的雙重含義,即存在性和惟一性)的教學,訓練學生準確地使用幾何語言,并能畫出正確的幾何圖形.學生通過“說”與“畫”的嘗試實踐,體驗領悟到“言”與“圖”的辯證統(tǒng)一.通過教學培養(yǎng)學生嚴謹?shù)膶W習作風、嚴密的思考方法及邏輯思維能力,這也是學習好數(shù)學必備的基本素質(zhì).
(三)德育滲透點
通過直線公理的講解,舉出實例說明它的應用.使學生體驗到從實踐到理論,在理論指導下再進行實踐的認識過程,潛移默化地影響學生,形成其理論聯(lián)系實際的思想方法,激勵學生要勤于動腦、敢于實踐.
(四)美育滲透點
通過對模型的觀察,使學生體會物體的對稱美,通過學生自己動手畫直線體會直線美,逐步培養(yǎng)學生的幾何美,激發(fā)學生的學習興趣.
二、學法引導
1.教師教法:引導學生發(fā)現(xiàn)知識,并嘗試指導與閱讀相結合.
2.學生學法:自主式學習方法(學生自己閱讀書本知識,總結學習成果)和小組討論式學習方法.
三、重點、難點、疑點及解決辦法
(-)重點
直線的表示方法,直線的公理及相交線.
(二)難點
兩直線相交為什么只有一個交點的理解,直線公理的理解.
(三)疑點
兩直線相交為什么只有一個交點?
(四)解決辦法
通過實驗法解決直線公理的理解;通過逆向思維解決兩直線相交為什么只有一個交點的疑點.
四、課時安排
1課時
五、教具學具準備
投影儀或電腦、自制膠片(軟盤)、三角板、木條、鐵釘.
六、師生互動活動設計
七、教學步驟
(一)明確目標
通過知識點教學,使學生理解和掌握直線及其性質(zhì),通過畫圖及對幾何語言的認識培養(yǎng)學生圖形結合的數(shù)學思維方式.
(二)整體感知
以情境教學為主,教師引導和指導,學生積極參與,逐步領悟,教師概括總結和學生自我學習評價相結合,提高課堂教學效益,充分體現(xiàn)以學為主的原則.
(三)教學過程
創(chuàng)設情境,引出課題
問題:投影儀顯示本章開始的正十二面體的模型,學生觀察這一復雜圖形中有哪些是我們認識的簡單圖形?(學生會很快找出線段和角.)
演示:投影從正十二面體的模型中分離出某一部分,即線段、角.
引出課題:要掌握比較復雜的圖形知識,需要從較簡單的圖形學起.本章我們就學習最簡單的圖形知識,即線段和角的知識,也就是我們從復雜圖形中分離出來的兩個圖形.在這個基礎上,以后我們再學習相交線、三角形、四邊形等等.
?板書】第一章線段角一、直線射線線段1.1直線
探究新知
1.直線的概念
?教法說明】學生有小學的基礎,會很快說出一些實際例子,如:黑板邊緣、書本邊緣、拉直的線、筆直的公路等等.教師要調(diào)動學生學習的積極性,引導學生展開想像的翅膀,充分發(fā)揮他們的想像力.
演示:學生發(fā)言的同時,教師利用電腦顯示一些實例,如:黑板、書本、筆直公路等等.然后變換抽象成一直線.
師:我們在代數(shù)中,常用一條特殊的直線,你知道嗎?
(學生會回想起數(shù)軸的概念,規(guī)定了原點、正方向和單位長度的直線.)
師小結:同學們回答得都很好,幾何中的“直線”是向兩方無限延伸的,我們可以用直尺畫直線,但畫出的只是直線的一部分.
2.直線的表示方法
學生活動:學生閱讀課本第9頁第四自然段,總結直線的表示方法.
?教法說明】對于直線的表示方法很簡單,教師直接告訴學生,學生也會理解.但記憶不一定深,這種采取讓學生自己閱讀的方法,一是培養(yǎng)學生看書的習慣;二是培養(yǎng)學生的閱讀能力,使學生愛看書且會看書.自己學到的知識要比教師直接告訴的記憶深刻得多.
由學生小結,得出直線的兩種表示方法:
(1)用直線上的兩個大寫字母表示.如圖:記作直線.
(2)用一個小寫字母表示.如圖:記作直線.
?教法說明】用字母表示圖形,小學沒有介紹,現(xiàn)在學生初步接觸,所以教師這里要補充說明點的表示方法.同時指出:以后學習中,常用字母表示幾何圖形,便于說明與研究.
3.點和直線的位置
師生共同總結:
(1)點在直線上,如圖,敘述方法:點在直線上,或直線經(jīng)過點.
(2)點在直線外,如圖,敘述方法:點在直線外,或直線不經(jīng)過點.
?教法說明】在點和直線的位置關系中,要注意幾何語言的訓練.點在直線上和點在直線外,各有兩種不同的敘述方法,要反復練習,以培養(yǎng)他們幾何語言的表達能力.
4.直線的公理
實驗嘗試:用一個鐵釘把木條釘在小黑板上,讓學生轉(zhuǎn)動木條,并觀察現(xiàn)象.教師在木條上加上一個釘子,再讓學生轉(zhuǎn)動,并觀察現(xiàn)象.
提出問題:以上實驗你認為說明了什么道理?
學生活動:學生分組討論,相互糾正或補充.
師小結:經(jīng)過一點有無數(shù)條直線,經(jīng)過兩點有一條直線,并且只有一條直線.同時板書公理內(nèi)容.
[板書]公理:經(jīng)過兩點有一條直線,并且只有一條直線.簡言之,過兩點有且只有一條直線.
體驗證實:教師小結后讓學生在練習本上分別經(jīng)過一點和兩點畫直線.
