最新親近數(shù)學(xué)心得體會和方法(通用19篇)

字號:

    無論是學(xué)習(xí)還是工作生活,心得體會都是我們不可或缺的一個環(huán)節(jié)。寫心得體會時,要注意適當(dāng)?shù)钠蛢?nèi)容,不要過于拖沓和啰嗦。通過閱讀心得體會范文,我們可以更好地認識自己,提升自己的綜合素質(zhì)。
    親近數(shù)學(xué)心得體會和方法篇一
    學(xué)生在學(xué)習(xí)過程中,數(shù)學(xué)往往是一個讓人頭疼的難點。因此,如何找到一種有效的數(shù)學(xué)學(xué)習(xí)方法讓學(xué)生更好地理解、記憶和掌握數(shù)學(xué)知識,是每一位數(shù)學(xué)教師的重要任務(wù)。在實踐中,我不斷探索和總結(jié)適合學(xué)生的數(shù)學(xué)學(xué)習(xí)方法,這篇文章是我在此過程中的心得體會。
    第二段:培養(yǎng)數(shù)學(xué)思維能力
    數(shù)學(xué)是一門抽象的學(xué)科,因此學(xué)習(xí)方法必須培養(yǎng)學(xué)生的抽象思維能力。我通??紤]引發(fā)學(xué)習(xí)的思考,鼓勵學(xué)生嘗試自己的方法來解決問題。我還沒有固定的解題步驟,而是通過大量的例題和習(xí)題,激發(fā)學(xué)生的求知欲望和創(chuàng)新思維,從而不斷提升學(xué)生的數(shù)學(xué)思維能力。
    第三段:建立數(shù)學(xué)基礎(chǔ)
    數(shù)學(xué)是由各種模塊組成的,學(xué)生的數(shù)學(xué)學(xué)習(xí)方法要開始于建立堅實的數(shù)學(xué)基礎(chǔ)。對于學(xué)生而言,前期的數(shù)學(xué)知識點是學(xué)習(xí)新知識的前提條件,我們要加強對于基礎(chǔ)知識的鞏固和落實,使學(xué)生具有一定的數(shù)學(xué)素養(yǎng)和知識技能,在難點中能夠游刃有余。
    第四段:注重細節(jié)重復(fù)、強化記憶
    在數(shù)學(xué)學(xué)習(xí)中,遇到難點和薄弱知識點時,學(xué)生的情況通常是即使聽懂講解,但是在解題時依舊會丟分。對于這種情況,我的處理方法通常是通過反復(fù)強化復(fù)習(xí)、重復(fù)練習(xí)來鞏固記憶。比如,對于理論部分練習(xí)題中的公式,要求學(xué)生嚴格按照規(guī)范操作、理解公式含義、多寫多做并總結(jié)經(jīng)驗,對于公式運用、定理證明等等,我也都會反復(fù)講述和強化反復(fù)練習(xí)。
    第五段:激勵自信心和自學(xué)意識
    學(xué)生在學(xué)習(xí)數(shù)學(xué)過程中,特別是一些難點掌握上,容易產(chǎn)生焦慮,而一旦情緒低落甚至?xí)绊懞罄m(xù)學(xué)習(xí)。因此在課堂上,我們要培養(yǎng)學(xué)生的自信心和自抗壓能力。在教學(xué)中,我會鼓勵學(xué)生多多閱讀數(shù)學(xué)史,表揚學(xué)生的優(yōu)點、激勵學(xué)生的劣點,在學(xué)習(xí)上要始終保持好奇心和獨立思考的能力,提高自學(xué)意識,幫助學(xué)生克服數(shù)學(xué)難題。
    總之,數(shù)學(xué)學(xué)習(xí)是一項需要長期耐心而不斷嘗試的過程,對于每一位數(shù)學(xué)教師來說,要深入理解學(xué)生的性格特點和課程要求,不斷通過總結(jié)合理的數(shù)學(xué)學(xué)習(xí)方法,為學(xué)生打開數(shù)學(xué)之門,讓每個學(xué)生都能輕松掌握數(shù)學(xué)知識,成為一個善于思考的成熟人才,特別是在新冠肺炎疫情當(dāng)前,在線教學(xué)和學(xué)習(xí)中,我們教師要借助現(xiàn)代化教育科技,綜合利用優(yōu)質(zhì)的教育資源,為學(xué)生提供更加多元化、個性化的數(shù)學(xué)學(xué)習(xí)體驗。
    親近數(shù)學(xué)心得體會和方法篇二
    近年來,隨著科技的不斷發(fā)展與數(shù)學(xué)研究的深入,現(xiàn)代數(shù)學(xué)方法變得越來越重要。相較于傳統(tǒng)數(shù)學(xué),現(xiàn)代數(shù)學(xué)方法更加抽象、推理更為嚴密且應(yīng)用范圍更廣。在學(xué)習(xí)過程中,我深感現(xiàn)代數(shù)學(xué)方法的重要性和應(yīng)用性。本文將從數(shù)學(xué)模型、證明的方法、問題解決思維、創(chuàng)新能力以及現(xiàn)代技術(shù)的發(fā)展等角度,對現(xiàn)代數(shù)學(xué)方法進行總結(jié)體會。
    首先,現(xiàn)代數(shù)學(xué)方法具有強大的建模能力。在實際問題中,我們往往需要將抽象的數(shù)學(xué)理論與具體的問題相結(jié)合?,F(xiàn)代數(shù)學(xué)方法能夠?qū)栴}通過模型的形式進行描述,將復(fù)雜的問題簡化并去除無關(guān)因素,使問題更易于理解和解決。例如,在工程領(lǐng)域中,我們可以利用微分方程、線性代數(shù)等現(xiàn)代數(shù)學(xué)方法,將實際問題轉(zhuǎn)化為數(shù)學(xué)模型,從而定量地分析問題,預(yù)測系統(tǒng)的行為。通過對模型的研究,我們可以得到對實際問題的深入理解,進而為實際生產(chǎn)和科學(xué)研究提供有效的指導(dǎo)。
    其次,現(xiàn)代數(shù)學(xué)方法注重證明的嚴謹性和精確性。在傳統(tǒng)數(shù)學(xué)學(xué)科中,學(xué)生主要通過記憶公式和運算法則來解題。而在現(xiàn)代數(shù)學(xué)方法中,證明成為了一項重要的技能。學(xué)生需要通過推理和邏輯思維,辯證地論證問題的解決思路和結(jié)果的正確性。通過學(xué)習(xí)證明的方法,我深感到數(shù)學(xué)推理的嚴謹性和優(yōu)雅性。證明不僅能夠鞏固我們對知識的理解,更能夠培養(yǎng)我們思考問題的能力和判斷問題的準確性。在實際生活中,很多問題需要通過推理和證明來解決,現(xiàn)代數(shù)學(xué)方法能夠培養(yǎng)我們的邏輯思維能力,使我們在處理問題時更加有條理和準確。
    另外,現(xiàn)代數(shù)學(xué)方法注重培養(yǎng)學(xué)生的問題解決思維。在學(xué)習(xí)過程中,我們常常面臨各種難題和困惑。現(xiàn)代數(shù)學(xué)方法鼓勵學(xué)生通過自主思考和探索,尋找問題解決的方法和策略。引導(dǎo)學(xué)生從不同的角度看待問題,從而找到解決問題的思路。學(xué)習(xí)現(xiàn)代數(shù)學(xué)方法,我們不僅學(xué)習(xí)到了具體的知識,更培養(yǎng)了一種探索精神和解決問題的能力。這種思維方式不僅在數(shù)學(xué)領(lǐng)域中有用,在其他學(xué)科和實際生活中也同樣適用。通過現(xiàn)代數(shù)學(xué)方法的學(xué)習(xí),我深感到自己的思維能力得到了鍛煉和提升。
    此外,現(xiàn)代數(shù)學(xué)方法還能夠培養(yǎng)學(xué)生的創(chuàng)新能力。在學(xué)習(xí)過程中,我們常常會遇到一些復(fù)雜、未解決的問題。這些問題要求我們自主思考、獨立研究,并提出新的解決方法或思路。通過解決這些問題,學(xué)生能夠培養(yǎng)創(chuàng)新意識和創(chuàng)造性思維?,F(xiàn)代數(shù)學(xué)方法的教學(xué)注重培養(yǎng)學(xué)生的創(chuàng)新能力,鼓勵學(xué)生提出新的解決方法,拓展數(shù)學(xué)研究的邊界。通過學(xué)習(xí)現(xiàn)代數(shù)學(xué)方法,我對數(shù)學(xué)研究的廣度和深度有了更深刻的認識,同時也對自己的創(chuàng)新能力有了更多的自信。
    最后,現(xiàn)代數(shù)學(xué)方法與現(xiàn)代技術(shù)的發(fā)展形成了良好的互動關(guān)系。隨著計算機技術(shù)的快速發(fā)展,我們能夠利用計算機來進行復(fù)雜的數(shù)值計算,并通過數(shù)值試驗驗證推測的結(jié)論?,F(xiàn)代數(shù)學(xué)方法的理論和計算手段與計算機技術(shù)的發(fā)展相結(jié)合,為數(shù)學(xué)研究提供了更多的工具和方法。通過計算機的輔助,我們能夠更深入地研究數(shù)學(xué)的各個分支,并得到更準確的結(jié)果?,F(xiàn)代數(shù)學(xué)方法不僅為計算機技術(shù)的發(fā)展提供了理論基礎(chǔ),同時也能夠從計算機技術(shù)中獲得更多的支持和推動。這種互動關(guān)系使現(xiàn)代數(shù)學(xué)方法和現(xiàn)代技術(shù)能夠共同促進數(shù)學(xué)研究的發(fā)展,并在實際應(yīng)用中起到重要的作用。
    綜上所述,現(xiàn)代數(shù)學(xué)方法是一種強大的工具和方法,在數(shù)學(xué)研究和實踐中發(fā)揮著重要的作用。通過學(xué)習(xí)現(xiàn)代數(shù)學(xué)方法,我們可以具備更強大的數(shù)學(xué)建模能力,更嚴密的證明和推理能力,更靈活的問題解決思維,更富有創(chuàng)新的能力,同時也能夠與現(xiàn)代技術(shù)的發(fā)展互相促進,共同推動數(shù)學(xué)研究的發(fā)展和應(yīng)用。因此,我們應(yīng)當(dāng)重視現(xiàn)代數(shù)學(xué)方法的學(xué)習(xí)與應(yīng)用,不斷提升自己的數(shù)學(xué)素質(zhì)與能力。
    親近數(shù)學(xué)心得體會和方法篇三
    數(shù)學(xué)是一門需要耐心和技巧并存的學(xué)科,培優(yōu)數(shù)學(xué)的方法和技巧對于學(xué)生的學(xué)習(xí)成績至關(guān)重要。在我多年的學(xué)習(xí)和教學(xué)經(jīng)驗中,我總結(jié)出了一些數(shù)學(xué)培優(yōu)的方法和心得體會,希望對學(xué)生們的學(xué)習(xí)能夠有所幫助。
