優(yōu)質(zhì)高一數(shù)學(xué)教案(模板13篇)

字號(hào):

    教案包括了教學(xué)目標(biāo)、教學(xué)重難點(diǎn)、教學(xué)方法和評(píng)價(jià)方式等要素。教案中的教學(xué)內(nèi)容應(yīng)具有系統(tǒng)性和層次性,有助于學(xué)生的知識(shí)積累和能力提升。請(qǐng)大家閱讀這些教案范例,融會(huì)貫通,從中挖掘出對(duì)自己教學(xué)設(shè)計(jì)的啟示。
    高一數(shù)學(xué)教案篇一
    2.掌握標(biāo)準(zhǔn)方程中的幾何意義
    3.能利用上述知識(shí)進(jìn)行相關(guān)的論證、計(jì)算、作雙曲線的草圖以及解決簡(jiǎn)單的實(shí)際問題
    一、預(yù)習(xí)檢查
    1、焦點(diǎn)在x軸上,虛軸長為12,離心率為的雙曲線的標(biāo)準(zhǔn)方程為.
    2、頂點(diǎn)間的距離為6,漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程為.
    3、雙曲線的漸進(jìn)線方程為.
    4、設(shè)分別是雙曲線的半焦距和離心率,則雙曲線的一個(gè)頂點(diǎn)到它的一條漸近線的距離是.
    二、問題探究
    探究1、類比橢圓的幾何性質(zhì)寫出雙曲線的幾何性質(zhì),畫出草圖并,說出它們的不同.
    探究2、雙曲線與其漸近線具有怎樣的關(guān)系.
    練習(xí):已知雙曲線經(jīng)過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標(biāo)準(zhǔn)方程是.
    例1根據(jù)以下條件,分別求出雙曲線的標(biāo)準(zhǔn)方程.
    (1)過點(diǎn),離心率.
    (2)、是雙曲線的左、右焦點(diǎn),是雙曲線上一點(diǎn),且,,離心率為.
    例2已知雙曲線,直線過點(diǎn),左焦點(diǎn)到直線的距離等于該雙曲線的虛軸長的,求雙曲線的離心率.
    例3(理)求離心率為,且過點(diǎn)的雙曲線標(biāo)準(zhǔn)方程.
    三、思維訓(xùn)練
    1、已知雙曲線方程為,經(jīng)過它的右焦點(diǎn),作一條直線,使直線與雙曲線恰好有一個(gè)交點(diǎn),則設(shè)直線的斜率是.
    2、橢圓的離心率為,則雙曲線的離心率為.
    3、雙曲線的漸進(jìn)線方程是,則雙曲線的離心率等于=.
    4、(理)設(shè)是雙曲線上一點(diǎn),雙曲線的一條漸近線方程為、分別是雙曲線的左、右焦點(diǎn),若,則.
    四、知識(shí)鞏固
    1、已知雙曲線方程為,過一點(diǎn)(0,1),作一直線,使與雙曲線無交點(diǎn),則直線的斜率的集合是.
    2、設(shè)雙曲線的一條準(zhǔn)線與兩條漸近線交于兩點(diǎn),相應(yīng)的焦點(diǎn)為,若以為直徑的圓恰好過點(diǎn),則離心率為.
    3、已知雙曲線的左,右焦點(diǎn)分別為,點(diǎn)在雙曲線的右支上,且,則雙曲線的離心率的值為.
    4、設(shè)雙曲線的半焦距為,直線過、兩點(diǎn),且原點(diǎn)到直線的距離為,求雙曲線的離心率.
    5、(理)雙曲線的焦距為,直線過點(diǎn)和,且點(diǎn)(1,0)到直線的距離與點(diǎn)(-1,0)到直線的距離之和.求雙曲線的離心率的取值范圍.
    高一數(shù)學(xué)教案篇二
    (2)理解任意角的三角函數(shù)不同的定義方法;。
    (4)掌握并能初步運(yùn)用公式一;。
    (5)樹立映射觀點(diǎn),正確理解三角函數(shù)是以實(shí)數(shù)為自變量的函數(shù).
    初中學(xué)過:銳角三角函數(shù)就是以銳角為自變量,以比值為函數(shù)值的函數(shù).引導(dǎo)學(xué)生把這個(gè)定義推廣到任意角,通過單位圓和角的終邊,探討任意角的三角函數(shù)值的求法,最終得到任意角三角函數(shù)的定義.根據(jù)角終邊所在位置不同,分別探討各三角函數(shù)的定義域以及這三種函數(shù)的值在各象限的符號(hào).最后主要是借助有向線段進(jìn)一步認(rèn)識(shí)三角函數(shù).講解例題,總結(jié)方法,鞏固練習(xí).
    任意角的三角函數(shù)可以有不同的定義方法,而且各種定義都有自己的特點(diǎn).過去習(xí)慣于用角的終邊上點(diǎn)的坐標(biāo)的“比值”來定義,這種定義方法能夠表現(xiàn)出從銳角三角函數(shù)到任意角的三角函數(shù)的推廣,有利于引導(dǎo)學(xué)生從自己已有認(rèn)知基礎(chǔ)出發(fā)學(xué)習(xí)三角函數(shù),但它對(duì)準(zhǔn)確把握三角函數(shù)的本質(zhì)有一定的不利影響,“從角的集合到比值的集合”的對(duì)應(yīng)關(guān)系與學(xué)生熟悉的一般函數(shù)概念中的“數(shù)集到數(shù)集”的對(duì)應(yīng)關(guān)系有沖突,而且“比值”需要通過運(yùn)算才能得到,這與函數(shù)值是一個(gè)確定的實(shí)數(shù)也有不同,這些都會(huì)影響學(xué)生對(duì)三角函數(shù)概念的理解.
