熱門平方差公式教案及板書設(shè)計(jì)范文(15篇)

字號(hào):

    教案是教師為指導(dǎo)學(xué)生學(xué)習(xí)而精心設(shè)計(jì)的一份教學(xué)計(jì)劃,它可以幫助教師合理安排教學(xué)內(nèi)容和教學(xué)活動(dòng),以達(dá)到預(yù)期的教學(xué)效果。一份好的教案應(yīng)該清晰明確,內(nèi)容充實(shí),方法靈活?,F(xiàn)在我們需要準(zhǔn)備一份教案了吧?教案的改進(jìn)應(yīng)當(dāng)基于對(duì)教學(xué)實(shí)踐的不斷反思和總結(jié),不斷提高教學(xué)質(zhì)量。以下是小編為大家收集的教案范文,僅供參考,希望對(duì)您的教學(xué)工作有所幫助。
    平方差公式教案及板書設(shè)計(jì)篇一
    1.經(jīng)歷探索平方差公式的過程,會(huì)推導(dǎo)平方差公式;
    2.能利用平方差公式進(jìn)行簡(jiǎn)單的運(yùn)算。
    在探索平方差公式的過程中,發(fā)展學(xué)生的符號(hào)感和推理能力。在計(jì)算的過程中發(fā)現(xiàn)規(guī)律,并能用符號(hào)表達(dá),體會(huì)數(shù)學(xué)語言的嚴(yán)謹(jǐn)與簡(jiǎn)潔。
    激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣,鼓勵(lì)學(xué)生自己探索,培養(yǎng)學(xué)生的合作意識(shí)與創(chuàng)新能力。
    重點(diǎn)
    平方差公式的推導(dǎo)和運(yùn)用
    難點(diǎn)
    平方差公式的結(jié)構(gòu)特點(diǎn)和靈活運(yùn)用。
    一、復(fù)習(xí)導(dǎo)入
    1.回顧多項(xiàng)式乘多項(xiàng)式的法則。
    2.創(chuàng)設(shè)情境:你能快速地口算下列式子的值嗎?
    (1);(2).
    師生共同想辦法,想到能否把數(shù)轉(zhuǎn)化成較整的數(shù)?
    變形成:,
    再試試把它當(dāng)成多項(xiàng)式乘法來算算,有什么發(fā)現(xiàn)?
    繼續(xù)用你發(fā)現(xiàn)的方法算算,,,成功了嗎?
    我們把這個(gè)有趣的結(jié)論整理并推廣,就可以得到今天要學(xué)習(xí)的一個(gè)乘法公式,平方差公式。
    二、新課講解
    探究新知
    1.觀察相乘的兩個(gè)多項(xiàng)式有什么特點(diǎn)?運(yùn)算的結(jié)果有什么特點(diǎn)?
    討論交流后總結(jié)出:兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積,等于這兩個(gè)數(shù)的平方差。
    2.把式子里具體的數(shù)換成字母表示的數(shù),結(jié)論還成立嗎?
    3.從上面的計(jì)算中你有什么發(fā)現(xiàn)呢?
    引導(dǎo)學(xué)生發(fā)現(xiàn)對(duì)于不同形式的兩個(gè)數(shù),都有它們的和與它們的差的積都等于它們的平方差!用公式表示就是:,這里字母是任意形式的兩個(gè)數(shù)。這個(gè)公式叫做平方差公式。
    4.你能通過演算推導(dǎo)出平方差公式嗎?
    最終得到平方差公式:
    平方差公式的理解應(yīng)用
    下列多項(xiàng)式乘法中,能用平方差公式計(jì)算的是_______________(填寫序號(hào))
    (1);(2);(3);
    (4);(5);(6).
    學(xué)生分組討論交流,歸納什么情況下可以使用平方差公式。通過討論,對(duì)平方差公式的理解達(dá)到一個(gè)新的高度:所謂兩數(shù)和、兩數(shù)差,從多項(xiàng)式的角度來看,就是有一項(xiàng)相同(),有一項(xiàng)相反(和),只要相乘的兩個(gè)多項(xiàng)式具備這樣的特點(diǎn),都可以用平方差公式計(jì)算。不難判斷,上面的式子中(2)、(5)、(6)都可以用平方差公式計(jì)算。
    三、典例剖析
    例1運(yùn)用平方差公式計(jì)算:
    師生共同解答,教師板書。初學(xué)運(yùn)用時(shí)要寫清楚步驟。
    例2運(yùn)用平方差公式計(jì)算:
    學(xué)生解答,關(guān)注學(xué)生是否理解平方差公式,能否正確識(shí)別乘法公式里的。
    例3.計(jì)算:
    學(xué)生解答,教師巡視,關(guān)注學(xué)生能否合理變形,靈活運(yùn)用公式計(jì)算。
    四、課堂練習(xí)
    1.下面各式的計(jì)算對(duì)不對(duì)?如果不對(duì),應(yīng)怎樣改正?
    (1);
    2.運(yùn)用平方差公式計(jì)算:
    (1);(2);
    (3);(4).
