專業(yè)數(shù)學(xué)勾股定理教案(模板15篇)

字號(hào):

    教案是教師進(jìn)行評(píng)價(jià)和反思的重要依據(jù)和參考。編寫教案時(shí),要注重活動(dòng)設(shè)計(jì)和資源使用,培養(yǎng)學(xué)生的動(dòng)手實(shí)踐能力。教案范文可以幫助教師更好地理解和運(yùn)用教學(xué)理論和方法。
    數(shù)學(xué)勾股定理教案篇一
    【知識(shí)與技能】
    理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理;利用勾股定理的逆定理判定一個(gè)三角形是不是直角三角形。
    【過程與方法】
    通過勾股定理的逆定理的證明,體會(huì)數(shù)與形結(jié)合方法在問題解決中的作用,并能運(yùn)用勾股定理的逆定理解決相關(guān)問題。
    【情感態(tài)度與價(jià)值觀】
    通過一系列富有探究性的問題,滲透與他人交流、合作的意識(shí)和探究精神。
    二、教學(xué)重難點(diǎn)
    【重點(diǎn)】
    勾股定理逆定理的應(yīng)用;
    【難點(diǎn)】
    探究勾股定理逆定理的證明過程。
    三、教學(xué)過程
    (一)導(dǎo)入新課
    復(fù)習(xí)回顧出勾股定理。
    師生活動(dòng):學(xué)生獨(dú)立回憶勾股定理,師生共同分析得出其題設(shè)和結(jié)論,教師引導(dǎo)指出勾股定理是從形的特殊性得出三邊之間的數(shù)量關(guān)系。
    追問1:你能把勾股定理的題設(shè)與結(jié)論交換得到一個(gè)新的命題嗎?
    師生活動(dòng):師生共同得出新的命題,教師指出其為勾股定理的逆命題。
    (四)小結(jié)作業(yè)
    作業(yè):總結(jié)一下判定一個(gè)三角形是直角三角形的方法。
    數(shù)學(xué)勾股定理教案篇二
    1、知識(shí)與技能目標(biāo):探索并理解直角三角形的三邊之間的數(shù)量關(guān)系,通過探究能夠發(fā)現(xiàn)直角三角形中兩個(gè)直角邊的平方和等于斜邊的平方和。
    2、過程與方法目標(biāo):經(jīng)歷用測(cè)量和數(shù)格子的辦法探索勾股定理的過程,進(jìn)一步發(fā)展學(xué)生的合情推理能力。
    3、情感態(tài)度與價(jià)值觀目標(biāo):通過本節(jié)課的學(xué)習(xí),培養(yǎng)主動(dòng)探究的習(xí)慣,并進(jìn)一步體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系。
    數(shù)學(xué)勾股定理教案篇三
    教學(xué)方法葉圣陶說過“教師之為教,不在全盤授予,而在相機(jī)誘導(dǎo)?!币虼私處熇脦缀沃庇^提出問題,引導(dǎo)學(xué)生由淺入深的探索,設(shè)計(jì)實(shí)驗(yàn)讓學(xué)生進(jìn)行驗(yàn)證,感悟其中所蘊(yùn)涵的思想方法。
    學(xué)法指導(dǎo)為把學(xué)習(xí)的主動(dòng)權(quán)還給學(xué)生,教師鼓勵(lì)學(xué)生采用動(dòng)手實(shí)踐,自主探索、合作交流的學(xué)習(xí)方法,讓學(xué)生親自感知體驗(yàn)知識(shí)的形成過程。
    數(shù)學(xué)勾股定理教案篇四
    本節(jié)課探究體驗(yàn)貫穿始終,展示交流貫穿始終,習(xí)慣養(yǎng)成貫穿始終,情感教育貫穿始終,文化育人貫穿始終。
    采用“七巧板”代替教材中“畢達(dá)哥拉斯地板磚”利用我國(guó)傳統(tǒng)文化引入課題,趙爽弦圖證明定理,符合本節(jié)課以我國(guó)數(shù)學(xué)文化為主線這一設(shè)計(jì)理念,展現(xiàn)了我國(guó)古代數(shù)學(xué)璀璨的歷史,激發(fā)學(xué)生再創(chuàng)數(shù)學(xué)輝煌的愿望。