    本節(jié)利用單位圓上點(diǎn)的`坐標(biāo)定義任意角的正弦函數(shù)、余弦函數(shù).這個(gè)定義清楚地表明了正弦、余弦函數(shù)中從自變量到函數(shù)值之間的對(duì)應(yīng)關(guān)系,也表明了這兩個(gè)函數(shù)之間的關(guān)系.
    教學(xué)重難點(diǎn)。
    重點(diǎn):任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號(hào));終邊相同的角的同一三角函數(shù)值相等(公式一).
    難點(diǎn):任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號(hào));三角函數(shù)線的正確理解.
    高一數(shù)學(xué)教案篇三
    1.知識(shí)與技能:掌握畫三視圖的基本技能,豐富學(xué)生的空間想象力。
    2.過程與方法:通過學(xué)生自己的親身實(shí)踐,動(dòng)手作圖,體會(huì)三視圖的作用。
    3.情感態(tài)度與價(jià)值觀:提高學(xué)生空間想象力,體會(huì)三視圖的作用。
    二、教學(xué)重點(diǎn):畫出簡(jiǎn)單幾何體、簡(jiǎn)單組合體的三視圖;
    難點(diǎn):識(shí)別三視圖所表示的空間幾何體。
    三、學(xué)法指導(dǎo):觀察、動(dòng)手實(shí)踐、討論、類比。
    四、教學(xué)過程
    (一)創(chuàng)設(shè)情景,揭開課題
    展示廬山的風(fēng)景圖——“橫看成嶺側(cè)看成峰,遠(yuǎn)近高低各不同”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實(shí)反映出物體,我們可從多角度觀看物體。
    (二)講授新課
    1、中心投影與平行投影:
    中心投影:光由一點(diǎn)向外散射形成的投影;
    平行投影:在一束平行光線照射下形成的投影。
    正投影:在平行投影中,投影線正對(duì)著投影面。
    2、三視圖:
    正視圖:光線從幾何體的前面向后面正投影,得到的投影圖;
    側(cè)視圖:光線從幾何體的左面向右面正投影,得到的投影圖;
    俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖。
    三視圖:幾何體的正視圖、側(cè)視圖和俯視圖統(tǒng)稱為幾何體的三視圖。
    三視圖的畫法規(guī)則:長對(duì)正,高平齊,寬相等。
    長對(duì)正:正視圖與俯視圖的長相等,且相互對(duì)正;
    高平齊:正視圖與側(cè)視圖的高度相等,且相互對(duì)齊;
    寬相等:俯視圖與側(cè)視圖的寬度相等。
    3、畫長方體的三視圖:
    正視圖、側(cè)視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到有幾何體的正投影圖,它們都是平面圖形。
    長方體的三視圖都是長方形,正視圖和側(cè)視圖、側(cè)視圖和俯視圖、俯視圖和正視圖都各有一條邊長相等。
    4、畫圓柱、圓錐的三視圖:
    5、探究:畫出底面是正方形,側(cè)面是全等的三角形的棱錐的三視圖。
    (三)鞏固練習(xí)
    課本p15練習(xí)1、2;p20習(xí)題1.2[a組]2。
    (四)歸納整理
    請(qǐng)學(xué)生回顧發(fā)表如何作好空間幾何體的三視圖
    (五)布置作業(yè)
    課本p20習(xí)題1.2[a組]1。
    高一數(shù)學(xué)教案篇四
    “解三角形”既是高中數(shù)學(xué)的.基本內(nèi)容,又有較強(qiáng)的應(yīng)用性,在這次課程改革中,被保留下來,并獨(dú)立成為一章。這部分內(nèi)容從知識(shí)體系上看,應(yīng)屬于三角函數(shù)這一章,從研究方法上看,也可以歸屬于向量應(yīng)用的一方面。從某種意義講,這部分內(nèi)容是用代數(shù)方法解決幾何問題的典型內(nèi)容之一。而本課“正弦定理”,作為單元的起始課,是在學(xué)生已有的三角函數(shù)及向量知識(shí)的基礎(chǔ)上,通過對(duì)三角形邊角關(guān)系作量化探究,發(fā)現(xiàn)并掌握正弦定理(重要的解三角形工具),通過這一部分內(nèi)容的學(xué)習(xí),讓學(xué)生從“實(shí)際問題”抽象成“數(shù)學(xué)問題”的建模過程中,體驗(yàn)“觀察——猜想——證明——應(yīng)用”這一思維方法,養(yǎng)成大膽猜想、善于思考的品質(zhì)和勇于求真的精神。同時(shí)在解決問題的過程中,感受數(shù)學(xué)的力量,進(jìn)一步培養(yǎng)學(xué)生對(duì)數(shù)學(xué)的學(xué)習(xí)興趣和“用數(shù)學(xué)”的意識(shí)。
    二、學(xué)情分析
    我所任教的學(xué)校是我縣一所農(nóng)村普通中學(xué),大多數(shù)學(xué)生基礎(chǔ)薄弱,對(duì)“一些重要的數(shù)學(xué)思想和數(shù)學(xué)方法”的應(yīng)用意識(shí)和技能還不高。但是,大多數(shù)學(xué)生對(duì)數(shù)學(xué)的興趣較高,比較喜歡數(shù)學(xué),尤其是象本節(jié)課這樣與實(shí)際生活聯(lián)系比較緊密的內(nèi)容,相信學(xué)生能夠積極配合,有比較不錯(cuò)的表現(xiàn)。
