專業(yè)數(shù)學勾股定理教案(案例18篇)

字號:

    教案應該包含學生參與的各種活動,促進他們的主動學習。在編寫教案時,教師應該注重提高學生的學習興趣,創(chuàng)設良好的教學環(huán)境。針對不同學科和教學內容,小編整理了一些針對性的教案樣本。
    數(shù)學勾股定理教案篇一
    從知識結構上看,勾股定理揭示了直角三角形三條邊之間的數(shù)量關系,為后續(xù)學習解直角三角形提供重要的理論依據(jù),在現(xiàn)實生活中有著廣泛的應用。
    從學生認知結構上看,它把形的特征轉化成數(shù)量關系,架起了幾何與代數(shù)之間的橋梁;
    勾股定理又是對學生進行愛國主義教育的良好素材,因此具有相當重要的地位和作用。
    根據(jù)數(shù)學新課程標準以及八年級學生的認知水平我確定如下學習目標:知識技能、數(shù)學思考、問題解決、情感態(tài)度。其中【情感態(tài)度】方面,以我國數(shù)學文化為主線,激發(fā)學生熱愛祖國悠久文化的情感。
    (二)重點與難點
    為變被動接受為主動探究,我確定本節(jié)課的重點為:勾股定理的探索過程。限于八年級學生的思維水平,我將面積法(拼圖法)發(fā)現(xiàn)勾股定理確定為本節(jié)課的難點,我將引導學生動手實驗突出重點,合作交流突破難點。
    數(shù)學勾股定理教案篇二
    教學方法葉圣陶說過“教師之為教,不在全盤授予,而在相機誘導?!币虼私處熇脦缀沃庇^提出問題,引導學生由淺入深的探索,設計實驗讓學生進行驗證,感悟其中所蘊涵的思想方法。
    學法指導為把學習的主動權還給學生,教師鼓勵學生采用動手實踐,自主探索、合作交流的學習方法,讓學生親自感知體驗知識的形成過程。
    數(shù)學勾股定理教案篇三
    一、學情分析:
    知識技能基礎:學生在小學已經學過分數(shù)的乘除法,掌握了分數(shù)的乘除法法則,在學習分式的乘除法法則時可通過與分數(shù)的乘除法法則進行類比學習。在前面學習了整式乘法和因式分解,為分式的運算和結果的化簡奠定基礎。
    能力基礎:在過去的數(shù)學學習過程中,學生已初步具備觀察、分析、歸納的能力和類比的學習方法。
    二、教學目標:
    知識目標:1、分式的乘除運算法則
    2、會進行簡單的分式的乘除法運算
    能力目標:1、類比分數(shù)的乘除運算法則,探索分式的乘除運算法則。
    2、能解決一些與分式有關的簡單的實際問題。
    情感目標:1、通過師生討論、交流,培養(yǎng)學生合作探究的意識和能力。
    2、培養(yǎng)學生的創(chuàng)新意識和應用意識。
    三、教學重點、難點
    重點:分式乘除法的法則及應用
    難點:分子、分母是多項式的分式的乘除法的運算
    三、教學過程:
    第一環(huán)節(jié)復習舊知識
    復習小學學的分數(shù)乘除法法則,
    活動目的:
    復習小學學過的分數(shù)的乘除法運算,為學習分式乘除法的法則做準備。
    第二環(huán)節(jié)引入新課
    活動內容
    你能總結分式乘除法的法則嗎?與同伴交流。
    分式的乘除法的法則:
    兩個分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母;
    兩個分式相除,把除式的分子和分母顛倒位置后再與被除式相乘.
    活動目的:
    讓學生觀察運算,通過小組討論交流,并與分數(shù)的乘除法的法則類比,讓學生自己總結出分式的乘除法的法則。
    第三環(huán)節(jié)知識運用
    活動內容
    例題1:
    (1)(2)例題2
    (1)(2)活動目的:
    通過例題講解,使學生會根據(jù)法則,理解每一步的算理,從而進行簡單的分式的乘除法運算,并能解決一些與分式有關的簡單的實際問題,增強學生代數(shù)推理的能力與應用意識。需要給學生強調的是分式運算的結果通常要化成最簡分式或整式,對于這一點,很多學生在開始學習分式計算時往往沒有注意到結果要化簡。
    第四環(huán)節(jié)走進中考
    (2012.漳州)第五環(huán)節(jié)課時小結
    活動內容:
    1.分式的乘除法的法則
    2.分式運算的結果通常要化成最簡分式或整式.
