實用數(shù)學(xué)思想方法心得體會(匯總21篇)

字號:

    心得體會是在我們經(jīng)歷一些事情后,對這些經(jīng)歷的感悟和總結(jié)。那么怎樣寫好一篇有意義的心得體會呢?首先,要注意觀察和思考。只有我們真正用心去觀察和思考,才能得出有深度的心得體會。其次,要注重實踐和總結(jié)。我們需要將自己的經(jīng)驗和教訓(xùn)進(jìn)行總結(jié)和歸納,從而得出有針對性的心得體會。再次,要注重語言和表達(dá)。心得體會的寫作不僅僅是為了記錄自己的思考和感悟,更重要的是能夠用清晰準(zhǔn)確的語言表達(dá)出來。最后,要持之以恒。寫心得體會不是一時興起,而是一個長期的過程。只有堅持下去,才能得到更多的心得體會和收獲。以下是一些精選的心得體會范文,分享給大家,供大家參考和學(xué)習(xí)。
    數(shù)學(xué)思想方法心得體會篇一
    一、集合的思想方法
    把一組對象放在一起,作為討論的范圍,這是人類早期就有的思想方法,繼而把一定程度抽象了的思維對象,如數(shù)學(xué)上的點、數(shù)、式放在一起作為研究對象,這種思想就是集合思想。集合思想作為一種思想,在小學(xué)數(shù)學(xué)中就有所體現(xiàn)。在小學(xué)數(shù)學(xué)中,集合概念是通過畫集合圖的辦法來滲透的。
    如用圓圈圖(韋恩圖)向?qū)W生直觀的滲透集合概念。讓他們感知圈內(nèi)的物體具有某種共同的屬性,可以看作一個整體,這個整體就是一個集合。利用圖形間的關(guān)系則可向?qū)W生滲透集合之間的關(guān)系,如長方形集合包含正方形集合,平行四邊形集合包含長方形集合,四邊形集合又包含平行四邊行集合等。
    二、對應(yīng)的思想方法
    對應(yīng)是人的思維對兩個集合間問題聯(lián)系的把握,是現(xiàn)代數(shù)學(xué)的一個最基本的概念。小學(xué)數(shù)學(xué)教學(xué)中主要利用虛線、實線、箭頭、計數(shù)器等圖形將元素與元素、實物與實物、數(shù)與算式、量與量聯(lián)系起來,滲透對應(yīng)思想。
    如人教版一年級上冊教材中,分別將小兔和磚頭、小豬和木頭、小白兔和蘿卜、蘋果和梨一一對應(yīng)后,進(jìn)行多少的比較學(xué)習(xí),向?qū)W生滲透了事物間的對應(yīng)關(guān)系,為學(xué)生解決問題提供了思想方法。
    三、數(shù)形結(jié)合的思想方法
    數(shù)與形是數(shù)學(xué)教學(xué)研究對象的兩個側(cè)面,把數(shù)量關(guān)系和空間形式結(jié)合起來去分析問題、解決問題,就是數(shù)形結(jié)合思想?!皵?shù)形結(jié)合”可以借助簡單的圖形、符號和文字所作的示意圖,促進(jìn)學(xué)生形象思維和抽象思維的協(xié)調(diào)發(fā)展,溝通數(shù)學(xué)知識之間的聯(lián)系,從復(fù)雜的數(shù)量關(guān)系中凸顯最本質(zhì)的特征。它是小學(xué)數(shù)學(xué)教材編排的重要原則,也是小學(xué)數(shù)學(xué)教材的一個重要特點,更是解決問題時常用的.方法。
    例如,我們常用畫線段圖的方法來解答應(yīng)用題,這是用圖形來代替數(shù)量關(guān)系的一種方法。我們又可以通過代數(shù)方法來研究幾何圖形的周長、面積、體積等,這些都體現(xiàn)了數(shù)形結(jié)合的思想。
    四、函數(shù)的思想方法
    恩格斯說:“數(shù)學(xué)中的轉(zhuǎn)折點是笛卡兒的變數(shù)。有了變數(shù),運動進(jìn)入了數(shù)學(xué),有了變數(shù),辯證法進(jìn)入了數(shù)學(xué),有了變數(shù),微分和積分也就立刻成為必要的了?!蔽覀冎?,運動、變化是客觀事物的本質(zhì)屬性。函數(shù)思想的可貴之處正在于它是運動、變化的觀點去反映客觀事物數(shù)量間的相互聯(lián)系和內(nèi)在規(guī)律的。學(xué)生對函數(shù)概念的理解有一個過程。在小學(xué)數(shù)學(xué)教學(xué)中,教師在處理一些問題時就要做到心中有函數(shù)思想,注意滲透函數(shù)思想。
    函數(shù)思想在人教版一年級上冊教材中就有滲透。如讓學(xué)生觀察《20以內(nèi)進(jìn)位加法表》,發(fā)現(xiàn)加數(shù)的變化引起的和的變化的規(guī)律等,都較好的滲透了函數(shù)的思想,其目的都在于幫助學(xué)生形成初步的函數(shù)概念。
    這就是我們精心為大家準(zhǔn)備的小升初學(xué)習(xí)數(shù)學(xué)思想方法,希望對大家有用!更多小升初復(fù)習(xí)資料及相關(guān)資訊,盡在數(shù)學(xué)網(wǎng),請大家及時關(guān)注!
    數(shù)學(xué)思想方法心得體會篇二
    一、注重引導(dǎo),抓住學(xué)習(xí)關(guān)鍵
    二、要正確處理本課程的自身邏輯系統(tǒng)與相關(guān)課程的關(guān)系
    初數(shù)研究課在研究初等數(shù)學(xué)問題時,大多采用專題討論的方法,都有一套完整的體系。如果過分強(qiáng)調(diào)自身完整的邏輯系統(tǒng),容易導(dǎo)致不同學(xué)科、不同課程的內(nèi)客及方法有很多重復(fù)和交叉。
    如數(shù)與初等數(shù)論中的相關(guān)內(nèi)容,解析式的恒等變形,方程、不等式的解法與證明,幾何證題法與證題術(shù)排列、組合及數(shù)列的一些解題方法等。如果不處理好它們之間的關(guān)系,只是簡單地追求各門課程自身體系的完整,既不利于學(xué)生整體數(shù)學(xué)思想的建立,又制約了他們數(shù)學(xué)綜合運用能力的提高,同時占用了很多的課時,所以,對于相關(guān)課程中己作詳盡討論過的知識及理論,應(yīng)作為工具來應(yīng)用,避免一些不必要的重復(fù)。
    三、變被動式學(xué)習(xí)為主動式學(xué)習(xí)
    1.知識系統(tǒng)的探究
    初數(shù)研究課涉及大量的理論,教師講、學(xué)生聽的傳統(tǒng)教學(xué)模式既占用課時多,又難以體現(xiàn)學(xué)生的主體性。因此對理論性較強(qiáng)的內(nèi)容,教師可以先提出一些切題的問題作為一堂課的鍥子,留待后面逐個解決。這些問題將整個教學(xué)內(nèi)容串起來,起到提綱摯領(lǐng)的作用,使學(xué)生明確學(xué)習(xí)目標(biāo),集中學(xué)習(xí)資源(如本課程及相關(guān)課程的教村及參考書)有針對性地去探究問題,然后教師組織學(xué)生對探究的結(jié)果進(jìn)行歸納整理,形成較完整的知識體系。當(dāng)然一個問題的解訣并非探究的終結(jié),在探究過程中教師與學(xué)生都可以提出一些新問題,延續(xù)學(xué)生探究的熱情,在合作交流的民主和諧的氛圍里,盡可能地讓學(xué)生走向自由探究。
    2.解題方法的探究
    從學(xué)生的認(rèn)知角度未說,解題過程是獨立的發(fā)現(xiàn)、探索與積極思考的過程,這種探索過程中所形成的意識和思維,就是真正的創(chuàng)造與發(fā)現(xiàn)。應(yīng)該說,解題教學(xué)是中學(xué)數(shù)學(xué)教學(xué)的主要任務(wù)之一,設(shè)置初數(shù)研究課程的目的之一,就是結(jié)合中學(xué)實際對解題作專門的訓(xùn)練。
    3.條件與結(jié)論的探究
    對一個問題的條件或結(jié)論進(jìn)行探究是對問題深入研究的重要組成部分,也是初數(shù)研究課程中具有挑戰(zhàn)性的任務(wù)之一,引導(dǎo)學(xué)生從不同角度、不同層面來看問題,對學(xué)生的發(fā)散思維及創(chuàng)造思維的培養(yǎng),都能起到良好的推動作用。
    隨著教學(xué)改革的深化,教學(xué)思想方法不僅要在理論上做研究探討,更重要的是需要在實踐中不斷地創(chuàng)造與完善,才能使教學(xué)取得較好的效果。
    [數(shù)學(xué)思想方法心得體會]
    數(shù)學(xué)思想方法心得體會篇三
    為了幫助小學(xué)數(shù)學(xué)教師轉(zhuǎn)變數(shù)學(xué)教育觀念,提高對數(shù)學(xué)思想方法的理解和運用水平,進(jìn)而提高數(shù)學(xué)專業(yè)素養(yǎng),本書主編王永春于出版了專著《小學(xué)數(shù)學(xué)與數(shù)學(xué)思想方法》,該書一經(jīng)出版,便受到廣大小學(xué)數(shù)學(xué)教師的歡迎,參與學(xué)習(xí)活動的老師們把自己的讀書心得寫出來,在教學(xué)中去實踐自己的學(xué)習(xí)收獲,主編王永春把這些鮮活的學(xué)習(xí)體會和寶貴的教學(xué)經(jīng)驗案例結(jié)集出版,形成了本書,讓更多的老師分享通俗而深刻的理論解讀和接地氣的實踐經(jīng)驗。
    本書作者王永春,作為人民教育出版社小學(xué)數(shù)學(xué)編輯室主任,長期從事小學(xué)數(shù)學(xué)教材的編寫工作,致力于課程、教材的研究,對小學(xué)數(shù)學(xué)思想方法有深入的思考和探索。基于對提高教育質(zhì)量、落實教育目標(biāo)的強(qiáng)烈責(zé)任感,作者撰寫了系列文章,就有關(guān)數(shù)學(xué)思想方法在小學(xué)教學(xué)中的應(yīng)用作了專門的論述。在此基礎(chǔ)上,形成了本書。
    本書是《小學(xué)數(shù)學(xué)與數(shù)學(xué)思想方法》一書的讀后感,是一線教師對數(shù)學(xué)思想方法的解讀和教學(xué)案例的研究。因此本書的內(nèi)容結(jié)構(gòu)和目錄與《小學(xué)數(shù)學(xué)與數(shù)學(xué)思想方法》的內(nèi)容結(jié)構(gòu)和目錄是基本相對應(yīng)的,其中第1章到第五章的目錄與《小學(xué)數(shù)學(xué)與數(shù)學(xué)思想方法》相對應(yīng),第六章教學(xué)案例部分,考慮到各年級案例分布不均,沒有按照冊數(shù)分節(jié),把一、二年級分為第1節(jié),三、四年級分為第二節(jié),五年級分為第三節(jié),六年級分為第四節(jié)。對學(xué)生來說,數(shù)學(xué)思想方法不同于一般的概念和技能,概念與技能通??梢酝ㄟ^短期的訓(xùn)練便能掌握,而數(shù)學(xué)思想方法則需要通過教師長期的滲透和影響才能夠形成。教師應(yīng)在每堂課的教學(xué)中適時、適當(dāng)?shù)伢w現(xiàn)思想方法的教學(xué)目標(biāo),使學(xué)生在潛移默化中日積月累,通過提高數(shù)學(xué)素養(yǎng)達(dá)到學(xué)好數(shù)學(xué)的目的。
    數(shù)學(xué)思想方法不同于一般的概念和技能,后者一般通過短期的訓(xùn)練便能掌握,而數(shù)學(xué)思想方法需要通過在教學(xué)中長期地滲透和影響才能夠形成。古語云“泰山不讓土壤,故能成其大;河海不擇細(xì)流,故能就其深?!苯處煈?yīng)在每堂課的教學(xué)中適時、適當(dāng)?shù)伢w現(xiàn)思想方法的教學(xué)目標(biāo),使學(xué)生在潛移默化中日積月累,通過提高數(shù)學(xué)素養(yǎng)達(dá)到學(xué)好數(shù)學(xué)的目的。希望數(shù)學(xué)思想方法的教學(xué)能夠像春雨一樣,滋潤著學(xué)生的心田。
    數(shù)學(xué)思想方法心得體會篇四
    其實,這本書擱置在書架上已經(jīng)許久了,因為里面概念性的東西比較多,所以讀起來并不是那么趣味十足,之前讀了幾頁,便沒有再讀下去。
    之所以重讀這本書,緣于這幾天和學(xué)生一起收看《名師同步課堂》,在電視上做六年級數(shù)學(xué)直播課的是經(jīng)驗豐富的魯向前老師,我發(fā)現(xiàn)他在講課的時候,特別注重數(shù)學(xué)思想方法的滲透,在這方面正是我所欠缺的。
    魯老師在講解求體積的解決問題時,提到了把一個體積轉(zhuǎn)化成另一個體積,正方體熔鑄成圓柱體,小石子放入水中水面升高等等,體現(xiàn)了恒等變形的思想。
    魯老師特別提到一種數(shù)學(xué)思想方法,由圓柱體積的求法猜想并實驗證明圓錐體積的求法,體現(xiàn)了類比的思想方法。類比思想是指依據(jù)兩類數(shù)學(xué)對象的相似性,將已知的一類數(shù)學(xué)對象的性質(zhì)遷移到另一類數(shù)學(xué)對象上去的思想。
    經(jīng)常說教方法比教知識重要,作為一名數(shù)學(xué)老師,需要系統(tǒng)的了解數(shù)學(xué)思想方法。所以我便想到了書架上的這本書。說實話,讀這本書是有些枯燥的,而且如果你不動腦子去思考書中的問題的話,那你可能僅僅讀的就是字了。
    在《小學(xué)數(shù)學(xué)與數(shù)學(xué)思想方法》這本書的封皮上寫著:
    數(shù)學(xué)思想方法不同于一般的概念和技能,后者一般通過短期的訓(xùn)練便能掌握,數(shù)學(xué)思想方法的教學(xué)更應(yīng)該是一個通過長期的滲透和影響才能夠形成思想和方法的過程。教師應(yīng)在每堂課的教學(xué)中適時、適當(dāng)?shù)伢w現(xiàn)思想方法的教學(xué)目標(biāo),使學(xué)生在潛移默化中日積月累,通過提高數(shù)學(xué)素養(yǎng)達(dá)到學(xué)好數(shù)學(xué)的目的。
