"心得體會是我們在生活、學(xué)習(xí)和工作中積累而來的一種經(jīng)驗總結(jié),它可以幫助我們更好地認識自己、提升自己"為了寫出完美的心得體會,我們可以先列出一份詳細的觀察記錄和思考問題清單。接下來,我們一起來看看小編為大家準(zhǔn)備的心得體會范文,希望能給大家提供一些啟示和思考。
數(shù)學(xué)建模的心得體會論文篇一
數(shù)學(xué)建模是當(dāng)今社會中越來越受重視的一門學(xué)科,通過數(shù)學(xué)方法解決實際問題,對于培養(yǎng)學(xué)生的邏輯思維、創(chuàng)新能力和實踐能力起著重要的作用。在我參與數(shù)學(xué)建模的過程中,我深刻地體會到,數(shù)學(xué)建模不僅需要良好的數(shù)學(xué)基礎(chǔ),還需要堅持、努力和合作的精神,以及對實際問題的敏感性和獨立思考的能力。
首先,數(shù)學(xué)建模需要良好的數(shù)學(xué)基礎(chǔ)。在解決實際問題的過程中,需要運用到多種數(shù)學(xué)方法和模型,如概率統(tǒng)計、線性規(guī)劃、微分方程等。而這些都要求我們具備扎實的數(shù)學(xué)基礎(chǔ)。因此,在參與數(shù)學(xué)建模之前,我們要加強對數(shù)學(xué)基礎(chǔ)知識的學(xué)習(xí),同時要注重數(shù)學(xué)的實際應(yīng)用,培養(yǎng)數(shù)學(xué)思維和解決實際問題的能力。
其次,數(shù)學(xué)建模需要堅持、努力和合作的精神。數(shù)學(xué)建模不是一蹴而就的過程,需要耐心和毅力去面對問題和困難。在實際操作中,往往會遇到數(shù)據(jù)收集不全、模型構(gòu)建不準(zhǔn)確等問題,這時候我們要保持積極樂觀的心態(tài),不斷嘗試和改進。同時,在團隊合作中,我們要尊重他人意見,共同努力,形成優(yōu)勢互補的合作關(guān)系,才能最終完成一個優(yōu)秀的數(shù)學(xué)模型。
此外,數(shù)學(xué)建模需要對實際問題的敏感性和獨立思考的能力。在解決實際問題時,我們要對問題本身有敏銳的觸覺,能夠發(fā)現(xiàn)問題背后的本質(zhì)和規(guī)律。同時,我們也要具備獨立思考的能力,不僅僅依靠他人的意見和經(jīng)驗,而是要從自己的角度去分析和解決問題。只有這樣才能在數(shù)學(xué)建模中取得令人滿意的結(jié)果。
最后,數(shù)學(xué)建模是一個不斷學(xué)習(xí)和提高的過程。在每一次實踐中,我們都可以從中汲取經(jīng)驗,了解到不同領(lǐng)域、不同問題的特點和要點。同時,我們也要關(guān)注前沿的數(shù)學(xué)建模成果和方法,及時補充自己的知識和技能。通過不斷學(xué)習(xí)和提高,我們才能在數(shù)學(xué)建模的道路上越走越遠,取得更出色的成就。
總之,數(shù)學(xué)建模是一門需要我們付出努力和智慧的學(xué)科。通過我自己的經(jīng)歷,我深刻地認識到數(shù)學(xué)建模不僅僅是一種學(xué)習(xí)方法,更是一種鍛煉自己解決實際問題能力的機會。在今后的學(xué)習(xí)和實踐中,我將繼續(xù)努力,加強自己的數(shù)學(xué)基礎(chǔ),培養(yǎng)堅持、努力和合作的精神,提高對實際問題的敏感性和獨立思考的能力,不斷學(xué)習(xí)和提高,以更好地應(yīng)對數(shù)學(xué)建模所帶來的挑戰(zhàn)。
數(shù)學(xué)建模的心得體會論文篇二
讀數(shù)學(xué)建模是一項需要較高能力的學(xué)問,需要具備豐富的數(shù)學(xué)知識和邏輯思維能力。在我學(xué)習(xí)的過程中,我深刻認識到了數(shù)學(xué)建模的重要性以及在實際工作和生活中的應(yīng)用價值。以下是我的讀數(shù)學(xué)建模的心得體會。
第一段:認識數(shù)學(xué)建模
作為一個計算機科班出身的學(xué)生,我很早就開始了接觸數(shù)學(xué)建模。但在一開始的時候,我并沒有真正理解什么是數(shù)學(xué)建模。直到在大學(xué)的選修課中系統(tǒng)地學(xué)習(xí)了一門《數(shù)學(xué)建模及應(yīng)用》課程后,我才對數(shù)學(xué)建模有了更深入的認知和理解。
第二段:理解“建?!?BR> “建?!钡暮诵囊馑际菍?fù)雜的實際問題轉(zhuǎn)化為數(shù)學(xué)模型,然后用數(shù)學(xué)語言描述該問題并進行數(shù)學(xué)分析。在實際的工作和生活中,我們要面對、研究的諸如市場營銷、物流運輸、氣象環(huán)境、圖像視頻等不同領(lǐng)域的問題都可以通過“建?!钡姆绞竭M行求解。
第三段:掌握數(shù)學(xué)和編程技能
數(shù)學(xué)建模需要掌握扎實的數(shù)學(xué)功底,同時也要在編程技能上有所涉獵。這是因為數(shù)學(xué)建模過程中需要運用到很多數(shù)據(jù)分類和篩選、數(shù)據(jù)可視化、計算機程序的實現(xiàn)等技能。只有將數(shù)學(xué)和編程技能完美結(jié)合,才能為數(shù)學(xué)建模提供最有利的條件。
第四段:關(guān)注實際問題
在理論知識的積累與技術(shù)能力的提升之外,數(shù)學(xué)建模中還需要關(guān)注實際問題。我們不能將理論和技術(shù)與實際問題劃分開來。可行的“建?!眴栴}是源于實際問題,因此,在發(fā)現(xiàn)實際問題的基礎(chǔ)上,我們才能夠有更清晰的目標(biāo)和向?qū)崿F(xiàn)目標(biāo)的循序漸進的步驟。
第五段:學(xué)習(xí)和交流
數(shù)學(xué)建模需要廣泛學(xué)習(xí)和交流。我們要閱讀相關(guān)領(lǐng)域的探討和論文,獲取更多的行業(yè)知識。同時,我們還要積極參加學(xué)術(shù)會議和交流活動,與其他學(xué)者和專家協(xié)同工作和深度探討,交換經(jīng)驗和知識,并不斷提升自己的建模能力。
在讀數(shù)學(xué)建模的過程中,我也留下了許多經(jīng)典案例和優(yōu)秀論文,堅持探索科學(xué)問題的本質(zhì),發(fā)掘應(yīng)用數(shù)學(xué)的潛力。數(shù)學(xué)建模是一個學(xué)習(xí)與實踐并行、動態(tài)更新的過程,它將不斷影響我們思考問題和解決問題的方式,讓我們更好地懂得數(shù)學(xué)對人類社會發(fā)展的重要性。
數(shù)學(xué)建模的心得體會論文篇三
數(shù)學(xué)建模是利用數(shù)學(xué)方法解決實際問題的一種實踐應(yīng)用。即通過抽象、簡化、假設(shè)、引進變量等處理過程后,將實際問題用數(shù)學(xué)方式來表達,建立起數(shù)學(xué)模型,然后運用先進的數(shù)學(xué)方法和計算機技術(shù)進行求解。數(shù)學(xué)建模將各種知識綜合應(yīng)用于解決實際問題中,是培養(yǎng)和提高學(xué)生應(yīng)用所學(xué)知識分析問題、解決問題的能力的必備手段之一。
數(shù)學(xué)建模是在上世紀(jì)六七十年代進入一些西方國家大學(xué)的,我國的幾所大學(xué)也在80年代初將數(shù)學(xué)建模引入課堂。經(jīng)過30多年的發(fā)展,現(xiàn)在,絕大多數(shù)本科院校和許多專科學(xué)校都開設(shè)了各種形式的數(shù)學(xué)建模課程和講座,為培養(yǎng)學(xué)生利用數(shù)學(xué)方法分析、解決實際問題的能力開辟了一條有效的途徑。
大學(xué)生數(shù)學(xué)建模競賽最早是1985年在美國出現(xiàn)的,1989年在幾位從事數(shù)學(xué)建模教育的教師的組織和推動下,我國幾所大學(xué)的學(xué)生開始參加美國的競賽,而且積極性越來越高,近幾年參賽校數(shù)、隊數(shù)占到相當(dāng)大的比例。可以說,數(shù)學(xué)建模競賽是在美國誕生、在中國開花、結(jié)果的。
全國大學(xué)生數(shù)學(xué)建模競賽已成為全國高校規(guī)模最大的基礎(chǔ)性學(xué)科競賽,創(chuàng)辦于1992年,每年一屆,目前也是世界上規(guī)模最大的數(shù)學(xué)建模競賽。20xx年,來自全國33個省/市/自治區(qū)(包括香港和澳門特區(qū))及新加坡、美國的1338所院校、25347個隊(其中本科組22233隊、??平M3114隊)、7萬多名大學(xué)生報名參加本項競賽。
數(shù)學(xué)建模是一種數(shù)學(xué)的思想方法,是運用數(shù)學(xué)的語言和方法,通過抽象、簡化建立能近似刻畫并“解決”實際問題的一種強有力的數(shù)學(xué)手段。其過程主要包括以下六個階段:
1.模型準(zhǔn)備:了解問題的實際背景,明確其實際意義,掌握對象的各種信息。用數(shù)學(xué)語言來描述問題。
2.模型假設(shè):根據(jù)實際對象的特征和建模的目的,對問題進行必要的簡化,并用精確的語言提出一些恰當(dāng)?shù)募僭O(shè)。
3.模型建立:在假設(shè)的基礎(chǔ)上,利用適當(dāng)?shù)臄?shù)學(xué)工具來刻劃各變量之間的數(shù)學(xué)關(guān)系,建立相應(yīng)的數(shù)學(xué)結(jié)構(gòu)。
4.模型求解:利用獲取的數(shù)據(jù)資料,對模型的所有參數(shù)做出計算。
5.模型分析:對所得的結(jié)果進行數(shù)學(xué)上的分析。
6.模型檢驗:將模型分析結(jié)果與實際情形進行比較,以此來驗證模型的準(zhǔn)確性、合理性和適用性。如果模型與實際較吻合,則要對計算結(jié)果給出其實際含義,并進行解釋。如果模型與實際吻合較差,則應(yīng)該修改假設(shè),再次重復(fù)建模過程。
7.模型應(yīng)用:應(yīng)用方式因問題的性質(zhì)和建模的目的而異。
數(shù)學(xué)建模的心得體會論文篇四
通過一個月的集訓(xùn),我受益匪淺。我進一步的認識到數(shù)學(xué)建模的實質(zhì)和對參賽隊員的要求。數(shù)學(xué)建模就是培養(yǎng)學(xué)生運用數(shù)學(xué)知識解決實際問題的能力。它要求參賽隊員有較強的創(chuàng)新精神,有較大的'靈活性和隨機應(yīng)變能力,要求參賽隊員之間有良好的團隊精神和相互協(xié)作意識。在一個月里,我們學(xué)了許多知識放方法,可以說數(shù)學(xué)建模需要的知識我們都了解了一點,關(guān)鍵在于如何應(yīng)用這些知識。這種即學(xué)即用的能力是我們以后學(xué)習(xí)、工作所必須的能力。在此我對建模是出現(xiàn)的一些現(xiàn)象發(fā)表一些看法。
隨著信息的高速化,我們很容易找到和建模有關(guān)的資料,這對我們理解題目意思和促發(fā)新思路、新想法是有幫助的。但是有的集訓(xùn)小組或集訓(xùn)隊員他們建模完全依靠找資料,建出來的模型就是幾本參考書的綜合,他們所用的方法完全是別人研究過的東西,連一點改進也沒有。如果這樣的話,數(shù)學(xué)建模就失去了意義。我始終堅持一個觀點:數(shù)學(xué)建模最重要的是創(chuàng)新。無論是你創(chuàng)造一種新方法還是創(chuàng)造性的運用一種方法,還是改進別人的方法都是很重要的。沒有創(chuàng)新,模型就失去了靈魂;沒有創(chuàng)新,模型就不是你的模型。
我們隊配合不是很理想。主要是有個隊員他總認為自己是正確的,別人找到的資料不如他好,別人提出的觀點、思想思想無論正確與否,他總是會反對一下。他總是十分注重小的方面,不從大局考慮。由于這些原因,我們建的模型總是不好。