    三、教學(xué)目標(biāo)
    1、知識(shí)和技能:在創(chuàng)設(shè)的問題情境中,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡(jiǎn)單運(yùn)用正弦定理解決一些簡(jiǎn)單的解三角形問題。
    過程與方法:學(xué)生參與解題方案的探索,嘗試應(yīng)用觀察——猜想——證明——應(yīng)用”等思想方法,尋求最佳解決方案,從而引發(fā)學(xué)生對(duì)現(xiàn)實(shí)世界的一些數(shù)學(xué)模型進(jìn)行思考。
    情感、態(tài)度、價(jià)值觀:培養(yǎng)學(xué)生合情合理探索數(shù)學(xué)規(guī)律的數(shù)學(xué)思想方法,通過平面幾何、三角形函數(shù)、正弦定理、向量的數(shù)量積等知識(shí)間的聯(lián)系來體現(xiàn)事物之間的普遍聯(lián)系與辯證統(tǒng)一。同時(shí),通過實(shí)際問題的探討、解決,讓學(xué)生體驗(yàn)學(xué)習(xí)成就感,增強(qiáng)數(shù)學(xué)學(xué)習(xí)興趣和主動(dòng)性,鍛煉探究精神。樹立“數(shù)學(xué)與我有關(guān),數(shù)學(xué)是有用的,我要用數(shù)學(xué),我能用數(shù)學(xué)”的理念。
    2、教學(xué)重點(diǎn)、難點(diǎn)
    教學(xué)重點(diǎn):正弦定理的發(fā)現(xiàn)與證明;正弦定理的簡(jiǎn)單應(yīng)用。
    教學(xué)難點(diǎn):正弦定理證明及應(yīng)用。
    四、教學(xué)方法與手段
    為了更好的達(dá)成上面的教學(xué)目標(biāo),促進(jìn)學(xué)習(xí)方式的轉(zhuǎn)變,本節(jié)課我準(zhǔn)備采用“問題教學(xué)法”,即由教師以問題為主線組織教學(xué),利用多媒體和實(shí)物投影儀等教學(xué)手段來激發(fā)興趣、突出重點(diǎn),突破難點(diǎn),提高課堂效率,并引導(dǎo)學(xué)生采取自主探究與相互合作相結(jié)合的學(xué)習(xí)方式參與到問題解決的過程中去,從中體驗(yàn)成功與失敗,從而逐步建立完善的認(rèn)知結(jié)構(gòu)。
    五、教學(xué)過程
    為了很好地完成我所確定的教學(xué)目標(biāo),順利地解決重點(diǎn),突破難點(diǎn),同時(shí)本著貼近生活、貼近學(xué)生、貼近時(shí)代的原則,我設(shè)計(jì)了這樣的教學(xué)過程:
    (一)創(chuàng)設(shè)情景,揭示課題
    問題2:在現(xiàn)在的高科技時(shí)代,要想知道某座山的高度,沒必要親自去量,只需水平飛行的飛機(jī)從山頂一過便可測(cè)出,你知道這是為什么嗎?還有,交通警察是怎樣測(cè)出正在公路上行駛的汽車的速度呢?要想解決這些問題,其實(shí)并不難,只要你學(xué)好本章內(nèi)容即可掌握其原理。(板書課題《解三角形》)
    [設(shè)計(jì)說明]引用教材本章引言,制造知識(shí)與問題的沖突,激發(fā)學(xué)生學(xué)習(xí)本章知識(shí)的興趣。
    (二)特殊入手,發(fā)現(xiàn)規(guī)律
    引導(dǎo)啟發(fā)學(xué)生發(fā)現(xiàn)特殊情形下的正弦定理。
    (三)類比歸納,嚴(yán)格證明
    高一數(shù)學(xué)教案篇五
    對(duì)數(shù)函數(shù)(第二課時(shí))是20__人教版高一數(shù)學(xué)(上冊(cè))第二章第八節(jié)第二課時(shí)的內(nèi)容,本小節(jié)涉及對(duì)數(shù)函數(shù)相關(guān)知識(shí),分三個(gè)課時(shí),這里是第二課時(shí)復(fù)習(xí)鞏固對(duì)數(shù)函數(shù)圖像及性質(zhì),并用此解決三類對(duì)數(shù)比大小問題,是對(duì)已學(xué)內(nèi)容(指數(shù)函數(shù)、指數(shù)比大小、對(duì)數(shù)函數(shù))的延續(xù)和發(fā)展,同時(shí)也體現(xiàn)了數(shù)學(xué)的實(shí)用性,為后續(xù)學(xué)習(xí)起到奠定知識(shí)基礎(chǔ)、滲透方法的作用,因此本節(jié)內(nèi)容起到了一種承上啟下的作用。
    二、教學(xué)目標(biāo)
    根據(jù)教學(xué)大綱的要求以及本節(jié)課的地位與作用,結(jié)合高一學(xué)生的認(rèn)知特點(diǎn)確定教學(xué)目標(biāo)如下:
    學(xué)習(xí)目標(biāo):
    1、復(fù)習(xí)鞏固對(duì)數(shù)函數(shù)的圖像及性質(zhì)
    2、運(yùn)用對(duì)數(shù)函數(shù)的性質(zhì)比較兩個(gè)數(shù)的大小
    能力目標(biāo):
    1、培養(yǎng)學(xué)生運(yùn)用圖形解決問題的意識(shí)即數(shù)形結(jié)合能力
    2、學(xué)生運(yùn)用已學(xué)知識(shí),已有經(jīng)驗(yàn)解決新問題的能力
    3、探索出方法,有條理闡述自己觀點(diǎn)的能力
    德育目標(biāo):
    培養(yǎng)學(xué)生勤于思考、獨(dú)立思考、合作交流等良好的個(gè)性品質(zhì)
