教案的編寫應當注重教學方法的選擇、示范和指導,以幫助學生全面發(fā)展和有效學習。教案的編寫要注重教學過程和教學結(jié)果的評估和反饋。這些教案范文能夠幫助教師合理安排學習任務,提高學生的學業(yè)成績。
八年級數(shù)學教案湘教版篇一
一、教學目標
1.理解分式的基本性質(zhì).
2.會用分式的基本性質(zhì)將分式變形.
二、重點、難點
1.重點:理解分式的基本性質(zhì).
2.難點:靈活應用分式的基本性質(zhì)將分式變形.
3.認知難點與突破方法
教學難點是靈活應用分式的基本性質(zhì)將分式變形.突破的方法是通過復習分數(shù)的通分、約分總結(jié)出分數(shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì).應用分式的基本性質(zhì)導出通分、約分的概念,使學生在理解的基礎上靈活地將分式變形.
三、例、習題的意圖分析
1.p7的例2是使學生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應用分式的基本性質(zhì),相應地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變.
2.p9的例3、例4地目的是進一步運用分式的基本性質(zhì)進行約分、通分.值得注意的是:約分是要找準分子和分母的公因式,最后的結(jié)果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母.
教師要講清方法,還要及時地糾正學生做題時出現(xiàn)的錯誤,使學生在做提示加深對相應概念及方法的理解.
3.p11習題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號.這一類題教材里沒有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變.
“不改變分式的值,使分式的分子和分母都不含‘-’號”是分式的基本性質(zhì)的應用之一,所以補充例5.
四、課堂引入
1.請同學們考慮:與相等嗎?與相等嗎?為什么?
2.說出與之間變形的過程,與之間變形的過程,并說出變形依據(jù)?
3.提問分數(shù)的基本性質(zhì),讓學生類比猜想出分式的基本性質(zhì).
五、例題講解
p7例2.填空:
[分析]應用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個整式,使分式的值不變.
p11例3.約分:
[分析]約分是應用分式的基本性質(zhì)把分式的分子、分母同除以同一個整式,使分式的值不變.所以要找準分子和分母的公因式,約分的結(jié)果要是最簡分式.
p11例4.通分:
[分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母.
八年級數(shù)學教案湘教版篇二
一、教學目標:
1.理解并掌握矩形的判定方法.
二、重點、難點
1.重點:矩形的判定.
2.難點:矩形的判定及性質(zhì)的綜合應用.
三、例題的意圖分析
本節(jié)課的三個例題都是補充題,例1在的一組判斷題是為了讓學生加深理解判定矩形的條件,老師們在教學中還可以適當?shù)卦僭黾右恍┡袛嗟念}目;例2是利用矩形知識進行計算;例3是一道矩形的判定題,三個題目從不同的角度出發(fā),來綜合應用矩形定義及判定等知識的.
四、課堂引入
1.什么叫做平行四邊形?什么叫做矩形?
2.矩形有哪些性質(zhì)?
3.矩形與平行四邊形有什么共同之處?有什么不同之處?
通過討論得到矩形的判定方法.
矩形判定方法1:對角錢相等的平行四邊形是矩形.
矩形判定方法2:有三個角是直角的四邊形是矩形.
(指出:判定一個四邊形是矩形,知道三個角是直角,條件就夠了.因為由四邊形內(nèi)角和可知,這時第四個角一定是直角.)
八年級數(shù)學教案湘教版篇三
1某公司銷售部有營銷人員15人,銷售部為了制定某種商品的銷售金額,統(tǒng)計了這15個人的銷售量如下(單位:件)
求這15個銷售員該月銷量的中位數(shù)和眾數(shù)。
假設銷售部負責人把每位營銷員的月銷售定額定為320件,你認為合理嗎?如果不合理,請你制定一個合理的銷售定額并說明理由。
2、某商店3、4月份出售某一品牌各種規(guī)格的空調(diào),銷售臺數(shù)如表所示:
1匹1.2匹1.5匹2匹
3月12臺20臺8臺4臺
4月16臺30臺14臺8臺
根據(jù)表格回答問題:
商店出售的各種規(guī)格空調(diào)中,眾數(shù)是多少?
假如你是經(jīng)理,現(xiàn)要進貨,6月份在有限的資金下進貨單位將如何決定?
答案:1.(1)210件、210件(2)不合理。因為15人中有13人的銷售額達不到320件(320雖是原始數(shù)據(jù)的平均數(shù),卻不能反映營銷人員的一般水平),銷售額定為210件合適,因為它既是中位數(shù)又是眾數(shù),是大部分人能達到的額定。
2.(1)1.2匹(2)通過觀察可知1.2匹的銷售,所以要多進1.2匹,由于資金有限就要少進2匹空調(diào)。
八年級數(shù)學教案湘教版篇四
1.知識與技能
會應用平方差公式進行因式分解,發(fā)展學生推理能力.
2.過程與方法
經(jīng)歷探索利用平方差公式進行因式分解的過程,發(fā)展學生的逆向思維,感受數(shù)學知識的完整性.
3.情感、態(tài)度與價值觀
培養(yǎng)學生良好的互動交流的習慣,體會數(shù)學在實際問題中的應用價值.
重、難點與關鍵
1.重點:利用平方差公式分解因式.
2.難點:領會因式分解的解題步驟和分解因式的徹底性.
3.關鍵:應用逆向思維的方向,演繹出平方差公式,對公式的應用首先要注意其特征,其次要做好式的變形,把問題轉(zhuǎn)化成能夠應用公式的方面上來.
教學方法
采用“問題解決”的教學方法,讓學生在問題的牽引下,推進自己的思維.
教學過程
一、觀察探討,體驗新知
【問題牽引】
請同學們計算下列各式.
(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).
【學生活動】動筆計算出上面的兩道題,并踴躍上臺板演.
(1)(a+5)(a-5)=a2-52=a2-25;
(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.
【教師活動】引導學生完成下面的兩道題目,并運用數(shù)學“互逆”的思想,尋找因式分解的規(guī)律.
1.分解因式:a2-25;2.分解因式16m2-9n.
【學生活動】從逆向思維入手,很快得到下面答案:
(1)a2-25=a2-52=(a+5)(a-5).