    3.計(jì)算:
    (1);(2);
    教師要注意發(fā)現(xiàn)學(xué)生的錯(cuò)誤,組織學(xué)生對(duì)錯(cuò)誤進(jìn)行分析,對(duì)于第1題可以引導(dǎo)學(xué)生分析導(dǎo)致錯(cuò)誤的原因。
    五、小結(jié)
    師生共同回顧平方差公式的結(jié)構(gòu)特點(diǎn),體會(huì)公式的作用,交流計(jì)算的經(jīng)驗(yàn)。教師對(duì)課堂上學(xué)生掌握不夠牢固的知識(shí)進(jìn)行辨析、強(qiáng)調(diào)與補(bǔ)充,學(xué)生也可以談一談個(gè)人的學(xué)習(xí)感受。
    六、布置作業(yè)
    p50第1、6題
    平方差公式教案及板書設(shè)計(jì)篇二
    《平方差公式》是一節(jié)公式定理課,是各位老師非常熟悉的一個(gè)課題,對(duì)大家更熟悉,我深深感到一種壓力。但是,無論如何,“新”、“實(shí)”是我追求的目標(biāo)。為此,我作了如下努力:
    1、把數(shù)學(xué)問題“蘊(yùn)藏”在游戲中。
    導(dǎo)入新課,是課堂教學(xué)的重要一環(huán)?!昂玫拈_始是成功的一半”,首先是一個(gè)智力搶答,學(xué)生通過搶答初步感知平方差公式,接下來,采用小組合作學(xué)習(xí)的方式,利用“四問”讓學(xué)生進(jìn)行試驗(yàn)操作,學(xué)生選擇的字母有很多種,讓它們都有其共性。由此,學(xué)生在探索中驗(yàn)證自己的猜想,同時(shí)也感受和認(rèn)識(shí)知識(shí)的發(fā)生和發(fā)展的過程,得出(a+b)(a-b)=a2-b2.經(jīng)過不斷的嘗試小組合作學(xué)習(xí)方式的教學(xué),我發(fā)現(xiàn)也真正體會(huì)到,只要我們給學(xué)生創(chuàng)造一個(gè)自由活動(dòng)的空間,學(xué)生便會(huì)還給我們一個(gè)意外的驚喜。
    2、充分重視“自主、合作、探究”的教學(xué)方式的運(yùn)用。
    把探究的機(jī)會(huì)留給學(xué)生,讓學(xué)生在動(dòng)腦思考中構(gòu)建知識(shí),真正成為教學(xué)活動(dòng)的主體。使他們?cè)诨顒?dòng)中進(jìn)行規(guī)律的總結(jié),并且通過交流練習(xí)、應(yīng)用,深化了對(duì)規(guī)律的理解。學(xué)生對(duì)知識(shí)的掌握往往通過練習(xí)來達(dá)到目的。新授后要有針對(duì)性強(qiáng)的有效訓(xùn)練,讓學(xué)生對(duì)所學(xué)知識(shí)建立初步的表象,以達(dá)到對(duì)知識(shí)的理解、掌握及應(yīng)用,實(shí)現(xiàn)從感性認(rèn)識(shí)到理性認(rèn)識(shí)的升華。在此設(shè)計(jì)了三個(gè)層次的有效訓(xùn)練,讓學(xué)生體會(huì)平方差公式的特點(diǎn):第一層次是直接運(yùn)用公式,第二層次是將式子進(jìn)行適當(dāng)變形后應(yīng)用公式,第三個(gè)層次是平方差公式的靈活應(yīng)用。通過做題學(xué)生歸納出平方差公式的運(yùn)用技巧。
    3、自置懸念,享受成功
    以四人小組為單位,各小組出兩道具有平方差公式的結(jié)構(gòu)特征的題目,看誰出得有水平。學(xué)生每人都設(shè)計(jì)了題目,任意叫了四位學(xué)生在黑板上寫,經(jīng)評(píng)價(jià)結(jié)果都對(duì)了。這種方法,不僅令人耳目一新,而且把學(xué)生引入不協(xié)調(diào)——探究——發(fā)現(xiàn)——解決問題的一個(gè)學(xué)習(xí)過程,使學(xué)生獲得思維之趣,參與之樂,成功之悅。
    4、切實(shí)落在實(shí)效上
    本節(jié)課在采用小組學(xué)習(xí)之后,為了讓學(xué)生的鞏固有效果,采用了學(xué)生上臺(tái)講解、作業(yè)實(shí)物投影的方式來進(jìn)行,多種方式的選擇,讓學(xué)生暴露出自己的問題,然后通過生生互動(dòng)、師生互動(dòng)解決問題,實(shí)現(xiàn)問題及時(shí)處理,學(xué)習(xí)效果不錯(cuò)。
    5、值得注意的是:
    1、節(jié)奏的把握上
    這一節(jié)我覺得不是很順,尤其在從幾何角度解釋平方差公式、例2⑵的其他計(jì)算方法等問題上,花了不少時(shí)間,節(jié)奏把握的不是很好。
    2、充分發(fā)揮學(xué)生的主體地位上
    這節(jié)課上,我覺得學(xué)生的積極性不很高,回答問題沒有激情,說明我背學(xué)生還不夠,自己想象的比現(xiàn)實(shí)的好。
    平方差公式教案及板書設(shè)計(jì)篇三
    平方差公式是多項(xiàng)式乘法運(yùn)算中一個(gè)重要的公式,是特殊的多項(xiàng)式與多項(xiàng)式相乘的一種簡(jiǎn)便計(jì)算。通過復(fù)習(xí)多項(xiàng)式乘以多項(xiàng)式的計(jì)算導(dǎo)入新課,為探究新知識(shí)奠定基礎(chǔ)。在重難點(diǎn)處設(shè)計(jì)問題:“觀察以上3個(gè)算式的特點(diǎn)和運(yùn)算結(jié)果的特點(diǎn),對(duì)比等號(hào)兩邊代數(shù)式的結(jié)構(gòu),你發(fā)現(xiàn)了什么?”讓學(xué)生發(fā)現(xiàn)規(guī)律并嘗試運(yùn)用自己的語言來描述。
    問題提出后,學(xué)生能積極進(jìn)行分組討論、交流,各組小組長(zhǎng)闡述自己小組討論的結(jié)果。大多數(shù)的學(xué)生能找出規(guī)律,說出大概意思,但是無法用精準(zhǔn)的語言完整的描述出來,語言表達(dá)無條理、含糊。針對(duì)這種情況,在以后的課堂教學(xué)過程中要注意加強(qiáng)對(duì)學(xué)生的邏輯思維能力和語言表達(dá)能力的.培養(yǎng)。最后經(jīng)過師生的共同努力,得出了平方差公式以及公式的特征。
    在例題展示環(huán)節(jié)中,我通過2道例題的運(yùn)算,訓(xùn)練學(xué)生正確應(yīng)用公式進(jìn)行計(jì)算,體會(huì)公式在簡(jiǎn)化運(yùn)算中的作用。實(shí)踐練習(xí)的設(shè)計(jì),使學(xué)生從不同角度認(rèn)識(shí)平方差公式,進(jìn)一步加強(qiáng)學(xué)生對(duì)公式的理解。在運(yùn)用公式時(shí),學(xué)生基本掌握運(yùn)用平方差公式的步驟:首先要判斷算式是否符合平方差公式特征,然后再尋找算式中的a,b項(xiàng),最后運(yùn)用平方差公式運(yùn)算。
    拓展延伸環(huán)節(jié)中,學(xué)生通過尋找算式中的a,b項(xiàng),慢慢發(fā)現(xiàn)a,b項(xiàng)不僅可以代表數(shù),也可以代表單項(xiàng)式、多項(xiàng)式等代數(shù)式,這樣設(shè)計(jì)可以進(jìn)一步深化學(xué)生對(duì)字母含義的理解。在學(xué)生獨(dú)立完成練習(xí)和堂測(cè)中,經(jīng)過巡視,我發(fā)現(xiàn)近三分之一的學(xué)生對(duì)較復(fù)雜的多項(xiàng)式不能準(zhǔn)確找出a,b項(xiàng),特別是b項(xiàng)代表多項(xiàng)式時(shí),負(fù)數(shù)去括號(hào)時(shí)出錯(cuò)較多。