數(shù)學(xué)建模的心得體會論文篇五
通過一個月的集訓(xùn),我受益匪淺。我進一步的認識到數(shù)學(xué)建模的實質(zhì)和對參賽隊員的要求。數(shù)學(xué)建模就是培養(yǎng)學(xué)生運用數(shù)學(xué)知識解決實際問題的能力。它要求參賽隊員有較強的創(chuàng)新精神,有較大的靈活性和隨機應(yīng)變能力,要求參賽隊員之間有良好的團隊精神和相互協(xié)作意識。在一個月里,我們學(xué)了許多知識放方法,可以說數(shù)學(xué)建模需要的`知識我們都了解了一點,關(guān)鍵在于如何應(yīng)用這些知識。這種即學(xué)即用的能力是我們以后學(xué)習(xí)、工作所必須的能力。在此我對建模是出現(xiàn)的一些現(xiàn)象發(fā)表一些看法。
隨著信息的高速化,我們很容易找到和建模有關(guān)的資料,這對我們理解題目意思和促發(fā)新思路、新想法是有幫助的。但是有的集訓(xùn)小組或集訓(xùn)隊員他們建模完全依靠找資料,建出來的模型就是幾本參考書的綜合,他們所用的方法完全是別人研究過的東西,連一點改進也沒有。如果這樣的話,數(shù)學(xué)建模就失去了意義。我始終堅持一個觀點:數(shù)學(xué)建模最重要的是創(chuàng)新。無論是你創(chuàng)造一種新方法還是創(chuàng)造性的運用一種方法,還是改進別人的方法都是很重要的。沒有創(chuàng)新,模型就失去了靈魂;沒有創(chuàng)新,模型就不是你的模型。
我們隊配合不是很理想。主要是有個隊員他總認為自己是正確的,別人找到的資料不如他好,別人提出的觀點、思想思想無論正確與否,他總是會反對一下。他總是十分注重小的方面,不從大局考慮。由于這些原因,我們建的模型總是不好。
數(shù)學(xué)建模的心得體會論文篇六
數(shù)學(xué)建模作為一種綜合性的能力與技術(shù),近年來深受大眾的關(guān)注與推崇。作為一名數(shù)學(xué)愛好者,我對數(shù)學(xué)建模這個領(lǐng)域也產(chǎn)生了濃厚的興趣。在閱讀關(guān)于數(shù)學(xué)建模的相關(guān)書籍、學(xué)習(xí)課程與參加各類競賽的過程中,我深刻地領(lǐng)悟到了數(shù)學(xué)建模的種種魅力,也匯總了一些讀數(shù)學(xué)建模的心得與體會。
第二段:學(xué)習(xí)經(jīng)驗
為了更好地理解數(shù)學(xué)建模,我通過網(wǎng)上課程等不斷學(xué)習(xí)。由于數(shù)學(xué)建模這個領(lǐng)域廣泛涉及到的知識面十分廣泛,所以學(xué)習(xí)的內(nèi)容也十分繁瑣。在學(xué)習(xí)的過程中,我力求將各個專業(yè)領(lǐng)域的知識以及各種方法融合在一起,取長補短,做到融會貫通。同時,也需要不斷地與比賽、挑戰(zhàn)賽等交流中,去檢驗自己的知識水平,并不斷地提高自己的學(xué)習(xí)能力。
第三段:實踐體會
學(xué)習(xí)歸來,我開始了自己的實踐之旅。在應(yīng)對數(shù)學(xué)建模的挑戰(zhàn)的過程中,我逐漸意識到模型的準(zhǔn)確度與應(yīng)用性是非常重要的。想要達到這點,必須不斷地加強數(shù)學(xué)知識的學(xué)習(xí),提高自己的實際操作能力。另外,更加注重分析真實場景與數(shù)據(jù),了解不同數(shù)據(jù)之間的關(guān)系與差異,并運用不同的數(shù)據(jù)分析方法,以保證模型的精度與可靠性。
第四段:對未來的研究目標(biāo)
雖然我在數(shù)學(xué)建模的學(xué)習(xí)與實踐中有了一定的收獲,但我深知自己仍是一個初學(xué)者,未來的路還有很長。因此,我計劃在未來的學(xué)習(xí)與實踐中,更加注重對數(shù)學(xué)建模理論的深度探究,從更加基礎(chǔ)的角度出發(fā)去分析模型,從而更好地將理論運用于實踐。另外,我也將繼續(xù)參加各種數(shù)學(xué)建模競賽,不斷挑戰(zhàn)自己,提高自己的技能水平。
第五段:總結(jié)
回首自己的數(shù)學(xué)建模之路,我深深體會到數(shù)學(xué)建模的魅力與難度。在實踐過程中,我不斷地學(xué)習(xí)、嘗試與挑戰(zhàn)自己,才有了今天的成果。未來,我會繼續(xù)深入學(xué)習(xí)、實踐,不斷提升自己,讓數(shù)學(xué)建模這個寶藏般的領(lǐng)域,能夠不斷地被挖掘、發(fā)現(xiàn)鏈梢,為人類社會提供更多的發(fā)展動力。
數(shù)學(xué)建模的心得體會論文篇七
數(shù)學(xué)建模是一門應(yīng)用數(shù)學(xué)學(xué)科,通過建立數(shù)學(xué)模型解決實際問題。作為一名數(shù)學(xué)建模愛好者,我在過去的學(xué)習(xí)和實踐中積累了一些心得體會。接下來,我將通過以下五個方面來分享我在數(shù)學(xué)建模中的心得體會。
首先,數(shù)學(xué)建模讓我意識到數(shù)學(xué)不僅僅是解題的工具。在學(xué)校中,我們通常把數(shù)學(xué)當(dāng)作一門應(yīng)付考試的科目,很難體會到它的實際應(yīng)用。然而,通過參與數(shù)學(xué)建模,我發(fā)現(xiàn)數(shù)學(xué)可以被應(yīng)用于解決現(xiàn)實問題,而不僅僅是在書本中運用。數(shù)學(xué)建模讓我明白數(shù)學(xué)的本質(zhì)是為了解決問題,培養(yǎng)了我從多個角度思考問題的能力。
其次,數(shù)學(xué)建模培養(yǎng)了我的團隊合作精神。在數(shù)學(xué)建模中,我們往往需要和團隊成員一起合作解決問題。每個團隊成員都有各自的思路和見解,我們需要互相交流和協(xié)作,才能最終得出一個完整的解決方案。通過和團隊成員的討論和合作,我學(xué)會了傾聽他人的觀點和取長補短,并且意識到團隊協(xié)作的重要性。
第三,數(shù)學(xué)建模讓我注重實際問題的建模過程。在過去,在解決數(shù)學(xué)問題時,我常常只注重最終的答案,而忽視了問題的建模過程。然而,通過數(shù)學(xué)建模的實踐,我明白了問題的建模過程對于最終結(jié)果的影響。合適的模型選擇以及準(zhǔn)確的參數(shù)設(shè)定是確保結(jié)果有效的重要因素。因此,我學(xué)會了在解決問題時注重建模過程,而不僅僅關(guān)注結(jié)果。
第四,數(shù)學(xué)建模培養(yǎng)了我的邏輯思維能力。在數(shù)學(xué)建模中,我們需要將實際問題抽象成數(shù)學(xué)模型,再通過建模思路解決問題。這要求我們在問題分析和建模過程中具備較強的邏輯思維能力。通過數(shù)學(xué)建模,我的邏輯思維能力得到了訓(xùn)練和提高,我學(xué)會了提煉問題中的關(guān)鍵因素,并能夠合理組織思路,從而解決問題。
最后,數(shù)學(xué)建模提高了我解決復(fù)雜問題的能力?,F(xiàn)實生活中的問題往往存在多種因素的影響,這使得問題變得復(fù)雜和困難。通過數(shù)學(xué)建模,我學(xué)會了分析復(fù)雜問題,并將其拆解成較為簡單的子問題。然后,我們再逐步解決這些子問題,并最終得到整個問題的解決方案。這種解決問題的方法也讓我在其他領(lǐng)域遇到復(fù)雜問題時能夠更加從容地應(yīng)對。
總結(jié)起來,數(shù)學(xué)建模是一門能夠培養(yǎng)多方面能力的學(xué)科。通過參與數(shù)學(xué)建模,我意識到數(shù)學(xué)在實際生活中的應(yīng)用,提高了團隊合作能力,注重問題建模過程,鍛煉了邏輯思維能力,同時也提高了解決復(fù)雜問題的能力。我相信,在今后的學(xué)習(xí)和工作中,這些心得體會將對我產(chǎn)生積極的影響。
數(shù)學(xué)建模的心得體會論文篇八
計算機學(xué)院、軟件學(xué)院級學(xué)生張可(保送為南京航天航空大學(xué)研究生)
若能將痛苦變成快樂,這世上便不再有痛苦。
人們都羨慕象牙塔里的生活豐富多彩,其實置身其中的我們自己知道,終日為學(xué)業(yè)奔波并不是那么令人快樂,特別是一邊翻看著古舊的被蟲蛀過的書籍,一邊為自己的所學(xué)能否用于日后的工作而憂慮的時候。
時下流行空虛和郁悶,是日無聊,我也空虛和郁悶一把。不經(jīng)意間在網(wǎng)上發(fā)現(xiàn)了數(shù)學(xué)建模競賽正在報名中,我想反正也不會影響學(xué)業(yè),或許還會有促進,就決定試一試。也許就是這不經(jīng)意的一次嘗試,改變了我的一生。
我曾懷著對數(shù)學(xué)巨大的熱情在知識的海洋遨游,但枯燥冗繁的計算令我心灰意冷,這些計算能有什么作用?令我耗費巨大精力的學(xué)習(xí),究竟能給我?guī)硎裁?同學(xué)們有的做社會實踐、有的參加學(xué)生會,而我為了學(xué)習(xí)每天往返于自習(xí)室和宿舍,難道就為學(xué)成一個百無一用的書呆子?不!我要抓住這次競賽的機會,在自己的大學(xué)生活中有所展現(xiàn)。
直到暑期培訓(xùn),我才對數(shù)學(xué)建模有了深入的了解。我被其中蘊含的豐富知識傾倒,從不曾想到小小的數(shù)字竟然能將紛繁的各種事物演繹的如此精彩,真是太奇妙了!這一次我是真正的投入了,不再有對未來的憂慮,不再有對枯燥計算的厭惡,不再有迷茫時的躊躇,我像一只看到燈塔的船,飛速駛向目的地。
暑期培訓(xùn)的是一些基礎(chǔ)知識,我又自己學(xué)習(xí)了一個暑假,感覺腦子里像個雜貨鋪,亂亂的理不出頭緒。開學(xué)后我們在老師的帶領(lǐng)下開始了實戰(zhàn)訓(xùn)練,漸漸的,我腦中的知識被“應(yīng)用”這條主線項鏈般的穿了起來,我對自己所學(xué)的知識有了更系統(tǒng)的了解,有的知識聯(lián)系起來想一想,還會有更多的收獲,我對這種學(xué)習(xí)有了更深的興趣,雖然即將參加保送生的復(fù)試,但現(xiàn)在我是欲罷不能了。每天我都忙忙碌碌,上課、自習(xí)、圖書館、微機室,雖然沒空去逛街、買衣服,但我心里依然很高興、很充實。
參加競賽是一個很大的考驗,我是個從來都按時作息的人,熬一夜下來還真是很難受。除了身體的不適,我還得應(yīng)付心理的壓力。隨著復(fù)試的日益臨近,我卻無法復(fù)習(xí),這可是很危險的,萬一…我不敢想,但我知道:自古華山一條路!
呵呵,功夫不負有心人!有投入就有回報。回想以前與枯燥計算打的交道,此次不知復(fù)雜多少倍,然而我卻毫不以為苦。是數(shù)學(xué)建模充實了我的生活,是數(shù)學(xué)建模幫我把痛苦變成了快樂,是數(shù)學(xué)建模讓我的大學(xué)生活煥發(fā)光彩!真心感謝帶我進入數(shù)學(xué)建模神圣殿堂的老師,是您讓我發(fā)現(xiàn)了如此精彩的世界;感謝共同奮戰(zhàn)的隊友們,你們的友誼讓我充滿力量;感謝數(shù)學(xué)建模,你是我生活中新的起點,相信我會有更美好的明天!
數(shù)學(xué)建模的心得體會論文篇九
運籌學(xué)與數(shù)學(xué)建模2門課程聯(lián)系密切,在運籌學(xué)教學(xué)中,適當(dāng)融入數(shù)學(xué)建模思想,能大幅度提高學(xué)生應(yīng)用數(shù)學(xué)解決實際問題的能力.從運籌學(xué)教學(xué)中教學(xué)大綱的改革、教學(xué)環(huán)節(jié)的設(shè)計等方面進行了探索與實踐.教學(xué)實踐表明,將數(shù)學(xué)建模思想融入到運籌學(xué)教學(xué)中能提高課堂教學(xué)的效果,鍛煉學(xué)生的動手實踐能力.