(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).
【教師活動】引導學生完成a2-b2=(a+b)(a-b)的同時,導出課題:用平方差公式因式分解.
平方差公式:a2-b2=(a+b)(a-b).
評析:平方差公式中的字母a、b,教學中還要強調(diào)一下,可以表示數(shù)、含字母的代數(shù)式(單項式、多項式).
二、范例學習,應用所學
【例1】把下列各式分解因式:(投影顯示或板書)
(1)x2-9y2;(2)16x4-y4;
(3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;
(5)m2(16x-y)+n2(y-16x).
【思路點撥】在觀察中發(fā)現(xiàn)1~5題均滿足平方差公式的特征,可以使用平方差公式因式分解.
【教師活動】啟發(fā)學生從平方差公式的角度進行因式分解,請5位學生上講臺板演.
【學生活動】分四人小組,合作探究.
解:(1)x2-9y2=(x+3y)(x-3y);
(5)m2(16x-y)+n2(y-16x)
=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).
新人教版數(shù)學八年級上冊教案
八年級數(shù)學教案湘教版篇五
嚴格的講教材本節(jié)課沒有引入的問題,而是在復習和延伸中位數(shù)的定義過程中拉開序幕的,本人很同意這種處理方式,教師可以一句話引入新課:前面已經(jīng)和同學們研究過了平均數(shù)的這個數(shù)據(jù)代表。它在分析數(shù)據(jù)過程中擔當了重要的角色,今天我們來共同研究和認識數(shù)據(jù)代表中的新成員——中位數(shù)和眾數(shù),看看它們在分析數(shù)據(jù)過程中又起到怎樣的作用。
八年級數(shù)學教案湘教版篇六
1、知識與技能
會應用平方差公式進行因式分解,發(fā)展學生推理能力。
2、過程與方法
經(jīng)歷探索利用平方差公式進行因式分解的過程,發(fā)展學生的逆向思維,感受數(shù)學知識的完整性。
3、情感、態(tài)度與價值觀
培養(yǎng)學生良好的互動交流的習慣,體會數(shù)學在實際問題中的應用價值。
重、難點與關鍵
1、重點:利用平方差公式分解因式。
2、難點:領會因式分解的解題步驟和分解因式的徹底性。
3、關鍵:應用逆向思維的方向,演繹出平方差公式,對公式的應用首先要注意其特征,其次要做好式的變形,把問題轉(zhuǎn)化成能夠應用公式的方面上來。
教學方法
采用“問題解決”的教學方法,讓學生在問題的牽引下,推進自己的思維。
教學過程
一、觀察探討,體驗新知
【問題牽引】
請同學們計算下列各式。
(1)(a+5)(a-5);(2)(4m+3n)(4m-3n)。
【學生活動】動筆計算出上面的兩道題,并踴躍上臺板演。
(1)(a+5)(a-5)=a2-52=a2-25;
(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.
【教師活動】引導學生完成下面的兩道題目,并運用數(shù)學“互逆”的思想,尋找因式分解的規(guī)律。
1、分解因式:a2-25;2.分解因式16m2-9n.
【學生活動】從逆向思維入手,很快得到下面答案:
(1)a2-25=a2-52=(a+5)(a-5)。
(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n)。
【教師活動】引導學生完成a2-b2=(a+b)(a-b)的同時,導出課題:用平方差公式因式分解。
平方差公式:a2-b2=(a+b)(a-b)。
評析:平方差公式中的字母a、b,教學中還要強調(diào)一下,可以表示數(shù)、含字母的代數(shù)式(單項式、多項式)。
二、范例學習,應用所學
【例1】把下列各式分解因式:(投影顯示或板書)
(1)x2-9y2;(2)16x4-y4;
(3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;
(5)m2(16x-y)+n2(y-16x)。
【思路點撥】在觀察中發(fā)現(xiàn)1~5題均滿足平方差公式的特征,可以使用平方差公式因式分解。
【教師活動】啟發(fā)學生從平方差公式的角度進行因式分解,請5位學生上講臺板演。
【學生活動】分四人小組,合作探究。
解:(1)x2-9y2=(x+3y)(x-3y);
(5)m2(16x-y)+n2(y-16x)
=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n)。
八年級數(shù)學教案湘教版篇七
1.經(jīng)歷分式方程的概念,能將實際問題中的等量關系用分式方程表示,體會分式方程的模型作用.
2.經(jīng)歷實際問題-分式方程方程模型的過程,發(fā)展學生分析問題、解決問題的能力,滲透數(shù)學的轉(zhuǎn)化思想人體,培養(yǎng)學生的應用意識。
3.在活動中培養(yǎng)學生樂于探究、合作學習的習慣,培養(yǎng)學生努力尋找解決問題的進取心,體會數(shù)學的應用價值.
將實際問題中的等量關系用分式方程表示
找實際問題中的等量關系
有兩塊面積相同的小麥試驗田,第一塊使用原品種,第二塊使用新品種,分別收獲小麥9000kg和15000kg。已知第一塊試驗田每公頃的.產(chǎn)量比第二塊少3000kg,分別求這兩塊試驗田每公頃的產(chǎn)量。你能找出這一問題中的所有等量關系嗎?(分組交流)
如果設第一塊試驗田每公頃的產(chǎn)量為kg,那么第二塊試驗田每公頃的產(chǎn)量是________kg。
根據(jù)題意,可得方程___________________
從甲地到乙地有兩條公路:一條是全長600km的普通公路,另一條是全長480km的高速公路。某客車在高速公路上行駛的平均速度比在普通公路上快45km/h,由高速公路從甲地到乙地所需的時間是由普通公路從甲地到乙地所需時間的一半。求該客車由高速公路從甲地到乙地所需的時間。
這一問題中有哪些等量關系?
如果設客車由高速公路從甲地到乙地所需的時間為h,那么它由普通公路從甲地到乙地所需的時間為_________h。
根據(jù)題意,可得方程______________________。
學生分組探討、交流,列出方程.
上面所得到的方程有什么共同特點?
分母中含有未知數(shù)的方程叫做分式方程
分式方程與整式方程有什么區(qū)別?
(3)根據(jù)分式方程編一道應用題,然后同組交流,看誰編得好
本節(jié)課你學到了哪些知識?有什么感想?