    最后通過設(shè)計(jì)遞進(jìn)式的問題串,引導(dǎo)學(xué)生自己一步步總結(jié)出本節(jié)課所學(xué)的知識(shí)內(nèi)容,從而培養(yǎng)他們的歸納總結(jié)和語言表達(dá)能力。
    本節(jié)課采用學(xué)習(xí)小組討論、交流的學(xué)習(xí)方式,讓學(xué)優(yōu)生帶動(dòng)學(xué)困生,整體教學(xué)效果良好,學(xué)生基本掌握平方差公式的運(yùn)用,對(duì)于較復(fù)雜的a、b項(xiàng)的運(yùn)算,在自習(xí)課上將加強(qiáng)練習(xí)。
    平方差公式教案及板書設(shè)計(jì)篇四
    本節(jié)課是圍繞“引導(dǎo)學(xué)生有效預(yù)習(xí)”的課題設(shè)計(jì)的,通過預(yù)設(shè)的問題引發(fā)學(xué)生思考,在學(xué)生的預(yù)習(xí)基礎(chǔ)上回答相關(guān)的'問題,產(chǎn)生對(duì)整式的乘法、提公因式法和公式法的對(duì)比。
    讓學(xué)生充分自主的對(duì)知識(shí)產(chǎn)生探究,同時(shí)利用數(shù)形結(jié)合的思想驗(yàn)證平方差公式;再通過質(zhì)疑的方式加深對(duì)平方差公式結(jié)構(gòu)特征的認(rèn)識(shí),有助于讓學(xué)生在應(yīng)用平方差公式行分解因式時(shí)注意到它的前提條件;通過例題練習(xí)的鞏固,讓學(xué)生把握教材,吃透教材,讓學(xué)生更加熟練、準(zhǔn)確,起到強(qiáng)化、鞏固的作用,讓學(xué)生領(lǐng)會(huì)換元的思想,達(dá)到初步發(fā)展學(xué)生綜合應(yīng)用的能力。
    二、教材分析
    本節(jié)課是運(yùn)用提公因式法后公式法的第一課時(shí)——用平方差公式法分解因式。它是整式乘法的平方差公式的逆向應(yīng)用,它是解高次方程的基礎(chǔ),在教材中具有重要的地位。在教材的處理上以學(xué)生的自主探索為主,在原有用平方差公式進(jìn)行整式乘法計(jì)算的知識(shí)的基礎(chǔ)上充分認(rèn)識(shí)分解因式。明確因式分解是乘法公式的一種恒等變形,讓學(xué)生學(xué)會(huì)合情推理的能力,同時(shí)也培養(yǎng)了學(xué)生愛思考,善交流的良好學(xué)習(xí)慣。
    三、學(xué)情分析
    四、教學(xué)目標(biāo)
    (一)知識(shí)與技能
    1.掌握運(yùn)用平方差公式分解因式的方法。
    2.掌握提公因式法、平方差公式分解因式的綜合應(yīng)用。
    (二)過程與方法
    1.經(jīng)歷探究分解因式方法的過程,體會(huì)整式乘法與分解因式之間的聯(lián)系。
    2.通過乘法公式:(a+b)(a-b)=a2-b2逆向變形,進(jìn)一步發(fā)展觀察、歸納、類比、概括等能力,發(fā)展有條理地思考及語言表達(dá)能力。
    3.通過活動(dòng)4,將高次偶數(shù)指數(shù)向下次指數(shù)的轉(zhuǎn)達(dá)化,培養(yǎng)學(xué)生的化歸思想。
    4.通過活動(dòng)1,發(fā)現(xiàn)并歸納出因式分解的又一方法:逆用整式乘法的平方差公式,得到a2-b2=(a+b)(a-b)。
    5.通過活動(dòng)4,讓學(xué)生自己發(fā)現(xiàn)問題,提出問題,然后解決問題,體會(huì)在解決問題的過程中與他人合作的重要性。
    (三)情感與態(tài)度
    1.通過探究平方差公式,讓學(xué)生獲得成功的體驗(yàn),鍛煉克服困難的意志,建立自己信心。
    平方差公式教案及板書設(shè)計(jì)篇五
    本節(jié)課是圍繞“引導(dǎo)學(xué)生有效預(yù)習(xí)”的課題設(shè)計(jì)的,通過預(yù)設(shè)的問題引發(fā)學(xué)生思考,在學(xué)生的預(yù)習(xí)基礎(chǔ)上回答相關(guān)的問題,產(chǎn)生對(duì)整式的乘法、提公因式法和公式法的對(duì)比。
    讓學(xué)生充分自主的對(duì)知識(shí)產(chǎn)生探究,同時(shí)利用數(shù)形結(jié)合的思想驗(yàn)證平方差公式;再通過質(zhì)疑的方式加深對(duì)平方差公式結(jié)構(gòu)特征的認(rèn)識(shí),有助于讓學(xué)生在應(yīng)用平方差公式行分解因式時(shí)注意到它的前提條件;通過例題練習(xí)的鞏固,讓學(xué)生把握教材,吃透教材,讓學(xué)生更加熟練、準(zhǔn)確,起到強(qiáng)化、鞏固的作用,讓學(xué)生領(lǐng)會(huì)換元的思想,達(dá)到初步發(fā)展學(xué)生綜合應(yīng)用的能力。
    本節(jié)課是運(yùn)用提公因式法后公式法的第一課時(shí)——用平方差公式法分解因式。它是整式乘法的平方差公式的逆向應(yīng)用,它是解高次方程的基礎(chǔ),在教材中具有重要的地位。在教材的處理上以學(xué)生的自主探索為主,在原有用平方差公式進(jìn)行整式乘法計(jì)算的知識(shí)的基礎(chǔ)上充分認(rèn)識(shí)分解因式。明確因式分解是乘法公式的一種恒等變形,讓學(xué)生學(xué)會(huì)合情推理的能力,同時(shí)也培養(yǎng)了學(xué)生愛思考,善交流的良好學(xué)習(xí)慣。
    (一)知識(shí)與技能
    1.掌握運(yùn)用平方差公式分解因式的方法。
    2.掌握提公因式法、平方差公式分解因式的綜合應(yīng)用。
    (二)過程與方法
    1.經(jīng)歷探究分解因式方法的過程,體會(huì)整式乘法與分解因式之間的聯(lián)系。
    2.通過乘法公式:(a+b)(a-b)=a2-b2逆向變形,進(jìn)一步發(fā)展觀察、歸納、類比、概括等能力,發(fā)展有條理地思考及語言表達(dá)能力。
    3.通過活動(dòng)4,將高次偶數(shù)指數(shù)向下次指數(shù)的轉(zhuǎn)達(dá)化,培養(yǎng)學(xué)生的化歸思想。
    4.通過活動(dòng)1,發(fā)現(xiàn)并歸納出因式分解的又一方法:逆用整式乘法的平方差公式,得到a2-b2 =(a+b)(a-b)。
    5.通過活動(dòng)4,讓學(xué)生自己發(fā)現(xiàn)問題,提出問題,然后解決問題,體會(huì)在解決問題的過程中與他人合作的重要性。
    (三)情感與態(tài)度
    1.通過探究平方差公式,讓學(xué)生獲得成功的體驗(yàn),鍛煉克服困難的意志,建立自己信心。
    平方差公式教案及板書設(shè)計(jì)篇六
    引例講解:將下列各式分解因式。
    1、x2+6x+92、4x2-20x+25
    問題:這兩題首先怎么分析?