    這本書分上下兩篇,上篇介紹各類思想方法,下篇介紹各類思想方法在每一冊教材中的體現(xiàn),這本書可以當(dāng)成我們的一本工具書,在我們備課的時候,方便我們查閱。比如,在總結(jié)十以內(nèi)的加減法或者乘法口訣的推導(dǎo)過程中,都體現(xiàn)了函數(shù)思想,作為老師的我們,不必讓學(xué)生明確知道什么是函數(shù)思想,但是我們應(yīng)該明白這里面體現(xiàn)了函數(shù)思想,并且有意識地向?qū)W生滲透思想方法,讓學(xué)生在以后面對類似的問題,能夠聯(lián)想到這種思想方法去解決問題。
    僅僅花費兩三天的時間,匆匆讀完了這本書,書中的一些思想方法或者內(nèi)容,有些地方還不是太懂,需要慢慢去領(lǐng)悟,但是我知道,在以后備課,做教學(xué)設(shè)計時,一定要思考一個問題:這節(jié)課體現(xiàn)了哪些思想方法?我們應(yīng)該向?qū)W生滲透哪些思想方法?為學(xué)生考慮的再長遠(yuǎn)一些。
    數(shù)學(xué)思想方法心得體會篇五
    教師是落實數(shù)學(xué)思想方法的實施者,教師對數(shù)學(xué)思想方法的理解程度直接影響這一教學(xué)目標(biāo)的有效落實。因此,教師首先要認(rèn)真研讀小學(xué)階段所涉及的各種思想方法的內(nèi)涵。
    教師深刻理解了各種數(shù)學(xué)思想方法的內(nèi)涵,在課前預(yù)設(shè)時把數(shù)學(xué)思想方法的滲透作為重要的教學(xué)目標(biāo),是小學(xué)生理解、掌握數(shù)學(xué)思想方法的前提。
    二、在教學(xué)設(shè)計時,有意識地挖掘教材中蘊藏的數(shù)學(xué)思想方法
    教材體系有兩條基本線索:一條是數(shù)學(xué)知識,這是明線,另一條是數(shù)學(xué)思想方法,這是蘊含在教材中的暗線?!稊?shù)學(xué)課程標(biāo)準(zhǔn)》在教材編寫建議上,要求根據(jù)學(xué)生已有經(jīng)驗、心理發(fā)展規(guī)律以及所學(xué)內(nèi)容的特點,一些重要的數(shù)學(xué)概念與數(shù)學(xué)思想方法采取逐步滲透編排的,以便逐步實現(xiàn)學(xué)習(xí)目標(biāo),為此,在小學(xué)數(shù)學(xué)教材中根據(jù)不同年級蘊含著不同的數(shù)學(xué)思想方法。
    小學(xué)生在解決問題時,往往要滲透“從有限中認(rèn)識無限,從精確中認(rèn)識近似,從量變中認(rèn)識質(zhì)變”的極限思想。四年級教材中“直線、射線和角”的知識點,就蘊含極限的思想:射線只有一個端點,可以向一端無限延伸;直線由無數(shù)點組成,但沒有端點,可以兩端無限延伸;角的兩邊可以無限延長,角的大小與角的兩邊畫出的長短無關(guān)。
    總之,數(shù)學(xué)思想方法總是隱含在各知識版塊中,體現(xiàn)在應(yīng)用知識的過程中,沒有不包括數(shù)學(xué)思想方法的知識,也沒有游離于知識之外的思想方法,教師在教學(xué)時要研究教材,遵照《教師教學(xué)用書》的教材編寫要求中“有步驟地滲透數(shù)學(xué)思想方法,培養(yǎng)學(xué)生思維能力和解決問題的能力”的意見,認(rèn)真?zhèn)湔n,努力挖掘教材中進(jìn)行數(shù)學(xué)思想方法滲透的各種因素,按章節(jié)及知識板塊考慮應(yīng)滲透哪些,怎樣滲透,滲透到什么程度,并列為教學(xué)目標(biāo),使?jié)B透成為有意識的教學(xué)活動。讓學(xué)生理解并初步掌握數(shù)學(xué)思想方法,不僅有利于提高他們用數(shù)學(xué)解決問題的能力,同時也可使他們感受到數(shù)學(xué)思想方法的作用,受到思維訓(xùn)練,逐步形成有序地、嚴(yán)密地思考問題的意識,學(xué)生掌握了思想方法將終身受益。
    三、小學(xué)數(shù)學(xué)教學(xué)應(yīng)如何加強(qiáng)數(shù)學(xué)思想方法的滲透
    (一)提高滲透的自覺性
    數(shù)學(xué)概念、法則、公式、性質(zhì)等知識都明顯地寫在教材中,是有“形”的,而數(shù)學(xué)思想方法卻隱含在數(shù)學(xué)知識體系里,是無“形”的,并且不成體系地散見于教材各章節(jié)中。教師講不講,講多講少,隨意性較大,常常因教學(xué)時間緊而將它作為一個“軟任務(wù)”擠掉。對于學(xué)生的要求是能領(lǐng)會多少算多少。因此,作為教師首先要更新觀念,從思想上不斷提高對滲透數(shù)學(xué)思想方法重要性的認(rèn)識,把掌握數(shù)學(xué)知識和滲透數(shù)學(xué)思想方法同時納入教學(xué)目的,把數(shù)學(xué)思想方法教學(xué)的要求融入備課環(huán)節(jié)。其次要深入鉆研教材,努力挖掘教材中可以進(jìn)行數(shù)學(xué)思想方法滲透的各種因素,對于每一章每一節(jié),都要考慮如何結(jié)合具體內(nèi)容進(jìn)行數(shù)學(xué)思想方法滲透,滲透哪些數(shù)學(xué)思想方法,怎么滲透,滲透到什么程度,應(yīng)有一個總體設(shè)計,提出不同階段的具體教學(xué)要求。
    (二)把握滲透的可行性
    數(shù)學(xué)思想方法的教學(xué)必須通過具體的教學(xué)過程加以實現(xiàn)。因此,必須把握好教學(xué)過程中進(jìn)行數(shù)學(xué)思想方法教學(xué)的契機(jī)——概念形成的過程,結(jié)論推導(dǎo)的過程,方法思考的過程,思路探索的過程,規(guī)律揭示的過程等。同時,進(jìn)行數(shù)學(xué)思想方法的教學(xué)要注意有機(jī)結(jié)合、自然滲透,要有意識地潛移默化地啟發(fā)學(xué)生領(lǐng)悟蘊含于數(shù)學(xué)知識之中的種.種數(shù)學(xué)思想方法,切忌生搬硬套、和盤托出、脫離實際等適得其反的做法。
    (三)注重滲透的反復(fù)性
    數(shù)學(xué)思想方法是在啟發(fā)學(xué)生思維過程中逐步積累和形成的。為此,在教學(xué)中,首先要特別強(qiáng)調(diào)解決問題以后的“反思”,因為在這個過程中提煉出來的數(shù)學(xué)思想方法,對學(xué)生來說才是易于體會、易于接受的。如通過分?jǐn)?shù)和百分?jǐn)?shù)應(yīng)用題有規(guī)律的對比板演,指導(dǎo)學(xué)生小結(jié)解答這類應(yīng)用題的關(guān)鍵,找到具體數(shù)量的對應(yīng)分率,從而使學(xué)生自己體驗到對應(yīng)思想和化歸思想。其次要注意滲透的長期性,應(yīng)該看到,對學(xué)生數(shù)學(xué)思想方法的滲透不是一朝一夕就能見到學(xué)生數(shù)學(xué)能力提高的,而是有一個過程。數(shù)學(xué)思想方法必須經(jīng)過循序漸進(jìn)和反復(fù)訓(xùn)練,才能使學(xué)生真正地有所領(lǐng)悟。
    綜上所述,小學(xué)數(shù)學(xué)教學(xué)中,教師重視數(shù)學(xué)思想方法的挖掘、提煉和研究,加強(qiáng)數(shù)學(xué)思想方法的指導(dǎo),有意識地把數(shù)學(xué)教學(xué)過程轉(zhuǎn)變?yōu)閿?shù)學(xué)思維活動的過程,不斷強(qiáng)化訓(xùn)練思想方法,培養(yǎng)應(yīng)用思想方法探索問題和解決問題的良好習(xí)慣,從而提高學(xué)生數(shù)學(xué)思維素養(yǎng)。
    數(shù)學(xué)思想方法心得體會篇六
    解:
    根據(jù)乘法原理,分兩步:
    第一步是把5對夫妻看作5個整體,進(jìn)行排列有5×4×3×2×1=120種不同的排法,但是因為是圍成一個首尾相接的圈,就會產(chǎn)生5個5個重復(fù),因此實際排法只有120÷5=24種。
    綜合兩步,就有24×32=768種。
    解:
    5全排列5*4*3*2*1=120
    有兩個l所以120/2=60
    原來有一種正確的所以60-1=59
    答案為53秒
    可以這樣理解:“快車從追上慢車的車尾到完全超過慢車”就是快車車尾上的點追及慢車車頭的點,因此追及的路程應(yīng)該為兩個車長的和。
    答案為100米
    300÷(5-4.4)=500秒,表示追及時間
    5×500=2500米,表示甲追到乙時所行的路程
    2500÷300=8圈……100米,表示甲追及總路程為8圈還多100米,就是在原來起跑線的前方100米處相遇。
    5.一個人在鐵道邊,聽見遠(yuǎn)處傳來的火車汽笛聲后,在經(jīng)過57秒火車經(jīng)過她前面,已知火車鳴笛時離他1360米,(軌道是直的),聲音每秒傳340米,求火車的速度(得出保留整數(shù))
    答案為22米/秒
    算式:1360÷(1360÷340+57)≈22米/秒
    關(guān)鍵理解:人在聽到聲音后57秒才車到,說明人聽到聲音時車已經(jīng)從發(fā)聲音的地方行出1360÷340=4秒的路程。也就是1360米一共用了4+57=61秒。
    6.獵犬發(fā)現(xiàn)在離它10米遠(yuǎn)的前方有一只奔跑著的野兔,馬上緊追上去,獵犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的動作快,獵犬跑2步的時間,兔子卻能跑3步,問獵犬至少跑多少米才能追上兔子。
    正確的答案是獵犬至少跑60米才能追上。
    解:
    答案:18分鐘
    解:設(shè)全程為1,甲的速度為x乙的速度為y
    列式40x+40y=1
    x:y=5:4
    得x=1/72y=1/90
    走完全程甲需72分鐘,乙需90分鐘
    故得解
    答案是300千米。
    解:通過畫線段圖可知,兩個人第一次相遇時一共行了1個ab的路程,從開始到第二次相遇,一共又行了3個ab的路程,可以推算出甲、乙各自共所行的路程分別是第一次相遇前各自所走的路程的3倍。即甲共走的路程是120*3=360千米,從線段圖可以看出,甲一共走了全程的(1+1/5)。
    因此360÷(1+1/5)=300千米
    解:(1/6-1/8)÷2=1/48表示水速的分率
    2÷1/48=96千米表示總路程
    10.快車和慢車同時從甲乙兩地相對開出,快車每小時行33千米,相遇是已行了全程的七分之四,已知慢車行完全程需要8小時,求甲乙兩地的路程。
    解:
    相遇是已行了全程的七分之四表示甲乙的速度比是4:3
    時間比為3:4
    所以快車行全程的時間為8/4*3=6小時
    6*33=198千米
    解:
    把路程看成1,得到時間系數(shù)
    去時時間系數(shù):1/3÷12+2/3÷30
    返回時間系數(shù):3/5÷12+2/5÷30
    去時時間:1/2×(1/3÷12)÷1/75和1/2×(2/3÷30)1/75
    路程:12×〔1/2×(1/3÷12)÷1/75〕+30×〔1/2×(2/3÷30)1/75〕=37.5(千米)
    數(shù)學(xué)思想方法心得體會篇七
    生活中不是沒有美,只是缺乏發(fā)現(xiàn)美的眼睛。學(xué)習(xí)數(shù)學(xué)也是一樣,要帶著發(fā)現(xiàn)的眼睛去觀察。學(xué)好數(shù)學(xué)固然重要,但是要上學(xué)生意識的數(shù)學(xué)的美,發(fā)現(xiàn)數(shù)學(xué)的美才是學(xué)生持續(xù)學(xué)習(xí)數(shù)學(xué)的動力,這樣才有利于學(xué)生的可持續(xù)法展。
    聽過這樣一句話:“孩子在入學(xué)時是一個問號,卻在畢業(yè)時成了一個句號?!币簿褪窃诤⒆幼畛醯恼J(rèn)識里數(shù)學(xué)是美的,只是在逐漸的學(xué)習(xí)中改變了自己的想法。問題究竟出在哪里呢?這值得我們深思,尤其是值得教育者深思。怎樣才能使孩子回到最初的認(rèn)識,回歸數(shù)學(xué)美。
    首先我覺得要對自己執(zhí)教的班級做一份問卷調(diào)查,了解一下數(shù)學(xué)在學(xué)生心目中的現(xiàn)狀,及學(xué)生心目中數(shù)學(xué)美應(yīng)該隱藏在哪里,以及心目中的數(shù)學(xué)課應(yīng)該是怎么樣的。這樣的話教師可以做到心中有底,對癥下藥。還可以找到認(rèn)為數(shù)學(xué)是美的學(xué)生驚醒一次小的座談會,讓他們說說自己的想法。
    要想引導(dǎo)孩子認(rèn)識數(shù)學(xué)美,前提是教師本身認(rèn)為數(shù)學(xué)中的美,這樣才能教出認(rèn)為數(shù)學(xué)是美的學(xué)生。如何正確的引導(dǎo)孩子認(rèn)識到數(shù)學(xué)中的形形色色的美以及采用什么樣的方式是我們需要思考的問題。楊正寧教授在中美學(xué)生的對比中談到:“中國學(xué)生學(xué)得多,悟得少;美國學(xué)生學(xué)得少,卻悟得多。這就是中國教育不出諾貝爾獎得者的重要原因??v觀我們的教學(xué),學(xué)生總是被塞得滿滿的,這就是我們的學(xué)生體會不到數(shù)學(xué)美的重要原因。因此我覺得首先要將學(xué)生從繁重的課業(yè)中解脫出來,給孩子更多的思考和實踐的機(jī)會。以學(xué)生的直接經(jīng)驗為主輔助以必要的間接經(jīng)驗。就像著名的教育家杜威說的那樣“在做中學(xué)”。讓孩子自己動手自己體會自己總結(jié),進(jìn)而更加深刻的體會到成功感,以培養(yǎng)孩子欣賞數(shù)學(xué)美認(rèn)識數(shù)學(xué)美進(jìn)而創(chuàng)造數(shù)學(xué)美。另外,在日常的教學(xué)中要給學(xué)生一些啟發(fā)、一些思考的余地和自由掌握的時間,使學(xué)生可以自由地活動,從“無”中生出“有”。培養(yǎng)學(xué)生自己發(fā)現(xiàn)問題,解決問題的能力。讓學(xué)生自己去思考自己去領(lǐng)悟一些東西。