八年級數(shù)學教案湘教版篇八
1.掌握三角形內(nèi)角和定理及其推論;
2.弄清三角形按角的'分類,會按角的大小對三角形進行分類;
3.通過對三角形分類的學習,使學生了解數(shù)學分類的基本思想,并會用方程思想去解決一些圖形中求角的問題。
4.通過三角形內(nèi)角和定理的證明,提高學生的邏輯思維能力,同時培養(yǎng)學生嚴謹?shù)目茖W態(tài)
5.通過對定理及推論的分析與討論,發(fā)展學生的求同和求異的思維能力,培養(yǎng)學生聯(lián)系與轉(zhuǎn)化的辯證思想。
三角形內(nèi)角和定理及其推論。
三角形內(nèi)角和定理的證明
直尺、微機
互動式,談話法
1、創(chuàng)設情境,自然引入
把問題作為教學的出發(fā)點,創(chuàng)設問題情境,激發(fā)學生學習興趣和求知欲,為發(fā)現(xiàn)新知識創(chuàng)造一個最佳的心理和認知環(huán)境。
問題2你能用幾何推理來論證得到的關系嗎?
對于問題1絕大多數(shù)學生都能回答出來(小學學過的),問題2學生會感到困難,因為這個證明需添加輔助線,這是同學們第一次接觸的新知識―――“輔助線”。教師可以趁機告訴學生這節(jié)課將要學習的一個重要內(nèi)容(板書課題)
新課引入的好壞在某種程度上關系到課堂教學的成敗,本節(jié)課從舊知識切入,特別是從知識體系考慮引入,“學習了三角形邊的關系,自然想到三角形角的關系怎樣呢?”使學生感覺本節(jié)課學習的內(nèi)容自然合理。
2、設問質(zhì)疑,探究嘗試
(1)求證:三角形三個內(nèi)角的和等于
讓學生剪一個三角形,并把它的三個內(nèi)角分別剪下來,再拼成一個平面圖形。這里教師設計了電腦動畫顯示具體情景。然后,圍繞問題設計以下幾個問題讓學生思考,教師進行學法指導。
問題1觀察:三個內(nèi)角拼成了一個
什么角?問題2此實驗給我們一個什么啟示?
(把三角形的三個內(nèi)角之和轉(zhuǎn)化為一個平角)
問題3由圖中ab與cd的關系,啟發(fā)我們畫一條什么樣的線,作為解決問題的橋梁?
其中問題2是解決本題的關鍵,教師可引導學生分析。對于問題3學生經(jīng)過思考會畫出此線的。這里教師要重點講解“輔助線”的有關知識。比如:為什么要畫這條線?畫這條線有什么作用?要讓學生知道“輔助線”是以后解決幾何問題有力的工具。它的作用在于充分利用條件;恰當轉(zhuǎn)化條件;恰當轉(zhuǎn)化結(jié)論;充分提示題目中各元素間的一些不明顯的關系,達到化難為易解決問題的目的。
(2)通過類比“三角形按邊分類”,三角形按角怎樣分類呢?
學生回答后,電腦顯示圖表。
(3)三角形中三個內(nèi)角之和為定值
問題2三角形一個外角與它不相鄰的兩個內(nèi)角有何關系?
問題3三角形一個外角與其中的一個不相鄰內(nèi)角有何關系?
其中問題1學生很容易得出,提出問題2之后,先給出三角形外角的定義,然后讓學生經(jīng)過分析討論,得出結(jié)論并書寫證明過程。
這樣安排的目的有三點:第一,理解定理之后的延伸――推論,培養(yǎng)學生良好的學習習慣。第二,模仿定理的證明書寫格式,加強學生書寫能力。第三,提高學生靈活運用所學知識的能力。
3、三角形三個內(nèi)角關系的定理及推論
引導學生分析并嚴格書寫解題過程
八年級數(shù)學教案湘教版篇九
1.了解算術平方根的概念,會用根號表示正數(shù)的算術平方根,并了解算術平方根的非負性。
2.了解開方與乘方互為逆運算,會用平方運算求某些非負數(shù)的算術平方根。
算術平方根的概念。
根據(jù)算術平方根的概念正確求出非負數(shù)的算術平方根。
這就要用到平方根的概念,也就是本章的主要學習內(nèi)容.這節(jié)課我們先學習有關算術平方根的概念.
1、提出問題:(書p68頁的問題)
你是怎樣算出畫框的邊長等于5dm的呢?(學生思考并交流解法)
這個問題相當于在等式擴=25中求出正數(shù)x的值.
一般地,如果一個正數(shù)x的平方等于a,即=a,那么這個正數(shù)x叫做a的算術平方根.a的算術平方根記為,讀作根號a,a叫做被開方數(shù).規(guī)定:0的算術平方根是0.
也就是,在等式=a (x0)中,規(guī)定x = .
2、試一試:你能根據(jù)等式:=144說出144的算術平方根是多少嗎?并用等式表示出來.
3、想一想:下列式子表示什么意思?你能求出它們的值嗎?
建議:求值時,要按照算術平方根的意義,寫出應該滿足的關系式,然后按照算術平方根的記法寫出對應的值.例如表示25的算術平方根。
4、例1求下列各數(shù)的算術平方根:
(1)100;(2)1;(3) ;(4)0.0001
p69練習1、2
怎樣用兩個面積為1的小正方形拼成一個面積為2的大正方形?
方法1:課本中的方法,略;
方法2:
可還有其他方法,鼓勵學生探究。
問題:這個大正方形的邊長應該是多少呢?
大正方形的邊長是,表示2的算術平方根,它到底是個多大的數(shù)?你能求出它的值嗎?
建議學生觀察圖形感受的大小.小正方形的對角線的長是多少呢?(用刻度尺測量它與大正方形的邊長的大小)它的近似值我們將在下節(jié)課探究.
1、這節(jié)課學習了什么呢?
2、算術平方根的具體意義是怎么樣的?