    首先,我認為數(shù)學(xué)培優(yōu)方法的基礎(chǔ)是打好數(shù)學(xué)基礎(chǔ)。數(shù)學(xué)是一門循序漸進的學(xué)科,掌握好基礎(chǔ)知識是進一步學(xué)習(xí)數(shù)學(xué)的基礎(chǔ)。在學(xué)習(xí)初期,學(xué)生要始終保持對基礎(chǔ)知識的重視,尤其是數(shù)學(xué)的四則運算和初等代數(shù)運算,這是后續(xù)學(xué)習(xí)的基石。當(dāng)學(xué)生打好了基礎(chǔ),才能夠更好地理解和解決復(fù)雜的數(shù)學(xué)問題。
    其次,我認為在培優(yōu)數(shù)學(xué)中,需要有正確的學(xué)習(xí)態(tài)度。數(shù)學(xué)需要耐心和恒心,沒有一蹴而就的捷徑。學(xué)習(xí)數(shù)學(xué)需要持之以恒,不能半途而廢。當(dāng)遇到困難時,學(xué)生應(yīng)該保持積極的心態(tài),不輕易放棄,而是尋找解決問題的方法和途徑。同時,學(xué)生也要善于思考和挑戰(zhàn)自己的極限,不斷提高解題能力和數(shù)學(xué)思維。
    第三,數(shù)學(xué)培優(yōu)方法中,注重提高解題能力是非常重要的。數(shù)學(xué)考試通常以解題能力為主要評判標準,因此學(xué)生應(yīng)該注重提高自己的解題能力。解題能力的提高需要大量的練習(xí)和積累。學(xué)生可以通過做大量的數(shù)學(xué)題目來提高解題能力,同時還要注意總結(jié)和歸納解題方法,充分理解和掌握解題思路和技巧。
    第四,我認為培優(yōu)數(shù)學(xué)中,注重知識的應(yīng)用和拓展能力也是非常重要的。數(shù)學(xué)不僅僅是做題,更是解決實際問題的工具。學(xué)生應(yīng)該注重將所學(xué)的數(shù)學(xué)知識應(yīng)用到實際生活中,思考如何解決實際問題。同時,學(xué)生還要有拓展思維,勇于接觸和學(xué)習(xí)一些拓展的數(shù)學(xué)知識,提高數(shù)學(xué)思維的廣度和深度。
    最后,數(shù)學(xué)培優(yōu)方法中,重視合作學(xué)習(xí)也是非常重要的。數(shù)學(xué)是一門需要思維交流和思想碰撞的學(xué)科,而不是孤立的知識點堆砌。學(xué)生可以通過和同學(xué)、老師一起學(xué)習(xí)和討論,共同解決數(shù)學(xué)難題,互相激發(fā)思維和靈感。合作學(xué)習(xí)還可以培養(yǎng)學(xué)生的團隊合作精神和溝通能力,為日后的學(xué)習(xí)和工作打下良好的基礎(chǔ)。
    綜上所述,數(shù)學(xué)培優(yōu)方法需要在打好數(shù)學(xué)基礎(chǔ)的基礎(chǔ)上,培養(yǎng)正確的學(xué)習(xí)態(tài)度,提高解題能力,注重知識的應(yīng)用和拓展能力,以及重視合作學(xué)習(xí)。通過這些方法和心得的實踐,我相信學(xué)生能夠更好地掌握數(shù)學(xué)知識,取得更好的成績,并培養(yǎng)出對數(shù)學(xué)的興趣和熱愛。
    親近數(shù)學(xué)心得體會和方法篇四
    教育部頒發(fā)了義務(wù)教務(wù)課程標準,提出了“深化教育改革,推進素質(zhì)教育”的新理念,同時,全國各地紛紛開始了課改實驗,為此,我校數(shù)學(xué)研組也組織全體數(shù)學(xué)教師進行課程標準的學(xué)習(xí),并要求教師們在平時的課堂教學(xué)中將新課標落到實處。通過一個學(xué)期的教學(xué)實踐和本人所教五年級兩個班的教學(xué)實況,下面就學(xué)習(xí)新數(shù)學(xué)課程標準,談一談我的一點體會和做法:
    在傳統(tǒng)教學(xué)中,教師負責(zé)教,學(xué)生負責(zé)學(xué),以“教”為中心,學(xué)生圍繞教師轉(zhuǎn)。教師是知識的占有者和傳授者,是權(quán)威;教師是課堂的主宰者。教師與學(xué)生之間缺乏溝通與交流,課堂中“雙邊活動”變成了“單邊活動”。另外以教為基礎(chǔ),先教后學(xué)。學(xué)生只是跟著教師學(xué),學(xué)生的學(xué)變成了復(fù)制。缺乏主動和創(chuàng)造精神。新課程強調(diào),教學(xué)是教與學(xué)的交往,互動,師生雙方相應(yīng)交流,相互溝通,相互啟發(fā),相互補充。在這個過程中教師與學(xué)生分享彼此的思考,經(jīng)驗和知識,交流彼此的情感,體驗與觀念,豐富教學(xué)內(nèi)容,求得新的發(fā)現(xiàn),從而達到共識、共享、共進,實現(xiàn)教學(xué)相長和共同發(fā)展。在新課程標準下的數(shù)學(xué)教學(xué),對教師而言,意味著上課不僅是傳授知識,而是一起分享理解,促進學(xué)習(xí);上課不是單向的輸出而是生命活動,專業(yè)成長和自我實現(xiàn)的過程,同時交往也意味著教師角色定位的轉(zhuǎn)換,教師由教學(xué)中的主角轉(zhuǎn)向“平等中的首席”,由傳統(tǒng)的知識傳授者轉(zhuǎn)向現(xiàn)代的學(xué)生發(fā)展的促進者。
    當(dāng)師生之間建立起溫馨的情誼,課堂教學(xué)氛圍必然輕松愉快,學(xué)生對信息的感受性、反應(yīng)的敏捷性以及思維的活躍程度都處于最佳狀態(tài)。同時,教師也會從良好的師生關(guān)系中,從學(xué)生對自己的熱愛與期待中,受到強烈的感染,從而真正體會到教學(xué)工作的意義和樂趣。感受性、反應(yīng)的敏捷性以及思維的活躍程度都處于最佳狀態(tài)。同時,教師也會從良好的師生關(guān)系中,從學(xué)生對自己的熱愛與期待中,受到強烈的感染,從而真正體會到教學(xué)工作的意義和樂趣。
    在以往的教學(xué)中,由于教師缺乏對學(xué)生自我學(xué)習(xí)能力的充分信任,在講課時,課上教師說得多、重復(fù)的地方多,給學(xué)生說的機會并不多。教師的講為主的數(shù)學(xué)教學(xué)過程,占用了學(xué)生發(fā)表自己看法的時間,使教師成為課堂上的獨奏者,學(xué)生只是聽眾、觀眾,這大大地剝奪了學(xué)生的主體地位。其實,在走進課堂前,每個學(xué)生的頭腦中都充滿著各自不同的先前經(jīng)驗和積累,他們有對問題的看法和理解,這就要求教師新課程標準下要轉(zhuǎn)變觀念,從學(xué)生的實際出發(fā),創(chuàng)設(shè)有助于學(xué)生自主學(xué)習(xí)的問題情境,引導(dǎo)學(xué)生通過實踐、思考、探討、交流,讓他們有可說的問題,讓他們有充分發(fā)表自己看法和真實想法的機會。從而獲得知識形成技能,并發(fā)展思維,學(xué)會學(xué)習(xí),促使學(xué)生在教師的指導(dǎo)下生動活潑地、主動地學(xué)習(xí)。正如教育家陶行知先生說的:“先生的責(zé)任不在教,而在教學(xué)生學(xué)?!?BR>    當(dāng)然,教師作為教學(xué)的組織者也不能“放羊”,在學(xué)生說得不全、理解不夠的地方,也要進行必要的引導(dǎo)。以往的教學(xué)中,教師在講到某些重、難點時,由于對學(xué)生學(xué)習(xí)潛力估計不足,所以教師包辦代替的多,講道理占用了學(xué)生大量寶貴的學(xué)習(xí)時間。即使讓學(xué)生自學(xué)也是由“扶”到“半扶半放”,再到“放”。葉圣陶先生說:“教者,蓋在于引導(dǎo)、啟發(fā)?!边@就是說教師是指導(dǎo)者就不能“代庖”,教師因此新課程標準要求教師“帶著學(xué)生走向知識”而不是“帶著知識走向?qū)W生”。課堂上教師可以采用“小組合作學(xué)習(xí)”的教學(xué)形式,加強學(xué)生之間的合作與交流,充分發(fā)揮學(xué)生群體磨合后的智慧,必將大大拓展學(xué)生思維的空間,提高學(xué)生的自學(xué)能力。另外,教師從講臺上走下來,參與到學(xué)生中間,及時了解到、反饋到學(xué)生目前學(xué)習(xí)的最新進展情況。通過學(xué)生的合作學(xué)習(xí)和教師的引導(dǎo)、啟發(fā)、幫助,學(xué)生必將成為課堂的真正主人。
    新課程標準下教師已經(jīng)不再是單純地傳授知識,而是幫助學(xué)生吸收、選擇和整理信息,帶領(lǐng)學(xué)生去管理人類已形成和發(fā)展的認識成果,激勵他們在繼承基礎(chǔ)上發(fā)展;教師不單是一個學(xué)者,精通自己的學(xué)科知識,而且是學(xué)生的.導(dǎo)師,指導(dǎo)學(xué)生發(fā)展自己的個性,督促其自我參與,學(xué)會生存,成才成人。教師的勞動不再是機械的重復(fù),不再是在課堂上千篇一律的死板講授,而是組織開展種種認知性學(xué)習(xí)活動,師生共同參與探討數(shù)學(xué)知識;新課程標準下的教師也不再是學(xué)生知識的唯一源泉,而是各種知識源泉的組織者、協(xié)調(diào)者。
    親近數(shù)學(xué)心得體會和方法篇五
    數(shù)學(xué)作為一門科學(xué),既豐富又深奧。在學(xué)習(xí)數(shù)學(xué)的過程中,我們不僅需要掌握一定的理論知識,還要學(xué)會運用各種數(shù)學(xué)方法。數(shù)學(xué)的方法不僅僅是解題的工具,更是思維的鍛煉,培養(yǎng)我們的邏輯思維和分析能力。在我學(xué)習(xí)數(shù)學(xué)的過程中,我深深地體會到了數(shù)學(xué)方法的重要性,并且總結(jié)了一些心得體會。
    第二段:嚴謹?shù)耐评?BR>    數(shù)學(xué)方法的第一要素就是嚴謹?shù)耐评?。在?shù)學(xué)中,每一步的推理都必須具備合理性和準確性,任何無法證明的結(jié)論都是不被接受的。因此,學(xué)習(xí)數(shù)學(xué)的過程中,我們要養(yǎng)成一種嚴密的思維方式,不能輕易地得出結(jié)論,而是要經(jīng)過邏輯推理和證明。嚴謹?shù)耐评碜屛艺J識到了思考問題時的慎重和深入,這也是數(shù)學(xué)方法給我的一個重要啟示。
    第三段:抽象和歸納
    數(shù)學(xué)的另一個重要方法就是抽象和歸納。抽象是將復(fù)雜的問題簡化成易于理解和解決的形式,可以幫助我們更好地理解事物的本質(zhì)。歸納是通過觀察和總結(jié)規(guī)律,從而得出普遍性結(jié)論的方法。在數(shù)學(xué)中,我們經(jīng)常通過觀察一些特殊情況,然后歸納出一般規(guī)律。這種方法讓我明白了從問題的具體情況出發(fā),逐漸拓展到一般規(guī)律,可以幫助我們更好地解決問題。
    第四段:創(chuàng)造性解題