    另外我認(rèn)為也要在日常的教學(xué)中給孩子營造一個良好的感受數(shù)學(xué)美的氛圍。在學(xué)生的周圍時刻的感染學(xué)生,影響學(xué)生。教師可以準(zhǔn)備一些精美的反應(yīng)數(shù)學(xué)美的圖片,讓學(xué)生感受數(shù)學(xué)美。也可以讓學(xué)生自己去尋找一些自己認(rèn)為包含數(shù)學(xué)美的圖片或者視頻,讓學(xué)生自己分享一下。或者讓學(xué)生自己感悟一些偉大的數(shù)學(xué)家心目中的數(shù)學(xué)。
    我想只有讓數(shù)學(xué)回歸自然回歸生活,才能喚醒孩子心中的數(shù)學(xué)美。
    數(shù)學(xué)思想方法心得體會篇八
    《新課程標(biāo)準(zhǔn)》在總目標(biāo)中提出:通過義務(wù)教育階段的數(shù)學(xué)學(xué)習(xí),學(xué)生能獲得適應(yīng)社會生活和進(jìn)一步發(fā)展所必須的數(shù)學(xué)知識、基本技能、基本思想、基本活動經(jīng)驗。這句話對于我們新教師來已經(jīng)是爛熟于心,但對于這句話真正理解的少之又少,讀了王永春老師的《小學(xué)數(shù)學(xué)思想與數(shù)學(xué)思想方法》之后,對這句話才有了真正的認(rèn)識?!笆谌艘贼~不如授人以漁”,對于學(xué)生而言,數(shù)學(xué)知識在其次,數(shù)學(xué)方法才是最重要的,在這本書中,王老師為我們總結(jié)了小學(xué)數(shù)學(xué)知識中蘊含的數(shù)學(xué)思想,這讓我們在日常教學(xué)中可以結(jié)合所教知識很清楚地知道這些知識中蘊含了哪些數(shù)學(xué)思想方法,為我們的教學(xué)提供了指導(dǎo)和幫助。
    這學(xué)期我任三年級數(shù)學(xué),三年級上冊中的主要思想有:第3單元“測量”中學(xué)習(xí)的長度單位:分米(dm)、毫米(mm)、千米(km)是符號化思想的應(yīng)用;第7單元“長方形和正方形”中有些習(xí)題如本書中第25頁的“案例2”應(yīng)用了分類思想;第9單元“數(shù)學(xué)廣角――集合”中學(xué)習(xí)的重復(fù)問題是集合思想的應(yīng)用;第8單元“分?jǐn)?shù)的初步認(rèn)識”中學(xué)生用一張正方形白紙可以折出不同的形狀表示它的1/4。在學(xué)生充分展示后,我們可以引導(dǎo)學(xué)生發(fā)現(xiàn)雖然形狀、大小不同,但都是把一張正方形白紙平均成4份,每份是它的1/4。這個教學(xué)過程中有變中有不變的思想的應(yīng)用。第8單元“分?jǐn)?shù)的初步認(rèn)識”中把一個圓形平均分,分的份數(shù)越多,分?jǐn)?shù)越小,如果一直分下去,可以對應(yīng)寫出無限多個分?jǐn)?shù)。
    生活本身是一個巨大的數(shù)學(xué)課堂,生活中客觀存在著大量有價值的數(shù)學(xué)現(xiàn)象。指導(dǎo)學(xué)生運用數(shù)學(xué)知識寫日記,能促使學(xué)生主動地用數(shù)學(xué)的眼光去觀察生活,去思考生活問題,讓生活問題數(shù)學(xué)化。在教學(xué)中注重培養(yǎng)孩子運用數(shù)學(xué)的意識,增強(qiáng)學(xué)生運用知識解決實際問題的能力。由此可見,數(shù)學(xué)并不是靠老師教會的,而是在教師的指導(dǎo)下,靠學(xué)生自己學(xué)會的。在教學(xué)中教師要給學(xué)生創(chuàng)造情景、提供機(jī)會,給學(xué)生充足的時間和空間,讓學(xué)生主動探究新知,在探究中發(fā)現(xiàn)規(guī)律、歸納規(guī)律。因此,我們在課堂教學(xué)中,多留些時間給學(xué)生,讓他們動手操作;多留些時間給學(xué)生,自己的`意見;多留些時間給學(xué)生,讓他們質(zhì)疑問難。保證充分的時間和空間,讓學(xué)生再課內(nèi)交流、討論、質(zhì)疑。
    這本書教給了我們一種教學(xué)理念,教會了我們一種教學(xué)方法。讀書更是一種好的學(xué)習(xí)手段,它將帶領(lǐng)我們不斷更新、與時俱進(jìn),成為一名學(xué)生喜歡的、有專業(yè)素養(yǎng)的好老師。
    數(shù)學(xué)思想方法心得體會篇九
    數(shù)學(xué)關(guān)鍵就在一個悟字,所謂悟,就是開竅,如何開竅,就要求講師不要只講題目的做法,而是包括,是怎么想到要這么做的,以引導(dǎo)學(xué)生去理解,去悟,對于初等數(shù)學(xué),本人的看法是隨便怎么做,因為初等數(shù)學(xué)的試題必然有解,必然是可以通過所給條件經(jīng)過n多步驟推出來,不信可以試試,拿一道,先什么都不要管,只管把已知條件以全排列方式組合,以推出新的條件,再將所得條件組合,再推,直到最后推無可推,你會發(fā)現(xiàn)題目所求就在其中,甚至簡單的可能是離最終結(jié)論還有n步,復(fù)雜的估計也就是最終結(jié)論了,所以以高考為目的的初等數(shù)學(xué)題目是不經(jīng)做的,因為只要你做,就一定能做出來,而之所以很多學(xué)生覺得難,沒處著筆,不知道改該怎么做,很大一部分是因為懶,不愿動筆,而只是呆看,簡單的能看出來,復(fù)雜的是很難看出來的,如果說那種直接推導(dǎo)的辦法太耗時間,那么只能說是因為不熟練,一旦題目做多了,思維形成了,差不多就可以一眼看出來,頂多推兩步,就知道后面的怎么推了,從而省略了n多的分支,古往今來的題海戰(zhàn)術(shù)不是沒有依據(jù)的,熟能生巧,見得多了,做的多了,自然可以找到某種規(guī)律。
    初數(shù)研究課在研究初等數(shù)學(xué)問題時,大多采用專題討論的方法,都有一套完整的體系。如果過分強(qiáng)調(diào)自身完整的邏輯系統(tǒng),容易導(dǎo)致不同學(xué)科、不同課程的內(nèi)客及方法有很多重復(fù)和交叉。
    如數(shù)與初等數(shù)論中的相關(guān)內(nèi)容,解析式的恒等變形,方程、不等式的解法與證明,幾何證題法與證題術(shù)排列、組合及數(shù)列的一些解題方法等。如果不處理好它們之間的'關(guān)系,只是簡單地追求各門課程自身體系的完整,既不利于學(xué)生整體數(shù)學(xué)思想的建立,又制約了他們數(shù)學(xué)綜合運用能力的提高,同時占用了很多的課時,所以,對于相關(guān)課程中己作詳盡討論過的知識及理論,應(yīng)作為工具來應(yīng)用,避免一些不必要的重復(fù)。
    1.知識系統(tǒng)的探究
    初數(shù)研究課涉及大量的理論,教師講、學(xué)生聽的傳統(tǒng)教學(xué)模式既占用課時多,又難以體現(xiàn)學(xué)生的主體性。因此對理論性較強(qiáng)的內(nèi)容,教師可以先提出一些切題的問題作為一堂課的鍥子,留待后面逐個解決。這些問題將整個教學(xué)內(nèi)容串起來,起到提綱摯領(lǐng)的作用,使學(xué)生明確學(xué)習(xí)目標(biāo),集中學(xué)習(xí)資源(如本課程及相關(guān)課程的教村及參考書)有針對性地去探究問題,然后教師組織學(xué)生對探究的結(jié)果進(jìn)行歸納整理,形成較完整的知識體系。當(dāng)然一個問題的解訣并非探究的終結(jié),在探究過程中教師與學(xué)生都可以提出一些新問題,延續(xù)學(xué)生探究的熱情,在合作交流的民主和諧的氛圍里,盡可能地讓學(xué)生走向自由探究。
    2.解題方法的探究
    從學(xué)生的認(rèn)知角度未說,解題過程是獨立的發(fā)現(xiàn)、探索與積極思考的過程,這種探索過程中所形成的意識和思維,就是真正的創(chuàng)造與發(fā)現(xiàn)。應(yīng)該說,解題教學(xué)是中學(xué)數(shù)學(xué)教學(xué)的主要任務(wù)之一,設(shè)置初數(shù)研究課程的目的之一,就是結(jié)合中學(xué)實際對解題作專門的訓(xùn)練。
    3.條件與結(jié)論的探究
    對一個問題的條件或結(jié)論進(jìn)行探究是對問題深入研究的重要組成部分,也是初數(shù)研究課程中具有挑戰(zhàn)性的任務(wù)之一,引導(dǎo)學(xué)生從不同角度、不同層面來看問題,對學(xué)生的發(fā)散思維及創(chuàng)造思維的培養(yǎng),都能起到良好的推動作用。
    隨著教學(xué)改革的深化,教學(xué)思想方法不僅要在理論上做研究探討,更重要的是需要在實踐中不斷地創(chuàng)造與完善,才能使教學(xué)取得較好的效果。
    數(shù)學(xué)思想方法心得體會篇十
    學(xué)習(xí)和復(fù)習(xí)的主線不同。學(xué)習(xí)的主線我們應(yīng)該都很熟悉,看一看教材的目錄就非常明確了:高一高二兩年當(dāng)中一定是以章節(jié)為單位,一個知識點接一個知識點按部就班地介紹和學(xué)習(xí)。每個章節(jié)內(nèi)部也是基本遵循“定義—定理—公式—經(jīng)典例題—實際應(yīng)用—練習(xí)”這樣由簡到繁的內(nèi)容安排。
    而二次復(fù)習(xí)如果也采用這樣的模式,導(dǎo)致的直接結(jié)果就是,考生按知識點分塊的模式分章節(jié)去解題會很順利,一旦拿過來一份高考試卷,遇到里面的綜合性題目卻無從下手,這就是平時考生經(jīng)常遇到的問題——沒有解題思路。
    初次學(xué)習(xí)和再次復(fù)習(xí)不同。絕大部分考生在高一高二兩年的時間中進(jìn)行的都是新知識新理論的學(xué)習(xí),這是初次認(rèn)識初次接觸的過程,我們稱之為初次學(xué)習(xí),這個過程強(qiáng)調(diào)的是認(rèn)知、接受和掌握。而高三將近一年的時間考生幾乎接觸的都是之前兩年當(dāng)中見過的理解了的但是很多已經(jīng)遺忘的內(nèi)容,我們將這個過程稱之為再次復(fù)習(xí)。
    再次復(fù)習(xí)除了恢復(fù)考生對相應(yīng)知識點的記憶之外,更重要的在于將知識點升華為考點,這個過程重視的是理解、綜合與應(yīng)用。兩個過程截然不同,必然導(dǎo)致我們應(yīng)對的策略也要有所變化。
    數(shù)學(xué)思想方法心得體會篇十一
    所謂的數(shù)學(xué)思想,是指人們對數(shù)學(xué)理論與內(nèi)容的本質(zhì)認(rèn)識,是從某些具體數(shù)學(xué)認(rèn)識過程中提煉出的一些觀點,是分析處理和解決數(shù)學(xué)問題的根本方法,也是對數(shù)學(xué)規(guī)律的理性認(rèn)識。它揭示了數(shù)學(xué)發(fā)展中普遍的規(guī)律,它直接支配著數(shù)學(xué)的實踐活動,這是對數(shù)學(xué)規(guī)律的理性認(rèn)識。
    數(shù)學(xué)方法是數(shù)學(xué)思想的具體化形式,即解決數(shù)學(xué)具體問題時所采用的方式、途徑和手段,也可以說是解決數(shù)學(xué)問題的策略。實質(zhì)上兩者的本質(zhì)是相同的,差別只是站在不同的角度看問題,通?;旆Q為思想方法。數(shù)學(xué)思想方法的自覺運用會使我們運算簡潔、推理機(jī)敏,是提高數(shù)學(xué)能力的必由之路。常見的數(shù)學(xué)思想方法有:數(shù)形結(jié)合方法、對應(yīng)思想方法、轉(zhuǎn)化思想方法、猜想驗證思想方法等。下面就以自己的教學(xué)實踐為例談?wù)勗趯嶋H教學(xué)中滲透這些數(shù)學(xué)思想方法的一些粗淺做法。
    一、數(shù)形結(jié)合的思想方法
    數(shù)和形是數(shù)學(xué)研究的兩個主要對象,數(shù)離不開形,形離不開數(shù),一方面抽象的數(shù)學(xué)概念,復(fù)雜的數(shù)量關(guān)系,借助圖形使之直觀化、形象化、簡單化。另一方面復(fù)雜的形體可以用簡單的數(shù)量關(guān)系表示。在解應(yīng)用題中常常借助線段圖的直觀幫助分析數(shù)量關(guān)系。
    在小學(xué)一年級剛開始學(xué)習(xí)數(shù)的認(rèn)識時,都是以實物進(jìn)行引入,再從中學(xué)習(xí)數(shù)字的實際含義。例如學(xué)習(xí)“6的認(rèn)識”時,先出示主題圖,問學(xué)生圖中有些什么?學(xué)生從中數(shù)出6朵小花,6只小鳥,6個氣球。從而感知5的某些具體意義。再從實物中慢慢抽象成某一特定物體,利用學(xué)生的'學(xué)具小棒擺出由6根小棒組成的任何圖形,從而讓學(xué)生在動手的過程中,不僅表現(xiàn)出自己的獨特創(chuàng)意,而且更深一層地理解6的實際意義;第三層次是利用黑板進(jìn)行畫6個圓,6個正方形,6個三角形等特定圖形來代表6,從而慢慢抽象至數(shù)字6。這樣從實物至圖形,在抽象到數(shù)字,整個過程應(yīng)該符合一年級小學(xué)生的特點,也是數(shù)形結(jié)合思想的一種滲透。
    二、對應(yīng)思想方法
    利用數(shù)量間的對應(yīng)關(guān)系來思考數(shù)學(xué)問題,就是對應(yīng)思想。尋找數(shù)量之間的對應(yīng)關(guān)系,也是解答應(yīng)用題的一種重要的思維方式。
    在低、中年級整數(shù)應(yīng)用題訓(xùn)練時,教師就應(yīng)該讓學(xué)生明白數(shù)量之間存在著一一對應(yīng)的關(guān)系。
    例如:水果店上午賣出蘋果6筐,下午又賣出同樣的蘋果8筐,比上午多賣100元,每筐蘋果多少元?這里存在著錢數(shù)和筐數(shù)的對應(yīng)關(guān)系,學(xué)生如果能看出下午比上午多賣的100元對應(yīng)的筐數(shù)是(8-6)筐,此題就迎刃而解了,即100÷(8-6)=50(元)。