3、怎樣求一個正數(shù)的算術平方根
p75習題13.1活動第1、2、3題
八年級數(shù)學教案湘教版篇十
(一)、知識與技能:
(1)使學生了解因式分解的意義,理解因式分解的概念。
(2)認識因式分解與整式乘法的相互關系——互逆關系,并能運用這種關系尋求因式分解的方法。
(二)、過程與方法:
(1)由學生自主探索解題途徑,在此過程中,通過觀察、類比等手段,尋求因式分解與因數(shù)分解之間的關系,培養(yǎng)學生的觀察能力,進一步發(fā)展學生的類比思想。
(2)由整式乘法的逆運算過渡到因式分解,發(fā)展學生的逆向思維能力。
(3)通過對分解因式與整式的乘法的觀察與比較,培養(yǎng)學生的分析問題能力與綜合應用能力。
(三)、情感態(tài)度與價值觀:讓學生初步感受對立統(tǒng)一的辨證觀點以及實事求是的科學態(tài)度。
重點:因式分解的概念及提公因式法。
難點:正確找出多項式各項的公因式及分解因式與整式乘法的區(qū)別和聯(lián)系。
教學環(huán)節(jié):
活動1:復習引入
看誰算得快:用簡便方法計算:
(1)7/9×13-7/9×6+7/9×2=;
(2)-2.67×132+25×2.67+7×2.67=;
(3)992–1=。
設計意圖:
注意事項:學生對于(1)(2)兩小題逆向利用乘法的分配律進行運算的方法是很熟悉,對于第(3)小題的逆向利用平方差公式的運算則有一定的困難,因此,有必要引導學生復習七年級所學過的整式的乘法運算中的平方差公式,幫助他們順利地逆向運用平方差公式。
活動2:導入課題
p165的探究(略);
2.看誰想得快:993–99能被哪些數(shù)整除?你是怎么得出來的?
設計意圖:
引導學生把這個式子分解成幾個數(shù)的積的形式,繼續(xù)強化學生對因數(shù)分解的理解,為學生類比因式分解提供必要的精神準備。
活動3:探究新知
看誰算得準:
計算下列式子:
(1)3x(x-1)=;
(2)(a+b+c)=;
(3)(+4)(-4)=;
(4)(-3)2=;
(5)a(a+1)(a-1)=;
根據(jù)上面的算式填空:
(1)a+b+c=;
(2)3x2-3x=;
(3)2-16=;
(4)a3-a=;
(5)2-6+9=。
在第一組的整式乘法的計算上,學生通過對第一組式子的觀察得出第二組式子的結(jié)果,然后通過對這兩組式子的結(jié)果的比較,使學生對因式分解有一個初步的意識,由整式乘法的逆運算逐步過渡到因式分解,發(fā)展學生的逆向思維能力。
活動4:歸納、得出新知
比較以下兩種運算的聯(lián)系與區(qū)別:
a(a+1)(a-1)=a3-a
a3-a=a(a+1)(a-1)
在第三環(huán)節(jié)的.運算中還有其它類似的例子嗎?除此之外,你還能找到類似的例子嗎?
八年級數(shù)學教案湘教版篇十一
1、了解方差的定義和計算公式。
2、理解方差概念產(chǎn)生和形成過程。
3、會用方差計算公式比較兩組數(shù)據(jù)波動大小。
重點:掌握方差產(chǎn)生的必要性和應用方差公式解決實際問題。
難點:理解方差公式。
(一)知識詳解:
方差:設有n個數(shù)據(jù),各數(shù)據(jù)與它們的平均數(shù)的差的平方分別為
用它們的平均數(shù)表示這組數(shù)據(jù)的方差,即
給力小貼士:方差越小說明這組數(shù)據(jù)越穩(wěn)定,波動性越低。
(二)自主檢測小練習:
1、已知一組數(shù)據(jù)為2.0、-1.3、-4,則這組數(shù)據(jù)的方差為。
2、甲、乙兩組數(shù)據(jù)如下:
甲組:1091181213107;
乙組:7891011121112。
分別計算出這兩組數(shù)據(jù)的極差和方差,并說明哪一組數(shù)據(jù)波動較小。
引例:問題:從甲、乙兩種農(nóng)作物中各抽取10株苗,分別測得它的苗高如下(單位:cm):
甲:9.10.10.13.7.13.10.8.11.8;
乙:8.13.12.11.10.12.7.7.10.10;
問:(1)哪種農(nóng)作物的苗長較高(可以計算它們的平均數(shù):=)?
(2)哪種農(nóng)作物的苗長較整齊?(可以計算它們的極差,你可以發(fā)現(xiàn))
歸納:方差:設有n個數(shù)據(jù),各數(shù)據(jù)與它們的平均數(shù)的差的平方分別為
用它們的平均數(shù)表示這組數(shù)據(jù)的方差,即用來表示。
(一)例題講解:
金志強1013161412
提示:先求平均數(shù),然后使用公式計算方差。
(二)小試身手
1、甲、乙兩名學生在相同條件下各射擊靶10次,命中的環(huán)數(shù)如下:
甲:7.8.6.8.6.5.9.10.7.4
乙:9.5.7.8.7.6.8.6.7.7
經(jīng)過計算,兩人射擊環(huán)數(shù)的平均數(shù)是,但s=,s=,則ss,所以確定去參加比賽。
1、求下列數(shù)據(jù)的眾數(shù):
(1)3.2.5.3.1.2.3(2)5.2.1.5.3.5.2.2
方差公式:
提示:方差越小,說明這組數(shù)據(jù)越集中。波動性越小。
每課一首詩:求方差,有公式;先平均,再求差;求平方,再平均;所得數(shù),是方差。
1、小爽和小兵在10次百米跑步練習中的成績?nèi)缦卤硭荆?單位:秒)
如果根據(jù)這些成績選拔一人參加比賽,你會選誰呢?
必做題:教材141頁練習1.2;選做題:練習冊對應部分習題。
寫下你的收獲,交流你的經(jīng)驗,分享你的成果,你會感到無比的快樂!
八年級數(shù)學教案湘教版篇十二
1.什么叫平行四邊形?平行四邊形有什么性質(zhì)?
2.將以上的性質(zhì)定理,分別用命題形式敘述出來。
平行四邊形的判定方法:
證明:兩組對邊分別相等的四邊形是平行四邊形
已知:
求證:
學生交流:把你做的四邊形和其他同學做的進行比較,看看是否都是平行四邊形。
觀察發(fā)現(xiàn):盡管每個人取的邊長不一樣,但只要對邊分別相等,所作的都是平行四邊形
八年級數(shù)學教案湘教版篇一
一、教學目標
1.理解分式的基本性質(zhì).