數(shù)學(xué)建模;運籌學(xué);教學(xué)實踐
數(shù)學(xué)建模的心得體會論文篇十
走美杯”是“走進美妙的數(shù)學(xué)花園”的簡稱。
“走進美妙的數(shù)學(xué)花園”中國青少年數(shù)學(xué)論壇是中國少年科學(xué)院創(chuàng)新素質(zhì)教育的品牌活動。20xx年,由國際數(shù)學(xué)家大會組委會、中國數(shù)學(xué)會、中國教育學(xué)會、中國少年科學(xué)院成功舉辦了首屆“走進美妙的數(shù)學(xué)花園”中國少年數(shù)學(xué)論壇,至今已連續(xù)舉辦七屆,全國三十多個城市近三十萬人參與了此項活動,在全國青少年中產(chǎn)生了巨大的影響?!白哌M美妙的數(shù)學(xué)花園”中國青少年數(shù)學(xué)論壇活動是一項面對小學(xué)三年級至初中二年級學(xué)生的綜合性數(shù)學(xué)活動。通過“趣味數(shù)學(xué)解題技能展示”、“數(shù)學(xué)建模小論文答辯”、“數(shù)學(xué)益智游戲”、“團體對抗賽”等一系列內(nèi)容豐富的活動提高廣大中小學(xué)生的數(shù)學(xué)建模意識和數(shù)學(xué)應(yīng)用能力,培養(yǎng)他們一種正確的思想方法。著名數(shù)學(xué)家陳省身先生兩次為同學(xué)們親筆題詞“數(shù)學(xué)好玩”和“走進美妙的數(shù)學(xué)花園”,大大鼓舞了廣大青少年攀登數(shù)學(xué)高峰的熱情和信心,使同學(xué)們自覺地成為學(xué)習(xí)的主人,實現(xiàn)從“學(xué)數(shù)學(xué)”到“用數(shù)學(xué)”過程的轉(zhuǎn)變,從而進一步推動我國數(shù)學(xué)文化的傳播與普及。
“走美”活動已連續(xù)舉辦七屆,近30萬青少年踴躍參與,已取得良好社會效果,并被寫入全國少工委《少先隊輔導(dǎo)員工作綱要(試行)》,向全國少年兒童推廣。
“走美”作為數(shù)學(xué)競賽中的后起之秀,憑借其新穎的考試形式以及較高的競賽難度取得了非常迅速的發(fā)展,近年來在重點中學(xué)選拔中引起了廣泛的關(guān)注??陀^地說“走美”一、二等獎對小升初作用非常大,三等獎作用不大。
1、活動對象
全國各地小學(xué)三年級至初中二年級學(xué)生
2、總成績計算
總成績=筆試成績x70%+數(shù)學(xué)小論文x30%
筆試獲獎率:
一等獎5%,二等獎10%,三等獎15%。
3、筆試時間
每年3月上、中旬。
報名截止時間:每年12月底。
走美杯比賽流程
1、全國組委會下發(fā)通知,各地組委會開始組織工作
2、學(xué)生到當(dāng)?shù)亟M委會報名,填寫《報名表》
3、各地組委會將報名學(xué)生名單全部匯總至全國組委會
4、全國“走進美妙的數(shù)學(xué)花園”趣味數(shù)學(xué)解題技能展示初賽(全國統(tǒng)一筆試)
5、學(xué)生撰寫數(shù)學(xué)建模小論文
6、全國組委會公布初賽獲獎名單并頒發(fā)獲獎證書
7、獲得初賽一、二、三等獎選手有資格報名參加暑期赴英國劍橋大學(xué)數(shù)學(xué)交流活動。
8、各地按照組委會要求提交數(shù)學(xué)建模小論文
9、前各地組委會上報參加全國總論壇學(xué)生名單
10、全國總論壇和表彰活動
數(shù)學(xué)建模的心得體會論文篇十一
摘要:隨著現(xiàn)代社會的發(fā)展,數(shù)學(xué)的廣泛用途已經(jīng)無需質(zhì)疑,他深入到我們生活的方方面面?,F(xiàn)階段,數(shù)學(xué)建模已經(jīng)成為應(yīng)用數(shù)學(xué)知識解決日常問題的一個重要手段。本文通過簡述數(shù)學(xué)建模的方法與過程,以及應(yīng)用數(shù)學(xué)建模解決實際經(jīng)濟問題的應(yīng)用,展現(xiàn)的了數(shù)學(xué)學(xué)習(xí)的重要意義,以及數(shù)學(xué)在經(jīng)濟問題解決中的重要作用。
關(guān)鍵詞:數(shù)學(xué);數(shù)學(xué)建模;經(jīng)濟;應(yīng)用
經(jīng)濟現(xiàn)象具有多變性,隨著經(jīng)濟社會的發(fā)展,國際間貿(mào)易往來的日趨緊密,日常經(jīng)濟形勢受到的影響因素越來越復(fù)雜多變。而日常經(jīng)濟生活中所遇到的經(jīng)濟現(xiàn)象同樣存在著諸多的變化的影響因素。如何應(yīng)對這些難以把控的變量,做好風(fēng)險的預(yù)估、成本的核算、進行最大成本的規(guī)劃,所有這些都可以借助數(shù)學(xué)知識、應(yīng)用數(shù)學(xué)建模為工具進行較為理性的計算,為經(jīng)濟決策、企業(yè)規(guī)劃提供重要的幫助。
一、數(shù)學(xué)建模
數(shù)學(xué)建模,其實就是建立數(shù)學(xué)模型的簡稱,實際上數(shù)學(xué)建??梢苑Q之為解決問題的一種思考方法,借助數(shù)學(xué)工具應(yīng)用已知的定理定義進行合理的運算,推導(dǎo)出一種理性的結(jié)果的過程。數(shù)學(xué)建模是可以聯(lián)系數(shù)學(xué)和外部世界的一個中介和橋梁,在工業(yè)設(shè)計、經(jīng)濟領(lǐng)域、工程建設(shè)等各個方面,運用數(shù)學(xué)的語言和方法進行問題的求解和推導(dǎo),實際上,都是一種數(shù)學(xué)建模的過程。數(shù)學(xué)建模的主要過程可以總結(jié)為如下的框圖形式:實際上,數(shù)學(xué)模型的最終建立是一個反復(fù)驗證、修改、完善的動態(tài)過程,很少能夠通過一次過程就建立起完美適合實際問題的數(shù)學(xué)模型。通過上述過程的多次循環(huán)執(zhí)行:1.模型準(zhǔn)備:分析問題,明確建模的目的,統(tǒng)計各種信息數(shù)據(jù);2.模型假設(shè):根據(jù)建模目的,結(jié)合實際對象的特性,對復(fù)雜問題進行簡化,提取主要因素,提煉精確的數(shù)學(xué)語言;3.模型建立:根據(jù)提煉的主要因素,選擇適當(dāng)?shù)臄?shù)學(xué)工具,建立各個量(變量、常量)間的數(shù)學(xué)關(guān)系,化實際問題為數(shù)學(xué)語言;4.模型求解:對上述數(shù)學(xué)關(guān)系進行求解(包括解方程、圖形分析、邏輯運算等);5.模型分析:將求解結(jié)果與實際問題結(jié)合,綜合分析,找到模型的缺陷和不足,進行數(shù)學(xué)上的優(yōu)化,建立穩(wěn)定模型;6.模型檢驗:將模型得到的結(jié)果與實際情況相驗證,檢驗?zāi)P偷暮侠硇院瓦m用性。
二、經(jīng)濟問題數(shù)學(xué)模型的建立
經(jīng)濟類問題因為其特有的特點,可以按照變量的性質(zhì)分為兩類:概率型和確定型。概率型應(yīng)用于處理具有隨機性情況的模型,可以解決類似風(fēng)險評估、最優(yōu)產(chǎn)量計算、庫存平衡等問題;確定型則可以基于一定的條件與假設(shè),精確的對一種特定情況的結(jié)果做出判斷,如成本核算、損失評估等。對經(jīng)濟問題的建模計算實際上是一個從經(jīng)濟世界進入數(shù)學(xué)世界再回到經(jīng)濟世界的過程。建立經(jīng)濟數(shù)學(xué)模型,需要首先對實際經(jīng)濟問題和情況有一個較為深入的認識,然后通過細致的觀察梳理,抽出最為本質(zhì)的特征性的東西。將原始的復(fù)雜的經(jīng)濟問題簡化提煉為一個較為理想的自然模型,然后基于這個原始模型應(yīng)用數(shù)學(xué)知識建立完整的數(shù)學(xué)經(jīng)濟模型。
三、建模舉例
四、結(jié)語
綜上所述,我們可以看到,數(shù)學(xué)建模在經(jīng)濟中的應(yīng)用可以非常廣泛,對很多的決策和工作都可以提供參考和指導(dǎo),如提高利潤、規(guī)避風(fēng)險、降低成本、節(jié)省開支等各個方面。上文只提供了一個簡單的例子,和初步的介紹,其深入的理念和概念更加值得我們?nèi)ヅΦ膶W(xué)習(xí)和思考。
數(shù)學(xué)建模的心得體會論文篇十二
摘要:數(shù)學(xué)作為很多學(xué)科的計算工具,可以說是現(xiàn)代科學(xué)的基礎(chǔ),要想利用數(shù)學(xué)來解決實際問題,首先要建立相應(yīng)的數(shù)學(xué)模型,本文在數(shù)學(xué)建模思想概念和特點的基礎(chǔ)上,從計算機軟件、實際生活中的應(yīng)用等方面,對其應(yīng)用的發(fā)展進行了分析,最后從分析問題、建立模型、校驗?zāi)P腿齻€階段,對數(shù)學(xué)建模的方法,進行了深入的研究。
關(guān)鍵詞:數(shù)學(xué)建模;思想;應(yīng)用;方法;分析
引言
隨著自然科學(xué)的發(fā)展,利用數(shù)學(xué)等思想來解決實際問題,越來越受到人們的重視,數(shù)學(xué)作為一門歷史悠久的自然科學(xué),是在實際應(yīng)用的基礎(chǔ)上發(fā)展起來,但是隨著理論研究的深入,現(xiàn)在數(shù)學(xué)理論已經(jīng)非常先進,很多理論都無法付諸實踐,在這種背景下,如何利用現(xiàn)有的數(shù)學(xué)理論來解決實際問題,成為了很多專家和學(xué)者研究的問題。通過實際的調(diào)查發(fā)現(xiàn),要想利用數(shù)學(xué)來解決實際問題,首先要建立相應(yīng)的數(shù)學(xué)模型,將實際的問題轉(zhuǎn)化成數(shù)學(xué)符號的表達方式,這樣才能夠通過數(shù)學(xué)計算,來解決一些實際問題,從某種意義上來說,計算機就是由若干個數(shù)學(xué)模型組成的,計算機軟件之所以能夠解決實際問題,就是根據(jù)實際應(yīng)用的需要,建立了一個相應(yīng)的數(shù)學(xué)模型,這樣才能夠讓計算機來解決。
1數(shù)學(xué)建模思想分析
1.1數(shù)學(xué)建模思想的概念
數(shù)學(xué)是一門歷史悠久的自然科學(xué),在古時候,由于實際應(yīng)用的需要,人們就已經(jīng)開始使用數(shù)學(xué)來解決實際問題,但是受到當(dāng)時技術(shù)條件的限制,數(shù)學(xué)理論的水平比較低,只是利用數(shù)學(xué)來進行計數(shù)等,隨著經(jīng)濟和科技水平的提高,尤其是在工業(yè)革命之后,自然科學(xué)得到了極大的發(fā)展,對于利用自然科學(xué)來解決實際問題,也成為了人們研究的重點,在市場經(jīng)濟的推動下,人們將這些理論知識轉(zhuǎn)化成為產(chǎn)品。計算機就是在這種背景下產(chǎn)生的,在數(shù)學(xué)理論的基礎(chǔ)上,將電路的通和不通兩種狀態(tài),與數(shù)學(xué)的二進制相結(jié)合,這樣就能夠讓計算機來處理實際問題,從本質(zhì)上來說,這就是數(shù)學(xué)建模思想的范疇,但是在計算機出現(xiàn)的早期,數(shù)學(xué)建模的理論還沒有形成,隨著計算機軟件技術(shù)的發(fā)展,人們逐漸的意識到數(shù)學(xué)建模的重要性,發(fā)現(xiàn)利用數(shù)學(xué)建模思想,可以解決很多實際的問題,而數(shù)學(xué)建模的概念,就是將遇到的實際問題,利用特定的數(shù)學(xué)符號進行描述,這樣實際問題就轉(zhuǎn)化為數(shù)學(xué)問題,可以利用數(shù)學(xué)的計算方法來解決。
1.2數(shù)學(xué)建模思想的特點
如何解決實際問題,從有人類文明開始,就成為了人們研究的重點,隨著自然科學(xué)的發(fā)展,出現(xiàn)了很多具體的學(xué)科,利用這些不同的學(xué)科,可以解決不同的實際問題,而數(shù)學(xué)就是其中最重要的一門學(xué)科,而且是其他學(xué)科的基礎(chǔ),如物理學(xué)科中,數(shù)學(xué)就是一個計算的工具,由此可以看出數(shù)學(xué)的重要性,進入到信息時代后,計算機得到了普及應(yīng)用,無論是日常生活中還是工作中,計算機都有非常重要的應(yīng)用,而在信息時代,注重的是解決問題的效率。與其他解決問題的方式相比,數(shù)學(xué)建模顯然更加科學(xué),現(xiàn)在數(shù)學(xué)建模已經(jīng)成為了一門獨立的學(xué)科,很多高校中都開設(shè)了這門課程,為了培養(yǎng)學(xué)生們利用數(shù)學(xué)解決實際問題的能力,我國每年都會舉辦全國性的數(shù)學(xué)建模大賽,采用開放式的參賽方式,對學(xué)生們的數(shù)學(xué)建模能力進行考驗,而大賽的題目,很多都是一些實際問題,對于比賽的結(jié)果,每個參賽隊伍的建模方式都有一定的差異,其中選出一個最有效的方式成為冠軍。由此可以看出,對于一個實際的問題,可以建立多個數(shù)學(xué)模型進行解決,但是執(zhí)行的效率具有一定的差異,如有些計算的步驟較少,而有些計算的過程比較簡單,而如何評價一個模型的效率,必須從各個方面進行綜合的考慮。
2數(shù)學(xué)建模思想的應(yīng)用
2.1計算機軟件中數(shù)學(xué)建模思想的應(yīng)用