?教法說明】(1)學生通過實驗,對直線公理有認識,但欲言之而不能,或雖能表達出意思但不嚴密.此時離不開教師的引導,教師一定要強調(diào)幾何語言的嚴密性和準確性.向?qū)W生們講清“有且只有”的兩層含義.第一個“有”說明的是存在性,過兩點有直線存在.“只有”說明的是惟一性,經(jīng)過兩點的直線不會多,只有一條.如果把直線公理說成是:“經(jīng)過兩點有一條直線”就是錯誤的.了.(2)公理得出后,讓學生再次動手驗證,使學生體會到公理的科學性,培養(yǎng)學生對待事物的科學態(tài)度,也便于學生對公理的記憶.(3)通過教師指導下的實驗活動,激發(fā)了學生的學習興趣,培養(yǎng)了學生勇于探索的精神,提高獨立分析問題解決問題的能力.
?教法說明】通過公理在日常生活中的應用舉例,使學生明白科學來源于生活并服務于生活的道理.只有現(xiàn)在好好學習,積累本領,長大后才能更好地報效祖國.并體會從實踐到理論,再回到實踐的認識過程.
5.相交線
師:根據(jù)直線公理,過兩點有幾條直線?
(學生會答出:有且只有一條.)
師:反過來,兩條不同的直線可能同時經(jīng)過兩個點嗎?
(學生容易答出:不能)
[板書]如果兩條直線有一個交點,我們叫這兩條直線相交.這個公共點叫做它們的交點,這兩條直線叫相交直線.
如圖,直線和直線相交于點,點是直線和直線的交點.
?教法說明】兩直線相交為什么只有一個交點,是本節(jié)課的難點.從公理入手提出問題,再反過來考慮,這種逆向思維的方法使學生易于理解,突破難點,問題得以解決.
反饋練習
(出示投影1)
1.問答題
(1)經(jīng)過一點能否畫直線?能畫幾條?
(2)經(jīng)過兩點能否畫直線?能畫幾條?
(3)只用直線上的一個點來表示直線是否可以?用直線上的兩個點表示直線呢?
2.讀出下列語句,并按照這些語句畫圖
(1)直線經(jīng)過點.
(2)點在直線外.
(3)經(jīng)過點的三條直線.
(4)直線與相交于點.
(5)直線經(jīng)過、、三點,點在點與點之間.
(6)是直線外一點,過點有一直線與直線相交于點.
?教法說明】問答題的目的是進一步理解鞏固直線公理,作圖的目的是訓練學生的“言”與“圖”的轉(zhuǎn)化能力.
(四)總結、擴展
以提問的形式,歸納出以下知識點:
八、布置作業(yè)
預習下節(jié)內(nèi)容
補充:按照下面的圖形說出幾何語句.
(1)(2)
(3)(4)
(5)
附答案
補充:(1)直線過(點在直線上).
(2)點在直線外(直線不過點).
(3)直線、相交于點.
(4)直線過、、三點.
(5)直線、、、都過點.
思考題:課本第16頁b組的第2題.
高三數(shù)學專題課教案篇五
理解數(shù)列的概念,掌握數(shù)列的運用
理解數(shù)列的'概念,掌握數(shù)列的運用
【知識點精講】
1、數(shù)列:按照一定次序排列的一列數(shù)(與順序有關)
2、通項公式:數(shù)列的第n項an與n之間的函數(shù)關系用一個公式來表示an=f(n)。
(通項公式不)
3、數(shù)列的表示:
(1)列舉法:如1,3,5,7,9……;
(2)圖解法:由(n,an)點構成;
(3)解析法:用通項公式表示,如an=2n+1
5、任意數(shù)列{an}的前n項和的性質(zhì)
高三數(shù)學專題課教案篇六
復習:
1、(課本p28a13)填空:
(1)有三張參觀卷,要在5人中確定3人去參觀,不同方法的種數(shù)是;
(2)要從5件不同的禮物中選出3件分送3為同學,不同方法的種數(shù)是;
(3)5名工人要在3天中各自選擇1天休息,不同方法的種數(shù)是;
探究新知(復習教材p14~p25,找出疑惑之處)
問題1:判斷下列問題哪個是排列問題,哪個是組合問題:
(1)從4個風景點中選出2個安排游覽,有多少種不同的方法?
(2)從4個風景點中選出2個,并確定這2個風景點的游覽順序,有多少種不同的方法?
應用示例
例2、7位同學站成一排,分別求出符合下列要求的不同排法的種數(shù)、
(1)甲站在中間;
(2)甲、乙必須相鄰;
(3)甲在乙的左邊(但不一定相鄰);
(4)甲、乙必須相鄰,且丙不能站在排頭和排尾;
(5)甲、乙、丙相鄰;
(6)甲、乙不相鄰;
(7)甲、乙、丙兩兩不相鄰。
反饋練習
當堂檢測
1、某班新年聯(lián)歡會原定的5個節(jié)目已排成節(jié)目單,開演前又增加了兩個新節(jié)目、如果將這兩個節(jié)目插入原節(jié)目單中,那么不同插法的種數(shù)為()
a、42b、30c、20d、12
課后作業(yè)
高三數(shù)學專題課教案篇七
教學目標:
1、知識與技能:
1)了解導數(shù)概念的實際背景;
2)理解導數(shù)的概念、掌握簡單函數(shù)導數(shù)符號表示和基本導數(shù)求解方法;
3)理解導數(shù)的幾何意義;
4)能進行簡單的導數(shù)四則運算。
2、過程與方法:
先理解導數(shù)概念背景,培養(yǎng)觀察問題的能力;再掌握定義和幾何意義,培養(yǎng)轉(zhuǎn)化問題的能力;最后求切線方程及運算,培養(yǎng)解決問題的能力。
3、情態(tài)及價值觀;
讓學生感受數(shù)學與生活之間的聯(lián)系,體會數(shù)學的美,激發(fā)學生學習興趣與主動性。
教學重點:
1、導數(shù)的求解方法和過程;
2、導數(shù)公式及運算法則的熟練運用。
教學難點:
1、導數(shù)概念及其幾何意義的理解;
2、數(shù)形結合思想的靈活運用。
教學課型:復習課(高三一輪)
教學課時:約1課時
高三數(shù)學專題課教案篇八
(一)導入
引出數(shù)形結合思想方法,強調(diào)其含義和重要性,告訴學生,本節(jié)課將利用數(shù)形結合方法來研究,會使學習變得輕松有趣。
采用這樣的引入方法,目的是打消學生對函數(shù)學習的畏難情緒,引起學生注意,也激起學生好奇和興趣。
(二)新知探索主要環(huán)節(jié),分為兩個部分
教學過程如下:
第一部分————師生共同研究得出正弦函數(shù)的性質(zhì)
1.定義域、值域2.周期性
3.單調(diào)性(重難點內(nèi)容)
為了突出重點、克服難點,采用以下手段和方法:
(1)利用多媒體動態(tài)演示函數(shù)性質(zhì),充分體現(xiàn)數(shù)形結合的重要作用;
(2)以層層深入,環(huán)環(huán)相扣的課堂提問,啟發(fā)學生思維,反饋課堂信息,使問題成為探索新知的線索和動力,隨著問題的解決,學生的積極性將被調(diào)動起來。
(3)單調(diào)區(qū)間的探索過程是:
先在靠近原點的一個單調(diào)周期內(nèi)找出正弦函數(shù)的一個增區(qū)間,由此表示出所有的增區(qū)間,體現(xiàn)從特殊到一般的知識認識過程。
**教師結合圖象幫助學生理解并強調(diào)“距離”(“長度”)是周期的多少倍
為什么要這樣強調(diào)呢?