    生14:將9改寫成32,6x正好是x與3的乘積的2倍。(學(xué)生回答,教師板書)
    生15:將4x2寫成(2x)2,25寫成52,20x寫成2×2x×5
    x2+6x+9=x2+2×x×3+32=(x+3)2
    4x2-20x+25=(2x)2-2×2x×5+52=(2x-5)2
    (聯(lián)系字母表達(dá)式用箭頭對(duì)應(yīng)表示,加深學(xué)生印象。)
    生16:由符號(hào)來決定。
    師:能不能具體點(diǎn)。
    生16:由中間一項(xiàng)的符號(hào)決定,就是兩個(gè)數(shù)乘積2倍這項(xiàng)的符號(hào)決定,是正,就是兩個(gè)數(shù)的和;是負(fù),就是兩個(gè)數(shù)的差。
    師:總之,在分解完全平方式時(shí),要根據(jù)第二項(xiàng)的符號(hào)來選擇運(yùn)用哪一個(gè)完全平方公式。
    例題1:把25x4+10x2+1分解因式。
    師:這道題目能否運(yùn)用以前所學(xué)的方法分解?就題目本身有什么特點(diǎn)?可以怎么分解?
    生17:題目符合完全平方式的特點(diǎn),可以將25x4改寫成(5x2)2,1就是12,10x2改寫成2×5x2×1。(此學(xué)生板演,過程略)
    例題2:把-x2-4y2+4xy分解因式。
    師:按照常規(guī)我們首先怎么辦?
    生齊答:提取負(fù)號(hào)?!步處煱鍟?(x2+4y2-4xy)〕以下過程學(xué)生板演。
    師:如果是這道題:4xy-x2-4y2怎么分解呢?(教師改變剛才題型)
    提示:從項(xiàng)的特征進(jìn)行考慮,怎樣轉(zhuǎn)化比較合理?四人小組討論。
    生18:同樣還是將負(fù)號(hào)提取改變成完全平方式的形式。
    師:從這里我們可以發(fā)現(xiàn),只要三項(xiàng)式中能改寫成平方的兩項(xiàng)是同號(hào),且另一項(xiàng)為兩底數(shù)積的2倍,我們都能利用這個(gè)公式分解,若這兩項(xiàng)同為正則可直接分解,若同為負(fù)則先提取負(fù)號(hào)再分解。
    練習(xí)題:課本p21練習(xí):第1題,學(xué)生板演,教師講解,學(xué)生板演的同時(shí),教師提示注意點(diǎn)、多項(xiàng)式的特征;第2題,學(xué)生口答。
    例題3:把3ax2+6axy+3ay2分解因式。
    師:先觀察,再選擇適當(dāng)?shù)姆椒ā?學(xué)生板演,教師點(diǎn)評(píng))
    練習(xí):課本p22第3題分兩組學(xué)生板演,教師評(píng)講、適當(dāng)提示注意點(diǎn)。
    師:這一堂課我們一起研究了完全平方式的有關(guān)知識(shí),同學(xué)們先自查一下自己的收獲,然后請(qǐng)同學(xué)發(fā)表自己的見解。(學(xué)生小聲討論)
    生甲:我學(xué)到了如何將完全平方式分解因式,遇到三項(xiàng)式中有兩項(xiàng)符號(hào)相同且能化成平方的形式,另一項(xiàng)為這兩個(gè)數(shù)的積的2倍的形式,如果能化成平方項(xiàng)是負(fù)的,首先將負(fù)號(hào)提取再分解。第二項(xiàng)是正的就是兩數(shù)的和的平方,第二項(xiàng)是負(fù)的就是兩數(shù)差的平方。
    生乙:有公因式可提取的先提取公因式,然后再分解,同時(shí)根據(jù)第二項(xiàng)的符號(hào)來選用合適的公式。
    教師布置課堂作業(yè):課本p23習(xí)題8.2a組4~5偶數(shù)題
    課外作業(yè):課本p23習(xí)題8.2a組4~5奇數(shù)題
    下課!
    平方差公式教案及板書設(shè)計(jì)篇七
    教學(xué)目標(biāo)
    1、使學(xué)生理解完全平方公式的意義,弄清完全平方公式的形式和特點(diǎn);使學(xué)生知道把完全平方公式反過來就可以得到相應(yīng)的因式分解。
    2、掌握運(yùn)用完全平方公式分解因式的`方法,能正確運(yùn)用完全平方公式把多項(xiàng)式分解因式(直接用公式不超過兩次)
    教學(xué)方法:對(duì)比發(fā)現(xiàn)法課型新授課教具投影儀
    教師活動(dòng):學(xué)生活動(dòng)
    新課講解:
    (投影)我們把形如a2+2ab+b2與a2-2ab+b2叫做完全平方式,和平方差公式一樣,我們也可以利用它把一些多項(xiàng)式因式分解。例如:
    a2+8a+16=a2+2×4a+42=(a+4)2
    a2-8a+16=a2-2×4a+42=(a-4)2
    (要強(qiáng)調(diào)注意符號(hào))
    首先我們來試一試:(投影:牛刀小試)
    1.把下列各式分解因式:
    (1)x2+8x+16;;(2)25a4+10a2+1
    (3)(m+n)2-4(m+n)+4
    (教師強(qiáng)調(diào)步驟的重要性,注意發(fā)現(xiàn)學(xué)生易錯(cuò)點(diǎn),及時(shí)糾正)
    2.把81x4-72x2y2+16y4分解因式
    (本題用了兩次乘法公式,難度稍大,教師要鼓勵(lì)學(xué)生大膽嘗試,敢于創(chuàng)新)
    將乘法公式反過來就得到多項(xiàng)式因式分解的公式。運(yùn)用這些公式把一個(gè)多項(xiàng)式分解因式的方法叫做運(yùn)用公式法。
    練習(xí):第88頁練一練第1、2題
    平方差公式教案及板書設(shè)計(jì)篇八
    教學(xué)目標(biāo):
    一、知識(shí)與技能
    1、參與探索平方差公式的過程,發(fā)展學(xué)生的推理能力2、會(huì)運(yùn)用公式進(jìn)行簡(jiǎn)單的`乘法運(yùn)算。
    二、過程與方法
    1、經(jīng)歷探索過程,學(xué)會(huì)歸納推導(dǎo)出某種特種特定類型乘法并用簡(jiǎn)單的
    數(shù)學(xué)式子表達(dá)出,即給出公式。
    2、在探索過程的教學(xué)中,培養(yǎng)學(xué)生觀察、歸納的能力,發(fā)展學(xué)生的符
    號(hào)感和語言描述能力。
    三、情感與態(tài)度
    以探索、歸納公式和簡(jiǎn)單運(yùn)用公式這一數(shù)學(xué)情景,加深學(xué)生的體驗(yàn),增加學(xué)習(xí)數(shù)學(xué)和使用的信心。培養(yǎng)學(xué)生由觀察-發(fā)現(xiàn)-歸納-驗(yàn)證-使用這一數(shù)學(xué)方法的逐步形成.