    數(shù)學(xué)勾股定理教案篇五
    本節(jié)課在教材處理上,先讓學(xué)生帶著三個(gè)問題預(yù)習(xí)完成網(wǎng)上作業(yè),自制4個(gè)兩條直角邊不等的全等的直角三角形,準(zhǔn)備一張坐標(biāo)紙。從而初步了解勾股定理的歷史和內(nèi)容以及證法,并制作成課件或打印資料,為課上活動(dòng)做了充分的準(zhǔn)備。為突破本課重、難點(diǎn)起到了至關(guān)重要的作用。勾股定理這部分內(nèi)容共計(jì)兩課時(shí),本節(jié)課是第一課時(shí)。教學(xué)重點(diǎn)定位為勾股定理的探索過程及簡(jiǎn)單應(yīng)用。教學(xué)難點(diǎn)是勾股定理的證明。把勾股定理的應(yīng)用放在第二課時(shí)進(jìn)行專題訓(xùn)練。
    八年級(jí)數(shù)學(xué)勾股定理教案(教法、學(xué)法及教學(xué)手段)
    自主探索、合作交流、引導(dǎo)點(diǎn)撥
    數(shù)學(xué)勾股定理教案篇六
    本節(jié)將利用勾股定理及其逆定理解決一些具體的實(shí)際問題,其中需要學(xué)生了解空間圖形、對(duì)一些空間圖形進(jìn)行展開、折疊等活動(dòng).學(xué)生在學(xué)習(xí)七年級(jí)上第一章時(shí)對(duì)生活中的立體圖形已經(jīng)有了一定的認(rèn)識(shí),并從事過相應(yīng)的實(shí)踐活動(dòng),因而學(xué)生已經(jīng)具備解決本課問題所需的知識(shí)基礎(chǔ)和活動(dòng)經(jīng)驗(yàn)基礎(chǔ).
    二、教學(xué)任務(wù)分析
    本節(jié)是義務(wù)教育課程標(biāo)準(zhǔn)北師大版實(shí)驗(yàn)教科書八年級(jí)(上)第一章《勾股定理》第3節(jié).具體內(nèi)容是運(yùn)用勾股定理及其逆定理解決簡(jiǎn)單的實(shí)際問題.當(dāng)然,在這些具體問題的解決過程中,需要經(jīng)歷幾何圖形的抽象過程,需要借助觀察、操作等實(shí)踐活動(dòng),這些都有助于發(fā)展學(xué)生的分析問題、解決問題能力和應(yīng)用意識(shí);一些探究活動(dòng)具體一定的難度,需要學(xué)生相互間的合作交流,有助于發(fā)展學(xué)生合作交流的能力.
    本節(jié)課的教學(xué)目標(biāo)是:
    1.通過觀察圖形,探索圖形間的關(guān)系,發(fā)展學(xué)生的空間觀念.
    2.在將實(shí)際問題抽象成數(shù)學(xué)問題的過程中,提高分析問題、解決問題的能力及滲透數(shù)學(xué)建模的思想.
    3.在利用勾股定理解決實(shí)際問題的過程中,體驗(yàn)數(shù)學(xué)學(xué)習(xí)的實(shí)用性.
    利用數(shù)學(xué)中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實(shí)際問題是本節(jié)課的重點(diǎn)也是難點(diǎn).
    四、教法學(xué)法
    1.教學(xué)方法
    引導(dǎo)—探究—?dú)w納
    本節(jié)課的教學(xué)對(duì)象是初二學(xué)生,他們的參與意識(shí)教強(qiáng),思維活躍,為了實(shí)現(xiàn)本節(jié)課的教學(xué)目標(biāo),我力求以下三個(gè)方面對(duì)學(xué)生進(jìn)行引導(dǎo):
    (1)從創(chuàng)設(shè)問題情景入手,通過知識(shí)再現(xiàn),孕育教學(xué)過程;
    (2)從學(xué)生活動(dòng)出發(fā),順勢(shì)教學(xué)過程;
    (3)利用探索研究手段,通過思維深入,領(lǐng)悟教學(xué)過程.
    2.課前準(zhǔn)備
    教具:教材、電腦、多媒體課件.
    學(xué)具:用矩形紙片做成的圓柱、剪刀、教材、筆記本、課堂練習(xí)本、文具.