因為這是對知識的一種意義建構,有助于以后理解記憶正弦型函數(shù)的相關性質(zhì)。
4.對稱性
設計意圖:
(1)因為奇偶性是特殊的對稱性,掌握了對稱性,容易得出奇偶性,所以著重講清對稱性。體現(xiàn)了從一般到特殊的知識再現(xiàn)過程。
(2)從正弦函數(shù)的對稱性看到了數(shù)學的對稱之美、和諧之美,體現(xiàn)了數(shù)學的審美功能。
5.最值點和零值點
有了對稱性的理解,容易得出此性質(zhì)。
第二部分————學習任務轉(zhuǎn)移給學生
設計意圖:
(3)通過課堂教學結構的改革,提高課堂教學效率,最終使學生成為獨立的學習者,這也符合建構主義的教學原則。
(三)鞏固練習
補充和選作題體現(xiàn)了課堂要求的差異性。
(四)結課
高三數(shù)學專題課教案篇九
理解數(shù)列的概念,掌握數(shù)列的運用
教學重難點
理解數(shù)列的概念,掌握數(shù)列的運用
教學過程
【知識點精講】
1、數(shù)列:按照一定次序排列的一列數(shù)(與順序有關)
2、通項公式:數(shù)列的第n項an與n之間的函數(shù)關系用一個公式來表示an=f(n)。
(通項公式不)
3、數(shù)列的表示:
(1)列舉法:如1,3,5,7,9……;
(2)圖解法:由(n,an)點構成;
(3)解析法:用通項公式表示,如an=2n+1
5、任意數(shù)列{an}的前n項和的性質(zhì)
高三數(shù)學專題課教案篇十
一、過程目標
1通過師生之間、學生與學生之間的互相交流,培養(yǎng)學生的數(shù)學交流能力和與人合作的精神。
2通過對對數(shù)函數(shù)的學習,樹立相互聯(lián)系、相互轉(zhuǎn)化的觀點,滲透數(shù)形結合的數(shù)學思想。
3通過對對數(shù)函數(shù)有關性質(zhì)的研究,培養(yǎng)學生觀察、分析、歸納的思維能力。
二、識技能目標
1理解對數(shù)函數(shù)的概念,能正確描繪對數(shù)函數(shù)的圖象,感受研究對數(shù)函數(shù)的意義。
2掌握對數(shù)函數(shù)的性質(zhì),并能初步應用對數(shù)的性質(zhì)解決簡單問題。
三、情感目標
1通過學習對數(shù)函數(shù)的概念、圖象和性質(zhì),使學生體會知識之間的有機聯(lián)系,激發(fā)學生的學習興趣。
2在教學過程中,通過對數(shù)函數(shù)有關性質(zhì)的研究,培養(yǎng)觀察、分析、歸納的思維能力以及數(shù)學交流能力,增強學習的積極性,同時培養(yǎng)學生傾聽、接受別人意見的優(yōu)良品質(zhì)。
教學重點難點:
1對數(shù)函數(shù)的定義、圖象和性質(zhì)。
2對數(shù)函數(shù)性質(zhì)的初步應用。
教學工具:多媒體
【學前準備】對照指數(shù)函數(shù)試研究對數(shù)函數(shù)的定義、圖象和性質(zhì)。
高三數(shù)學專題課教案篇十一
(二)評價說明
1.針對本班學生情況對課本進行了適當改編、細化,有利于難點克服和學生主體性的調(diào)動。
2.根據(jù)課堂上師生的雙邊活動,作出適時調(diào)整、補充(反饋評價);根據(jù)學生課后作業(yè)、提問等情況,反復修改并指導下節(jié)課的設計(反復評價)。
3.本節(jié)課充分體現(xiàn)了面向全體學生、以問題解決為中心、注重知識的建構過程與方法、重視學生思想與情感的'設計理念,積極地探索和實踐我校的科研課題——努力推進課堂教學結構改革。
通過這樣的探索過程,相信學生能從中有所體會,對后續(xù)內(nèi)容的學習和學生的可持續(xù)發(fā)展會有一定的幫助。希望很久以后留在學生記憶中的不是知識本身,而是方法與思想,是學習的習慣和熱情,這正是我們教育工作者追求的結果。
高三數(shù)學專題課教案篇十二
教學目標:
結合已學過的數(shù)學實例和生活中的實例,體會演繹推理的重要性,掌握演繹推理的基本模式,并能運用它們進行一些簡單推理。
教學重點:
掌握演繹推理的基本模式,并能運用它們進行一些簡單推理。
教學過程
一、復習
二、引入新課
1.假言推理
假言推理是以假言判斷為前提的演繹推理。假言推理分為充分條件假言推理和必要條件假言推理兩種。
(1)充分條件假言推理的基本原則是:小前提肯定大前提的前件,結論就肯定大前提的后件;小前提否定大前提的后件,結論就否定大前提的前件。
(2)必要條件假言推理的基本原則是:小前提肯定大前提的后件,結論就要肯定大前提的前件;小前提否定大前提的前件,結論就要否定大前提的后件。
2.三段論
三段論是指由兩個簡單判斷作前提和一個簡單判斷作結論組成的演繹推理。三段論中三個簡單判斷只包含三個不同的概念,每個概念都重復出現(xiàn)一次。這三個概念都有專門名稱:結論中的賓詞叫“大詞”,結論中的主詞叫“小詞”,結論不出現(xiàn)的那個概念叫“中詞”,在兩個前提中,包含大詞的叫“大前提”,包含小詞的叫“小前提”。
3.關系推理指前提中至少有一個是關系判斷的推理,它是根據(jù)關系的邏輯性質(zhì)進行推演的。可分為純關系推理和混合關系推理。純關系推理就是前提和結論都是關系判斷的推理,包括對稱性關系推理、反對稱性關系推理、傳遞性關系推理和反傳遞性關系推理。