通過深入的分析可以知道,計算機之所以能夠解決實際問題,很大程度上依賴與計算機軟件,而計算機軟件自身就是一個或幾個數(shù)學(xué)模型,在軟件開發(fā)的過程中,首先要進行需求的分析,這其實就是數(shù)學(xué)建模的第一個環(huán)節(jié),對問題進行分析,在了解到問題之后,就要通過計算機語言,對問題進行描述,而計算機語言是人與計算機進行溝通的語言,最終這些語言都要轉(zhuǎn)化成0和1二進制的方式,這樣計算機才能夠進行具體的計算。由此可以看出,計算機就是依靠數(shù)學(xué)來解決實際問題,而每個計算機軟件,都可以認為是一個數(shù)學(xué)模型,如在早期的計算機程序設(shè)計中,受到當(dāng)時計算機技術(shù)水平的限制,采用的還是低級語言,由于低級語言人們很難理解,因此在程序編寫之前,都會先建立一個數(shù)學(xué)模型,然后將這個模型轉(zhuǎn)化成相應(yīng)的計算機語言,這樣計算機就可以解決實際的問題,由于計算機能夠自行計算的特點,只要輸入相應(yīng)的參數(shù)后,就可以直接得到結(jié)果,不再需要人為的計算。
2.2數(shù)學(xué)建模思想直接解決實際問題
經(jīng)過了多年的發(fā)展,現(xiàn)在數(shù)學(xué)建模自身已經(jīng)非常完善,為了培養(yǎng)我國的數(shù)學(xué)建模人才,從1992年開始,每年我國都會舉辦一屆全國數(shù)學(xué)建模大賽,所有的高校學(xué)生都可以參加,大賽采用了開放性的參賽方式,通常情況下,對于題目設(shè)置的也比較靈活,會有多個題目提供給隊員選擇,學(xué)生可以根據(jù)自己的實際情況,來選擇一個最適合自己的問題。而數(shù)學(xué)建模大賽舉辦的主要目的,就是讓學(xué)生們掌握如何利用數(shù)學(xué)理論,來解決實際問題,在學(xué)習(xí)數(shù)學(xué)知識的過程中,很多學(xué)生會認為,數(shù)學(xué)與實踐的距離很遠,學(xué)習(xí)的都是純理論的知識,學(xué)習(xí)的興趣很低,與一些實踐密切相關(guān)的學(xué)科相比,選擇數(shù)學(xué)專業(yè)的學(xué)生很少,而數(shù)學(xué)建模的出現(xiàn),在很大程度上改善了這種情況,讓人們真正的了解數(shù)學(xué),并利用數(shù)學(xué)來解決復(fù)雜的問題。受到特殊的歷史因素影響,我國自然科學(xué)發(fā)展的起步較晚,在建國后經(jīng)歷了很長一段時間封,閉發(fā)展,與西方發(fā)達國家之間的交流比較少,因此對于數(shù)學(xué)建模等現(xiàn)代科學(xué),研究的時間比較短,導(dǎo)致目前我國很少會利用數(shù)學(xué)建模來解決實際問題,相比之下,發(fā)達國家在很多領(lǐng)域中,經(jīng)常會用到數(shù)學(xué)建模的知識,如在企業(yè)日常運營中,需要進行市場調(diào)研等工作,而對于這些調(diào)研工作的處理,在進行之前都會建立一個數(shù)學(xué)模型,然后按照這個建立的模型來處理。
2.3數(shù)學(xué)建模思想應(yīng)用的發(fā)展
從本質(zhì)上來說,數(shù)學(xué)是在實際應(yīng)用的基礎(chǔ)上,逐漸形成的一門學(xué)科,但是受到當(dāng)時技術(shù)水平的限制,雖然人們已經(jīng)懂得去計算,卻并知道自己使用的是數(shù)學(xué)知識,隨著自然科學(xué)的發(fā)展,對數(shù)學(xué)的應(yīng)用越來越多,而數(shù)學(xué)自身理論的發(fā)展速度很快,遠遠超過了實際應(yīng)用的范圍,同時隨著其他學(xué)科的發(fā)展,數(shù)學(xué)變成了一種計算的工具,因此數(shù)學(xué)應(yīng)用的第一個階段中,主要是作為一種工具。隨著電子計算機的出現(xiàn),對數(shù)學(xué)的應(yīng)用達到了一個極限,人們在數(shù)學(xué)和物理的基礎(chǔ)上,制作出了能夠自動計算的機器,在計算機出現(xiàn)的早期,受到性能和體積上的限制,只能進行一些簡單的數(shù)學(xué)計算,還不能解決實際的問題,但是計算機語言和軟件技術(shù)的.發(fā)展,使其在很多領(lǐng)域得到了應(yīng)用,在計算的基礎(chǔ)上,能夠解決很多問題,而軟件程序的開發(fā),其實就是建立數(shù)學(xué)模型的過程,由此可以看出,數(shù)學(xué)建模思想應(yīng)用的第二階段中,主要是以現(xiàn)代計算機等電子設(shè)備的方式,來解決實際的問題。
3數(shù)學(xué)建模思想應(yīng)用的方法
3.1分析問題
數(shù)學(xué)模型的應(yīng)用都是為了解決實際問題,雖然很多問題都可以通過建模的方式來解決,但是并不是所有的問題,因此在遇到實際問題時,首先要對問題進行具體的分析,首先就是看是否能夠轉(zhuǎn)化成數(shù)學(xué)符號,如果能夠直接用數(shù)學(xué)語言來進行描述,那么就可以容易的建立相應(yīng)的數(shù)學(xué)模型,但是通過實際的調(diào)查發(fā)現(xiàn),隨著經(jīng)濟和科技的發(fā)展,遇到的問題越來越復(fù)雜,其中很多都無法直接用數(shù)學(xué)語言來描述,這就增加了數(shù)學(xué)建模的難度。由此可以看出,分析問題作為數(shù)學(xué)建模的第一個環(huán)節(jié),也是最重要的一個環(huán)節(jié),如果問題分析的不夠具體,那么將無法建立出數(shù)學(xué)模型,同時對數(shù)學(xué)模型的建立也具有非常重要的影響,通過實際的調(diào)查發(fā)現(xiàn),能夠建立高效率的數(shù)學(xué)模型,都是對問題分析的比較徹底,甚至有些獨特的理解,只有這樣才能夠采用建立一個最簡單的模型,而隨著數(shù)學(xué)建模自身的發(fā)展,現(xiàn)在建立模型的過程中,對于一個實際的問題,經(jīng)常需要建立多個模型,這樣通過多個數(shù)學(xué)模型協(xié)同來解決一個問題。
3.2數(shù)學(xué)模型的建立
在分析實際問題后,就要用數(shù)學(xué)符號來描述要解決的問題,這是建立數(shù)學(xué)模型的準(zhǔn)備環(huán)節(jié),要想利用數(shù)學(xué)來解決實際問題,無論采用哪種方式,都要轉(zhuǎn)化成數(shù)學(xué)語言,然后才能夠通過計算的方式解決,而數(shù)學(xué)模型的過程,就是在描述完成后,建立相應(yīng)的數(shù)學(xué)表達式,通常情況下,在分析問題時,都能夠發(fā)現(xiàn)某種內(nèi)在的規(guī)律,這個規(guī)律是數(shù)學(xué)建模的基礎(chǔ)。如果無法找到這個規(guī)律,顯然就不能利用現(xiàn)有的一些數(shù)學(xué)定律,從而建立相應(yīng)的表達式,最后解決相應(yīng)的問題,由此可以看出,分析問題的內(nèi)在規(guī)律,是影響數(shù)學(xué)建模的重要因素,而這個規(guī)律的發(fā)現(xiàn),除了在現(xiàn)有的數(shù)學(xué)知識外,也可以結(jié)合其他學(xué)科的知識,尤其是現(xiàn)在遇到的問題越來越復(fù)雜,對于以往簡單的問題,只需要建立一個簡單的模型即可解決,而現(xiàn)在復(fù)雜的問題,經(jīng)常需要建立多個模型。因此現(xiàn)在數(shù)學(xué)建模的難度越來越大,從近些年全國數(shù)學(xué)建模大賽的題目就可以看出,對于問題的描述越來越模糊,甚至出現(xiàn)了一些歷史上的難題,而不同學(xué)生根據(jù)自己的理解,建立的模型也具有很大的差異,其中一些模型非常新穎,為實際問題的解決提供了良好的參考,目前我國對數(shù)學(xué)建模的研究有限,尤其是與西方發(fā)達國家相比,實踐的機會還比較少。
3.3數(shù)學(xué)模型的校驗
在數(shù)學(xué)模型建立之后,對于這個模型是否能夠解決實際問題,具體的執(zhí)行效率如何,都需要進行校驗,因此檢驗是數(shù)學(xué)模型建立最后的一個環(huán)節(jié),也是非常重要的一個步驟,通常情況下,經(jīng)過校驗都能夠發(fā)現(xiàn)模型中存在的一些問題,從而進行完善,這樣才能夠保證嚴(yán)謹性,在實際校驗的過程中,要對數(shù)學(xué)模型的每個部分進行驗證,通過輸入特定的數(shù)據(jù),看得到的結(jié)果是否符合理論值,如果沒有問題,就說明該模型可以解決實際問題。除了檢驗?zāi)P偷臏?zhǔn)確外,校驗還有另外一個作用,就是優(yōu)化模型,在選定數(shù)據(jù)后,能夠看到數(shù)學(xué)模型計算的整個過程,這時就可以對具體的細節(jié)進行優(yōu)化,如哪部分可以減少計算的步驟,或者簡化計算的方式等,這樣可以使整個模型更加科學(xué)、合理,由此可以看出,校驗工作對于數(shù)學(xué)模型的建立,具有非常重要的意義。
4結(jié)語
通過全文的分析可以知道,對于數(shù)學(xué)理論的應(yīng)用,從很久之前就已經(jīng)開始了,但是數(shù)學(xué)建模思想的出現(xiàn),卻是隨著計算機技術(shù)的發(fā)展,逐漸形成的一門學(xué)科,電子計算機的出現(xiàn),在很大程度上改變了處理事情的方式,利用計算機軟件,只要輸入相應(yīng)的參數(shù),就可以直接得到結(jié)果,這正是數(shù)學(xué)模型完成的任務(wù),只是計算機的出現(xiàn),省略了中間的計算過程,因此計算機軟件的方式,是數(shù)學(xué)建模思想最好的應(yīng)用方法,要想解決不同的問題,只要建立不同的模型,然后編寫相應(yīng)的程序。
數(shù)學(xué)建模的心得體會論文篇十三
計算機學(xué)院、軟件學(xué)院級學(xué)生范娜(保送為華東師大研究生)
9月的“高教杯”全國大學(xué)生數(shù)學(xué)建模競賽已經(jīng)過去一周多了,但是在我心中,計算機學(xué)院、軟件學(xué)院三樓機房的燈光依然明亮,與隊友三天三夜一起奮戰(zhàn)的記憶依然清晰。
大二下學(xué)期,我院開設(shè)了《數(shù)學(xué)建模》選修課,由于每周只有一大節(jié)《數(shù)學(xué)建?!氛n程,再加上大二專業(yè)主干課程很多,任務(wù)重,除了老師課上的講解,平日我很少有時間去溫習(xí)和預(yù)習(xí),更別說去結(jié)合實例進行建模了。那時的數(shù)學(xué)建模對于我來說就是一項很重要的任務(wù),想要參加但是又不知道如何去完成。但是我認為數(shù)學(xué)建模是要求把模型用在實例中進行求解,最重要的就是創(chuàng)建模型的思路以及用語言去描述建模的過程和結(jié)果。
暑假快要來臨時,學(xué)院進行參賽隊員的選拔。參賽的選手由老師選拔和筆試選拔兩部分組成。我是在筆試中被選拔出來的,現(xiàn)在想想,可能差一點就失去了參加數(shù)學(xué)建模的資格。我認為選拔還是參照筆試的成績確定人選,從全方位考察學(xué)生的綜合素質(zhì)以及寫作素質(zhì),這樣才能更好的遴選出參賽選手,真正的做到給有創(chuàng)新思維的選手機會。
隨后遇到的問題就是如何組隊。我們組是由兩個計算機專業(yè)和一個通信工程專業(yè)的學(xué)生組成,現(xiàn)在看來我們的組合有一定的偶然性,但更多的是一種合理性。首先,我們組中有兩位女生,都擅長文字處理工作。應(yīng)該明確的是,數(shù)學(xué)建模比賽最后遞交給組委會的是一篇論文,也就是三天三夜的成果是以文字的形式出現(xiàn)在專家面前,文章中的文字排版、遣詞造句至關(guān)重要。女生的特點之一就是細心,我們平時很注意收集專業(yè)的描述性詞匯,因此論文詞匯豐富、生動;第二,我們?nèi)齻€的思維出發(fā)點不一樣,各有擅長的數(shù)學(xué)模型和知識能力,這就使我們在分別思考后有更多的內(nèi)容可以討論,增加建模的創(chuàng)新點,彌補彼此的不足;第三,我們?nèi)齻€的團隊意識很強,彼此相互鼓勵相互扶持。
同時,我還發(fā)現(xiàn)這樣一個現(xiàn)象。由于時間緊張的關(guān)系,我們在培訓(xùn)的時候還沒有完整的做過一道題目。也就是說在賽前大家主要進行理論上的準(zhǔn)備,很少進行實踐,這樣就不能預(yù)見和發(fā)現(xiàn)小組在未來要進行的三天三夜中,究竟會遇到什么問題。針對這樣的現(xiàn)象,我們小組用了三天的時間來進行比賽的模擬,每天做一道題。我們嚴(yán)格按照比賽的標(biāo)準(zhǔn)來要求自己:早上開始審題,組員分別思考一小時進行個人建模,其次三人一起討論,然后編寫論文,盡量把論文詳細的寫出來一部分直到一天結(jié)束。在模擬的過程中我們遇到很多的問題,比如時常會忘記討論的初步模型和一些思路,因此我們在真正比賽的時候會對小組的的討論進行錄音,這樣可以隨時查看建模的思路。像這樣的細節(jié)問題只能是在模擬中才能發(fā)現(xiàn)的,因此我認為在賽前進行比賽的模擬也是十分重要的。
接下來的三天三夜讓我很難忘,我也有很多的感想。數(shù)學(xué)建模不是一般意義的解題,它允許你使用任何已有的東西,包括別人的'研究成果、圖書資料、網(wǎng)絡(luò)資源等等,但抄襲是不允許的。這些東西都需要證明,但要結(jié)合實例進行求解。在賽前word文檔要熟練掌握,如果熟練程度不夠,那么在建模比賽中,在整理文檔這一項上就會浪費大量的時間與精力。光有錄入速度是不夠的,還要注意符號的書寫,頁碼的插入,公式編輯器的熟練運用。還要有熱情,要有認真、嚴(yán)謹?shù)目茖W(xué)精神。當(dāng)我們遇到我們不會的問題,需要用到新的知識時,我們會毫不猶豫的去學(xué)習(xí)這些知識,熱情使我們不懼怕任何困難。
總之,這次建模競賽不論是在知識面上還是在動手能力上都是對我的一種挑戰(zhàn),盡管一路走來十分辛苦,但是卻使我多了一種充實自我的經(jīng)歷,多了一份創(chuàng)造的經(jīng)驗,多了一份坦然面對的自信,從而在前進的道路上走的更順暢。在這個過程中,指導(dǎo)老師和我們一起度過炎炎夏日,也陪我們熬夜修改論文,非常辛苦,也向給予我們指導(dǎo)的各位老師和建模過程中關(guān)心我們的院領(lǐng)導(dǎo)表示衷心的感謝!