    數(shù)學(xué)的魅力之一就是創(chuàng)造性解題。在數(shù)學(xué)中,有些問題可能沒有明確的解決方法,需要我們發(fā)揮想象力和創(chuàng)造力去探索。通過找到不同的解題方法,我們可以提高解決問題的能力和思維的靈活性。在學(xué)習(xí)數(shù)學(xué)的過程中,我發(fā)現(xiàn)不同的解題方法可以帶給不同的思路和視角,從而讓我更好地理解數(shù)學(xué)的本質(zhì)和應(yīng)用。創(chuàng)造性解題讓我明白了數(shù)學(xué)方法的靈活性和多樣性。
    第五段:實踐和應(yīng)用
    數(shù)學(xué)方法的學(xué)習(xí)并不僅僅停留在課本知識的掌握,更需要運用到實際問題中去。通過實際問題的解決,我們可以發(fā)現(xiàn)數(shù)學(xué)方法的實際用途和價值。實踐和應(yīng)用不僅能鞏固數(shù)學(xué)的知識,還可以培養(yǎng)我們的分析和解決問題的能力。在實踐中,我們也會發(fā)現(xiàn)數(shù)學(xué)方法的不足之處和需要完善的地方,這也是我們不斷提高的機會。因此,將數(shù)學(xué)方法應(yīng)用到實踐中去,既是對數(shù)學(xué)學(xué)習(xí)的一種檢驗,也是對數(shù)學(xué)思維能力的一次鍛煉。
    結(jié)尾
    總結(jié)起來,數(shù)學(xué)的方法是數(shù)學(xué)學(xué)習(xí)不可或缺的一部分。嚴謹?shù)耐评?、抽象和歸納、創(chuàng)造性解題以及實踐和應(yīng)用是數(shù)學(xué)方法的重要組成部分。通過學(xué)習(xí)和運用這些方法,我們可以提高自己的思維能力和解決問題的能力,更好地理解和運用數(shù)學(xué)。希望在今后的學(xué)習(xí)中能夠不斷探索數(shù)學(xué)方法的奧秘,提升自己的數(shù)學(xué)水平。
    親近數(shù)學(xué)心得體會和方法篇六
    數(shù)學(xué)是一種科學(xué),它是一種用符號語言研究數(shù)量、結(jié)構(gòu)、變化和空間的學(xué)科。它是大家可能最繞不過的學(xué)科之一。數(shù)學(xué)需要極高的邏輯能力,還需要大量的訓(xùn)練和應(yīng)用。在我小學(xué)的時候,我曾經(jīng)對數(shù)學(xué)非常感興趣,可是我隨著年齡的增長,我的興趣也漸漸的減弱了。但是在我大學(xué)的時候,我又重新對數(shù)學(xué)產(chǎn)生了興趣,這讓我意識到,親自體驗數(shù)學(xué)的樂趣很重要,它不僅能夠幫助我們學(xué)習(xí)數(shù)學(xué),而且可以幫助我們在日常生活中更好地應(yīng)用數(shù)學(xué)。
    二、我的數(shù)學(xué)心得體會
    我的數(shù)學(xué)心得體會可以概括為:數(shù)學(xué)是一個非常有趣和具有挑戰(zhàn)性的學(xué)科。數(shù)學(xué)本身就富有創(chuàng)造性和融合能力。通過數(shù)學(xué)的學(xué)習(xí)和實踐,可以開發(fā)我們的思維能力和解決問題的能力。這取決于我們對數(shù)學(xué)的態(tài)度,如果我們把數(shù)學(xué)視為一項挑戰(zhàn)和一種機會,我們就會更容易地掌握它,也可以從中學(xué)習(xí)更多的東西。最重要的是,我們需要保持對數(shù)學(xué)的好奇心和嘗試不同的方式去解決問題。這樣我們就能更好地把數(shù)學(xué)應(yīng)用到日常生活中,提高我們的工作效率和實用價值。
    三、如何更好地?zé)釔蹟?shù)學(xué)
    首先,我們需要注意日常生活中的數(shù)學(xué)應(yīng)用。當(dāng)我們意識到數(shù)學(xué)在日常生活中的重要性時,我們就會開始感受到它的魅力。其次,我們可以從理論層面去欣賞數(shù)學(xué)的美。數(shù)學(xué)對于創(chuàng)造、思考和解決問題能力的開發(fā)至關(guān)重要,它是一種超越時間和空間的語言。最后,我們需要養(yǎng)成良好的學(xué)習(xí)習(xí)慣,通過堅持不懈的練習(xí)和探究,保持對數(shù)學(xué)的熱愛和專注度。
    四、數(shù)學(xué)在不同領(lǐng)域的應(yīng)用
    數(shù)學(xué)在各個領(lǐng)域中都有著廣泛的應(yīng)用。在自然科學(xué)領(lǐng)域,數(shù)學(xué)幫助我們更好地理解宇宙萬物的本質(zhì)和相互作用。在商業(yè)和金融領(lǐng)域,數(shù)學(xué)可以有效地幫助人們進行金融模型的計算,支持商業(yè)決策和預(yù)測市場走勢。在工程領(lǐng)域,數(shù)學(xué)幫助我們設(shè)計復(fù)雜的建筑、機器和設(shè)備。在社會科學(xué)領(lǐng)域,數(shù)學(xué)可以幫助我們理解人類社會的行為和趨勢,進而有效地預(yù)測未來發(fā)展方向。這些領(lǐng)域中的數(shù)學(xué)應(yīng)用,可以說無時無刻不在我們的生活中。
    五、結(jié)論
    總而言之,數(shù)學(xué)是一種非常有趣和有價值的學(xué)科,它可以讓我們更好地理解世界,更好地應(yīng)用它來解決各種問題。為了更好地?zé)釔蹟?shù)學(xué),我們需要注意數(shù)學(xué)在日常生活中的應(yīng)用,欣賞數(shù)學(xué)的美,養(yǎng)成良好的學(xué)習(xí)習(xí)慣,并認識到在不同領(lǐng)域中數(shù)學(xué)的普遍存在和廣泛應(yīng)用。這樣,我們就能更好地理解并接受數(shù)學(xué),從而更好地應(yīng)用數(shù)學(xué)。
    親近數(shù)學(xué)心得體會和方法篇七
    第一段:引言(引入主題)
    如今,數(shù)學(xué)已經(jīng)演變成一門涵蓋廣泛領(lǐng)域的學(xué)科,其應(yīng)用范圍逐漸擴大。而現(xiàn)代數(shù)學(xué)方法作為一種新的學(xué)習(xí)方式,極大地改變了傳統(tǒng)的數(shù)學(xué)學(xué)習(xí)方式。通過我自己的學(xué)習(xí)體驗,我開始認識到現(xiàn)代數(shù)學(xué)方法的優(yōu)點和重要性。在接下來的文章中,我將分享我的心得和體會。
    第二段:感受效益(介紹現(xiàn)代數(shù)學(xué)方法的效益)
    現(xiàn)代數(shù)學(xué)方法注重培養(yǎng)學(xué)生的邏輯思維能力,將數(shù)學(xué)與現(xiàn)實生活相結(jié)合,通過實例讓學(xué)生更好地理解和應(yīng)用知識。與傳統(tǒng)的死記硬背不同,現(xiàn)代數(shù)學(xué)方法強調(diào)學(xué)生的主動參與和探索,培養(yǎng)學(xué)生的創(chuàng)造力和解決問題的能力。在實踐中,我發(fā)現(xiàn)現(xiàn)代數(shù)學(xué)方法讓我在解題過程中更注重思考,不再依賴公式和模板解題,能夠獨立思考和發(fā)現(xiàn)解決問題的方法。這種學(xué)習(xí)方式不僅提高了我的數(shù)學(xué)成績,同時也增強了我的自信心。
    第三段:拓寬視野(介紹現(xiàn)代數(shù)學(xué)方法的拓寬視野能力)
    傳統(tǒng)數(shù)學(xué)教學(xué)往往停留在基礎(chǔ)知識的講授上,而現(xiàn)代數(shù)學(xué)方法更注重數(shù)學(xué)的深度和廣度。通過引入不同領(lǐng)域的應(yīng)用和發(fā)展,現(xiàn)代數(shù)學(xué)方法使我對數(shù)學(xué)本身的認識更加全面。例如,統(tǒng)計學(xué)在現(xiàn)代社會中的重要性不斷提升,而傳統(tǒng)數(shù)學(xué)教育中對統(tǒng)計學(xué)的教學(xué)往往薄弱。而通過現(xiàn)代數(shù)學(xué)方法,我了解到了統(tǒng)計學(xué)在保險、金融、醫(yī)療等領(lǐng)域的應(yīng)用,這不僅開闊了我的視野,也提供了更多的學(xué)習(xí)動力。
    第四段:團隊合作(介紹現(xiàn)代數(shù)學(xué)方法的團隊合作能力)
    在實踐中,現(xiàn)代數(shù)學(xué)方法注重培養(yǎng)學(xué)生的團隊合作意識和能力。通過小組討論、合作解題等方式,學(xué)生可以相互交流、碰撞思維、分享經(jīng)驗,從而更好地解決問題。這種合作學(xué)習(xí)的方式提高了我和同學(xué)之間的互動和交流,促進了我們的團隊合作能力的培養(yǎng)。通過與他人討論,我不僅可以更深入地理解一些問題,也能夠從他人的觀點中獲得啟迪和靈感。
    第五段:總結(jié)(總結(jié)并強調(diào)現(xiàn)代數(shù)學(xué)方法的重要性)
    在我實踐的過程中,現(xiàn)代數(shù)學(xué)方法給我?guī)砹嗽S多好處。它不僅提高了我的學(xué)習(xí)成績,也拓寬了我的視野,增強了我的團隊合作意識。通過學(xué)習(xí)現(xiàn)代數(shù)學(xué)方法,我開始認識到,數(shù)學(xué)不僅是一種學(xué)科,更是一種思維方式和解決問題的方法。我將繼續(xù)通過現(xiàn)代數(shù)學(xué)方法來培養(yǎng)自己的數(shù)學(xué)思維能力,并將其運用到其他學(xué)科和實際生活中。因此,現(xiàn)代數(shù)學(xué)方法是我學(xué)習(xí)數(shù)學(xué)過程中的重要組成部分,也是我在學(xué)術(shù)生涯中的重要啟示。
    親近數(shù)學(xué)心得體會和方法篇八
    數(shù)學(xué)作為一門科學(xué),既神秘又晦澀。很多時候,學(xué)生對數(shù)學(xué)產(chǎn)生抗拒情緒,在考試時也是常見的“忘”得一干二凈。然而,通過一定的引導(dǎo)和方法,我逐漸克服了這種困惑,甚至發(fā)現(xiàn)了數(shù)學(xué)的迷人之處。
    第二段:數(shù)學(xué)學(xué)習(xí)的艱難和困惑
    我剛開始學(xué)習(xí)數(shù)學(xué)的時候,并不像其他科目那樣容易掌握。公式、定理、證明、推理等都讓我感到寒心。這種無從下手的心情讓我感到無望,甚至對數(shù)學(xué)產(chǎn)生了一些抵觸情緒。每次考試時,老師布置的任何單元和題目都會讓我十分不安。
    第三段:如何克服困難并慢慢喜歡上數(shù)學(xué)