2.會用分式的基本性質(zhì)將分式變形.
二、重點、難點
1.重點:理解分式的基本性質(zhì).
2.難點:靈活應用分式的基本性質(zhì)將分式變形.
3.認知難點與突破方法
教學難點是靈活應用分式的基本性質(zhì)將分式變形.突破的方法是通過復習分數(shù)的通分、約分總結(jié)出分數(shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì).應用分式的基本性質(zhì)導出通分、約分的概念,使學生在理解的基礎上靈活地將分式變形.
三、例、習題的意圖分析
1.p7的例2是使學生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應用分式的基本性質(zhì),相應地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變.
2.p9的例3、例4地目的是進一步運用分式的基本性質(zhì)進行約分、通分.值得注意的是:約分是要找準分子和分母的公因式,最后的結(jié)果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母.
教師要講清方法,還要及時地糾正學生做題時出現(xiàn)的錯誤,使學生在做提示加深對相應概念及方法的理解.
3.p11習題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號.這一類題教材里沒有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變.
“不改變分式的值,使分式的分子和分母都不含‘-’號”是分式的基本性質(zhì)的應用之一,所以補充例5.
四、課堂引入
1.請同學們考慮:與相等嗎?與相等嗎?為什么?
2.說出與之間變形的過程,與之間變形的過程,并說出變形依據(jù)?
3.提問分數(shù)的基本性質(zhì),讓學生類比猜想出分式的基本性質(zhì).
五、例題講解
p7例2.填空:
[分析]應用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個整式,使分式的值不變.
p11例3.約分:
[分析]約分是應用分式的基本性質(zhì)把分式的分子、分母同除以同一個整式,使分式的值不變.所以要找準分子和分母的公因式,約分的結(jié)果要是最簡分式.
p11例4.通分:
[分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母.
八年級數(shù)學教案湘教版篇二
一、教學目標:
1.理解并掌握矩形的判定方法.
二、重點、難點
1.重點:矩形的判定.
2.難點:矩形的判定及性質(zhì)的綜合應用.
三、例題的意圖分析
本節(jié)課的三個例題都是補充題,例1在的一組判斷題是為了讓學生加深理解判定矩形的條件,老師們在教學中還可以適當?shù)卦僭黾右恍┡袛嗟念}目;例2是利用矩形知識進行計算;例3是一道矩形的判定題,三個題目從不同的角度出發(fā),來綜合應用矩形定義及判定等知識的.
四、課堂引入
1.什么叫做平行四邊形?什么叫做矩形?
2.矩形有哪些性質(zhì)?
3.矩形與平行四邊形有什么共同之處?有什么不同之處?
通過討論得到矩形的判定方法.
矩形判定方法1:對角錢相等的平行四邊形是矩形.
矩形判定方法2:有三個角是直角的四邊形是矩形.
(指出:判定一個四邊形是矩形,知道三個角是直角,條件就夠了.因為由四邊形內(nèi)角和可知,這時第四個角一定是直角.)
八年級數(shù)學教案湘教版篇三
1某公司銷售部有營銷人員15人,銷售部為了制定某種商品的銷售金額,統(tǒng)計了這15個人的銷售量如下(單位:件)
求這15個銷售員該月銷量的中位數(shù)和眾數(shù)。
假設銷售部負責人把每位營銷員的月銷售定額定為320件,你認為合理嗎?如果不合理,請你制定一個合理的銷售定額并說明理由。
2、某商店3、4月份出售某一品牌各種規(guī)格的空調(diào),銷售臺數(shù)如表所示:
1匹1.2匹1.5匹2匹
3月12臺20臺8臺4臺
4月16臺30臺14臺8臺
根據(jù)表格回答問題:
商店出售的各種規(guī)格空調(diào)中,眾數(shù)是多少?
假如你是經(jīng)理,現(xiàn)要進貨,6月份在有限的資金下進貨單位將如何決定?
答案:1.(1)210件、210件(2)不合理。因為15人中有13人的銷售額達不到320件(320雖是原始數(shù)據(jù)的平均數(shù),卻不能反映營銷人員的一般水平),銷售額定為210件合適,因為它既是中位數(shù)又是眾數(shù),是大部分人能達到的額定。
2.(1)1.2匹(2)通過觀察可知1.2匹的銷售,所以要多進1.2匹,由于資金有限就要少進2匹空調(diào)。
八年級數(shù)學教案湘教版篇四
1.知識與技能
會應用平方差公式進行因式分解,發(fā)展學生推理能力.
2.過程與方法
經(jīng)歷探索利用平方差公式進行因式分解的過程,發(fā)展學生的逆向思維,感受數(shù)學知識的完整性.
3.情感、態(tài)度與價值觀
培養(yǎng)學生良好的互動交流的習慣,體會數(shù)學在實際問題中的應用價值.
重、難點與關鍵
1.重點:利用平方差公式分解因式.
2.難點:領會因式分解的解題步驟和分解因式的徹底性.
3.關鍵:應用逆向思維的方向,演繹出平方差公式,對公式的應用首先要注意其特征,其次要做好式的變形,把問題轉(zhuǎn)化成能夠應用公式的方面上來.
教學方法
采用“問題解決”的教學方法,讓學生在問題的牽引下,推進自己的思維.
教學過程
一、觀察探討,體驗新知
【問題牽引】
請同學們計算下列各式.
(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).
【學生活動】動筆計算出上面的兩道題,并踴躍上臺板演.
(1)(a+5)(a-5)=a2-52=a2-25;
(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.
【教師活動】引導學生完成下面的兩道題目,并運用數(shù)學“互逆”的思想,尋找因式分解的規(guī)律.
1.分解因式:a2-25;2.分解因式16m2-9n.
【學生活動】從逆向思維入手,很快得到下面答案:
(1)a2-25=a2-52=(a+5)(a-5).
(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).
【教師活動】引導學生完成a2-b2=(a+b)(a-b)的同時,導出課題:用平方差公式因式分解.