數(shù)學(xué)建模的心得體會論文篇一
數(shù)學(xué)建模是當(dāng)今社會中越來越受重視的一門學(xué)科,通過數(shù)學(xué)方法解決實際問題,對于培養(yǎng)學(xué)生的邏輯思維、創(chuàng)新能力和實踐能力起著重要的作用。在我參與數(shù)學(xué)建模的過程中,我深刻地體會到,數(shù)學(xué)建模不僅需要良好的數(shù)學(xué)基礎(chǔ),還需要堅持、努力和合作的精神,以及對實際問題的敏感性和獨立思考的能力。
首先,數(shù)學(xué)建模需要良好的數(shù)學(xué)基礎(chǔ)。在解決實際問題的過程中,需要運用到多種數(shù)學(xué)方法和模型,如概率統(tǒng)計、線性規(guī)劃、微分方程等。而這些都要求我們具備扎實的數(shù)學(xué)基礎(chǔ)。因此,在參與數(shù)學(xué)建模之前,我們要加強對數(shù)學(xué)基礎(chǔ)知識的學(xué)習(xí),同時要注重數(shù)學(xué)的實際應(yīng)用,培養(yǎng)數(shù)學(xué)思維和解決實際問題的能力。
其次,數(shù)學(xué)建模需要堅持、努力和合作的精神。數(shù)學(xué)建模不是一蹴而就的過程,需要耐心和毅力去面對問題和困難。在實際操作中,往往會遇到數(shù)據(jù)收集不全、模型構(gòu)建不準(zhǔn)確等問題,這時候我們要保持積極樂觀的心態(tài),不斷嘗試和改進。同時,在團隊合作中,我們要尊重他人意見,共同努力,形成優(yōu)勢互補的合作關(guān)系,才能最終完成一個優(yōu)秀的數(shù)學(xué)模型。
此外,數(shù)學(xué)建模需要對實際問題的敏感性和獨立思考的能力。在解決實際問題時,我們要對問題本身有敏銳的觸覺,能夠發(fā)現(xiàn)問題背后的本質(zhì)和規(guī)律。同時,我們也要具備獨立思考的能力,不僅僅依靠他人的意見和經(jīng)驗,而是要從自己的角度去分析和解決問題。只有這樣才能在數(shù)學(xué)建模中取得令人滿意的結(jié)果。
最后,數(shù)學(xué)建模是一個不斷學(xué)習(xí)和提高的過程。在每一次實踐中,我們都可以從中汲取經(jīng)驗,了解到不同領(lǐng)域、不同問題的特點和要點。同時,我們也要關(guān)注前沿的數(shù)學(xué)建模成果和方法,及時補充自己的知識和技能。通過不斷學(xué)習(xí)和提高,我們才能在數(shù)學(xué)建模的道路上越走越遠,取得更出色的成就。
總之,數(shù)學(xué)建模是一門需要我們付出努力和智慧的學(xué)科。通過我自己的經(jīng)歷,我深刻地認識到數(shù)學(xué)建模不僅僅是一種學(xué)習(xí)方法,更是一種鍛煉自己解決實際問題能力的機會。在今后的學(xué)習(xí)和實踐中,我將繼續(xù)努力,加強自己的數(shù)學(xué)基礎(chǔ),培養(yǎng)堅持、努力和合作的精神,提高對實際問題的敏感性和獨立思考的能力,不斷學(xué)習(xí)和提高,以更好地應(yīng)對數(shù)學(xué)建模所帶來的挑戰(zhàn)。
數(shù)學(xué)建模的心得體會論文篇二
讀數(shù)學(xué)建模是一項需要較高能力的學(xué)問,需要具備豐富的數(shù)學(xué)知識和邏輯思維能力。在我學(xué)習(xí)的過程中,我深刻認識到了數(shù)學(xué)建模的重要性以及在實際工作和生活中的應(yīng)用價值。以下是我的讀數(shù)學(xué)建模的心得體會。
第一段:認識數(shù)學(xué)建模
作為一個計算機科班出身的學(xué)生,我很早就開始了接觸數(shù)學(xué)建模。但在一開始的時候,我并沒有真正理解什么是數(shù)學(xué)建模。直到在大學(xué)的選修課中系統(tǒng)地學(xué)習(xí)了一門《數(shù)學(xué)建模及應(yīng)用》課程后,我才對數(shù)學(xué)建模有了更深入的認知和理解。
第二段:理解“建?!?BR> “建?!钡暮诵囊馑际菍?fù)雜的實際問題轉(zhuǎn)化為數(shù)學(xué)模型,然后用數(shù)學(xué)語言描述該問題并進行數(shù)學(xué)分析。在實際的工作和生活中,我們要面對、研究的諸如市場營銷、物流運輸、氣象環(huán)境、圖像視頻等不同領(lǐng)域的問題都可以通過“建?!钡姆绞竭M行求解。
第三段:掌握數(shù)學(xué)和編程技能
數(shù)學(xué)建模需要掌握扎實的數(shù)學(xué)功底,同時也要在編程技能上有所涉獵。這是因為數(shù)學(xué)建模過程中需要運用到很多數(shù)據(jù)分類和篩選、數(shù)據(jù)可視化、計算機程序的實現(xiàn)等技能。只有將數(shù)學(xué)和編程技能完美結(jié)合,才能為數(shù)學(xué)建模提供最有利的條件。
第四段:關(guān)注實際問題
在理論知識的積累與技術(shù)能力的提升之外,數(shù)學(xué)建模中還需要關(guān)注實際問題。我們不能將理論和技術(shù)與實際問題劃分開來。可行的“建?!眴栴}是源于實際問題,因此,在發(fā)現(xiàn)實際問題的基礎(chǔ)上,我們才能夠有更清晰的目標(biāo)和向?qū)崿F(xiàn)目標(biāo)的循序漸進的步驟。
第五段:學(xué)習(xí)和交流
數(shù)學(xué)建模需要廣泛學(xué)習(xí)和交流。我們要閱讀相關(guān)領(lǐng)域的探討和論文,獲取更多的行業(yè)知識。同時,我們還要積極參加學(xué)術(shù)會議和交流活動,與其他學(xué)者和專家協(xié)同工作和深度探討,交換經(jīng)驗和知識,并不斷提升自己的建模能力。
在讀數(shù)學(xué)建模的過程中,我也留下了許多經(jīng)典案例和優(yōu)秀論文,堅持探索科學(xué)問題的本質(zhì),發(fā)掘應(yīng)用數(shù)學(xué)的潛力。數(shù)學(xué)建模是一個學(xué)習(xí)與實踐并行、動態(tài)更新的過程,它將不斷影響我們思考問題和解決問題的方式,讓我們更好地懂得數(shù)學(xué)對人類社會發(fā)展的重要性。
數(shù)學(xué)建模的心得體會論文篇三
數(shù)學(xué)建模是利用數(shù)學(xué)方法解決實際問題的一種實踐應(yīng)用。即通過抽象、簡化、假設(shè)、引進變量等處理過程后,將實際問題用數(shù)學(xué)方式來表達,建立起數(shù)學(xué)模型,然后運用先進的數(shù)學(xué)方法和計算機技術(shù)進行求解。數(shù)學(xué)建模將各種知識綜合應(yīng)用于解決實際問題中,是培養(yǎng)和提高學(xué)生應(yīng)用所學(xué)知識分析問題、解決問題的能力的必備手段之一。
數(shù)學(xué)建模是在上世紀(jì)六七十年代進入一些西方國家大學(xué)的,我國的幾所大學(xué)也在80年代初將數(shù)學(xué)建模引入課堂。經(jīng)過30多年的發(fā)展,現(xiàn)在,絕大多數(shù)本科院校和許多專科學(xué)校都開設(shè)了各種形式的數(shù)學(xué)建模課程和講座,為培養(yǎng)學(xué)生利用數(shù)學(xué)方法分析、解決實際問題的能力開辟了一條有效的途徑。
大學(xué)生數(shù)學(xué)建模競賽最早是1985年在美國出現(xiàn)的,1989年在幾位從事數(shù)學(xué)建模教育的教師的組織和推動下,我國幾所大學(xué)的學(xué)生開始參加美國的競賽,而且積極性越來越高,近幾年參賽校數(shù)、隊數(shù)占到相當(dāng)大的比例。可以說,數(shù)學(xué)建模競賽是在美國誕生、在中國開花、結(jié)果的。
全國大學(xué)生數(shù)學(xué)建模競賽已成為全國高校規(guī)模最大的基礎(chǔ)性學(xué)科競賽,創(chuàng)辦于1992年,每年一屆,目前也是世界上規(guī)模最大的數(shù)學(xué)建模競賽。20xx年,來自全國33個省/市/自治區(qū)(包括香港和澳門特區(qū))及新加坡、美國的1338所院校、25347個隊(其中本科組22233隊、??平M3114隊)、7萬多名大學(xué)生報名參加本項競賽。
數(shù)學(xué)建模是一種數(shù)學(xué)的思想方法,是運用數(shù)學(xué)的語言和方法,通過抽象、簡化建立能近似刻畫并“解決”實際問題的一種強有力的數(shù)學(xué)手段。其過程主要包括以下六個階段:
1.模型準(zhǔn)備:了解問題的實際背景,明確其實際意義,掌握對象的各種信息。用數(shù)學(xué)語言來描述問題。
2.模型假設(shè):根據(jù)實際對象的特征和建模的目的,對問題進行必要的簡化,并用精確的語言提出一些恰當(dāng)?shù)募僭O(shè)。
3.模型建立:在假設(shè)的基礎(chǔ)上,利用適當(dāng)?shù)臄?shù)學(xué)工具來刻劃各變量之間的數(shù)學(xué)關(guān)系,建立相應(yīng)的數(shù)學(xué)結(jié)構(gòu)。
4.模型求解:利用獲取的數(shù)據(jù)資料,對模型的所有參數(shù)做出計算。
5.模型分析:對所得的結(jié)果進行數(shù)學(xué)上的分析。
6.模型檢驗:將模型分析結(jié)果與實際情形進行比較,以此來驗證模型的準(zhǔn)確性、合理性和適用性。如果模型與實際較吻合,則要對計算結(jié)果給出其實際含義,并進行解釋。如果模型與實際吻合較差,則應(yīng)該修改假設(shè),再次重復(fù)建模過程。
7.模型應(yīng)用:應(yīng)用方式因問題的性質(zhì)和建模的目的而異。
數(shù)學(xué)建模的心得體會論文篇四
通過一個月的集訓(xùn),我受益匪淺。我進一步的認識到數(shù)學(xué)建模的實質(zhì)和對參賽隊員的要求。數(shù)學(xué)建模就是培養(yǎng)學(xué)生運用數(shù)學(xué)知識解決實際問題的能力。它要求參賽隊員有較強的創(chuàng)新精神,有較大的'靈活性和隨機應(yīng)變能力,要求參賽隊員之間有良好的團隊精神和相互協(xié)作意識。在一個月里,我們學(xué)了許多知識放方法,可以說數(shù)學(xué)建模需要的知識我們都了解了一點,關(guān)鍵在于如何應(yīng)用這些知識。這種即學(xué)即用的能力是我們以后學(xué)習(xí)、工作所必須的能力。在此我對建模是出現(xiàn)的一些現(xiàn)象發(fā)表一些看法。
隨著信息的高速化,我們很容易找到和建模有關(guān)的資料,這對我們理解題目意思和促發(fā)新思路、新想法是有幫助的。但是有的集訓(xùn)小組或集訓(xùn)隊員他們建模完全依靠找資料,建出來的模型就是幾本參考書的綜合,他們所用的方法完全是別人研究過的東西,連一點改進也沒有。如果這樣的話,數(shù)學(xué)建模就失去了意義。我始終堅持一個觀點:數(shù)學(xué)建模最重要的是創(chuàng)新。無論是你創(chuàng)造一種新方法還是創(chuàng)造性的運用一種方法,還是改進別人的方法都是很重要的。沒有創(chuàng)新,模型就失去了靈魂;沒有創(chuàng)新,模型就不是你的模型。
我們隊配合不是很理想。主要是有個隊員他總認為自己是正確的,別人找到的資料不如他好,別人提出的觀點、思想思想無論正確與否,他總是會反對一下。他總是十分注重小的方面,不從大局考慮。由于這些原因,我們建的模型總是不好。
數(shù)學(xué)建模的心得體會論文篇五