    教學(xué)重點(diǎn):公式的簡(jiǎn)單運(yùn)用
    教學(xué)難點(diǎn):公式的推導(dǎo)
    教學(xué)方法:學(xué)生探索歸納與教師講授結(jié)合
    課前準(zhǔn)備:投影儀、幻燈片
    平方差公式教案及板書設(shè)計(jì)篇九
    1.使學(xué)生理解和掌握平方差公式,并會(huì)用公式進(jìn)行計(jì)算;
    2.注意培養(yǎng)學(xué)生分析、綜合和抽象、概括以及運(yùn)算能力.
    教學(xué)重點(diǎn)和難點(diǎn)
    重點(diǎn):平方差公式的應(yīng)用.
    難點(diǎn):用公式的結(jié)構(gòu)特征判斷題目能否使用公式.
    教學(xué)過程設(shè)計(jì)
    一、師生共同研究平方差公式
    我們已經(jīng)學(xué)過了多項(xiàng)式的乘法,兩個(gè)二項(xiàng)式相乘,在合并同類項(xiàng)前應(yīng)該有幾項(xiàng)?合并同類項(xiàng)以后,積可能會(huì)是三項(xiàng)嗎?積可能是二項(xiàng)嗎?請(qǐng)舉出例子.
    讓學(xué)生動(dòng)腦、動(dòng)筆進(jìn)行探討,并發(fā)表自己的見解.教師根據(jù)學(xué)生的回答,引導(dǎo)學(xué)生進(jìn)一步思考:
    (當(dāng)乘式是兩個(gè)數(shù)之和以及這兩個(gè)數(shù)之差相乘時(shí),積是二項(xiàng)式.這是因?yàn)榫邆溥@樣特點(diǎn)的兩個(gè)二項(xiàng)式相乘,積的四項(xiàng)中,會(huì)出現(xiàn)互為相反數(shù)的兩項(xiàng),合并這兩項(xiàng)的結(jié)果為零,于是就剩下兩項(xiàng)了.而它們的積等于乘式中這兩個(gè)數(shù)的平方差)
    繼而指出,在多項(xiàng)式的乘法中,對(duì)于某些特殊形式的多項(xiàng)式相乘,我們把它寫成公式,并加以熟記,以便遇到類似形式的多項(xiàng)式相乘時(shí)就可以直接運(yùn)用公式進(jìn)行計(jì)算.以后經(jīng)常遇到(a+b)(a-b)這種乘法,所以把(a+b)(a-b)=a2-b2作為公式,叫做乘法的平方差公式.
    在此基礎(chǔ)上,讓學(xué)生用語言敘述公式.
    二、運(yùn)用舉例變式練習(xí)
    例1計(jì)算(1+2x)(1-2x).
    解:(1+2x)(1-2x)
    =12-(2x)2
    =1-4x2.
    教師引導(dǎo)學(xué)生分析題目條件是否符合平方差公式特征,并讓學(xué)生說出本題中a,b分別表示什么.
    例2計(jì)算(b2+2a3)(2a3-b2).
    解:(b2+2a3)(2a3-b2)
    =(2a3+b2)(2a3-b2)
    =(2a3)2-(b2)2
    =4a6-b4.
    教師引導(dǎo)學(xué)生發(fā)現(xiàn),只需將(b2+2a3)中的兩項(xiàng)交換位置,就可用平方差公式進(jìn)行計(jì)算.
    課堂練習(xí)
    運(yùn)用平方差公式計(jì)算:
    (l)(x+a)(x-a);(2)(m+n)(m-n);
    (3)(a+3b)(a-3b);(4)(1-5y)(l+5y).
    例3計(jì)算(-4a-1)(-4a+1).
    讓學(xué)生在練習(xí)本上計(jì)算,教師巡視學(xué)生解題情況,讓采用不同解法的兩個(gè)學(xué)生進(jìn)行板演.
    解法1:(-4a-1)(-4a+1)
    =[-(4a+l)][-(4a-l)]
    =(4a+1)(4a-l)
    =(4a)2-l2
    =16a2-1.
    解法2:(-4a-l)(-4a+l)
    =(-4a)2-l
    =16a2-1.
    根據(jù)學(xué)生板演,教師指出兩種解法都很正確,解法1先用了提出負(fù)號(hào)的辦法,使兩乘式首項(xiàng)都變成正的,而后看出兩數(shù)的和與這兩數(shù)的差相乘的形式,應(yīng)用平方差公式,寫出結(jié)果.解法2把-4a看成一個(gè)數(shù),把1看成另一個(gè)數(shù),直接寫出(-4a)2-l2后得出結(jié)果.采用解法2的同學(xué)比較注意平方差公式的特征,能看到問題的本質(zhì),運(yùn)算簡(jiǎn)捷.因此,我們?cè)谟?jì)算中,先要分析題目的數(shù)字特征,然后正確應(yīng)用平方差公式,就能比較簡(jiǎn)捷地得到答案.
    課堂練習(xí)
    1.口答下列各題:
    (l)(-a+b)(a+b);(2)(a-b)(b+a);
    (3)(-a-b)(-a+b);(4)(a-b)(-a-b).
    2.計(jì)算下列各題:
    (1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);
    教師巡視學(xué)生練習(xí)情況,請(qǐng)不同解法的學(xué)生,或發(fā)生錯(cuò)誤的學(xué)生板演,教師和學(xué)生一起分析解法.