    此外,在教學(xué)歸一問題、相遇問題時,都要讓學(xué)生找到題中數(shù)量之間的對應(yīng)關(guān)系。解決問題對于小學(xué)生是個抽象的問題,特別對于低、中年級學(xué)生更難理解。但找到了對應(yīng)關(guān)系,也就找到了解題的關(guān)鍵。
    三、轉(zhuǎn)化思想方法
    轉(zhuǎn)化就是在研究和解決有關(guān)數(shù)學(xué)問題時,采用某種手段將一個問題轉(zhuǎn)化成為另外一個問題來解決。一般是將復(fù)雜的問題轉(zhuǎn)化為簡單的問題,將難解問題轉(zhuǎn)化為容易求解的問題,將未解決的問題轉(zhuǎn)化為已解決的問題。
    例如:上“整十、整百相加減”一課時,先讓學(xué)生觀察,然后問一問,能不能把整十、整百相加減化為我們以前所學(xué)過的幾加幾,幾減幾,這樣學(xué)生不僅很快能掌握新學(xué)得知識,還可以自己解決整百相加減。這正是再滲透轉(zhuǎn)化思想的方法。
    四、猜想驗證思想方法
    猜想驗證是一種重要的數(shù)學(xué)思想方法,正如荷蘭數(shù)學(xué)教育家弗賴登塔爾所說:“真正的數(shù)學(xué)家常常憑借數(shù)學(xué)的直覺思維做出各種猜想,然后加以證實?!币虼?,小學(xué)數(shù)學(xué)教學(xué)中,教師要重視猜想驗證思想方法的滲透,以增強(qiáng)學(xué)生主動探索和獲取數(shù)學(xué)知識的能力,促進(jìn)學(xué)生創(chuàng)新能力的發(fā)展。
    例如:教“乘法分配律”一課時,我設(shè)計了以下幾個環(huán)節(jié):
    1、出示例題:(1)(6+8)×25(2)6×25+8×25
    學(xué)生獨自計算結(jié)果。
    2、討論兩個算式的異同點。
    3、根據(jù)自己的發(fā)現(xiàn)舉出類似的例子,并加以計算。
    4、驗證后,總結(jié)歸律。
    這樣,通過算、討論、說、算、說,學(xué)生初步感知了乘法分配律。至此,猜想乘法分配律已是水到渠成。
    現(xiàn)代數(shù)學(xué)思想方法的內(nèi)涵極為豐富,諸如還有集合思想、極限思想、優(yōu)化思想、統(tǒng)計思想、等等,小學(xué)數(shù)學(xué)教學(xué)中都有所涉及。我們廣大小學(xué)數(shù)學(xué)教師要做教學(xué)有心人,有意滲透,有意點撥,重視數(shù)學(xué)史的滲透,重視課堂教學(xué)小結(jié),要以適應(yīng)小學(xué)生年齡特點的大眾化、生活化方式呈現(xiàn)教學(xué)內(nèi)容,讓學(xué)生通過現(xiàn)實活動,主動參與、自主探究,學(xué)會用數(shù)學(xué)思維方法提出問題、分析問題、解決問題,從而讓學(xué)生的數(shù)學(xué)思維能力得到切實、有效地發(fā)展,進(jìn)而提高全民族的數(shù)學(xué)文化素養(yǎng)。在小學(xué)數(shù)學(xué)中,數(shù)學(xué)思想方法給出了解決問題的方向,給出了解決問題的策略。這就需要教師挖掘、提煉隱含于教材的思想方法,納入到教學(xué)目標(biāo)。有目的、有計劃、有步驟地精心設(shè)計教學(xué)過程,有效地滲透數(shù)學(xué)思想方法。
    數(shù)學(xué)思想方法心得體會篇十二
    (一)引導(dǎo)學(xué)生做到數(shù)形有機(jī)結(jié)合
    數(shù)形結(jié)合是將抽象與具體相融合的過程,在這一過程中能夠有效實現(xiàn)數(shù)與形的優(yōu)勢互補(bǔ),將二者之間的本質(zhì)聯(lián)系凸顯出來。如在學(xué)習(xí)《圓的面積》一節(jié)時,之前學(xué)生已對圓有了基本認(rèn)識,因此,在教學(xué)如何計算圓的面積時,教師可先引導(dǎo)學(xué)生猜想圓的面積同什么要素有關(guān)。為了讓學(xué)生有更為直觀的感受,教師還可要求學(xué)生自己在練習(xí)本上分別畫出半徑是3cm、4cm和5cm的圓。然后,再詢問學(xué)生,這三個圓的大小不一樣,那它們的面積大小是什么關(guān)系呢?是等于還是半徑越小的面積越大,或是半徑越大圓的面積越大?學(xué)生在思考了一下后大都認(rèn)為半徑為5cm的那個圓最大,半徑是3cm的圓的面積最小。在有了這樣的認(rèn)識后,學(xué)生就會在頭腦中形成圓的'面積同半徑有關(guān)這樣一個認(rèn)識,之后教師就可據(jù)此引導(dǎo)學(xué)生如何求得圓的面積。綜上所述,在引入圓的面積之前,我先讓學(xué)生對圓同半徑之間的關(guān)系有了一個清晰的了解,為了達(dá)到這個目的采取的是讓學(xué)生自己動手將頭腦中抽象的東西通過圖形展示出來并結(jié)合具體的數(shù)字印證出來的方法。這種數(shù)形結(jié)合的思想方法能夠使問題直觀化,將學(xué)生學(xué)習(xí)的積極性和主動性調(diào)動起來,提高了課堂教學(xué)質(zhì)量。
    (二)學(xué)會轉(zhuǎn)化,化難為易
    轉(zhuǎn)化的思想就是用聯(lián)系、運動和發(fā)展的觀點去看問題,通過變換問題的形式,把未解決的或復(fù)雜的問題歸結(jié)到已經(jīng)能解決的或簡單的問題中,從而獲得對原問題的解決,因此轉(zhuǎn)化的思想方法也叫劃歸的思想方法。在數(shù)學(xué)教學(xué)中轉(zhuǎn)化的思想方法隨處可見,特別是在解題時,我們可根據(jù)已知條件將問題轉(zhuǎn)化,從另一個角度進(jìn)行思考將難化易。如在講完《圓的周長》這一節(jié)后,課后習(xí)題中有一道題是將長方形和正方形同圓結(jié)合起來,讓學(xué)生在已知半徑的情況下分別求出圓、長方形和正方形的周長。我將這道題中的一個小題做了改編,讓學(xué)生在已知正方形周長的情況下去求圓的周長。圓位于正方形內(nèi),二者是相切的關(guān)系,這就要求學(xué)生能夠根據(jù)正方形的周長求出正方形的邊長,而正方形的邊長就是圓的直徑,再套用周長c=d的公式就能求得圓的周長。這套題目要求學(xué)生能根據(jù)已知條件對問題進(jìn)行轉(zhuǎn)化,從而創(chuàng)造出更多的已知條件。在這個過程中,學(xué)生一方面將新舊知識聯(lián)系了起來,另一方面也擴(kuò)散了思維,對于學(xué)生學(xué)習(xí)能力和解決問題能力的提升有積極的促進(jìn)作用。
    (三)及時做到歸納、總結(jié)
    及時地歸納和總結(jié)既能夠使知識更加系統(tǒng)化,又便于學(xué)生更好地發(fā)現(xiàn)各個知識點之間的聯(lián)系與區(qū)別,對于鞏固學(xué)生知識具有十分重要的作用。在數(shù)學(xué)中歸納的思想方法指通過對特殊示例、題材的觀察和分析,攝取非本質(zhì)的、次要的要素,從中發(fā)現(xiàn)事物的本質(zhì)聯(lián)系,并概括普遍性的結(jié)論。在講完《圓》這一節(jié)后,我會及時要求學(xué)生將跟圓有關(guān)的知識總結(jié)出來,并在總結(jié)的同時思考自己在這一部分的學(xué)習(xí)中哪里還沒有真正掌握,哪里還存在欠缺。此外,我還要求學(xué)生將自己之前做過的練習(xí)題也做一個總結(jié),甚至是再多做一遍??偨Y(jié)知識點有利于學(xué)生做好知識的鞏固與梳理工作,練習(xí)題的歸納則是讓學(xué)生對于不同題目的不同解題思路和技巧有一個更明確的認(rèn)識。而學(xué)生在總結(jié)的過程中能不斷提升自己的概括能力,這也是數(shù)學(xué)思想方法滲入到學(xué)生思維中的一個良好的表現(xiàn)與結(jié)果。
    數(shù)學(xué)思想方法心得體會篇十三
    中學(xué)數(shù)學(xué)內(nèi)容從總體上可以分為兩個層次:一個稱為基礎(chǔ)知識,另一個稱為深層知識.基礎(chǔ)知識包括概念、性質(zhì)、法則、公式、公理、定理等數(shù)學(xué)的基本知識和基本技能,深層知識主要指數(shù)學(xué)思想和數(shù)學(xué)方法。
    基礎(chǔ)知識是深層知識的基礎(chǔ),是教學(xué)大綱中明確規(guī)定的,教材中明確給出的,以及具有較強(qiáng)操作性的知識.學(xué)生只有通過對教材的學(xué)習(xí),在掌握和理解了一定的基礎(chǔ)知識后,才能進(jìn)一步的學(xué)習(xí)和領(lǐng)悟相關(guān)的深層知識。
    那種只重視講授基礎(chǔ)知識,而不注重滲透數(shù)學(xué)思想、方法的復(fù)習(xí),是不完備的,它不利于對所學(xué)知識的真正理解和掌握,使學(xué)生的知識水平永遠(yuǎn)停留在一個初級階段,難以提高;反之,如果單純強(qiáng)調(diào)數(shù)學(xué)思想和方法,而忽略基礎(chǔ)知識的教學(xué),就會使復(fù)習(xí)流于形式,成為無源之水,無本之木,學(xué)生也難以領(lǐng)略到深層知識的真諦.因此,數(shù)學(xué)思想、方法的復(fù)習(xí)應(yīng)與整個基礎(chǔ)知識的融為一體,使學(xué)生逐步掌握有關(guān)的深層知識,提高數(shù)學(xué)能力,形成良好的數(shù)學(xué)素質(zhì)。這也是數(shù)學(xué)思想方法復(fù)習(xí)的基本原則。
    數(shù)學(xué)思想方法心得體會篇十四
    素質(zhì)教育,面向全體學(xué)生,讓學(xué)生全面發(fā)展,是當(dāng)前教育改革的主要任務(wù),世界上的一切事物,都有對立面,如好與壞,前進(jìn)與后退等,而且對立的雙方可以互相轉(zhuǎn)化。學(xué)生的學(xué)習(xí)也是如此,同是一個班,有尖子生,也有學(xué)困生。俗話說:“十個手指都有長短”。提起學(xué)困生,每位班主任老師都會感到頭痛,轉(zhuǎn)化學(xué)困生是班主任老師最經(jīng)常,最棘手的一項工作。
    學(xué)困生是學(xué)校領(lǐng)導(dǎo)的一塊心病,也是班主任最感到頭痛的事,同時也成為當(dāng)今教育領(lǐng)域的一大社會問題。學(xué)困生的存在是不可避免的,我們教育工作者應(yīng)該積極去面對,幫助每一個學(xué)生成功是教育工作者的根本目的,也是廣大教育工作者的共同愿望。由于各種因素,在我們學(xué)校的各個班級中,不同程度地存在著學(xué)習(xí)困難生,他們有的由于學(xué)習(xí)基礎(chǔ)較差,有的由于學(xué)習(xí)態(tài)度不端正或?qū)W習(xí)習(xí)慣較差等,表現(xiàn)出對學(xué)習(xí)不感興趣,缺乏信心等不良特征。學(xué)困生的存在成為困擾每個教師的一大難題,也制約了學(xué)校教育教學(xué)質(zhì)量的提高。特別是農(nóng)村學(xué)校,由于農(nóng)村學(xué)生家長教育不當(dāng),留守兒童多,缺乏家長教育,農(nóng)村學(xué)困生比例相對較大。
    農(nóng)村學(xué)困生主要有以下幾點特征:
    一、具有明顯的自卑感,失落感。
    由于學(xué)困生學(xué)習(xí)成績差,一時無法彌補(bǔ)他們在群體中落后的位置,家長埋怨,老師指責(zé),同學(xué)歧視,導(dǎo)致他們自暴自棄,不思進(jìn)取,形成一種心理定勢“我不如人”,長期生活在一種頹喪抑郁的氛圍中,對學(xué)習(xí)喪失信心。
    二、具有膽怯心理。
    學(xué)習(xí)上遇到困難不敢向老師或同學(xué)請教,不愿意暴露自己的弱點,怕別人譏笑,結(jié)果一連串的問題得不到解決,形成惡性循環(huán)。
    三、具有壓抑心理。
    多數(shù)學(xué)困生也想學(xué)好,家長也很希望他們成才。但由于基礎(chǔ)差總是學(xué)不好,于是得不到老師的重視、同學(xué)的幫助和家庭的溫暖,常常陷于痛苦憂傷難以自拔的心境之中,情緒波動,性格浮躁,導(dǎo)致悲觀消極的壓抑心理。
    四、具有惰性心理。
    學(xué)習(xí)上不肯用功,思想上不求進(jìn)步。只圖安逸自在,玩字當(dāng)頭,混字領(lǐng)先,怕動腦子,缺乏吃苦精神,不愿意在困苦中學(xué)習(xí)。
    五、具有逆反心理。
    由于學(xué)困生得到的常常是批評,指責(zé)和嘲諷,因此,對老師的教育產(chǎn)生反感,形成逆反心理。
    六、普遍的學(xué)困生都缺乏遠(yuǎn)大的理想和抱負(fù),對自己的學(xué)習(xí)目的不明確。
    不知道一天該做什么,對什么都不感興趣,結(jié)果什么都做不好。
    七、注意力不集中,記憶速度慢,遺忘快。
    90%的學(xué)困生課堂注意力不集中。他們心里想集中但集中不起來。所學(xué)的知識記不住,記住的也很快就忘。
    八、學(xué)困生由于對知識掌握差,遇到過去的已有的知識不能很好的回憶、再認(rèn),使知識不連貫,無法跟上教師上課進(jìn)度。
    九、遷移能力差。
    對照例題能完成部分作業(yè),但對變形的題就不知所措。舉一反三的能力差。
    十、歸納概括能力差。
    學(xué)困生的學(xué)習(xí)停留在識記階段,對事物共性的認(rèn)識并進(jìn)行歸納的'能力較差。在學(xué)習(xí)中基本上無法歸納、總結(jié)。
    大多數(shù)班主任都認(rèn)為對品學(xué)兼優(yōu)學(xué)生的管理比較輕松,而對學(xué)困生的教育,不少教師感到很棘手。曾幾何時,做教師尤其是當(dāng)班主任的我們,經(jīng)常抱怨這樣的學(xué)生如何如何地難教,學(xué)生是如何如何地沒有感情,甚至責(zé)罵學(xué)生蠢笨不可教……。沒有不好的孩子,只有不好的教育。因此,如何教育學(xué)困生是老師特別是我們班主任一項值得深究的課題。學(xué)困生通常是指那些在學(xué)習(xí)或品行方面暫時落后的學(xué)生。這類學(xué)生給班級工作的正常開展帶來負(fù)面影響,特別是學(xué)習(xí)、品德都很差的學(xué)生。我從事班主任工作已有二十多年,轉(zhuǎn)化學(xué)困生的工作,不論從學(xué)校角度來講,還是從學(xué)生成長來講,都十分重要,那么,如何轉(zhuǎn)化農(nóng)村學(xué)困生呢?我覺得可以從以下幾個方面入手:
    一、對他們要充滿愛心和信任
    日本教育家池田大作說過:“伸出充滿熱愛的雙手,這就是英才教育?!睈?,可以激發(fā)學(xué)生的興趣,反之,則可能泯滅學(xué)生的天才。我們要堅持多表揚、公開場合少點名批評、正面疏導(dǎo)的工作方法。對后進(jìn)生要從生活上給予關(guān)心,讓他感到溫暖。實踐證明:這樣做效果往往較好。從學(xué)生的心理需要上講,愛和信任是他們最渴望得到的東西。學(xué)生渴望在充滿愛心和信任的環(huán)境中成長。作家冰心說過,愛是教育的前提,愛是教育的基礎(chǔ),沒有愛就沒有教育。教師的親切感能引起學(xué)生的接近感。教師要滿腔熱情、誠心誠意地關(guān)懷愛護(hù)學(xué)困生,每當(dāng)他們有困難時,教師要及時幫助他們。通過集體活動,培養(yǎng)互助友愛精神,使他們感到集體的溫暖,安心學(xué)習(xí)。
    我們教師愛護(hù)差生要像救火救災(zāi)似的,刻不容緩地去搶救他們,光停留在咬牙切齒地去咒罵、去怨恨,是達(dá)不到轉(zhuǎn)化他們思想這一目的的。如果班主任能以發(fā)自內(nèi)心的愛和信任對待學(xué)困生,善于發(fā)現(xiàn)學(xué)困生的長處,看到他們的閃光點,尤其是當(dāng)他們有了進(jìn)步,那怕是一點進(jìn)步,都要及時給予表揚和肯定,比如,本班的周富枝同學(xué),在學(xué)習(xí)上較差,上課不安分,但他在校運會上取得好成績,我及時表揚他,并說如果學(xué)習(xí)也有這樣好,你就是一個非常優(yōu)秀的學(xué)生,后來他學(xué)習(xí)比以前自覺多了。多施雨露,少下風(fēng)霜,激發(fā)他們的上進(jìn)心,從而促使后進(jìn)生在思想覺悟上提高,養(yǎng)成良好的學(xué)習(xí)習(xí)慣。
    二、要與學(xué)困生交心,做他們的知心朋友
    情感是打開學(xué)生心靈的一把鑰匙。“教育沒有情愛,就成了無水之池?!北仨毥?jīng)常要抽出一定的時間深入到學(xué)困生的學(xué)習(xí)、生活中去,與學(xué)困生廣泛地接觸,給予百倍的耐心和無微不至的關(guān)懷,了解他們的內(nèi)心世界、思想動態(tài),做他們的知心朋友。
    幫助學(xué)困生克服學(xué)習(xí)生活中的困難,多同他們進(jìn)行情感性交談。這種談話方式往往話題自由,態(tài)度隨和,可在學(xué)生心中激起強(qiáng)烈的情感波瀾,使學(xué)生對老師產(chǎn)生親近感,從而消除了畏懼心理,撤掉了心理防線,進(jìn)一步融洽了師生關(guān)系,那么學(xué)生就會把你當(dāng)做為知心朋友,有什么心事就會向你訴說,讓你幫他出主意、想辦法,你也會從中了解他們的性格特點以及在日常學(xué)習(xí)、生活中的興趣、愛好等,從而尋找出最佳的教育方法。
    三、教師和家長的配合要緊密。
    學(xué)困生的轉(zhuǎn)化工作主要靠學(xué)校,但也需要家庭支持,社會配合,在學(xué)校里,我們應(yīng)提倡素質(zhì)教育,促使學(xué)生德、智、體、美、勞全面發(fā)展,變教書為“鑄魂”,使學(xué)生在學(xué)習(xí)過程中不僅僅接受知識,還要有愉快的情緒和積極的情感體驗,如今新教材改革,要求學(xué)校把更多的時間還給學(xué)生,豐富他們的業(yè)余生活,注重他們的均衡發(fā)展,這是我們減少學(xué)困生的有效途徑。學(xué)生的家庭我們要常去走走,適當(dāng)?shù)募以L,面對面的交流能拉近我們與學(xué)生和家長的距離,還能更好地了解學(xué)困生的成因所在。例如本班的李獻(xiàn)云同學(xué),學(xué)習(xí)成績優(yōu)秀,但近來上課精神不夠集中,情緒低落,通過家訪,了解到她父母鬧離婚,我及時疏通父母及學(xué)生的思想,使她重新集中精力在學(xué)習(xí)上。通過家長、學(xué)校,培訓(xùn)和教育家長如何教育子女,通過家長會進(jìn)行互相交流,讓我們與家長齊抓共管,形成合力,共同轉(zhuǎn)化學(xué)生的思想。
    四、要尊重學(xué)困生,平等相處。
    學(xué)困生與優(yōu)秀的學(xué)生也一樣,他們也希望得到老師的尊重。前蘇聯(lián)教育家蘇霍姆林斯基說:“自尊心是青少年心理最敏感的角落,是學(xué)生前進(jìn)的潛在力量,是前進(jìn)的動力,是向上的能源,它是高尚純潔的心理品質(zhì)?!边@說明維護(hù)學(xué)生的自尊心是做好學(xué)困生工作的前提。后進(jìn)生的自尊心時強(qiáng)時弱,教師應(yīng)根據(jù)這一點,保護(hù)他們“極其脆弱的自尊心”。對他們提出的合理要求,要給予滿腔熱情的支持,對他們的點滴進(jìn)步更應(yīng)該給予肯定。教師不但自己要尊重學(xué)困生,保護(hù)他們的自尊,還要教育其他同學(xué)也要尊重學(xué)困生,平等對待學(xué)困生,切不可挖苦、諷刺、打擊他們,要與學(xué)困生保持良好的同學(xué)關(guān)系,相互幫助,共同進(jìn)步。
    教師在教育教學(xué)活動中,如果發(fā)現(xiàn)學(xué)生做錯了事,就會恨鐵不成鋼,不去積極引導(dǎo)他們,而是一味地訓(xùn)斥、指責(zé)、向家長告狀等,既傷害了學(xué)生的自尊心,又容易使人產(chǎn)生逆反心理,乃至對抗情緒,所以在與學(xué)生交談時要注意引導(dǎo)。其實許多學(xué)困生和大多數(shù)同學(xué)一樣,內(nèi)心里非常希望得到家長、老師、同學(xué)和社會的安慰、保護(hù)、理解和尊重。盡快地加倍努力、迎頭趕上,甩掉后進(jìn)生的帽子。然而,由于他們學(xué)習(xí)成績不理想或?qū)曳稿e誤,往往會受到老師、家長的批評、譏諷、挖苦、訓(xùn)斥、打罵、體罰,時常受到冷遇,使他們?nèi)烁瘛⒆宰鹗艿綐O大損害,與學(xué)校、家庭、教師、家長間滋生對立情緒,認(rèn)為反正被人瞧不起,破罐子破摔、拉倒。由此他們失去前進(jìn)動力,形成自卑心態(tài)。
    學(xué)困生的自卑心態(tài)是希望改變現(xiàn)狀,求得尊重??梢哉f,沒有自尊心就沒有自卑感,要上進(jìn),必須付出艱辛的努力和痛苦的抉擇,而他們長期形成的松散、懶惰的壞習(xí)慣,害怕艱苦的腦力勞動,缺乏毅力,造成了意志薄弱的心理缺陷。因此在發(fā)展過程中上進(jìn)心與惰性一對矛盾交織存在。一旦遇到難以逾越的困難,就會退縮不前,打退堂鼓,喪失前進(jìn)的勇氣和信心,往往容易舊“病”復(fù)發(fā)。表現(xiàn)不良行為習(xí)性的反復(fù)。班主任一定要耐心把握時機(jī),耐心進(jìn)行思想教育,抓住學(xué)生的閃光點,及時表揚、不斷給學(xué)生鼓士氣。
    五、以寬容之心對待他們
    寬容不是忍讓,更不是縱容。只是當(dāng)我們發(fā)現(xiàn)學(xué)困生做錯事時,我們首先要以寬容的態(tài)度來對待他們的不是,從不同角度談問題,換位思考,讓他們明白什么可以做,什么不能做。當(dāng)然,凡事都有一個過程。我們應(yīng)該給學(xué)困生一個學(xué)好、變好的過程。一個人要學(xué)好不是一件容易的事。因調(diào)皮而致后進(jìn)的學(xué)生,他們的行為不受常規(guī)約束,頑皮、淘氣,不接受師道尊嚴(yán),有時甚至頂撞老師,這些正是他們個性的反映,其中,很可能蘊藏著創(chuàng)造潛能。要容忍愛護(hù),耐心指教,并發(fā)掘他們的閃光點。
    六、以身示教,樹立榜樣
    榜樣的力量是無窮的,它是無聲的召喚,前進(jìn)的燈塔,它也是學(xué)困生前進(jìn)的目標(biāo),它能激勵學(xué)困生天天向上。榜樣可以是領(lǐng)袖將帥,英雄模范,名人賢達(dá),師長父母,也可以是同學(xué)、伙伴,最好是和學(xué)困生各方面基礎(chǔ)差不多,但成績進(jìn)步很大的同學(xué)。比如你作為班主任要求男學(xué)生不留長發(fā),自己首先要理好自己的頭發(fā),要給學(xué)生做個榜樣,這樣做起學(xué)生的工作就容易多了。通過這些活動,就使學(xué)困生有樣可學(xué),并使其明白,只要經(jīng)過努力,就會有進(jìn)步,就會成功,從而產(chǎn)生一種后進(jìn)趕先進(jìn),后進(jìn)超先進(jìn)的念頭,樹立開拓進(jìn)取心,摒棄不良傾向,于無聲處達(dá)到成功教育的目的。
    全面正確的看待學(xué)困生是教育工作的起點。學(xué)困生的缺點和不足是顯而易見的,但學(xué)困生身上也有金子般的閃光點,教師就應(yīng)該更好地去發(fā)現(xiàn)學(xué)困生身上容易被忽視、掩蓋的可貴之處,開發(fā)學(xué)生心靈深處的精神寶藏。比如,自尊心強(qiáng)渴望得到信任,重友誼講感情,生活知識較多,實踐能力強(qiáng),精力充沛,興趣廣泛等。只有全面正確地認(rèn)識學(xué)困生,采取針對性的教育,才可收到良好效果。我嘗試運用學(xué)生管理學(xué)生的辦法,有意識讓部分學(xué)困生參與班級管理,如有的學(xué)生管理紀(jì)律、有的學(xué)生管理勞動、有的學(xué)生管理衛(wèi)生。讓他們當(dāng)室長,一個學(xué)期下來,發(fā)現(xiàn)這些學(xué)生有很大的進(jìn)步,自我約束能力、社會責(zé)任心、工作能力等進(jìn)一步增強(qiáng),通過班主任的肯定和同學(xué)們的相信,學(xué)習(xí)興趣明顯增加,他們的思想有了很大的轉(zhuǎn)變。
    大量的教育實踐證明,只要教育教學(xué)得法,沒有一個學(xué)困生可以被認(rèn)為是不可救藥的,教育的藝術(shù)就在于善于撥開學(xué)生眼前的迷霧,點燃學(xué)生心中的希望之火,幫助學(xué)生體會到上進(jìn)及學(xué)習(xí)成功的快樂,誘發(fā)學(xué)生的責(zé)任心和榮譽(yù)感。
    總之,對學(xué)困生,我們只要給他們多一點關(guān)懷,多一些耐心,多一些細(xì)心,多一些時間,多給他們創(chuàng)設(shè)一個寬松、民主的學(xué)習(xí)情境,他們一定會成為一個自尊、自重、自強(qiáng)、自立的好學(xué)生,將來也同樣成為社會主義現(xiàn)代化建設(shè)的有用人才。
    數(shù)學(xué)思想方法心得體會篇十五
    (一)滲透如數(shù)學(xué)思想的概念顯得較為模糊
    因為在小學(xué)教學(xué)階段,教師教授的數(shù)學(xué)知識都是比較簡單的,因此數(shù)學(xué)思想自然也就會顯得比較模糊,在小學(xué)數(shù)學(xué)課堂教學(xué)相關(guān)工作進(jìn)行的過程中,從事數(shù)學(xué)教學(xué)相關(guān)工作的教師,想要將數(shù)學(xué)思想滲透到較為模糊的概念中是比較困難的,在日常教學(xué)相關(guān)工作進(jìn)行的過程中,一般情況之下都是不會予以數(shù)學(xué)思想教學(xué)工作充分的總是的,單單是將數(shù)學(xué)教學(xué)當(dāng)成是基礎(chǔ)性數(shù)學(xué)知識教學(xué)工作,僅僅在教學(xué)相關(guān)工作進(jìn)行的過程中傳授給學(xué)生一些解答問題的方式方法,基本上是不會在數(shù)學(xué)思想的層面上對學(xué)生進(jìn)行引導(dǎo)的,從而在此基礎(chǔ)之上想要使得數(shù)學(xué)思想和小學(xué)數(shù)學(xué)教學(xué)有機(jī)的相互融合在一起就變得比較困難。
    (二)學(xué)生在學(xué)習(xí)數(shù)學(xué)的過程中基本上不會做出反思
    小學(xué)生正處于的是形象思維為主的這樣一個階段,在學(xué)習(xí)數(shù)學(xué)知識的過程中并沒有形成較為明確的認(rèn)識和觀點,從而在此基礎(chǔ)之上想要對某些抽象的數(shù)學(xué)概念形成明確的了解就會變得比較困難,因此在學(xué)習(xí)數(shù)學(xué)的過程中一般情況之下都是停留在最為基礎(chǔ)的模仿式學(xué)習(xí)階段中的,依據(jù)教學(xué)教學(xué)流程展開模仿式數(shù)學(xué)學(xué)習(xí),在此基礎(chǔ)之上學(xué)生形成的認(rèn)識觀點自然也是較為模糊的,進(jìn)而在模仿式學(xué)習(xí)的基礎(chǔ)上,想要在學(xué)習(xí)工作完成之后對數(shù)學(xué)學(xué)習(xí)做出反思也就是一件比較困難的事情。
    (三)對知識進(jìn)行總結(jié)和整理的意識是較為薄弱的
    小學(xué)數(shù)學(xué)教學(xué)階段中包含的知識點是十分瑣碎的,當(dāng)教師開展教學(xué)相關(guān)工作的過程中想要將各個知識點串聯(lián)起來也就是一件比較困難的事情,當(dāng)教師開展課堂教學(xué)相關(guān)工作的過程中,一般情況之下僅僅會在復(fù)習(xí)的時候開展知識點梳理工作,在日常課堂教學(xué)相關(guān)工作進(jìn)行的過程中,一般情況之下都是不會向?qū)W生闡述各個知識點之間呈現(xiàn)出來的相互關(guān)系的,學(xué)生在日常學(xué)習(xí)的過程中自然也就難以積累下來豐富的經(jīng)驗及解決模式,因此教師想要使得課堂教學(xué)相關(guān)工作的效率得到一定程度的提升自然也就比較困難。
    2滲透到教學(xué)中的方法
    1.在研究探索知識的過程中,著重于將數(shù)學(xué)思想方法滲透到學(xué)習(xí)中
