通過總結(jié),可以總結(jié)經(jīng)驗(yàn)教訓(xùn),避免犯同樣的錯(cuò)誤。寫總結(jié)需要融入自己的思考和觀點(diǎn),展示個(gè)性和特色。以下是小編為大家整理的寫作技巧,希望能對(duì)大家有所幫助。
大學(xué)生數(shù)學(xué)建模論文篇一
長期以來,我國的數(shù)學(xué)教學(xué)中一直普遍存在著重結(jié)論而輕過程、重形式而輕內(nèi)容、重解法而輕應(yīng)用等弊端,不注重學(xué)生數(shù)學(xué)能力和素質(zhì)的培養(yǎng);過分強(qiáng)調(diào)對(duì)定義、定理、法則、公式等知識(shí)的灌輸與講授,不注重這些知識(shí)的應(yīng)用,割斷了理論與實(shí)際的聯(lián)系,造成學(xué)與用的嚴(yán)重脫節(jié),致使在我們的數(shù)學(xué)教育體制下培養(yǎng)出來的學(xué)生的能力結(jié)構(gòu)都形成了一種嚴(yán)重的病態(tài),主要表現(xiàn)在:數(shù)學(xué)理論知識(shí)掌握得還可以,但應(yīng)用知識(shí)的能力很差,不能學(xué)以致用,缺乏創(chuàng)造力和解決實(shí)際問題的能力,這些問題使我們的學(xué)生在走向工作崗位時(shí)上手速度慢,面對(duì)新的數(shù)學(xué)問題時(shí)束手無策,不能將所學(xué)的知識(shí)靈活運(yùn)用到實(shí)際中去。顯然,這種教育體制和理念與現(xiàn)代教育理念是背道而馳的,是必須拋棄的。開展數(shù)學(xué)建模教學(xué)或數(shù)學(xué)建模競(jìng)賽,能夠培養(yǎng)學(xué)生各方面的綜合能力,提高學(xué)生的綜合素質(zhì),對(duì)于當(dāng)前數(shù)學(xué)教育教學(xué)改革有著極為重要的現(xiàn)實(shí)意義。
1數(shù)學(xué)建模能夠豐富和優(yōu)化學(xué)生的知識(shí)結(jié)構(gòu),開拓學(xué)生的視野
數(shù)學(xué)建模所涉及到的許多問題都超出了學(xué)生所學(xué)的專業(yè),例如“基金的最佳適用”、“會(huì)議籌備”、“地震搜索”等許多建模問題,分別屬于不同的學(xué)科與專業(yè),為了解決這些問題,學(xué)生必須查閱和學(xué)習(xí)與該問題相關(guān)的專業(yè)書籍和科技資料,了解這些專業(yè)的相關(guān)知識(shí),從而軟化或削弱了目前教育中僵死的專業(yè)界限,使學(xué)生掌握寬廣而扎實(shí)的基礎(chǔ)知識(shí),使他們不斷拓寬分析問題、解決問題的思路,朝著復(fù)合型人才和具備全面綜合素質(zhì)人才的方向發(fā)展。
2數(shù)學(xué)建??梢耘囵B(yǎng)學(xué)生利用數(shù)學(xué)知識(shí)解決實(shí)際問題的能力
數(shù)學(xué)建模要求建模者利用自己所掌握的數(shù)學(xué)知識(shí)及對(duì)實(shí)際問題的理解,通過積極主動(dòng)的思維,提出適當(dāng)?shù)募僭O(shè),并建立相應(yīng)的數(shù)學(xué)模型,進(jìn)而利用恰當(dāng)?shù)臄?shù)學(xué)方法(現(xiàn)有的或新創(chuàng)造的)求解此模型,并對(duì)解做出評(píng)價(jià),必要時(shí)對(duì)模型做出改進(jìn)。這一過程包括了歸納、整理、推理、深化等活動(dòng),因此把數(shù)學(xué)建模引入課堂教學(xué),必將改變目前數(shù)學(xué)教學(xué)只見定義、定理不見問題背景的局面,必將改變知識(shí)僵化、學(xué)而不用的局面,從而調(diào)動(dòng)了學(xué)生學(xué)習(xí)的積極性,培養(yǎng)了學(xué)生解決實(shí)際問題的能力。
3數(shù)學(xué)建模能夠培養(yǎng)學(xué)生的創(chuàng)造力、想象力、聯(lián)想力和洞察力
數(shù)學(xué)模型來源于客觀實(shí)際,錯(cuò)綜復(fù)雜,沒有現(xiàn)成的答案和固定的模式,因此學(xué)生在建立和求解這類模型時(shí),必須積極動(dòng)腦,而且常常需要另辟蹊徑,在這里,常常會(huì)迸發(fā)出打破常規(guī)、突破傳統(tǒng)的思維火花,通過這種實(shí)踐活動(dòng),可以培養(yǎng)學(xué)生的創(chuàng)造能力,促使他們?cè)陬^腦中樹立推崇創(chuàng)新、追求創(chuàng)新和以創(chuàng)新為榮的意識(shí)。在從實(shí)際問題中抽象出數(shù)學(xué)模型的過程中,須把實(shí)際關(guān)系轉(zhuǎn)化為數(shù)學(xué)關(guān)系,這要求他們敢于想象和聯(lián)想,此外他們還要從貌似不同的問題中抓住其本質(zhì)的和共性的東西,這將培養(yǎng)他們把握問題內(nèi)在本質(zhì)的能力,即洞察力,可以說,培養(yǎng)學(xué)生的這些能力始終貫穿在數(shù)學(xué)建模的整個(gè)過程。
4數(shù)學(xué)建模可以培養(yǎng)學(xué)生熟練地運(yùn)用計(jì)算機(jī)的能力
5數(shù)學(xué)建??梢栽鰪?qiáng)大學(xué)生的適應(yīng)能力
通過數(shù)學(xué)建模的學(xué)習(xí)及競(jìng)賽訓(xùn)練,他們不僅受到了現(xiàn)代數(shù)學(xué)思維及方法的熏陶,更重要的是對(duì)不同的實(shí)際問題,如何進(jìn)行分析、推理、概括以及如何利用數(shù)學(xué)方法與計(jì)算機(jī)知識(shí),還有各方面的知識(shí)綜合起來解決它。因此,他們具有較高的素質(zhì),無論以后到哪個(gè)行業(yè)工作,都能很快適應(yīng)需要。不僅如此,由于建模決不是一件輕而易舉的事,需要學(xué)生對(duì)實(shí)際問題進(jìn)行反復(fù)多次的研究、分析、觀察和對(duì)模型進(jìn)行反復(fù)多次的計(jì)算、論證及修改等,整個(gè)過程是一個(gè)非常艱辛的探索過程,這可以培養(yǎng)學(xué)生高度的責(zé)任感、堅(jiān)韌不拔的毅力、遭遇挫折后較強(qiáng)的心理承受能力以及孜孜不倦、精益求精的探索精神,使他們具有良好的心理素質(zhì)與精神狀態(tài)。同時(shí)數(shù)學(xué)建模一般都是由幾個(gè)人組成的團(tuán)隊(duì)來完成的,其成功與否,完全取決于大家的密切合作,既要合理分工,又要密切配合,這樣又可以培養(yǎng)學(xué)生的組織管理能力、協(xié)調(diào)能力和相互協(xié)作的團(tuán)隊(duì)精神,這些對(duì)他們今后走向工作崗位都是大有裨益的。
此外,數(shù)學(xué)建模從教育觀念、內(nèi)容、形式和手段都有一定的創(chuàng)新,對(duì)數(shù)學(xué)教學(xué)改革有積極的啟示意義。首先,數(shù)學(xué)建模突出了教與學(xué)的雙主體性關(guān)系。教師要根據(jù)學(xué)生的學(xué)習(xí)興趣、能力及特點(diǎn),不斷修正自己的教育內(nèi)容和方法。學(xué)生要對(duì)教師所給予的信息有批判性地、創(chuàng)造性地、發(fā)展性地能動(dòng)反映,要在相互討論、相互啟發(fā)下尋求更多更好的解答方案。這種雙主體的關(guān)系是對(duì)傳統(tǒng)教學(xué)方式的根本突破。
其次,數(shù)學(xué)建模促進(jìn)了課程體系和教學(xué)內(nèi)容的改革。長期以來,我們的課程設(shè)置和教學(xué)內(nèi)容都具有強(qiáng)烈的理科特點(diǎn):重基礎(chǔ)理論、輕實(shí)踐應(yīng)用;重傳統(tǒng)的經(jīng)典數(shù)學(xué)內(nèi)容、輕離散的數(shù)值計(jì)算。然而,數(shù)學(xué)建模所要用到的主要數(shù)學(xué)方法和數(shù)學(xué)知識(shí)恰好正是被我們長期所忽視的那些內(nèi)容。因此,這迫使我們調(diào)整課程體系和教學(xué)內(nèi)容。比如可增加一些應(yīng)用型、實(shí)踐類課程等等;在其余各門課程的教學(xué)中,也要盡量注意到使數(shù)學(xué)理論與應(yīng)用相結(jié)合,增加實(shí)際應(yīng)用方面的內(nèi)容和例題,從而使教學(xué)內(nèi)容也得到了更新。
再次,數(shù)學(xué)建模增加了教師對(duì)新興科技知識(shí)的傳授,拓寬了學(xué)生的知識(shí)面。這些特點(diǎn)對(duì)于目前數(shù)學(xué)教材中存在的內(nèi)容陳舊、知識(shí)面狹窄及形式呆板等問題,具有借鑒作用。數(shù)學(xué)建模的試題通常聯(lián)系新興的學(xué)科,在科學(xué)技術(shù)迅猛發(fā)展的今天,各種新興學(xué)科、邊緣學(xué)科、交叉學(xué)科不斷涌現(xiàn),廣博的知識(shí)面和對(duì)新興科學(xué)技術(shù)的追蹤能力是獲得成功的關(guān)鍵因素之一。
數(shù)學(xué)建模不僅有利于學(xué)生更好的掌握知識(shí)、運(yùn)用知識(shí),也有利于高校的科研和教學(xué),使學(xué)生和教師能在平時(shí)的學(xué)習(xí)、工作中自動(dòng)形成勤于思考的好習(xí)慣,數(shù)學(xué)建模競(jìng)賽與學(xué)生畢業(yè)以后工作時(shí)的條件非常相近,是對(duì)學(xué)生業(yè)務(wù)、能力和素質(zhì)的全面培養(yǎng),特別是開放性思維和創(chuàng)新意識(shí),這項(xiàng)活動(dòng)的開展有利于學(xué)生的全面素質(zhì)的培養(yǎng),既豐富、活躍了廣大學(xué)生的課外生活,也為優(yōu)秀學(xué)員脫穎而出創(chuàng)造了條件。
【參考文獻(xiàn)】
[1]顏筱紅,粱東穎。高職院校數(shù)學(xué)建模教學(xué)的研究[j].廣西教育,2013(2):54,134.
[3]李大潛。中國大學(xué)生數(shù)學(xué)建模競(jìng)賽[m].2版。北京:高等教育出版社,2001.
[4]謝金星。2008高教社杯全國大學(xué)生數(shù)學(xué)建模競(jìng)賽[j].工程數(shù)學(xué)學(xué)報(bào),2008(25):1-2.
大學(xué)生數(shù)學(xué)建模論文篇二
摘要:在當(dāng)今社會(huì)數(shù)學(xué)已經(jīng)滲透向生活的各個(gè)領(lǐng)域,概率、比率、機(jī)會(huì)、誤差、圖像、邏輯、程序等等數(shù)學(xué)概念已進(jìn)入日常生活;各行各業(yè)都在數(shù)量化、數(shù)字化、數(shù)學(xué)化,用到的數(shù)學(xué)知識(shí)越來越多。但傳統(tǒng)高等數(shù)學(xué)教學(xué)注重訓(xùn)練學(xué)生的邏輯推理能力,而沒有注意訓(xùn)練如何從實(shí)際問題中提煉出數(shù)學(xué)問題以及如何用數(shù)學(xué)來解決實(shí)際問題,本文從建模思想的重要性、教育現(xiàn)狀和改革思路以及已有的建模教學(xué)成果三個(gè)方面探討數(shù)學(xué)建模思想在高等數(shù)學(xué)教學(xué)中的作用。
關(guān)鍵詞:數(shù)學(xué)建模;高等數(shù)學(xué)教學(xué)
一、引言
11世紀(jì)的數(shù)學(xué)家、物理學(xué)家和天文學(xué)家高斯曾說:“數(shù)學(xué)是科學(xué)之王?!睌?shù)學(xué)貫穿于所有科學(xué)理論之中,任何科學(xué)理論如果不應(yīng)用數(shù)學(xué),它就是粗糙的,不懂?dāng)?shù)學(xué)的人是不能進(jìn)行深層次的科學(xué)思維的。
在當(dāng)今社會(huì)數(shù)學(xué)已經(jīng)滲透向生活的各個(gè)領(lǐng)域,概率、比率、機(jī)會(huì)、誤差、圖像、邏輯、程序等等數(shù)學(xué)概念已進(jìn)入日常生活;各行各業(yè)都在數(shù)量化、數(shù)字化、數(shù)學(xué)化,用到的數(shù)學(xué)知識(shí)越來越多。從科學(xué)技術(shù)的角度來看,大量與數(shù)學(xué)相關(guān)的交叉學(xué)科相繼出現(xiàn)出現(xiàn),迅速發(fā)展例如:數(shù)學(xué)化學(xué)、數(shù)學(xué)生物、數(shù)學(xué)地質(zhì)學(xué)、數(shù)學(xué)心理學(xué)、數(shù)學(xué)語言學(xué)、數(shù)學(xué)社會(huì)學(xué)等。有研究者認(rèn)為高科技技術(shù)本質(zhì)上就是一種數(shù)學(xué)技術(shù)。例如財(cái)物、會(huì)計(jì)專業(yè)軟件包都是大量應(yīng)用現(xiàn)有的相關(guān)數(shù)學(xué)知識(shí),開發(fā)數(shù)學(xué)模型以及應(yīng)用數(shù)學(xué)技巧、方法的結(jié)果。高等數(shù)學(xué)對(duì)于培養(yǎng)大學(xué)生數(shù)學(xué)思維、數(shù)學(xué)意識(shí)提升邏輯思維能力有重要意義。
二、數(shù)學(xué)建模思想的重要性
傳統(tǒng)高等數(shù)學(xué)教學(xué)注重訓(xùn)練學(xué)生的邏輯推理能力,而沒有注意訓(xùn)練如何從實(shí)際問題中提煉出數(shù)學(xué)問題以及如何用數(shù)學(xué)來解決實(shí)際問題,其后果是學(xué)生們學(xué)了不少數(shù)學(xué),但不會(huì)用,為此在高等數(shù)學(xué)的教學(xué)過程中如何提升教學(xué)效果成為教學(xué)改革的一個(gè)重要研究問題。當(dāng)前高等數(shù)學(xué)教學(xué)不重視應(yīng)用性,很多學(xué)生數(shù)學(xué)的學(xué)習(xí)僅僅以通過考試為目的,數(shù)學(xué)成為抽象的、枯燥的、無實(shí)際用途的科學(xué)。數(shù)學(xué)建模則以“數(shù)學(xué)的應(yīng)用與模型化”為主線,重視數(shù)學(xué)建模意識(shí)和應(yīng)用能力的培養(yǎng)。
數(shù)學(xué)建模的思想在高等數(shù)學(xué)發(fā)展的歷程中很早就有,但是現(xiàn)代教育技術(shù)環(huán)境的發(fā)展和大學(xué)生數(shù)學(xué)建模賽事的舉行為數(shù)學(xué)建模的教學(xué)發(fā)展提供了契機(jī)和更好的外部環(huán)境條件,同時(shí)也對(duì)現(xiàn)代高等數(shù)學(xué)的教學(xué)提出了新的要求。數(shù)學(xué)建模對(duì)于培養(yǎng)大學(xué)生數(shù)學(xué)能力的作用的相關(guān)研究較多,研究結(jié)果表明:數(shù)學(xué)建模能夠提升大學(xué)生理論聯(lián)系實(shí)際的能力、可以提升思維能力、概括能力、歸納能力、創(chuàng)新能力。
三、數(shù)學(xué)建模教育現(xiàn)狀和改革思路
全國大學(xué)生數(shù)學(xué)建模競(jìng)賽創(chuàng)辦于1992年,每年一屆,目前已成為全國高校規(guī)模最大的基礎(chǔ)性學(xué)科競(jìng)賽,也是世界上規(guī)模最大的數(shù)學(xué)建模競(jìng)賽。2012年,來自全國33個(gè)省/市/自治區(qū)(包括香港和澳門特區(qū))及新加坡、美國的1284所院校、21219個(gè)隊(duì)(其中本科組17741隊(duì)、??平M3478隊(duì))、63600多名大學(xué)生報(bào)名參加本項(xiàng)競(jìng)賽。競(jìng)賽能全面反應(yīng)學(xué)生解決實(shí)際問題的能力、數(shù)學(xué)創(chuàng)造力、計(jì)算機(jī)使用能力、書面表達(dá)寫作能力,特別強(qiáng)調(diào)創(chuàng)新意識(shí)、團(tuán)隊(duì)精神。已經(jīng)成為我國大學(xué)生創(chuàng)新能力培養(yǎng)和提升的重要大型學(xué)術(shù)賽事之一。
鄭州航空工業(yè)管理學(xué)院,在2008年至2010年累計(jì)有67支隊(duì)伍,共計(jì)201名學(xué)生才加了全國的大學(xué)生建模大賽,并取得了良好的成績榮獲省級(jí)一等獎(jiǎng)6項(xiàng)、省級(jí)二等獎(jiǎng)8項(xiàng)、省級(jí)三等獎(jiǎng)20項(xiàng),但參賽學(xué)生來自全校各個(gè)不同院系,較多集中在數(shù)理與統(tǒng)計(jì)學(xué)院。
綜上可見:通過數(shù)學(xué)建模對(duì)提升高等數(shù)學(xué)教學(xué)效果的實(shí)踐研究,可以為高等數(shù)學(xué)的教學(xué)找到一條新模式,進(jìn)而提升學(xué)生綜合素質(zhì),培養(yǎng)出能更好適應(yīng)社會(huì)的應(yīng)用型專業(yè)人才。另外,對(duì)于數(shù)學(xué)建模教學(xué)實(shí)踐還可提升高校的數(shù)學(xué)建模競(jìng)賽成績,提升學(xué)校知名度,并影響到更多的學(xué)生,使學(xué)生們真正熱愛數(shù)學(xué)學(xué)習(xí),全面提升個(gè)人素質(zhì)。
四、數(shù)學(xué)建模教學(xué)研究的相關(guān)成果
關(guān)于數(shù)學(xué)建模與提升提升高等數(shù)學(xué)教學(xué)效果的實(shí)踐研究的相關(guān)研究主要集中在以下幾個(gè)方面:
(一)數(shù)學(xué)建模的教學(xué)方法研究
許多研究者對(duì)數(shù)學(xué)建模的教學(xué)從不同角度和方面進(jìn)行探討,一些比較有影響的研究有:黃世華等,針對(duì)高專院系的建模教學(xué)現(xiàn)狀,提出從指導(dǎo)思想、教學(xué)理念、教學(xué)內(nèi)容、教學(xué)方法、考核方式出發(fā),課程教學(xué)應(yīng)采取以問題驅(qū)動(dòng)研究式為主,以知識(shí)驅(qū)動(dòng)講授式為輔的教學(xué)方法才是行之有效的。劉浩等,認(rèn)為數(shù)學(xué)建模應(yīng)加強(qiáng)數(shù)學(xué)思維的互動(dòng)訓(xùn)練,培養(yǎng)創(chuàng)新精神;加強(qiáng)信息素養(yǎng)的訓(xùn)練,開拓知識(shí)面;注重團(tuán)隊(duì)訓(xùn)練,提高團(tuán)隊(duì)合作意識(shí)。楊小鐘討論數(shù)學(xué)建模教育對(duì)高校數(shù)學(xué)教育改革的重要意義,以及存在的問題并提出了改變教學(xué)理念的改進(jìn)措施。還有研究者通過具體的模型教學(xué),討論了建模思想的培養(yǎng)和相關(guān)的教學(xué)實(shí)踐心得。柴中林、王航平等針對(duì)美國大學(xué)生數(shù)學(xué)建模競(jìng)賽提出了一些培訓(xùn)策略。
(二)數(shù)學(xué)建模教學(xué)意義研究
對(duì)數(shù)學(xué)建模的意義研究主要集中在數(shù)學(xué)建模與大學(xué)生能力培養(yǎng)和非智力因素發(fā)展等方面。沙元霞等提出學(xué)校可以通過增強(qiáng)數(shù)學(xué)建模意識(shí)、改進(jìn)數(shù)學(xué)建模思想方法、提高數(shù)學(xué)建模能力,深化教育教學(xué)改革,培養(yǎng)數(shù)學(xué)應(yīng)用型人才。蔣莉分析了數(shù)學(xué)建模對(duì)培養(yǎng)大學(xué)生數(shù)學(xué)素質(zhì)的作用,并提出數(shù)學(xué)建模培養(yǎng)了大學(xué)生的抽象思維能力,提高了大學(xué)生的創(chuàng)新能力。楊太文等,研究數(shù)學(xué)建模競(jìng)賽與大學(xué)數(shù)學(xué)課程間的效用發(fā)現(xiàn)數(shù)學(xué)建模的學(xué)習(xí)可以明顯提高學(xué)生的數(shù)學(xué)學(xué)習(xí)能力。
總之,當(dāng)前我國大學(xué)生數(shù)學(xué)建模的教學(xué)水平相對(duì)落后,數(shù)學(xué)建模思想和高等數(shù)學(xué)相結(jié)合,可以提升學(xué)生的學(xué)習(xí)興趣,進(jìn)而促進(jìn)學(xué)生主動(dòng)學(xué)習(xí)和思考,養(yǎng)成獨(dú)立思考學(xué)習(xí)的好習(xí)慣,從而培養(yǎng)學(xué)生的創(chuàng)新意識(shí)。數(shù)學(xué)建模大賽這個(gè)平臺(tái),有給了學(xué)生一個(gè)團(tuán)隊(duì)協(xié)作的機(jī)會(huì),讓學(xué)生能夠提升自己的理論聯(lián)系實(shí)際能力、應(yīng)用寫作能力和創(chuàng)造力。數(shù)學(xué)建模思想可以提高教學(xué)效果,而高等數(shù)學(xué)課程的開展為數(shù)學(xué)建模奠定了理論基礎(chǔ),兩者相輔相成,密不可分。
參考文獻(xiàn):
[1]范英梅。高等數(shù)學(xué)、計(jì)算機(jī)與數(shù)學(xué)建模教學(xué)的關(guān)系分析[j].廣西大學(xué)學(xué)報(bào)(自然科學(xué)版),2004,9.