    三、小結(jié)
    1.什么是平方差公式?
    2.運(yùn)用公式要注意什么?
    (1)要符合公式特征才能運(yùn)用平方差公式;
    (2)有些式子表面不能應(yīng)用公式,但實(shí)質(zhì)能應(yīng)用公式,要注意變形.
    四、作業(yè)
    1.運(yùn)用平方差公式計(jì)算:
    (l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);
    (3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);
    2.計(jì)算:
    (3)x(x-3)-(x+7)(x-7);(4)(2x-5)(x-2)+(3x-4)(3x+4).
    平方差公式教案及板書設(shè)計(jì)篇十
    平方差公式是在學(xué)習(xí)多項(xiàng)式乘法等知識(shí)的基礎(chǔ)上,自然過渡到具有特殊形式的多項(xiàng)式的乘法,體現(xiàn)教材從一般到特殊的意圖。教材為學(xué)生在教學(xué)活動(dòng)中獲得數(shù)學(xué)的思想方法、能力、素質(zhì)提供了良好的契機(jī)。對(duì)它的學(xué)習(xí)和研究,不僅得到了特殊的多項(xiàng)式乘法的簡(jiǎn)便算法,而且為以后的因式分解,分式的化簡(jiǎn)、二次根式中的分母有理化、解一元二次方程、函數(shù)等內(nèi)容奠定了基礎(chǔ),同時(shí)也為完全平方公式的學(xué)習(xí)提供了方法,因此,平方差公式在教材中有承上啟下的作用,是初中階段一個(gè)重要的公式。
    學(xué)生是在學(xué)習(xí)積的乘方和多項(xiàng)式乘多項(xiàng)式后學(xué)習(xí)平方差公式的,但在進(jìn)行積的乘方的運(yùn)算時(shí),底數(shù)是數(shù)與幾個(gè)字母的積時(shí)往往把括號(hào)漏掉,在進(jìn)行多項(xiàng)式乘法運(yùn)算時(shí)常常會(huì)確定錯(cuò)某些次符號(hào)及漏項(xiàng)等問題。學(xué)生學(xué)習(xí)平方差公式的困難在于對(duì)公式的結(jié)構(gòu)特征以及公式中字母的廣泛的理解,當(dāng)公式中a、b是式時(shí),要把它括號(hào)在平方。
    重點(diǎn):平方差公式的推導(dǎo)和應(yīng)用.
    難點(diǎn):理解掌握平方差公式的結(jié)構(gòu)特點(diǎn)以及靈活運(yùn)用平方差公式解決實(shí)際問題.
    平方差公式教案及板書設(shè)計(jì)篇十一
    湖北口中學(xué)張衍生
    教學(xué)內(nèi)容:p108—110平方差公式例1例2例3
    教學(xué)目的:1、使學(xué)生會(huì)推導(dǎo)平方差公式,并掌握公式特征。
    2、使學(xué)生能正確而熟練地運(yùn)用平方差公式進(jìn)行計(jì)算。
    教學(xué)重點(diǎn):使學(xué)生會(huì)推導(dǎo)平方差公式,掌握公式特征,并能正確而熟
    練地運(yùn)用平方差公式進(jìn)行計(jì)算。
    教學(xué)難點(diǎn):掌握平方差公式的特征,并能正確而熟練地運(yùn)用它進(jìn)行計(jì)
    算。
    教學(xué)過程:
    一、復(fù)習(xí)引入
    1、復(fù)述多項(xiàng)式與多項(xiàng)式的`乘法法則
    2、計(jì)算(演板)
    (1)(a+b)(a-b)(2)(m+n)(m-n)
    (3)(x+y)(x-y)(4)(2a+3b)(2a-3b)
    3、引入新課,由2題的計(jì)算引導(dǎo)學(xué)生觀察題目特征,結(jié)果特征(引入新課,板書課題)
    二、新課
    1、平方差公式
    由上面的運(yùn)算,再讓學(xué)生探究
    現(xiàn)在你能很快算出多項(xiàng)式(2m+3n)與多項(xiàng)式(2m-3n)的乘積嗎?引導(dǎo)學(xué)生把2m看成a,3n看成b寫出結(jié)果.
    (2m+3n)(2m-3n)=(2m)2-(3m)2=4m2-9n2
    (a+b)(a-b)=a2-b2
    向?qū)W生說明:我們把
    (a+b)(a-b)=a2-b2(重點(diǎn)強(qiáng)調(diào)公式特征)
    平方差公式教案及板書設(shè)計(jì)篇十二
    這節(jié)課學(xué)習(xí)的主要內(nèi)容是運(yùn)用平方差公式進(jìn)行因式分解,學(xué)習(xí)時(shí)如果直接就給同學(xué)們講把前面在整式的乘法中學(xué)習(xí)到的平方差公式反過來運(yùn)用就形成了因式分解的平方差公式,然后就是反復(fù)的運(yùn)用、反復(fù)的操練的話,學(xué)生學(xué)起來就會(huì)覺得沒有味道,對(duì)數(shù)學(xué)有一種厭煩感,所以我就想到了運(yùn)用逆向思維的方法來學(xué)習(xí)這節(jié)課的內(nèi)容,而且非常不利于學(xué)生理解整式乘法和因式分解之間的互逆的關(guān)系。
    在新課引入的過程中,首先讓學(xué)生回憶了前面在整式的乘法中遇到的乘法公式,比如平方差公式、完全平方公式。然后,巧妙的'將剛才用平方差公式計(jì)算得出的三個(gè)多項(xiàng)式作為因式分解的題目請(qǐng)學(xué)生嘗試一下??梢哉f,對(duì)新問題的引入,是采取了由淺入深的方法,使學(xué)生對(duì)新知識(shí)不產(chǎn)生任何的畏懼感。
    在這節(jié)課中就明顯出現(xiàn)了這個(gè)問題,許多學(xué)生容易產(chǎn)生的問題都集中在一起讓學(xué)生解決,反而將學(xué)生搞得不清不楚。所以,通過這節(jié)展示課也讓我學(xué)到了很多,比如,化解難點(diǎn)時(shí)要考慮到學(xué)生的思維障礙,不可操之過急,否則適得其反。
    平方差公式教案及板書設(shè)計(jì)篇十三
    一、說教材