    五、教學(xué)過程分析
    本節(jié)課設(shè)計(jì)了七個(gè)環(huán) 節(jié).第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):做一做;第四環(huán)節(jié):小試牛刀;第五環(huán)節(jié):舉一反三;第六環(huán)節(jié):交流小結(jié);第七環(huán)節(jié):布置作業(yè).
    數(shù)學(xué)勾股定理教案篇七
    【知識(shí)與技能】
    理解并掌握勾股定理的逆定理,會(huì)應(yīng)用定理判定直角三角形;理解勾股定理與勾股定理逆定理的區(qū)別與聯(lián)系;理解原命題和逆命題的概念,知道二者的關(guān)系及二者真假性的關(guān)系。
    【過程與方法】
    經(jīng)歷得出猜想、推理證明的過程,提升自主探究、分析問題、解決問題的能力。
    【情感、態(tài)度與價(jià)值觀】
    體會(huì)事物之間的聯(lián)系,感受幾何的魅力。
    【重點(diǎn)】勾股定理的逆定理及其證明。
    【難點(diǎn)】勾股定理的逆定理的證明。
    (一)導(dǎo)入新課
    復(fù)習(xí)勾股定理,分清其題設(shè)和結(jié)論。
    提問學(xué)生畫直角三角形的方法(可用尺類工具),然后要求不能用繩子以外的工具。
    出示古埃及人利用等長(zhǎng)的3、4、5個(gè)繩結(jié)間距畫直角三角形的方法,以其中蘊(yùn)含何道理為切入點(diǎn)引出課題。
    (二)講解新知
    請(qǐng)學(xué)生思考3,4,5之間的關(guān)系,結(jié)合勾股定理的學(xué)習(xí)經(jīng)驗(yàn)明確
    出示數(shù)據(jù)2.5cm,6cm,6.5cm,請(qǐng)學(xué)生計(jì)算驗(yàn)證數(shù)據(jù)滿足上述平方和關(guān)系,并畫出相應(yīng)邊長(zhǎng)的三角形檢驗(yàn)是否為直角三角形。
    學(xué)生活動(dòng):同桌兩人一組,將三邊換成其他滿足上述平方和關(guān)系的數(shù)據(jù),如4cm,7.5cm,8.5cm,畫出相應(yīng)邊長(zhǎng)的三角形檢驗(yàn)是否為直角三角形。
    數(shù)學(xué)勾股定理教案篇八
    (一)知識(shí)與技能目標(biāo):
    1、掌握勾股定理及其證明
    2、會(huì)利用勾股定理進(jìn)行直角三角形的簡(jiǎn)單計(jì)算。
    3、了解有關(guān)勾股定理的歷史知識(shí)
    (二)過程與方法目標(biāo)
    經(jīng)歷課前預(yù)習(xí)和課上觀察、分析、歸納、猜想、驗(yàn)證并運(yùn)用實(shí)踐的過程,了解數(shù)學(xué)知識(shí)的生成與發(fā)展過程。通過了解勾股定理的幾個(gè)著名證法(趙爽證法、歐幾里得證法等),使學(xué)生感受數(shù)學(xué)證明的靈活、優(yōu)美與精巧,感受勾股定理的豐富文化內(nèi)涵。使學(xué)生自主學(xué)習(xí)能力和分析問題解決問題的能力得到提高。培養(yǎng)與人合作的意識(shí)。
    (三)情感、態(tài)度和價(jià)值觀
    1、通過自主學(xué)習(xí)培養(yǎng)學(xué)生探究、發(fā)現(xiàn)問題的能力,體驗(yàn)獲取數(shù)學(xué)知識(shí)的過程。
    2、通過小組合作、探索培養(yǎng)學(xué)生的團(tuán)隊(duì)精神,以及不畏艱難,實(shí)事求是的學(xué)習(xí)態(tài)度和嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)學(xué)習(xí)習(xí)慣。
    3、通過了解有關(guān)勾股定理的中西歷史知識(shí),激發(fā)學(xué)生的愛國(guó)熱情,培養(yǎng)學(xué)生的民族自豪感。
    數(shù)學(xué)勾股定理教案篇九
    1、知識(shí)與技能目標(biāo)
    學(xué)會(huì)觀察圖形,勇于探索圖形間的關(guān)系,培養(yǎng)學(xué)生的空間觀念。