    教師應(yīng)該加強(qiáng)在學(xué)生學(xué)習(xí)過程中教學(xué)的力度,一定要凸顯出數(shù)學(xué)知識中一些定理、公式、性質(zhì)等得來的探究過程,進(jìn)而使同學(xué)們把過程轉(zhuǎn)換成解決問題的思想和方法。知識形成并發(fā)展的過程中應(yīng)穿針引線地將數(shù)學(xué)思想方法滲入其中,讓學(xué)生能夠掌握簡單的基礎(chǔ)知識,也能體會深層數(shù)學(xué)原理、性質(zhì)的探索過程,形成良好的解題思路,使學(xué)生在數(shù)學(xué)方面的造詣達(dá)到一個新的高度。教師在授課過程中,要引導(dǎo)學(xué)生自覺地對數(shù)學(xué)知識、方法進(jìn)行探究、學(xué)習(xí),主動追溯知識的探索過程,感悟數(shù)學(xué)知識,將數(shù)學(xué)思想方法與數(shù)學(xué)知識的學(xué)習(xí)融會貫通,使其在數(shù)學(xué)方面達(dá)到質(zhì)的飛躍。
    2.在解題和講解例題的過程中滲透數(shù)學(xué)思想方法
    在授課中,教師講解例題并且舉一反三,每解決一個問題和例題就為學(xué)生歸納總結(jié)出一種方法,久而久之,學(xué)生就會形成新的解題思路、學(xué)會新的解題方法。對于初中這個階段來講,許多典型例題被設(shè)計出來,許多出色的題目也出現(xiàn)在每年中考題中,老師有效地挑選具有啟示性和創(chuàng)造性的題目進(jìn)行訓(xùn)練,再將數(shù)學(xué)思想和教學(xué)方法展示在對這些問題的講解和探究中,可以培養(yǎng)學(xué)生的解題能力。
    3.按時總結(jié),漸進(jìn)地消化數(shù)學(xué)思想方法
    在初中的數(shù)學(xué)知識體系中蘊含著數(shù)學(xué)思想,不同的數(shù)學(xué)思想通常蘊藏于一個內(nèi)容中,而同一個數(shù)學(xué)思想方法又常常被運用于許多不同的基礎(chǔ)知識中,教師在對一道題目進(jìn)行分析后,要清晰地向?qū)W生展示出教師在解決這道題時的思路以及解決這道題需要哪些我們原先學(xué)習(xí)的知識以及解題方法。與此同時,要引導(dǎo)學(xué)生對新方法、新思路的思考,鍛煉其發(fā)散性思維。老師通過“一題多解”及舉一反三等方式及時鞏固,使學(xué)生慢慢內(nèi)化這些數(shù)學(xué)思想、解題思路等。
    3解題滲透數(shù)學(xué)思想方法
    (1)注意分析探求解題思路時數(shù)學(xué)思想方法的運用。解題的過程就是在數(shù)學(xué)思想方法的指導(dǎo)下,合理聯(lián)想提取相關(guān)知識,調(diào)用一定數(shù)學(xué)方法加工、處理題設(shè)條件及知識,逐步縮小題設(shè)與題干之間的差異的過程。解題思想的尋求就自然是運用數(shù)學(xué)思想方法分析、解決問題的過程。
    (2)注意數(shù)學(xué)思想方法在解決典型問題中的運用。如解題中求二面角大小最常用的方法之一就是:根據(jù)已知條件,在二面角內(nèi)尋找或作出過一個面內(nèi)一點到另一個面上的垂線,過這點再作二面角的棱的垂線,然后連結(jié)兩個垂足。這樣平面角即為所得的直角三角形的一銳角。這個通法就是在立體問題化平面的轉(zhuǎn)化思想的指導(dǎo)下求得的,其中三垂線定理在構(gòu)圖中的運用,也是分析、聯(lián)想等數(shù)學(xué)思維方法運用之所得。
    (3)用數(shù)學(xué)思想指導(dǎo)知識、方法的靈活運用,進(jìn)行一題多解的練習(xí),培養(yǎng)思維的發(fā)散性、靈活性、敏捷性;對習(xí)題靈活變通、引伸推廣,培養(yǎng)思維的深刻性、抽象性;組織引導(dǎo)對解法的簡捷性的反思評估,不斷優(yōu)化思維品質(zhì),培養(yǎng)思維的嚴(yán)謹(jǐn)性,批判性。對同一數(shù)學(xué)問題的多角度的審視引發(fā)的不同聯(lián)想,是一題多解的思維本源。豐富合理的聯(lián)想,是對知識的深刻理解,及類比、轉(zhuǎn)化、數(shù)形結(jié)合、函數(shù)與方程等數(shù)學(xué)思想運用的必然。數(shù)學(xué)方法、數(shù)學(xué)思想的自覺運用往往使我們運算簡捷、邏輯嚴(yán)密,是提高數(shù)學(xué)能力的必由之路。
    4提高課堂教學(xué)效率
    重視備課,明確教學(xué)目標(biāo)
    如果說數(shù)學(xué)是一門藝術(shù),那么備好課是搞好藝術(shù)的基本條件。不經(jīng)武裝的戰(zhàn)士上戰(zhàn)場,只能束手就擒;沒有充分準(zhǔn)備的教師上講臺,充其量是“信口開河”,決談不上駕馭課堂的能力,作為教師,傳授知識是我們的責(zé)任,出色的備課也是我們實行責(zé)任的前提。那怎么去用心備課呢?在此我只談?wù)勛约旱母形颍菏紫?,選好合適的起點,起點就是新知識在原有知識基礎(chǔ)上的生長點。起點要合適,采有利于促進(jìn)知識遷移,學(xué)生才能學(xué),才肯學(xué)。起點過低,學(xué)生沒興趣,不愿學(xué);起點過高,學(xué)生又聽不懂,不能學(xué)。
    其次,明確重點,每一堂課都要有一個重點,而整堂的教學(xué)都是圍繞著這個重點來逐步展開的。為了讓學(xué)生明確本堂課的重點、難點,教師在備課時,應(yīng)該在課本上做標(biāo)記。重點往往是新知識的起點和主體部分。備課時要突出重點。一節(jié)課內(nèi),首先要在時間上保證重點內(nèi)容重點講,要緊緊圍繞重點,以它為中心,輔以知識講練,引導(dǎo)啟發(fā)學(xué)生加強(qiáng)對重點內(nèi)容的理解,做到心中有重點,講中出重點,才能使整個一堂課有個靈魂。最后,注重聯(lián)系,即新舊知識的聯(lián)系。數(shù)學(xué)知識本身系統(tǒng)性很強(qiáng),章節(jié)、例題、習(xí)題中都有密切的聯(lián)系,要真正搞懂新舊知識的交點,才能把知識融會貫通,溝通知識間的縱橫聯(lián)系,形成知識網(wǎng)絡(luò),學(xué)生才能舉一反三,更有利于靈活地運用知識。作為教師,切記備課的重要性,一切的一切都要從備課開始,出色的備課是成功課堂教學(xué)的前提。
    重視教學(xué)方法的作用,加強(qiáng)學(xué)法的指導(dǎo)
    曾經(jīng)看過這么一句話,說的是“未來的文盲不再是不識字的人,而是沒有學(xué)會怎樣學(xué)習(xí)的人”。這充分說明了學(xué)習(xí)方法的重要性,它是獲取知識的金鑰匙。學(xué)生一旦掌握了學(xué)習(xí)方法,就能自己打開知識寶庫的大門。所以我們應(yīng)該改進(jìn)課堂教學(xué),運用正確的教學(xué)方法去指導(dǎo)學(xué)生的學(xué)法,傳授給學(xué)生的不僅僅是知識,更重要的是學(xué)習(xí)方法。同時每一節(jié)課都有每一節(jié)課的知識點,都有需要掌握的重點內(nèi)容。教師能隨著教學(xué)內(nèi)容的變化,教學(xué)對象的變化,教學(xué)設(shè)備的變化,靈活應(yīng)用教學(xué)方法。我們可以結(jié)合課堂內(nèi)容,靈活采用談話、讀書指導(dǎo)、作業(yè)、練習(xí)等多種教學(xué)方法。有時,在一堂課上,要同時使用多種教學(xué)方法。俗話說:“教無定法,貴要得法”。只要能激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生的學(xué)習(xí)積極性,有助于學(xué)生思維能力的培養(yǎng),有利于所學(xué)知識的掌握和運用,都是好的教學(xué)方法。教會學(xué)生的學(xué)習(xí)方法,是我們作為教師的責(zé)任。
    綜上所述,學(xué)好數(shù)學(xué)對學(xué)生將來的發(fā)展起到至關(guān)重要的作用,作為教師,我們要認(rèn)真?zhèn)湔n,全身心的投入課堂,創(chuàng)造最佳的課堂氣氛和環(huán)境,充分調(diào)動學(xué)生的內(nèi)在積極因素,激發(fā)求知欲,千方百計使學(xué)生的注意力高度集中,同時還應(yīng)該不斷地努力提高自己的能力,在有限的時間內(nèi),將知識最大化的傳授給學(xué)生,提高課堂教學(xué)效率。
    數(shù)學(xué)思想方法心得體會篇十六
    《新課程標(biāo)準(zhǔn)》在總目標(biāo)中提出:通過義務(wù)教育階段的數(shù)學(xué)學(xué)習(xí),學(xué)生能獲得適應(yīng)社會生活和進(jìn)一步發(fā)展所必須的數(shù)學(xué)知識、基本技能、基本思想、基本活動經(jīng)驗。這句話對于我們新教師來已經(jīng)是爛熟于心,但對于這句話真正理解的少之又少,讀了王永春老師的《小學(xué)數(shù)學(xué)思想與數(shù)學(xué)思想方法》之后,對這句話才有了真正的認(rèn)識。“授人以魚不如授人以漁”,對于學(xué)生而言,數(shù)學(xué)知識在其次,數(shù)學(xué)方法才是最重要的,在這本書中,王老師為我們總結(jié)了小學(xué)數(shù)學(xué)知識中蘊含的數(shù)學(xué)思想,這讓我們在日常教學(xué)中可以結(jié)合所教知識很清楚地知道這些知識中蘊含了哪些數(shù)學(xué)思想方法,為我們的教學(xué)提供了指導(dǎo)和幫助。
    這學(xué)期我任三年級數(shù)學(xué),三年級上冊中的主要思想有:第3單元“測量”中學(xué)習(xí)的長度單位:分米(dm)、毫米(mm)、千米(km)是符號化思想的應(yīng)用;第7單元“長方形和正方形”中有些習(xí)題如本書中第25頁的“案例2”應(yīng)用了分類思想;第9單元“數(shù)學(xué)廣角――集合”中學(xué)習(xí)的重復(fù)問題是集合思想的應(yīng)用;第8單元“分?jǐn)?shù)的初步認(rèn)識”中學(xué)生用一張正方形白紙可以折出不同的形狀表示它的1/4。在學(xué)生充分展示后,我們可以引導(dǎo)學(xué)生發(fā)現(xiàn)雖然形狀、大小不同,但都是把一張正方形白紙平均成4份,每份是它的1/4。這個教學(xué)過程中有變中有不變的思想的應(yīng)用。第8單元“分?jǐn)?shù)的初步認(rèn)識”中把一個圓形平均分,分的份數(shù)越多,分?jǐn)?shù)越小,如果一直分下去,可以對應(yīng)寫出無限多個分?jǐn)?shù)。
    生活本身是一個巨大的數(shù)學(xué)課堂,生活中客觀存在著大量有價值的數(shù)學(xué)現(xiàn)象。指導(dǎo)學(xué)生運用數(shù)學(xué)知識寫日記,能促使學(xué)生主動地用數(shù)學(xué)的眼光去觀察生活,去思考生活問題,讓生活問題數(shù)學(xué)化。在教學(xué)中注重培養(yǎng)孩子運用數(shù)學(xué)的意識,增強(qiáng)學(xué)生運用知識解決實際問題的能力。由此可見,數(shù)學(xué)并不是靠老師教會的,而是在教師的指導(dǎo)下,靠學(xué)生自己學(xué)會的。在教學(xué)中教師要給學(xué)生創(chuàng)造情景、提供機(jī)會,給學(xué)生充足的時間和空間,讓學(xué)生主動探究新知,在探究中發(fā)現(xiàn)規(guī)律、歸納規(guī)律。因此,我們在課堂教學(xué)中,多留些時間給學(xué)生,讓他們動手操作;多留些時間給學(xué)生,自己的`意見;多留些時間給學(xué)生,讓他們質(zhì)疑問難。保證充分的時間和空間,讓學(xué)生再課內(nèi)交流、討論、質(zhì)疑。
    這本書教給了我們一種教學(xué)理念,教會了我們一種教學(xué)方法。讀書更是一種好的學(xué)習(xí)手段,它將帶領(lǐng)我們不斷更新、與時俱進(jìn),成為一名學(xué)生喜歡的、有專業(yè)素養(yǎng)的好老師。
    數(shù)學(xué)思想方法心得體會篇十七
    復(fù)習(xí)備考需要足夠數(shù)量的習(xí)題,只有針對性訓(xùn)練才能在中考得以正常發(fā)揮,只有每天動筆適當(dāng)?shù)淖鲂┝?xí)題才能保持思維的連貫性。但僅僅做題還是遠(yuǎn)遠(yuǎn)不夠,需要解題后的反思與總結(jié)。在反思中才能進(jìn)一步看透問題的本質(zhì),體會命題的意圖。在總結(jié)的過程中也才能優(yōu)化解題的思路,探索處理問題規(guī)律,形成有自己特色的經(jīng)驗。
    在復(fù)習(xí)中既要注重數(shù)學(xué)概念、法則、定理等基礎(chǔ)知識的梳理,更要關(guān)注解題后的反思與總結(jié),領(lǐng)會解題中蘊含的數(shù)學(xué)思想方法,并通過不斷積累逐漸的納入自己已有的知識體系。在反思總結(jié)中可以從兩方面考慮:一是宏觀層面,如每復(fù)習(xí)一塊內(nèi)容后可以從主要知識考點、考點之間的聯(lián)系等去反思;二是微觀層面,如解題后的可以對所解題的結(jié)構(gòu)是否理解清楚,解題過程中運用了哪些基礎(chǔ)知識和基本技能?哪些步驟易出錯?原因何在?如何防止?也可以對解題的方法進(jìn)行評價找出最優(yōu)的解法,考慮解題中運用了哪些思維方式、數(shù)學(xué)思想方法?想法是如何分析出來的?有無規(guī)律可循?也可以對解題步驟進(jìn)行分析,抓住解題的關(guān)鍵。如解題的難點在哪?我是如何突破的?能否用其他方法也得到同樣結(jié)果?其方法的優(yōu)劣所在?若能把反思與總結(jié)當(dāng)作一個經(jīng)常性、自覺性的學(xué)習(xí)行為,就會在不斷地積累和總結(jié)基本的數(shù)學(xué)活動經(jīng)驗中,提高數(shù)學(xué)知識的運用能力。
    ......
    函數(shù)思想,是指用函數(shù)的概念和性質(zhì)去分析問題、轉(zhuǎn)化問題和解決問題。方程思想,是從問題中的數(shù)量關(guān)系入手,運用數(shù)學(xué)語言將問題中的條件轉(zhuǎn)化為數(shù)學(xué)模型(方程、不......