    本節(jié)課選自人教版八年級(jí)上冊(cè)第15章第二節(jié)內(nèi)容,它是在學(xué)生已經(jīng)掌握了多項(xiàng)式乘法之后,自然過渡到具有特殊形式的多項(xiàng)式的乘法,是從一般到特殊的認(rèn)知規(guī)律的典型范例。對(duì)它的學(xué)習(xí)和研究,不僅給出了特殊的多項(xiàng)式乘法的簡(jiǎn)便算法,而且為以后的因式分解、分式的化簡(jiǎn)等內(nèi)容奠定了基礎(chǔ),同時(shí)也為學(xué)習(xí)完全平方公式的學(xué)習(xí)提供了方法。因此,中公教育專家認(rèn)為,平方差公式作為初中階段的第一個(gè)公式,在教學(xué)中具有很重要地位。
    二、說學(xué)情
    學(xué)生已熟練掌握了冪的運(yùn)算和整式乘法,但在進(jìn)行多項(xiàng)式乘法運(yùn)算時(shí)常常會(huì)出現(xiàn)符號(hào)錯(cuò)誤及漏項(xiàng)等問題;另外,數(shù)學(xué)公式中字母具有高度概括性、廣泛應(yīng)用性,鑒于八年級(jí)學(xué)生的認(rèn)知水平,理解上有困難。因此,我們把教學(xué)難點(diǎn)定為:理解平方差公式的。結(jié)構(gòu)特征,靈活應(yīng)用平方差公式。
    三、說教學(xué)目標(biāo)
    基于對(duì)教材的理解和分析,我在教學(xué)中以學(xué)生為主體,以學(xué)生的學(xué)為根本,我把本課的目標(biāo)定位為:
    知識(shí)與技能目標(biāo):了解平方差公式產(chǎn)生的背景,理解平方差公式的意義,掌握平方差公式的結(jié)構(gòu)特征,并能靈活運(yùn)用平方差公式解決問題。
    過程與方法目標(biāo):經(jīng)歷平方差公式產(chǎn)生的探究過程,培養(yǎng)觀察、猜想、歸納、概括、推理的能力和符號(hào)感,感受利用轉(zhuǎn)化、數(shù)形結(jié)合等數(shù)學(xué)思想方法解決實(shí)際問題的策略。
    情感態(tài)度與價(jià)值觀目標(biāo):通過探究平方差公式,形成學(xué)習(xí)數(shù)學(xué)公式的一般套路,體會(huì)成功的喜悅,培養(yǎng)團(tuán)結(jié)協(xié)助的意識(shí),增強(qiáng)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的興趣。
    教學(xué)重點(diǎn):理解平方差公式的意義,掌握平方差公式的結(jié)構(gòu)特征。
    教學(xué)難點(diǎn):運(yùn)用平方差公式解決問題。
    四、說教法、學(xué)法
    課堂是學(xué)生學(xué)習(xí)的主陣地,真正做到把課堂還給學(xué)生,因而我采取的的教學(xué)模式定為:三先兩主動(dòng),即讓學(xué)生先說話、先動(dòng)手、先總結(jié),讓學(xué)生主動(dòng)提問、主動(dòng)探索。學(xué)習(xí)方法:學(xué)生積極參與、大膽猜想、合作交流和自主探索。
    五、說教學(xué)過程
    (一)創(chuàng)設(shè)情景,引入新課
    數(shù)學(xué)課標(biāo)強(qiáng)調(diào):“數(shù)學(xué)來源于實(shí)際生活”,為了體現(xiàn)這一思想,我設(shè)計(jì)了一個(gè)實(shí)際問題。這里只提供情境,刺激學(xué)生主動(dòng)提出問題,因?yàn)椤疤岢鰡栴}”比“解決問題”更重要。這個(gè)以生活實(shí)例創(chuàng)設(shè)的情境,不僅激發(fā)學(xué)生的求知興趣,又為平方差公式的引人服務(wù),更為說明平方差公式的幾何意義做好鋪墊。
    (二)合作交流,探求新知
    首先,我用情境中一道題目,并再安排了兩個(gè)練習(xí),通過對(duì)特殊的多項(xiàng)式與多項(xiàng)式相乘的計(jì)算,既復(fù)習(xí)了舊知,又為下面學(xué)習(xí)習(xí)近平方差公式作了鋪墊,讓學(xué)生感受從一般到特殊的認(rèn)識(shí)規(guī)律,引出乘法公式----平方差公式。
    順勢(shì)鼓勵(lì)學(xué)生用自己的語言歸納表述,總結(jié)出公式,從而提高學(xué)生的語言組織與表達(dá)能力。
    然后,教師通過分析公式的本質(zhì)特征使學(xué)生掌握公式,在認(rèn)清公式的結(jié)構(gòu)特征的基礎(chǔ)上,
    進(jìn)一步剖析a、b的廣泛含義,抓住了概念的核心,使學(xué)生在公式的運(yùn)用中能得心應(yīng)手,起到事半功倍的效果。
    最后,用學(xué)生最喜歡的拼圖游戲,引導(dǎo)學(xué)生從“形”的角度認(rèn)識(shí)平方差公式的幾何意義,再次驗(yàn)證了猜想。滲透了數(shù)形結(jié)合的思想,讓學(xué)生體會(huì)到代數(shù)與幾何的內(nèi)在聯(lián)系,引導(dǎo)學(xué)生學(xué)會(huì)從多角度、多方面來思考問題。
    (三)鞏固深化,內(nèi)化新知
    總結(jié)出平方差公式后,我先設(shè)計(jì)兩個(gè)簡(jiǎn)單練習(xí)題。通過練習(xí),使學(xué)生加深對(duì)平方差公式結(jié)構(gòu)特點(diǎn)的認(rèn)識(shí)和理解,進(jìn)一步掌握平方差公式的本質(zhì)特征和運(yùn)用平方差公式必須具備的條件。
    然后設(shè)計(jì)了三個(gè)例題。例1和例2是教材上的內(nèi)容,例3是我設(shè)計(jì)的一道實(shí)際問題。
    例1有兩道小題,其中設(shè)計(jì)第(1)題,然后學(xué)生完成。第(2)題學(xué)生板演,師生共同糾錯(cuò)。例2有兩道小題,先讓學(xué)生嘗試練習(xí),出錯(cuò)后教師及時(shí)糾正,使學(xué)生認(rèn)識(shí)深刻。第一題體現(xiàn)了轉(zhuǎn)化的思想和數(shù)式通性;另一題是平方差公式與一般多項(xiàng)式乘法的綜合,強(qiáng)調(diào)不能用公式的仍按多項(xiàng)式乘法法則進(jìn)行。