    為了克服這種局面,我努力尋找方法。我通過閱讀數(shù)學(xué)教材、看視頻、找老師請教和上網(wǎng)搜索資料,不斷了解和學(xué)習(xí)數(shù)學(xué)的思維方式和知識點。我也通過多做練習(xí),不斷地鞏固和提高我的數(shù)學(xué)能力。逐漸地,我開始喜歡上數(shù)學(xué),感到數(shù)學(xué)是一門有趣的學(xué)科,這樣也使得我的數(shù)學(xué)成績逐漸提高。
    第四段:數(shù)學(xué)對人們的好處和得益
    其實,在一個人的生活中,數(shù)學(xué)的印跡無處不在。我們不時地接觸科技和數(shù)字,而這些事情離不開數(shù)學(xué)。當(dāng)我們學(xué)習(xí)物理、化學(xué)、生物等科學(xué)時,也要通過數(shù)學(xué)來分析和描述實驗結(jié)果。數(shù)學(xué)也是我們通往理工科院校的大門之一,而這個領(lǐng)域還有許多需要解決的問題,例如用于保密、天氣預(yù)報、金融領(lǐng)域等。數(shù)學(xué)中的邏輯思維和分析方式也能增強我們的思考和閱讀能力,使我們成為更好的決策者。
    第五段:結(jié)論
    總之,數(shù)學(xué)的學(xué)習(xí)需要耐心和技巧。當(dāng)我們認真分析和學(xué)習(xí)時,數(shù)學(xué)是一門迷人的學(xué)科,也能夠給我們帶來很多好處。我希望學(xué)習(xí)數(shù)學(xué)的同學(xué)們能克服學(xué)習(xí)難題,學(xué)會喜歡上數(shù)學(xué),從而在生活中受益。
    親近數(shù)學(xué)心得體會和方法篇九
    隨著中國對教育的重視和對科學(xué)技術(shù)的發(fā)展,數(shù)學(xué)作為一門基礎(chǔ)性學(xué)科,對學(xué)生的培養(yǎng)顯得尤為重要。數(shù)學(xué)培優(yōu)方法涉及到學(xué)習(xí)環(huán)境、學(xué)習(xí)態(tài)度、學(xué)習(xí)方法等多個方面。在長期的學(xué)習(xí)實踐中,我總結(jié)出了一些心得體會,既希望能夠?qū)V大學(xué)生有所幫助,也希望能夠促進數(shù)學(xué)培優(yōu)方法的進一步探索和發(fā)展。
    第一段:創(chuàng)造積極的學(xué)習(xí)環(huán)境
    數(shù)學(xué)培優(yōu)方法的第一步是營造一個積極的學(xué)習(xí)環(huán)境。學(xué)習(xí)環(huán)境對于學(xué)生的學(xué)習(xí)效果有著重要影響。在數(shù)學(xué)課堂上,老師應(yīng)該營造一個輕松愉快的學(xué)習(xí)氛圍,鼓勵學(xué)生發(fā)表自己的意見和想法,激發(fā)學(xué)生的學(xué)習(xí)興趣。同時,學(xué)生們也應(yīng)當(dāng)互相合作,共同討論問題,分享解題思路和方法。在家庭環(huán)境中,家長應(yīng)該為孩子提供一個安靜、整潔、舒適的學(xué)習(xí)空間,給予他們充分的支持和鼓勵。
    第二段:養(yǎng)成正確的學(xué)習(xí)態(tài)度
    數(shù)學(xué)培優(yōu)方法離不開正確的學(xué)習(xí)態(tài)度。首先,學(xué)生要有對數(shù)學(xué)的積極態(tài)度,對數(shù)學(xué)充滿熱愛和興趣。即使遇到困難和挫折,也要堅持下去,相信自己能夠克服困難。其次,學(xué)生要學(xué)會傾聽和理解老師的講解,認真完成課堂筆記和作業(yè)。尤其要注意對基礎(chǔ)知識的掌握,打牢基礎(chǔ)是進一步學(xué)習(xí)的關(guān)鍵。最后,學(xué)生還需學(xué)會總結(jié)和歸納問題,善于發(fā)現(xiàn)問題的規(guī)律和解題方法,提高自己的思維和分析能力。
    第三段:合理規(guī)劃學(xué)習(xí)時間
    數(shù)學(xué)培優(yōu)方法還需要合理規(guī)劃學(xué)習(xí)時間。在學(xué)習(xí)數(shù)學(xué)的過程中,學(xué)生要有計劃地安排學(xué)習(xí)時間,分配合理的時間給不同的數(shù)學(xué)知識點。例如,給予更多時間用于理解和掌握難點,較好的理解數(shù)學(xué)的邏輯和推理,提高解題的能力。同時,學(xué)生也要掌握一定的自律性,按照計劃完成學(xué)習(xí)任務(wù),不斷提升自己的學(xué)習(xí)效率。
    第四段:靈活運用多種學(xué)習(xí)方法
    數(shù)學(xué)培優(yōu)方法也需要學(xué)生具備一定的學(xué)習(xí)方法。學(xué)生在學(xué)習(xí)數(shù)學(xué)時,應(yīng)該靈活運用多種學(xué)習(xí)方法,既能夠根據(jù)自身特點進行選擇,也能夠根據(jù)具體的數(shù)學(xué)問題進行調(diào)整。例如,可以通過做題鞏固基礎(chǔ)知識,通過較難的習(xí)題提高解題能力;可以通過繪制圖表或找尋實例來理解抽象的概念;也可以通過講解給他人來加深自己的理解??傊瑢W(xué)生應(yīng)該根據(jù)實際情況,結(jié)合教材、參考書和互聯(lián)網(wǎng)等多種資源,相互交流學(xué)習(xí)經(jīng)驗。
    第五段:不斷培養(yǎng)數(shù)學(xué)應(yīng)用能力數(shù)學(xué)培優(yōu)方法的最終目標是培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用能力。在學(xué)習(xí)數(shù)學(xué)的同時,學(xué)生要善于把數(shù)學(xué)知識應(yīng)用到實際問題中去。通過解決實際問題,學(xué)生可以更好地理解和運用數(shù)學(xué)知識,培養(yǎng)數(shù)學(xué)思維的發(fā)散性和綜合能力。因此,學(xué)生們需要多參加數(shù)學(xué)建模、數(shù)學(xué)競賽等活動,積極鍛煉自己的數(shù)學(xué)應(yīng)用能力。
    綜上所述,在數(shù)學(xué)培優(yōu)方法的實踐中,學(xué)習(xí)環(huán)境、學(xué)習(xí)態(tài)度、學(xué)習(xí)時間、學(xué)習(xí)方法和數(shù)學(xué)應(yīng)用能力是相輔相成的。只有在良好的學(xué)習(xí)環(huán)境中,學(xué)生才能夠以正確的學(xué)習(xí)態(tài)度自覺學(xué)習(xí),合理規(guī)劃學(xué)習(xí)時間,并靈活運用多種學(xué)習(xí)方法,最終達到培養(yǎng)數(shù)學(xué)應(yīng)用能力的目標。希望廣大學(xué)生能夠根據(jù)自身情況,有針對性地選擇適合自己的數(shù)學(xué)培優(yōu)方法,不斷提高數(shù)學(xué)素養(yǎng),取得更好的成績。同時,也期待數(shù)學(xué)培優(yōu)方法能夠不斷創(chuàng)新和完善,為培養(yǎng)更多的數(shù)學(xué)人才提供更好的教育保障。
    親近數(shù)學(xué)心得體會和方法篇十
    在當(dāng)今科技日新月異的時代,現(xiàn)代數(shù)學(xué)方法在各個領(lǐng)域的應(yīng)用越發(fā)廣泛。從工程學(xué)到經(jīng)濟學(xué),從計算機科學(xué)到物理學(xué),數(shù)學(xué)方法被用于解決實際問題和推動科學(xué)研究。作為一名學(xué)習(xí)數(shù)學(xué)的學(xué)生,我深切體會到現(xiàn)代數(shù)學(xué)方法對于我們的學(xué)習(xí)和思維能力的重要性。在這篇文章中,我將分享我在學(xué)習(xí)現(xiàn)代數(shù)學(xué)方法的過程中所獲得的體會和心得。
    段落二:抽象思維的培養(yǎng)
    現(xiàn)代數(shù)學(xué)方法非常注重抽象思維的培養(yǎng)。在傳統(tǒng)的數(shù)學(xué)教育中,我們往往通過解決具體問題來學(xué)習(xí)數(shù)學(xué)知識。然而,在現(xiàn)代數(shù)學(xué)方法中,我們需要從更抽象和一般的層面思考和表述問題。這種抽象思維的培養(yǎng)不僅使我們能夠更好地理解數(shù)學(xué)概念和定理,還能訓(xùn)練我們在解決實際問題時進行抽象問題建模和分析的能力。我發(fā)現(xiàn),通過學(xué)習(xí)現(xiàn)代數(shù)學(xué)方法,我的思維變得更加靈活和深入,我能夠更好地理解和解決復(fù)雜的問題。
    段落三:邏輯推理的重要性
    現(xiàn)代數(shù)學(xué)方法注重邏輯推理的訓(xùn)練。在數(shù)學(xué)中,邏輯推理是解決問題的基礎(chǔ),決定了解題的正確性和有效性。通過學(xué)習(xí)現(xiàn)代數(shù)學(xué)方法,我鍛煉了邏輯推理的能力,學(xué)會了合理地運用證明方法來解決問題。這使我能夠更好地分析問題,搭建推導(dǎo)框架,并有效地推理出結(jié)論。邏輯推理的重要性不僅體現(xiàn)在數(shù)學(xué)學(xué)科中,也是我們?nèi)粘I詈推渌麑W(xué)科中必備的思維方法。
    段落四:團隊合作的重要性
    在學(xué)習(xí)現(xiàn)代數(shù)學(xué)方法的過程中,我意識到團隊合作的重要性。雖然數(shù)學(xué)學(xué)科通常被認為是個體競爭的領(lǐng)域,但在解決復(fù)雜問題時,團隊合作是必不可少的。通過和同學(xué)們一起討論和合作,我發(fā)現(xiàn)不同的人有不同的思考方式和見解,這對于豐富我們的思維和擴展我們的視野非常重要。團隊合作還能幫助我們更好地理解和應(yīng)用數(shù)學(xué)知識,將數(shù)學(xué)方法與其他學(xué)科進行交叉和融合,加強我們的綜合能力。
    段落五:應(yīng)用價值的提升
    現(xiàn)代數(shù)學(xué)方法的學(xué)習(xí)使我意識到數(shù)學(xué)不再僅僅是一門理論學(xué)科,更是一種在實際問題中解決難題、促進科學(xué)發(fā)展的有效工具。通過學(xué)習(xí)現(xiàn)代數(shù)學(xué)方法,我了解到數(shù)學(xué)在各個學(xué)科和行業(yè)的廣泛應(yīng)用,從金融市場的風(fēng)險管理到物理學(xué)中的量子力學(xué),數(shù)學(xué)方法都發(fā)揮著巨大的作用。因此,我堅信學(xué)習(xí)現(xiàn)代數(shù)學(xué)方法對于我未來的發(fā)展是非常重要的,它不僅能提升我在數(shù)學(xué)學(xué)科中的能力,還可以為我在其他領(lǐng)域的學(xué)習(xí)和研究提供有力支持。