[2]何偉。在高等數(shù)學(xué)教學(xué)中如何體現(xiàn)數(shù)學(xué)建模的思想[j].數(shù)學(xué)的實(shí)踐與認(rèn)識(shí),2003,10.
[3]馬戈等?,F(xiàn)代教育技術(shù)環(huán)境下高等數(shù)學(xué)教學(xué)改革的實(shí)踐與思考[j].高等數(shù)學(xué)研究,2004,5.
[4]蔣莉。淺談數(shù)學(xué)建模在培養(yǎng)大學(xué)生數(shù)學(xué)能力的作用[j].理論探索,2012,2.
[5]沙元霞。基于數(shù)學(xué)建模的應(yīng)用型人才培養(yǎng)[j].長春師范學(xué)院學(xué)報(bào)(自然科學(xué)版),2012,9.
[6]黃世華等。數(shù)學(xué)建模教學(xué)的方法研究[j].科教研究,2012,2.
[7]劉浩,楊艷梅。大學(xué)生數(shù)學(xué)建模教育的幾點(diǎn)思考[j].數(shù)學(xué)教育與研究,2012,4.
[8]楊小鐘。初探高校數(shù)學(xué)建模課程改革[j].大觀周刊。2012,8.
[9]徐茂良。在傳統(tǒng)數(shù)學(xué)課中滲透數(shù)學(xué)建模思想[j].數(shù)學(xué)的實(shí)踐與認(rèn)知。2002,7.
[10]楊進(jìn)峰。經(jīng)濟(jì)應(yīng)用數(shù)學(xué)教學(xué)研究[j].陜西教育,2012,7.
[11]吳秀蘭等。淺議數(shù)學(xué)建模思想如何與高等數(shù)學(xué)教學(xué)相結(jié)合[j].吉林省教育學(xué)院學(xué)報(bào)。2012,9.
[12]柴中林等。國際大學(xué)生數(shù)學(xué)建模競(jìng)賽培訓(xùn)策略的一些探討[j].科技視界,2012,9.
[13]楊太文等。數(shù)學(xué)建模競(jìng)賽與大學(xué)數(shù)學(xué)課程間的效用[j].高等教育,2012,10.
大學(xué)生數(shù)學(xué)建模論文篇三
大學(xué)生數(shù)學(xué)建模競(jìng)賽,由教育部高教司和中國工業(yè)與應(yīng)用數(shù)學(xué)學(xué)會(huì)主辦,創(chuàng)辦于1992年,每年一屆,目前已成為全國高校規(guī)模最大的基礎(chǔ)性學(xué)科競(jìng)賽,也是世界上規(guī)模最大的數(shù)學(xué)建模競(jìng)賽,同時(shí)成為高等院校文秘站-您的專屬秘書,中國最強(qiáng)免費(fèi)!一項(xiàng)重大的課外科技活動(dòng)。尤其,來自全國33個(gè)省/市/自治區(qū)(包括香港和澳門特區(qū))及新加坡、美國的1338所院校、25347個(gè)隊(duì)(其中本科組22233隊(duì)、專科組3114隊(duì))、7萬多名大學(xué)生報(bào)名參加本項(xiàng)競(jìng)賽。每年的9月份舉辦,三人為一組,比賽時(shí)間共三天,最終通過論文的形式來體現(xiàn),以創(chuàng)新意識(shí)、團(tuán)隊(duì)精神、重在參與、公平競(jìng)爭(zhēng)為宗旨,旨在培養(yǎng)大學(xué)生的創(chuàng)新意識(shí)與團(tuán)隊(duì)精神。
一、大學(xué)生數(shù)學(xué)建模競(jìng)賽培訓(xùn)的重要性
數(shù)學(xué)建模競(jìng)賽作為教育部四大學(xué)科競(jìng)賽之首,規(guī)模最大,影響最大。因此,數(shù)學(xué)建模競(jìng)賽培訓(xùn)顯得尤為重要。它有利于讓學(xué)生盡早了解并掌握建模的基礎(chǔ)理論知識(shí)及相關(guān)應(yīng)用軟件;有利于培養(yǎng)學(xué)生分析問題和解決實(shí)際問題的能力;有利于培養(yǎng)學(xué)生的團(tuán)隊(duì)合作精神,使隊(duì)員間盡早磨合,相互了解;有利于培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和發(fā)散思維;有利于訓(xùn)練學(xué)生快速獲取有用信息和資料的能力;有利于增強(qiáng)學(xué)生的寫作技能和排版技術(shù)等。
通過參加數(shù)學(xué)建模競(jìng)賽,受到了一次科學(xué)研究的初步訓(xùn)練,初步具備了科學(xué)研究的能力,提高了自身的分析問題和解決問題的能力以及計(jì)算機(jī)應(yīng)用能力,培養(yǎng)了刻苦鉆研問題的精神以及與他人友好合作的團(tuán)隊(duì)精神,培養(yǎng)了敢于戰(zhàn)勝困難的堅(jiān)強(qiáng)意志和創(chuàng)新能力,這些能力和精神為各自今后的學(xué)習(xí)和工作都帶來了巨大的影響。因?yàn)閰⑴c數(shù)學(xué)建模比賽,許多學(xué)生收獲了知識(shí),取得了榮譽(yù),參賽隊(duì)員的共同體會(huì)是:一次參賽,終生受益。
二、培訓(xùn)中創(chuàng)新方法――案例模板式教學(xué)
數(shù)學(xué)建模培訓(xùn)一般是通過給學(xué)生講解數(shù)學(xué)建模的基本知識(shí)與理論,相關(guān)的數(shù)學(xué)軟件及軟件包,輔以講座,上機(jī),討論等方式,讓學(xué)生對(duì)數(shù)學(xué)建模的基本方法及相關(guān)數(shù)學(xué)軟件的使用有一定的了解,對(duì)數(shù)學(xué)建模的基本思想有基本把握。
在培訓(xùn)中,通過對(duì)以往競(jìng)賽試題的分析,將近幾年的數(shù)學(xué)建模競(jìng)賽分為兩大類:固定式問題和開放式問題,采用案例模板式教學(xué)對(duì)參加建模競(jìng)賽的同學(xué)進(jìn)行輔導(dǎo)。其中,固定式問題指讓學(xué)生對(duì)固定的有一定物理背景的問題進(jìn)行數(shù)學(xué)建模求解;開放式問題指讓學(xué)生準(zhǔn)確把握題意后能充分根據(jù)自己的喜好,選取不同方向或方法進(jìn)行建模求解。例如:
全國大學(xué)生數(shù)學(xué)建模大賽a題《車道被占用對(duì)城市道路通行能力的影響》為典型的固定式題目,要求學(xué)生對(duì)已給的.視頻數(shù)據(jù)確定通行能力的數(shù)學(xué)模型,并且求出排隊(duì)長度。而全國大學(xué)生數(shù)學(xué)建模競(jìng)賽b題《20上海世博會(huì)影響力的定量評(píng)估》為典型的開放式題目,讓學(xué)生選取感興趣的某個(gè)側(cè)面,利用互聯(lián)網(wǎng)數(shù)據(jù),建立數(shù)學(xué)模型,使學(xué)生在準(zhǔn)確把握題意后能充分根據(jù)自己的喜好,選取不同方向進(jìn)行建模求解,相對(duì)于固定問題開放性較強(qiáng)。
因此,要求教師在數(shù)學(xué)建模培訓(xùn)中,既要突出固定式的求解思路,又要注意培養(yǎng)學(xué)生開放式的發(fā)散思維。具體表現(xiàn)為:在固定求解思路上,要包括深刻理解題意,挖掘問題內(nèi)部的區(qū)別,結(jié)合已有的數(shù)學(xué)建?;A(chǔ)、數(shù)學(xué)建模基本方法、數(shù)學(xué)建模特殊方法,通過對(duì)具體競(jìng)賽題的分析,總結(jié)出相關(guān)類型問題的數(shù)學(xué)求解方法;在開放性問題上,充分調(diào)動(dòng)學(xué)生的積極性,讓學(xué)生在查閱相關(guān)資料后,進(jìn)行討論交流,各抒己見,從各個(gè)層面,多角度的找出可行性強(qiáng)的數(shù)學(xué)建模方法。求解思路如下圖1和圖2所示。
三、結(jié)束語
數(shù)學(xué)建模培訓(xùn)是對(duì)大學(xué)數(shù)學(xué)教學(xué)改革的一次推動(dòng),是對(duì)高校教學(xué)水平、管理水平的大檢驗(yàn),是對(duì)指導(dǎo)教師綜合實(shí)力的展示和提升,也是對(duì)學(xué)生各種能力和綜合素質(zhì)的一次提高,參加過建模的同學(xué)收獲很多,不但領(lǐng)會(huì)到數(shù)學(xué)之美,建模之樂,還體會(huì)到團(tuán)隊(duì)合作的強(qiáng)大,專業(yè)交叉的益處,可以說對(duì)學(xué)生是一個(gè)專業(yè),性格,心智等全方面的鍛煉和提高。
通過對(duì)大學(xué)生數(shù)學(xué)建模競(jìng)賽培訓(xùn)中教學(xué)創(chuàng)新方法的初步探究,數(shù)學(xué)建模培訓(xùn)變得更加系統(tǒng)化、專業(yè)化,為學(xué)生參加各級(jí)數(shù)學(xué)建模競(jìng)賽提供了更好地學(xué)習(xí)實(shí)踐和交流的平臺(tái),為培養(yǎng)學(xué)生的專業(yè)建模能力探索了新的途徑和方法。
大學(xué)生數(shù)學(xué)建模論文篇四
1、海選和優(yōu)選有機(jī)結(jié)合借助紙質(zhì)宣傳單、大型講座等方式進(jìn)行數(shù)學(xué)建模競(jìng)賽的宣傳,對(duì)其作用以及影響進(jìn)行充分的講解,鼓勵(lì)校園內(nèi)的同學(xué)來積極的進(jìn)行參加。倘若想要參與其中的同學(xué)人數(shù)過多時(shí),畢竟參賽名額是有一定限制的,可以利用面試的方式對(duì)其進(jìn)行篩選。為不打擊學(xué)生的積極性,在條件允許的情況下,可以盡可能保留更多的參賽者,通過面試成績把大家劃分為正式參賽隊(duì)和業(yè)余參賽隊(duì)。
2、充分利用現(xiàn)有資源在進(jìn)行數(shù)學(xué)建模競(jìng)賽組隊(duì)時(shí),應(yīng)充分的全面考慮有效利用現(xiàn)有的資源。首先是要掌握不同隊(duì)伍中不同人員屬于什么年級(jí),其次了解她們的每個(gè)人學(xué)習(xí)狀況以及所學(xué)專業(yè)等等,通常來說,同一隊(duì)伍中的每個(gè)人最理想的狀態(tài)是學(xué)習(xí)不同專業(yè)的,如此一來大家可以做到取長補(bǔ)短,理論知識(shí)與實(shí)踐動(dòng)手兩手抓,一個(gè)團(tuán)隊(duì)里需要出眾的知識(shí)更需要過人的文筆。如此一來才能保證隊(duì)伍的整體實(shí)力,力爭(zhēng)在建模競(jìng)賽中取得好成績。
3、重點(diǎn)培訓(xùn)在對(duì)學(xué)生進(jìn)行賽前相關(guān)培訓(xùn)時(shí),在培訓(xùn)的過程中,教師可根據(jù)自身的擅長專題,來進(jìn)行相關(guān)內(nèi)容的講解,與此同時(shí)結(jié)合不同隊(duì)伍的自身特點(diǎn)劃設(shè)側(cè)重點(diǎn),同學(xué)之間的接受能力也是各不同的,能力強(qiáng)的可以開小灶,沒有相關(guān)競(jìng)賽經(jīng)驗(yàn)的要進(jìn)行重點(diǎn)培訓(xùn),這種因人而異的講解模式確保不同能力的同學(xué),在培訓(xùn)中的過程中都能夠?qū)W有所獲。
4、合理分工密切合作在參加數(shù)學(xué)建模競(jìng)賽的同學(xué)得到競(jìng)賽試題之后,老師應(yīng)該及時(shí)幫助學(xué)生進(jìn)行試題分析與指導(dǎo),根據(jù)團(tuán)隊(duì)內(nèi)不同人員的實(shí)際情況以及試題的具體內(nèi)容難易,進(jìn)行針對(duì)性的講解從而對(duì)同學(xué)們進(jìn)行合理分工,確保每個(gè)人所負(fù)責(zé)的部分都是自己相較于其他人而言是最擅長的。值得注意的是,雖然進(jìn)行分工,但這并不是絕對(duì)的分割,而是有側(cè)重的合理分工,彼此之間的密切合作才是核心,畢竟建模競(jìng)賽中需要的是團(tuán)隊(duì)協(xié)作,而不是英雄主義。
5、堅(jiān)持可持續(xù)發(fā)展培訓(xùn)師資隊(duì)伍必須要有新鮮血液不斷注入,以老帶新最佳的血液注入方式,面對(duì)朝氣蓬勃的參賽學(xué)生,培訓(xùn)師資隊(duì)伍既要有身經(jīng)百戰(zhàn)經(jīng)驗(yàn)豐富的老師,也要有跟他們擁有更多共同話題的青年教師。在此期間通過不斷的學(xué)習(xí),青年教師跟同學(xué)們共同成長,從而保證師資隊(duì)伍的可持續(xù)發(fā)展。
二、大學(xué)生數(shù)學(xué)建模競(jìng)賽組織和管理方式的探索
1、進(jìn)行課程教學(xué)并給出有效的教學(xué)計(jì)劃每個(gè)學(xué)生的知識(shí)儲(chǔ)備都有著各自的特點(diǎn),借助良好的教育對(duì)學(xué)生們的知識(shí)架構(gòu)進(jìn)行完善,實(shí)現(xiàn)培養(yǎng)出學(xué)生強(qiáng)大能力的目標(biāo),數(shù)學(xué)建模對(duì)學(xué)生來說裨益良多,被視作是大學(xué)校園中必備課程之一。但是進(jìn)行課程開展的時(shí)候,要根據(jù)不同的培訓(xùn)對(duì)象大致分為以下兩類:第一、以選修課形式開設(shè)數(shù)學(xué)建模競(jìng)賽課程,選修課程所面向的群體為整個(gè)學(xué)校的所有學(xué)生。第二、以必修課的方式開設(shè)數(shù)學(xué)建模競(jìng)賽課程,必修課就要有針對(duì)性,因?yàn)椴⒉皇撬械膶W(xué)生都需要學(xué)習(xí)數(shù)學(xué),所以必修課針對(duì)的群體應(yīng)該是數(shù)學(xué)專業(yè)的學(xué)生。不同性質(zhì)的課程在教授上應(yīng)該有所區(qū)分,內(nèi)容的深淺也要有適當(dāng)?shù)恼{(diào)整。
2、利用建模教學(xué)實(shí)現(xiàn)知識(shí)與能力雙培養(yǎng)有效的教學(xué)是獲得數(shù)學(xué)建模競(jìng)賽好成績的最佳途徑,但是教學(xué)的過程中要注重?cái)?shù)學(xué)知識(shí)與實(shí)踐能力的均衡共同培養(yǎng),不能過分的注重知識(shí)的灌輸,而忽略了建模相關(guān)能力的培養(yǎng),對(duì)二者的培養(yǎng)必須要并駕齊驅(qū),如此才能真正的'掌握數(shù)學(xué)建模的精髓,從而在競(jìng)賽中取得良好的成績。
3、數(shù)學(xué)建模競(jìng)賽隊(duì)員的篩選數(shù)學(xué)建模所需要的人才是全方面的人才,除此之外還要對(duì)數(shù)學(xué)建模有足夠的興趣,并且還要有足夠多的時(shí)間來參加培訓(xùn)。以上述條件為基礎(chǔ),報(bào)名之后通過面試的測(cè)試,然后再從中篩選出相對(duì)優(yōu)秀的學(xué)生組成參賽隊(duì)伍,在篩選的時(shí)候要充分的考慮到團(tuán)隊(duì)整體知識(shí)的涵蓋面,不同人之間所擅長的專業(yè)不同為最佳。
4、培訓(xùn)培訓(xùn)工作通常被劃分為不同的階段:首先是初級(jí)階段,這一階段所注重的是對(duì)相關(guān)知識(shí)的培訓(xùn)。從初等模型、簡(jiǎn)單優(yōu)化模型、常微分方程模型等建模的基礎(chǔ)知識(shí)和方法入手由淺入深;其次是拔高階段,主要以專家講座為主,邀請(qǐng)建模專家進(jìn)行系統(tǒng)的講解,并結(jié)合精典范例進(jìn)行深入剖析,在擴(kuò)大學(xué)生的知識(shí)面和視野的同時(shí)提升學(xué)生的建模能力。
三、結(jié)語
通過以上的一系列論述,我們已經(jīng)對(duì)大學(xué)數(shù)學(xué)建模競(jìng)賽的隊(duì)伍組織及管理方式,有了更加清晰的了解和掌握。大學(xué)數(shù)學(xué)建模競(jìng)賽對(duì)于大學(xué)生來說好處頗多,一方面能夠使學(xué)生們對(duì)學(xué)習(xí)的數(shù)學(xué)知識(shí)有更深的理解與更為靈活的應(yīng)用,另一方面,通過競(jìng)賽中的組隊(duì)讓大家感受到合作的重要性,為以后步入社會(huì)的工作打下基礎(chǔ)。希望這篇文章能夠?qū)︶槍?duì)數(shù)學(xué)建模的研究有一定的借鑒作用!
參考文獻(xiàn):
[1]韓成標(biāo),賈進(jìn)濤、高職院校參加數(shù)學(xué)建模競(jìng)賽大有可為[j]、工程數(shù)學(xué)學(xué)報(bào),(8)
[2]全國大學(xué)生數(shù)學(xué)建模競(jìng)賽賽題講評(píng)與經(jīng)驗(yàn)交流會(huì)在廣西大學(xué)舉行[j]、數(shù)學(xué)建模及其應(yīng)用,(04)
[3]錢方紅、基于數(shù)學(xué)模型解決數(shù)學(xué)建模競(jìng)賽隊(duì)員選拔和組隊(duì)問題[j]、信息與電腦:理論版,(3)
[4]肖帆,張?zhí)m、高職院校數(shù)學(xué)建模競(jìng)賽培訓(xùn)模式研究[j]、延安職業(yè)技術(shù)學(xué)院學(xué)報(bào),2017(2)
大學(xué)生數(shù)學(xué)建模論文篇五
1.數(shù)學(xué)建模對(duì)學(xué)生創(chuàng)新思維和創(chuàng)新精神的培養(yǎng)
數(shù)學(xué)建模解決的都是與我們生活息息相關(guān)的實(shí)際問題,很多都是當(dāng)前社會(huì)比較關(guān)注的熱點(diǎn)問題,比如開放性小區(qū)的建立,人工智能機(jī)器人在工作中的應(yīng)用,這些問題開放性比較強(qiáng),有明確的目的和要求,但它沒有唯一的結(jié)果和方法。因此留給學(xué)生很大的創(chuàng)新空間,使學(xué)生對(duì)數(shù)學(xué)產(chǎn)生了極大的興趣,他們發(fā)現(xiàn)這幾年學(xué)習(xí)的高數(shù)、線性代數(shù)、概率論與數(shù)理統(tǒng)計(jì)終于派上了用場(chǎng)。數(shù)學(xué)建模課程會(huì)結(jié)合《高等數(shù)學(xué)》,《線性代數(shù)》,《概率論與數(shù)理統(tǒng)計(jì)》等數(shù)學(xué)基礎(chǔ)學(xué)科,還會(huì)經(jīng)常涉及到物理,工程,經(jīng)濟(jì),金融,農(nóng)林等各個(gè)領(lǐng)域各個(gè)學(xué)科,從不同的學(xué)科中找最熱門最真實(shí)的案例進(jìn)行教學(xué),這要求學(xué)生有很強(qiáng)的自學(xué)能力,要不得學(xué)習(xí)新知識(shí),新思路和新方法,讓學(xué)生結(jié)合所學(xué)的數(shù)學(xué)知識(shí)把自己學(xué)科的專業(yè)知識(shí)轉(zhuǎn)化成數(shù)學(xué)模型,讓數(shù)學(xué)充分發(fā)揮它的優(yōu)勢(shì),以達(dá)到培養(yǎng)學(xué)生的創(chuàng)新能力,更重要的是對(duì)學(xué)生的知識(shí)體系起到了完善的作用。在整個(gè)競(jìng)賽中從模型建立與求解到寫作,都是由學(xué)生獨(dú)立完成,充分發(fā)揮了他們的自主性和創(chuàng)造性。
2.數(shù)學(xué)建模能培養(yǎng)學(xué)生團(tuán)隊(duì)合作精神和創(chuàng)新創(chuàng)業(yè)能力
數(shù)學(xué)建模競(jìng)賽是由三個(gè)人組成一個(gè)小團(tuán)隊(duì)共同處理一個(gè)問題,在這個(gè)團(tuán)隊(duì)中每個(gè)人都各有分工,有的人擅長建立模型,有的人擅長計(jì)算機(jī)編程求解模型,有的人擅長寫作,這三個(gè)人缺一不可,任何一個(gè)人都發(fā)揮著舉足輕重的作用。通常我們還會(huì)設(shè)一個(gè)隊(duì)長能協(xié)調(diào)隊(duì)員之間的關(guān)系和對(duì)題目的把控。每個(gè)人都有不同的性格,能力,學(xué)識(shí),知識(shí)結(jié)構(gòu),在做題的過程中會(huì)產(chǎn)生不同的想法,比如在模型的建立中,數(shù)據(jù)的處理過程中,算法的選取,編程語言的選取,寫作的過程中都會(huì)有很多的不同,所以每個(gè)成員都要有團(tuán)隊(duì)精神、相互信任、相互溝通、相互尊重、取長補(bǔ)短、充分發(fā)揮集體的力量共同完成一個(gè)項(xiàng)目。同時(shí)每年無論在培訓(xùn)還是正式比賽過程中由于高強(qiáng)度的腦力活動(dòng),強(qiáng)大的心理壓力以及隊(duì)員之間的不和睦都會(huì)造成中途退賽,這樣無疑是最可惜的。所以,在競(jìng)賽中除了培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和團(tuán)隊(duì)合作精神,還培養(yǎng)了大家的心理承受能力,強(qiáng)大的意志力以及與他人溝通交往的能力,是對(duì)自己綜合素質(zhì)的一個(gè)提高,對(duì)未來考研、出國、就業(yè)都有很大的幫助。
3.數(shù)學(xué)建模培養(yǎng)學(xué)生的創(chuàng)新創(chuàng)業(yè)的.綜合能力
通過在大二一年的數(shù)學(xué)建模選修課,以及假期的集中培訓(xùn)培養(yǎng)了學(xué)生的創(chuàng)新創(chuàng)業(yè)能力,很大程度上提高了他們思考問題解決問題的能力等綜合素質(zhì),同時(shí)還培養(yǎng)了他們應(yīng)用計(jì)算機(jī)去處理各種問題的科技能力。他們學(xué)會(huì)了各種軟件、語言,很多同學(xué)會(huì)數(shù)據(jù)挖掘、機(jī)器學(xué)習(xí)以及人工智能,這些都是未來科技的前沿,科技創(chuàng)新是企業(yè)發(fā)展的動(dòng)力,現(xiàn)代教育不能只停留在教授學(xué)生理論知識(shí)的學(xué)習(xí),更重要的是理論與實(shí)踐的結(jié)合,走產(chǎn)學(xué)研相結(jié)合的道路,數(shù)學(xué)建模很好的把理論與實(shí)踐相結(jié)合,激發(fā)學(xué)生科研熱情,提高學(xué)生科研積極性,激發(fā)了學(xué)生的創(chuàng)新創(chuàng)業(yè)能力,為以后工作生活奠定了扎實(shí)的基礎(chǔ)。為了讓建模更好的服務(wù)學(xué)生,我們將不斷的努力,探索和改進(jìn)培養(yǎng)模式和方法,爭(zhēng)取通過數(shù)學(xué)建模平臺(tái)使更多的同學(xué)受益,培養(yǎng)出更多的具有創(chuàng)新創(chuàng)業(yè)能力的大學(xué)生。
參考文獻(xiàn):
[2]韋程?hào)|.數(shù)學(xué)建模能力培養(yǎng)方法研究[m].北京:科學(xué)出版社,.