    3.學會類比的數(shù)學方法
    第六環(huán)節(jié)當堂檢測
    數(shù)學勾股定理教案篇四
    本節(jié)課探究體驗貫穿始終,展示交流貫穿始終,習慣養(yǎng)成貫穿始終,情感教育貫穿始終,文化育人貫穿始終。
    采用“七巧板”代替教材中“畢達哥拉斯地板磚”利用我國傳統(tǒng)文化引入課題,趙爽弦圖證明定理,符合本節(jié)課以我國數(shù)學文化為主線這一設計理念,展現(xiàn)了我國古代數(shù)學璀璨的歷史,激發(fā)學生再創(chuàng)數(shù)學輝煌的愿望。
    數(shù)學勾股定理教案篇五
    一、創(chuàng)設問屬情境,引入新課
    師生行為學生分組討論,交流總結;教師引導學生回憶.
    師:那么,一個三角形滿足什么條件,才能是直角三角形呢?
    生:有一個內角是90°,那么這個三角形就為直角三角形.
    生:如果一個三角形,有兩個角的和是90°,那么這個三角形也是直角三角形.
    二、講授新課
    是不是三角形的三邊只要有兩邊的平方和等于第三邊的平方,就能得到一個直角三角形呢?
    活動3下面的三組數(shù)分別是一個三角形的三邊長?
    數(shù)學勾股定理教案篇六
    勾股定理是揭示三角形三條邊數(shù)量關系的一條非常重要的性質,也是幾何中最重要的定理之一。它是解直角三角形的主要依據(jù)之一,同時在實際生活中具有廣泛的用途,“數(shù)學源于生活,又用于生活”正是這章書所體現(xiàn)的主要思想。教材在編寫時注意培養(yǎng)學生的動手操作能力和分析問題的能力,通過實際操作,使學生獲得較為直觀的印象;通過聯(lián)系比較、探索、歸納,幫助學生理解勾股定理,以利于進行正確的應用。
    本節(jié)教科書從畢達哥拉斯觀察地面發(fā)現(xiàn)勾股定理的傳說談起,讓學生通過觀察計算一些以直角三角形兩條直角邊為邊長的小正方形的面積與以斜邊為邊長的正方形的面積的關系,發(fā)現(xiàn)兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積,從而發(fā)現(xiàn)勾股定理,這時教科書以命題的形式呈現(xiàn)了勾股定理。關于勾股定理的證明方法有很多,教科書正文中介紹了我國古人趙爽的證法。之后,通過三個探究欄目,研究了勾股定理在解決實際問題和解決數(shù)學問題中的應用,使學生對勾股定理的作用有一定的認識。
    一、知識與技能
    1、探索直角三角形三邊關系,掌握勾股定理,發(fā)展幾何思維。
    2、應用勾股定理解決簡單的實際問題
    3學會簡單的合情推理與數(shù)學說理
    二、過程與方法
    引入兩段中西關于勾股定理的史料,激發(fā)同學們的興趣,引發(fā)同學們的思考。通過動手操作探索與發(fā)現(xiàn)直角三角形三邊關系,經歷小組協(xié)作與討論,進一步發(fā)展合作交流能力和數(shù)學表達能力,并感受勾股定理的應用知識。
    三、情感與態(tài)度目標
    通過對勾股定理歷史的了解,感受數(shù)學文化,激發(fā)學習興趣;在探究活動中,學生親自動手對勾股定理進行探索與驗證,培養(yǎng)學生的合作交流意識和探索精神,以及自主學習的能力。
    四、重點與難點
    1、探索和證明勾股定理
    2、熟練運用勾股定理
    一、創(chuàng)設情景,揭示課題
    1、教師展示圖片并介紹第一情景
    以中國最早的一部數(shù)學著作——《周髀算經》的開頭為引,介紹周公向商高請教數(shù)學知識時的對話,為勾股定理的出現(xiàn)埋下伏筆。
    周公問:“竊聞乎大夫善數(shù)也,請問古者包犧立周天歷度.夫天不可階而升,地不可得尺寸而度,請問數(shù)安從出?”商高答:“數(shù)之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環(huán)而共盤.得成三、四、五,兩矩共長二十有五,是謂積矩。故禹之所以治天下者,此數(shù)之所由生也?!?BR>    2、教師展示圖片并介紹第二情景
    畢達哥拉斯是古希臘著名的數(shù)學家。相傳在2500年以前,他在朋友家做客時,發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的某種特性。
    二、師生協(xié)作,探究問題
    1、現(xiàn)在請你也動手數(shù)一下格子,你能有什么發(fā)現(xiàn)嗎?