    例3運(yùn)用平方差公式解決實(shí)際問題,體現(xiàn)了數(shù)學(xué)來源于生活,服務(wù)于生活,學(xué)生感受到學(xué)習(xí)數(shù)學(xué)的價(jià)值,設(shè)計(jì)此題與平方差公式的幾何意義相吻合,加深學(xué)生對(duì)平方差公式的理解。
    (四)反饋練習(xí),鞏固新知
    練習(xí)題的設(shè)計(jì)有梯度,從基礎(chǔ)應(yīng)用公式入手,到拓展提高。加強(qiáng)基本知識(shí)和基本技能訓(xùn)練,使不同水平的學(xué)生學(xué)習(xí)都有收獲,體現(xiàn)出“人人學(xué)有用的數(shù)學(xué)”。
    在練習(xí)的基礎(chǔ)上,教師歸納總結(jié),提升學(xué)習(xí)理念。
    (五)當(dāng)堂練習(xí)
    這部分給出兩類練習(xí)題
    設(shè)計(jì)意圖(第一類題是完全平方公式的直接應(yīng)用,通過實(shí)例,使學(xué)生進(jìn)一步體會(huì)到完全平方公式中字母a,b的含義是很廣泛的,它可以是數(shù),也可以是整式)(第二道題直接給出一些同學(xué)的錯(cuò)誤認(rèn)識(shí),強(qiáng)調(diào)錯(cuò)誤原因并引導(dǎo)學(xué)生走出誤區(qū))
    (六)課堂小結(jié)
    設(shè)計(jì)意圖:(讓學(xué)生回想本節(jié)課的主要內(nèi)容完全平方公式,教師再次強(qiáng)調(diào)并指出易錯(cuò)點(diǎn)和需注意的地方公式中項(xiàng)數(shù)、符號(hào)、字母及其指數(shù)。)
    (七)布置作業(yè)
    作業(yè)分必做題和選做題兩部分
    設(shè)計(jì)意圖:(必做題鞏固本節(jié)課知識(shí),讓學(xué)生熟練應(yīng)用公式。選做題為下節(jié)課的學(xué)習(xí)做鋪墊,同時(shí)分層布置作業(yè)也滿足了不同層次學(xué)生的要求)
    平方差公式教案及板書設(shè)計(jì)篇十四
    學(xué)生已經(jīng)掌握了多項(xiàng)式與多項(xiàng)式相乘,但是對(duì)于某些特殊的多項(xiàng)式相乘,可以寫成公式的形式,直接寫出結(jié)果,乘法公式應(yīng)用十分廣泛,也是本章重點(diǎn)內(nèi)容之一。
    平方差公式是第一個(gè)乘法公式,教學(xué)時(shí),我是這樣引入新課的,先計(jì)算下列各題,看誰做的又對(duì)又快?(1)(x+1)(x―1)=_____,(2)(m+2)(m―2)=_____,(3)(2x+1)(2x―1)=____,(4)(y+3z)(y―3z)=_____。激發(fā)學(xué)生的好勝心并為進(jìn)一步探索新知搭建好有力的平臺(tái),然后我又讓學(xué)生討論交流上面幾個(gè)等式左、右兩邊各有什么特點(diǎn),你能用字母表示你發(fā)現(xiàn)的規(guī)律嗎?你能用語言敘述這個(gè)規(guī)律嗎?給學(xué)生充分的觀察、分析、討論交流的時(shí)間,老師應(yīng)及時(shí)的給與必要的指導(dǎo)、鼓勵(lì)和由衷的贊美,這一點(diǎn)我做的還很不夠,今后要多多注意。
    然后我有設(shè)計(jì)了這樣一道題:下列多項(xiàng)式乘法中可以用平方差公式計(jì)算的是(1)(x+1)(1+x),(2)(2x+y)(y―2x),(3)(a―b)(―a+b),(4)(―a―b)(―a+b)幫助學(xué)生理解公式的特征,掌握公式的。特征是正確運(yùn)用公式的關(guān)鍵,除了掌握公式的特征外還有必要理解公式中的字母a、b具有廣泛的含義,幾字母a、b可以表示具體的數(shù)、也可以表示單項(xiàng)式或多項(xiàng)式,由于學(xué)生的認(rèn)知能力有一個(gè)過程,教學(xué)中應(yīng)由易到難逐步安排學(xué)習(xí)這方面的內(nèi)容。
    平方差公式教案及板書設(shè)計(jì)篇十五
    1、使學(xué)生了解運(yùn)用公式法分解因式的意義;
    2、使學(xué)生掌握用平方差公式分解因式
    重點(diǎn):掌握運(yùn)用平方差公式分解因式。
    難點(diǎn):將單項(xiàng)式化為平方形式,再用平方差公式分解因式;
    學(xué)習(xí)方法:歸納、概括、總結(jié)
    創(chuàng)設(shè)問題情境,引入新課
    在前兩學(xué)時(shí)中我們學(xué)習(xí)了因式分解的定義,即把一個(gè)多項(xiàng)式分解成幾個(gè)整式的積的形式,還學(xué)習(xí)了提公因式法分解因式,即在一個(gè)多項(xiàng)式中,若各項(xiàng)都含有相同的因式,即公因式,就可以把這個(gè)公因式提出來,從而將多項(xiàng)式化成幾個(gè)因式乘積的形式。
    如果一個(gè)多項(xiàng)式的各項(xiàng),不具備相同的因式,是否就不能分解因式了呢?當(dāng)然不是,只要我們記住因式分解是多項(xiàng)式乘法的相反過程,就能利用這種關(guān)系找到新的因式分解的方法,本學(xué)時(shí)我們就來學(xué)習(xí)另外的一種因式分解的方法——公式法。
    1、請(qǐng)看乘法公式
    (a+b)(a-b)=a2-b2(1)
    左邊是整式乘法,右邊是一個(gè)多項(xiàng)式,把這個(gè)等式反過來就是
    a2-b2=(a+b)(a-b)(2)
    利用平方差公式進(jìn)行的因式分解,第(2)個(gè)等式可以看作是因式分解中的平方差公式。
    a2-b2=(a+b)(a-b)
    2、公式講解
    如x2-16
    =(x)2-42
    =(x+4)(x-4)。
    9m2-4n2
    =(3m)2-(2n)2
    =(3m+2n)(3m-2n)
    例1、把下列各式分解因式:
    例2、把下列各式分解因式:
    (1)9(m+n)2-(m-n)2;(2)2x3-8x.
    補(bǔ)充例題:判斷下列分解因式是否正確。
    (1)(a+b)2-c2=a2+2ab+b2-c2.
    (2)a4-1=(a2)2-1=(a2+1)(a2-1)。
    1、教科書習(xí)題
    2、分解因式:x4-16x3-4x4x2-(y-z)2
    3、若x2-y2=30,x-y=-5求x+y