(1)對稱性關系推理是根據(jù)關系的對稱性進行的推理。
(2)反對稱性關系推理是根據(jù)關系的反對稱性進行的推理。
(3)傳遞性關系推理是根據(jù)關系的傳遞性進行的推理。
(4)反傳遞性關系推理是根據(jù)關系的反傳遞性進行的推理。
4.完全歸納推理是這樣一種歸納推理:根據(jù)對某類事物的全部個別對象的考察,已知它們都具有某種性質(zhì),由此得出結論說:該類事物都具有某種性質(zhì)。
オネ耆歸納推理可用公式表示如下:
オs1具有(或不具有)性質(zhì)p
オs2具有(或不具有)性質(zhì)p……
オsn具有(或不具有)性質(zhì)p
オ(s1s2……sn是s類的所有個別對象)
オニ以,所有s都具有(或不具有)性質(zhì)p
オタ杉,完全歸納推理的基本特點在于:前提中所考察的個別對象,必須是該類事物的全部個別對象。否則,只要其中有一個個別對象沒有考察,這樣的歸納推理就不能稱做完全歸納推理。完全歸納推理的結論所斷定的范圍,并未超出前提所斷定的范圍。所以,結論是由前提必然得出的。應用完全歸納推理,只要遵循以下兩點,那末結論就必然是真實的:(1)對于個別對象的斷定都是真實的;(2)被斷定的個別對象是該類的全部個別對象。
小結:本節(jié)課學習了演繹推理的基本模式.
高三數(shù)學專題課教案篇十三
20__年是江蘇高考進入新課程的第三年,我們應當在體現(xiàn)新課程多樣性、選擇性和探究性的特點的同時,結合__、__年高考數(shù)學試卷分析,在夯實基礎的前提下讓學生全面而有個性的發(fā)展。
根據(jù)20__屆高三的特殊情況制定的我市高中數(shù)學教學進度建議,望各校能按照這個進度制定詳細的學科教學進度計劃,突出重點,在有效復習時間大大縮短的前提下,確保高三復習工作的順利完成。
一、教學進度
理科復習順序
文科復習順序
測試建議
新授坐標系和參數(shù)方程;復習集合(含常用邏輯用語)、函數(shù)的概念與基本初等函數(shù)、導數(shù)及其應用(含定積分)、三角函數(shù)(含三角恒等變換、解三角形)、平面向量、數(shù)列、不等式、平面解析幾何(含圓錐曲線方程)。
立體幾何初步(含空間向量與立體幾何)、推理與證明(含數(shù)學歸納法)、算法初步、概率統(tǒng)計、數(shù)系的擴充與復數(shù)的引入。
計數(shù)原理、概率。
矩陣與變換、坐標系與參數(shù)方程(或不等式選講、幾何證明選講)。
復習集合與常用邏輯用語、函數(shù)的概念與基本初等函數(shù)、導數(shù)及其應用、三角函數(shù)(含三角恒等變換、解三角形)、平面向量、數(shù)列、不等式、平面解析幾何(含圓錐曲線方程)。
立體幾何初步、推理與證明、數(shù)系的擴充與復數(shù)的引入。
算法初步、概率統(tǒng)計。
9月底進行高三第一次統(tǒng)測,主要目的是摸底,范圍均為全部必修
1月中旬進行高三第二次統(tǒng)測,范圍為全部必修和選修內(nèi)容。
3月底進行高三第三次統(tǒng)測,范圍為全部必修和選修內(nèi)容
計劃到3月底第一輪復習全部結束。
第二、三輪復習
專題復習、專題訓練、
綜合訓練、模擬訓練
充分利用其它市等信息試卷模擬,迎接高考。
說明:統(tǒng)測全部內(nèi)容的目的有二,一是各校可根據(jù)本校實際情況確定教學進度,不受統(tǒng)測進度的影響;二是有利于老師和學生準確了解高考,清楚把握難度,盡快適應高考。
二、復習策略
1、第一輪復習的基礎性。第一輪復習是整個數(shù)學復習的基礎工程,其主要任務是在老師的指導下,讓學生自己對基礎知識、基本技能進行梳理,使之達到系統(tǒng)化、結構化、完整化;在老師的組織下通過對基礎題的系統(tǒng)訓練和規(guī)范訓練,使學生準確理解每一個概念,能從不同角度把握所學的每一個知識點,及知識點所有可能涉及到的題型,熟練掌握各種典型問題的通性、通法。第一輪復習務必要做到細而實,統(tǒng)籌計劃。切不可因輕重不分而出現(xiàn)“前緊后松,前松后緊”的現(xiàn)象,也不可因趕進度而出現(xiàn)“點到為止,草草了事”的現(xiàn)象,只有真正實現(xiàn)低起點、小坡度、嚴要求,真正改變教師一包到底,實施學生自主學習,才能達到夯實“雙基”的目的。
2、第一輪復習的全面性。第一輪復習必須面向全體學生。降低復習起點,在夯實“雙基”的前提下,注重培養(yǎng)學生的能力,包括:空間想像、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本能力。提高學生對實際問題的閱讀理解、思考判斷能力;以及數(shù)學地提出、分析和解決問題(包括簡單的實際問題)的能力,數(shù)學表達和交流的能力,發(fā)展獨立獲取數(shù)學知識的能力。復習教學要充分考慮到課標的教學要求和本校、本班學生的實際水平,堅決反對脫離學生實際的任意拔高和只抓幾個“優(yōu)生”放棄大部分“差生”的不良做法,不做或少做無效勞動,同時加大分層教學和個別指導的力度,狠抓復習的針對性、實效性,提高復習效果。