    2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有這樣的特點呢?
    3、你能得到什么結論嗎?
    三、得出命題
    勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊長為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋:由于我國古代把直角三角形中較短的直角邊稱為勾,較長的邊稱為股,斜邊稱為弦,所以,把它叫做勾股定理。
    四、勾股定理的證明
    第一種方法:邊長為 的正方形可以看作是由4個直角邊分別為 、,斜邊為 的直角三角形圍在外面形成的。因為邊長為 的正方形面積加上4個直角三角形的面積等于外圍正方形的面積,所以可以列出等式 ,化簡得 。
    第二種方法:邊長為 的正方形可以看作是由4個直角邊分別為 、,斜邊為 的
    角三角形拼接形成的(虛線表示),不過中間缺出一個邊長為 的正方形“小洞”。
    因為邊長為 的正方形面積等于4個直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式 ,化簡得 。
    這種證明方法很簡明,很直觀,它表現(xiàn)了我國古代數(shù)學家趙爽高超的證題思想和對數(shù)學的鉆研精神,是我們中華民族的驕傲。
    五、應用舉例,拓展訓練,鞏固反饋。
    勾股定理的靈活運用勾股定理在實際的生產生活當中有著廣泛的應用。勾股定理的發(fā)現(xiàn)和使用解決了許多生活中的問題,今天我們就來運用勾股定理解決一些問題,你可以嗎?試一試。
    六、歸納總結
    2、方法歸納:數(shù)方格看圖找關系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀察歸納注意畫一個直角三角形表示正方形面積,再次驗證自己的發(fā)現(xiàn)。
    七、討論交流
    讓學生發(fā)表自己的意見,提出他們模糊不清的概念,給他們一個梳理知識的機會,通過提示性的引導,讓學生對勾股定理的概念豁然開朗,為后面勾股定理的應用打下基礎。
    我們班的同學很聰明。大家很快就通過數(shù)格子發(fā)現(xiàn)了勾股定理的規(guī)律。還有什么地方不懂的嗎?跟大家一起來交流一下。請同學們課后在反思天地中都發(fā)表一下自己的學習心得。
    數(shù)學勾股定理教案篇七
    教學目標:
    1、知識與技能目標:理解和掌握勾股定理的內容,能夠靈活運用勾股定理進行計算,并解決一些簡單的實際問題。
    2、過程與方法目標:通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學生動手操作、合作交流、邏輯推理的能力。
    3、情感、態(tài)度與價值觀目標:了解中國古代的數(shù)學成就,激發(fā)學生愛國熱情;學生通過自己的努力探索出結論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時體驗數(shù)學的美感,從而了解數(shù)學,喜歡幾何。
    教學重點:
    引導學生經歷探索及驗證勾股定理的過程,并能運用勾股定理解決一些簡單的實際問題。
    教學難點:
    用面積法方法證明勾股定理
    課前準備:
    多媒體ppt,相關圖片
    教學過程:
    (一)情境導入
    1、多媒體課件放映圖片欣賞:勾股定理數(shù)形圖,1955年希臘發(fā)行的一枚紀念郵票,美麗的勾股樹,國際數(shù)學大會會標等。通過圖形欣賞,感受數(shù)學之美,感受勾股定理的文化價值。
    數(shù)學勾股定理教案篇八
    本節(jié)將利用勾股定理及其逆定理解決一些具體的實際問題,其中需要學生了解空間圖形、對一些空間圖形進行展開、折疊等活動.學生在學習七年級上第一章時對生活中的立體圖形已經有了一定的認識,并從事過相應的實踐活動,因而學生已經具備解決本課問題所需的知識基礎和活動經驗基礎.
    二、教學任務分析
    本節(jié)是義務教育課程標準北師大版實驗教科書八年級(上)第一章《勾股定理》第3節(jié).具體內容是運用勾股定理及其逆定理解決簡單的實際問題.當然,在這些具體問題的解決過程中,需要經歷幾何圖形的抽象過程,需要借助觀察、操作等實踐活動,這些都有助于發(fā)展學生的分析問題、解決問題能力和應用意識;一些探究活動具體一定的難度,需要學生相互間的合作交流,有助于發(fā)展學生合作交流的能力.