大學(xué)生數(shù)學(xué)建模論文篇六
一、數(shù)學(xué)建模競(jìng)賽概述
競(jìng)賽形式組委會(huì)規(guī)定三名大學(xué)生組成一隊(duì),參賽學(xué)生根據(jù)題目要求可以自由地收集、查閱資料,調(diào)查研究,使用計(jì)算機(jī)、互聯(lián)網(wǎng)和任何軟件,在三天時(shí)間內(nèi)分工合作完成一篇包括模型假設(shè)、模型建立和模型求解、計(jì)算方法的設(shè)計(jì)和計(jì)算機(jī)實(shí)現(xiàn)、結(jié)果的檢驗(yàn)和評(píng)價(jià)、模型的改進(jìn)等方面的論文(即答卷)。競(jìng)賽評(píng)獎(jiǎng)的主要標(biāo)準(zhǔn)為假設(shè)的合理性、建模的創(chuàng)造性、結(jié)果的正確性和文字表述的清晰程度。
二、賽前學(xué)習(xí)內(nèi)容
1.建?;A(chǔ)知識(shí)、常用工具軟件的使用
(1)掌握數(shù)學(xué)建模必備的基礎(chǔ)知識(shí)(如線性代數(shù)、高等數(shù)學(xué)、概率統(tǒng)計(jì)等),還有數(shù)學(xué)建模競(jìng)賽中常用的但尚未學(xué)過的方法,如灰色預(yù)測(cè)、回歸分析、曲線擬合等常用預(yù)測(cè)方法,運(yùn)籌學(xué)中若干優(yōu)化算法。(2)針對(duì)數(shù)學(xué)建模特點(diǎn),結(jié)合典型的問題,重點(diǎn)學(xué)習(xí)幾種常用數(shù)學(xué)軟件(matlab、lindo、lingo、spss)的使用,并且具備一般性開發(fā)能力,尤其應(yīng)注意同一數(shù)學(xué)模型,有時(shí)可以使用多個(gè)軟件進(jìn)行求解。
2.常見數(shù)學(xué)建模的過程及方法
數(shù)學(xué)建模競(jìng)賽是一項(xiàng)非常具有挑戰(zhàn)性和創(chuàng)造性的活動(dòng),不一定用一些條條框框規(guī)定各種實(shí)際問題的模型具體如何建立。但一般來說,數(shù)學(xué)建模主要涉及兩個(gè)方面:一是將實(shí)際問題轉(zhuǎn)化為理論數(shù)學(xué)模型;二是對(duì)理論數(shù)學(xué)模型進(jìn)行分析和計(jì)算。簡(jiǎn)而言之,就是建立數(shù)學(xué)模型來解決各種實(shí)際問題的過程。這個(gè)過程可以用如圖1來表示。
3.數(shù)學(xué)建模常用算法的設(shè)計(jì)
建模與計(jì)算是數(shù)學(xué)模型的兩大核心。當(dāng)數(shù)學(xué)模型建立后,完成相關(guān)數(shù)學(xué)模型的計(jì)算就成為解決問題的關(guān)鍵,而所采用算法的好壞將直接影響運(yùn)算速度的快慢,以及答案的優(yōu)劣。根據(jù)近年來競(jìng)賽題型特點(diǎn)及以前參賽獲獎(jiǎng)學(xué)生的心得體會(huì),建議多用數(shù)學(xué)軟件如matlab、lindo、lingo、spss等來設(shè)計(jì)求解的算法,本文列舉了幾種常用的算法。(1)參數(shù)估計(jì)、數(shù)據(jù)擬合、插值等常用數(shù)據(jù)處理算法。在數(shù)學(xué)建模比賽中,通常會(huì)遇到海量的數(shù)據(jù)需要處理,而處理數(shù)據(jù)的關(guān)鍵就在于正確使用這些算法,通常采用matlab作為運(yùn)算工具。(2)線性規(guī)劃、整數(shù)規(guī)劃、多目標(biāo)規(guī)劃、二次規(guī)劃等優(yōu)化類問題。數(shù)學(xué)建模競(jìng)賽大多數(shù)問題是最優(yōu)化問題,很多時(shí)候這些問題可以用數(shù)學(xué)規(guī)劃模型進(jìn)行描述,通常使用lindo、lingo軟件求解。(3)圖論算法主要包括最短路、網(wǎng)絡(luò)流、二分圖等算法,如果涉及到圖論的問題可以用這些方法進(jìn)行求解。(4)最優(yōu)化理論的三大非經(jīng)典算法:神經(jīng)網(wǎng)絡(luò)、模擬退火法、遺傳算法。這些算法通常是用來解決一些較困難的最優(yōu)化問題的,主要使用lingo、matlab、spss軟件來實(shí)現(xiàn)。
三、數(shù)學(xué)建模競(jìng)賽中經(jīng)常出現(xiàn)的問題
在國家數(shù)學(xué)建模競(jìng)賽中常見如下問題:數(shù)學(xué)模型最好明確、合理、簡(jiǎn)潔,但是有些論文不給出明確的模型,只是根據(jù)賽題的情況用“湊”的方法給出結(jié)果,雖然結(jié)果大致是對(duì)的,但是沒有一般性,不是數(shù)學(xué)建模的正確思路;有的論文過于簡(jiǎn)單,該交代的內(nèi)容省略了,難以看懂;有的隊(duì)羅列一系列假設(shè)或模型,又不作比較、評(píng)價(jià),希望碰上“參考答案”或“評(píng)閱思路”,反而弄巧成拙;有的論文參考文獻(xiàn)不全,或引用他人成果不作交代。另外,吃透題意方面不足,沒有抓住和解決主要問題;就事論事,形成數(shù)學(xué)模型的意識(shí)和能力欠缺;對(duì)所用方法一知半解,不管具體條件,套用現(xiàn)成的方法,導(dǎo)致錯(cuò)誤;對(duì)結(jié)果的分析不夠,怎樣符合實(shí)際考慮不周;隊(duì)員之間合作精神差,孤軍奮戰(zhàn);依賴心理重,甚至違紀(jì)。以上情況都需要各參賽隊(duì)引起注意,有則改之,無則加勉。
四、競(jìng)賽中應(yīng)重視的問題
1.團(tuán)隊(duì)合作是能否獲獎(jiǎng)的關(guān)鍵
通常在數(shù)學(xué)建模競(jìng)賽時(shí),三個(gè)隊(duì)員的分工要明確,其中一個(gè)作為組長,也算是領(lǐng)軍人物,主要是負(fù)責(zé)構(gòu)建整個(gè)問題的框架,并提出有創(chuàng)意的想法,當(dāng)然其他部分如論文寫作、程序設(shè)計(jì)、計(jì)算等也要能參加;第二位是算手,主要進(jìn)行算法設(shè)計(jì)及編程計(jì)算;最后一位是寫手,主要工作在于論文的'寫作和潤色上。好的論文要讓評(píng)委一眼就能明了其中的意思,因此寫手的工作也需要一定的技巧。當(dāng)然,要想競(jìng)賽時(shí)達(dá)到這樣的標(biāo)準(zhǔn),需要三個(gè)隊(duì)員在平時(shí)訓(xùn)練時(shí)多加練習(xí)。
2.合理安排競(jìng)賽過程中的時(shí)間
數(shù)學(xué)建模競(jìng)賽中時(shí)間分配很重要,分配不好有可能完不成競(jìng)賽論文,有的隊(duì)伍把問題解答完了,但是發(fā)現(xiàn)沒有時(shí)間進(jìn)行寫作,或者寫的很差勁而不能獲獎(jiǎng),因此要大致做好安排。一般前兩天不要熬的太狠,晚上10:00點(diǎn)前要休息,最后一夜必須熬通宵,否則體力肯定跟不上。之前有些隊(duì)伍,前兩天勁頭很足,晚上做到很晚才休息,但是到了第三天晚上就沒有精力了,這樣一般很難獲獎(jiǎng)。
3.摘要的撰寫很重要
論文的摘要是整篇論文的門面。摘要首先可以強(qiáng)調(diào)一下所做問題的重要性和意義,但不要寫廢話,也不要完全照抄題目的一些話,應(yīng)該直奔主題,主要寫明自己是怎樣分析問題,用什么方法解決問題,最重要的結(jié)論是什么。在中國的競(jìng)賽中,結(jié)論很重要,評(píng)委肯定會(huì)去和標(biāo)準(zhǔn)答案進(jìn)行比較。如果結(jié)論正確一般能得獎(jiǎng),如果不正確,評(píng)委可能會(huì)繼續(xù)往下看,也可能會(huì)扔在一邊,但不寫結(jié)論的話就一定不會(huì)得獎(jiǎng)了,這一點(diǎn)和美國競(jìng)賽不同,因此要認(rèn)真把重要結(jié)論寫在摘要上,如果結(jié)論的數(shù)據(jù)太多,也可只寫幾個(gè)代表性的數(shù)據(jù),注明其他數(shù)據(jù)見論文中何處。
4.論文寫作也要規(guī)范
數(shù)學(xué)建模競(jìng)賽的論文有一個(gè)比較固定的模式。論文大致按照如下形式來寫:摘要、問題重述、模型假設(shè)和符號(hào)說明、問題分析(建立、分析、求解模型)、模型檢驗(yàn)、模型的優(yōu)缺點(diǎn)評(píng)價(jià)、參考文獻(xiàn)、附錄等等。另外,在正文中也可以加入一些圖和表,附錄也可以貼一些算法流程圖或比較大的結(jié)果或圖表等等,近年來為了防止舞弊,組委會(huì)要求把算法的源程序也必須放在附錄中。
五、結(jié)論
全國大學(xué)生數(shù)學(xué)建模競(jìng)賽對(duì)于大學(xué)生而言,是一個(gè)富有挑戰(zhàn)的競(jìng)賽。它不但能培養(yǎng)大學(xué)生解決實(shí)際問題的能力,同時(shí)能培養(yǎng)其創(chuàng)造力、團(tuán)隊(duì)合作的能力,而這些能力將會(huì)成為參賽學(xué)生以后成功就業(yè)的重要推動(dòng)力??梢哉f,一次參賽,終身受益。
大學(xué)生數(shù)學(xué)建模論文篇七
眾所周知,高等數(shù)學(xué)是所有自然學(xué)科的基礎(chǔ),一個(gè)大學(xué)生要想在以后的工作、學(xué)習(xí)中大展宏圖,那么就一定少不了堅(jiān)實(shí)的高等數(shù)學(xué)基礎(chǔ)。如何解決大學(xué)生在學(xué)習(xí)高等數(shù)學(xué)時(shí)碰到的問題?如何調(diào)動(dòng)大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性?讓學(xué)生們了解高等數(shù)學(xué)的用途,真正愿意靜下心來好好學(xué)習(xí)高等數(shù)學(xué),努力為以后的發(fā)展打好數(shù)學(xué)基礎(chǔ)。一直以來,各所高校的教師們都在努力的想辦法、找對(duì)策,一些實(shí)用有效的方法已經(jīng)提出并且在逐步推廣,比如,問題驅(qū)動(dòng)式的教學(xué)方法和基于pbl的教學(xué)方法等。筆者從所在學(xué)校的學(xué)生實(shí)際學(xué)習(xí)情況出發(fā),根據(jù)幾年來的教學(xué)心得和積累,打算提出一種較為實(shí)用的教學(xué)方法——利用數(shù)學(xué)建模的思想調(diào)動(dòng)大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性。該方法在筆者所教授的班級(jí)中已經(jīng)實(shí)際應(yīng)用過幾屆,學(xué)生普遍反映效果較好,任課老師也認(rèn)為該方法確實(shí)能極大地調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性。
提到高等數(shù)學(xué),學(xué)生們的第一反應(yīng)往往是:各種公式塞滿黑板,各種運(yùn)算充斥腦海;定義、定理、推論一個(gè)連著一個(gè);極限、連續(xù)、可導(dǎo)可積一個(gè)涵蓋另一個(gè)[1]。和高中數(shù)學(xué)相比,記憶的負(fù)擔(dān)輕了(實(shí)際上是知識(shí)點(diǎn)太多,記不住了),而對(duì)思維的要求卻提高了。對(duì)大學(xué)生來說,每一次的高數(shù)課,都是一次大腦的思維訓(xùn)練,時(shí)刻要求精神高度集中,一定要緊跟老師的步劃,一旦走神,后面的內(nèi)容就不知所云了。這樣的要求短時(shí)間可以達(dá)到,長久下去學(xué)生們會(huì)覺得很辛苦,很有壓力,會(huì)出現(xiàn)抱怨。筆者碰到過這樣的學(xué)生,剛開始時(shí),興致勃勃,雄心萬丈,可到后來興趣索然,馬虎應(yīng)對(duì)。怪學(xué)生嗎?誠然學(xué)生有責(zé)任,但任課老師也該負(fù)很大的責(zé)任。作為高等數(shù)學(xué)的老師我們經(jīng)常要面對(duì)學(xué)生提的這些問題:(1)我學(xué)的專業(yè)和高等數(shù)學(xué)相差甚遠(yuǎn),有可能這一輩子都不會(huì)用到高等數(shù)學(xué)的知識(shí),那我學(xué)高等數(shù)學(xué)的目的何在?(2)老師您天天鼓吹高等數(shù)學(xué)的強(qiáng)大功能和廣泛用途,但是通過一學(xué)期的學(xué)習(xí),我發(fā)現(xiàn)除了對(duì)付考試有用,真不知高等數(shù)學(xué)可以用在何處?這些問題不及時(shí)解決,時(shí)間長了一定會(huì)影響到大學(xué)生對(duì)高等數(shù)學(xué)的學(xué)習(xí)積極性,甚至有可能會(huì)產(chǎn)生厭學(xué)的情緒和氛圍。有些極端的學(xué)生,期末考試之后,一聽到自己高等數(shù)學(xué)考過了,立馬將高等數(shù)學(xué)的課本給撕了,可想而知高等數(shù)學(xué)對(duì)其造成的壓力有多大[2]。如何解決大學(xué)生在學(xué)習(xí)高等數(shù)學(xué)時(shí)碰到的問題?如何調(diào)動(dòng)大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性?讓學(xué)生們了解高等數(shù)學(xué)的用途,真正愿意靜下心來好好學(xué)習(xí)高等數(shù)學(xué),努力地為以后的發(fā)展打好數(shù)學(xué)基礎(chǔ)。筆者從所在學(xué)校的學(xué)生實(shí)際學(xué)習(xí)情況出發(fā),根據(jù)幾年來的教學(xué)心得和積累,打算提出一種較為實(shí)用的教學(xué)方法——利用數(shù)學(xué)建模的思想調(diào)動(dòng)大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性。
一、以實(shí)際問題反推解決問題時(shí)我們需要的高等數(shù)學(xué)知識(shí)
有這樣一個(gè)實(shí)際問題:報(bào)童每天清晨從報(bào)社購進(jìn)報(bào)紙零售,晚上將沒賣掉的報(bào)紙退回給報(bào)社。假設(shè)報(bào)紙每份的購進(jìn)價(jià)為b元,零售價(jià)為a元,退回價(jià)為c元,自然地有abc。這就是說,報(bào)童每售出一份報(bào)紙賺a-b元,每退回一份報(bào)紙賠b-c元,報(bào)童每天如果購進(jìn)的報(bào)紙?zhí)?,那么?huì)不夠賣,就會(huì)少賺錢;如果每天購進(jìn)的報(bào)紙?zhí)?,那么?huì)賣不完,將要賠錢。請(qǐng)為報(bào)童規(guī)劃一下,他該如何確定每天購進(jìn)的報(bào)紙份數(shù),以獲得最大的收入[3]。
現(xiàn)在我們來反推該問題涉及到的高等數(shù)學(xué)的知識(shí):首先,通過分析題目可知,問題解決的關(guān)鍵在于——如何確定每天的報(bào)紙需求量,注意每天的報(bào)紙需求量是隨機(jī)變化的?解決這個(gè)關(guān)鍵問題的知識(shí)我們?cè)缇驼莆樟?,分別是數(shù)理統(tǒng)計(jì)中的頻率連續(xù)化、概率論中的概率密度與期望和高等數(shù)學(xué)中的定積分[4]。
二、利用高等數(shù)學(xué)的解決實(shí)際問題
f(r)[4]。如果求出了f(r),那么
g(n)=[(a-b)r+(b-c)(n-r)]f(r)+(a-b)nf(r).(1)
現(xiàn)在我們來求f(r),假定報(bào)童已經(jīng)通過自己的經(jīng)驗(yàn)和其他渠道掌握了一年(365天)中每天報(bào)紙的售出份數(shù),那么在他的銷售范圍內(nèi),每天報(bào)紙日需求量r的概率f(r)為:
f(r)=,r=(0,1,2,3,…)
其中k表示為賣出r份的天數(shù)。
g(n)=[(a-b)r+(b-c)(n-r)]p(r)dr+(a-b)np(r)dr.(2)
通過上面的分析,可知實(shí)際問題歸結(jié)為,在p(r)和a,b,c已知時(shí),求n使得g(n)最大。
=-(b-c)p(r)dr+(a-b)p(r)dr.(3)
令=0,得到=,又因?yàn)閜(r)dr+p(r)dr=1,所以p(r)dr=.(4)
在等式(4)中,p(r)和a,b,c均為已知,所以利用定積分的知識(shí)一定可以求出n。也即可以確定每天購進(jìn)的報(bào)紙份數(shù),使報(bào)童每天獲得最大的收入。
三、利用現(xiàn)實(shí)問題,讓學(xué)生學(xué)會(huì)思考,給他們提供創(chuàng)造成就感的機(jī)會(huì)
通過上面碰到的實(shí)際問題,可以很容易地說服同學(xué)們靜下心來好好學(xué)習(xí)高等數(shù)學(xué)。因?yàn)橥ㄟ^實(shí)際問題的求解,學(xué)生們了解到了,要想解決一個(gè)實(shí)際問題(哪怕是很小的問題),也需要大量的高等數(shù)學(xué)知識(shí)的儲(chǔ)備;學(xué)生們也大概領(lǐng)略到了高等數(shù)學(xué)的用途與功能。這樣的教學(xué)方法簡(jiǎn)單、直接,勝過老師課堂上反復(fù)的嘮叨與強(qiáng)調(diào)。有了這樣的一些實(shí)際問題,老師們就可以大膽地將數(shù)學(xué)建模思想引入高等數(shù)學(xué)的教學(xué)當(dāng)中,讓學(xué)生們?cè)诮鉀Q實(shí)際問題中學(xué)會(huì)思考,掌握知識(shí),提高能力。