通過一個月的集訓(xùn),我受益匪淺。我進一步的認識到數(shù)學(xué)建模的實質(zhì)和對參賽隊員的要求。數(shù)學(xué)建模就是培養(yǎng)學(xué)生運用數(shù)學(xué)知識解決實際問題的能力。它要求參賽隊員有較強的創(chuàng)新精神,有較大的靈活性和隨機應(yīng)變能力,要求參賽隊員之間有良好的團隊精神和相互協(xié)作意識。在一個月里,我們學(xué)了許多知識放方法,可以說數(shù)學(xué)建模需要的`知識我們都了解了一點,關(guān)鍵在于如何應(yīng)用這些知識。這種即學(xué)即用的能力是我們以后學(xué)習(xí)、工作所必須的能力。在此我對建模是出現(xiàn)的一些現(xiàn)象發(fā)表一些看法。
隨著信息的高速化,我們很容易找到和建模有關(guān)的資料,這對我們理解題目意思和促發(fā)新思路、新想法是有幫助的。但是有的集訓(xùn)小組或集訓(xùn)隊員他們建模完全依靠找資料,建出來的模型就是幾本參考書的綜合,他們所用的方法完全是別人研究過的東西,連一點改進也沒有。如果這樣的話,數(shù)學(xué)建模就失去了意義。我始終堅持一個觀點:數(shù)學(xué)建模最重要的是創(chuàng)新。無論是你創(chuàng)造一種新方法還是創(chuàng)造性的運用一種方法,還是改進別人的方法都是很重要的。沒有創(chuàng)新,模型就失去了靈魂;沒有創(chuàng)新,模型就不是你的模型。
我們隊配合不是很理想。主要是有個隊員他總認為自己是正確的,別人找到的資料不如他好,別人提出的觀點、思想思想無論正確與否,他總是會反對一下。他總是十分注重小的方面,不從大局考慮。由于這些原因,我們建的模型總是不好。
數(shù)學(xué)建模的心得體會論文篇六
數(shù)學(xué)建模作為一種綜合性的能力與技術(shù),近年來深受大眾的關(guān)注與推崇。作為一名數(shù)學(xué)愛好者,我對數(shù)學(xué)建模這個領(lǐng)域也產(chǎn)生了濃厚的興趣。在閱讀關(guān)于數(shù)學(xué)建模的相關(guān)書籍、學(xué)習(xí)課程與參加各類競賽的過程中,我深刻地領(lǐng)悟到了數(shù)學(xué)建模的種種魅力,也匯總了一些讀數(shù)學(xué)建模的心得與體會。
第二段:學(xué)習(xí)經(jīng)驗
為了更好地理解數(shù)學(xué)建模,我通過網(wǎng)上課程等不斷學(xué)習(xí)。由于數(shù)學(xué)建模這個領(lǐng)域廣泛涉及到的知識面十分廣泛,所以學(xué)習(xí)的內(nèi)容也十分繁瑣。在學(xué)習(xí)的過程中,我力求將各個專業(yè)領(lǐng)域的知識以及各種方法融合在一起,取長補短,做到融會貫通。同時,也需要不斷地與比賽、挑戰(zhàn)賽等交流中,去檢驗自己的知識水平,并不斷地提高自己的學(xué)習(xí)能力。
第三段:實踐體會
學(xué)習(xí)歸來,我開始了自己的實踐之旅。在應(yīng)對數(shù)學(xué)建模的挑戰(zhàn)的過程中,我逐漸意識到模型的準(zhǔn)確度與應(yīng)用性是非常重要的。想要達到這點,必須不斷地加強數(shù)學(xué)知識的學(xué)習(xí),提高自己的實際操作能力。另外,更加注重分析真實場景與數(shù)據(jù),了解不同數(shù)據(jù)之間的關(guān)系與差異,并運用不同的數(shù)據(jù)分析方法,以保證模型的精度與可靠性。
第四段:對未來的研究目標(biāo)
雖然我在數(shù)學(xué)建模的學(xué)習(xí)與實踐中有了一定的收獲,但我深知自己仍是一個初學(xué)者,未來的路還有很長。因此,我計劃在未來的學(xué)習(xí)與實踐中,更加注重對數(shù)學(xué)建模理論的深度探究,從更加基礎(chǔ)的角度出發(fā)去分析模型,從而更好地將理論運用于實踐。另外,我也將繼續(xù)參加各種數(shù)學(xué)建模競賽,不斷挑戰(zhàn)自己,提高自己的技能水平。
第五段:總結(jié)
回首自己的數(shù)學(xué)建模之路,我深深體會到數(shù)學(xué)建模的魅力與難度。在實踐過程中,我不斷地學(xué)習(xí)、嘗試與挑戰(zhàn)自己,才有了今天的成果。未來,我會繼續(xù)深入學(xué)習(xí)、實踐,不斷提升自己,讓數(shù)學(xué)建模這個寶藏般的領(lǐng)域,能夠不斷地被挖掘、發(fā)現(xiàn)鏈梢,為人類社會提供更多的發(fā)展動力。
數(shù)學(xué)建模的心得體會論文篇七
數(shù)學(xué)建模是一門應(yīng)用數(shù)學(xué)學(xué)科,通過建立數(shù)學(xué)模型解決實際問題。作為一名數(shù)學(xué)建模愛好者,我在過去的學(xué)習(xí)和實踐中積累了一些心得體會。接下來,我將通過以下五個方面來分享我在數(shù)學(xué)建模中的心得體會。
首先,數(shù)學(xué)建模讓我意識到數(shù)學(xué)不僅僅是解題的工具。在學(xué)校中,我們通常把數(shù)學(xué)當(dāng)作一門應(yīng)付考試的科目,很難體會到它的實際應(yīng)用。然而,通過參與數(shù)學(xué)建模,我發(fā)現(xiàn)數(shù)學(xué)可以被應(yīng)用于解決現(xiàn)實問題,而不僅僅是在書本中運用。數(shù)學(xué)建模讓我明白數(shù)學(xué)的本質(zhì)是為了解決問題,培養(yǎng)了我從多個角度思考問題的能力。
其次,數(shù)學(xué)建模培養(yǎng)了我的團隊合作精神。在數(shù)學(xué)建模中,我們往往需要和團隊成員一起合作解決問題。每個團隊成員都有各自的思路和見解,我們需要互相交流和協(xié)作,才能最終得出一個完整的解決方案。通過和團隊成員的討論和合作,我學(xué)會了傾聽他人的觀點和取長補短,并且意識到團隊協(xié)作的重要性。
第三,數(shù)學(xué)建模讓我注重實際問題的建模過程。在過去,在解決數(shù)學(xué)問題時,我常常只注重最終的答案,而忽視了問題的建模過程。然而,通過數(shù)學(xué)建模的實踐,我明白了問題的建模過程對于最終結(jié)果的影響。合適的模型選擇以及準(zhǔn)確的參數(shù)設(shè)定是確保結(jié)果有效的重要因素。因此,我學(xué)會了在解決問題時注重建模過程,而不僅僅關(guān)注結(jié)果。
第四,數(shù)學(xué)建模培養(yǎng)了我的邏輯思維能力。在數(shù)學(xué)建模中,我們需要將實際問題抽象成數(shù)學(xué)模型,再通過建模思路解決問題。這要求我們在問題分析和建模過程中具備較強的邏輯思維能力。通過數(shù)學(xué)建模,我的邏輯思維能力得到了訓(xùn)練和提高,我學(xué)會了提煉問題中的關(guān)鍵因素,并能夠合理組織思路,從而解決問題。
最后,數(shù)學(xué)建模提高了我解決復(fù)雜問題的能力?,F(xiàn)實生活中的問題往往存在多種因素的影響,這使得問題變得復(fù)雜和困難。通過數(shù)學(xué)建模,我學(xué)會了分析復(fù)雜問題,并將其拆解成較為簡單的子問題。然后,我們再逐步解決這些子問題,并最終得到整個問題的解決方案。這種解決問題的方法也讓我在其他領(lǐng)域遇到復(fù)雜問題時能夠更加從容地應(yīng)對。
總結(jié)起來,數(shù)學(xué)建模是一門能夠培養(yǎng)多方面能力的學(xué)科。通過參與數(shù)學(xué)建模,我意識到數(shù)學(xué)在實際生活中的應(yīng)用,提高了團隊合作能力,注重問題建模過程,鍛煉了邏輯思維能力,同時也提高了解決復(fù)雜問題的能力。我相信,在今后的學(xué)習(xí)和工作中,這些心得體會將對我產(chǎn)生積極的影響。
數(shù)學(xué)建模的心得體會論文篇八
計算機學(xué)院、軟件學(xué)院級學(xué)生張可(保送為南京航天航空大學(xué)研究生)
若能將痛苦變成快樂,這世上便不再有痛苦。
人們都羨慕象牙塔里的生活豐富多彩,其實置身其中的我們自己知道,終日為學(xué)業(yè)奔波并不是那么令人快樂,特別是一邊翻看著古舊的被蟲蛀過的書籍,一邊為自己的所學(xué)能否用于日后的工作而憂慮的時候。
時下流行空虛和郁悶,是日無聊,我也空虛和郁悶一把。不經(jīng)意間在網(wǎng)上發(fā)現(xiàn)了數(shù)學(xué)建模競賽正在報名中,我想反正也不會影響學(xué)業(yè),或許還會有促進,就決定試一試。也許就是這不經(jīng)意的一次嘗試,改變了我的一生。
我曾懷著對數(shù)學(xué)巨大的熱情在知識的海洋遨游,但枯燥冗繁的計算令我心灰意冷,這些計算能有什么作用?令我耗費巨大精力的學(xué)習(xí),究竟能給我?guī)硎裁?同學(xué)們有的做社會實踐、有的參加學(xué)生會,而我為了學(xué)習(xí)每天往返于自習(xí)室和宿舍,難道就為學(xué)成一個百無一用的書呆子?不!我要抓住這次競賽的機會,在自己的大學(xué)生活中有所展現(xiàn)。
直到暑期培訓(xùn),我才對數(shù)學(xué)建模有了深入的了解。我被其中蘊含的豐富知識傾倒,從不曾想到小小的數(shù)字竟然能將紛繁的各種事物演繹的如此精彩,真是太奇妙了!這一次我是真正的投入了,不再有對未來的憂慮,不再有對枯燥計算的厭惡,不再有迷茫時的躊躇,我像一只看到燈塔的船,飛速駛向目的地。
暑期培訓(xùn)的是一些基礎(chǔ)知識,我又自己學(xué)習(xí)了一個暑假,感覺腦子里像個雜貨鋪,亂亂的理不出頭緒。開學(xué)后我們在老師的帶領(lǐng)下開始了實戰(zhàn)訓(xùn)練,漸漸的,我腦中的知識被“應(yīng)用”這條主線項鏈般的穿了起來,我對自己所學(xué)的知識有了更系統(tǒng)的了解,有的知識聯(lián)系起來想一想,還會有更多的收獲,我對這種學(xué)習(xí)有了更深的興趣,雖然即將參加保送生的復(fù)試,但現(xiàn)在我是欲罷不能了。每天我都忙忙碌碌,上課、自習(xí)、圖書館、微機室,雖然沒空去逛街、買衣服,但我心里依然很高興、很充實。
參加競賽是一個很大的考驗,我是個從來都按時作息的人,熬一夜下來還真是很難受。除了身體的不適,我還得應(yīng)付心理的壓力。隨著復(fù)試的日益臨近,我卻無法復(fù)習(xí),這可是很危險的,萬一…我不敢想,但我知道:自古華山一條路!
呵呵,功夫不負有心人!有投入就有回報。回想以前與枯燥計算打的交道,此次不知復(fù)雜多少倍,然而我卻毫不以為苦。是數(shù)學(xué)建模充實了我的生活,是數(shù)學(xué)建模幫我把痛苦變成了快樂,是數(shù)學(xué)建模讓我的大學(xué)生活煥發(fā)光彩!真心感謝帶我進入數(shù)學(xué)建模神圣殿堂的老師,是您讓我發(fā)現(xiàn)了如此精彩的世界;感謝共同奮戰(zhàn)的隊友們,你們的友誼讓我充滿力量;感謝數(shù)學(xué)建模,你是我生活中新的起點,相信我會有更美好的明天!
數(shù)學(xué)建模的心得體會論文篇九
運籌學(xué)與數(shù)學(xué)建模2門課程聯(lián)系密切,在運籌學(xué)教學(xué)中,適當(dāng)融入數(shù)學(xué)建模思想,能大幅度提高學(xué)生應(yīng)用數(shù)學(xué)解決實際問題的能力.從運籌學(xué)教學(xué)中教學(xué)大綱的改革、教學(xué)環(huán)節(jié)的設(shè)計等方面進行了探索與實踐.教學(xué)實踐表明,將數(shù)學(xué)建模思想融入到運籌學(xué)教學(xué)中能提高課堂教學(xué)的效果,鍛煉學(xué)生的動手實踐能力.