    三、教材的重點(diǎn)及難點(diǎn)
    教學(xué)中將在以下2個(gè)環(huán)節(jié)中突出教學(xué)重點(diǎn):
    1、利用學(xué)生預(yù)習(xí)后的心得交流,資源共享,互補(bǔ)不足
    2、通過適當(dāng)?shù)木毩?xí),加強(qiáng)對(duì)解題方法的掌握及原理的理解
    教學(xué)中會(huì)在以下3個(gè)方面突破教學(xué)難點(diǎn):
    1、教師調(diào)整角色,讓學(xué)生成為學(xué)習(xí)的主人,教師在其中起引導(dǎo)作用即可。
    2、小組合作探索新問題時(shí),注重生生合作、師生互動(dòng),適時(shí)用語言鼓勵(lì)學(xué)生,增強(qiáng)學(xué)生參與討論的自信。
    3、本節(jié)課采用多媒體輔助教學(xué),節(jié)省時(shí)間,加快課程進(jìn)度,增強(qiáng)了直觀形象性。
    四、學(xué)生學(xué)情分析
    長處:高一學(xué)生經(jīng)過幾年的數(shù)學(xué)學(xué)習(xí),已具備一定的數(shù)學(xué)素養(yǎng),對(duì)于已學(xué)知識(shí)或用過的數(shù)學(xué)思想、方法有一定的應(yīng)用能力及應(yīng)用意識(shí),對(duì)于本節(jié)課而言,從知識(shí)上說,對(duì)數(shù)函數(shù)的圖像和性質(zhì)剛剛學(xué)過,本節(jié)課是知識(shí)的應(yīng)用,從數(shù)學(xué)能力上說,指數(shù)比大小問題的解題思想和方法在這可借鑒,另外數(shù)形結(jié)合能力、小結(jié)概括能力、特殊到一般歸納能力已具備一點(diǎn)。
    學(xué)生可能遇到的困難:本節(jié)課從教學(xué)內(nèi)容上來看,第三類對(duì)數(shù)比大小是課本以外補(bǔ)充的內(nèi)容,沒有預(yù)習(xí)心得,讓學(xué)生在課堂中快速通過合作探究來完成解題思路的構(gòu)建,有一定的挑戰(zhàn)性,從學(xué)生能力上來看,探索出方法,有條理闡述自己觀點(diǎn)的能力還需加強(qiáng)鍛煉,知識(shí)之間的聯(lián)系認(rèn)識(shí)上還顯不足。
    五、教法特點(diǎn)
    新課程強(qiáng)調(diào)教師要調(diào)整自己的角色,改變傳統(tǒng)的教育方式,在教育方式上,以學(xué)生為中心,讓學(xué)生成為學(xué)習(xí)的主人,教師在其中起引導(dǎo)作用即可?;诖耍竟?jié)課遵循此原則重點(diǎn)采用問題探究和啟發(fā)引導(dǎo)式的教學(xué)方法。從預(yù)習(xí)交流心得出發(fā),到探索新問題,再到題后的回顧總結(jié),一切以學(xué)生為中心,處處體現(xiàn)學(xué)生的主體地位,讓學(xué)生多說、多分析、多思考、多總結(jié),引導(dǎo)學(xué)生運(yùn)用自己的語言闡述觀點(diǎn),加強(qiáng)理解,在生生合作,師生互動(dòng)中解決問題,為提高學(xué)生分析問題、解決問題能力打下基礎(chǔ)。本節(jié)課采用多媒體輔助教學(xué),節(jié)省時(shí)間,加快課程進(jìn)度,增強(qiáng)了直觀形象性。
    六、教學(xué)過程分析
    1、課件展示本節(jié)課學(xué)習(xí)目標(biāo)
    設(shè)計(jì)意圖:明確任務(wù),激發(fā)興趣
    2、溫故知新(已填表形式復(fù)習(xí)對(duì)數(shù)函數(shù)的圖像和性質(zhì))
    設(shè)計(jì)意圖:復(fù)習(xí)已學(xué)知識(shí)和方法,為學(xué)生形成知識(shí)間的聯(lián)系和框架建立平臺(tái),并為下一步的應(yīng)用打下基礎(chǔ)。
    3、預(yù)習(xí)后心得交流
    1)同底對(duì)數(shù)比大小
    2)既不同底數(shù),也不同真數(shù)的對(duì)數(shù)比大小
    設(shè)計(jì)意圖:通過學(xué)生的預(yù)習(xí),自己總結(jié)方法及此方法適用的題型,有條理的闡述自己的學(xué)習(xí)心得,老師只需起引導(dǎo)作用,引導(dǎo)學(xué)生從題目表面上升到題目的實(shí)質(zhì),從而找到解決問題的有效方法。
    4、合作探究——同真異底型的對(duì)數(shù)比大小
    以例3為例,學(xué)生分組合作探究解題方法,預(yù)計(jì)兩種:一是利用換底公式將此類型轉(zhuǎn)化為同底異真型,利用之前總結(jié)的方法解決此問題。二是利用具體對(duì)數(shù)的大小關(guān)系探究出不同底對(duì)數(shù)函數(shù)在同一直角坐標(biāo)系中的圖像,以此來解決此類型比大小問題。
    設(shè)計(jì)意圖:這一部分是本節(jié)課的難點(diǎn),探究中充分發(fā)揮學(xué)生的主動(dòng)性,培養(yǎng)主動(dòng)學(xué)習(xí)的意識(shí),同時(shí)也鍛煉學(xué)生各方面能力的很好機(jī)會(huì),為以后的探究學(xué)習(xí)積累經(jīng)驗(yàn)和方法,充分體現(xiàn)“授之以魚,不如授之以漁”的教學(xué)理念。另外數(shù)學(xué)問題的解決僅僅只是一半,更重要的是解題之后的回顧,即反思,如果沒有了反思,他們就錯(cuò)過了解題的一次重要而有效益的方面。因此,本題解決后,讓學(xué)生反思明白,要想利用性質(zhì)解決問題,關(guān)鍵要做到“腦中有圖”,以“形”促“數(shù)”。