    結(jié)論:
    通過學(xué)習(xí)現(xiàn)代數(shù)學(xué)方法,我不斷深化對數(shù)學(xué)知識的理解,培養(yǎng)了抽象思維和邏輯推理的能力,提升了團隊合作和綜合應(yīng)用的能力。數(shù)學(xué)的魅力正在于其無處不在的應(yīng)用性和深刻的智力挑戰(zhàn)。通過不斷學(xué)習(xí)和探索,我相信我能在數(shù)學(xué)學(xué)科中有所成就,并為推動科學(xué)進步做出自己的貢獻。
    親近數(shù)學(xué)心得體會和方法篇十一
    數(shù)學(xué)是一門需要運用邏輯推理和抽象思維的學(xué)科,對于大多數(shù)學(xué)生來說是一門難以捉摸和掌握的科目。為了幫助學(xué)生提高數(shù)學(xué)成績,各種數(shù)學(xué)培優(yōu)方法層出不窮。在我的學(xué)習(xí)中,我嘗試過多種方法,并總結(jié)出一些心得和體會。首先,找到適合自己的學(xué)習(xí)方法是提高數(shù)學(xué)成績的關(guān)鍵;其次,充分理解基礎(chǔ)知識,并進行有針對性的鞏固;最后,注重解題技巧的訓(xùn)練和實踐。經(jīng)過這些方法的實踐和總結(jié),我的數(shù)學(xué)成績有了明顯的提高。
    首先,找到適合自己的學(xué)習(xí)方法是提高數(shù)學(xué)成績的關(guān)鍵。每個人的學(xué)習(xí)方式都有所不同,只有找到適合自己的方法才能事半功倍。我發(fā)現(xiàn),對我來說,輔導(dǎo)學(xué)習(xí)是最有效的方法之一。通過與老師或同學(xué)的交流,我能夠更加深入地理解和掌握數(shù)學(xué)知識。此外,刷題也是我提高數(shù)學(xué)成績的重要途徑。通過大量的練習(xí)題,我能夠加深對知識點的理解,并鍛煉自己的解題能力。因此,找到適合自己的學(xué)習(xí)方法是成功的關(guān)鍵之一。
    其次,充分理解基礎(chǔ)知識,并進行有針對性的鞏固。數(shù)學(xué)是一門累計性很強的學(xué)科,基礎(chǔ)知識的掌握將會對后續(xù)的學(xué)習(xí)產(chǎn)生深遠的影響。因此,我意識到充分理解和鞏固基礎(chǔ)知識的重要性。我通過認真聽講、做筆記和背誦公式等方式,加深對基礎(chǔ)知識的理解,并進行有針對性的鞏固練習(xí)。此外,我還積極解答課堂上的問題,并請教老師和同學(xué),以便更好地理解和掌握知識。經(jīng)過這樣的努力,我對數(shù)學(xué)的基礎(chǔ)知識有了更深刻的理解,為后續(xù)的學(xué)習(xí)打下了堅實的基礎(chǔ)。
    最后,注重解題技巧的訓(xùn)練和實踐。解題技巧是提高數(shù)學(xué)成績的重要因素之一。在解題過程中,掌握一些技巧可以減少錯誤的概率,提高解題效率。為了培養(yǎng)解題的技巧,我積極參加一些數(shù)學(xué)培訓(xùn)班,學(xué)習(xí)一些解題技巧和方法。在課外時間,我還通過刷題來加深對解題方法的理解和掌握。通過不斷的訓(xùn)練和實踐,我的解題能力得到了極大的提高,解題速度和準確率都有了明顯的進步。
    綜上所述,提高數(shù)學(xué)成績的關(guān)鍵在于找到適合自己的學(xué)習(xí)方法,充分理解基礎(chǔ)知識,并進行有針對性的鞏固,以及注重解題技巧的訓(xùn)練和實踐。通過這些方法的實踐和總結(jié),我的數(shù)學(xué)成績有了顯著的提升。數(shù)學(xué)的學(xué)習(xí)需要耐心和堅持,只有通過不斷的努力和實踐,才能取得好的成績。未來,我將繼續(xù)保持學(xué)習(xí)的熱情,不斷探索和嘗試更多有效的數(shù)學(xué)學(xué)習(xí)方法,以期取得更好的成績。
    親近數(shù)學(xué)心得體會和方法篇十二
    數(shù)學(xué)作為一門學(xué)科,給人們帶來了無窮無盡的驚喜和挑戰(zhàn)。然而,很多人對數(shù)學(xué)抱有恐懼心理,認為它是一門難學(xué)的學(xué)科。我也曾經(jīng)認同這種觀點,但是在學(xué)習(xí)數(shù)學(xué)的過程中,我意識到了親近數(shù)學(xué)的重要性,并且發(fā)現(xiàn)了數(shù)學(xué)的美妙之處。
    第二段:探究數(shù)學(xué)的美妙之處
    數(shù)學(xué)是一門學(xué)科,不僅可以讓人們培養(yǎng)邏輯思維,還可以使人們領(lǐng)悟到數(shù)學(xué)的美妙之處。例如,在學(xué)習(xí)幾何時,我發(fā)現(xiàn)數(shù)學(xué)可以通過線條、面和體的運用,創(chuàng)造出許多美麗的圖形。此外,在代數(shù)中,我可以使用公式來解決一系列復(fù)雜的問題,這使得我感慨?dāng)?shù)學(xué)在解決現(xiàn)實問題上面的實用價值。
    第三段:培養(yǎng)數(shù)學(xué)能力的重要性
    親近數(shù)學(xué)可以培養(yǎng)出人們的極其重要的數(shù)學(xué)能力。例如,數(shù)學(xué)能夠幫助我提高思維的靈活性,特別是解決各種難題時,提高我的邏輯思維和解決問題的能力。這些能力是在解決人生中各種問題時極其必要的,例如使用數(shù)學(xué)的計算方法來解決財務(wù)問題、購買商品、計算房產(chǎn)稅等等。
    第四段:親近數(shù)學(xué)的方法
    那么,如何親近數(shù)學(xué)呢?我認為,一方面是要改變對數(shù)學(xué)的陳舊觀念,讓自己重新認識數(shù)學(xué)的本質(zhì)。在學(xué)習(xí)數(shù)學(xué)的基礎(chǔ)階段,我所采用的方法是實踐手推計算,找出問題本質(zhì),這樣可以更好地理解數(shù)學(xué)原理。同時,多參加各種數(shù)學(xué)競賽、課外數(shù)學(xué)班等活動,這也可以幫助我們更好地掌握數(shù)學(xué)方法。
    第五段:總結(jié)
    總之,通過親近數(shù)學(xué),我發(fā)現(xiàn)它的美妙和實用價值。只要我們擁有正確的態(tài)度,不斷練習(xí),我們也可以成為數(shù)學(xué)高手。這是一條漫長的路程,但是值得我們?nèi)W(xué)習(xí)并且去實踐。所以,讓我們鼓起勇氣和信心,走在親近數(shù)學(xué)的道路上,與數(shù)學(xué)建立更親密的關(guān)系,發(fā)掘數(shù)學(xué)的美妙之處,展現(xiàn)自己在數(shù)學(xué)方面的才華。
    親近數(shù)學(xué)心得體會和方法篇十三
    數(shù)學(xué)是一門讓許多人頭疼的學(xué)科,其抽象性和邏輯性常常令人望而卻步。然而,通過我的學(xué)習(xí)和實踐,我深信數(shù)學(xué)的方法是解決問題和拓寬思維的利器。在這篇文章中,我將分享我對數(shù)學(xué)方法的心得體會。
    在我看來,數(shù)學(xué)方法的第一步是理清思路。在解決數(shù)學(xué)問題時,了解問題的本質(zhì)和要求非常重要。我們應(yīng)該試圖將復(fù)雜的問題簡化為更易于理解和解決的形式,找出其中的關(guān)鍵因素和聯(lián)系。通過理清思路,我們可以確保自己不會在解決問題的過程中迷失方向,為接下來的步驟打下堅實的基礎(chǔ)。
    接下來,數(shù)學(xué)方法要求我們建立邏輯推理的能力。數(shù)學(xué)問題通常需要我們進行推導(dǎo)和證明,而這些過程都需要嚴密的邏輯思維。我們應(yīng)該注重證明中的每一個步驟,確保每一步都嚴密可靠,沒有遺漏和失誤。通過鍛煉邏輯推理的能力,我們能夠培養(yǎng)出清晰的思維和嚴密的思考習(xí)慣,提高自己的解決問題的能力。
    除了邏輯推理,數(shù)學(xué)方法還要求我們靈活運用各種數(shù)學(xué)工具和技巧。數(shù)學(xué)中有許多常用的工具和技巧,如分解、整理、代入等。這些工具和技巧可以幫助我們化解復(fù)雜的數(shù)學(xué)問題,使其變得更易于解決。在學(xué)習(xí)數(shù)學(xué)方法的過程中,我們應(yīng)該多注意積累各種數(shù)學(xué)知識和技巧,善于將它們運用到實際問題中,提高解決問題的效率和準確性。
    此外,數(shù)學(xué)方法還要求我們保持耐心和堅持。數(shù)學(xué)問題往往不是一蹴而就的,我們可能需要進行多次嘗試和思考才能找到正確的解決方案。在遇到困難和挫折時,我們不應(yīng)該輕易放棄,而應(yīng)該保持耐心和堅持。通過不斷的嘗試和思考,我們能夠逐步找到解決問題的線索和方法,最終得到滿意的結(jié)果。
    最后,數(shù)學(xué)方法還需要我們進行反思和總結(jié)。數(shù)學(xué)是一門不斷發(fā)展和演進的學(xué)科,我們應(yīng)該及時總結(jié)自己的經(jīng)驗和心得體會。在解決問題的過程中,我們應(yīng)該思考自己是如何應(yīng)用數(shù)學(xué)方法解決問題的,是否有更好的方法和思路。通過不斷地反思和總結(jié),我們能夠不斷優(yōu)化自己的數(shù)學(xué)方法,提高解決問題的效率和準確性。
    總之,數(shù)學(xué)方法是一種強大的工具,可以幫助我們解決各種問題和拓寬思維。通過理清思路、建立邏輯推理能力、靈活運用數(shù)學(xué)工具和技巧、保持耐心和堅持以及進行反思和總結(jié),我們能夠逐步提高自己的數(shù)學(xué)水平和解決問題的能力。數(shù)學(xué)方法不僅在數(shù)學(xué)課堂上有用,在日常生活和工作中也起著重要的作用。我相信只要我們認真學(xué)習(xí)和運用數(shù)學(xué)方法,我們一定能夠成為在解決問題和思考方面有獨到見解和能力的人。
    親近數(shù)學(xué)心得體會和方法篇十四
    通過幾年的高中數(shù)學(xué)的教學(xué),我感覺到很多學(xué)生重視數(shù)學(xué),想學(xué)好數(shù)學(xué)。也有很多家長告訴老師他的孩子在初中數(shù)學(xué)是如何的好現(xiàn)在怎么就落后了呢。作為衡量一個人能力的重要學(xué)科,從小學(xué)到高中絕大多數(shù)同學(xué)對它情有獨鐘,投入了大量的時間與精力.然而并非人人都是成功者,許多小學(xué)、初中數(shù)學(xué)學(xué)科成績的佼佼者,進入高中階段,第一個跟頭就栽在數(shù)學(xué)上。眾多初中學(xué)習(xí)的成功者淪為高中學(xué)習(xí)的失敗者,主要原因有以下幾個方面.