3、第一輪復習的針對性。06年、07年、__年的江蘇高考試題,__年上海、廣東、寧夏、海南的新課程試題,已經(jīng)在暗示我們__年江蘇高考數(shù)學考什么、怎么考,提醒我們要在將基礎問題學實學活的同時,重視數(shù)學思想方法的復習。數(shù)形結合、函數(shù)方程、等價化歸、分類討論等數(shù)學思想依然是新課程數(shù)學高考的重點、熱點、難點,因此一定要把復習內(nèi)容中反映出來的數(shù)學思想方法的教學體現(xiàn)在第一輪復習的全過程中,使學生真證領悟到如何靈活運用數(shù)學思想方法解題。必須讓學生明白復習的最終目標是新題會解,而不能單單立足于陳題的熟練。
4、第一輪復習的科學性。要強化運算能力、表達能力和閱讀理解能力的訓練,復習時要有意識地提供給學生自主思考的時間和空間,安排時間讓學生定期、定時、定量地進行完整的、規(guī)范的解題訓練。對解題過程和書面表達提出明確具體的要求,在一開始就注重培養(yǎng)學生良好的解題習慣、考試習慣,從而提高解題的成功率和得分率。同時要加強處理信息與數(shù)據(jù)、和尋求設計合理。簡捷的運算途徑萬面的訓練,提高閱讀理解的水平和運算技能。盡管命題組一再強調(diào)“多考一點想的,少考一點算的”,事實上許多學生仍然因運算量大而無法完成。因此對運算技能的培養(yǎng)必須重視和加強。另外,網(wǎng)上閱卷對解題規(guī)范、書寫輕重、表述完整等的新的要求必須人人清楚。
5、第一輪復習的學習性。在認真研究、學__年高考試題江蘇卷以及全國卷、上海、廣東、寧夏、海南的新課程卷,以及考試中心對各地__年高考試題的評價報告的同時,針對新課程的《數(shù)學課程標準的教學要求》,進一步加強對數(shù)學解題教學的學習研究,提高自身教學水平。我們既反對題海戰(zhàn)術,又提倡做一定數(shù)量的有代表性的基礎題、綜合題和應用題。只有通過做一定量的題,才能讓學生牢固掌握基本題型的通性、通法,以及其中的數(shù)學思想方法,才能提高學生尋求最佳解法、解題反思、歸納總結的能力,才能探索解各類數(shù)學題的一般規(guī)律,積累解題經(jīng)驗,進而提升獨立解題的能力。
6、第一輪復習的研究性。要進一步加強對知識復習課和試卷講評課的研究。各校的集體備課要多重實效少重形式,教學案一體化要保證質(zhì)量控制數(shù)量,嚴格責任制、把關制。每周要通過獨立作業(yè)等形式安排一次課內(nèi)質(zhì)量檢測,主要檢查本周內(nèi)復習教學情況,而不是與復習內(nèi)容無關的綜合檢測。檢測題的難度要適合本班中下等生的水平,面向全體學生,有利于提高每個學生學習數(shù)學的興趣。檢測要注意滾動發(fā)展,防止前學后忘,對于每次檢測,要做到定時收,及時改,改必評,錯必糾,充分發(fā)揮講評課的有效功能。講評時切忌不做任何分析的對答案,講評要專題化。要重點突出,以點觸面,舉一反三。二要進一步加強對復習資料的研究。我們提倡認真選用好復習資料,堅持教師擁有多種資料,學生用一本資料。在實際教學中,教師可以根據(jù)學生的實際水平對多種資料進行有針對性的選擇、改編和重組,使之更符合本?;虮景鄬W生的實際水平,從而達到提高復習的針對性和復習效率的目的。大力提倡各校使用教學案一體化,要求凡使用教學案一體化的學校務必實行嚴格的分工、研討、審核制度,同時重視經(jīng)過個人精加工的二次備課,以確保教學案的針對性、科學性和實用性,堅決反對使用僅由個人盲目拼湊的(只有分工,沒有研討、審核、二次備課)錯誤百出的教學案。凡是給學生訓練的題,教師都必須至少親自做一遍,只有這樣才能真正做到對學生解題的有針對性的訓練和指導。
7、第二輪復習的專題性。要強化綜合訓練,上好專題訓練課。要突出如何運用數(shù)學思想萬法分析、解決問題;要聯(lián)系社會、生活實際設置一些新穎情景題,強化學生在閱讀理解、審題、探索思路等萬面的訓練;要多證學生獨立思考,充分重視審顴的科學性、運算的準確性、解題的規(guī)范性、表述的精確性、以及解題速度的提高等,堅決克服懂而不會,全而不對,對而不全,全而不快的現(xiàn)象。同時要注意心理疏導,確保在各種意想不到的情況下有——個良好的心態(tài);注意應試技巧的訓練,確保在最短的時間內(nèi)以最優(yōu)的.萬法拿到所有可能拿到的分數(shù),使學生在高考中,充分發(fā)揮自已的水平,取得理想的成績。
8、第二輪復習的針對性。為了更好地提高學生的解題能力,適應新課程高考的新題型,二輪復習務必加強計劃性。開什么樣的專題,開那些專題;練什么樣的模擬卷,練幾份模擬卷,都必須在進行深入細致的調(diào)研的前提下科學的決策。另外,還需強調(diào)的是為了確保第三次統(tǒng)測時,一輪復習全部結束,各校的理科必須增加課時,加快進度,而文科必須控制進度,按計劃復習。
三、復習建議
1、系統(tǒng)構建知識網(wǎng)絡,準確把握教學要求。要按《數(shù)學課程標準和教學要求》理解掌握好每一個知識點,決不能顧此失彼,無端忽視自以為簡單或不重要的知識點,直接導致應缺少某個必要的知識而失分;也不能無端的拓寬和加深,導致由于過多地無用功而影響教學成績。
2、自始至終培養(yǎng)能力,夯實基礎開拓視野。要不斷提高學生的運算能力、空間想象能力、邏輯思維能力,以及運用知識解決實際問題的實踐能力和創(chuàng)新意識。以不變應萬變,而不應該以獲得高考信息為借口,猜題、押題、盲目訓練,導致學生對基本題型、通性通法的忽視。如閱讀理解題、運算題、空間想象題、分類討論題等。應按照新課程理念的要求,把學生推到問題的前沿。盡可能讓他們主動的多角度的去分析、去探索、去發(fā)現(xiàn)、去研究、去創(chuàng)新,缺少反思的盲目訓練絕不可能在高考中取得好成績。