平方差公式:a2-b2=(a+b)(a-b).
評析:平方差公式中的字母a、b,教學中還要強調(diào)一下,可以表示數(shù)、含字母的代數(shù)式(單項式、多項式).
二、范例學習,應用所學
【例1】把下列各式分解因式:(投影顯示或板書)
(1)x2-9y2;(2)16x4-y4;
(3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;
(5)m2(16x-y)+n2(y-16x).
【思路點撥】在觀察中發(fā)現(xiàn)1~5題均滿足平方差公式的特征,可以使用平方差公式因式分解.
【教師活動】啟發(fā)學生從平方差公式的角度進行因式分解,請5位學生上講臺板演.
【學生活動】分四人小組,合作探究.
解:(1)x2-9y2=(x+3y)(x-3y);
(5)m2(16x-y)+n2(y-16x)
=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).
新人教版數(shù)學八年級上冊教案
八年級數(shù)學教案湘教版篇五
嚴格的講教材本節(jié)課沒有引入的問題,而是在復習和延伸中位數(shù)的定義過程中拉開序幕的,本人很同意這種處理方式,教師可以一句話引入新課:前面已經(jīng)和同學們研究過了平均數(shù)的這個數(shù)據(jù)代表。它在分析數(shù)據(jù)過程中擔當了重要的角色,今天我們來共同研究和認識數(shù)據(jù)代表中的新成員——中位數(shù)和眾數(shù),看看它們在分析數(shù)據(jù)過程中又起到怎樣的作用。
八年級數(shù)學教案湘教版篇六
1、知識與技能
會應用平方差公式進行因式分解,發(fā)展學生推理能力。
2、過程與方法
經(jīng)歷探索利用平方差公式進行因式分解的過程,發(fā)展學生的逆向思維,感受數(shù)學知識的完整性。
3、情感、態(tài)度與價值觀
培養(yǎng)學生良好的互動交流的習慣,體會數(shù)學在實際問題中的應用價值。
重、難點與關鍵
1、重點:利用平方差公式分解因式。
2、難點:領會因式分解的解題步驟和分解因式的徹底性。
3、關鍵:應用逆向思維的方向,演繹出平方差公式,對公式的應用首先要注意其特征,其次要做好式的變形,把問題轉(zhuǎn)化成能夠應用公式的方面上來。
教學方法
采用“問題解決”的教學方法,讓學生在問題的牽引下,推進自己的思維。
教學過程
一、觀察探討,體驗新知
【問題牽引】
請同學們計算下列各式。
(1)(a+5)(a-5);(2)(4m+3n)(4m-3n)。
【學生活動】動筆計算出上面的兩道題,并踴躍上臺板演。
(1)(a+5)(a-5)=a2-52=a2-25;
(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.
【教師活動】引導學生完成下面的兩道題目,并運用數(shù)學“互逆”的思想,尋找因式分解的規(guī)律。
1、分解因式:a2-25;2.分解因式16m2-9n.
【學生活動】從逆向思維入手,很快得到下面答案:
(1)a2-25=a2-52=(a+5)(a-5)。
(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n)。
【教師活動】引導學生完成a2-b2=(a+b)(a-b)的同時,導出課題:用平方差公式因式分解。
平方差公式:a2-b2=(a+b)(a-b)。
評析:平方差公式中的字母a、b,教學中還要強調(diào)一下,可以表示數(shù)、含字母的代數(shù)式(單項式、多項式)。
二、范例學習,應用所學
【例1】把下列各式分解因式:(投影顯示或板書)
(1)x2-9y2;(2)16x4-y4;
(3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;
(5)m2(16x-y)+n2(y-16x)。
【思路點撥】在觀察中發(fā)現(xiàn)1~5題均滿足平方差公式的特征,可以使用平方差公式因式分解。
【教師活動】啟發(fā)學生從平方差公式的角度進行因式分解,請5位學生上講臺板演。
【學生活動】分四人小組,合作探究。
解:(1)x2-9y2=(x+3y)(x-3y);
(5)m2(16x-y)+n2(y-16x)
=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n)。
八年級數(shù)學教案湘教版篇七
1.經(jīng)歷分式方程的概念,能將實際問題中的等量關系用分式方程表示,體會分式方程的模型作用.
2.經(jīng)歷實際問題-分式方程方程模型的過程,發(fā)展學生分析問題、解決問題的能力,滲透數(shù)學的轉(zhuǎn)化思想人體,培養(yǎng)學生的應用意識。
3.在活動中培養(yǎng)學生樂于探究、合作學習的習慣,培養(yǎng)學生努力尋找解決問題的進取心,體會數(shù)學的應用價值.
將實際問題中的等量關系用分式方程表示
找實際問題中的等量關系
有兩塊面積相同的小麥試驗田,第一塊使用原品種,第二塊使用新品種,分別收獲小麥9000kg和15000kg。已知第一塊試驗田每公頃的.產(chǎn)量比第二塊少3000kg,分別求這兩塊試驗田每公頃的產(chǎn)量。你能找出這一問題中的所有等量關系嗎?(分組交流)
如果設第一塊試驗田每公頃的產(chǎn)量為kg,那么第二塊試驗田每公頃的產(chǎn)量是________kg。
根據(jù)題意,可得方程___________________
從甲地到乙地有兩條公路:一條是全長600km的普通公路,另一條是全長480km的高速公路。某客車在高速公路上行駛的平均速度比在普通公路上快45km/h,由高速公路從甲地到乙地所需的時間是由普通公路從甲地到乙地所需時間的一半。求該客車由高速公路從甲地到乙地所需的時間。
這一問題中有哪些等量關系?
如果設客車由高速公路從甲地到乙地所需的時間為h,那么它由普通公路從甲地到乙地所需的時間為_________h。
根據(jù)題意,可得方程______________________。
學生分組探討、交流,列出方程.
上面所得到的方程有什么共同特點?
分母中含有未知數(shù)的方程叫做分式方程
分式方程與整式方程有什么區(qū)別?
(3)根據(jù)分式方程編一道應用題,然后同組交流,看誰編得好
本節(jié)課你學到了哪些知識?有什么感想?