通過訓(xùn)練后,碰到實(shí)際問題,同學(xué)們會(huì)自然的想到我們的教學(xué)方法:(1)這些實(shí)際問題涉及到的高等數(shù)學(xué)知識(shí)?那些自己掌握了,那些還沒有弄明白,學(xué)要加強(qiáng)學(xué)習(xí)。(2)知識(shí)點(diǎn)找到后,如何建立起數(shù)學(xué)與實(shí)際問題求解之間的關(guān)系?也即如何建立數(shù)學(xué)模型。(3)除了老師給的題目,自己本專業(yè)中的實(shí)際問題,能否用高等數(shù)學(xué)的知識(shí)去解決?通過思考、分析、解決這些問題,學(xué)生們會(huì)有一種創(chuàng)造創(chuàng)新的成就感,會(huì)愿意自主學(xué)習(xí),自然而然其學(xué)習(xí)高等數(shù)學(xué)的積極性也會(huì)大大提高了。
大學(xué)生數(shù)學(xué)建模論文篇八
計(jì)算數(shù)學(xué)建模是用數(shù)學(xué)的思考方式,采用數(shù)學(xué)的方法和語言,通過簡(jiǎn)化,抽象的方式來解決實(shí)際問題的一種數(shù)學(xué)手段。數(shù)學(xué)建模所解決的問題不止現(xiàn)實(shí)的,還包括對(duì)未來的一種預(yù)見。數(shù)學(xué)建??梢哉f和我們的生活息息相關(guān),尤其是如今科技發(fā)達(dá)的今天。數(shù)學(xué)建模應(yīng)用領(lǐng)域超乎我們的想象,甚至達(dá)到無所不及的程度,隨著數(shù)學(xué)建模在大學(xué)教學(xué)中的廣泛使用,使數(shù)學(xué)建模不止成為一種學(xué)科,更重要的是指導(dǎo)新生代更好的利用現(xiàn)代科學(xué)技術(shù),成為高科技人才,把我國人才強(qiáng)國,科教興國的戰(zhàn)略推向一個(gè)新的高度。
1.1數(shù)學(xué)建模引進(jìn)大學(xué)數(shù)學(xué)教學(xué)的必要。教學(xué)過程,是教師根據(jù)社會(huì)發(fā)展要求和當(dāng)代學(xué)生身心發(fā)展的特點(diǎn),借助教學(xué)條件,指導(dǎo)學(xué)生通過認(rèn)識(shí)教學(xué)內(nèi)容從而認(rèn)識(shí)客觀世界,并在此基礎(chǔ)之上發(fā)展自身的過程,即教學(xué)活動(dòng)的展開過程。以往高工專的數(shù)學(xué)教學(xué)存在著知識(shí)單一,內(nèi)容陳舊,脫離實(shí)際等缺陷,已經(jīng)不能滿足時(shí)代的發(fā)展,如今的數(shù)學(xué)教學(xué)過程不是單純的傳授數(shù)學(xué)學(xué)科知識(shí),而是通過數(shù)學(xué)教學(xué)過程引導(dǎo)學(xué)生認(rèn)識(shí)科學(xué),理解科學(xué),從而指導(dǎo)實(shí)踐,促進(jìn)學(xué)生的德智體美勞全面的進(jìn)步和發(fā)展。因此數(shù)學(xué)建模成為一門學(xué)科,被各大高等院校廣泛引用和推廣,其實(shí)數(shù)學(xué)建模不止應(yīng)用在大學(xué)數(shù)學(xué)教學(xué)中,其他一切教學(xué)過程多可引進(jìn)數(shù)學(xué)建模。1.2數(shù)學(xué)建模在大學(xué)數(shù)學(xué)教學(xué)中的運(yùn)用。大學(xué)數(shù)學(xué)教師通過這個(gè)數(shù)學(xué)建模過程來引導(dǎo)學(xué)生解決問題和指導(dǎo)實(shí)踐的能力。再次建模結(jié)果對(duì)現(xiàn)實(shí)生活的指導(dǎo),這是大學(xué)數(shù)學(xué)教學(xué)中數(shù)學(xué)建模所需要達(dá)到的效果和要求。不再停留在理論學(xué)習(xí),而是通過理論指導(dǎo)實(shí)踐,從而為科學(xué)的進(jìn)步和人才綜合水平的提高提供可能。
2.1數(shù)學(xué)建模對(duì)數(shù)學(xué)學(xué)科和其他學(xué)科學(xué)生的巨大影響力學(xué)習(xí)數(shù)學(xué)建模,能夠使一個(gè)單獨(dú)的數(shù)學(xué)家變成經(jīng)濟(jì)學(xué)家,物理學(xué)家還有金融學(xué)家,甚至是藝術(shù)家,只要正握數(shù)學(xué)建模就能指導(dǎo)學(xué)生通過掌握數(shù)學(xué)建模的思維和方法向其他領(lǐng)域?qū)W習(xí)和進(jìn)步。數(shù)學(xué)建模成為連接數(shù)學(xué)和其他領(lǐng)域的紐帶,是當(dāng)今數(shù)學(xué)科學(xué)在其他領(lǐng)導(dǎo)應(yīng)用的橋梁,是數(shù)學(xué)技術(shù)轉(zhuǎn)化為其他技術(shù)的途徑,數(shù)學(xué)建模在學(xué)生中越來越受到關(guān)注和歡迎,越來越多的學(xué)生開始學(xué)習(xí)數(shù)學(xué)建模,尤其是數(shù)學(xué)界和工程界的學(xué)生,這成為當(dāng)今學(xué)生成為現(xiàn)代科技工作者必須掌握的只是能力之一。
2.2數(shù)學(xué)建模對(duì)學(xué)生綜合能力的提高數(shù)學(xué)建模是大學(xué)數(shù)學(xué)教師運(yùn)用數(shù)學(xué)科學(xué)去分析和解決實(shí)際問題,在數(shù)學(xué)建模學(xué)習(xí)的過程中,大學(xué)生的數(shù)學(xué)能力得到提高,其分析問題、解決問題的能力得到提高,這對(duì)大學(xué)生畢業(yè)走向社會(huì)具有著重大意義。通過數(shù)學(xué)建模的學(xué)習(xí)和應(yīng)用,激發(fā)大學(xué)生學(xué)習(xí)數(shù)學(xué)和應(yīng)用數(shù)學(xué)的能力,運(yùn)用數(shù)學(xué)的思維和方法,利用現(xiàn)代計(jì)算機(jī)科學(xué),來解決數(shù)學(xué)及其他領(lǐng)域的問題。
數(shù)學(xué)建模引入大學(xué)數(shù)學(xué)教學(xué),這是時(shí)代的進(jìn)步,是時(shí)代對(duì)當(dāng)代大學(xué)教師提出的新要求,尤其是大學(xué)數(shù)學(xué)教師,其不再停留在以往的單純的數(shù)學(xué)知識(shí)講授方向,而是將數(shù)學(xué)科學(xué)作為基礎(chǔ),引導(dǎo)當(dāng)代大學(xué)生發(fā)散思維,發(fā)揮主觀能動(dòng)性,從而學(xué)習(xí)數(shù)學(xué)科學(xué),并運(yùn)用數(shù)學(xué)科學(xué)解決現(xiàn)實(shí)問題。在這個(gè)過程中大學(xué)教師的專業(yè)知識(shí)得到提高,其創(chuàng)新精神也得到了極大的豐富。大學(xué)數(shù)學(xué)教師不止完成數(shù)學(xué)教學(xué),更重要的是培養(yǎng)了高科技的人才,這對(duì)大學(xué)數(shù)學(xué)教師的社會(huì)地位也有了相應(yīng)的改變,在尊重人才,尊重科學(xué)的氛圍中,大學(xué)數(shù)學(xué)教師及其他學(xué)科的教師得到了鼓舞,得到了進(jìn)步,得到了認(rèn)可。數(shù)學(xué)建模越來越重要,關(guān)于數(shù)學(xué)建模的各種國內(nèi)國際大賽頻頻舉辦,這對(duì)大學(xué)數(shù)學(xué)教師在知識(shí),體力和創(chuàng)新性上都提出新的要求,為了更好的參與數(shù)學(xué)建模比賽,大學(xué)數(shù)學(xué)教師投入更多的時(shí)間和經(jīng)歷在學(xué)生教育和數(shù)學(xué)建模中,他們成為真正的臺(tái)前和幕后的指揮者。
隨著現(xiàn)代大學(xué)學(xué)科的豐富,尤其是計(jì)算機(jī)科學(xué)的廣泛應(yīng)用,大學(xué)數(shù)學(xué)教學(xué)的跨時(shí)代發(fā)展,數(shù)學(xué)建模成為各個(gè)高校數(shù)學(xué)教學(xué)的重點(diǎn)內(nèi)容,數(shù)學(xué)建模教學(xué)吸納數(shù)學(xué)家,計(jì)算機(jī)學(xué)家等多個(gè)學(xué)科專家的意見,從而為培養(yǎng)出綜合行的高科技人才做好充分的準(zhǔn)備。可以說數(shù)學(xué)建模教學(xué)是當(dāng)今大學(xué)數(shù)學(xué)教學(xué)的主旋律,是數(shù)學(xué)科學(xué)和其他科學(xué)進(jìn)步發(fā)展的方向和原動(dòng)力。
[1]李進(jìn)華.教育教學(xué)改革與教育創(chuàng)新探索.安徽:安徽大學(xué)出版社,20xx.8.
[2]于駿.現(xiàn)代數(shù)學(xué)思想方法.山東:石油大學(xué)出版社,1997.
大學(xué)生數(shù)學(xué)建模論文篇九
為了培養(yǎng)小學(xué)生良好的數(shù)學(xué)學(xué)習(xí)興趣,激發(fā)他們的數(shù)學(xué)潛能,教師需要采取必要的措施注重?cái)?shù)學(xué)建模思想的有效培養(yǎng),促進(jìn)學(xué)生的全面發(fā)展。在制定相關(guān)培養(yǎng)策略的過程中,教師應(yīng)充分考慮小學(xué)生的性格特點(diǎn),提高數(shù)學(xué)建模思想培養(yǎng)的有效性?;诖耍恼聦牟煌姆矫鎸?duì)小學(xué)生數(shù)學(xué)建模思想的培養(yǎng)策略進(jìn)行初步的探討。
作為小學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,數(shù)學(xué)建模思想的滲透及相關(guān)教學(xué)活動(dòng)的順利開展,有利于提高復(fù)雜數(shù)學(xué)問題的處理效率,保持?jǐn)?shù)學(xué)課堂教學(xué)的高效性。要實(shí)現(xiàn)這樣的發(fā)展目標(biāo),增強(qiáng)小學(xué)生數(shù)學(xué)建模思想的實(shí)際培養(yǎng)效果,需要加強(qiáng)對(duì)學(xué)生動(dòng)手實(shí)踐能力的培養(yǎng),激發(fā)學(xué)生的更高興趣。建模的過程涉及問題表述、求解、必要解釋及有效驗(yàn)證,在這四個(gè)環(huán)節(jié)中,可能會(huì)存在一定的問題,影響著數(shù)學(xué)教學(xué)計(jì)劃的實(shí)施。因此,教師需要利用學(xué)生動(dòng)手實(shí)踐能力的作用,實(shí)現(xiàn)數(shù)學(xué)建模思想的有效培養(yǎng),促使小學(xué)生能夠在數(shù)學(xué)建模過程中享受到更多的快樂。比如,在講解“認(rèn)識(shí)角”知識(shí)的過程中,某些學(xué)生認(rèn)為邊越長角度也越大。為了使學(xué)生能夠?qū)ζ渲械闹R(shí)點(diǎn)有更加正確而全面的認(rèn)識(shí),教師可以通過在黑板上設(shè)置一些能夠活動(dòng)的三角板,讓學(xué)生親自動(dòng)手操作,以此得出角與邊長的正確關(guān)系,為后續(xù)教學(xué)計(jì)劃的實(shí)施打下堅(jiān)實(shí)的基礎(chǔ)。通過這種教學(xué)方法的合理運(yùn)用,可以激發(fā)出學(xué)生們?cè)跀?shù)學(xué)建模學(xué)習(xí)中的更高興趣,豐富他們的想象力,從而使他們對(duì)數(shù)學(xué)建模思想有一定的了解,在未來學(xué)習(xí)過程中能夠保持良好的`數(shù)學(xué)建模能力。
通過對(duì)小學(xué)階段各種數(shù)學(xué)實(shí)踐教學(xué)活動(dòng)實(shí)際概況的深入分析,可知構(gòu)建良好的數(shù)學(xué)模型有利于加深學(xué)生對(duì)各知識(shí)(福建省莆田市秀嶼區(qū)東嶠前江小學(xué),福建莆田351164)點(diǎn)的深入理解,增強(qiáng)其主動(dòng)參與數(shù)學(xué)建模教學(xué)活動(dòng)的積極性。因此,為了使小學(xué)生數(shù)學(xué)建模思想培養(yǎng)能夠達(dá)到預(yù)期的效果,教師需要結(jié)合實(shí)際的教學(xué)內(nèi)容,建立必要的數(shù)學(xué)參考模型,提升學(xué)生對(duì)數(shù)學(xué)建模思想的整體認(rèn)知水平。比如,在講授“異分母分?jǐn)?shù)加減法”這部分知識(shí)的過程中,可以設(shè)置“0.8千克+300克”“1.6千克-400克”等問題,向?qū)W生提問是否可以直接計(jì)算,并說出原因。當(dāng)學(xué)生通過對(duì)問題的深入思考,總結(jié)出“單位不同不能直接計(jì)算”的結(jié)論后,繼續(xù)向?qū)W生提問小數(shù)計(jì)算中為什么每一位都要對(duì)齊,實(shí)現(xiàn)“計(jì)數(shù)單位統(tǒng)一后才能計(jì)算”這一數(shù)學(xué)模型的構(gòu)建。在這樣的教學(xué)過程中,學(xué)生可以加深對(duì)知識(shí)點(diǎn)的理解,實(shí)現(xiàn)數(shù)學(xué)建模思想的有效培養(yǎng)。
加強(qiáng)小學(xué)生數(shù)學(xué)建模思想的有效培養(yǎng),需要在具體的教學(xué)活動(dòng)開展中注重對(duì)數(shù)學(xué)思想的靈活運(yùn)用,增強(qiáng)相關(guān)模型構(gòu)建的可靠性,促使學(xué)生在長期的數(shù)學(xué)學(xué)習(xí)中能夠不斷提高自身的數(shù)學(xué)能力,運(yùn)用各種數(shù)學(xué)知識(shí)處理實(shí)際問題。比如,在“角的度量”這部分內(nèi)容講解的過程中,為了提高學(xué)生對(duì)角的分類及畫角相關(guān)知識(shí)點(diǎn)的深入理解,教師可以將所有的學(xué)生分為不同的小組,讓學(xué)生們通過小組討論的方式,對(duì)角的正確分類及如何畫角有一定的了解,并讓每個(gè)小組代表在講臺(tái)上演示畫角的過程。此時(shí),教師可以通過對(duì)多媒體教學(xué)設(shè)備的合理運(yùn)用,利用動(dòng)態(tài)化的文字與圖片對(duì)其中的知識(shí)要點(diǎn)進(jìn)行展示,確保學(xué)生們能夠在良好的教學(xué)模式中提升自身的認(rèn)知水平,并在不斷的思考過程中逐漸形成良好的創(chuàng)造性思維,強(qiáng)化自身的創(chuàng)新意識(shí)。比如,在講解“圖形變換”中的軸對(duì)稱、旋轉(zhuǎn)知識(shí)點(diǎn)的過程中,教師應(yīng)通過對(duì)學(xué)生的正確引導(dǎo),運(yùn)用三角板、圓柱等教學(xué)輔助工具,讓學(xué)生從不同的角度對(duì)各種軸對(duì)稱圖形、旋轉(zhuǎn)后得到的圖形進(jìn)行深入思考,提高自身數(shù)學(xué)建模過程中的創(chuàng)新能力,從不同的角度深入理解圖像變換過程,對(duì)這部分內(nèi)容有更多的了解。因此,教師應(yīng)注重小學(xué)生數(shù)學(xué)建模思想培養(yǎng)中多方位思考方式的針對(duì)性培養(yǎng),提高學(xué)生的創(chuàng)新能力,優(yōu)化學(xué)生的思維方式,全面提升小學(xué)數(shù)學(xué)建模教學(xué)水平。
總之,加強(qiáng)小學(xué)生數(shù)學(xué)建模思想培養(yǎng)策略的制定與實(shí)施,有利于滿足素質(zhì)教育的更高要求,實(shí)現(xiàn)對(duì)小學(xué)生數(shù)學(xué)能力的有效鍛煉,確保相關(guān)的教學(xué)計(jì)劃能夠在規(guī)定的時(shí)間內(nèi)順利地完成。與此同時(shí),結(jié)合當(dāng)前小學(xué)數(shù)學(xué)教育教學(xué)的實(shí)際發(fā)展概況,可知靈活運(yùn)用各種科學(xué)的數(shù)學(xué)建模思想培養(yǎng)策略,有利于滿足學(xué)生數(shù)學(xué)建模學(xué)習(xí)中的多樣化需求,為相關(guān)教學(xué)目標(biāo)的順利實(shí)現(xiàn)提供可靠的保障。
[1]童小艷.小學(xué)數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生建模思想的策略[j].學(xué)子(教育新理念),20xx(6).
[2]白寧.先學(xué)而后教——小學(xué)生數(shù)學(xué)建模思想培養(yǎng)的捷徑[j].數(shù)學(xué)學(xué)習(xí)與研究,20xx(16).