    5、小結(jié)
    6、思考題
    以20__高考題為例,讓學(xué)生學(xué)以致用,增強(qiáng)數(shù)學(xué)學(xué)習(xí)興趣。
    7、作業(yè)
    包括兩個(gè)方面:
    1、書寫作業(yè)
    2、下節(jié)課前的預(yù)習(xí)作業(yè)
    七、教學(xué)效果分析
    通過本節(jié)課的教學(xué)實(shí)例來看,這種通過課本內(nèi)容預(yù)習(xí),而后課堂交流學(xué)習(xí)成果的方法效果不錯(cuò),既能很好的完成教學(xué)任務(wù),又能充分發(fā)揮學(xué)生學(xué)習(xí)的主動(dòng)性。在自主探究時(shí),學(xué)生分組討論過程中,我參與小組討論,對(duì)有能力的小組,在探究出一種方法后,可鼓勵(lì)完成更多的方法探究,對(duì)于能力較弱的小組,可給予適當(dāng)?shù)奶崾?,使學(xué)生都能動(dòng)起來,課堂都有所收獲,增強(qiáng)學(xué)生自信。另外,對(duì)于學(xué)生的總結(jié)回答,可能會(huì)比較慢,我一定會(huì)耐心聽,及時(shí)鼓勵(lì),給予學(xué)生微笑和語言的鼓勵(lì),效果很好。在小結(jié)環(huán)節(jié)中,對(duì)于高一學(xué)生自己小結(jié)的方法,是我一直的教學(xué)嘗試,由于只訓(xùn)練了半學(xué)期,學(xué)生只能達(dá)到小結(jié)知識(shí)的程度,在以后的訓(xùn)練中還會(huì)加入數(shù)學(xué)思想、數(shù)學(xué)方法的小結(jié)內(nèi)容,使這些數(shù)學(xué)名詞讓學(xué)生不再覺得抽象,而是變成具體的,可操作的、具體的解題工具。
    高一數(shù)學(xué)教案篇六
    (1)掌握斜二測(cè)畫法畫水平設(shè)置的平面圖形的直觀圖。
    (2)采用對(duì)比的方法了解在平行投影下畫空間圖形與在中心投影下畫空間圖形兩種方法的各自特點(diǎn)。
    2.過程與方法
    學(xué)生通過觀察和類比,利用斜二測(cè)畫法畫出空間幾何體的直觀圖。
    3.情感態(tài)度與價(jià)值觀
    (1)提高空間想象力與直觀感受。
    (2)體會(huì)對(duì)比在學(xué)習(xí)中的作用。
    (3)感受幾何作圖在生產(chǎn)活動(dòng)中的應(yīng)用。
    高一數(shù)學(xué)教案篇七
    1.能根據(jù)拋物線的定義建立拋物線的標(biāo)準(zhǔn)方程;
    2.會(huì)根據(jù)拋物線的標(biāo)準(zhǔn)方程寫出其焦點(diǎn)坐標(biāo)與準(zhǔn)線方程;
    3.會(huì)求拋物線的標(biāo)準(zhǔn)方程。
    1.完成下表:
    標(biāo)準(zhǔn)方程
    圖形
    焦點(diǎn)坐標(biāo)
    準(zhǔn)線方程
    開口方向
    2.求拋物線的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程.
    3.求經(jīng)過點(diǎn)的拋物線的標(biāo)準(zhǔn)方程.
    二、問題探究
    探究1:回顧拋物線的定義,依據(jù)定義,如何建立拋物線的標(biāo)準(zhǔn)方程?
    探究2:方程是拋物線的標(biāo)準(zhǔn)方程嗎?試將其與拋物線的標(biāo)準(zhǔn)方程辨析比較.
    例1.已知拋物線的頂點(diǎn)在原點(diǎn),對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)在直線上,求拋物線的方程.
    例2.已知拋物線的焦點(diǎn)在軸上,點(diǎn)是拋物線上的一點(diǎn),到焦點(diǎn)的距離是5,求的值及拋物線的標(biāo)準(zhǔn)方程,準(zhǔn)線方程.
    例3.拋物線的頂點(diǎn)在原點(diǎn),對(duì)稱軸為軸,它與圓相交,公共弦的長為.求該拋物線的方程,并寫出其焦點(diǎn)坐標(biāo)與準(zhǔn)線方程.
    三、思維訓(xùn)練
    1.在平面直角坐標(biāo)系中,若拋物線上的點(diǎn)到該拋物線的焦點(diǎn)的距離為6,則點(diǎn)的橫坐標(biāo)為.
    2.拋物線的焦點(diǎn)到其準(zhǔn)線的距離是.
    3.設(shè)為拋物線的焦點(diǎn),為該拋物線上三點(diǎn),若,則=.
    4.若拋物線上兩點(diǎn)到焦點(diǎn)的距離和為5,則線段的中點(diǎn)到軸的距離是.
    5.(理)已知拋物線,有一個(gè)內(nèi)接直角三角形,直角頂點(diǎn)在原點(diǎn),斜邊長為,一直角邊所在直線方程是,求此拋物線的方程。
    四、課后鞏固
    1.拋物線的準(zhǔn)線方程是.
    2.拋物線上一點(diǎn)到焦點(diǎn)的距離為,則點(diǎn)到軸的.距離為.
    3.已知拋物線,焦點(diǎn)到準(zhǔn)線的距離為,則.
    4.經(jīng)過點(diǎn)的拋物線的標(biāo)準(zhǔn)方程為.
    5.頂點(diǎn)在原點(diǎn),以雙曲線的焦點(diǎn)為焦點(diǎn)的拋物線方程是.
    6.拋物線的頂點(diǎn)在原點(diǎn),以軸為對(duì)稱軸,過焦點(diǎn)且傾斜角為的直線被拋物線所截得的弦長為8,求拋物線的方程.