    本節(jié)課的教學目標是:
    1.通過觀察圖形,探索圖形間的關系,發(fā)展學生的空間觀念.
    2.在將實際問題抽象成數(shù)學問題的過程中,提高分析問題、解決問題的能力及滲透數(shù)學建模的思想.
    3.在利用勾股定理解決實際問題的過程中,體驗數(shù)學學習的實用性.
    利用數(shù)學中的建模思想構造直角三角形,利用勾股定理及逆定理,解決實際問題是本節(jié)課的重點也是難點.
    四、教法學法
    1.教學方法
    引導—探究—歸納
    本節(jié)課的教學對象是初二學生,他們的參與意識教強,思維活躍,為了實現(xiàn)本節(jié)課的教學目標,我力求以下三個方面對學生進行引導:
    (1)從創(chuàng)設問題情景入手,通過知識再現(xiàn),孕育教學過程;
    (2)從學生活動出發(fā),順勢教學過程;
    (3)利用探索研究手段,通過思維深入,領悟教學過程.
    2.課前準備
    教具:教材、電腦、多媒體課件.
    學具:用矩形紙片做成的圓柱、剪刀、教材、筆記本、課堂練習本、文具.
    五、教學過程分析
    本節(jié)課設計了七個環(huán) 節(jié).第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):做一做;第四環(huán)節(jié):小試牛刀;第五環(huán)節(jié):舉一反三;第六環(huán)節(jié):交流小結;第七環(huán)節(jié):布置作業(yè).
    數(shù)學勾股定理教案篇九
    1、知識與技能目標:探索并理解直角三角形的三邊之間的數(shù)量關系,通過探究能夠發(fā)現(xiàn)直角三角形中兩個直角邊的平方和等于斜邊的平方和。
    2、過程與方法目標:經歷用測量和數(shù)格子的辦法探索勾股定理的過程,進一步發(fā)展學生的合情推理能力。
    3、情感態(tài)度與價值觀目標:通過本節(jié)課的學習,培養(yǎng)主動探究的習慣,并進一步體會數(shù)學與現(xiàn)實生活的緊密聯(lián)系。
    數(shù)學勾股定理教案篇十
    了解勾股定理的一些證明方法,會簡單應用勾股定理解決問題
    在充分觀察、歸納、猜想的基礎上,探究勾股定理,在探究的過程中,發(fā)展合情推理,體會數(shù)形結合、從特殊到一般等數(shù)學思想。
    通過對我國古代研究勾股定理的成就介紹,培養(yǎng)學生的民族自豪感。
    1、創(chuàng)設情境
    師生活動:教師引導學生尋找圖形中的直角三角形和正方形等,并引導學生發(fā)現(xiàn)直角三角形的全等關系,指出通過今天的學習,就能理解會徽圖案的含義。
    設計意圖:本節(jié)課是本章的起始課,重視引言教學,從國際數(shù)學家大會的會徽說起,設置懸念,引入課題。
    2、探究勾股定理
    觀看洋蔥數(shù)學中關于勾股定理引入的視頻,讓我們一起走進神奇的數(shù)學世界
    追問:由這三個正方形的邊長構成的等腰直角三角形三條邊長之間又有怎么樣的關系?
    師生活動:教師引導學生發(fā)現(xiàn)正方形的面積等于邊長的平方,歸納出:等腰直角三角形兩條直角邊的平方和等于斜邊的平方。
    設計意圖:從最特殊的等腰直角三角形入手,便于學生觀察得到結論
    問題3:數(shù)學研究遵循從特殊到一般的數(shù)學思想,既然我們得到了等腰直角三角形三邊的這種特殊的數(shù)量關系,那我們不妨大膽猜測在一般的直角三角形(在下圖的方格紙中,每個方格的面積是1)中,這種特殊的數(shù)量關系也同樣成立。
    師生活動:學生獨立思考后小組討論,難點是如何證明求以斜邊為邊長的正方形的面積,可由師生共同總結得出可以通過割、補兩種方法,求出其面積。
    數(shù)學勾股定理教案篇十一
    【知識與技能】
    理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理;利用勾股定理的逆定理判定一個三角形是不是直角三角形。
    【過程與方法】
    通過勾股定理的逆定理的證明,體會數(shù)與形結合方法在問題解決中的作用,并能運用勾股定理的逆定理解決相關問題。
    【情感態(tài)度與價值觀】
    通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神。
    二、教學重難點
    【重點】
    勾股定理逆定理的應用;
    【難點】
    探究勾股定理逆定理的證明過程。
    三、教學過程
    (一)導入新課
    復習回顧出勾股定理。
    師生活動:學生獨立回憶勾股定理,師生共同分析得出其題設和結論,教師引導指出勾股定理是從形的特殊性得出三邊之間的數(shù)量關系。
    追問1:你能把勾股定理的題設與結論交換得到一個新的命題嗎?