(1)對于處理問題的重要的數(shù)學思想方法,如函數(shù)與方程、變換與轉(zhuǎn)化、分類與歸納、數(shù)形的結合與分離、定常與變化的對立與統(tǒng)一等思想觀點和方法,高考將通過具體問題,測試考生掌握的程度。
(2)對思維能力的考查要求,與試題的解答過程結合起來就是:能正確領會題意,明確解題的目標與方向,會采用適當?shù)牟襟E,合乎邏輯地進行推理和演算,實現(xiàn)解題目標并加以正確表述。今年的試題之所以難,思維能力的要求高是一個重要原因。
(3)對運算能力的考查要求,數(shù)值計算、字符運算,以及各種式子的變換運算,都是重要的考查內(nèi)容。應懂得恰當?shù)貞霉浪恪D算、近似計算和精確計算進行解題。今后的試題對運算能力和估算能力的要求會比較高。
(4)對空間想像能力的考查要求,強調(diào)的是對圖形的認識、理解和應用,既會用圖形表現(xiàn)空間形體,又會由圖形想像出直觀的形象;既會觀察、分析各種幾何要素(點、線、面、體)的相互位置關系,又能對圖形進行變換分解和組合。為了增強和發(fā)展空間想像能力,必須強化空間觀念,培養(yǎng)直覺思維的習慣,把抽象思維與形象思維結合起來。
3、加強教學模式研究,形成有效教學手段。個人認為,抓基礎落實,應從以下三個方面入手,一是回歸課本、教材,理清知識本原,構建知識網(wǎng)絡;二是以課本習題為素材,深入淺出、舉一反三地加以推敲、延伸和變形,形成典型例題,借助啟發(fā)式講解、自主式訓練幫助學生融會貫通;三是精心選擇習題,悉心設置問題,充分挖掘題目的內(nèi)涵和外延,引導學生變題為類,便所選習題的功能得到最大發(fā)揮,同時著重抓好應變能力的培養(yǎng)和解題規(guī)范化訓練。在第一輪復習中要對每一章數(shù)學基礎知識,作幾次系統(tǒng)的回顧與總結,對所學內(nèi)容能按類別形成知識網(wǎng)絡,清理考點,清理錯解,清理題型,消理方法。每一單元選5個左右的典型問題進行評點與反思。專題復習課、試卷講評課是高三數(shù)學復習課中的兩種主要教學模式,如何改進兩課教學模式,促進課堂教學效益的提高,是永遠不變的話題。首先要加強集體備課,通過集體智慧的凝聚,實現(xiàn)優(yōu)勢互補、資源共享。在高中擴招、師資大量流失的今天,尤其顯得必要,可以說__年、__年之所以能取得較好的成績,其關鍵在于各校在這一點上做得實,希望繼續(xù)保持和發(fā)揚;其次是在使用教學案一體化的同時,重視針對所帶學生實際情況的個人備課,雖然所有學生都用同一張試卷考數(shù)學,但各種不同選課的學生學數(shù)學的基礎和基本素質(zhì)相差太大,使我們不得不準對學生的實際情況實施有效教學,因此個人備課馬虎不得;最后要在教學過程中不斷地、自覺地研究考情、學情、教材、大綱,針對學生的情況變化、教學設備的變化等,制定確實可行的教學方案,并隨時進行修訂、完善,細節(jié)決定成敗,只有把握好教學的每——個環(huán)節(jié),才能真正提高教學效益。我們強調(diào):注重視知識梳理、網(wǎng)絡構建的同時,不能忽視方法教學和能力培養(yǎng),要求在復習重點知識時適時滲透數(shù)學思想方法,在專題復習時提煉數(shù)學思想方法,在綜合訓練是鞏固和深化數(shù)學思想方法,用細水長流的方式將閱讀理解能力和應用意識融入平常教學的每一環(huán)節(jié),使通性通法的運用在數(shù)學思想方法的指導下變得更加靈活、自如,使學生能自覺地用數(shù)學眼光去觀察、去分析生產(chǎn)、生活和其他學科的一些具體問題,真正實現(xiàn)創(chuàng)新意識和數(shù)學素養(yǎng)的提高。復習中務必注意選擇習題,做題要重質(zhì)量,不要貪多。要選擇反映數(shù)學學科特點的題目,如存在性,唯一性,充要條件,不變量,參數(shù)問題,恒成立的立向題,軌跡問題等,要針對學生的薄弱環(huán)節(jié)設制習題,不做偏題,怪題,不要覺得學生做不好的題就一定要考,犯疑心病,要重思想、重方法,務必做到每題弄懂弄透。
4、認真研究高考試卷,準確把握高考導向。通過新課程理念的學習,實現(xiàn)教學觀念和教學思想的真正轉(zhuǎn)變,即變只懂書本內(nèi)容、只會解題的單一型教學目標為重實踐能力和創(chuàng)新精神的綜合素質(zhì)教育目標;變只重知識積累、只重學習結果的質(zhì)量體系為反映學生全面素質(zhì)的綜合學習評價;變陳舊、落后、傳統(tǒng)的教學手段為先進、快捷、激趣式的現(xiàn)代教育技術方式。通過各項工作的有序進行,實現(xiàn)教學目標和教學效果的真正統(tǒng)一,即教學內(nèi)容的重難點和高考內(nèi)容重難點的真正統(tǒng)一;知識點的難易度和高考難易度的真正統(tǒng)一;教學能力要求和高考能力要求的真正統(tǒng)一,爭創(chuàng)高考成績的再輝煌。創(chuàng)新意識和創(chuàng)造能力是理性思維的高層次表現(xiàn)。在數(shù)學學習和研究過程中,知識的遷移、組合、融匯的程度越高,展示能力的區(qū)域就越寬泛,顯現(xiàn)出的創(chuàng)造意識也就越強。