    7.若拋物線上有一點(diǎn),其橫坐標(biāo)為,它到焦點(diǎn)的距離為10,求拋物線方程和點(diǎn)的坐標(biāo)。
    高一數(shù)學(xué)教案篇八
    會(huì)運(yùn)用圖象判斷單調(diào)性;理解函數(shù)的單調(diào)性,能判斷或證明一些簡(jiǎn)單函數(shù)單調(diào)性;注意必須在定義域內(nèi)或其子集內(nèi)討論函數(shù)的單調(diào)性。
    函數(shù)單調(diào)性的證明及判斷。
    函數(shù)單調(diào)性證明及其應(yīng)用。
    1、函數(shù)的定義域、值域、圖象、表示方法
    2、函數(shù)單調(diào)性
    (1)單調(diào)增函數(shù)
    (2)單調(diào)減函數(shù)
    (3)單調(diào)區(qū)間
    例1、畫出下列函數(shù)圖象,并寫出單調(diào)區(qū)間:
    (1)(2)(2)
    例2、求證:函數(shù)在區(qū)間上是單調(diào)增函數(shù)。
    例3、討論函數(shù)的單調(diào)性,并證明你的結(jié)論。
    變(1)討論函數(shù)的單調(diào)性,并證明你的結(jié)論
    變(2)討論函數(shù)的單調(diào)性,并證明你的結(jié)論。
    例4、試判斷函數(shù)在上的單調(diào)性。
    1、判斷下列說法正確的是。
    (1)若定義在上的函數(shù)滿足,則函數(shù)是上的.單調(diào)增函數(shù);
    (2)若定義在上的函數(shù)滿足,則函數(shù)在上不是單調(diào)減函數(shù);
    (4)若定義在上的函數(shù)在區(qū)間上是單調(diào)增函數(shù),在區(qū)間上也是單調(diào)增函數(shù),則函數(shù)是上的單調(diào)增函數(shù)。
    2、若一次函數(shù)在上是單調(diào)減函數(shù),則點(diǎn)在直角坐標(biāo)平面的()
    a.上半平面b.下半平面c.左半平面d.右半平面
    3、函數(shù)在上是______;函數(shù)在上是_______。
    3.下圖分別為函數(shù)和的圖象,求函數(shù)和的單調(diào)增區(qū)間。
    4、求證:函數(shù)是定義域上的單調(diào)減函數(shù)。
    1、函數(shù)單調(diào)性的判斷及證明。
    1、求下列函數(shù)的單調(diào)區(qū)間
    (1)(2)
    2、畫函數(shù)的圖象,并寫出單調(diào)區(qū)間。
    3、求證:函數(shù)在上是單調(diào)增函數(shù)。
    4、若函數(shù),求函數(shù)的單調(diào)區(qū)間。
    5、若函數(shù)在上是增函數(shù),在上是減函數(shù),試比較與的大小。
    6、已知函數(shù),試討論函數(shù)f(x)在區(qū)間上的單調(diào)性。
    變(1)已知函數(shù),試討論函數(shù)f(x)在區(qū)間上的單調(diào)性。
    高一數(shù)學(xué)教案篇九
    :
    設(shè)計(jì)
    .
    突出重點(diǎn).培養(yǎng)能力.
    三、課堂練習(xí)
    教材第13頁練習(xí)1、2、3、4.
    【助練習(xí)】第13頁練習(xí)4(1)中用一個(gè)方向的斜平行線段表示,用另一方向的平行線段表示如圖:
    凡有陰影部分即為所求.
    四、小結(jié)
    提綱式(略).再一次突出交集和并集兩個(gè)概念中“且”,“或”的含義的不同.
    五、作業(yè)
    習(xí)題1至8.
    筆練結(jié)合板書.
    傾聽.修改練習(xí).掌握方法.
    觀察.思考.傾聽.理解.記憶.
    傾聽.理解.記憶.
    回憶、再現(xiàn)內(nèi)容.
    落實(shí)
    介紹解題技能技巧.
    內(nèi)容條理化.
    課堂教學(xué)設(shè)計(jì)說明
    2.反演律可根據(jù)學(xué)生實(shí)際酌情使用.
    高一數(shù)學(xué)教案篇十
    (1)通過實(shí)物操作,增強(qiáng)學(xué)生的直觀感知。
    (2)能根據(jù)幾何結(jié)構(gòu)特征對(duì)空間物體進(jìn)行分類。
    (3)會(huì)用語言概述棱柱、棱錐、圓柱、圓錐、棱臺(tái)、圓臺(tái)、球的結(jié)構(gòu)特征。
    (4)會(huì)表示有關(guān)于幾何體以及柱、錐、臺(tái)的分類。
    (1)讓學(xué)生通過直觀感受空間物體,從實(shí)物中概括出柱、錐、臺(tái)、球的幾何結(jié)構(gòu)特征。
    (2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識(shí)。
    (1)使學(xué)生感受空間幾何體存在于現(xiàn)實(shí)生活周圍,增強(qiáng)學(xué)生學(xué)習(xí)的積極性,同時(shí)提高學(xué)生的觀察能力。
    (2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。
    重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺(tái)、球的結(jié)構(gòu)特征。 難點(diǎn):柱、錐、臺(tái)、球的結(jié)構(gòu)特征的概括。
    (1)學(xué)法:觀察、思考、交流、討論、概括。
    (2)實(shí)物模型、投影儀 四、教學(xué)思路
    1、教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導(dǎo)學(xué)生回憶,舉例和相互交流。教師對(duì)學(xué)生的活動(dòng)及時(shí)給予評(píng)價(jià)。
    2、所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺(tái)、球結(jié)構(gòu)特征的空間物體),你能通過觀察。根據(jù)某種標(biāo)準(zhǔn)對(duì)這些空間物體進(jìn)行分類嗎?這是我們所要學(xué)習(xí)的內(nèi)容。
    1、引導(dǎo)學(xué)生觀察物體、思考、交流、討論,對(duì)物體進(jìn)行分類,分辯棱柱、圓柱、棱錐。
    3、組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。
    (1)有兩個(gè)面互相平行;
    (2)其余各面都是平行四邊形;
    (3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
    4、教師與學(xué)生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。
    5、提出問題:各種這樣的棱柱,主要有什么不同?可不可以根據(jù)不同對(duì)棱柱分類?