大學(xué)生數(shù)學(xué)建模論文篇十
1、從應(yīng)用數(shù)學(xué)出發(fā)數(shù)學(xué)建模主要是通過運(yùn)用數(shù)學(xué)知識(shí)解決生活中遇到實(shí)際問題的全過程。要讓數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)教學(xué)課程進(jìn)行有效的融合,最佳切入點(diǎn)就是課堂上把用數(shù)學(xué)解決生活中的實(shí)際問題與教學(xué)內(nèi)容相融合,以應(yīng)用數(shù)學(xué)為導(dǎo)向,訓(xùn)練學(xué)生綜合運(yùn)用數(shù)學(xué)知識(shí)去刻畫實(shí)際問題、提煉數(shù)學(xué)模型、處理實(shí)際數(shù)據(jù)、分析解決實(shí)際問題的能力,培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)原理解決生活問題的興趣和愛好。授課過程中,要改變以往單純地進(jìn)行課堂灌輸?shù)男袨椋嘁霊?yīng)用數(shù)學(xué)的內(nèi)容,通過師生互動(dòng)、課堂討論、小課題研究實(shí)踐等多種形式靈活多樣的教學(xué)方法,培養(yǎng)引導(dǎo)學(xué)生樹立應(yīng)用數(shù)學(xué)建模解決實(shí)際問題的思想。
2、從數(shù)學(xué)實(shí)驗(yàn)做起要加強(qiáng)獨(dú)立學(xué)院學(xué)生進(jìn)行數(shù)學(xué)實(shí)驗(yàn)的行為,筆者認(rèn)為數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)有著密切的聯(lián)系,兩者都是從解決實(shí)際問題出發(fā),當(dāng)前的大學(xué)生數(shù)學(xué)實(shí)驗(yàn)基本上是應(yīng)用數(shù)學(xué)軟件、數(shù)值計(jì)算、建立模型、過程演算和圖形顯示等一系列過程,因此進(jìn)行數(shù)學(xué)實(shí)驗(yàn)的全過程就是數(shù)學(xué)建模思想的啟發(fā)過程。但是我國的教育資源和教學(xué)方針限制了獨(dú)立學(xué)院學(xué)生的學(xué)習(xí)環(huán)境和學(xué)習(xí)資源,能夠進(jìn)行數(shù)學(xué)實(shí)驗(yàn)的條件還是有限的。即使個(gè)別有實(shí)驗(yàn)?zāi)芰Φ膶W(xué)校,也未能進(jìn)行充分利用,數(shù)學(xué)實(shí)驗(yàn)課的內(nèi)容隨意性較大,有些院校將其降格為軟件學(xué)習(xí)課程或初級(jí)算法課。根據(jù)調(diào)研,目前大部分獨(dú)立學(xué)院未開設(shè)此類課程,這是數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)教學(xué)課程融合的一大損失,不利于學(xué)生創(chuàng)新思維能力的提高。各校應(yīng)當(dāng)積極創(chuàng)造條件,把數(shù)學(xué)實(shí)驗(yàn)課設(shè)為大學(xué)數(shù)學(xué)的必修課,爭(zhēng)取設(shè)立數(shù)學(xué)建模選修課,并積極探索、逐步實(shí)現(xiàn)把數(shù)學(xué)建模的思想和方法融入大學(xué)數(shù)學(xué)的主干課程。
3、從計(jì)算機(jī)應(yīng)用切入數(shù)學(xué)是為理、工、經(jīng)、管、農(nóng)、醫(yī)、文等眾多學(xué)科服務(wù)的基礎(chǔ)工具,它在不同的領(lǐng)域因?yàn)閼?yīng)用程度不同而導(dǎo)致被重視的程度不同。但在當(dāng)今的信息化時(shí)代,計(jì)算機(jī)的廣泛應(yīng)用和計(jì)算技術(shù)的飛速發(fā)展,使科學(xué)計(jì)算和數(shù)值模擬已成為絕大多數(shù)學(xué)科的必要工具和常用手段。數(shù)學(xué)在不同學(xué)科領(lǐng)域有了共同的主題,即應(yīng)用數(shù)學(xué)建模,通過計(jì)算機(jī)對(duì)各自領(lǐng)域的科學(xué)研究、生活問題等進(jìn)行模擬分析,這成為數(shù)學(xué)建模思想在跨學(xué)科領(lǐng)域交流和傳播的一個(gè)重要途徑。每個(gè)領(lǐng)域的教學(xué)可以計(jì)算機(jī)應(yīng)用為切入點(diǎn),讓數(shù)學(xué)建模思想與數(shù)學(xué)授課無縫結(jié)合,在提高學(xué)生掌握知識(shí)能力、挖掘培養(yǎng)創(chuàng)新思維的同時(shí),增加了大學(xué)數(shù)學(xué)課程內(nèi)容的豐富性、實(shí)用性,促進(jìn)教學(xué)手段變革和創(chuàng)新。因此,大學(xué)應(yīng)以適應(yīng)現(xiàn)代信息技術(shù)發(fā)展的形勢(shì)和學(xué)生將來的需求為契機(jī),加快改進(jìn)大學(xué)數(shù)學(xué)課程教學(xué)方式,把數(shù)學(xué)建模的思想和方法以及現(xiàn)代計(jì)算技術(shù)和計(jì)算工具盡快融入大學(xué)數(shù)學(xué)的主干課程當(dāng)中。
大學(xué)數(shù)學(xué)課程是大學(xué)工科各專業(yè)培養(yǎng)計(jì)劃中重要的公共基礎(chǔ)理論課,其目的在于培養(yǎng)工程技術(shù)人才所必備的數(shù)學(xué)素質(zhì),為培養(yǎng)我國現(xiàn)代化建設(shè)需要的高素質(zhì)人才服務(wù)。數(shù)學(xué)建模課程的必修化,要從能夠擴(kuò)充學(xué)生的知識(shí)結(jié)構(gòu),培養(yǎng)學(xué)生的創(chuàng)造性思維能力、抽象概括能力、邏輯推理能力、自學(xué)能力、分析問題和解決問題能力的角度出發(fā),建立適合獨(dú)立學(xué)院學(xué)生的數(shù)學(xué)建模教學(xué)內(nèi)容。日前獨(dú)立學(xué)院開展數(shù)學(xué)建模活動(dòng)涉及內(nèi)容較淺,缺少相應(yīng)的數(shù)學(xué)建模和數(shù)學(xué)實(shí)驗(yàn)方而的教材。筆者近幾年通過承擔(dān)此類課題的研究,認(rèn)為應(yīng)該加強(qiáng)以下內(nèi)容的建設(shè):
。2、開設(shè)選修課拓展知識(shí)領(lǐng)域,讓學(xué)生可以通過選修數(shù)學(xué)建模、運(yùn)籌學(xué)、開設(shè)數(shù)學(xué)實(shí)驗(yàn)(介紹matlab、maple等計(jì)算軟件課程),增加建立和解答數(shù)學(xué)模型的方法和技巧。比如以前用的“文曲星”電子詞典里的貸款計(jì)算,就是一個(gè)典型的運(yùn)用數(shù)學(xué)模型方便百姓自己計(jì)算的應(yīng)用。這個(gè)模型單靠數(shù)學(xué)和經(jīng)濟(jì)學(xué)單方面的知識(shí)是不夠的,必須把數(shù)學(xué)與經(jīng)濟(jì)學(xué)聯(lián)系在一起,才能有效解決生活中的問題。
3、積極組織學(xué)生開展或是參加數(shù)學(xué)建模大賽比賽是各個(gè)選手充分發(fā)揮水平、展示自己智慧的途徑,也是數(shù)學(xué)建模思想傳播的最好手段。比賽可以讓各個(gè)選手發(fā)現(xiàn)自己的不足,尋找自身數(shù)學(xué)建模出發(fā)點(diǎn)的缺陷,通過交流,還可以拓展學(xué)生思維。因此,有必要積極組織學(xué)生參入初等數(shù)學(xué)知識(shí)可以解決的數(shù)學(xué)模型、線性規(guī)劃模型、指派問題模型、存儲(chǔ)問題模型、圖論應(yīng)用題等方面的模擬競(jìng)賽,通過參賽積累大量數(shù)學(xué)建模知識(shí),促進(jìn)數(shù)學(xué)建模在教學(xué)中扮演更重要的`角色。教師應(yīng)該對(duì)歷年的全國大學(xué)生數(shù)學(xué)建模競(jìng)賽真題進(jìn)行認(rèn)真的解讀分析,通過對(duì)有意義的題目,如20xx年的《葡萄酒的評(píng)價(jià)》、《太陽能小屋的設(shè)計(jì)》,20xx年的《交巡警服務(wù)平臺(tái)的設(shè)置與調(diào)度車燈線光源的計(jì)算》、20xx年的《眼科病床的合理安排》等,與生活相關(guān)的例子進(jìn)行講解分析,提高學(xué)生對(duì)數(shù)學(xué)建模的興趣和對(duì)模型應(yīng)用的直觀的認(rèn)識(shí),實(shí)現(xiàn)學(xué)校應(yīng)用型人才的培養(yǎng)。
4、加快教育方式的轉(zhuǎn)變高等教育設(shè)立數(shù)學(xué)這門學(xué)科就是為了應(yīng)用服務(wù),內(nèi)容應(yīng)重點(diǎn)放在基本概念、定理、公式等在生活中的應(yīng)用上。而傳統(tǒng)的高等數(shù)學(xué),除了推導(dǎo)就是證明,因此,要對(duì)傳統(tǒng)內(nèi)容進(jìn)行優(yōu)化組合,根據(jù)教學(xué)特點(diǎn)和學(xué)生情況推陳出新,要注重?cái)?shù)學(xué)思想的滲透和數(shù)學(xué)方法的介紹,對(duì)高等數(shù)學(xué)精髓的求導(dǎo)、微分方法、積分方法等的授課要重點(diǎn)放在解決實(shí)際生活的應(yīng)用上。要結(jié)合一些社會(huì)實(shí)踐問題與函數(shù)建立的關(guān)系,分析確定變量、參數(shù),加強(qiáng)有關(guān)函數(shù)關(guān)系式建立的日常訓(xùn)練。培養(yǎng)學(xué)生對(duì)一些問題的邏輯分析、抽象、簡(jiǎn)化并用數(shù)學(xué)語言表達(dá)的能力,逐步將學(xué)生帶入遇到問題就能自然地去轉(zhuǎn)化成數(shù)學(xué)模型進(jìn)行處理的境界,并能將數(shù)學(xué)結(jié)論又能很好反向轉(zhuǎn)化成實(shí)際應(yīng)用。
21世紀(jì)我國進(jìn)入了大眾教育時(shí)期,高校招生人數(shù)劇增,學(xué)生水平差距較大,需要學(xué)校瞄準(zhǔn)正確的培養(yǎng)方向。通過對(duì)美國教學(xué)改革的研究,筆者認(rèn)為我國的數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)教學(xué)課程融合必須盡快在大學(xué)中廣泛推進(jìn),但要注意一些問題:第一,數(shù)學(xué)教學(xué)改革一定要基于學(xué)生的現(xiàn)實(shí)水平,數(shù)學(xué)建模思想融入要與時(shí)俱進(jìn)。第二,教學(xué)目標(biāo)要正確定位,融合過程一定要與教學(xué)研究相結(jié)合,要在加強(qiáng)交流的基礎(chǔ)上不斷改進(jìn)。第三,大學(xué)生數(shù)學(xué)建模競(jìng)賽的舉辦和參入,要給予正確的理解和引導(dǎo),形成良性循環(huán)。要根據(jù)個(gè)人興趣愛好,注重個(gè)性,不應(yīng)面面強(qiáng)求。第四,傳統(tǒng)數(shù)學(xué)思想與現(xiàn)在數(shù)學(xué)建模思想必須互補(bǔ),必修與選修課程的作用與角色要分清。數(shù)學(xué)主干課程的教學(xué)水平是大學(xué)教學(xué)質(zhì)量的關(guān)鍵指標(biāo)之一,具備數(shù)學(xué)建模思想是理工類大學(xué)生能否成為創(chuàng)新人才的重要條件之一。兩者的融合必將促進(jìn)我國教學(xué)水平和質(zhì)量的提高,為社會(huì)輸送更多的實(shí)用型、創(chuàng)新型人才。
大學(xué)生數(shù)學(xué)建模論文篇十一
優(yōu)秀高教社杯全國大學(xué)生數(shù)學(xué)建模競(jìng)賽題目
(請(qǐng)先閱讀“全國大學(xué)生數(shù)學(xué)建模競(jìng)賽論文格式規(guī)范”)
a題城市表層土壤重金屬污染分析
隨著城市經(jīng)濟(jì)的快速發(fā)展和城市人口的不斷增加,人類活動(dòng)對(duì)城市環(huán)境質(zhì)量的影響日顯突出。對(duì)城市土壤地質(zhì)環(huán)境異常的查證,以及如何應(yīng)用查證獲得的海量數(shù)據(jù)資料開展城市環(huán)境質(zhì)量評(píng)價(jià),研究人類活動(dòng)影響下城市地質(zhì)環(huán)境的演變模式,日益成為人們關(guān)注的焦點(diǎn)。
按照功能劃分,城區(qū)一般可分為生活區(qū)、工業(yè)區(qū)、山區(qū)、主干道路區(qū)及公園綠地區(qū)等,分別記為1類區(qū)、2類區(qū)、??、5類區(qū),不同的區(qū)域環(huán)境受人類活動(dòng)影響的程度不同。
現(xiàn)對(duì)某城市城區(qū)土壤地質(zhì)環(huán)境進(jìn)行調(diào)查。為此,將所考察的城區(qū)劃分為間距1公里左右的網(wǎng)格子區(qū)域,按照每平方公里1個(gè)采樣點(diǎn)對(duì)表層土(0~10厘米深度)進(jìn)行取樣、編號(hào),并用gps記錄采樣點(diǎn)的位置。應(yīng)用專門儀器測(cè)試分析,獲得了每個(gè)樣本所含的多種化學(xué)元素的濃度數(shù)據(jù)。另一方面,按照2公里的間距在那些遠(yuǎn)離人群及工業(yè)活動(dòng)的自然區(qū)取樣,將其作為該城區(qū)表層土壤中元素的背景值。
附件1列出了采樣點(diǎn)的位置、海拔高度及其所屬功能區(qū)等信息,附件2列出了8種主要重金屬元素在采樣點(diǎn)處的濃度,附件3列出了8種主要重金屬元素的背景值。
現(xiàn)要求你們通過數(shù)學(xué)建模來完成以下任務(wù):
(1)給出8種主要重金屬元素在該城區(qū)的空間分布,并分析該城區(qū)內(nèi)不同區(qū)域重金屬的污染程度。
(2)通過數(shù)據(jù)分析,說明重金屬污染的主要原因。
(3)分析重金屬污染物的傳播特征,由此建立模型,確定污染源的位置。
大學(xué)生數(shù)學(xué)建模論文篇十二
摘要:數(shù)學(xué)作為很多學(xué)科的計(jì)算工具,可以說是現(xiàn)代科學(xué)的基礎(chǔ),要想利用數(shù)學(xué)來解決實(shí)際問題,首先要建立相應(yīng)的數(shù)學(xué)模型,本文在數(shù)學(xué)建模思想概念和特點(diǎn)的基礎(chǔ)上,從計(jì)算機(jī)軟件、實(shí)際生活中的應(yīng)用等方面,對(duì)其應(yīng)用的發(fā)展進(jìn)行了分析,最后從分析問題、建立模型、校驗(yàn)?zāi)P腿齻€(gè)階段,對(duì)數(shù)學(xué)建模的方法,進(jìn)行了深入的研究。
關(guān)鍵詞:數(shù)學(xué)建模;思想;應(yīng)用;方法;分析
引言
隨著自然科學(xué)的發(fā)展,利用數(shù)學(xué)等思想來解決實(shí)際問題,越來越受到人們的重視,數(shù)學(xué)作為一門歷史悠久的自然科學(xué),是在實(shí)際應(yīng)用的基礎(chǔ)上發(fā)展起來,但是隨著理論研究的深入,現(xiàn)在數(shù)學(xué)理論已經(jīng)非常先進(jìn),很多理論都無法付諸實(shí)踐,在這種背景下,如何利用現(xiàn)有的數(shù)學(xué)理論來解決實(shí)際問題,成為了很多專家和學(xué)者研究的問題。通過實(shí)際的調(diào)查發(fā)現(xiàn),要想利用數(shù)學(xué)來解決實(shí)際問題,首先要建立相應(yīng)的數(shù)學(xué)模型,將實(shí)際的問題轉(zhuǎn)化成數(shù)學(xué)符號(hào)的表達(dá)方式,這樣才能夠通過數(shù)學(xué)計(jì)算,來解決一些實(shí)際問題,從某種意義上來說,計(jì)算機(jī)就是由若干個(gè)數(shù)學(xué)模型組成的,計(jì)算機(jī)軟件之所以能夠解決實(shí)際問題,就是根據(jù)實(shí)際應(yīng)用的需要,建立了一個(gè)相應(yīng)的數(shù)學(xué)模型,這樣才能夠讓計(jì)算機(jī)來解決。
1數(shù)學(xué)建模思想分析
1.1數(shù)學(xué)建模思想的概念
數(shù)學(xué)是一門歷史悠久的自然科學(xué),在古時(shí)候,由于實(shí)際應(yīng)用的需要,人們就已經(jīng)開始使用數(shù)學(xué)來解決實(shí)際問題,但是受到當(dāng)時(shí)技術(shù)條件的限制,數(shù)學(xué)理論的水平比較低,只是利用數(shù)學(xué)來進(jìn)行計(jì)數(shù)等,隨著經(jīng)濟(jì)和科技水平的提高,尤其是在工業(yè)革命之后,自然科學(xué)得到了極大的發(fā)展,對(duì)于利用自然科學(xué)來解決實(shí)際問題,也成為了人們研究的重點(diǎn),在市場(chǎng)經(jīng)濟(jì)的推動(dòng)下,人們將這些理論知識(shí)轉(zhuǎn)化成為產(chǎn)品。計(jì)算機(jī)就是在這種背景下產(chǎn)生的,在數(shù)學(xué)理論的基礎(chǔ)上,將電路的通和不通兩種狀態(tài),與數(shù)學(xué)的二進(jìn)制相結(jié)合,這樣就能夠讓計(jì)算機(jī)來處理實(shí)際問題,從本質(zhì)上來說,這就是數(shù)學(xué)建模思想的范疇,但是在計(jì)算機(jī)出現(xiàn)的早期,數(shù)學(xué)建模的理論還沒有形成,隨著計(jì)算機(jī)軟件技術(shù)的發(fā)展,人們逐漸的意識(shí)到數(shù)學(xué)建模的重要性,發(fā)現(xiàn)利用數(shù)學(xué)建模思想,可以解決很多實(shí)際的問題,而數(shù)學(xué)建模的概念,就是將遇到的實(shí)際問題,利用特定的數(shù)學(xué)符號(hào)進(jìn)行描述,這樣實(shí)際問題就轉(zhuǎn)化為數(shù)學(xué)問題,可以利用數(shù)學(xué)的計(jì)算方法來解決。
1.2數(shù)學(xué)建模思想的特點(diǎn)
如何解決實(shí)際問題,從有人類文明開始,就成為了人們研究的重點(diǎn),隨著自然科學(xué)的發(fā)展,出現(xiàn)了很多具體的學(xué)科,利用這些不同的學(xué)科,可以解決不同的實(shí)際問題,而數(shù)學(xué)就是其中最重要的一門學(xué)科,而且是其他學(xué)科的基礎(chǔ),如物理學(xué)科中,數(shù)學(xué)就是一個(gè)計(jì)算的工具,由此可以看出數(shù)學(xué)的重要性,進(jìn)入到信息時(shí)代后,計(jì)算機(jī)得到了普及應(yīng)用,無論是日常生活中還是工作中,計(jì)算機(jī)都有非常重要的應(yīng)用,而在信息時(shí)代,注重的是解決問題的效率。與其他解決問題的方式相比,數(shù)學(xué)建模顯然更加科學(xué),現(xiàn)在數(shù)學(xué)建模已經(jīng)成為了一門獨(dú)立的學(xué)科,很多高校中都開設(shè)了這門課程,為了培養(yǎng)學(xué)生們利用數(shù)學(xué)解決實(shí)際問題的能力,我國每年都會(huì)舉辦全國性的數(shù)學(xué)建模大賽,采用開放式的參賽方式,對(duì)學(xué)生們的數(shù)學(xué)建模能力進(jìn)行考驗(yàn),而大賽的題目,很多都是一些實(shí)際問題,對(duì)于比賽的結(jié)果,每個(gè)參賽隊(duì)伍的建模方式都有一定的差異,其中選出一個(gè)最有效的方式成為冠軍。由此可以看出,對(duì)于一個(gè)實(shí)際的問題,可以建立多個(gè)數(shù)學(xué)模型進(jìn)行解決,但是執(zhí)行的效率具有一定的差異,如有些計(jì)算的步驟較少,而有些計(jì)算的過程比較簡(jiǎn)單,而如何評(píng)價(jià)一個(gè)模型的效率,必須從各個(gè)方面進(jìn)行綜合的考慮。
2數(shù)學(xué)建模思想的應(yīng)用
2.1計(jì)算機(jī)軟件中數(shù)學(xué)建模思想的應(yīng)用
通過深入的分析可以知道,計(jì)算機(jī)之所以能夠解決實(shí)際問題,很大程度上依賴與計(jì)算機(jī)軟件,而計(jì)算機(jī)軟件自身就是一個(gè)或幾個(gè)數(shù)學(xué)模型,在軟件開發(fā)的過程中,首先要進(jìn)行需求的分析,這其實(shí)就是數(shù)學(xué)建模的第一個(gè)環(huán)節(jié),對(duì)問題進(jìn)行分析,在了解到問題之后,就要通過計(jì)算機(jī)語言,對(duì)問題進(jìn)行描述,而計(jì)算機(jī)語言是人與計(jì)算機(jī)進(jìn)行溝通的語言,最終這些語言都要轉(zhuǎn)化成0和1二進(jìn)制的方式,這樣計(jì)算機(jī)才能夠進(jìn)行具體的計(jì)算。由此可以看出,計(jì)算機(jī)就是依靠數(shù)學(xué)來解決實(shí)際問題,而每個(gè)計(jì)算機(jī)軟件,都可以認(rèn)為是一個(gè)數(shù)學(xué)模型,如在早期的計(jì)算機(jī)程序設(shè)計(jì)中,受到當(dāng)時(shí)計(jì)算機(jī)技術(shù)水平的限制,采用的還是低級(jí)語言,由于低級(jí)語言人們很難理解,因此在程序編寫之前,都會(huì)先建立一個(gè)數(shù)學(xué)模型,然后將這個(gè)模型轉(zhuǎn)化成相應(yīng)的計(jì)算機(jī)語言,這樣計(jì)算機(jī)就可以解決實(shí)際的問題,由于計(jì)算機(jī)能夠自行計(jì)算的特點(diǎn),只要輸入相應(yīng)的參數(shù)后,就可以直接得到結(jié)果,不再需要人為的計(jì)算。
2.2數(shù)學(xué)建模思想直接解決實(shí)際問題
經(jīng)過了多年的發(fā)展,現(xiàn)在數(shù)學(xué)建模自身已經(jīng)非常完善,為了培養(yǎng)我國的數(shù)學(xué)建模人才,從1992年開始,每年我國都會(huì)舉辦一屆全國數(shù)學(xué)建模大賽,所有的高校學(xué)生都可以參加,大賽采用了開放性的參賽方式,通常情況下,對(duì)于題目設(shè)置的也比較靈活,會(huì)有多個(gè)題目提供給隊(duì)員選擇,學(xué)生可以根據(jù)自己的實(shí)際情況,來選擇一個(gè)最適合自己的問題。而數(shù)學(xué)建模大賽舉辦的主要目的,就是讓學(xué)生們掌握如何利用數(shù)學(xué)理論,來解決實(shí)際問題,在學(xué)習(xí)數(shù)學(xué)知識(shí)的過程中,很多學(xué)生會(huì)認(rèn)為,數(shù)學(xué)與實(shí)踐的距離很遠(yuǎn),學(xué)習(xí)的都是純理論的知識(shí),學(xué)習(xí)的興趣很低,與一些實(shí)踐密切相關(guān)的學(xué)科相比,選擇數(shù)學(xué)專業(yè)的學(xué)生很少,而數(shù)學(xué)建模的出現(xiàn),在很大程度上改善了這種情況,讓人們真正的了解數(shù)學(xué),并利用數(shù)學(xué)來解決復(fù)雜的問題。受到特殊的歷史因素影響,我國自然科學(xué)發(fā)展的起步較晚,在建國后經(jīng)歷了很長一段時(shí)間封,閉發(fā)展,與西方發(fā)達(dá)國家之間的交流比較少,因此對(duì)于數(shù)學(xué)建模等現(xiàn)代科學(xué),研究的時(shí)間比較短,導(dǎo)致目前我國很少會(huì)利用數(shù)學(xué)建模來解決實(shí)際問題,相比之下,發(fā)達(dá)國家在很多領(lǐng)域中,經(jīng)常會(huì)用到數(shù)學(xué)建模的知識(shí),如在企業(yè)日常運(yùn)營中,需要進(jìn)行市場(chǎng)調(diào)研等工作,而對(duì)于這些調(diào)研工作的處理,在進(jìn)行之前都會(huì)建立一個(gè)數(shù)學(xué)模型,然后按照這個(gè)建立的模型來處理。
2.3數(shù)學(xué)建模思想應(yīng)用的發(fā)展