    2、過程與方法
    (1)經(jīng)歷一般規(guī)律的探索過程,發(fā)展學(xué)生的抽象思維能力。
    (2)在將實(shí)際問題抽象成幾何圖形過程中,提高分析問題、解決問題的能力及滲透數(shù)學(xué)建模的思想。
    3、情感態(tài)度與價(jià)值觀
    (1)通過有趣的問題提高學(xué)習(xí)數(shù)學(xué)的興趣。
    (2)在解決實(shí)際問題的過程中,體驗(yàn)數(shù)學(xué)學(xué)習(xí)的實(shí)用性。
    教學(xué)重點(diǎn):
    探索、發(fā)現(xiàn)事物中隱含的勾股定理及其逆及理,并用它們解決生活實(shí)際問題。
    教學(xué)難點(diǎn):
    利用數(shù)學(xué)中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實(shí)際問題。
    教學(xué)準(zhǔn)備:
    多媒體
    教學(xué)過程:
    第一環(huán)節(jié):創(chuàng)設(shè)情境,引入新課(3分鐘,學(xué)生觀察、猜想)
    情景:
    第二環(huán)節(jié):合作探究(15分鐘,學(xué)生分組合作探究)
    學(xué)生分為4人活動(dòng)小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計(jì)算方法,通過具體計(jì)算,總結(jié)出最短路線。讓學(xué)生發(fā)現(xiàn):沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究?jī)牲c(diǎn)連線最短問題,引導(dǎo)學(xué)生體會(huì)利用數(shù)學(xué)解決實(shí)際問題的方法:建立數(shù)學(xué)模型,構(gòu)圖,計(jì)算。
    第三環(huán)節(jié):做一做(7分鐘,學(xué)生合作探究)
    教材23頁(yè)
    李叔叔想要檢測(cè)雕塑底座正面的ad邊和bc邊是否分別垂直于底邊ab,但他隨身只帶了卷尺。
    (1)你能替他想辦法完成任務(wù)嗎?
    第四環(huán)節(jié):鞏固練習(xí)(10分鐘,學(xué)生獨(dú)立完成)
    2.如圖,臺(tái)階a處的螞蟻要爬到b處搬運(yùn)食物,它怎么走最近?并求出最近距離。
    第五環(huán)節(jié)課堂小結(jié)(3分鐘,師生問答)
    內(nèi)容:如何利用勾股定理及逆定理解決最短路程問題?
    第六環(huán)節(jié):布置作業(yè)(2分鐘,學(xué)生分別記錄)
    作業(yè):1.課本習(xí)題1.5第1,2,3題.
    要求:a組(學(xué)優(yōu)生):1、2、3
    b組(中等生):1、2
    c組(后三分之一生):1
    數(shù)學(xué)勾股定理教案篇十
    我對(duì)本節(jié)課的教學(xué)過程是這樣設(shè)計(jì)的:
    通過欣賞xxxx年在我國(guó)北京召開的國(guó)際數(shù)學(xué)家大會(huì)的會(huì)徽?qǐng)D案,引出“趙爽弦圖”,讓學(xué)生了解我國(guó)古代輝煌的數(shù)學(xué)成就,引入課題。
    接下來,讓學(xué)生欣賞傳說故事:相傳2500年前,畢達(dá)格拉斯在朋友家做客時(shí),發(fā)現(xiàn)朋友家用磚鋪成的地面中反映了直角三角形三邊的某種數(shù)量關(guān)系。通過故事使學(xué)生明白:科學(xué)家的偉大成就多數(shù)都是在看似平淡無奇的現(xiàn)象中發(fā)現(xiàn)和研究出來的;生活中處處有數(shù)學(xué),我們應(yīng)該學(xué)會(huì)觀察、思考,將學(xué)習(xí)與生活緊密結(jié)合起來。
    這樣,一方面激發(fā)學(xué)生的求知欲望,另一方面,也對(duì)學(xué)生進(jìn)行了學(xué)習(xí)方法指導(dǎo)和解決問題能力的培養(yǎng)。
    通過對(duì)地板圖形中的等腰直角三角形到一般直角三角形中三邊關(guān)系的探究,讓同學(xué)們體驗(yàn)由特殊到一般的探究過程,學(xué)習(xí)這種研究方法。