5、加強新增內(nèi)容研究,注意新的考查點。新課程在過去的基礎上增加了“簡易邏輯”、“平面向量”、“導數(shù)”、“概率統(tǒng)計”等內(nèi)容。這些內(nèi)容是切合時代需要和數(shù)學發(fā)展的。增加這些內(nèi)容,是先進教育理念指導的結果。高考既是選拔性考試可也是對中學教育的一種評價,這些極富生命力的課程內(nèi)容必須考查。新增內(nèi)容的相關試題在試卷中起點提高,難度加大,并形成了以向量、導數(shù)、概率為紐帶的新的知識網(wǎng)絡交匯點。但是,對新內(nèi)容的命題考查并不是一步到位,而是采取逐步遞進、最終完善的方法,在20__、__年的高考命題中,新增內(nèi)容的相關試題所占的分值占有較大份額。新增內(nèi)容在高考中絕對不是數(shù)學知識的簡單復制,而是趨向于能力的考查。因此要特別關注:
(1)導數(shù)與函數(shù)的結合。函數(shù)是高中數(shù)學的主干內(nèi)容,導數(shù)作為新課程中160分的重要內(nèi)容之一,為研究函數(shù)提供了有力的工具,便函數(shù)的釣單調(diào)性、極值、最值等問題都得到了有效而較為徹底的解決。因此,用導數(shù)方法研究函數(shù)問題是數(shù)學學習的必然,也是高考命題的方向。
(2)平面向量與解析幾何的結合。平面向量與解析幾何都涉及坐標表示和坐標運算,坐標法可以將二者有機結合起來,高考命題必然會抓住這一契機。
(4)概率統(tǒng)計與排列組合的結合。概率與統(tǒng)計是近代數(shù)學的重要分支,在現(xiàn)實中應用廣泛,同時概率統(tǒng)計與排列組合又有著緊密的聯(lián)系,將它們有機結合應該是新課程高考的熱點和亮點,但我們注意到概率及計數(shù)原理均為40分的學習內(nèi)容,160分中的概率是非常簡單的,所以這一塊的高考難度不會大。
6、高考求新求變求穩(wěn),訓練速度規(guī)范質(zhì)量。立足教材、重視基礎、突出知識主干、不回避知識重點是歷年高考命題的不變之策,20__年如此,20__年也不例外,傳統(tǒng)題目還將占大多數(shù),創(chuàng)新問題占少數(shù),減少運算量,增大思維量,是新課程標準的既定目標要求。個人認為__年題目的總體難易程度,應比20__年易一點但也不會太易,填充題側(cè)重于雙基的考查,其中有一些小技巧,注意合情思維(猜想、真覺等)、數(shù)形結合、化歸與分類等思想方法的應用,也將出現(xiàn)定量分析與定性分析型的問題;通過計算與分析推理解決的問題是定量分析問題,憑直覺進行觀察分析解決的問題是定性分析問題,會出現(xiàn)開放題與小綜合題,主要表現(xiàn)在多項選擇、試驗發(fā)現(xiàn)、歸納猜想等問題中。解答題的考查空間較寬廣,不僅形式靈活多樣,而且內(nèi)涵極其深刻,既可在多個層次上考查基本知識、基本技能和基本思想方法,又能深入地考查數(shù)學能力和數(shù)學素質(zhì)。在設問方式上,可能出現(xiàn)串連式小步設問模式,其間會有遞推條件型的開放性題目與材料分析型的開放性題目;在知識點的考查上,要加強知識點之間的綜合聯(lián)系,包括橫向的與縱向的聯(lián)系,比如立幾與函數(shù)、解幾與函數(shù)、數(shù)列與函數(shù)、向量與解幾、三角與向量、不等式與函數(shù)等知識網(wǎng)絡間的聯(lián)系;在綜合能力的考查上,除繼續(xù)注重數(shù)學觀察能力、數(shù)學記憶力、數(shù)學語言的轉(zhuǎn)換能力外,還要增強探索試驗能力、歸納概括能力及非智力因素的考查。
在后期的復習中,首先可考慮選幾套模擬卷,只審題,不做題。題目本身是“怎樣解這道題”的信息源,題目中的信息往往通過語言文字,公式符號,以及它們之間的關系間接告訴你,所以審題一定要逐字逐句看清楚,力求從語法結構,邏輯關系,數(shù)學含義等方面真正看懂題意,弄清條件是什么(告訴你從何處入手)?結論是什么(告訴你向何方前進)?它們分別與哪些知識有聯(lián)系?從自己已掌握的知識方法模塊中提取與之相適應的解題方法,通過已建立的思維鏈,把知識方法輸入大腦,并在大腦中進行整合,找到解題途徑,并留心易錯點,想出解案。只有細致的審題才能從題目本身獲得盡可能多的信息,這一步,開始不要怕“慢”,這是訓練思維敏捷性必經(jīng)的一步。其次做5套左右的高考模擬題,最好做幾套近兩年中上海、山東、廣東、寧夏、海南以及南通、南京等地區(qū)的高考仿真題,不在于能得多少分;而在于真實感受一下“新課程高考”的難度,熟悉一下解答題評卷規(guī)則,以改進自已的書面表述習慣,進而了解在哪些問題上是得分的強項,哪些是得分的弱項。另外,網(wǎng)上閱卷所反映的解題規(guī)范、字跡工整方面導致的失分仍應在平常的教學中給予足夠的重視。
20__年高考復習已經(jīng)拉開帷幕,希望我們的設想和建議能給各校的復習帶來一些幫助,在20__年高考中有所收獲,讓我們大家共同努力,辛勤的汗水定能澆灌出豐碩的果實。預祝20__年高考再創(chuàng)輝煌!