八年級數(shù)學教案湘教版篇八
1.掌握三角形內(nèi)角和定理及其推論;
2.弄清三角形按角的'分類,會按角的大小對三角形進行分類;
3.通過對三角形分類的學習,使學生了解數(shù)學分類的基本思想,并會用方程思想去解決一些圖形中求角的問題。
4.通過三角形內(nèi)角和定理的證明,提高學生的邏輯思維能力,同時培養(yǎng)學生嚴謹?shù)目茖W態(tài)
5.通過對定理及推論的分析與討論,發(fā)展學生的求同和求異的思維能力,培養(yǎng)學生聯(lián)系與轉(zhuǎn)化的辯證思想。
三角形內(nèi)角和定理及其推論。
三角形內(nèi)角和定理的證明
直尺、微機
互動式,談話法
1、創(chuàng)設情境,自然引入
把問題作為教學的出發(fā)點,創(chuàng)設問題情境,激發(fā)學生學習興趣和求知欲,為發(fā)現(xiàn)新知識創(chuàng)造一個最佳的心理和認知環(huán)境。
問題2你能用幾何推理來論證得到的關系嗎?
對于問題1絕大多數(shù)學生都能回答出來(小學學過的),問題2學生會感到困難,因為這個證明需添加輔助線,這是同學們第一次接觸的新知識―――“輔助線”。教師可以趁機告訴學生這節(jié)課將要學習的一個重要內(nèi)容(板書課題)
新課引入的好壞在某種程度上關系到課堂教學的成敗,本節(jié)課從舊知識切入,特別是從知識體系考慮引入,“學習了三角形邊的關系,自然想到三角形角的關系怎樣呢?”使學生感覺本節(jié)課學習的內(nèi)容自然合理。
2、設問質(zhì)疑,探究嘗試
(1)求證:三角形三個內(nèi)角的和等于
讓學生剪一個三角形,并把它的三個內(nèi)角分別剪下來,再拼成一個平面圖形。這里教師設計了電腦動畫顯示具體情景。然后,圍繞問題設計以下幾個問題讓學生思考,教師進行學法指導。
問題1觀察:三個內(nèi)角拼成了一個
什么角?問題2此實驗給我們一個什么啟示?
(把三角形的三個內(nèi)角之和轉(zhuǎn)化為一個平角)
問題3由圖中ab與cd的關系,啟發(fā)我們畫一條什么樣的線,作為解決問題的橋梁?
其中問題2是解決本題的關鍵,教師可引導學生分析。對于問題3學生經(jīng)過思考會畫出此線的。這里教師要重點講解“輔助線”的有關知識。比如:為什么要畫這條線?畫這條線有什么作用?要讓學生知道“輔助線”是以后解決幾何問題有力的工具。它的作用在于充分利用條件;恰當轉(zhuǎn)化條件;恰當轉(zhuǎn)化結(jié)論;充分提示題目中各元素間的一些不明顯的關系,達到化難為易解決問題的目的。
(2)通過類比“三角形按邊分類”,三角形按角怎樣分類呢?
學生回答后,電腦顯示圖表。
(3)三角形中三個內(nèi)角之和為定值
問題2三角形一個外角與它不相鄰的兩個內(nèi)角有何關系?
問題3三角形一個外角與其中的一個不相鄰內(nèi)角有何關系?
其中問題1學生很容易得出,提出問題2之后,先給出三角形外角的定義,然后讓學生經(jīng)過分析討論,得出結(jié)論并書寫證明過程。
這樣安排的目的有三點:第一,理解定理之后的延伸――推論,培養(yǎng)學生良好的學習習慣。第二,模仿定理的證明書寫格式,加強學生書寫能力。第三,提高學生靈活運用所學知識的能力。
3、三角形三個內(nèi)角關系的定理及推論
引導學生分析并嚴格書寫解題過程
八年級數(shù)學教案湘教版篇九
1.了解算術平方根的概念,會用根號表示正數(shù)的算術平方根,并了解算術平方根的非負性。
2.了解開方與乘方互為逆運算,會用平方運算求某些非負數(shù)的算術平方根。
算術平方根的概念。
根據(jù)算術平方根的概念正確求出非負數(shù)的算術平方根。
這就要用到平方根的概念,也就是本章的主要學習內(nèi)容.這節(jié)課我們先學習有關算術平方根的概念.
1、提出問題:(書p68頁的問題)
你是怎樣算出畫框的邊長等于5dm的呢?(學生思考并交流解法)
這個問題相當于在等式擴=25中求出正數(shù)x的值.
一般地,如果一個正數(shù)x的平方等于a,即=a,那么這個正數(shù)x叫做a的算術平方根.a的算術平方根記為,讀作根號a,a叫做被開方數(shù).規(guī)定:0的算術平方根是0.
也就是,在等式=a (x0)中,規(guī)定x = .
2、試一試:你能根據(jù)等式:=144說出144的算術平方根是多少嗎?并用等式表示出來.
3、想一想:下列式子表示什么意思?你能求出它們的值嗎?
建議:求值時,要按照算術平方根的意義,寫出應該滿足的關系式,然后按照算術平方根的記法寫出對應的值.例如表示25的算術平方根。
4、例1求下列各數(shù)的算術平方根:
(1)100;(2)1;(3) ;(4)0.0001
p69練習1、2
怎樣用兩個面積為1的小正方形拼成一個面積為2的大正方形?
方法1:課本中的方法,略;
方法2:
可還有其他方法,鼓勵學生探究。
問題:這個大正方形的邊長應該是多少呢?
大正方形的邊長是,表示2的算術平方根,它到底是個多大的數(shù)?你能求出它的值嗎?
建議學生觀察圖形感受的大小.小正方形的對角線的長是多少呢?(用刻度尺測量它與大正方形的邊長的大小)它的近似值我們將在下節(jié)課探究.
1、這節(jié)課學習了什么呢?
2、算術平方根的具體意義是怎么樣的?