    1.學(xué)習(xí)被動.許多同學(xué)進入高中后,還像初中那樣,有很強的依賴心理,跟隨老師慣性運轉(zhuǎn),沒有掌握學(xué)習(xí)主動權(quán).沒有真正理解所學(xué)內(nèi)容。在初中的數(shù)學(xué)教學(xué)中,教師講解詳細,常把許多問題的解決建立為固定的思維模式,而且各類題型反復(fù)練習(xí),學(xué)生漸漸養(yǎng)成了“依葫蘆畫瓢”的抄錄式的學(xué)習(xí)方法。而高中數(shù)學(xué)要求學(xué)生勤于思考,善于思考,掌握數(shù)學(xué)思想方法,善于歸納總結(jié)規(guī)律,在思維的靈活性、可延伸性、創(chuàng)造性方面提出了較高的要求。但學(xué)生的思維能力的發(fā)展和思維方式的轉(zhuǎn)換有一個循序漸進的過程,這就給高一數(shù)學(xué)的學(xué)習(xí)形成了思維障礙。
    2.學(xué)不得法.老師上課一般都要講清知識的來龍去脈,剖析概念的內(nèi)涵,分析重點難點,突出思想方法.而一部分同學(xué)上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固、總結(jié)、尋找知識間的聯(lián)系,只是趕做作業(yè),亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背.也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結(jié)果是事倍功半,收效甚微.
    3.基礎(chǔ)重視不夠.知識是能力的基礎(chǔ),要切實抓好基礎(chǔ)知識的學(xué)習(xí)。數(shù)學(xué)基礎(chǔ)知識學(xué)習(xí)包括概念學(xué)習(xí),定理公式學(xué)習(xí)以及解題學(xué)習(xí)三個方面一些“自我感覺良好”的同學(xué),常輕視基本知識、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高鶩遠,重“量”輕“質(zhì)”,陷入題海.到正規(guī)作業(yè)或考試中不是演算出錯就是中途“卡殼”.
    4.進一步學(xué)習(xí)條件不具備.高中數(shù)學(xué)與初中數(shù)學(xué)相比,知識的深度、廣度,能力要求都是一次飛躍.這就要求必須掌握基礎(chǔ)知識與技能為進一步學(xué)習(xí)作好準備.高中數(shù)學(xué)很多地方難度大、方法新、分析能力要求高.如二次函數(shù)在閉區(qū)間上的最值問題,函數(shù)值域的求法,實根分布與參變量方程,三角公式的變形與靈活運用,空間概念的形成,排列組合應(yīng)用題及實際應(yīng)用問題等.客觀上這些觀點就是分化點,有的內(nèi)容還是高初中教材都不講的脫節(jié)內(nèi)容,如不采取補救措施,查缺補漏,分化是不可避免的.
    高中學(xué)生不僅僅要“想學(xué)”,還必須“會學(xué)”,要講究科學(xué)的學(xué)習(xí)方法,提高學(xué)習(xí)效率,才能變被動為主動.針對學(xué)生學(xué)習(xí)中出現(xiàn)的上述情況,我有些建議:
    1、 樹立學(xué)好高中數(shù)學(xué)的信心。
    進入高中就必須樹立正確的學(xué)習(xí)目標和遠大的理想。學(xué)生可以閱讀一些數(shù)學(xué)歷史,體會數(shù)學(xué)家的創(chuàng)造所經(jīng)歷的種種挫折、數(shù)學(xué)家成長的故事和他們在科學(xué)技術(shù)進步中的卓越貢獻,也可請高二、高三的優(yōu)秀學(xué)生講講他們學(xué)習(xí)數(shù)學(xué)的方法,以此激勵自己積極思維,勇于進取,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心。
    2、培養(yǎng)良好學(xué)習(xí)習(xí)慣。
    良好的學(xué)習(xí)習(xí)慣包括制定計劃、課前自學(xué)、專心上課、及時復(fù)習(xí)、獨立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個方面.
    制定計劃使學(xué)習(xí)目的明確,時間安排合理,不慌不忙,穩(wěn)扎穩(wěn)打,它是推動學(xué)生主動學(xué)習(xí)和克服困難的內(nèi)在動力.但計劃一定要切實可行,既有長遠打算,又有短期安排,執(zhí)行過程中嚴格要求自己,磨煉學(xué)習(xí)意志.
    課前自學(xué)是學(xué)生上好新課,取得較好學(xué)習(xí)效果的基礎(chǔ).課前自學(xué)不僅能培養(yǎng)自學(xué)能力,而且能提高學(xué)習(xí)新課的興趣,掌握學(xué)習(xí)主動權(quán).自學(xué)不能搞走過場,要講究質(zhì)量,力爭在課前把教材弄懂,上課著重聽老師講課的思路,把握重點,突破難點,盡可能把問題解決在課堂上.
    上課是理解和掌握基本知識、基本技能和基本方法的關(guān)鍵環(huán)節(jié).“學(xué)然后知不足”,課前自學(xué)過的同學(xué)上課更能專心聽課,他們知道什么地方該詳,什么地方可略;什么地方該精雕細刻,什么地方可以一帶而過,該記的地方才記下來,而不是全抄全錄,顧此失彼.
    及時復(fù)習(xí)是高效率學(xué)習(xí)的重要一環(huán),通過反復(fù)閱讀教材,多方查閱有關(guān)資料,強化對基本概念知識體系的理解與記憶,將所學(xué)的新知識與有關(guān)舊知識聯(lián)系起來,進行分析比較,一邊復(fù)習(xí)一邊將復(fù)習(xí)成果整理在筆記上,使對所學(xué)的新知識由“懂”到“會”.
    獨立作業(yè)是學(xué)生通過自己的獨立思考,靈活地分析問題、解決問題,進一步加深對所學(xué)新知識的理解和對新技能的掌握過程.這一過程是對學(xué)生意志毅力的考驗,通過運用使學(xué)生對所學(xué)知識由“會”到“熟”.
    解決疑難是指對獨立完成作業(yè)過程中暴露出來對知識理解的錯誤,或由于思維受阻遺漏解答,通過點撥使思路暢通,補遺解答的過程.解決疑難一定要有鍥而不舍的精神,做錯的作業(yè)再做一遍.對錯誤的地方?jīng)]弄清楚要反復(fù)思考,實在解決不了的要請教老師和同學(xué),并要經(jīng)常把易錯的地方拿出來復(fù)習(xí)強化,作適當(dāng)?shù)闹貜?fù)性練習(xí),把求老師問同學(xué)獲得的東西消化變成自己的知識,長期堅持使對所學(xué)知識由“熟”到“活”.
    系統(tǒng)小結(jié)是學(xué)生通過積極思考,達到全面系統(tǒng)深刻地掌握知識和發(fā)展認識能力的重要環(huán)節(jié).小結(jié)要在系統(tǒng)復(fù)習(xí)的基礎(chǔ)上以教材為依據(jù),參照筆記與有關(guān)資料,通過分析、綜合、類比、概括,揭示知識間的內(nèi)在聯(lián)系.以達到對所學(xué)知識融會貫通的目的.經(jīng)常進行多層次小結(jié),能對所學(xué)知識由“活”到“悟”.
    課外學(xué)習(xí)包括閱讀課外書籍與報刊,參加學(xué)科競賽與講座,走訪高年級同學(xué)或老師交流學(xué)習(xí)心得等.課外學(xué)習(xí)是課內(nèi)學(xué)習(xí)的補充和繼續(xù),它不僅能豐富學(xué)生的文化科學(xué)知識,加深和鞏固課內(nèi)所學(xué)的知識,而且能滿足和發(fā)展他們的興趣愛好,培養(yǎng)獨立學(xué)習(xí)和工作能力,激發(fā)求知欲與學(xué)習(xí)熱情.