從本質(zhì)上來說,數(shù)學(xué)是在實(shí)際應(yīng)用的基礎(chǔ)上,逐漸形成的一門學(xué)科,但是受到當(dāng)時(shí)技術(shù)水平的限制,雖然人們已經(jīng)懂得去計(jì)算,卻并知道自己使用的是數(shù)學(xué)知識(shí),隨著自然科學(xué)的發(fā)展,對(duì)數(shù)學(xué)的應(yīng)用越來越多,而數(shù)學(xué)自身理論的發(fā)展速度很快,遠(yuǎn)遠(yuǎn)超過了實(shí)際應(yīng)用的范圍,同時(shí)隨著其他學(xué)科的發(fā)展,數(shù)學(xué)變成了一種計(jì)算的工具,因此數(shù)學(xué)應(yīng)用的第一個(gè)階段中,主要是作為一種工具。隨著電子計(jì)算機(jī)的出現(xiàn),對(duì)數(shù)學(xué)的應(yīng)用達(dá)到了一個(gè)極限,人們?cè)跀?shù)學(xué)和物理的基礎(chǔ)上,制作出了能夠自動(dòng)計(jì)算的機(jī)器,在計(jì)算機(jī)出現(xiàn)的早期,受到性能和體積上的限制,只能進(jìn)行一些簡(jiǎn)單的數(shù)學(xué)計(jì)算,還不能解決實(shí)際的問題,但是計(jì)算機(jī)語言和軟件技術(shù)的.發(fā)展,使其在很多領(lǐng)域得到了應(yīng)用,在計(jì)算的基礎(chǔ)上,能夠解決很多問題,而軟件程序的開發(fā),其實(shí)就是建立數(shù)學(xué)模型的過程,由此可以看出,數(shù)學(xué)建模思想應(yīng)用的第二階段中,主要是以現(xiàn)代計(jì)算機(jī)等電子設(shè)備的方式,來解決實(shí)際的問題。
3數(shù)學(xué)建模思想應(yīng)用的方法
3.1分析問題
數(shù)學(xué)模型的應(yīng)用都是為了解決實(shí)際問題,雖然很多問題都可以通過建模的方式來解決,但是并不是所有的問題,因此在遇到實(shí)際問題時(shí),首先要對(duì)問題進(jìn)行具體的分析,首先就是看是否能夠轉(zhuǎn)化成數(shù)學(xué)符號(hào),如果能夠直接用數(shù)學(xué)語言來進(jìn)行描述,那么就可以容易的建立相應(yīng)的數(shù)學(xué)模型,但是通過實(shí)際的調(diào)查發(fā)現(xiàn),隨著經(jīng)濟(jì)和科技的發(fā)展,遇到的問題越來越復(fù)雜,其中很多都無法直接用數(shù)學(xué)語言來描述,這就增加了數(shù)學(xué)建模的難度。由此可以看出,分析問題作為數(shù)學(xué)建模的第一個(gè)環(huán)節(jié),也是最重要的一個(gè)環(huán)節(jié),如果問題分析的不夠具體,那么將無法建立出數(shù)學(xué)模型,同時(shí)對(duì)數(shù)學(xué)模型的建立也具有非常重要的影響,通過實(shí)際的調(diào)查發(fā)現(xiàn),能夠建立高效率的數(shù)學(xué)模型,都是對(duì)問題分析的比較徹底,甚至有些獨(dú)特的理解,只有這樣才能夠采用建立一個(gè)最簡(jiǎn)單的模型,而隨著數(shù)學(xué)建模自身的發(fā)展,現(xiàn)在建立模型的過程中,對(duì)于一個(gè)實(shí)際的問題,經(jīng)常需要建立多個(gè)模型,這樣通過多個(gè)數(shù)學(xué)模型協(xié)同來解決一個(gè)問題。
3.2數(shù)學(xué)模型的建立
在分析實(shí)際問題后,就要用數(shù)學(xué)符號(hào)來描述要解決的問題,這是建立數(shù)學(xué)模型的準(zhǔn)備環(huán)節(jié),要想利用數(shù)學(xué)來解決實(shí)際問題,無論采用哪種方式,都要轉(zhuǎn)化成數(shù)學(xué)語言,然后才能夠通過計(jì)算的方式解決,而數(shù)學(xué)模型的過程,就是在描述完成后,建立相應(yīng)的數(shù)學(xué)表達(dá)式,通常情況下,在分析問題時(shí),都能夠發(fā)現(xiàn)某種內(nèi)在的規(guī)律,這個(gè)規(guī)律是數(shù)學(xué)建模的基礎(chǔ)。如果無法找到這個(gè)規(guī)律,顯然就不能利用現(xiàn)有的一些數(shù)學(xué)定律,從而建立相應(yīng)的表達(dá)式,最后解決相應(yīng)的問題,由此可以看出,分析問題的內(nèi)在規(guī)律,是影響數(shù)學(xué)建模的重要因素,而這個(gè)規(guī)律的發(fā)現(xiàn),除了在現(xiàn)有的數(shù)學(xué)知識(shí)外,也可以結(jié)合其他學(xué)科的知識(shí),尤其是現(xiàn)在遇到的問題越來越復(fù)雜,對(duì)于以往簡(jiǎn)單的問題,只需要建立一個(gè)簡(jiǎn)單的模型即可解決,而現(xiàn)在復(fù)雜的問題,經(jīng)常需要建立多個(gè)模型。因此現(xiàn)在數(shù)學(xué)建模的難度越來越大,從近些年全國數(shù)學(xué)建模大賽的題目就可以看出,對(duì)于問題的描述越來越模糊,甚至出現(xiàn)了一些歷史上的難題,而不同學(xué)生根據(jù)自己的理解,建立的模型也具有很大的差異,其中一些模型非常新穎,為實(shí)際問題的解決提供了良好的參考,目前我國對(duì)數(shù)學(xué)建模的研究有限,尤其是與西方發(fā)達(dá)國家相比,實(shí)踐的機(jī)會(huì)還比較少。
3.3數(shù)學(xué)模型的校驗(yàn)
在數(shù)學(xué)模型建立之后,對(duì)于這個(gè)模型是否能夠解決實(shí)際問題,具體的執(zhí)行效率如何,都需要進(jìn)行校驗(yàn),因此檢驗(yàn)是數(shù)學(xué)模型建立最后的一個(gè)環(huán)節(jié),也是非常重要的一個(gè)步驟,通常情況下,經(jīng)過校驗(yàn)都能夠發(fā)現(xiàn)模型中存在的一些問題,從而進(jìn)行完善,這樣才能夠保證嚴(yán)謹(jǐn)性,在實(shí)際校驗(yàn)的過程中,要對(duì)數(shù)學(xué)模型的每個(gè)部分進(jìn)行驗(yàn)證,通過輸入特定的數(shù)據(jù),看得到的結(jié)果是否符合理論值,如果沒有問題,就說明該模型可以解決實(shí)際問題。除了檢驗(yàn)?zāi)P偷臏?zhǔn)確外,校驗(yàn)還有另外一個(gè)作用,就是優(yōu)化模型,在選定數(shù)據(jù)后,能夠看到數(shù)學(xué)模型計(jì)算的整個(gè)過程,這時(shí)就可以對(duì)具體的細(xì)節(jié)進(jìn)行優(yōu)化,如哪部分可以減少計(jì)算的步驟,或者簡(jiǎn)化計(jì)算的方式等,這樣可以使整個(gè)模型更加科學(xué)、合理,由此可以看出,校驗(yàn)工作對(duì)于數(shù)學(xué)模型的建立,具有非常重要的意義。
4結(jié)語
通過全文的分析可以知道,對(duì)于數(shù)學(xué)理論的應(yīng)用,從很久之前就已經(jīng)開始了,但是數(shù)學(xué)建模思想的出現(xiàn),卻是隨著計(jì)算機(jī)技術(shù)的發(fā)展,逐漸形成的一門學(xué)科,電子計(jì)算機(jī)的出現(xiàn),在很大程度上改變了處理事情的方式,利用計(jì)算機(jī)軟件,只要輸入相應(yīng)的參數(shù),就可以直接得到結(jié)果,這正是數(shù)學(xué)模型完成的任務(wù),只是計(jì)算機(jī)的出現(xiàn),省略了中間的計(jì)算過程,因此計(jì)算機(jī)軟件的方式,是數(shù)學(xué)建模思想最好的應(yīng)用方法,要想解決不同的問題,只要建立不同的模型,然后編寫相應(yīng)的程序。
大學(xué)生數(shù)學(xué)建模論文篇十三
數(shù)學(xué)建模是銜接數(shù)學(xué)與應(yīng)用問題的橋梁,該課程主要培養(yǎng)學(xué)生的綜合素質(zhì)要求。本文針對(duì)于數(shù)學(xué)建模的課程考核問題進(jìn)行探討,分析數(shù)學(xué)建模課程考核存在問題,改革思路,并提出多層次綜合考核方式,應(yīng)用于數(shù)學(xué)建模的課程考核,效果良好。
數(shù)學(xué)建模;課程考核;創(chuàng)新能力
數(shù)學(xué)建模是一門介紹數(shù)學(xué)知識(shí)應(yīng)用于解決實(shí)際問題的方法課程,該課程主要講授如何針對(duì)日常生活中的實(shí)際問題,做假設(shè)簡(jiǎn)化并進(jìn)行抽象提取,然后用數(shù)學(xué)表達(dá)式或者數(shù)學(xué)公式等將該問題表達(dá)出來,并求解該問題,從而達(dá)到解決實(shí)際問題的目的。數(shù)學(xué)建模的教學(xué)內(nèi)容包含常見數(shù)學(xué)模型的介紹、數(shù)學(xué)軟件編程和處理實(shí)際問題的數(shù)學(xué)方法。即數(shù)學(xué)建模是一門銜接數(shù)學(xué)與實(shí)際問題的應(yīng)用型課程,其教學(xué)、考核等都與其他數(shù)學(xué)課程不同。中共中央國務(wù)院《關(guān)于深化教育改革全面推進(jìn)素質(zhì)教育的決定》明確指出:“高等教育要重視培養(yǎng)大學(xué)生的創(chuàng)新能力、實(shí)踐能力和創(chuàng)業(yè)精神,普遍提高大學(xué)生的人文素養(yǎng)和科學(xué)素質(zhì)?!碧貏e對(duì)于當(dāng)前處于經(jīng)濟(jì)結(jié)構(gòu)調(diào)整期,“中國制造”向“中國創(chuàng)造”轉(zhuǎn)型,國家需要大量的高素質(zhì)創(chuàng)新型人才。而高校是培養(yǎng)高素質(zhì)創(chuàng)新型人才的重要基地,需要改變?cè)械娜瞬排囵B(yǎng)模式,提高學(xué)生的動(dòng)手能力和綜合素質(zhì),培養(yǎng)適合經(jīng)濟(jì)發(fā)展需要的高素質(zhì)創(chuàng)新型人才。因此,本科教學(xué)中越來越重視培養(yǎng)學(xué)生收集處理信息的能力、獲取新知識(shí)的能力、分析和解決問題的能力、語言文字表達(dá)能力以及團(tuán)結(jié)協(xié)作和社會(huì)活動(dòng)的能力。數(shù)學(xué)建模競(jìng)賽是利用數(shù)學(xué)知識(shí)解決實(shí)際問題的競(jìng)賽活動(dòng),要求參賽學(xué)生利用三天三夜的時(shí)間完成數(shù)學(xué)建模競(jìng)賽,整個(gè)競(jìng)賽過程中學(xué)生需要分析問題、查找資料、建立模型、編程求解、撰寫建模論文等步驟。這些步驟要求參賽學(xué)生具有較強(qiáng)的信息收集、知識(shí)獲取、分析、編程、論文撰寫、團(tuán)隊(duì)協(xié)作等能力。因此,數(shù)學(xué)建模競(jìng)賽活動(dòng)是培養(yǎng)學(xué)生各方面能力的競(jìng)賽,也是全國參與人數(shù)最多、受益面最廣、舉辦時(shí)間最長的競(jìng)賽活動(dòng)之一。數(shù)學(xué)建模是信息與計(jì)算科學(xué)和應(yīng)用數(shù)學(xué)專業(yè)的專業(yè)必修課,參加數(shù)學(xué)建模競(jìng)賽的必須培訓(xùn)課程,數(shù)學(xué)建模的考核不僅僅是給出該課程的成績,更重要的承擔(dān)為數(shù)學(xué)建模競(jìng)賽選拔參賽人員的任務(wù)。本文針對(duì)數(shù)學(xué)建模的考核問題進(jìn)行討論。
(1)考核手段和目的存在誤區(qū)。傳統(tǒng)的考核方法注重于理論知識(shí)的檢驗(yàn),忽略了對(duì)學(xué)生創(chuàng)新意識(shí)、實(shí)踐能力的培養(yǎng)。同時(shí),教育主管部門對(duì)于該課程的考核要求與其他課程類似,僅僅考核知識(shí)點(diǎn)的.掌握,忽視了該課程的開設(shè)目地,從而使得部分學(xué)生的利用數(shù)學(xué)方法解決實(shí)際問題的能力未能提高,沒有達(dá)到學(xué)習(xí)此課程的目的。(2)考核重結(jié)果,輕過程。目前,數(shù)學(xué)建模是考查課程,該課程的考核存在兩個(gè)極端:簡(jiǎn)單根據(jù)學(xué)生的數(shù)學(xué)建模論文給予成績或試卷考試成績??己私Y(jié)果忽略了對(duì)學(xué)生的各方面能力的考察,導(dǎo)致開卷考試變成了學(xué)生的簡(jiǎn)單應(yīng)付了事;而且部分考核只看最后的結(jié)果,而忽略了數(shù)學(xué)建模的整個(gè)訓(xùn)練過程。(3)考核方式單一。數(shù)學(xué)建模課程牽涉數(shù)學(xué)方法、編程能力、論文的寫作能力、及其綜合動(dòng)手能力等。單純從試卷或最終數(shù)學(xué)建模論文不能體現(xiàn)學(xué)生的各種能力。導(dǎo)致學(xué)生的某一種能力掩蓋了其他能力的展現(xiàn),導(dǎo)致數(shù)學(xué)建模競(jìng)賽學(xué)生選拔過程中存在一種現(xiàn)象:通過各種方式選拔的“優(yōu)秀”學(xué)生,真正參加數(shù)學(xué)建模競(jìng)賽時(shí),根本無法動(dòng)手。(4)教學(xué)改革需要。隨著大數(shù)據(jù)、人工智能、深度學(xué)習(xí)等領(lǐng)域的興起,數(shù)學(xué)知識(shí)是解決此類實(shí)際問題的必須工具,解決該類問題的過程其實(shí)就是數(shù)學(xué)建模的過程。隨著“新工科”培養(yǎng)計(jì)劃的興起,數(shù)學(xué)、編程、寫作能力成為衡量人才的重要指標(biāo)。數(shù)學(xué)建模是銜接數(shù)學(xué)和實(shí)際問題的橋梁,設(shè)置合理的考核方式,體現(xiàn)學(xué)生多方面能力是數(shù)學(xué)建模課程考核改革的動(dòng)力。
(1)轉(zhuǎn)變教育觀念,樹立科學(xué)考核。數(shù)學(xué)建模是一門利用數(shù)學(xué)方法、計(jì)算機(jī)編程、論文寫作等方面知識(shí)解決實(shí)際問題的課程。該課程主要培養(yǎng)學(xué)生利用數(shù)學(xué)建模方法解決實(shí)際問題的能力。因此,任課教師改變課程考核等同于考試的觀念,將考核過程貫穿學(xué)生的學(xué)習(xí)階段,學(xué)習(xí)階段融入整個(gè)考核過程。從而避免教、考脫節(jié)的現(xiàn)象,形成教考相互融合,提高學(xué)生的積極性。(2)實(shí)施多元化考核,提高學(xué)生的動(dòng)手能力。數(shù)學(xué)建模課程是綜合利用各種能力解決實(shí)際問題的方法論型課程,該課程的最終目的是培養(yǎng)學(xué)生的各種能力及其解決實(shí)際問題的綜合能力。包含多個(gè)知識(shí)點(diǎn)的試卷測(cè)試是應(yīng)試教育的體現(xiàn),不足以反映學(xué)生的動(dòng)手能力。多元化的考核方式能促進(jìn)教學(xué)過程逐步向以訓(xùn)練學(xué)生的解決實(shí)際問題能力為導(dǎo)向,激發(fā)學(xué)生的創(chuàng)新意識(shí)、鍛煉學(xué)生的實(shí)踐能力。(3)實(shí)施多元化考核,促進(jìn)學(xué)生學(xué)風(fēng)。多元化考核將教學(xué)和考核的過程相互融合,學(xué)生的學(xué)習(xí)和考核交替進(jìn)行,能夠促使學(xué)生、自我反省,發(fā)現(xiàn)自己學(xué)習(xí)的不足,及時(shí)改進(jìn)。同時(shí),教考融合能夠促使學(xué)生自發(fā)學(xué)習(xí),調(diào)到學(xué)生的學(xué)習(xí)積極性,避免出現(xiàn)“平時(shí)送、考前緊、考后忘”的現(xiàn)象。
鑒于數(shù)學(xué)建模是利用計(jì)算機(jī)、數(shù)學(xué)解決實(shí)際問題的方法論文課程。該課程的教學(xué)過程包含介紹數(shù)學(xué)建模所用知識(shí)點(diǎn)和綜合利用各個(gè)知識(shí)點(diǎn)解決實(shí)際問題兩個(gè)階段。該課程考核改革主要訓(xùn)練學(xué)生綜合利用知識(shí)解決實(shí)際問題的能力,過程的訓(xùn)練是教學(xué)的重點(diǎn)??荚嚫母镄柝灤┯谠撜n程的具體教學(xué)過程,因此將考核分為階段考核、綜合考核、結(jié)課考核、參賽考核四種方式。(1)階段考核。數(shù)學(xué)建模的教學(xué)內(nèi)容包括編程語言介紹、數(shù)學(xué)建模方法介紹和數(shù)學(xué)論文寫作介紹幾個(gè)主要的方面。相應(yīng)地,編程能力、應(yīng)用數(shù)學(xué)建模能力和論文寫作能力的訓(xùn)練是數(shù)學(xué)建模的根本目的。因此,本項(xiàng)目擬根據(jù)數(shù)學(xué)建模的教學(xué)大綱安排,對(duì)每種能力進(jìn)行單獨(dú)考核,結(jié)合每種能力的特點(diǎn),設(shè)置不同的題目,考核每種能力的得分。根據(jù)教學(xué)進(jìn)度發(fā)布測(cè)試題目,初步擬定每種能力的測(cè)試成績各占總成績的10%,共占總成績的30%。(2)綜合考核。數(shù)學(xué)建模是綜合運(yùn)用各種能力的解決實(shí)際問題。在各種能力訓(xùn)練的基礎(chǔ)上,強(qiáng)化訓(xùn)練學(xué)生的綜合運(yùn)用各種知識(shí)的能力。在此階段,從歷年數(shù)學(xué)建模題目和日常生活中挑出2~3個(gè)題目,進(jìn)行適當(dāng)簡(jiǎn)化處理,促使學(xué)生利用3~5天的時(shí)間完成一篇論文,進(jìn)行點(diǎn)評(píng)評(píng)分,挑選部分典型論文進(jìn)行講解;然后要求學(xué)生繼續(xù)完善論文,再次點(diǎn)評(píng)評(píng)分,如此循環(huán)多次。每個(gè)題目的成績約占總成績的10%,該階段共占總成績的30%。(3)結(jié)課考核。針對(duì)數(shù)學(xué)建模授課期間的知識(shí)點(diǎn)訓(xùn)練和綜合訓(xùn)練,最后仿照數(shù)學(xué)建模的參賽組織形式,從實(shí)際生活中挑選2個(gè)側(cè)重點(diǎn)不同的題目;同時(shí),建議選課學(xué)生自由組合,3人一組,共同完成數(shù)學(xué)建模論文。該階段對(duì)前期訓(xùn)練的檢測(cè),同時(shí)考核學(xué)生的團(tuán)隊(duì)精神,最終論文的成績占總成績的40%。(4)參賽考核。數(shù)學(xué)建模課程可作為數(shù)學(xué)建模競(jìng)賽的前期培訓(xùn),從選課選手中選取部分成績優(yōu)秀的學(xué)生,組織他們參加全國大學(xué)生數(shù)學(xué)建模競(jìng)賽,競(jìng)賽獲國家級(jí)獎(jiǎng),最終成績直接評(píng)為優(yōu)秀;廣西區(qū)級(jí)獎(jiǎng)最終成績可直接評(píng)為良好。
該考核方案在信息與計(jì)算科學(xué)專業(yè)的數(shù)學(xué)建模課程試用。教學(xué)中將考核過程融入教學(xué)過程,教學(xué)過程穿插考核,這樣能夠防止“考核型學(xué)習(xí)現(xiàn)象”,促使學(xué)生逐步向“學(xué)習(xí)型考核”轉(zhuǎn)變。同時(shí),數(shù)學(xué)建模是應(yīng)用型課程,多元化考試能夠訓(xùn)練學(xué)生的應(yīng)用數(shù)學(xué)、計(jì)算機(jī)編程和論文書寫能力,單一考核不再適應(yīng),多元化考核能夠發(fā)現(xiàn)學(xué)生的優(yōu)點(diǎn),促進(jìn)教學(xué)過程轉(zhuǎn)變?yōu)椤耙阅芰閷?dǎo)向”,符合當(dāng)前的教育改革理念。數(shù)學(xué)建模講授的內(nèi)容有:線性規(guī)劃模型、非線性規(guī)劃模型、圖論模型(最短路模型、生成樹模型、網(wǎng)絡(luò)圖模型)、微分方程模型、差分方程模型、插值模型、擬合模型、回歸分析模型、因子分析模型、統(tǒng)計(jì)檢驗(yàn)?zāi)P?、綜合評(píng)價(jià)模型、模擬仿真模型等模型及其相關(guān)算法的軟件編程。在教學(xué)安排中,對(duì)于數(shù)學(xué)模型部分盡可能講解數(shù)學(xué)建模中常見模型的建模方法、模型特點(diǎn)及其適應(yīng)范圍、該模型的求解算法等。對(duì)于涉及模型求解算法的理論及其具體的求解步驟略講或者不講解,對(duì)于調(diào)用軟件的算法集成命令及其調(diào)用方法等詳細(xì)介紹。對(duì)于數(shù)學(xué)建模論文寫作方面,通過閱讀優(yōu)秀論文,特別是我校20xx年的“matlab創(chuàng)新獎(jiǎng)”論文。同時(shí),選取部分簡(jiǎn)單例題,根據(jù)完整數(shù)學(xué)建模論文的章節(jié)要求布置任務(wù),要求完成相應(yīng)論文。然后根據(jù)學(xué)生的完成情況,進(jìn)行詳細(xì)點(diǎn)評(píng),特別數(shù)學(xué)建模論文的寫作及其注意事項(xiàng)。學(xué)生主動(dòng)完成平時(shí)練習(xí)的積極性高,80%的同學(xué)能夠按時(shí)完成布置的任務(wù)。剩下部分同學(xué)再經(jīng)過多次提醒之后也補(bǔ)交了布置的任務(wù)。從提交的作業(yè)發(fā)現(xiàn),大部分同學(xué)的作業(yè)都是自己認(rèn)真完成,少數(shù)同學(xué)是在參考他人的基礎(chǔ)之上完成。在課程結(jié)束后,參照數(shù)學(xué)建模的形式,要求同學(xué)們可以自由組隊(duì),隊(duì)員人數(shù)為1~3人,根據(jù)人數(shù)的多少,設(shè)置不同的評(píng)價(jià)標(biāo)準(zhǔn)。為考查學(xué)生的學(xué)習(xí)情況,本人給出幾道歷年真題或類真題,這些題目是根據(jù)當(dāng)前的熱點(diǎn)新聞等經(jīng)過加工而提出。從學(xué)生提交的結(jié)課論文來看,已經(jīng)達(dá)到了預(yù)期效果,大部分同學(xué)具備了數(shù)學(xué)建模的基本素質(zhì),掌握了數(shù)學(xué)建模技巧,能夠完成數(shù)學(xué)建模論文。通過兩年的試用,信息與計(jì)算科學(xué)專業(yè)參加數(shù)學(xué)建模競(jìng)賽的人數(shù)比往年增加20%,而獲得?。▍^(qū))級(jí)獎(jiǎng)以上的獎(jiǎng)項(xiàng)比往年增加40%。因此,說明數(shù)學(xué)建模考核方案對(duì)學(xué)生的評(píng)價(jià)具備一定的準(zhǔn)確性。
為配合考核方案的實(shí)施,特?cái)M定考核改革調(diào)查問卷,本人共做了兩次問卷調(diào)查,共收到近八十分問卷。問卷包括數(shù)學(xué)學(xué)習(xí)興趣、參加數(shù)學(xué)建模的積極性、考核嚴(yán)厲與否、考核方案認(rèn)同度等內(nèi)容。統(tǒng)計(jì)調(diào)查問卷發(fā)現(xiàn),學(xué)生對(duì)數(shù)學(xué)知識(shí)的學(xué)習(xí)興趣明顯提高,參加數(shù)學(xué)建模競(jìng)賽的積極性也大幅度提高。并且大部分學(xué)生認(rèn)同考核方案,也贊成將考核過程與教學(xué)過程相結(jié)合。從調(diào)查問卷的統(tǒng)計(jì)結(jié)果看:有近70%的學(xué)生認(rèn)為該課程應(yīng)該嚴(yán)格考核;76%的學(xué)生認(rèn)同該考核方案。由此可見,數(shù)學(xué)建模考核方式改革具有一定的推廣和實(shí)施價(jià)值(見圖1)。
根據(jù)實(shí)施《數(shù)學(xué)建模》考核改革方案的學(xué)生反饋情況,總的來看,學(xué)生對(duì)考核方案比較認(rèn)同,也同意嚴(yán)格考核。從學(xué)生的參賽人數(shù)和獲獎(jiǎng)比例也說明了該考核方案能有效提升學(xué)生的學(xué)習(xí)興趣,提高學(xué)生的各方面能力。
[2]謝發(fā)忠,楊彩霞,馬修水.創(chuàng)新人才培養(yǎng)與高校課程考試改革[j].合肥工業(yè)大學(xué)學(xué)報(bào),20xx.24(2):21-4.