    6、以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺(tái)的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。
    7、讓學(xué)生觀察圓柱,并實(shí)物模型演示,如何得到圓柱,從而概括出圓標(biāo)的概念以及相關(guān)的概念及圓柱的表示。
    8、引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺(tái)、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實(shí)物模型演示引導(dǎo)學(xué)生思考、討論、概括。
    9、教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺(tái)與圓臺(tái)統(tǒng)稱為臺(tái)體,圓錐與棱錐統(tǒng)稱為錐體。
    1、有兩個(gè)面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)
    2、棱柱的何兩個(gè)平面都可以作為棱柱的底面嗎?
    3、課本p8,習(xí)題1.1 a組第1題。
    5、棱臺(tái)與棱柱、棱錐有什么關(guān)系?圓臺(tái)與圓柱、圓錐呢?
    由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容 六、布置作業(yè)
    課本p8 練習(xí)題1.1 b組第1題
    課外練習(xí) 課本p8 習(xí)題1.1 b組第2題
    高一數(shù)學(xué)教案篇十一
    三維目標(biāo)的具體內(nèi)容和層次劃分
    請(qǐng)闡述數(shù)學(xué)課堂教學(xué)三維目標(biāo)的具體內(nèi)容和層次劃分
    所謂三維目標(biāo)是是指:“知識(shí)與技能”,“過程和方法”、“情感、態(tài)度、價(jià)值觀”。
    知識(shí)與技能:既是課堂教學(xué)的出發(fā)點(diǎn),又是課堂教學(xué)的歸宿。我們?cè)诮虒W(xué)過程中,需要學(xué)生掌握什么,哪些些問題需要重點(diǎn)掌握,哪些只需簡(jiǎn)單理解;技能是會(huì)與不會(huì)的問題。屬顯性范疇,具有可測(cè)性,大都采用定量分析與評(píng)價(jià)、知識(shí)與技能是傳統(tǒng)教學(xué)合理的內(nèi)核,是我國傳統(tǒng)教育教學(xué)的優(yōu)勢(shì),應(yīng)該從傳統(tǒng)教學(xué)中繼承與發(fā)揚(yáng)。新課改不是不要雙基,而是不要過度的強(qiáng)調(diào)雙基,而舍棄弱化其它有價(jià)值的東西,導(dǎo)致非全面、不和藹的發(fā)展。
    過程與方法:既是課堂教學(xué)的目標(biāo)之一,又是課堂教學(xué)的操作系統(tǒng)。“過程和方法”維度的目標(biāo)立足于讓學(xué)生會(huì)學(xué),新課程倡導(dǎo)對(duì)學(xué)與教的過程的體驗(yàn)、方法的選擇,是在知識(shí)與能力目標(biāo)基礎(chǔ)上對(duì)教學(xué)目標(biāo)的進(jìn)一步開發(fā)。過程與方法是一個(gè)體驗(yàn)的過程、發(fā)現(xiàn)的過程,不但可以讓學(xué)生體驗(yàn)到科學(xué)發(fā)展的過程,我們更多地要讓學(xué)生掌握過程,不一定要統(tǒng)一的結(jié)果。
    情感、態(tài)度與價(jià)值觀:既是課堂教學(xué)的目標(biāo)之一,又是課堂教學(xué)的動(dòng)力系統(tǒng)?!扒楦?、態(tài)度和價(jià)值觀”,目標(biāo)立足于讓學(xué)生樂學(xué),新課程倡導(dǎo)對(duì)學(xué)與教的情感體驗(yàn)、態(tài)度形成、價(jià)值觀的體現(xiàn),是在知識(shí)與能力、過程與方法目標(biāo)基礎(chǔ)上對(duì)教學(xué)目標(biāo)深層次的開拓,只有學(xué)生充分的認(rèn)識(shí)到他們肩負(fù)的責(zé)任,就能夠激發(fā)起他們的學(xué)習(xí)熱情,他們才會(huì)有濃厚的學(xué)習(xí)興趣,才能學(xué)有所成,將來回報(bào)社會(huì)。
    三維目標(biāo)不是三個(gè)目標(biāo),也不是三種目標(biāo),是一個(gè)問題的三個(gè)方面。三維目標(biāo)是三位一體不可分割的,他們是相輔相成的,相互促進(jìn)的。
    高一數(shù)學(xué)教案篇十二
    重難點(diǎn)分析
    本節(jié)的重點(diǎn)是二次根式的化簡(jiǎn).本章自始至終圍繞著二次根式的化簡(jiǎn)與計(jì)算進(jìn)行,而二次根式的化簡(jiǎn)不但涉及到前面學(xué)習(xí)過的算術(shù)平方根、二次根式等概念與二次根式的運(yùn)算性質(zhì),還要牽涉到絕對(duì)值以及各種非負(fù)數(shù)、因式分解等知識(shí),在應(yīng)用中常常需要對(duì)字母進(jìn)行分類討論.
    本節(jié)的難點(diǎn)是正確理解與應(yīng)用公式.這個(gè)公式的表達(dá)形式對(duì)學(xué)生來說,比較生疏,而實(shí)際運(yùn)用時(shí),則要牽涉到對(duì)字母取值范圍的討論,學(xué)生往往容易出現(xiàn)錯(cuò)誤.
    教法建議
    1.性質(zhì)的引入方法很多,以下2種比較常用:
    (1)設(shè)計(jì)問題引導(dǎo)啟發(fā):由設(shè)計(jì)的問題
    1)、、各等于什么?
    2)、、各等于什么?
    啟發(fā)、引導(dǎo)學(xué)生猜想出
    (2)從算術(shù)平方根的意義引入.
    2.性質(zhì)的鞏固有兩個(gè)方面需要注意:
    (1)注意與性質(zhì)進(jìn)行對(duì)比,可出幾道類型不同的題進(jìn)行比較;
    (2)學(xué)生初次接觸這種形式的表示方式,在教學(xué)時(shí)要注意細(xì)分層次加以鞏固,如單個(gè)數(shù)字,單個(gè)字母,單項(xiàng)式,可進(jìn)行因式分解的多項(xiàng)式,等等.