    在這一過程中,學(xué)生充分利用學(xué)具去嘗試解決,力求讓學(xué)生自己探索,先在小組內(nèi)交流,然后在全班交流,盡量學(xué)習(xí)更多的方法。
    先了解趙爽的證明思路,然后讓學(xué)生利用學(xué)具自己剪拼,并利用圖形進(jìn)行證明。
    由于難度比較大,組織學(xué)生開展小組合作學(xué)習(xí)。教師要巡回輔導(dǎo),給予學(xué)生必要的幫助。
    一是讓學(xué)生自己回顧總結(jié)本節(jié)的收獲。(當(dāng)然多數(shù)為具體的知識(shí)和方法)。二是教師要引導(dǎo)學(xué)生學(xué)習(xí)科學(xué)家敏銳的觀察力和勤于思考的作風(fēng),不斷提高自己的數(shù)學(xué)素養(yǎng),適時(shí)對(duì)大家進(jìn)行思想教育。
    主要練習(xí)勾股定理的其它證明方法。
    請(qǐng)你利用網(wǎng)絡(luò)資源,收集有關(guān)勾股定理的證明方法來進(jìn)行學(xué)習(xí)。寫出有關(guān)勾股定理知識(shí)的小論文。一個(gè)月過去了,我已忘記了這一項(xiàng)特殊的作業(yè),但部分學(xué)生卻寫出了出乎意料的小論文。
    通過這節(jié)課的兩種不同的上法,以及學(xué)生的不同表現(xiàn)與收獲,讓我更深刻地認(rèn)識(shí)到:
    (3)要相信學(xué)生的能力,為學(xué)生創(chuàng)造自我學(xué)習(xí)和創(chuàng)造的機(jī)會(huì)(如布置開放性的學(xué)習(xí)任務(wù):數(shù)學(xué)實(shí)踐活動(dòng)、研究學(xué)習(xí)、寫小論文等)。
    我相信:只要堅(jiān)持不懈地這樣去做,不但能很好地實(shí)施新課改,實(shí)現(xiàn)教育的本來目標(biāo),而且也一定能讓學(xué)生“考出”好的成績(jī);不過,這樣教師一定不會(huì)輕松。
    數(shù)學(xué)勾股定理教案篇十一
    1.理解勾股定理的逆定理的證明方法和證明過程;
    2.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個(gè)三角形是直角三角形;
    二數(shù)學(xué)思考
    1.通過勾股定理的逆定理的探索,經(jīng)歷知識(shí)的發(fā)生發(fā)展與形成的過程;
    2.通過三角形三邊的數(shù)量關(guān)系來判斷三角形的形狀,體驗(yàn)數(shù)形結(jié)合法的應(yīng)用.
    三解決問題
    通過勾股定理的逆定理的證明及其應(yīng)用,體會(huì)數(shù)形結(jié)合法在問題解決中的作用,并能運(yùn)用勾股定理的逆定理解決相關(guān)問題.
    四情感態(tài)度
    2.在探究勾股定理的逆定理的證明及應(yīng)用的活動(dòng)中,通過一系列富有探究性的問題,滲透與他人交流合作的意識(shí)和探究精神.
    數(shù)學(xué)勾股定理教案篇十二
    思路點(diǎn)撥:要求甲、乙兩人的距離,就要確定甲、乙兩人在平面的位置關(guān)系,由于甲往東、乙往北,所以甲所走的路線與乙所走的路線互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求出甲、乙兩人的距離.(13千米)
    數(shù)學(xué)勾股定理教案篇十三
    本節(jié)課教學(xué)模式主要采用“互動(dòng)式”教學(xué)模式及“類比”的教學(xué)方法.通過前面所學(xué)的垂直平分線定理及其逆定理,做類比對(duì)象,讓學(xué)生自己提出問題并解決問題.在課堂教學(xué)中營(yíng)造輕松、活潑的課堂氣氛.通過師生互動(dòng)、生生互動(dòng)、學(xué)生與教材之間的互動(dòng),造成“情意共鳴,溝通信息,反饋流暢,思維活躍”,達(dá)到培養(yǎng)學(xué)生思維能力的目的.具體說明如下:
    (1)讓學(xué)生主動(dòng)提出問題
    (2)讓學(xué)生自己解決問題
    (3)通過實(shí)際問題的解決,培養(yǎng)學(xué)生的數(shù)學(xué)意識(shí).