數(shù)學(xué)建模;運籌學(xué);教學(xué)實踐
數(shù)學(xué)建模的心得體會論文篇十
走美杯”是“走進美妙的數(shù)學(xué)花園”的簡稱。
“走進美妙的數(shù)學(xué)花園”中國青少年數(shù)學(xué)論壇是中國少年科學(xué)院創(chuàng)新素質(zhì)教育的品牌活動。20xx年,由國際數(shù)學(xué)家大會組委會、中國數(shù)學(xué)會、中國教育學(xué)會、中國少年科學(xué)院成功舉辦了首屆“走進美妙的數(shù)學(xué)花園”中國少年數(shù)學(xué)論壇,至今已連續(xù)舉辦七屆,全國三十多個城市近三十萬人參與了此項活動,在全國青少年中產(chǎn)生了巨大的影響?!白哌M美妙的數(shù)學(xué)花園”中國青少年數(shù)學(xué)論壇活動是一項面對小學(xué)三年級至初中二年級學(xué)生的綜合性數(shù)學(xué)活動。通過“趣味數(shù)學(xué)解題技能展示”、“數(shù)學(xué)建模小論文答辯”、“數(shù)學(xué)益智游戲”、“團體對抗賽”等一系列內(nèi)容豐富的活動提高廣大中小學(xué)生的數(shù)學(xué)建模意識和數(shù)學(xué)應(yīng)用能力,培養(yǎng)他們一種正確的思想方法。著名數(shù)學(xué)家陳省身先生兩次為同學(xué)們親筆題詞“數(shù)學(xué)好玩”和“走進美妙的數(shù)學(xué)花園”,大大鼓舞了廣大青少年攀登數(shù)學(xué)高峰的熱情和信心,使同學(xué)們自覺地成為學(xué)習(xí)的主人,實現(xiàn)從“學(xué)數(shù)學(xué)”到“用數(shù)學(xué)”過程的轉(zhuǎn)變,從而進一步推動我國數(shù)學(xué)文化的傳播與普及。
“走美”活動已連續(xù)舉辦七屆,近30萬青少年踴躍參與,已取得良好社會效果,并被寫入全國少工委《少先隊輔導(dǎo)員工作綱要(試行)》,向全國少年兒童推廣。
“走美”作為數(shù)學(xué)競賽中的后起之秀,憑借其新穎的考試形式以及較高的競賽難度取得了非常迅速的發(fā)展,近年來在重點中學(xué)選拔中引起了廣泛的關(guān)注??陀^地說“走美”一、二等獎對小升初作用非常大,三等獎作用不大。
1、活動對象
全國各地小學(xué)三年級至初中二年級學(xué)生
2、總成績計算
總成績=筆試成績x70%+數(shù)學(xué)小論文x30%
筆試獲獎率:
一等獎5%,二等獎10%,三等獎15%。
3、筆試時間
每年3月上、中旬。
報名截止時間:每年12月底。
走美杯比賽流程
1、全國組委會下發(fā)通知,各地組委會開始組織工作
2、學(xué)生到當(dāng)?shù)亟M委會報名,填寫《報名表》
3、各地組委會將報名學(xué)生名單全部匯總至全國組委會
4、全國“走進美妙的數(shù)學(xué)花園”趣味數(shù)學(xué)解題技能展示初賽(全國統(tǒng)一筆試)
5、學(xué)生撰寫數(shù)學(xué)建模小論文
6、全國組委會公布初賽獲獎名單并頒發(fā)獲獎證書
7、獲得初賽一、二、三等獎選手有資格報名參加暑期赴英國劍橋大學(xué)數(shù)學(xué)交流活動。
8、各地按照組委會要求提交數(shù)學(xué)建模小論文
9、前各地組委會上報參加全國總論壇學(xué)生名單
10、全國總論壇和表彰活動
數(shù)學(xué)建模的心得體會論文篇十一
摘要:隨著現(xiàn)代社會的發(fā)展,數(shù)學(xué)的廣泛用途已經(jīng)無需質(zhì)疑,他深入到我們生活的方方面面?,F(xiàn)階段,數(shù)學(xué)建模已經(jīng)成為應(yīng)用數(shù)學(xué)知識解決日常問題的一個重要手段。本文通過簡述數(shù)學(xué)建模的方法與過程,以及應(yīng)用數(shù)學(xué)建模解決實際經(jīng)濟問題的應(yīng)用,展現(xiàn)的了數(shù)學(xué)學(xué)習(xí)的重要意義,以及數(shù)學(xué)在經(jīng)濟問題解決中的重要作用。
關(guān)鍵詞:數(shù)學(xué);數(shù)學(xué)建模;經(jīng)濟;應(yīng)用
經(jīng)濟現(xiàn)象具有多變性,隨著經(jīng)濟社會的發(fā)展,國際間貿(mào)易往來的日趨緊密,日常經(jīng)濟形勢受到的影響因素越來越復(fù)雜多變。而日常經(jīng)濟生活中所遇到的經(jīng)濟現(xiàn)象同樣存在著諸多的變化的影響因素。如何應(yīng)對這些難以把控的變量,做好風(fēng)險的預(yù)估、成本的核算、進行最大成本的規(guī)劃,所有這些都可以借助數(shù)學(xué)知識、應(yīng)用數(shù)學(xué)建模為工具進行較為理性的計算,為經(jīng)濟決策、企業(yè)規(guī)劃提供重要的幫助。
一、數(shù)學(xué)建模
數(shù)學(xué)建模,其實就是建立數(shù)學(xué)模型的簡稱,實際上數(shù)學(xué)建??梢苑Q之為解決問題的一種思考方法,借助數(shù)學(xué)工具應(yīng)用已知的定理定義進行合理的運算,推導(dǎo)出一種理性的結(jié)果的過程。數(shù)學(xué)建模是可以聯(lián)系數(shù)學(xué)和外部世界的一個中介和橋梁,在工業(yè)設(shè)計、經(jīng)濟領(lǐng)域、工程建設(shè)等各個方面,運用數(shù)學(xué)的語言和方法進行問題的求解和推導(dǎo),實際上,都是一種數(shù)學(xué)建模的過程。數(shù)學(xué)建模的主要過程可以總結(jié)為如下的框圖形式:實際上,數(shù)學(xué)模型的最終建立是一個反復(fù)驗證、修改、完善的動態(tài)過程,很少能夠通過一次過程就建立起完美適合實際問題的數(shù)學(xué)模型。通過上述過程的多次循環(huán)執(zhí)行:1.模型準(zhǔn)備:分析問題,明確建模的目的,統(tǒng)計各種信息數(shù)據(jù);2.模型假設(shè):根據(jù)建模目的,結(jié)合實際對象的特性,對復(fù)雜問題進行簡化,提取主要因素,提煉精確的數(shù)學(xué)語言;3.模型建立:根據(jù)提煉的主要因素,選擇適當(dāng)?shù)臄?shù)學(xué)工具,建立各個量(變量、常量)間的數(shù)學(xué)關(guān)系,化實際問題為數(shù)學(xué)語言;4.模型求解:對上述數(shù)學(xué)關(guān)系進行求解(包括解方程、圖形分析、邏輯運算等);5.模型分析:將求解結(jié)果與實際問題結(jié)合,綜合分析,找到模型的缺陷和不足,進行數(shù)學(xué)上的優(yōu)化,建立穩(wěn)定模型;6.模型檢驗:將模型得到的結(jié)果與實際情況相驗證,檢驗?zāi)P偷暮侠硇院瓦m用性。
二、經(jīng)濟問題數(shù)學(xué)模型的建立
經(jīng)濟類問題因為其特有的特點,可以按照變量的性質(zhì)分為兩類:概率型和確定型。概率型應(yīng)用于處理具有隨機性情況的模型,可以解決類似風(fēng)險評估、最優(yōu)產(chǎn)量計算、庫存平衡等問題;確定型則可以基于一定的條件與假設(shè),精確的對一種特定情況的結(jié)果做出判斷,如成本核算、損失評估等。對經(jīng)濟問題的建模計算實際上是一個從經(jīng)濟世界進入數(shù)學(xué)世界再回到經(jīng)濟世界的過程。建立經(jīng)濟數(shù)學(xué)模型,需要首先對實際經(jīng)濟問題和情況有一個較為深入的認識,然后通過細致的觀察梳理,抽出最為本質(zhì)的特征性的東西。將原始的復(fù)雜的經(jīng)濟問題簡化提煉為一個較為理想的自然模型,然后基于這個原始模型應(yīng)用數(shù)學(xué)知識建立完整的數(shù)學(xué)經(jīng)濟模型。
三、建模舉例
四、結(jié)語
綜上所述,我們可以看到,數(shù)學(xué)建模在經(jīng)濟中的應(yīng)用可以非常廣泛,對很多的決策和工作都可以提供參考和指導(dǎo),如提高利潤、規(guī)避風(fēng)險、降低成本、節(jié)省開支等各個方面。上文只提供了一個簡單的例子,和初步的介紹,其深入的理念和概念更加值得我們?nèi)ヅΦ膶W(xué)習(xí)和思考。
數(shù)學(xué)建模的心得體會論文篇十二
摘要:數(shù)學(xué)作為很多學(xué)科的計算工具,可以說是現(xiàn)代科學(xué)的基礎(chǔ),要想利用數(shù)學(xué)來解決實際問題,首先要建立相應(yīng)的數(shù)學(xué)模型,本文在數(shù)學(xué)建模思想概念和特點的基礎(chǔ)上,從計算機軟件、實際生活中的應(yīng)用等方面,對其應(yīng)用的發(fā)展進行了分析,最后從分析問題、建立模型、校驗?zāi)P腿齻€階段,對數(shù)學(xué)建模的方法,進行了深入的研究。
關(guān)鍵詞:數(shù)學(xué)建模;思想;應(yīng)用;方法;分析
引言
隨著自然科學(xué)的發(fā)展,利用數(shù)學(xué)等思想來解決實際問題,越來越受到人們的重視,數(shù)學(xué)作為一門歷史悠久的自然科學(xué),是在實際應(yīng)用的基礎(chǔ)上發(fā)展起來,但是隨著理論研究的深入,現(xiàn)在數(shù)學(xué)理論已經(jīng)非常先進,很多理論都無法付諸實踐,在這種背景下,如何利用現(xiàn)有的數(shù)學(xué)理論來解決實際問題,成為了很多專家和學(xué)者研究的問題。通過實際的調(diào)查發(fā)現(xiàn),要想利用數(shù)學(xué)來解決實際問題,首先要建立相應(yīng)的數(shù)學(xué)模型,將實際的問題轉(zhuǎn)化成數(shù)學(xué)符號的表達方式,這樣才能夠通過數(shù)學(xué)計算,來解決一些實際問題,從某種意義上來說,計算機就是由若干個數(shù)學(xué)模型組成的,計算機軟件之所以能夠解決實際問題,就是根據(jù)實際應(yīng)用的需要,建立了一個相應(yīng)的數(shù)學(xué)模型,這樣才能夠讓計算機來解決。
1數(shù)學(xué)建模思想分析
1.1數(shù)學(xué)建模思想的概念
數(shù)學(xué)是一門歷史悠久的自然科學(xué),在古時候,由于實際應(yīng)用的需要,人們就已經(jīng)開始使用數(shù)學(xué)來解決實際問題,但是受到當(dāng)時技術(shù)條件的限制,數(shù)學(xué)理論的水平比較低,只是利用數(shù)學(xué)來進行計數(shù)等,隨著經(jīng)濟和科技水平的提高,尤其是在工業(yè)革命之后,自然科學(xué)得到了極大的發(fā)展,對于利用自然科學(xué)來解決實際問題,也成為了人們研究的重點,在市場經(jīng)濟的推動下,人們將這些理論知識轉(zhuǎn)化成為產(chǎn)品。計算機就是在這種背景下產(chǎn)生的,在數(shù)學(xué)理論的基礎(chǔ)上,將電路的通和不通兩種狀態(tài),與數(shù)學(xué)的二進制相結(jié)合,這樣就能夠讓計算機來處理實際問題,從本質(zhì)上來說,這就是數(shù)學(xué)建模思想的范疇,但是在計算機出現(xiàn)的早期,數(shù)學(xué)建模的理論還沒有形成,隨著計算機軟件技術(shù)的發(fā)展,人們逐漸的意識到數(shù)學(xué)建模的重要性,發(fā)現(xiàn)利用數(shù)學(xué)建模思想,可以解決很多實際的問題,而數(shù)學(xué)建模的概念,就是將遇到的實際問題,利用特定的數(shù)學(xué)符號進行描述,這樣實際問題就轉(zhuǎn)化為數(shù)學(xué)問題,可以利用數(shù)學(xué)的計算方法來解決。
1.2數(shù)學(xué)建模思想的特點
如何解決實際問題,從有人類文明開始,就成為了人們研究的重點,隨著自然科學(xué)的發(fā)展,出現(xiàn)了很多具體的學(xué)科,利用這些不同的學(xué)科,可以解決不同的實際問題,而數(shù)學(xué)就是其中最重要的一門學(xué)科,而且是其他學(xué)科的基礎(chǔ),如物理學(xué)科中,數(shù)學(xué)就是一個計算的工具,由此可以看出數(shù)學(xué)的重要性,進入到信息時代后,計算機得到了普及應(yīng)用,無論是日常生活中還是工作中,計算機都有非常重要的應(yīng)用,而在信息時代,注重的是解決問題的效率。與其他解決問題的方式相比,數(shù)學(xué)建模顯然更加科學(xué),現(xiàn)在數(shù)學(xué)建模已經(jīng)成為了一門獨立的學(xué)科,很多高校中都開設(shè)了這門課程,為了培養(yǎng)學(xué)生們利用數(shù)學(xué)解決實際問題的能力,我國每年都會舉辦全國性的數(shù)學(xué)建模大賽,采用開放式的參賽方式,對學(xué)生們的數(shù)學(xué)建模能力進行考驗,而大賽的題目,很多都是一些實際問題,對于比賽的結(jié)果,每個參賽隊伍的建模方式都有一定的差異,其中選出一個最有效的方式成為冠軍。由此可以看出,對于一個實際的問題,可以建立多個數(shù)學(xué)模型進行解決,但是執(zhí)行的效率具有一定的差異,如有些計算的步驟較少,而有些計算的過程比較簡單,而如何評價一個模型的效率,必須從各個方面進行綜合的考慮。
2數(shù)學(xué)建模思想的應(yīng)用
2.1計算機軟件中數(shù)學(xué)建模思想的應(yīng)用