    (第1課時(shí))
    1.掌握二次根式的性質(zhì)
    2.能夠利用二次根式的性質(zhì)化簡(jiǎn)二次根式
    3.通過本節(jié)的學(xué)習(xí)滲透分類討論的數(shù)學(xué)思想和方法
    對(duì)比、歸納、總結(jié)
    1.重點(diǎn):理解并掌握二次根式的性質(zhì)
    2.難點(diǎn):理解式子中的可以取任意實(shí)數(shù),并能根據(jù)字母的取值范圍正確地化簡(jiǎn)有關(guān)的二次根式.
    1課時(shí)
    五、教b具學(xué)具準(zhǔn)備
    投影儀、膠片、多媒體
    復(fù)習(xí)對(duì)比,歸納整理,應(yīng)用提高,以學(xué)生活動(dòng)為主
    一、導(dǎo)入新課
    我們知道,式子()表示非負(fù)數(shù)的算術(shù)平方根.
    問:式子的意義是什么?被開方數(shù)中的表示的是什么數(shù)?
    答:式子表示非負(fù)數(shù)的算術(shù)平方根,即,且,從而可以取任意實(shí)數(shù).
    二、新課
    計(jì)算下列各題,并回答以下問題:
    (1);(2);(3);
    1.各小題中被開方數(shù)的冪的底數(shù)都是什么數(shù)?
    2.各小題的結(jié)果和相應(yīng)的被開方數(shù)的冪的底數(shù)有什么關(guān)系?
    3.用字母表示被開方數(shù)的冪的底數(shù),將有怎樣的結(jié)論?并用語言敘述你的結(jié)論.
    高一數(shù)學(xué)教案篇十三
    1.了解函數(shù)的單調(diào)性和奇偶性的概念,掌握有關(guān)證明和判斷的基本方法.
    (1)了解并區(qū)分增函數(shù),減函數(shù),單調(diào)性,單調(diào)區(qū)間,奇函數(shù),偶函數(shù)等概念.
    (2)能從數(shù)和形兩個(gè)角度認(rèn)識(shí)單調(diào)性和奇偶性.
    (3)能借助圖象判斷一些函數(shù)的單調(diào)性,能利用定義證明某些函數(shù)的單調(diào)性;能用定義判斷某些函數(shù)的奇偶性,并能利用奇偶性簡(jiǎn)化一些函數(shù)圖象的繪制過程.
    2.通過函數(shù)單調(diào)性的證明,提高學(xué)生在代數(shù)方面的推理論證能力;通過函數(shù)奇偶性概念的形成過程,培養(yǎng)學(xué)生的觀察,歸納,抽象的能力,同時(shí)滲透數(shù)形結(jié)合,從特殊到一般的數(shù)學(xué)思想.
    3.通過對(duì)函數(shù)單調(diào)性和奇偶性的理論研究,增學(xué)生對(duì)數(shù)學(xué)美的體驗(yàn),培養(yǎng)樂于求索的精神,形成科學(xué),嚴(yán)謹(jǐn)?shù)难芯繎B(tài)度.
    (1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系.
    (2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像.
    (1)本節(jié)教學(xué)的重點(diǎn)是函數(shù)的單調(diào)性,奇偶性概念的形成與認(rèn)識(shí).教學(xué)的難點(diǎn)是領(lǐng)悟函數(shù)單調(diào)性, 奇偶性的本質(zhì),掌握單調(diào)性的證明.
    (2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準(zhǔn)確的數(shù)學(xué)語言去刻畫它.這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對(duì)高一的學(xué)生來說是比較困難的,因此要在概念的形成上重點(diǎn)下功夫.單調(diào)性的證明是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證明,也沒有意識(shí)到它的重要性,所以單調(diào)性的證明自然就是教學(xué)中的難點(diǎn).
    (1)函數(shù)單調(diào)性概念引入時(shí),可以先從學(xué)生熟悉的一次函數(shù),,二次函數(shù).反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點(diǎn)感性認(rèn)識(shí)出發(fā),通過問題逐步向抽象的定義靠攏.如可以設(shè)計(jì)這樣的問題:圖象怎么就升上去了?可以從點(diǎn)的坐標(biāo)的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語言表示出來.在這個(gè)過程中對(duì)一些關(guān)鍵的詞語(某個(gè)區(qū)間,任意,都有)的理解與必要性的認(rèn)識(shí)就可以融入其中,將概念的形成與認(rèn)識(shí)結(jié)合起來.
    (2)函數(shù)單調(diào)性證明的步驟是嚴(yán)格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時(shí),讓學(xué)生明確變換的目標(biāo),到什么程度就可以斷號(hào),在例題的選擇上應(yīng)有不同的變換目標(biāo)為選題的標(biāo)準(zhǔn),以便幫助學(xué)生總結(jié)規(guī)律.
    函數(shù)的奇偶性概念引入時(shí),可設(shè)計(jì)一個(gè)課件,以的圖象為例,讓自變量互為相反數(shù),觀察對(duì)應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開始,逐漸讓在數(shù)軸上動(dòng)起來,觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達(dá)式寫出來.經(jīng)歷了這樣的過程,再得到等式時(shí),就比較容易體會(huì)它代表的是無數(shù)多個(gè)等式,是個(gè)恒等式.關(guān)于定義域關(guān)于原點(diǎn)對(duì)稱的問題,也可借助課件將函數(shù)圖象進(jìn)行多次改動(dòng),幫助學(xué)生發(fā)現(xiàn)定義域的對(duì)稱性,同時(shí)還可以借助圖象說明定義域關(guān)于原點(diǎn)對(duì)稱只是函數(shù)具備奇偶性的必要條件而不是充分條件.