    數(shù)學(xué)勾股定理教案篇十四
    1、知識(shí)與技能目標(biāo)
    學(xué)會(huì)觀察圖形,勇于探索圖形間的關(guān)系,培養(yǎng)學(xué)生的空間觀念。
    2、過程與方法
    (1)經(jīng)歷一般規(guī)律的探索過程,發(fā)展學(xué)生的抽象思維能力。
    (2)在將實(shí)際問題抽象成幾何圖形過程中,提高分析問題、解決問題的能力及滲透數(shù)學(xué)建模的思想。
    3、情感態(tài)度與價(jià)值觀
    (1)通過有趣的問題提高學(xué)習(xí)數(shù)學(xué)的興趣。
    (2)在解決實(shí)際問題的過程中,體驗(yàn)數(shù)學(xué)學(xué)習(xí)的實(shí)用性。
    教學(xué)重點(diǎn):
    探索、發(fā)現(xiàn)事物中隱含的勾股定理及其逆及理,并用它們解決生活實(shí)際問題。
    教學(xué)難點(diǎn):
    利用數(shù)學(xué)中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實(shí)際問題。
    教學(xué)準(zhǔn)備:
    多媒體
    教學(xué)過程:
    第一環(huán)節(jié):創(chuàng)設(shè)情境,引入新課(3分鐘,學(xué)生觀察、猜想)
    情景:
    第二環(huán)節(jié):合作探究(15分鐘,學(xué)生分組合作探究)
    學(xué)生分為4人活動(dòng)小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計(jì)算方法,通過具體計(jì)算,總結(jié)出最短路線。讓學(xué)生發(fā)現(xiàn):沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究?jī)牲c(diǎn)連線最短問題,引導(dǎo)學(xué)生體會(huì)利用數(shù)學(xué)解決實(shí)際問題的方法:建立數(shù)學(xué)模型,構(gòu)圖,計(jì)算。
    第三環(huán)節(jié):做一做(7分鐘,學(xué)生合作探究)
    教材23頁(yè)
    李叔叔想要檢測(cè)雕塑底座正面的ad邊和bc邊是否分別垂直于底邊ab,但他隨身只帶了卷尺。
    (1)你能替他想辦法完成任務(wù)嗎?
    第四環(huán)節(jié):鞏固練習(xí)(10分鐘,學(xué)生獨(dú)立完成)
    2.如圖,臺(tái)階a處的螞蟻要爬到b處搬運(yùn)食物,它怎么走最近?并求出最近距離。
    第五環(huán)節(jié)課堂小結(jié)(3分鐘,師生問答)
    內(nèi)容:如何利用勾股定理及逆定理解決最短路程問題?
    第六環(huán)節(jié):布置作業(yè)(2分鐘,學(xué)生分別記錄)
    作業(yè):1.課本習(xí)題1.5第1,2,3題.
    要求:a組(學(xué)優(yōu)生):1、2、3
    b組(中等生):1、2
    c組(后三分之一生):1
    數(shù)學(xué)勾股定理教案篇十五
    勾股定理:如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a2+b2=c2.
    即直角三角形兩直角的平方和等于斜邊的平方.
    因此,在運(yùn)用勾股定理計(jì)算三角形的邊長(zhǎng)時(shí),要注意如下三點(diǎn):
    (2)注意分清斜邊和直角邊,避免盲目代入公式致錯(cuò);
    2.學(xué)會(huì)用拼圖法驗(yàn)證勾股定理
    如,利用四個(gè)如圖1所示的直角三角形三角形,拼出如圖2所示的三個(gè)圖形.
    請(qǐng)讀者證明.
    請(qǐng)同學(xué)們自己證明圖(2)、(3).
    3.在數(shù)軸上表示無理數(shù)
    二、典例精析
    解:由勾股定理,得
    132-52=144,所以另一條直角邊的長(zhǎng)為12.
    所以這個(gè)直角三角形的面積是×12×5=30(cm2).
    例2如圖3(1),一只螞蟻沿棱長(zhǎng)為a的正方體表面從頂點(diǎn)a爬到
    頂點(diǎn)b,則它走過的最短路程為
    a.b.c.3ad.分析:本題顯然與例2屬同種類型,思路相同.但正方體的
    各棱長(zhǎng)相等,因此只有一種展開圖.
    解:將正方體側(cè)面展開