    師生活動:師生共同得出新的命題,教師指出其為勾股定理的逆命題。
    (四)小結作業(yè)
    作業(yè):總結一下判定一個三角形是直角三角形的方法。
    數(shù)學勾股定理教案篇十二
    教學目標:
    1、知識與技能目標:理解和掌握勾股定理的內容,能夠靈活運用勾股定理進行計算,并解決一些簡單的實際問題。
    2、過程與方法目標:通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學生動手操作、合作交流、邏輯推理的能力。
    3、情感、態(tài)度與價值觀目標:了解中國古代的數(shù)學成就,激發(fā)學生愛國熱情;學生通過自己的努力探索出結論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時體驗數(shù)學的美感,從而了解數(shù)學,喜歡幾何。
    教學重點:
    引導學生經歷探索及驗證勾股定理的過程,并能運用勾股定理解決一些簡單的實際問題。
    教學難點:
    用面積法方法證明勾股定理
    課前準備:
    多媒體ppt,相關圖片
    教學過程:
    (一)情境導入
    1、多媒體課件放映圖片欣賞:勾股定理數(shù)形圖,1955年希臘發(fā)行的一枚紀念郵票,美麗的勾股樹,20國際數(shù)學大會會標等。通過圖形欣賞,感受數(shù)學之美,感受勾股定理的文化價值。
    數(shù)學勾股定理教案篇十三
    (一)教材地位
    這節(jié)課是九年制義務教育初級中學教材北師大版七年級第二章第一節(jié)《探索勾股定理》第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關系。它在數(shù)學的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。
    (二)教學目標
    知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡單實際問題。
    過程與方法:經歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發(fā)展學生的合情推理意識、主動探究的習慣,感受數(shù)形結合和從特殊到一般的思想。
    情感態(tài)度與價值觀: 激發(fā)學生愛國熱情,讓學生體驗自己努力得到結論的成就感,體驗數(shù)學充滿探索和創(chuàng)造,體驗數(shù)學的美感,從而了解數(shù)學,喜歡數(shù)學。
    (三)教學重點:經歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。
    教學難點:用面積法(拼圖法)發(fā)現(xiàn)勾股定理。
    突出重點、突破難點的辦法:發(fā)揮學生的主體作用,通過學生動手實驗,讓學生在實驗中探索、在探索中領悟、在領悟中理解。
    教法分析:結合七年級學生和本節(jié)教材的特點,在教學中采用“問題情境————建立模型————解釋應用———拓展鞏固”的模式, 選擇引導探索法。把教學過程轉化為學生親身觀察,大膽猜想,自主探究,合作交流,歸納總結的過程。
    學法分析:在教師的組織引導下,學生采用自主探究合作交流的研討式學習方式,使學生真正成為學習的主人。
    數(shù)學勾股定理教案篇十四
    1、知識與技能目標
    學會觀察圖形,勇于探索圖形間的關系,培養(yǎng)學生的空間觀念。
    2、過程與方法
    (1)經歷一般規(guī)律的探索過程,發(fā)展學生的抽象思維能力。
    (2)在將實際問題抽象成幾何圖形過程中,提高分析問題、解決問題的能力及滲透數(shù)學建模的思想。
    3、情感態(tài)度與價值觀
    (1)通過有趣的問題提高學習數(shù)學的興趣。
    (2)在解決實際問題的過程中,體驗數(shù)學學習的實用性。
    教學重點:
    探索、發(fā)現(xiàn)事物中隱含的勾股定理及其逆及理,并用它們解決生活實際問題。
    教學難點:
    利用數(shù)學中的建模思想構造直角三角形,利用勾股定理及逆定理,解決實際問題。
    教學準備:
    多媒體
    教學過程:
    第一環(huán)節(jié):創(chuàng)設情境,引入新課(3分鐘,學生觀察、猜想)
    情景:
    第二環(huán)節(jié):合作探究(15分鐘,學生分組合作探究)
    學生分為4人活動小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內討論每種方案的路線計算方法,通過具體計算,總結出最短路線。讓學生發(fā)現(xiàn):沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究兩點連線最短問題,引導學生體會利用數(shù)學解決實際問題的方法:建立數(shù)學模型,構圖,計算。
    第三環(huán)節(jié):做一做(7分鐘,學生合作探究)
    教材23頁
    李叔叔想要檢測雕塑底座正面的ad邊和bc邊是否分別垂直于底邊ab,但他隨身只帶了卷尺。
    (1)你能替他想辦法完成任務嗎?