    數(shù)學(xué)思想方法心得體會篇十八
    特殊與一般的數(shù)學(xué)思想:對于在一般情況下難以求解的問題,可運用特殊化思想,通過取特殊值、特殊圖形等,找到解題的規(guī)律和方法,進(jìn)而推廣到一般,從而使問題順利求解。常見情形為:用字母表示數(shù);特殊值的應(yīng)用;特殊圖形的應(yīng)用;用特殊化方法探求結(jié)論;用一般規(guī)律解題等。
    整體的數(shù)學(xué)思想:所謂整體思想,就是當(dāng)我們遇到問題時,不著眼于問題的各個部分,而是有意識地放大考慮問題的視角,將所需要解決的問題看作一個整體,通過研究問題的整體形式、整體結(jié)構(gòu)、整體與局部的內(nèi)在聯(lián)系來解決問題的思想。用整體思想解題時,是把一些彼此獨立,但實質(zhì)上又相互緊密聯(lián)系的量作為整體來處理,一定要善于把握求值或求解的問題的內(nèi)在結(jié)構(gòu)、數(shù)與形之間的內(nèi)在結(jié)構(gòu),要敏銳地洞察問題的本質(zhì),有時也不要放棄直覺的作用,把注意力和著眼點放在問題的整體上。常見的情形為:整體代入;整式約簡;整體求和與求積;整體換元與設(shè)元;整體變形與補(bǔ)形;整體改造與合并;整體構(gòu)造與操作等。分類討論的數(shù)學(xué)思想:也稱分情況討論,當(dāng)一個數(shù)學(xué)問題在一定的題設(shè)下,其結(jié)論并不唯一時,我們就需要對這一問題進(jìn)行必要的分類。將一個數(shù)學(xué)問題根據(jù)題設(shè)分為有限的若干種情況,在每一種情況中分別求解,最后再將各種情況下得到的答案進(jìn)行歸納綜合。分類討論是根據(jù)問題的不同情況分類求解,它體現(xiàn)了化整為零和積零為整的思想與歸類整理的方法。運用分類討論思想解題的關(guān)鍵是如何正確的進(jìn)行分類,即確定分類的標(biāo)準(zhǔn)。分類討論的原則是:(1)完全性原則,就是說分類后各子類別涵蓋的范圍之和,應(yīng)當(dāng)是原被分對象所涵蓋的范圍,即分類不能遺漏;(2)互斥性原則,就是說分類后各子類別涵蓋的范圍之間,彼此互相獨立,不應(yīng)重疊或部分重疊,即分類不能重復(fù);(3)統(tǒng)一性原則,就是說在同一次分類中,只能按所確定的一個標(biāo)準(zhǔn)進(jìn)行分類,即分類標(biāo)準(zhǔn)統(tǒng)一。分類的方法是:明確討論的對象,確定對象的全體,確立分類標(biāo)準(zhǔn),正確進(jìn)行分類,逐步進(jìn)行討論,獲取階段性結(jié)果,歸納小結(jié),綜合得出結(jié)論。常見的情形為:由字母系數(shù)引起的討論;由絕對值引起的討論;由點、線的運動變化引起的討論;由圖形引起的討論;由邊、點的不確定引起的討論;存在特殊情形而引起的討論;應(yīng)用問題中的分類討論等。
    轉(zhuǎn)化的數(shù)學(xué)思想:將未知解法或難以解決的問題,通過觀察、分析、聯(lián)想、類比等思維過程,選擇恰當(dāng)?shù)姆椒ㄟM(jìn)行變換,化歸為在已知知識范圍內(nèi)已經(jīng)解決或容易解決的問題。解題的過程實際就是轉(zhuǎn)化的過程。常見的情形為:高次轉(zhuǎn)化為低次、多元轉(zhuǎn)化為一元、式子轉(zhuǎn)化為方程、次元轉(zhuǎn)化為主元、正面轉(zhuǎn)化為反面、分散轉(zhuǎn)化為集中、未知轉(zhuǎn)化為已知、動轉(zhuǎn)化為靜、部分轉(zhuǎn)化為整體、還有一般與特殊、數(shù)與形、相等與不等之間的相互轉(zhuǎn)化。
    數(shù)形結(jié)合的數(shù)學(xué)思想:數(shù)與形是數(shù)學(xué)教學(xué)研究對象的兩個側(cè)面,把數(shù)量關(guān)系和空間形式結(jié)合起來去分析問題、解決問題,就是數(shù)形結(jié)合思想。數(shù)、式能反映圖形的準(zhǔn)確性,圖形能增強(qiáng)數(shù)、式的直觀性,“數(shù)形結(jié)合”可以調(diào)動和促進(jìn)學(xué)生形象思維和抽象思維的協(xié)調(diào)發(fā)展,溝通數(shù)學(xué)知識之間的聯(lián)系,從復(fù)雜的數(shù)量關(guān)系中凸顯最本質(zhì)的特征。數(shù)形結(jié)合是研究數(shù)學(xué)問題的有效途徑和重要策略,它體現(xiàn)了數(shù)學(xué)的和諧美、統(tǒng)一美。華羅庚先生曾用“數(shù)缺形時少直覺,形少數(shù)時難入微”作高度的概括。常見的情形為:利用數(shù)軸、函數(shù)的圖象和性質(zhì)、幾何模型、方程與不等式以及數(shù)式特征可以將代數(shù)問題轉(zhuǎn)化為集合問題;利用代數(shù)計算、幾何圖形特征可以將幾何問題轉(zhuǎn)化為代數(shù)問題;利用三角知識解決幾何問題;利用統(tǒng)計圖表讓統(tǒng)計數(shù)據(jù)更形象更直觀等。
    函數(shù)與方程的思想:函數(shù)的思想就是利用運動與變化的觀點、集合與對應(yīng)的思想,去分析和研究數(shù)學(xué)中的等量關(guān)系,建立和構(gòu)造函數(shù)關(guān)系,再運用函數(shù)的圖象和性質(zhì)去分析問題,達(dá)到轉(zhuǎn)化問題的目的,從而使問題獲得解決。方程的思想就是從問題的數(shù)量關(guān)系入手,運用數(shù)學(xué)語言將問題中的條件轉(zhuǎn)化為數(shù)學(xué)模型——方程或方程組,通過解方程或方程組,或者運用方程的性質(zhì)去分析、轉(zhuǎn)化問題,使問題獲得解決。函數(shù)與方程的思想實際是就是一種模型化的思想。常見的情形為:數(shù)字問題、面積問題、幾何問題方程化;應(yīng)用函數(shù)思想解方程問題、不等問題、幾何問題、實際問題;利用方程作判斷;構(gòu)建方程模型探求實際問題;應(yīng)用函數(shù)設(shè)計方案和探求面積等。
    常用數(shù)學(xué)方法如:配方法、消元法、換元法、待定系數(shù)法、構(gòu)造法、主元法、面積法、類比法、參數(shù)法、降次法、圖表法、估算法、分析法、綜合法、拼湊法、割補(bǔ)法、反證法、倒數(shù)法、同一法等。
    數(shù)學(xué)思想方法心得體會篇十九
    摘要:
    數(shù)學(xué)思想方法是數(shù)學(xué)知識的核心,是數(shù)學(xué)的精髓和靈魂,是研究數(shù)學(xué)理論和運用數(shù)學(xué)解決實際問題的指導(dǎo)思想。本文針對目前高職數(shù)學(xué)教學(xué)中存在的數(shù)學(xué)思想方法教學(xué)重視不夠以及教法上隨意性的現(xiàn)狀,提出通過加強(qiáng)數(shù)學(xué)史和基本數(shù)學(xué)思想方法的介紹,以及倡導(dǎo)“問題解決”的教學(xué)模式來提高學(xué)生的數(shù)學(xué)素養(yǎng)。
    關(guān)鍵詞:
    數(shù)學(xué)教學(xué);數(shù)學(xué)思想;數(shù)學(xué)教學(xué)改革
    數(shù)學(xué)思想是人腦對現(xiàn)實世界的空間形式和數(shù)量關(guān)系的本質(zhì)反映,是思維加工的產(chǎn)物,是人們對現(xiàn)實世界空間形式和數(shù)量關(guān)系的本質(zhì)認(rèn)識。它隱藏在數(shù)學(xué)概念、公式、定理、方法的背后,反映了這些知識的共同本質(zhì)。它比一般的數(shù)學(xué)概念和數(shù)學(xué)方法具有更高的概括性和抽象性,因而更深刻、更本質(zhì)。數(shù)學(xué)思想方法是數(shù)學(xué)課程的重要目的,是發(fā)展學(xué)生智力和能力的關(guān)鍵所在,是培養(yǎng)學(xué)生數(shù)學(xué)創(chuàng)新意識的基礎(chǔ),也是一個人數(shù)學(xué)素養(yǎng)的重要組成部分。
    1目前數(shù)學(xué)思想方法教學(xué)的現(xiàn)狀
    1.1思想上不重視
    高職教育更加強(qiáng)調(diào)“專業(yè)教育”,對高職數(shù)學(xué)教育提出了“必須、夠用”的原則,這直接導(dǎo)致數(shù)學(xué)課時減少,內(nèi)容不得不被壓縮。這使得一些數(shù)學(xué)教師片面理解“為專業(yè)服務(wù)”的真實含義,教學(xué)中采用以知識為本位的教學(xué),只關(guān)注知識的教授本身,學(xué)生只是學(xué)到了各種題目的具體解法,并沒有掌握數(shù)學(xué)思想方法,解決問題的水平并沒有得到提高。在后續(xù)學(xué)習(xí)中,導(dǎo)致學(xué)生數(shù)學(xué)知識面偏窄,數(shù)學(xué)思想蒼白,眼界不廣,缺乏創(chuàng)造力,“后勁”不足。
    1.2教法上的隨意性
    現(xiàn)行教材主要以知識結(jié)構(gòu)作為編寫體系,數(shù)學(xué)思想散見于教材之中,這就決定了數(shù)學(xué)思想教學(xué)的主觀隨意性很大,其教學(xué)效果主要依賴于教師對數(shù)學(xué)思想的理解程度。雖然在目前的數(shù)學(xué)教學(xué)中非常強(qiáng)調(diào)能力的培養(yǎng),但在實際教學(xué)中往往只注重運算能力和邏輯推理能力的訓(xùn)練,一些重要的數(shù)學(xué)思想被淹沒在大量的計算、證明題之中,失去了應(yīng)有的魅力和價值。例如,導(dǎo)數(shù)思想是高等數(shù)學(xué)中的重要思想,但導(dǎo)數(shù)部分的內(nèi)容常被當(dāng)作求導(dǎo)的技能技巧來訓(xùn)練,成為一種機(jī)械操作,使學(xué)生在專業(yè)工程技術(shù)、經(jīng)濟(jì)、電工學(xué)習(xí)中對影子價格、邊際函數(shù)、瞬時電流強(qiáng)度等感到困惑。
    2加強(qiáng)數(shù)學(xué)思想方法教學(xué)的意義
    2.1加強(qiáng)數(shù)學(xué)思想方法
    教學(xué)是素質(zhì)教育的需要高職數(shù)學(xué)教學(xué)的根本目的,就是提高學(xué)生的數(shù)學(xué)素質(zhì),使學(xué)生形成良好的數(shù)學(xué)觀念和數(shù)學(xué)意識,善于用數(shù)學(xué)思想方法去觀察、解釋、表述現(xiàn)實事物的數(shù)量關(guān)系、變化趨勢、空間形式和數(shù)據(jù)信息。可見,加強(qiáng)數(shù)學(xué)思想的教學(xué)是對學(xué)生進(jìn)行素質(zhì)教育,全面培養(yǎng)新世紀(jì)合格人才的需要。
    2.2加強(qiáng)數(shù)學(xué)思想方法
    教學(xué)是教學(xué)改革的新視角從教材的構(gòu)成體系來看,高職數(shù)學(xué)教材所涉及的數(shù)學(xué)知識點和數(shù)學(xué)思想?yún)R成了數(shù)學(xué)結(jié)構(gòu)系統(tǒng)的兩條“河流”。一條是由具體的知識構(gòu)成的易于被發(fā)現(xiàn)的“明河流”,它是構(gòu)成數(shù)學(xué)教材的“骨架”;另一條是由數(shù)學(xué)思想方法構(gòu)成的具有潛在價值的“暗河流”,它是構(gòu)成數(shù)學(xué)教材的“血脈”。有了數(shù)學(xué)思想,數(shù)學(xué)知識點才不再是孤立的、零散的東西,而是數(shù)學(xué)的內(nèi)在本質(zhì),是獲取數(shù)學(xué)知識、發(fā)展思維能力的動力工具。因此,我們的數(shù)學(xué)教學(xué)改革可以從這條“暗河流”入手,對學(xué)生進(jìn)行思想觀念層次上的數(shù)學(xué)教育,這將是進(jìn)行數(shù)學(xué)素質(zhì)教育的有效突破口。
    2.3加強(qiáng)數(shù)學(xué)思想方法
    教學(xué)是學(xué)生可持續(xù)發(fā)展的需要數(shù)學(xué)思想越來越多地被應(yīng)用于環(huán)境科學(xué)、自然科學(xué)、經(jīng)濟(jì)學(xué)、社會學(xué)、心理學(xué)和認(rèn)知科學(xué)之中,加強(qiáng)數(shù)學(xué)思想的教學(xué),可以影響學(xué)生的整體素質(zhì),為學(xué)生今后的工作和學(xué)習(xí)奠定基礎(chǔ)。如定積分的思想廣泛地被應(yīng)用于自然科學(xué)和社會科學(xué)中。
    因此,21世紀(jì)的數(shù)學(xué)課程必須突破原有的結(jié)構(gòu),從舊的框架中走出來,突出數(shù)學(xué)思想這條主線,才有可能使學(xué)生知其然,更知其所以然,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的主動性和積極性,使之學(xué)到的知識“充滿活力”。
    3實施數(shù)學(xué)思想方法
    教學(xué)的對策數(shù)學(xué)思想方法蘊含于數(shù)學(xué)基礎(chǔ)知識中,相對來說,它是隱性的、抽象的。為了更好地完成數(shù)學(xué)思想方法的教學(xué),數(shù)學(xué)教師要具備較高的數(shù)學(xué)思想方法素養(yǎng)。認(rèn)真學(xué)習(xí)、掌握數(shù)學(xué)思想方法的內(nèi)容和實質(zhì),明確數(shù)學(xué)思想方法在整個數(shù)學(xué)發(fā)展中的地位,努力把初等數(shù)學(xué)、高等數(shù)學(xué)和現(xiàn)代數(shù)學(xué)的基本思想方法有機(jī)地聯(lián)系起來。筆者認(rèn)為可從以下三個方面入手,進(jìn)行數(shù)學(xué)思想方法的教學(xué)。
    3.1要重視數(shù)學(xué)史和數(shù)學(xué)思想史的介紹
    數(shù)學(xué)史是一部追求真理的歷史,在追求真理的征途中,前人不斷探索、不斷完善,最終形成高度抽象嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)概念,其中所蘊涵的數(shù)學(xué)思想和數(shù)學(xué)方法是絕好實例。在教學(xué)中應(yīng)交代清楚數(shù)學(xué)知識的背景和出處,使學(xué)生感受和了解原始創(chuàng)新過程。