通過深入的分析可以知道,計算機之所以能夠解決實際問題,很大程度上依賴與計算機軟件,而計算機軟件自身就是一個或幾個數(shù)學(xué)模型,在軟件開發(fā)的過程中,首先要進行需求的分析,這其實就是數(shù)學(xué)建模的第一個環(huán)節(jié),對問題進行分析,在了解到問題之后,就要通過計算機語言,對問題進行描述,而計算機語言是人與計算機進行溝通的語言,最終這些語言都要轉(zhuǎn)化成0和1二進制的方式,這樣計算機才能夠進行具體的計算。由此可以看出,計算機就是依靠數(shù)學(xué)來解決實際問題,而每個計算機軟件,都可以認為是一個數(shù)學(xué)模型,如在早期的計算機程序設(shè)計中,受到當(dāng)時計算機技術(shù)水平的限制,采用的還是低級語言,由于低級語言人們很難理解,因此在程序編寫之前,都會先建立一個數(shù)學(xué)模型,然后將這個模型轉(zhuǎn)化成相應(yīng)的計算機語言,這樣計算機就可以解決實際的問題,由于計算機能夠自行計算的特點,只要輸入相應(yīng)的參數(shù)后,就可以直接得到結(jié)果,不再需要人為的計算。
2.2數(shù)學(xué)建模思想直接解決實際問題
經(jīng)過了多年的發(fā)展,現(xiàn)在數(shù)學(xué)建模自身已經(jīng)非常完善,為了培養(yǎng)我國的數(shù)學(xué)建模人才,從1992年開始,每年我國都會舉辦一屆全國數(shù)學(xué)建模大賽,所有的高校學(xué)生都可以參加,大賽采用了開放性的參賽方式,通常情況下,對于題目設(shè)置的也比較靈活,會有多個題目提供給隊員選擇,學(xué)生可以根據(jù)自己的實際情況,來選擇一個最適合自己的問題。而數(shù)學(xué)建模大賽舉辦的主要目的,就是讓學(xué)生們掌握如何利用數(shù)學(xué)理論,來解決實際問題,在學(xué)習(xí)數(shù)學(xué)知識的過程中,很多學(xué)生會認為,數(shù)學(xué)與實踐的距離很遠,學(xué)習(xí)的都是純理論的知識,學(xué)習(xí)的興趣很低,與一些實踐密切相關(guān)的學(xué)科相比,選擇數(shù)學(xué)專業(yè)的學(xué)生很少,而數(shù)學(xué)建模的出現(xiàn),在很大程度上改善了這種情況,讓人們真正的了解數(shù)學(xué),并利用數(shù)學(xué)來解決復(fù)雜的問題。受到特殊的歷史因素影響,我國自然科學(xué)發(fā)展的起步較晚,在建國后經(jīng)歷了很長一段時間封,閉發(fā)展,與西方發(fā)達國家之間的交流比較少,因此對于數(shù)學(xué)建模等現(xiàn)代科學(xué),研究的時間比較短,導(dǎo)致目前我國很少會利用數(shù)學(xué)建模來解決實際問題,相比之下,發(fā)達國家在很多領(lǐng)域中,經(jīng)常會用到數(shù)學(xué)建模的知識,如在企業(yè)日常運營中,需要進行市場調(diào)研等工作,而對于這些調(diào)研工作的處理,在進行之前都會建立一個數(shù)學(xué)模型,然后按照這個建立的模型來處理。
2.3數(shù)學(xué)建模思想應(yīng)用的發(fā)展
從本質(zhì)上來說,數(shù)學(xué)是在實際應(yīng)用的基礎(chǔ)上,逐漸形成的一門學(xué)科,但是受到當(dāng)時技術(shù)水平的限制,雖然人們已經(jīng)懂得去計算,卻并知道自己使用的是數(shù)學(xué)知識,隨著自然科學(xué)的發(fā)展,對數(shù)學(xué)的應(yīng)用越來越多,而數(shù)學(xué)自身理論的發(fā)展速度很快,遠遠超過了實際應(yīng)用的范圍,同時隨著其他學(xué)科的發(fā)展,數(shù)學(xué)變成了一種計算的工具,因此數(shù)學(xué)應(yīng)用的第一個階段中,主要是作為一種工具。隨著電子計算機的出現(xiàn),對數(shù)學(xué)的應(yīng)用達到了一個極限,人們在數(shù)學(xué)和物理的基礎(chǔ)上,制作出了能夠自動計算的機器,在計算機出現(xiàn)的早期,受到性能和體積上的限制,只能進行一些簡單的數(shù)學(xué)計算,還不能解決實際的問題,但是計算機語言和軟件技術(shù)的.發(fā)展,使其在很多領(lǐng)域得到了應(yīng)用,在計算的基礎(chǔ)上,能夠解決很多問題,而軟件程序的開發(fā),其實就是建立數(shù)學(xué)模型的過程,由此可以看出,數(shù)學(xué)建模思想應(yīng)用的第二階段中,主要是以現(xiàn)代計算機等電子設(shè)備的方式,來解決實際的問題。
3數(shù)學(xué)建模思想應(yīng)用的方法
3.1分析問題
數(shù)學(xué)模型的應(yīng)用都是為了解決實際問題,雖然很多問題都可以通過建模的方式來解決,但是并不是所有的問題,因此在遇到實際問題時,首先要對問題進行具體的分析,首先就是看是否能夠轉(zhuǎn)化成數(shù)學(xué)符號,如果能夠直接用數(shù)學(xué)語言來進行描述,那么就可以容易的建立相應(yīng)的數(shù)學(xué)模型,但是通過實際的調(diào)查發(fā)現(xiàn),隨著經(jīng)濟和科技的發(fā)展,遇到的問題越來越復(fù)雜,其中很多都無法直接用數(shù)學(xué)語言來描述,這就增加了數(shù)學(xué)建模的難度。由此可以看出,分析問題作為數(shù)學(xué)建模的第一個環(huán)節(jié),也是最重要的一個環(huán)節(jié),如果問題分析的不夠具體,那么將無法建立出數(shù)學(xué)模型,同時對數(shù)學(xué)模型的建立也具有非常重要的影響,通過實際的調(diào)查發(fā)現(xiàn),能夠建立高效率的數(shù)學(xué)模型,都是對問題分析的比較徹底,甚至有些獨特的理解,只有這樣才能夠采用建立一個最簡單的模型,而隨著數(shù)學(xué)建模自身的發(fā)展,現(xiàn)在建立模型的過程中,對于一個實際的問題,經(jīng)常需要建立多個模型,這樣通過多個數(shù)學(xué)模型協(xié)同來解決一個問題。
3.2數(shù)學(xué)模型的建立
在分析實際問題后,就要用數(shù)學(xué)符號來描述要解決的問題,這是建立數(shù)學(xué)模型的準(zhǔn)備環(huán)節(jié),要想利用數(shù)學(xué)來解決實際問題,無論采用哪種方式,都要轉(zhuǎn)化成數(shù)學(xué)語言,然后才能夠通過計算的方式解決,而數(shù)學(xué)模型的過程,就是在描述完成后,建立相應(yīng)的數(shù)學(xué)表達式,通常情況下,在分析問題時,都能夠發(fā)現(xiàn)某種內(nèi)在的規(guī)律,這個規(guī)律是數(shù)學(xué)建模的基礎(chǔ)。如果無法找到這個規(guī)律,顯然就不能利用現(xiàn)有的一些數(shù)學(xué)定律,從而建立相應(yīng)的表達式,最后解決相應(yīng)的問題,由此可以看出,分析問題的內(nèi)在規(guī)律,是影響數(shù)學(xué)建模的重要因素,而這個規(guī)律的發(fā)現(xiàn),除了在現(xiàn)有的數(shù)學(xué)知識外,也可以結(jié)合其他學(xué)科的知識,尤其是現(xiàn)在遇到的問題越來越復(fù)雜,對于以往簡單的問題,只需要建立一個簡單的模型即可解決,而現(xiàn)在復(fù)雜的問題,經(jīng)常需要建立多個模型。因此現(xiàn)在數(shù)學(xué)建模的難度越來越大,從近些年全國數(shù)學(xué)建模大賽的題目就可以看出,對于問題的描述越來越模糊,甚至出現(xiàn)了一些歷史上的難題,而不同學(xué)生根據(jù)自己的理解,建立的模型也具有很大的差異,其中一些模型非常新穎,為實際問題的解決提供了良好的參考,目前我國對數(shù)學(xué)建模的研究有限,尤其是與西方發(fā)達國家相比,實踐的機會還比較少。
3.3數(shù)學(xué)模型的校驗
在數(shù)學(xué)模型建立之后,對于這個模型是否能夠解決實際問題,具體的執(zhí)行效率如何,都需要進行校驗,因此檢驗是數(shù)學(xué)模型建立最后的一個環(huán)節(jié),也是非常重要的一個步驟,通常情況下,經(jīng)過校驗都能夠發(fā)現(xiàn)模型中存在的一些問題,從而進行完善,這樣才能夠保證嚴(yán)謹性,在實際校驗的過程中,要對數(shù)學(xué)模型的每個部分進行驗證,通過輸入特定的數(shù)據(jù),看得到的結(jié)果是否符合理論值,如果沒有問題,就說明該模型可以解決實際問題。除了檢驗?zāi)P偷臏?zhǔn)確外,校驗還有另外一個作用,就是優(yōu)化模型,在選定數(shù)據(jù)后,能夠看到數(shù)學(xué)模型計算的整個過程,這時就可以對具體的細節(jié)進行優(yōu)化,如哪部分可以減少計算的步驟,或者簡化計算的方式等,這樣可以使整個模型更加科學(xué)、合理,由此可以看出,校驗工作對于數(shù)學(xué)模型的建立,具有非常重要的意義。
4結(jié)語
通過全文的分析可以知道,對于數(shù)學(xué)理論的應(yīng)用,從很久之前就已經(jīng)開始了,但是數(shù)學(xué)建模思想的出現(xiàn),卻是隨著計算機技術(shù)的發(fā)展,逐漸形成的一門學(xué)科,電子計算機的出現(xiàn),在很大程度上改變了處理事情的方式,利用計算機軟件,只要輸入相應(yīng)的參數(shù),就可以直接得到結(jié)果,這正是數(shù)學(xué)模型完成的任務(wù),只是計算機的出現(xiàn),省略了中間的計算過程,因此計算機軟件的方式,是數(shù)學(xué)建模思想最好的應(yīng)用方法,要想解決不同的問題,只要建立不同的模型,然后編寫相應(yīng)的程序。
數(shù)學(xué)建模的心得體會論文篇十三
計算機學(xué)院、軟件學(xué)院級學(xué)生范娜(保送為華東師大研究生)
9月的“高教杯”全國大學(xué)生數(shù)學(xué)建模競賽已經(jīng)過去一周多了,但是在我心中,計算機學(xué)院、軟件學(xué)院三樓機房的燈光依然明亮,與隊友三天三夜一起奮戰(zhàn)的記憶依然清晰。
大二下學(xué)期,我院開設(shè)了《數(shù)學(xué)建模》選修課,由于每周只有一大節(jié)《數(shù)學(xué)建?!氛n程,再加上大二專業(yè)主干課程很多,任務(wù)重,除了老師課上的講解,平日我很少有時間去溫習(xí)和預(yù)習(xí),更別說去結(jié)合實例進行建模了。那時的數(shù)學(xué)建模對于我來說就是一項很重要的任務(wù),想要參加但是又不知道如何去完成。但是我認為數(shù)學(xué)建模是要求把模型用在實例中進行求解,最重要的就是創(chuàng)建模型的思路以及用語言去描述建模的過程和結(jié)果。
暑假快要來臨時,學(xué)院進行參賽隊員的選拔。參賽的選手由老師選拔和筆試選拔兩部分組成。我是在筆試中被選拔出來的,現(xiàn)在想想,可能差一點就失去了參加數(shù)學(xué)建模的資格。我認為選拔還是參照筆試的成績確定人選,從全方位考察學(xué)生的綜合素質(zhì)以及寫作素質(zhì),這樣才能更好的遴選出參賽選手,真正的做到給有創(chuàng)新思維的選手機會。
隨后遇到的問題就是如何組隊。我們組是由兩個計算機專業(yè)和一個通信工程專業(yè)的學(xué)生組成,現(xiàn)在看來我們的組合有一定的偶然性,但更多的是一種合理性。首先,我們組中有兩位女生,都擅長文字處理工作。應(yīng)該明確的是,數(shù)學(xué)建模比賽最后遞交給組委會的是一篇論文,也就是三天三夜的成果是以文字的形式出現(xiàn)在專家面前,文章中的文字排版、遣詞造句至關(guān)重要。女生的特點之一就是細心,我們平時很注意收集專業(yè)的描述性詞匯,因此論文詞匯豐富、生動;第二,我們?nèi)齻€的思維出發(fā)點不一樣,各有擅長的數(shù)學(xué)模型和知識能力,這就使我們在分別思考后有更多的內(nèi)容可以討論,增加建模的創(chuàng)新點,彌補彼此的不足;第三,我們?nèi)齻€的團隊意識很強,彼此相互鼓勵相互扶持。
同時,我還發(fā)現(xiàn)這樣一個現(xiàn)象。由于時間緊張的關(guān)系,我們在培訓(xùn)的時候還沒有完整的做過一道題目。也就是說在賽前大家主要進行理論上的準(zhǔn)備,很少進行實踐,這樣就不能預(yù)見和發(fā)現(xiàn)小組在未來要進行的三天三夜中,究竟會遇到什么問題。針對這樣的現(xiàn)象,我們小組用了三天的時間來進行比賽的模擬,每天做一道題。我們嚴(yán)格按照比賽的標(biāo)準(zhǔn)來要求自己:早上開始審題,組員分別思考一小時進行個人建模,其次三人一起討論,然后編寫論文,盡量把論文詳細的寫出來一部分直到一天結(jié)束。在模擬的過程中我們遇到很多的問題,比如時常會忘記討論的初步模型和一些思路,因此我們在真正比賽的時候會對小組的的討論進行錄音,這樣可以隨時查看建模的思路。像這樣的細節(jié)問題只能是在模擬中才能發(fā)現(xiàn)的,因此我認為在賽前進行比賽的模擬也是十分重要的。
接下來的三天三夜讓我很難忘,我也有很多的感想。數(shù)學(xué)建模不是一般意義的解題,它允許你使用任何已有的東西,包括別人的'研究成果、圖書資料、網(wǎng)絡(luò)資源等等,但抄襲是不允許的。這些東西都需要證明,但要結(jié)合實例進行求解。在賽前word文檔要熟練掌握,如果熟練程度不夠,那么在建模比賽中,在整理文檔這一項上就會浪費大量的時間與精力。光有錄入速度是不夠的,還要注意符號的書寫,頁碼的插入,公式編輯器的熟練運用。還要有熱情,要有認真、嚴(yán)謹?shù)目茖W(xué)精神。當(dāng)我們遇到我們不會的問題,需要用到新的知識時,我們會毫不猶豫的去學(xué)習(xí)這些知識,熱情使我們不懼怕任何困難。
總之,這次建模競賽不論是在知識面上還是在動手能力上都是對我的一種挑戰(zhàn),盡管一路走來十分辛苦,但是卻使我多了一種充實自我的經(jīng)歷,多了一份創(chuàng)造的經(jīng)驗,多了一份坦然面對的自信,從而在前進的道路上走的更順暢。在這個過程中,指導(dǎo)老師和我們一起度過炎炎夏日,也陪我們熬夜修改論文,非常辛苦,也向給予我們指導(dǎo)的各位老師和建模過程中關(guān)心我們的院領(lǐng)導(dǎo)表示衷心的感謝!