    第四環(huán)節(jié):鞏固練習(10分鐘,學生獨立完成)
    2.如圖,臺階a處的螞蟻要爬到b處搬運食物,它怎么走最近?并求出最近距離。
    第五環(huán)節(jié)課堂小結(3分鐘,師生問答)
    內容:如何利用勾股定理及逆定理解決最短路程問題?
    第六環(huán)節(jié):布置作業(yè)(2分鐘,學生分別記錄)
    作業(yè):1.課本習題1.5第1,2,3題.
    要求:a組(學優(yōu)生):1、2、3
    b組(中等生):1、2
    c組(后三分之一生):1
    數(shù)學勾股定理教案篇十五
    1、通過拼圖,用面積的方法說明勾股定理的正確性.
    2、通過實例應用勾股定理,培養(yǎng)學生的知識應用技能.
    1.用面積的方法說明勾股定理的正確.
    2.勾股定理的應用.
    勾股定理的應用.
    一、學前準備:
    1、閱讀課本第46頁到第47頁,完成下列問題:
    2、剪四個完全相同的直角三角形,然后將它們拼成如圖所示的'圖形。大正方形的面積可以表示為_________________________,又可以表示為__________________________.對比兩種表示方法,看看能不能得到勾股定理的結論。用上面得到的完全相同的四個直角三角形,還可以拼成如下圖所示的圖形,與上面的方法類似,也能說明勾股定理是正確的方法(請逐一說明)
    二、合作探究:
    (一)自學、相信自己:
    (二)思索、交流:
    (三)應用、探究:
    (四)鞏固練習:
    1、如圖,64、400分別為所在正方形的面積,則圖中字
    母a所代表的正方形面積是_________。
    三.學習體會:
    本節(jié)課我們進一步認識了勾股定理,并用兩種方法證明了這個定理,在應用此定理解決問題時,應注意只有直角三角形的三邊才有這樣的關系,如果不是直角三角形應該構造直角三角形來解決。
    2②圖
    四.自我測試:
    五.自我提高:
    數(shù)學勾股定理教案篇十六
    1、知識目標:
    (1)理解并會證明勾股定理的逆定理;
    (2)會應用勾股定理的逆定理判定一個三角形是否為直角三角形;
    (3)知道什么叫勾股數(shù),記住一些覺見的勾股數(shù).
    2、能力目標:
    (1)通過勾股定理與其逆定理的比較,提高學生的辨析能力;
    (2)通過勾股定理及以前的知識聯(lián)合起來綜合運用,提高綜合運用知識的能力.
    3、情感目標:
    (1)通過自主學習的發(fā)展體驗獲取數(shù)學知識的感受;
    (2)通過知識的縱橫遷移感受數(shù)學的辯證特征.
    教學重點:勾股定理的逆定理及其應用
    教學難點:勾股定理的逆定理及其應用
    教學用具:直尺,微機
    教學方法:以學生為主體的討論探索法
    數(shù)學勾股定理教案篇十七
    1.理解勾股定理的逆定理的證明方法和證明過程;
    2.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個三角形是直角三角形;
    二數(shù)學思考
    1.通過勾股定理的逆定理的探索,經歷知識的發(fā)生發(fā)展與形成的過程;
    2.通過三角形三邊的數(shù)量關系來判斷三角形的形狀,體驗數(shù)形結合法的應用.
    三解決問題
    通過勾股定理的逆定理的證明及其應用,體會數(shù)形結合法在問題解決中的作用,并能運用勾股定理的逆定理解決相關問題.
    四情感態(tài)度
    2.在探究勾股定理的逆定理的證明及應用的活動中,通過一系列富有探究性的問題,滲透與他人交流合作的意識和探究精神.
    數(shù)學勾股定理教案篇十八
    思路點撥:要求甲、乙兩人的距離,就要確定甲、乙兩人在平面的位置關系,由于甲往東、乙往北,所以甲所走的路線與乙所走的路線互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求出甲、乙兩人的距離.(13千米)