3、怎樣求一個正數(shù)的算術平方根
p75習題13.1活動第1、2、3題
八年級數(shù)學教案湘教版篇十
(一)、知識與技能:
(1)使學生了解因式分解的意義,理解因式分解的概念。
(2)認識因式分解與整式乘法的相互關系——互逆關系,并能運用這種關系尋求因式分解的方法。
(二)、過程與方法:
(1)由學生自主探索解題途徑,在此過程中,通過觀察、類比等手段,尋求因式分解與因數(shù)分解之間的關系,培養(yǎng)學生的觀察能力,進一步發(fā)展學生的類比思想。
(2)由整式乘法的逆運算過渡到因式分解,發(fā)展學生的逆向思維能力。
(3)通過對分解因式與整式的乘法的觀察與比較,培養(yǎng)學生的分析問題能力與綜合應用能力。
(三)、情感態(tài)度與價值觀:讓學生初步感受對立統(tǒng)一的辨證觀點以及實事求是的科學態(tài)度。
重點:因式分解的概念及提公因式法。
難點:正確找出多項式各項的公因式及分解因式與整式乘法的區(qū)別和聯(lián)系。
教學環(huán)節(jié):
活動1:復習引入
看誰算得快:用簡便方法計算:
(1)7/9×13-7/9×6+7/9×2=;
(2)-2.67×132+25×2.67+7×2.67=;
(3)992–1=。
設計意圖:
注意事項:學生對于(1)(2)兩小題逆向利用乘法的分配律進行運算的方法是很熟悉,對于第(3)小題的逆向利用平方差公式的運算則有一定的困難,因此,有必要引導學生復習七年級所學過的整式的乘法運算中的平方差公式,幫助他們順利地逆向運用平方差公式。
活動2:導入課題
p165的探究(略);
2.看誰想得快:993–99能被哪些數(shù)整除?你是怎么得出來的?
設計意圖:
引導學生把這個式子分解成幾個數(shù)的積的形式,繼續(xù)強化學生對因數(shù)分解的理解,為學生類比因式分解提供必要的精神準備。
活動3:探究新知
看誰算得準:
計算下列式子:
(1)3x(x-1)=;
(2)(a+b+c)=;
(3)(+4)(-4)=;
(4)(-3)2=;
(5)a(a+1)(a-1)=;
根據(jù)上面的算式填空:
(1)a+b+c=;
(2)3x2-3x=;
(3)2-16=;
(4)a3-a=;
(5)2-6+9=。
在第一組的整式乘法的計算上,學生通過對第一組式子的觀察得出第二組式子的結(jié)果,然后通過對這兩組式子的結(jié)果的比較,使學生對因式分解有一個初步的意識,由整式乘法的逆運算逐步過渡到因式分解,發(fā)展學生的逆向思維能力。
活動4:歸納、得出新知
比較以下兩種運算的聯(lián)系與區(qū)別:
a(a+1)(a-1)=a3-a
a3-a=a(a+1)(a-1)
在第三環(huán)節(jié)的.運算中還有其它類似的例子嗎?除此之外,你還能找到類似的例子嗎?
八年級數(shù)學教案湘教版篇十一
1、了解方差的定義和計算公式。
2、理解方差概念產(chǎn)生和形成過程。
3、會用方差計算公式比較兩組數(shù)據(jù)波動大小。
重點:掌握方差產(chǎn)生的必要性和應用方差公式解決實際問題。
難點:理解方差公式。
(一)知識詳解:
方差:設有n個數(shù)據(jù),各數(shù)據(jù)與它們的平均數(shù)的差的平方分別為
用它們的平均數(shù)表示這組數(shù)據(jù)的方差,即
給力小貼士:方差越小說明這組數(shù)據(jù)越穩(wěn)定,波動性越低。
(二)自主檢測小練習:
1、已知一組數(shù)據(jù)為2.0、-1.3、-4,則這組數(shù)據(jù)的方差為。
2、甲、乙兩組數(shù)據(jù)如下:
甲組:1091181213107;
乙組:7891011121112。
分別計算出這兩組數(shù)據(jù)的極差和方差,并說明哪一組數(shù)據(jù)波動較小。
引例:問題:從甲、乙兩種農(nóng)作物中各抽取10株苗,分別測得它的苗高如下(單位:cm):
甲:9.10.10.13.7.13.10.8.11.8;
乙:8.13.12.11.10.12.7.7.10.10;
問:(1)哪種農(nóng)作物的苗長較高(可以計算它們的平均數(shù):=)?
(2)哪種農(nóng)作物的苗長較整齊?(可以計算它們的極差,你可以發(fā)現(xiàn))
歸納:方差:設有n個數(shù)據(jù),各數(shù)據(jù)與它們的平均數(shù)的差的平方分別為
用它們的平均數(shù)表示這組數(shù)據(jù)的方差,即用來表示。
(一)例題講解:
金志強1013161412
提示:先求平均數(shù),然后使用公式計算方差。
(二)小試身手
1、甲、乙兩名學生在相同條件下各射擊靶10次,命中的環(huán)數(shù)如下:
甲:7.8.6.8.6.5.9.10.7.4
乙:9.5.7.8.7.6.8.6.7.7
經(jīng)過計算,兩人射擊環(huán)數(shù)的平均數(shù)是,但s=,s=,則ss,所以確定去參加比賽。
1、求下列數(shù)據(jù)的眾數(shù):
(1)3.2.5.3.1.2.3(2)5.2.1.5.3.5.2.2
方差公式:
提示:方差越小,說明這組數(shù)據(jù)越集中。波動性越小。
每課一首詩:求方差,有公式;先平均,再求差;求平方,再平均;所得數(shù),是方差。
1、小爽和小兵在10次百米跑步練習中的成績?nèi)缦卤硭荆?單位:秒)
如果根據(jù)這些成績選拔一人參加比賽,你會選誰呢?
必做題:教材141頁練習1.2;選做題:練習冊對應部分習題。
寫下你的收獲,交流你的經(jīng)驗,分享你的成果,你會感到無比的快樂!
八年級數(shù)學教案湘教版篇十二
1.什么叫平行四邊形?平行四邊形有什么性質(zhì)?
2.將以上的性質(zhì)定理,分別用命題形式敘述出來。
平行四邊形的判定方法:
證明:兩組對邊分別相等的四邊形是平行四邊形
已知:
求證:
學生交流:把你做的四邊形和其他同學做的進行比較,看看是否都是平行四邊形。
觀察發(fā)現(xiàn):盡管每個人取的邊長不一樣,但只要對邊分別相等,所作的都是平行四邊形