    3、培養(yǎng)優(yōu)秀的數(shù)學(xué)思維品質(zhì),提高數(shù)學(xué)解決問題的能力
    與初中數(shù)學(xué)相比高中數(shù)學(xué)在思維形式的靈活性、可拓展性等方面的要求較高。所以學(xué)習(xí)中加強思維訓(xùn)練,積極開展思維活動,努力克服思維惰性,提高自身的分析問題解決問題的能力。
    4.循序漸進,防止急躁
    由于學(xué)生年齡較小,閱歷有限,為數(shù)不少的高中學(xué)生容易急躁,有的同學(xué)貪多求快,囫圇吞棗,有的同學(xué)想靠幾天“沖刺”一蹴而就,有的取得一點成績便洋洋自得,遇到挫折又一蹶不振.針對這些情況,教師要讓學(xué)生懂得學(xué)習(xí)是一個長期的鞏固舊知識、發(fā)現(xiàn)新知識的積累過程,決非一朝一夕可以完成,為什么高中要上三年而不是三天!許多優(yōu)秀的同學(xué)能取得好成績,其中一個重要原因是他們的基本功扎實,他們的閱讀、書寫、運算技能達到了自動化或半自動化的熟練程度。
    5.研究學(xué)科特點,尋找最佳學(xué)習(xí)方法
    數(shù)學(xué)學(xué)科擔(dān)負著培養(yǎng)學(xué)生運算能力、邏輯思維能力、空間想象能力,以及運用所學(xué)知識分析問題、解決問題的能力的重任.它的特點是具有高度的抽象性、邏輯性和廣泛的適用性,對能力要求較高.學(xué)習(xí)數(shù)學(xué)一定要講究“活”,只看書不做題不行,埋頭做題不總結(jié)積累不行,對課本知識既要能鉆進去,又要能跳出來,結(jié)合自身特點,尋找最佳學(xué)習(xí)方法.華羅庚先生倡導(dǎo)的“由薄到厚”和“由厚到薄”的學(xué)習(xí)過程就是這個道理.方法因人而異,但學(xué)習(xí)的四個環(huán)節(jié)(預(yù)習(xí)、上課、整理、作業(yè))和一個步驟(復(fù)習(xí)總結(jié))是少不了的.
    6.重視輔導(dǎo),化解分化點
    如前所述高中數(shù)學(xué)中易分化的地方多,這些地方一般都有方法新、難度大、靈活性強等特點.對易分化的地方應(yīng)當(dāng)采取多次反復(fù)理解,重視輔導(dǎo),將出現(xiàn)的錯誤提出來和同學(xué)、老師議一議,充分理解題目的思維過程,通過變式練習(xí),提高自己的鑒賞能力,以達到靈活掌握知識、運用知識的目的。
    實際上新的學(xué)習(xí)必然會有一些障礙,高中生要學(xué)好數(shù)學(xué),須解決好兩個問題:第一是認識問題;第二是方法問題。要了解學(xué)習(xí)數(shù)學(xué)困難的原因,采取正確的措施,發(fā)揮自己的主體作用,學(xué)會分析問題、研究問題,這樣在培養(yǎng)創(chuàng)造性思維能力的同時,也提高了學(xué)習(xí)數(shù)學(xué)的興趣,使自己更有效、更順利的投入高中階段的學(xué)習(xí)。
    親近數(shù)學(xué)心得體會和方法篇十五
    數(shù)學(xué)是一門抽象的學(xué)科,以邏輯嚴密、推理嚴謹為特點。然而,對于大多數(shù)學(xué)生來說,數(shù)學(xué)是一門枯燥乏味的學(xué)科,充滿了公式和運算。然而,當(dāng)我開始運用數(shù)學(xué)的方法去理解生活中的問題時,我卻發(fā)現(xiàn)了它的魅力和價值所在。在接下來的幾段中,我將分享一些我在用數(shù)學(xué)的方法思考問題時獲得的心得體會。
    二、數(shù)學(xué)思維的訓(xùn)練
    數(shù)學(xué)思維是一種邏輯思維,它強調(diào)對問題的分析和推理能力。在解決數(shù)學(xué)問題時,我們需要將問題拆分成更小的部分,然后使用邏輯推理來解決它們。同樣,當(dāng)我們面臨任何其他問題時,拆分問題和進行邏輯推理也是非常有用的。以我的個人經(jīng)驗為例,當(dāng)我遇到一個看似復(fù)雜的項目時,我會將它拆分成更小的任務(wù),然后逐個解決。這種方法幫助我保持清晰的思維,并能有效地解決問題。
    三、數(shù)學(xué)的實踐性
    數(shù)學(xué)是一門實踐性很強的學(xué)科。在學(xué)習(xí)數(shù)學(xué)的過程中,我們需要不斷地做題和練習(xí),才能提高自己的能力。同樣,在現(xiàn)實生活中,我們需要應(yīng)用所學(xué)的數(shù)學(xué)知識來解決實際問題。例如,當(dāng)我在超市購物時,我會使用數(shù)學(xué)計算來比較不同商品的價格以及折扣優(yōu)惠的價值。這種實踐性不僅幫助我鞏固數(shù)學(xué)知識,還能在生活中節(jié)約金錢和時間。
    四、數(shù)學(xué)的適用性
    數(shù)學(xué)是一門廣泛適用于各個領(lǐng)域的學(xué)科。從自然科學(xué)到社會科學(xué),從工程學(xué)到藝術(shù)設(shè)計,數(shù)學(xué)都有其重要的作用。我曾經(jīng)在一次物理實驗中遇到了困擾,無法確定參數(shù)如何測量。然而,通過應(yīng)用數(shù)學(xué)原理和公式,我迅速解決了這個問題。這個經(jīng)歷讓我深刻地認識到數(shù)學(xué)在解決實際問題中的重要性和普遍適用性。
    五、數(shù)學(xué)啟發(fā)的思維方法
    數(shù)學(xué)不僅給我們提供了一種具體的解決問題的方式,還培養(yǎng)了我們的思維方法。例如,排除法是數(shù)學(xué)中常用的思維方法,它可以幫助我們迅速排除錯誤選項,提高解題的效率。類比思維是另外一種從數(shù)學(xué)中啟發(fā)而來的思維方法。通過將問題與數(shù)學(xué)中的概念進行類比,我們可以找到一個新的解決問題的角度。這些思維方法不僅適用于數(shù)學(xué)問題,也適用于其他領(lǐng)域的問題。我發(fā)現(xiàn)當(dāng)我運用這些方法去思考生活中的問題時,我能夠更加靈活和高效地解決它們。
    總結(jié)
    通過運用數(shù)學(xué)的方法去思考問題,我深刻體會到了數(shù)學(xué)的魅力和價值。數(shù)學(xué)思維的訓(xùn)練、實踐性、適用性以及數(shù)學(xué)啟發(fā)的思維方法都給我留下了深刻的印象。因此,我相信通過運用數(shù)學(xué)的方法去思考問題,我們可以提高自己的思維能力,更好地解決生活中的各種問題。無論是在學(xué)業(yè)上還是事業(yè)上,數(shù)學(xué)都能助你一臂之力。
    親近數(shù)學(xué)心得體會和方法篇十六
    數(shù)學(xué)并沒有想像的那么難,也不像想像的那樣需要投入更多的時間。我覺得到高中為止,要學(xué)習(xí)的數(shù)學(xué)一點兒不比熟悉電腦游戲難。不過,還有很多學(xué)生覺得數(shù)學(xué)吃力,這是由于他們對數(shù)學(xué)這門最具邏輯的學(xué)科采用了最無邏輯性、最不科學(xué)的方法去學(xué)習(xí)的緣故。
    “只要你多做題就好了!”還有這么無知、這么難的方法嗎?還不如干脆說:“不知有什么方法”呢,至少還算個坦率的人。我覺得說出“數(shù)學(xué)學(xué)習(xí)無捷徑可走”這種不負責(zé)任的話的人,應(yīng)該好好反省一下,因為自己沒有做到,就告訴別人無路可走,這是多么危險的思維方式啊!
    希望通過做大量的習(xí)題來提高成績,但終又嘗到失敗滋味,我意識到數(shù)學(xué)學(xué)習(xí)中盲目地搞題海戰(zhàn)術(shù)絕對不是什么好方法。為什么這么多的學(xué)生在數(shù)學(xué)上面投入大量的時間和精力,結(jié)果終于告敗呢?我還先談一談學(xué)生越學(xué)越糟糕的5個原因,只有清楚地知道這些原因,數(shù)學(xué)才能真正簡單起來。
    一、根基不實
    我遇到的大部分學(xué)生都感嘆:“數(shù)學(xué)太難了!”在他們看來,就算自己盡力了,隨著年級的升高,數(shù)學(xué)還是會越來越難?!暗降渍l覺得數(shù)學(xué)簡單!”不妨先思考一個問題。如果問初中生“5+7等于多少?5×8等于多少?”的話,誰都可以輕易地回答,但對小學(xué)一二年級的學(xué)生簡單嗎?不是。還有大家可能上了高中后曾給初中生解過一次方程,“喂!這個這樣做不就可以了!你是木頭腦袋啊?”成了青蛙,就忘了做蝌蚪的時候了,就知道一味地斥責(zé)別人。
    作為高中生,連一次函數(shù)都不知道,就算學(xué)了二次函數(shù)、三次函數(shù)也不可能真正理解,要做這類的題目等于是在挑戰(zhàn)絕對不可能的事。只有地基夯實了,上面的建筑才會牢固,如果沒有一個堅實的基礎(chǔ),那建筑不成了豆腐渣工程。所以大家認識到基礎(chǔ)不足后就將學(xué)過的東西再復(fù)習(xí)幾遍,或者把以前學(xué)過的東西再翻出來看看,但僅僅做到這種程度,還是不夠的。
    現(xiàn)在向大家介紹一種切實可行的方法,大家較容易能照著做,而且能夠看到實效。方法就是追根就底法,它是一種投入很少的時間,遇到什么問題總是追根溯源,這樣實力就在不知不覺中提高一個層次,數(shù)學(xué)就會越來越容易,所以對基礎(chǔ)置之不理,一味追求進度,搞題海戰(zhàn)術(shù),只會越學(xué)越糟糕。
    二、貪多圖快
    學(xué)習(xí)總會有一個效果最佳的適當(dāng)量,如果超過了這個量,你就會抱怨“數(shù)學(xué)題怎么這樣多啊!”“哎,該死的數(shù)學(xué)題快把我逼瘋了!”如此一來,數(shù)學(xué)就會索然無味,無論怎么學(xué)習(xí)實力很難提高了。
    第一是由于錯覺。當(dāng)我們所學(xué)的概念在題目中出現(xiàn)時,那些與重要概念直接相關(guān)的題目就是重要的題目,而那些與重要概念關(guān)系不大,需要特別技巧才能解決的題目就是不那么重要的題目。因此,在每個單元中,那些應(yīng)該融會貫通的題目才是真正重要的題目,而這些題目又不會太多。而我們平時是在根本不重要的題目上浪費大量的時間,要做的題目過多會讓人失去信心、耐心,到做真正重要的題目時反而容易混淆,所以只有靠題海戰(zhàn)術(shù)提高實力的想法其實是一種錯覺。所以要對那些70%的重要題目投入學(xué)習(xí)時間的70%以上,要先把重要題目研究明白后再去學(xué)習(xí)不重要的題目,這樣才會讓數(shù)學(xué)變得更簡單。
    第二是由于不了解自己的水平。連基礎(chǔ)都沒有打好的人去做難題,無異于拎著自己根本就提不去的東西上山。認為只有把難題解出來,實力自然就提高了,其實也是一種錯覺。如果以高于自己水平的題目為中心進行學(xué)習(xí)的話,由于不會做的題目要比會做的題目還要多得多,數(shù)學(xué)學(xué)習(xí)便會變得索然無味。因此應(yīng)該以適應(yīng)自己水平的教材和適應(yīng)自己水平的題目為中心進行學(xué)習(xí),能夠解答出來的題目越多越好,學(xué)習(xí)才有興趣。
    親近數(shù)學(xué)心得體會和方法篇十七
    二、學(xué)習(xí)方法與學(xué)習(xí)狀態(tài)
    三、明確的學(xué)習(xí)目的與科學(xué)的學(xué)習(xí)措施
    四、學(xué)好數(shù)學(xué)的基本要求
    總之,閱讀、觀察、思維、記憶、練習(xí)等方法是相互聯(lián)系、相輔相成的,缺一不可.只要我們在教學(xué)中能依據(jù)學(xué)生實際,結(jié)合教材特點及教學(xué)大綱的要求,遵循教學(xué)規(guī)律和認識規(guī)律,創(chuàng)造有利于指導(dǎo)學(xué)生形成科學(xué)學(xué)習(xí)方法的情境,就會使各個環(huán)節(jié)的指導(dǎo)適合學(xué)生的學(xué)習(xí),使學(xué)生不斷改進和完善自己的學(xué)習(xí)方法.只有學(xué)生想學(xué)、會學(xué)、樂學(xué),才能把書本知識轉(zhuǎn)化為自己的知識,再把理論知識轉(zhuǎn)化為解決實際問題的能力,也才能大面積提高數(shù)學(xué)教學(xué)質(zhì)量.并且我們應(yīng)該永遠牢記這樣一句話:“興趣和信心是學(xué)好數(shù)學(xué)的最好的老師!”