高三數(shù)學專題課教案篇十四
近年來的高考數(shù)學試題逐步做到科學化、規(guī)范化,堅持了穩(wěn)中求改、穩(wěn)中創(chuàng)新的原則。考試題不但堅持了考查全面,比例適當,布局合理的特點,也突出體現(xiàn)了變知識立意為能力立意這一舉措。更加注重考查考生進入高校學習所需的基本素養(yǎng),這些問題應引起我們在教學中的關注和重視。
20__年是湖南省新課標命題的第二年,數(shù)學試卷充分發(fā)揮數(shù)學作為基礎學科的作用,既重視考查中學數(shù)學基礎知識的掌握程度,又注意考查進入高校繼續(xù)學習的潛能。在前二年命題工作的基礎上做到了總體保持穩(wěn)定,深化能力立意,積極改革創(chuàng)新,兼顧了數(shù)學基礎、思想方法、思維、應用和潛能等多方面的考查,融入課程改革的理念,拓寬題材,選材多樣化,寬角度、多視點地考查數(shù)學素養(yǎng),多層次地考查思想能力,充分體現(xiàn)出湖南卷的特色:
1、試題題型平穩(wěn)突出對主干知識的考查重視對新增內(nèi)容的考查
2、充分考慮文、理科考生的思維水平與不同的學習要求,體現(xiàn)出良好的層次性
3、重視對數(shù)學思想方法的考查
4、深化能力立意,考查考生的學習潛能
5、重視基礎,以教材為本
6、重視應用題設計,考查考生數(shù)學應用意識
二、教學計劃與要求
新課已授完,高三將進入全面復習階段,全年復習分兩輪進行。
第一輪為系統(tǒng)復習(第一學期),此輪要求突出知識結構,扎實打好基礎知識,全面落實考點,要做到每個知識點,方法點,能力點無一遺漏。在此基礎上,注意各部分知識點在各自發(fā)展過程中的縱向聯(lián)系,以及各個部分之間的橫向聯(lián)系,理清脈絡,抓住知識主干,構建知識網(wǎng)絡。在教學中重點抓好各中通性、通法以及常規(guī)方法的復習,是學生形成一些最基本的數(shù)學意識,掌握一些最基本的數(shù)學方法。同時有意識進行一定的綜合訓練,先小綜合再大綜合,逐步提高學生解題能力。
三、具體方法措施
1、認真學習《考試說明》,研究高考試題,提高復習課的效率。
《考試說明》是命題的依據(jù),復習的依據(jù)、高考試題是《考試說明》的具體體現(xiàn)。只有研究近年來的考試試題,才能加深對《考試說明》的理解,找到我們與命題專家在認識《考試說明》上的差距。并力求在復習中縮小這一差距,更好地指導我們的復習。
2、高質(zhì)量備課,
參考網(wǎng)上的課件資料,結合我校學生實際,高度重視基礎知識,基本技能和基本方法的復習。充分發(fā)揮全組老師的集體智慧,確保每節(jié)課件都是高質(zhì)量的。統(tǒng)一的教案、統(tǒng)一的課件。
3、高效率的上好每節(jié)課,
重視通性、通法的落實。要把復習的重點放在教材中典型例題、習題上;放在體現(xiàn)通性、通法的例題、習題上;放在各部分知識網(wǎng)絡之間的內(nèi)在聯(lián)系上抓好課堂教學質(zhì)量,定出實施方法和評價方案。
4、狠抓作業(yè)批改、講評,教材作業(yè)、練習課內(nèi)完成,課外作業(yè)認真批改、講評。一題多思多解,提煉思想方法,提升學生解題能力。
5、認真落實月考,考前作好指導復習,試卷講評起到補缺長智的作用。
6、結合實際,了解學生,分類指導。
高考復習要結合高考的實際,也要結合學生的實際,要了解學生的全面情況,實行綜合指導??赡苡械膶W生應專攻薄弱環(huán)節(jié),而另一些學生則應揚長避短。了解學生要加強量的分析,建立檔案、了解學生,才有利于個別輔導,因材施教,對于好的學生,重在提高;對于差的學生,重在補缺。
四、復習參考資料
1、20__年數(shù)學科《考試說明》(全國)及湖南省《補充說明》。
2、《創(chuàng)新設計》高考第一輪總復習數(shù)學及《學海導航》高考第一輪總復習數(shù)學。
五、教學參考進度
第一輪的復習要以基礎知識、基本技能、基本方法為主,為高三數(shù)學會考做好準備。
高三數(shù)學專題課教案篇十五
我發(fā)現(xiàn),許多學生的學習方法是:直接記住函數(shù)性質(zhì),在解題中套用結論,對結論的來源不理解,知其然不知其所以然,應用中不能變通和遷移。
本節(jié)的學習方法對后續(xù)內(nèi)容的學習具有指導意義。為了培養(yǎng)學法,充分關注學生的可持續(xù)發(fā)展,教師要轉(zhuǎn)換角色,站在初學者的位置上,和學生共同探索新知,共同體驗數(shù)形結合的研究方法,體驗周期函數(shù)的研究思路;幫助學生實現(xiàn)知識的意義建構,幫助學生發(fā)現(xiàn)和總結學習方法,使教師成為學生學習的高級合作伙伴。
教師要做到:
授之以漁,與之合作而漁,使學生享受漁之樂趣。因此
1.本節(jié)要教給學生看圖象、找規(guī)律、思考提問、交流協(xié)作、探索歸納的學習方法。
2.通過本課的探索過程,培養(yǎng)學生觀察、分析、交流、合作、類比、歸納的學習能力及數(shù)形結合(看圖說話)的意識和能力。
高三數(shù)學專題課教案篇十六
1.板書要基本體現(xiàn)整堂課的內(nèi)容與方法,體現(xiàn)課堂進程,能簡明扼要反映知識結構及其相互聯(lián)系;能指導教師的教學進程、引導學生探索知識;同時不完全按課本上的呈現(xiàn)方式來編排板書。即體現(xiàn)系統(tǒng)性、程序性、概括性、指導性、啟發(fā)性、創(chuàng)造性的原則;(原則性)
2.使用幻燈片輔助板書,節(jié)省課堂時間,使課堂進程更加連貫。(靈活性)