[3]李紅枝,毛建文,古宏標(biāo),黃榕波,邢德剛.創(chuàng)新意識(shí)和創(chuàng)新能力培養(yǎng)中高??荚嚫母锏奶剿鱗j].山西醫(yī)科大學(xué)學(xué)報(bào),20xx.13(4):397-400.
[5]蒲俊,張朝倫,李順初,付曉艦.地方綜合性大學(xué)理工科學(xué)生數(shù)學(xué)建模創(chuàng)新培養(yǎng)改革的探討[j].中國大學(xué)教學(xué),20xx.7:56-8.
大學(xué)生數(shù)學(xué)建模論文篇十四
數(shù)學(xué)是在實(shí)際應(yīng)用的需求中產(chǎn)生的,要描述一個(gè)實(shí)際現(xiàn)象可以有很多種方式,為了實(shí)際問題描述的更具邏輯性、科學(xué)性、客觀性和可重復(fù)性,人們采用一種普遍認(rèn)為比較嚴(yán)格的語言來描述各種現(xiàn)象,這種語言就是數(shù)學(xué)。數(shù)學(xué)建模則是架于數(shù)學(xué)理論和實(shí)際問題之間的橋梁,數(shù)學(xué)模型是對(duì)于現(xiàn)實(shí)生活中的特定對(duì)象,根據(jù)其內(nèi)在的規(guī)律,做出一些必要的假設(shè),為了一個(gè)特定目的,運(yùn)用數(shù)學(xué)工具,得到的一個(gè)數(shù)學(xué)結(jié)構(gòu),用來解釋現(xiàn)實(shí)現(xiàn)象,預(yù)測(cè)未來狀況。因此,數(shù)學(xué)建模就是用數(shù)學(xué)語言描述實(shí)際現(xiàn)象的過程。
大部分的獨(dú)立院校的數(shù)學(xué)建模工作純?cè)谝欢ǖ膯栴},主要體現(xiàn)在以下幾個(gè)方面:(一)學(xué)生方面的問題。獨(dú)立院校的大部分學(xué)生的數(shù)學(xué)功底差,對(duì)數(shù)學(xué)的學(xué)習(xí)興趣不大,普遍認(rèn)為數(shù)學(xué)的學(xué)習(xí)對(duì)自身的專業(yè)的幫助不大。從而更不愿意接觸與數(shù)學(xué)有關(guān)的數(shù)學(xué)建模,對(duì)數(shù)學(xué)建模競(jìng)賽的興趣不大。在獨(dú)立院校中,參加數(shù)學(xué)建模競(jìng)賽的大都是低年級(jí)的學(xué)生,而這些學(xué)生的數(shù)學(xué)知識(shí)結(jié)構(gòu)還不完整,他們往往參加了一屆數(shù)學(xué)競(jìng)賽并未獲得獎(jiǎng)項(xiàng)后就不愿意再次參加。而高年級(jí)的同學(xué)忙于其他的就業(yè)、考研等壓力,無暇參加數(shù)學(xué)建模競(jìng)賽的培訓(xùn)。(二)教資方面的問題。首先。傳統(tǒng)的教學(xué)是知識(shí)為中心、以教師的講解為中心。數(shù)學(xué)建模的教學(xué)要求教師以學(xué)生為中心,培養(yǎng)學(xué)生學(xué)會(huì)學(xué)習(xí)的能力,發(fā)展學(xué)生的創(chuàng)新能力和創(chuàng)造能力。獨(dú)立院校外聘的老師常常對(duì)獨(dú)立院校的學(xué)生不夠了解,這直接影響到教學(xué)成果。其次,數(shù)學(xué)建模涉及的知識(shí)面廣,不但包括數(shù)學(xué)的各個(gè)分支,還包含了其他背景的專業(yè)知識(shí)。獨(dú)立院校的教師一部分是才從大學(xué)畢業(yè)不久的研究生,他們對(duì)于數(shù)學(xué)建模教學(xué)和競(jìng)賽的培訓(xùn)經(jīng)驗(yàn)不足,科研能力不是很強(qiáng),對(duì)數(shù)學(xué)的各個(gè)分支的把控能力不強(qiáng),對(duì)其他專業(yè)的了解不夠全面。(三)教學(xué)實(shí)施方面的問題。大學(xué)生數(shù)學(xué)建模競(jìng)賽的目的決不僅僅是獲獎(jiǎng),更重要的是通過參加大學(xué)生數(shù)學(xué)建模競(jìng)賽活動(dòng),促進(jìn)高校數(shù)學(xué)教學(xué)改革,起到培養(yǎng)全體學(xué)生能力、提高全體學(xué)生素質(zhì)的作用。獨(dú)立院校數(shù)學(xué)建模教學(xué)存在很多的問題。首先,大學(xué)數(shù)學(xué)建模教育在獨(dú)立院校中的普及性不夠。數(shù)學(xué)建模的宣傳力度不大,課程大多開在大一和大二的跨選課,這個(gè)時(shí)候?qū)W生的數(shù)學(xué)知識(shí)結(jié)構(gòu)還不完整。其次就是教材的選取,數(shù)學(xué)建模的相關(guān)教材大都是為了數(shù)學(xué)建模競(jìng)賽而編寫的,對(duì)于獨(dú)立院校的學(xué)生來說,這些教材的難度系數(shù)大,涉及的知識(shí)面廣,遠(yuǎn)遠(yuǎn)超過了學(xué)生的接受能力。
(一)讓學(xué)生了解數(shù)學(xué)建模,培養(yǎng)學(xué)習(xí)數(shù)學(xué)建模的興趣。數(shù)學(xué)建模課程的開設(shè)有利于培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)具體解決實(shí)際問題的能力,讓學(xué)生發(fā)現(xiàn)學(xué)習(xí)數(shù)學(xué)的用處,改變學(xué)生學(xué)習(xí)數(shù)學(xué)的態(tài)度,提高學(xué)習(xí)數(shù)學(xué)的能力,認(rèn)識(shí)到數(shù)學(xué)的意義和價(jià)值。獨(dú)立院校學(xué)生的數(shù)學(xué)基礎(chǔ)雖然比較差,但是學(xué)生的動(dòng)手能力強(qiáng)。學(xué)??梢栽诙嚅_展數(shù)學(xué)建模的講座和課程,讓學(xué)生了解數(shù)學(xué)建模。同時(shí)多向?qū)W生宣傳數(shù)學(xué)建模的成果。(二)在教學(xué)內(nèi)容中滲透數(shù)學(xué)建模思想和方法。1.在日常數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模的思想方法。傳統(tǒng)的數(shù)學(xué)教學(xué)重視的是知識(shí)的培養(yǎng)和傳輸,而忽視的是實(shí)際應(yīng)用能力。教師的教學(xué)目標(biāo)是使學(xué)生掌握數(shù)學(xué)理論知識(shí)。一般的教學(xué)方法是:教師引入相關(guān)的的基本概念,證明定理,推導(dǎo)公式,列舉例題,學(xué)生記住公式,套用公式,掌握解題方法與技巧。學(xué)生往往學(xué)習(xí)了不少的純粹的數(shù)學(xué)理論知識(shí),卻不知道如何應(yīng)用到實(shí)際問題中。數(shù)學(xué)建模課程與傳統(tǒng)數(shù)學(xué)課程相比差別較大,學(xué)校開設(shè)的數(shù)學(xué)建??邕x課及數(shù)學(xué)建模培訓(xùn)班,對(duì)培養(yǎng)學(xué)生觀察能力、分析能力、想象力、邏輯能力、解決實(shí)際問題的能力起到了很好的作用。由于學(xué)校開設(shè)的數(shù)學(xué)建模課程大多是選修課程,課時(shí)較少,參選的學(xué)生也有限,數(shù)學(xué)建模的作用不能很好的向?qū)W生傳輸。高等數(shù)學(xué)中的很多內(nèi)容都與數(shù)學(xué)建模的思想有關(guān),因此,在大學(xué)數(shù)學(xué)課程的教學(xué)過程中,教師應(yīng)有意識(shí)地結(jié)合傳統(tǒng)的數(shù)學(xué)課程的特點(diǎn),將數(shù)學(xué)建模的思想和內(nèi)容融入到數(shù)學(xué)課堂教學(xué)中。這樣既可以激發(fā)學(xué)生的學(xué)習(xí)興趣,又能很好的將突出數(shù)學(xué)建模的思想。2.數(shù)學(xué)建模與專業(yè)緊密聯(lián)系,發(fā)揮數(shù)學(xué)對(duì)專業(yè)知識(shí)的服務(wù)作用。數(shù)學(xué)建模與專業(yè)知識(shí)的結(jié)合,不僅可以讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)的重要作用,在專業(yè)知識(shí)學(xué)習(xí)中的地位,還可以培養(yǎng)學(xué)習(xí)數(shù)學(xué)知識(shí)的興趣,增強(qiáng)數(shù)學(xué)學(xué)習(xí)的凝聚力,同時(shí)加深對(duì)專業(yè)知識(shí)的理解。通過專業(yè)知識(shí)作為背景,學(xué)生更愿意嘗試問題的研究。在學(xué)習(xí)中遇到的專業(yè)問題也可以嘗試用數(shù)學(xué)建模的思想進(jìn)行解決。這有利于提高學(xué)生的綜合能力的培養(yǎng)。3.分層次進(jìn)行數(shù)學(xué)建模教育。大體說來獨(dú)立院校的數(shù)學(xué)建模課程的開設(shè)應(yīng)該分成兩個(gè)階段:(1)第一階段:大學(xué)一年級(jí),在這個(gè)階段,大部分學(xué)生對(duì)數(shù)學(xué)建模沒有了解,這時(shí)候適合開設(shè)一些數(shù)學(xué)建模的講座和活動(dòng),讓學(xué)生了解數(shù)學(xué)建模。同時(shí),在日常的數(shù)學(xué)教學(xué)中選擇簡(jiǎn)單的應(yīng)用問題和改變后的數(shù)學(xué)建模題目,結(jié)合自身的專業(yè)知識(shí)進(jìn)行講解,讓學(xué)生了解數(shù)學(xué)建模的一般含義?;痉椒ê筒襟E,讓學(xué)生具備初步的建模能力。(2)中級(jí)層次:大學(xué)二、三年級(jí)。在這個(gè)階段,學(xué)生基本具備了完整的數(shù)學(xué)結(jié)構(gòu),具有了基本的建模能力。這個(gè)時(shí)候應(yīng)該開設(shè)數(shù)學(xué)建模專業(yè)課程,讓學(xué)生處理比較復(fù)雜的數(shù)學(xué)建模問題,讓學(xué)生自己去采集有用的信息,學(xué)會(huì)提出模型的假設(shè),對(duì)數(shù)據(jù)和信息需進(jìn)行整理、分析和判斷,并模型進(jìn)行分析和評(píng)價(jià),最終完成科技論文。
(一)提高數(shù)學(xué)教師自身水平。在數(shù)學(xué)建模教學(xué)過程中,教師扮演著重要的角色。教師水平的高低決定著數(shù)學(xué)建模教學(xué)能否達(dá)到預(yù)期的目的。數(shù)學(xué)建模的教學(xué),不僅要求教師具備較高的專業(yè)水平,還要求教師具備解決實(shí)際問題的能力和豐富的數(shù)學(xué)建模實(shí)踐經(jīng)驗(yàn)。而獨(dú)立院校的教師部分教師是才畢業(yè)不久的研究生,缺乏實(shí)踐經(jīng)驗(yàn)。這就對(duì)獨(dú)立院校的的數(shù)學(xué)建模教學(xué)工作產(chǎn)生了很大的障礙。為了提高教師的水平,可以多派青年教師進(jìn)行專業(yè)培訓(xùn)學(xué)習(xí)和學(xué)術(shù)交流,參加各種學(xué)術(shù)會(huì)議、到名校去做訪問學(xué)者等等。同時(shí)可以多請(qǐng)著名的數(shù)學(xué)專家教授來到校園做建模學(xué)術(shù)報(bào)告,使師生拓寬視野,增長知識(shí),了解建模的新趨勢(shì)、新動(dòng)態(tài)。青年教師還需要依據(jù)特定的教學(xué)內(nèi)容、教學(xué)對(duì)象和教學(xué)環(huán)境對(duì)自己的教學(xué)工作作出計(jì)劃、實(shí)施和調(diào)整以及反思和總結(jié)。青年數(shù)學(xué)教師還必須更新教育理念,改變傳統(tǒng)的教學(xué)理念。只有不斷創(chuàng)新,努力提高自身素質(zhì),才能適應(yīng)新的形勢(shì),符合建模發(fā)展的要求。(二)選取合適的教材。數(shù)學(xué)建模教材使用也存在諸多不足之處。絕大部分高校教學(xué)建模課程采用的是理工類專業(yè)數(shù)學(xué)建模教材。這些教材主要涵蓋的數(shù)學(xué)模型的難度系數(shù)大。而獨(dú)立院校的學(xué)生的基礎(chǔ)薄弱,無法接收這些模型。在教學(xué)過程中,教師可以將具體的案例或是歷年的數(shù)學(xué)建模題目做為教學(xué)內(nèi)容。通過具體的建模實(shí)例,講解建模的思想和方法。一邊講解,一邊讓學(xué)生分組討論,提出對(duì)問題的新的理解和對(duì)魔性的認(rèn)識(shí),嘗試提出新的模型。(三)豐富建模活動(dòng)。全面開展數(shù)學(xué)建?;顒?dòng)是數(shù)學(xué)建模思想的最重要的形式,它既使課內(nèi)和課外知識(shí)相互結(jié)合,又可以普及建模知識(shí)與提高建模能力結(jié)合,可以培養(yǎng)學(xué)生利用數(shù)學(xué)知識(shí)分析和解決實(shí)際問題的能力,可以有效地提升了學(xué)生的數(shù)學(xué)綜合素質(zhì)。學(xué)??梢远ㄆ诘拈_展數(shù)學(xué)建模宣傳活動(dòng),擴(kuò)大數(shù)學(xué)建模的知名度。學(xué)校還可以邀請(qǐng)有經(jīng)驗(yàn)的專家和獲獎(jiǎng)學(xué)生開展建模講座,提高對(duì)數(shù)學(xué)建模的重視,積極的組織建?;顒?dòng)。實(shí)踐證明,只有根據(jù)獨(dú)立院校的自身特點(diǎn)和培養(yǎng)目標(biāo),對(duì)數(shù)學(xué)建模課程的教學(xué)不斷進(jìn)行改革,才能解決獨(dú)立院校數(shù)學(xué)建模課程教學(xué)的問題,才能真正的讓學(xué)生喜歡上數(shù)學(xué),喜歡上數(shù)學(xué)建模。
[1]李大潛.將數(shù)學(xué)建模思想融入數(shù)學(xué)主干課程[j].中國大學(xué)教育.20xx.
[2]賈曉峰等.大學(xué)生數(shù)學(xué)建模競(jìng)賽與高等學(xué)校數(shù)學(xué)改革[j].工科數(shù)學(xué).20xx:162.
[3]融入數(shù)學(xué)建模思想的高等數(shù)學(xué)教學(xué)研究[j].科技創(chuàng)新導(dǎo)報(bào).20xx:162.