    將本文的word文檔下載到電腦,方便收藏和打印
    推薦度:
    點擊下載文檔
    搜索文檔
    親近數(shù)學(xué)心得體會和方法篇十八
    數(shù)學(xué)作為一門學(xué)科,是一種抽象的思維方式,對于我來說一直是一個難以跨越的鴻溝。多年來,我在學(xué)習(xí)數(shù)學(xué)的過程中,探索出了一些有效的方法和策略來提高自己的數(shù)學(xué)能力。這些方法包括:理解問題背后的概念,善于思考和分析,掌握解題技巧,積極實踐和應(yīng)用,以及堅持不懈地進行反思。通過這些方法,我不僅克服了數(shù)學(xué)學(xué)習(xí)的困難,而且取得了不錯的成績,并且在其他領(lǐng)域也受益匪淺。
    首先,理解問題背后的概念對于解決數(shù)學(xué)問題至關(guān)重要。數(shù)學(xué)的方法和概念往往在一些抽象的符號和公式背后隱藏著。因此,對于數(shù)學(xué)問題的解法,我們必須建立在對問題本質(zhì)的理解上。為此,我努力學(xué)習(xí)和研究數(shù)學(xué)概念,通過與實際生活和其他學(xué)科的聯(lián)系,幫助自己更好地理解和掌握數(shù)學(xué)原理。這個過程中,我發(fā)現(xiàn)學(xué)習(xí)數(shù)學(xué)并不是簡單地記憶和應(yīng)用公式,而是要理解其中的邏輯和思維方式。這種深刻的理解不僅使我在學(xué)習(xí)數(shù)學(xué)時感到更加自信,而且在解決實際問題時也能夠更加靈活地運用數(shù)學(xué)知識。
    其次,善于思考和分析是提高數(shù)學(xué)能力的關(guān)鍵。對于數(shù)學(xué)問題,重要的不僅是得出正確答案,更重要的是了解問題的解決方式和思考過程。因此,我養(yǎng)成了在解題過程中注重思考和分析的習(xí)慣。無論問題有多簡單,我都會仔細思考每一個步驟和概念,確保自己對問題有清晰的認識。我會不斷思考一些問題可能的解決策略,并在紙上畫出圖表或列出表格來幫助自己更好地理清思路。堅持這種思考和分析的習(xí)慣,我發(fā)現(xiàn)我在解決數(shù)學(xué)問題時更加得心應(yīng)手,能夠快速而準確地找到解決問題的方法。
    第三,掌握解題技巧是提高數(shù)學(xué)能力的重要手段。數(shù)學(xué)問題往往有多種解決方法,掌握一些解題技巧可以讓我們更加熟練地解決問題。通過反復(fù)做題和解析經(jīng)典問題,我逐漸掌握了一些解題技巧。例如,在解決代數(shù)問題時,我會嘗試將問題轉(zhuǎn)化為方程式,然后通過方程求解得到答案。在解決幾何問題時,我會運用幾何定理和性質(zhì)來推導(dǎo)和證明結(jié)論。掌握這些解題技巧不僅提高了我的解題速度和準確性,而且培養(yǎng)了我對不同問題的靈活思維。
    第四,積極實踐和應(yīng)用是提高數(shù)學(xué)能力的重要途徑。理論知識的學(xué)習(xí)只是數(shù)學(xué)學(xué)習(xí)的第一步,真正提高數(shù)學(xué)能力需要在實際問題中不斷實踐和應(yīng)用所學(xué)的知識。我嘗試參加數(shù)學(xué)競賽和解決實際問題,通過實際操作和應(yīng)用,不斷鞏固和擴展已有的數(shù)學(xué)能力。這種實踐和應(yīng)用不僅使我對數(shù)學(xué)的興趣更加濃厚,而且激發(fā)了我對于數(shù)學(xué)的探索和研究的熱情。同時,通過實踐和應(yīng)用,我也能夠更好地將數(shù)學(xué)方法和思維方式運用到其他學(xué)科和生活中,提高解決問題的能力和效率。
    最后,我堅持不懈地進行反思,總結(jié)和改進自己的數(shù)學(xué)學(xué)習(xí)方法。數(shù)學(xué)學(xué)習(xí)永遠是一個不斷進步和完善的過程。在學(xué)習(xí)過程中,我會不斷反思自己的不足和錯誤,并通過總結(jié)認識到自己的不足和提高的空間。我會找出自己學(xué)習(xí)數(shù)學(xué)的弱點,將其作為改進的方向,不斷努力提高自己的數(shù)學(xué)能力。同時,我也會積極尋求他人的幫助和建議,向老師和同學(xué)請教和交流,不斷完善自己的學(xué)習(xí)方法和技巧。
    總之,通過理解問題背后的概念,善于思考和分析,掌握解題技巧,積極實踐和應(yīng)用,以及反思自我,我漸漸掌握了一些有效的數(shù)學(xué)學(xué)習(xí)方法和策略。這些方法不僅提高了我的數(shù)學(xué)能力,而且在其他學(xué)科和生活中也為我提供了更好的解決問題的思維方式和工具。通過不斷努力和實踐,我相信我將能夠進一步提高自己的數(shù)學(xué)能力,并在未來的學(xué)習(xí)和工作中更加自信地應(yīng)對各種挑戰(zhàn)。
    親近數(shù)學(xué)心得體會和方法篇十九
    大家好!今天我發(fā)言的題目是“學(xué)習(xí)之道在于悟”,借此機會和大家共同分享高中數(shù)學(xué)學(xué)習(xí)的心得體會。
    相信我們當(dāng)中許多老師和同學(xué)都看過《功夫之王》這部電影,它講述了一個喜愛功夫卻毫無功底的劇中人物最終練成絕世功夫,成就大業(yè)的故事。其中李連杰飾扮演的默僧在傳授杰森功夫時,有一段精彩對白:“畫家以潑墨山水為功夫,屠夫以庖丁解牛為功夫,從有形中求無形,充耳不聞,習(xí)萬招之法,從有招到無招,習(xí)萬家之變,才能自創(chuàng)一家,樂師以輾轉(zhuǎn)悠揚為功夫,詩人以天馬行空的文字傾國傾城,這也是功夫……”。
    其一,數(shù)學(xué)的學(xué)習(xí)是學(xué)會獨立思考的過程。數(shù)學(xué)學(xué)習(xí)要防止死記硬背,不求甚解的傾向,學(xué)習(xí)中多問幾個為什么,多沉下心來琢磨琢磨,做到舉一反三,融會貫通。聽課時要邊聽邊思考,思考與本節(jié)課相關(guān)的知識體系,思考教師的思路,并與自己的比較。在老師沒有作出判斷、結(jié)論之前,自己試著先判斷、下結(jié)論,看看與老師講的是否一致,并找出錯誤的原因。獨立思考能力是學(xué)習(xí)數(shù)學(xué)的基本能力。
    其二,數(shù)學(xué)學(xué)習(xí)過程是一個需要反復(fù)練習(xí)的過程,也是一個熟能生巧的過程。反復(fù)練習(xí)正是為了達到悟的結(jié)果及培養(yǎng)對數(shù)學(xué)的理解和感覺。訓(xùn)練的過程需要經(jīng)歷一個由量變到質(zhì)變,一個無形無狀的過程。當(dāng)然由于每個人知識結(jié)構(gòu)、思維水平和理解能力的差異,訓(xùn)練的過程和量是不同的,但無論如何不能“為解題而解題”。
    其三,數(shù)學(xué)的學(xué)習(xí)過程是把握數(shù)學(xué)精神的過程。數(shù)學(xué)的精神在于用數(shù)學(xué)的思想、方法、策略去思考問題。有些學(xué)生對數(shù)學(xué)無論怎樣練習(xí),也始終難以找到對數(shù)學(xué)的感覺。這就需要我們在學(xué)習(xí)過程中從問題解決形成一般的結(jié)論,領(lǐng)悟問題解決中數(shù)學(xué)思想、方法、策略的應(yīng)用。這個過程單憑老師教將很難使學(xué)生達到理念的升華。當(dāng)然,這并非削弱教師的作用,而是體現(xiàn)學(xué)生悟的重要性,將所理解的知識嵌入已有的知識結(jié)構(gòu)中才能達到真正的理解和掌握。
    其四,自信是學(xué)好數(shù)學(xué)的必要條件。自信源于對數(shù)學(xué)的熱情、對自我的認可、對數(shù)學(xué)契而不舍的執(zhí)著精神以及堅實的數(shù)學(xué)基本功。曾經(jīng)有位學(xué)生在闡述他對基本功的理解時說:“從今天起我所做的每一道題高考肯定不考,高考的每一題會做,并不保證都能做對,要關(guān)注對,而不僅僅是會,解決問題最好的方法是反復(fù),不要因為這題簡單而不去做,不要因為這題做過三遍而不去做,可為難題放棄,絕不可為簡單題而放棄,這些就是基本功”。
    總之,學(xué)好數(shù)學(xué)不僅是為了應(yīng)付高考,或是為將來進一步學(xué)習(xí)相關(guān)專業(yè)打好基礎(chǔ),更重要的目的是接受數(shù)學(xué)思想、數(shù)學(xué)精神的熏陶,提高自身的思維品質(zhì)和科學(xué)素養(yǎng),果能如此,將終生受益。最后,祝愿每位同學(xué)學(xué)習(xí)進步。