    例如,在極限的概念教學(xué)中,通過介紹歷史上劉徽為求圓周率而產(chǎn)生的“割圓術(shù)”、阿基米德用“窮竭法”求出拋物線弓形的面積等數(shù)學(xué)問題引入概念,學(xué)生一般都能認(rèn)識到極限是一種研究變量的變化趨勢的數(shù)學(xué)方法,它產(chǎn)生于求實際問題的精確解。這不僅激發(fā)了學(xué)生的學(xué)習(xí)興趣,而且對于隨后介紹數(shù)列極限的定義也大有益處。教師還可以由此給出懸念:同學(xué)們在學(xué)了定積分的應(yīng)用之后,可以證明阿基米德所作解答是正確的。
    3.2要倡導(dǎo)“問題解決”的教學(xué)模式
    數(shù)學(xué)中的概念、法則、性質(zhì)、公式、公理、定理通常稱為數(shù)學(xué)表層知識。數(shù)學(xué)教材主要記述的就是數(shù)學(xué)表層知識,深入分析這些表層知識,便可以發(fā)現(xiàn)蘊涵在其中的極為豐富的深層知識,這就是貫穿于其中的數(shù)學(xué)思想方法和模式等。數(shù)學(xué)深層知識是數(shù)學(xué)的本質(zhì)和精髓,掌握基本的數(shù)學(xué)思想方法能使數(shù)學(xué)更易于理解和記憶,是學(xué)會學(xué)習(xí)、發(fā)展創(chuàng)新的'前提。作為數(shù)學(xué)教師,在教學(xué)時不能就知識論知識,就書本論書本,應(yīng)引導(dǎo)學(xué)生去領(lǐng)悟內(nèi)容中蘊含的深邃思想和巧妙方法。
    3.2.1重視論證的結(jié)論
    從應(yīng)用的角度講,對于高職學(xué)生而言需要的往往不是論證的過程,而是它的結(jié)論。因此我們主張,在高等數(shù)學(xué)教學(xué)中,應(yīng)淡化嚴(yán)格的數(shù)學(xué)論證,強(qiáng)化幾何說明,重視直觀、形象的理解,但這并非是將定理的推證與公式的推導(dǎo)全盤舍棄。若是推證、推導(dǎo)中包含重要的數(shù)學(xué)思想和方法,教師應(yīng)引導(dǎo)學(xué)生大膽猜想,運用歸納法和類比的思想積極探索,力求形成“問題情境―建立模型―解釋、應(yīng)用與拓展”的基本教學(xué)模式,以大眾化、生活化的方式反映重要的現(xiàn)代數(shù)學(xué)觀念和數(shù)學(xué)思想方法。
    3.2.2展示思維的過程
    學(xué)生的思維往往是通過模仿教師的思路逐漸形成的,“讓學(xué)生看到思維的過程”是提高學(xué)生學(xué)習(xí)積極性、促進(jìn)學(xué)生思維能力發(fā)展的有效措施。讓學(xué)生看到思維的過程,意在使學(xué)生能從教師的分析中懂得怎樣去變更問題、怎樣引入輔助問題、怎樣進(jìn)行聯(lián)想類比、怎樣迂回障礙,使之柳暗花明,得到成功的喜悅,從而逐漸養(yǎng)成自覺思維的習(xí)慣。
    3.3要重點突出基本數(shù)學(xué)思想方法的介紹和傳授
    數(shù)學(xué)思想方法主要包括:化歸思想方法、數(shù)形結(jié)合思想方法、構(gòu)造思想方法、類比思想方法、極限的思想方法、積分的思想方法、歸納與猜想、函數(shù)與方程思想方法等等。高職數(shù)學(xué)教學(xué)中應(yīng)重點滲透以下兩種類型的數(shù)學(xué)思想方法:3.3.1宏觀型的數(shù)學(xué)思想方法如抽象概括、化歸、數(shù)學(xué)模型、數(shù)形結(jié)合,方程與函數(shù),積分等等。
    3.3.2邏輯型的數(shù)學(xué)思想方法
    如分類、類比,歸納,演繹,等等。
    4結(jié)論
    數(shù)學(xué)思想方法對數(shù)學(xué)的認(rèn)識結(jié)構(gòu)起著重要的導(dǎo)向作用,是將知識轉(zhuǎn)化為能力的杠桿,由于數(shù)學(xué)思想方法比其它數(shù)學(xué)知識更抽象、更概括,學(xué)生一般難以在教材中獨立獲得,只有通過教師在教學(xué)中的引導(dǎo)和點撥,才能使學(xué)生真正感受到數(shù)學(xué)思想方法俯瞰全局、舉一反三、事半功倍的作用。
    總之,“授之以魚,不如授之以漁”,方法的掌握,思想的形成,才能使學(xué)生受益終身。
    參考文獻(xiàn)
    數(shù)學(xué)思想方法心得體會篇二十
    之前一提到數(shù)學(xué)思想方法,總是感覺似乎知道一些,想過應(yīng)用它來指導(dǎo)自己的教學(xué),但是自身對數(shù)學(xué)思想方法的理解不深透,另外又覺得數(shù)學(xué)思想方法的滲透教學(xué)在課堂教學(xué)中短時期難以見成效。所以,本人的教學(xué)現(xiàn)狀中對數(shù)學(xué)思想滲透的深度遠(yuǎn)遠(yuǎn)不夠。
    而讀了《小學(xué)數(shù)學(xué)與數(shù)學(xué)思想方法》這本書,王永春老師對數(shù)學(xué)各類思想方法的梳理和對新教材思想方法的解讀,讓我對新課標(biāo)的新理念有了更深一層的理解,對小學(xué)數(shù)學(xué)思想方法的內(nèi)涵有了較為深刻的認(rèn)識,明確了教材使用和課堂環(huán)節(jié)中的滲透策略。
    《小學(xué)數(shù)學(xué)與數(shù)學(xué)思想方法》首先對數(shù)學(xué)數(shù)學(xué)思想方法的概念、對小學(xué)數(shù)學(xué)教學(xué)的意義、對小學(xué)數(shù)學(xué)進(jìn)行教學(xué)的可行性與方法做了簡介。其次,梳理了與抽象有關(guān)的數(shù)學(xué)思想:包括抽象思想、符號化思想、分類思想、集合思想、變中有不變思想、有限與無限思想;與推理有關(guān)的數(shù)學(xué)思想:包括歸納思想、類比思想、演繹思想、轉(zhuǎn)化思想、數(shù)形結(jié)合思想、幾何變換思想、極限思想、代換思想;與模型有關(guān)的數(shù)學(xué)思想包括:模型思想、方程思想、函數(shù)思想、優(yōu)化思想、統(tǒng)計思想、隨機(jī)思想;其他數(shù)學(xué)思想方法包括:數(shù)學(xué)美思想、分析法和綜合法、反證法、假設(shè)法、窮舉法、數(shù)學(xué)思想方法的綜合應(yīng)用。最后,對小學(xué)數(shù)學(xué)1-6年級共十二冊教材中數(shù)學(xué)思想方法案例進(jìn)行了解讀。
    經(jīng)過研讀我發(fā)現(xiàn),數(shù)學(xué)教材的教學(xué)內(nèi)容始終反映著數(shù)學(xué)知識和數(shù)學(xué)思想方法這兩方面,數(shù)學(xué)教材的每一章、每一節(jié)乃至每一道題,都體現(xiàn)著這兩者的有機(jī)結(jié)合,數(shù)學(xué)思想方法有助于數(shù)學(xué)知識的理解和掌握。如本人執(zhí)教的三年級下冊第八單元搭配,就突出體現(xiàn)了分類思想、符號化思想。第一課時,我讓學(xué)生體會解決排列組合問題時,就用到了分類討論的方法有序全面的解決問題。如在用數(shù)字0、1、3、5組成沒有重復(fù)數(shù)字的兩位數(shù)時,多數(shù)學(xué)生沒有分類有序思考,而是比較雜亂地寫了組成的兩位數(shù),只有少數(shù)學(xué)生有序地書寫。當(dāng)我讓幾個學(xué)生把他們的方法展示在黑板上,引導(dǎo)學(xué)生交流比較后,發(fā)現(xiàn),有學(xué)生漏寫,有孩子寫重復(fù),其中一個孩子書寫時分成三類:十位上是1的是10、13、15,十位上是3的有30、31、35,十位上是5的有50、51、53,保證有序全面地排列出來,肯定了有序思考的重要性。再次放手讓學(xué)生進(jìn)行組數(shù)是,半數(shù)以上的學(xué)生能又對又快地進(jìn)行分類有序排列了。第二課時搭配衣服,兩件不同的上衣搭配三條不同的褲子,一次各選一件,有多少種搭法,學(xué)生已經(jīng)有了分類的意識,如何才能高效地解決問題呢?這時我們需要將形象的東西進(jìn)行符號化,可以將衣服用幾何圖表示,可以用字母表示,也可以繪圖表示。也有孩子用數(shù)字來表示,然后進(jìn)行連線搭配,這樣保證快速有效地解決問題。
    由此看來,數(shù)學(xué)思想方法的滲透與運用對于數(shù)學(xué)問題的解決有十分重要的意義。在教學(xué)中不能只注重數(shù)學(xué)知識的教學(xué),忽視數(shù)學(xué)思想方法的教學(xué)。兩條線應(yīng)在課堂教學(xué)中并進(jìn),無形的數(shù)學(xué)思想將有形的數(shù)學(xué)知識貫穿始終,使教學(xué)達(dá)到事半功倍。
    但是任何一種數(shù)學(xué)思想方法的學(xué)習(xí)和掌握,絕非一朝一夕的事,它需要有目的、有意識地培養(yǎng),需要經(jīng)歷滲透、反復(fù)、不斷深化的過程。只要我們在教學(xué)中對常用數(shù)學(xué)方法和重要的數(shù)學(xué)思想引起重視,大膽實踐,持之以恒,有意識地運用一些數(shù)學(xué)思想方法去解決問題,學(xué)生對數(shù)學(xué)思想方法的認(rèn)識才會日趨成熟,學(xué)生的數(shù)學(xué)學(xué)習(xí)才會提高到一個新的層次。
    數(shù)學(xué)思想方法心得體會篇二十一
    一、初中數(shù)學(xué)思想方法教學(xué)的重要性
    長期以來,傳統(tǒng)的數(shù)學(xué)教學(xué)中,只注重知識的傳授,卻忽視知識形成過程中的數(shù)學(xué)思想方法的現(xiàn)象非常普遍,它嚴(yán)重影響了學(xué)生思維發(fā)展和能力培養(yǎng)。隨著教育改革的不斷深入,越來越多的教育工作者,特別是一線的教師們充分認(rèn)識到:中學(xué)數(shù)學(xué)教學(xué),一方面要傳授數(shù)學(xué)知識,使學(xué)生掌握必備數(shù)學(xué)基礎(chǔ)知識;另一方面,更要通過數(shù)學(xué)知識這個載體,挖掘其中蘊含的數(shù)學(xué)思想方法,更好地理解數(shù)學(xué),掌握數(shù)學(xué),形成正確的數(shù)學(xué)觀和一定的數(shù)學(xué)意識。事實上,單純的知識教學(xué),只顯見于學(xué)生知識的積累,是會遺忘甚至于消失的,而方法的掌握,思想的形成,才能使學(xué)生受益終生,正所謂“授之以魚,不如授之以漁”。不管他們將來從事什么職業(yè)和工作,數(shù)學(xué)思想方法,作為一種解決問題的思維策略,都將隨時隨地有意無意地發(fā)揮作用。
    二、初中數(shù)學(xué)思想方法的主要內(nèi)容
    初中數(shù)學(xué)中蘊含的數(shù)學(xué)思想方法很多,最基本最主要的有:轉(zhuǎn)化的思想方法,數(shù)形結(jié)合的思想方法,分類討論的思想方法,函數(shù)與方程的思想方法等。(一)轉(zhuǎn)化的思想方法。轉(zhuǎn)化的思想方法是人們將需要解決的問題,通過某種轉(zhuǎn)化手段,歸結(jié)為另一種相對容易解決的或已經(jīng)有解決方法的問題,從而使原來的問題得到解決。初中數(shù)學(xué)處處都體現(xiàn)出轉(zhuǎn)化的思想方法,例如:在解二元一次方程組中,我們一般都通過代入消元法和加減消元法將它轉(zhuǎn)化為一元一次方程,而在解一元二次方程時,可以通過配方法因成分解法直接開平方法,將它化為一元一次方程來解等。它們都是化未知為已知,體現(xiàn)轉(zhuǎn)化的數(shù)學(xué)思想,又如解方程,我們用換元法來解,也體現(xiàn)轉(zhuǎn)化的數(shù)學(xué)思想。在幾何中很多計算題也同樣體現(xiàn)著轉(zhuǎn)化的數(shù)學(xué)思想。(二)數(shù)形結(jié)合的思想方法。數(shù)學(xué)是研究現(xiàn)實空間形式和數(shù)量關(guān)系的科學(xué),因而研究總是圍繞著數(shù)與形進(jìn)行的?!皵?shù)”就是代數(shù)式、函數(shù)、不等式等表達(dá)式“,形”就是圖形、圖像、曲線等。數(shù)形結(jié)合就是抓住數(shù)與形之間的本質(zhì)上的聯(lián)系,以形直觀地表達(dá)數(shù),以數(shù)精確地研究形?!皵?shù)無形時不直觀,形無數(shù)時難入微?!睌?shù)形結(jié)合是研究數(shù)學(xué)問題的重要思想方法。初中數(shù)學(xué)中,通過數(shù)軸,將數(shù)與點對應(yīng),通過直角坐標(biāo)系,將函數(shù)與圖像對應(yīng),用數(shù)形結(jié)合的思想方法學(xué)習(xí)了相反數(shù)的'概念、絕對值的概念,有理數(shù)大小比較的法則,研究了函數(shù)的性質(zhì)等。特別學(xué)習(xí)一次函數(shù)、二次函數(shù)更進(jìn)一步地把直線和一次函數(shù)聯(lián)系著,任向一條直線對著一個不同一次函數(shù)表達(dá)式,不同的拋物線對著不同的二次函數(shù)表達(dá)式,而用數(shù)形結(jié)合的思想,可以利用二次函數(shù)或二次函數(shù)的圖象簡單的解出一元一次不等式和一元二次不等式和方程,更好地通過形象思維,過渡到抽象思維。大大減輕了學(xué)習(xí)的難度,也會增強(qiáng)學(xué)生學(xué)習(xí)的興趣。
    三、分類討論的思想方法
    分為不同種類的思想方法。分類是以比較為基礎(chǔ)的,它能揭示數(shù)學(xué)對象之間的內(nèi)在規(guī)律,有助于學(xué)生總結(jié)歸納數(shù)學(xué)知識,解決數(shù)學(xué)問題。初中數(shù)學(xué)從整體上看分為代數(shù)、幾何兩大類,采用不同方法進(jìn)行研究,就是分類思想的體現(xiàn)。具體來說,實數(shù)的分類,方程的分類、三角形的分類,函數(shù)的分類等,都是分類思想的具體體現(xiàn)。在初中數(shù)學(xué)問題中,不管是代數(shù)問題或者是幾何問題,都體現(xiàn)著分類討論的數(shù)學(xué)思想方法。
    四、函數(shù)與方程的思想方法
    函數(shù)思想是客觀世界中事物運動變化,相互聯(lián)系,相互制約的普遍規(guī)律在數(shù)學(xué)中的反映,它的本質(zhì)是變量之間的對應(yīng)。用變化的觀點,把所研究的數(shù)量關(guān)系,用函數(shù)的形式表示出來的,然后用函數(shù)的性質(zhì)進(jìn)行研究,使問題獲解,如果函數(shù)的形式是用解析式的方法表示出來的。在實中數(shù)學(xué)教材中,其它的思想方法都是隱藏在數(shù)學(xué)知識里,沒有單獨提出來,而函數(shù)與方程的思想方法,其內(nèi)容和名稱形式一致,單獨作為章節(jié)系統(tǒng)學(xué)習(xí)。