作者:李雙單位:湖北文理學(xué)院理工學(xué)院
大學(xué)生數(shù)學(xué)建模論文篇一
長期以來,我國的數(shù)學(xué)教學(xué)中一直普遍存在著重結(jié)論而輕過程、重形式而輕內(nèi)容、重解法而輕應(yīng)用等弊端,不注重學(xué)生數(shù)學(xué)能力和素質(zhì)的培養(yǎng);過分強(qiáng)調(diào)對(duì)定義、定理、法則、公式等知識(shí)的灌輸與講授,不注重這些知識(shí)的應(yīng)用,割斷了理論與實(shí)際的聯(lián)系,造成學(xué)與用的嚴(yán)重脫節(jié),致使在我們的數(shù)學(xué)教育體制下培養(yǎng)出來的學(xué)生的能力結(jié)構(gòu)都形成了一種嚴(yán)重的病態(tài),主要表現(xiàn)在:數(shù)學(xué)理論知識(shí)掌握得還可以,但應(yīng)用知識(shí)的能力很差,不能學(xué)以致用,缺乏創(chuàng)造力和解決實(shí)際問題的能力,這些問題使我們的學(xué)生在走向工作崗位時(shí)上手速度慢,面對(duì)新的數(shù)學(xué)問題時(shí)束手無策,不能將所學(xué)的知識(shí)靈活運(yùn)用到實(shí)際中去。顯然,這種教育體制和理念與現(xiàn)代教育理念是背道而馳的,是必須拋棄的。開展數(shù)學(xué)建模教學(xué)或數(shù)學(xué)建模競(jìng)賽,能夠培養(yǎng)學(xué)生各方面的綜合能力,提高學(xué)生的綜合素質(zhì),對(duì)于當(dāng)前數(shù)學(xué)教育教學(xué)改革有著極為重要的現(xiàn)實(shí)意義。
1數(shù)學(xué)建模能夠豐富和優(yōu)化學(xué)生的知識(shí)結(jié)構(gòu),開拓學(xué)生的視野
數(shù)學(xué)建模所涉及到的許多問題都超出了學(xué)生所學(xué)的專業(yè),例如“基金的最佳適用”、“會(huì)議籌備”、“地震搜索”等許多建模問題,分別屬于不同的學(xué)科與專業(yè),為了解決這些問題,學(xué)生必須查閱和學(xué)習(xí)與該問題相關(guān)的專業(yè)書籍和科技資料,了解這些專業(yè)的相關(guān)知識(shí),從而軟化或削弱了目前教育中僵死的專業(yè)界限,使學(xué)生掌握寬廣而扎實(shí)的基礎(chǔ)知識(shí),使他們不斷拓寬分析問題、解決問題的思路,朝著復(fù)合型人才和具備全面綜合素質(zhì)人才的方向發(fā)展。
2數(shù)學(xué)建??梢耘囵B(yǎng)學(xué)生利用數(shù)學(xué)知識(shí)解決實(shí)際問題的能力
數(shù)學(xué)建模要求建模者利用自己所掌握的數(shù)學(xué)知識(shí)及對(duì)實(shí)際問題的理解,通過積極主動(dòng)的思維,提出適當(dāng)?shù)募僭O(shè),并建立相應(yīng)的數(shù)學(xué)模型,進(jìn)而利用恰當(dāng)?shù)臄?shù)學(xué)方法(現(xiàn)有的或新創(chuàng)造的)求解此模型,并對(duì)解做出評(píng)價(jià),必要時(shí)對(duì)模型做出改進(jìn)。這一過程包括了歸納、整理、推理、深化等活動(dòng),因此把數(shù)學(xué)建模引入課堂教學(xué),必將改變目前數(shù)學(xué)教學(xué)只見定義、定理不見問題背景的局面,必將改變知識(shí)僵化、學(xué)而不用的局面,從而調(diào)動(dòng)了學(xué)生學(xué)習(xí)的積極性,培養(yǎng)了學(xué)生解決實(shí)際問題的能力。
3數(shù)學(xué)建模能夠培養(yǎng)學(xué)生的創(chuàng)造力、想象力、聯(lián)想力和洞察力
數(shù)學(xué)模型來源于客觀實(shí)際,錯(cuò)綜復(fù)雜,沒有現(xiàn)成的答案和固定的模式,因此學(xué)生在建立和求解這類模型時(shí),必須積極動(dòng)腦,而且常常需要另辟蹊徑,在這里,常常會(huì)迸發(fā)出打破常規(guī)、突破傳統(tǒng)的思維火花,通過這種實(shí)踐活動(dòng),可以培養(yǎng)學(xué)生的創(chuàng)造能力,促使他們?cè)陬^腦中樹立推崇創(chuàng)新、追求創(chuàng)新和以創(chuàng)新為榮的意識(shí)。在從實(shí)際問題中抽象出數(shù)學(xué)模型的過程中,須把實(shí)際關(guān)系轉(zhuǎn)化為數(shù)學(xué)關(guān)系,這要求他們敢于想象和聯(lián)想,此外他們還要從貌似不同的問題中抓住其本質(zhì)的和共性的東西,這將培養(yǎng)他們把握問題內(nèi)在本質(zhì)的能力,即洞察力,可以說,培養(yǎng)學(xué)生的這些能力始終貫穿在數(shù)學(xué)建模的整個(gè)過程。
4數(shù)學(xué)建模可以培養(yǎng)學(xué)生熟練地運(yùn)用計(jì)算機(jī)的能力
5數(shù)學(xué)建??梢栽鰪?qiáng)大學(xué)生的適應(yīng)能力
通過數(shù)學(xué)建模的學(xué)習(xí)及競(jìng)賽訓(xùn)練,他們不僅受到了現(xiàn)代數(shù)學(xué)思維及方法的熏陶,更重要的是對(duì)不同的實(shí)際問題,如何進(jìn)行分析、推理、概括以及如何利用數(shù)學(xué)方法與計(jì)算機(jī)知識(shí),還有各方面的知識(shí)綜合起來解決它。因此,他們具有較高的素質(zhì),無論以后到哪個(gè)行業(yè)工作,都能很快適應(yīng)需要。不僅如此,由于建模決不是一件輕而易舉的事,需要學(xué)生對(duì)實(shí)際問題進(jìn)行反復(fù)多次的研究、分析、觀察和對(duì)模型進(jìn)行反復(fù)多次的計(jì)算、論證及修改等,整個(gè)過程是一個(gè)非常艱辛的探索過程,這可以培養(yǎng)學(xué)生高度的責(zé)任感、堅(jiān)韌不拔的毅力、遭遇挫折后較強(qiáng)的心理承受能力以及孜孜不倦、精益求精的探索精神,使他們具有良好的心理素質(zhì)與精神狀態(tài)。同時(shí)數(shù)學(xué)建模一般都是由幾個(gè)人組成的團(tuán)隊(duì)來完成的,其成功與否,完全取決于大家的密切合作,既要合理分工,又要密切配合,這樣又可以培養(yǎng)學(xué)生的組織管理能力、協(xié)調(diào)能力和相互協(xié)作的團(tuán)隊(duì)精神,這些對(duì)他們今后走向工作崗位都是大有裨益的。
此外,數(shù)學(xué)建模從教育觀念、內(nèi)容、形式和手段都有一定的創(chuàng)新,對(duì)數(shù)學(xué)教學(xué)改革有積極的啟示意義。首先,數(shù)學(xué)建模突出了教與學(xué)的雙主體性關(guān)系。教師要根據(jù)學(xué)生的學(xué)習(xí)興趣、能力及特點(diǎn),不斷修正自己的教育內(nèi)容和方法。學(xué)生要對(duì)教師所給予的信息有批判性地、創(chuàng)造性地、發(fā)展性地能動(dòng)反映,要在相互討論、相互啟發(fā)下尋求更多更好的解答方案。這種雙主體的關(guān)系是對(duì)傳統(tǒng)教學(xué)方式的根本突破。
其次,數(shù)學(xué)建模促進(jìn)了課程體系和教學(xué)內(nèi)容的改革。長期以來,我們的課程設(shè)置和教學(xué)內(nèi)容都具有強(qiáng)烈的理科特點(diǎn):重基礎(chǔ)理論、輕實(shí)踐應(yīng)用;重傳統(tǒng)的經(jīng)典數(shù)學(xué)內(nèi)容、輕離散的數(shù)值計(jì)算。然而,數(shù)學(xué)建模所要用到的主要數(shù)學(xué)方法和數(shù)學(xué)知識(shí)恰好正是被我們長期所忽視的那些內(nèi)容。因此,這迫使我們調(diào)整課程體系和教學(xué)內(nèi)容。比如可增加一些應(yīng)用型、實(shí)踐類課程等等;在其余各門課程的教學(xué)中,也要盡量注意到使數(shù)學(xué)理論與應(yīng)用相結(jié)合,增加實(shí)際應(yīng)用方面的內(nèi)容和例題,從而使教學(xué)內(nèi)容也得到了更新。
再次,數(shù)學(xué)建模增加了教師對(duì)新興科技知識(shí)的傳授,拓寬了學(xué)生的知識(shí)面。這些特點(diǎn)對(duì)于目前數(shù)學(xué)教材中存在的內(nèi)容陳舊、知識(shí)面狹窄及形式呆板等問題,具有借鑒作用。數(shù)學(xué)建模的試題通常聯(lián)系新興的學(xué)科,在科學(xué)技術(shù)迅猛發(fā)展的今天,各種新興學(xué)科、邊緣學(xué)科、交叉學(xué)科不斷涌現(xiàn),廣博的知識(shí)面和對(duì)新興科學(xué)技術(shù)的追蹤能力是獲得成功的關(guān)鍵因素之一。
數(shù)學(xué)建模不僅有利于學(xué)生更好的掌握知識(shí)、運(yùn)用知識(shí),也有利于高校的科研和教學(xué),使學(xué)生和教師能在平時(shí)的學(xué)習(xí)、工作中自動(dòng)形成勤于思考的好習(xí)慣,數(shù)學(xué)建模競(jìng)賽與學(xué)生畢業(yè)以后工作時(shí)的條件非常相近,是對(duì)學(xué)生業(yè)務(wù)、能力和素質(zhì)的全面培養(yǎng),特別是開放性思維和創(chuàng)新意識(shí),這項(xiàng)活動(dòng)的開展有利于學(xué)生的全面素質(zhì)的培養(yǎng),既豐富、活躍了廣大學(xué)生的課外生活,也為優(yōu)秀學(xué)員脫穎而出創(chuàng)造了條件。
【參考文獻(xiàn)】
[1]顏筱紅,粱東穎。高職院校數(shù)學(xué)建模教學(xué)的研究[j].廣西教育,2013(2):54,134.
[3]李大潛。中國大學(xué)生數(shù)學(xué)建模競(jìng)賽[m].2版。北京:高等教育出版社,2001.
[4]謝金星。2008高教社杯全國大學(xué)生數(shù)學(xué)建模競(jìng)賽[j].工程數(shù)學(xué)學(xué)報(bào),2008(25):1-2.
大學(xué)生數(shù)學(xué)建模論文篇二
摘要:在當(dāng)今社會(huì)數(shù)學(xué)已經(jīng)滲透向生活的各個(gè)領(lǐng)域,概率、比率、機(jī)會(huì)、誤差、圖像、邏輯、程序等等數(shù)學(xué)概念已進(jìn)入日常生活;各行各業(yè)都在數(shù)量化、數(shù)字化、數(shù)學(xué)化,用到的數(shù)學(xué)知識(shí)越來越多。但傳統(tǒng)高等數(shù)學(xué)教學(xué)注重訓(xùn)練學(xué)生的邏輯推理能力,而沒有注意訓(xùn)練如何從實(shí)際問題中提煉出數(shù)學(xué)問題以及如何用數(shù)學(xué)來解決實(shí)際問題,本文從建模思想的重要性、教育現(xiàn)狀和改革思路以及已有的建模教學(xué)成果三個(gè)方面探討數(shù)學(xué)建模思想在高等數(shù)學(xué)教學(xué)中的作用。
關(guān)鍵詞:數(shù)學(xué)建模;高等數(shù)學(xué)教學(xué)
一、引言
11世紀(jì)的數(shù)學(xué)家、物理學(xué)家和天文學(xué)家高斯曾說:“數(shù)學(xué)是科學(xué)之王?!睌?shù)學(xué)貫穿于所有科學(xué)理論之中,任何科學(xué)理論如果不應(yīng)用數(shù)學(xué),它就是粗糙的,不懂?dāng)?shù)學(xué)的人是不能進(jìn)行深層次的科學(xué)思維的。
在當(dāng)今社會(huì)數(shù)學(xué)已經(jīng)滲透向生活的各個(gè)領(lǐng)域,概率、比率、機(jī)會(huì)、誤差、圖像、邏輯、程序等等數(shù)學(xué)概念已進(jìn)入日常生活;各行各業(yè)都在數(shù)量化、數(shù)字化、數(shù)學(xué)化,用到的數(shù)學(xué)知識(shí)越來越多。從科學(xué)技術(shù)的角度來看,大量與數(shù)學(xué)相關(guān)的交叉學(xué)科相繼出現(xiàn)出現(xiàn),迅速發(fā)展例如:數(shù)學(xué)化學(xué)、數(shù)學(xué)生物、數(shù)學(xué)地質(zhì)學(xué)、數(shù)學(xué)心理學(xué)、數(shù)學(xué)語言學(xué)、數(shù)學(xué)社會(huì)學(xué)等。有研究者認(rèn)為高科技技術(shù)本質(zhì)上就是一種數(shù)學(xué)技術(shù)。例如財(cái)物、會(huì)計(jì)專業(yè)軟件包都是大量應(yīng)用現(xiàn)有的相關(guān)數(shù)學(xué)知識(shí),開發(fā)數(shù)學(xué)模型以及應(yīng)用數(shù)學(xué)技巧、方法的結(jié)果。高等數(shù)學(xué)對(duì)于培養(yǎng)大學(xué)生數(shù)學(xué)思維、數(shù)學(xué)意識(shí)提升邏輯思維能力有重要意義。
二、數(shù)學(xué)建模思想的重要性
傳統(tǒng)高等數(shù)學(xué)教學(xué)注重訓(xùn)練學(xué)生的邏輯推理能力,而沒有注意訓(xùn)練如何從實(shí)際問題中提煉出數(shù)學(xué)問題以及如何用數(shù)學(xué)來解決實(shí)際問題,其后果是學(xué)生們學(xué)了不少數(shù)學(xué),但不會(huì)用,為此在高等數(shù)學(xué)的教學(xué)過程中如何提升教學(xué)效果成為教學(xué)改革的一個(gè)重要研究問題。當(dāng)前高等數(shù)學(xué)教學(xué)不重視應(yīng)用性,很多學(xué)生數(shù)學(xué)的學(xué)習(xí)僅僅以通過考試為目的,數(shù)學(xué)成為抽象的、枯燥的、無實(shí)際用途的科學(xué)。數(shù)學(xué)建模則以“數(shù)學(xué)的應(yīng)用與模型化”為主線,重視數(shù)學(xué)建模意識(shí)和應(yīng)用能力的培養(yǎng)。
數(shù)學(xué)建模的思想在高等數(shù)學(xué)發(fā)展的歷程中很早就有,但是現(xiàn)代教育技術(shù)環(huán)境的發(fā)展和大學(xué)生數(shù)學(xué)建模賽事的舉行為數(shù)學(xué)建模的教學(xué)發(fā)展提供了契機(jī)和更好的外部環(huán)境條件,同時(shí)也對(duì)現(xiàn)代高等數(shù)學(xué)的教學(xué)提出了新的要求。數(shù)學(xué)建模對(duì)于培養(yǎng)大學(xué)生數(shù)學(xué)能力的作用的相關(guān)研究較多,研究結(jié)果表明:數(shù)學(xué)建模能夠提升大學(xué)生理論聯(lián)系實(shí)際的能力、可以提升思維能力、概括能力、歸納能力、創(chuàng)新能力。
三、數(shù)學(xué)建模教育現(xiàn)狀和改革思路
全國大學(xué)生數(shù)學(xué)建模競(jìng)賽創(chuàng)辦于1992年,每年一屆,目前已成為全國高校規(guī)模最大的基礎(chǔ)性學(xué)科競(jìng)賽,也是世界上規(guī)模最大的數(shù)學(xué)建模競(jìng)賽。2012年,來自全國33個(gè)省/市/自治區(qū)(包括香港和澳門特區(qū))及新加坡、美國的1284所院校、21219個(gè)隊(duì)(其中本科組17741隊(duì)、??平M3478隊(duì))、63600多名大學(xué)生報(bào)名參加本項(xiàng)競(jìng)賽。競(jìng)賽能全面反應(yīng)學(xué)生解決實(shí)際問題的能力、數(shù)學(xué)創(chuàng)造力、計(jì)算機(jī)使用能力、書面表達(dá)寫作能力,特別強(qiáng)調(diào)創(chuàng)新意識(shí)、團(tuán)隊(duì)精神。已經(jīng)成為我國大學(xué)生創(chuàng)新能力培養(yǎng)和提升的重要大型學(xué)術(shù)賽事之一。
鄭州航空工業(yè)管理學(xué)院,在2008年至2010年累計(jì)有67支隊(duì)伍,共計(jì)201名學(xué)生才加了全國的大學(xué)生建模大賽,并取得了良好的成績榮獲省級(jí)一等獎(jiǎng)6項(xiàng)、省級(jí)二等獎(jiǎng)8項(xiàng)、省級(jí)三等獎(jiǎng)20項(xiàng),但參賽學(xué)生來自全校各個(gè)不同院系,較多集中在數(shù)理與統(tǒng)計(jì)學(xué)院。
綜上可見:通過數(shù)學(xué)建模對(duì)提升高等數(shù)學(xué)教學(xué)效果的實(shí)踐研究,可以為高等數(shù)學(xué)的教學(xué)找到一條新模式,進(jìn)而提升學(xué)生綜合素質(zhì),培養(yǎng)出能更好適應(yīng)社會(huì)的應(yīng)用型專業(yè)人才。另外,對(duì)于數(shù)學(xué)建模教學(xué)實(shí)踐還可提升高校的數(shù)學(xué)建模競(jìng)賽成績,提升學(xué)校知名度,并影響到更多的學(xué)生,使學(xué)生們真正熱愛數(shù)學(xué)學(xué)習(xí),全面提升個(gè)人素質(zhì)。
四、數(shù)學(xué)建模教學(xué)研究的相關(guān)成果
關(guān)于數(shù)學(xué)建模與提升提升高等數(shù)學(xué)教學(xué)效果的實(shí)踐研究的相關(guān)研究主要集中在以下幾個(gè)方面:
(一)數(shù)學(xué)建模的教學(xué)方法研究
許多研究者對(duì)數(shù)學(xué)建模的教學(xué)從不同角度和方面進(jìn)行探討,一些比較有影響的研究有:黃世華等,針對(duì)高專院系的建模教學(xué)現(xiàn)狀,提出從指導(dǎo)思想、教學(xué)理念、教學(xué)內(nèi)容、教學(xué)方法、考核方式出發(fā),課程教學(xué)應(yīng)采取以問題驅(qū)動(dòng)研究式為主,以知識(shí)驅(qū)動(dòng)講授式為輔的教學(xué)方法才是行之有效的。劉浩等,認(rèn)為數(shù)學(xué)建模應(yīng)加強(qiáng)數(shù)學(xué)思維的互動(dòng)訓(xùn)練,培養(yǎng)創(chuàng)新精神;加強(qiáng)信息素養(yǎng)的訓(xùn)練,開拓知識(shí)面;注重團(tuán)隊(duì)訓(xùn)練,提高團(tuán)隊(duì)合作意識(shí)。楊小鐘討論數(shù)學(xué)建模教育對(duì)高校數(shù)學(xué)教育改革的重要意義,以及存在的問題并提出了改變教學(xué)理念的改進(jìn)措施。還有研究者通過具體的模型教學(xué),討論了建模思想的培養(yǎng)和相關(guān)的教學(xué)實(shí)踐心得。柴中林、王航平等針對(duì)美國大學(xué)生數(shù)學(xué)建模競(jìng)賽提出了一些培訓(xùn)策略。
(二)數(shù)學(xué)建模教學(xué)意義研究
對(duì)數(shù)學(xué)建模的意義研究主要集中在數(shù)學(xué)建模與大學(xué)生能力培養(yǎng)和非智力因素發(fā)展等方面。沙元霞等提出學(xué)校可以通過增強(qiáng)數(shù)學(xué)建模意識(shí)、改進(jìn)數(shù)學(xué)建模思想方法、提高數(shù)學(xué)建模能力,深化教育教學(xué)改革,培養(yǎng)數(shù)學(xué)應(yīng)用型人才。蔣莉分析了數(shù)學(xué)建模對(duì)培養(yǎng)大學(xué)生數(shù)學(xué)素質(zhì)的作用,并提出數(shù)學(xué)建模培養(yǎng)了大學(xué)生的抽象思維能力,提高了大學(xué)生的創(chuàng)新能力。楊太文等,研究數(shù)學(xué)建模競(jìng)賽與大學(xué)數(shù)學(xué)課程間的效用發(fā)現(xiàn)數(shù)學(xué)建模的學(xué)習(xí)可以明顯提高學(xué)生的數(shù)學(xué)學(xué)習(xí)能力。
總之,當(dāng)前我國大學(xué)生數(shù)學(xué)建模的教學(xué)水平相對(duì)落后,數(shù)學(xué)建模思想和高等數(shù)學(xué)相結(jié)合,可以提升學(xué)生的學(xué)習(xí)興趣,進(jìn)而促進(jìn)學(xué)生主動(dòng)學(xué)習(xí)和思考,養(yǎng)成獨(dú)立思考學(xué)習(xí)的好習(xí)慣,從而培養(yǎng)學(xué)生的創(chuàng)新意識(shí)。數(shù)學(xué)建模大賽這個(gè)平臺(tái),有給了學(xué)生一個(gè)團(tuán)隊(duì)協(xié)作的機(jī)會(huì),讓學(xué)生能夠提升自己的理論聯(lián)系實(shí)際能力、應(yīng)用寫作能力和創(chuàng)造力。數(shù)學(xué)建模思想可以提高教學(xué)效果,而高等數(shù)學(xué)課程的開展為數(shù)學(xué)建模奠定了理論基礎(chǔ),兩者相輔相成,密不可分。
參考文獻(xiàn):
[1]范英梅。高等數(shù)學(xué)、計(jì)算機(jī)與數(shù)學(xué)建模教學(xué)的關(guān)系分析[j].廣西大學(xué)學(xué)報(bào)(自然科學(xué)版),2004,9.
[2]何偉。在高等數(shù)學(xué)教學(xué)中如何體現(xiàn)數(shù)學(xué)建模的思想[j].數(shù)學(xué)的實(shí)踐與認(rèn)識(shí),2003,10.
[3]馬戈等?,F(xiàn)代教育技術(shù)環(huán)境下高等數(shù)學(xué)教學(xué)改革的實(shí)踐與思考[j].高等數(shù)學(xué)研究,2004,5.
[4]蔣莉。淺談數(shù)學(xué)建模在培養(yǎng)大學(xué)生數(shù)學(xué)能力的作用[j].理論探索,2012,2.
[5]沙元霞。基于數(shù)學(xué)建模的應(yīng)用型人才培養(yǎng)[j].長春師范學(xué)院學(xué)報(bào)(自然科學(xué)版),2012,9.
[6]黃世華等。數(shù)學(xué)建模教學(xué)的方法研究[j].科教研究,2012,2.
[7]劉浩,楊艷梅。大學(xué)生數(shù)學(xué)建模教育的幾點(diǎn)思考[j].數(shù)學(xué)教育與研究,2012,4.
[8]楊小鐘。初探高校數(shù)學(xué)建模課程改革[j].大觀周刊。2012,8.
[9]徐茂良。在傳統(tǒng)數(shù)學(xué)課中滲透數(shù)學(xué)建模思想[j].數(shù)學(xué)的實(shí)踐與認(rèn)知。2002,7.
[10]楊進(jìn)峰。經(jīng)濟(jì)應(yīng)用數(shù)學(xué)教學(xué)研究[j].陜西教育,2012,7.
[11]吳秀蘭等。淺議數(shù)學(xué)建模思想如何與高等數(shù)學(xué)教學(xué)相結(jié)合[j].吉林省教育學(xué)院學(xué)報(bào)。2012,9.
[12]柴中林等。國際大學(xué)生數(shù)學(xué)建模競(jìng)賽培訓(xùn)策略的一些探討[j].科技視界,2012,9.
[13]楊太文等。數(shù)學(xué)建模競(jìng)賽與大學(xué)數(shù)學(xué)課程間的效用[j].高等教育,2012,10.
大學(xué)生數(shù)學(xué)建模論文篇三
大學(xué)生數(shù)學(xué)建模競(jìng)賽,由教育部高教司和中國工業(yè)與應(yīng)用數(shù)學(xué)學(xué)會(huì)主辦,創(chuàng)辦于1992年,每年一屆,目前已成為全國高校規(guī)模最大的基礎(chǔ)性學(xué)科競(jìng)賽,也是世界上規(guī)模最大的數(shù)學(xué)建模競(jìng)賽,同時(shí)成為高等院校文秘站-您的專屬秘書,中國最強(qiáng)免費(fèi)!一項(xiàng)重大的課外科技活動(dòng)。尤其,來自全國33個(gè)省/市/自治區(qū)(包括香港和澳門特區(qū))及新加坡、美國的1338所院校、25347個(gè)隊(duì)(其中本科組22233隊(duì)、專科組3114隊(duì))、7萬多名大學(xué)生報(bào)名參加本項(xiàng)競(jìng)賽。每年的9月份舉辦,三人為一組,比賽時(shí)間共三天,最終通過論文的形式來體現(xiàn),以創(chuàng)新意識(shí)、團(tuán)隊(duì)精神、重在參與、公平競(jìng)爭(zhēng)為宗旨,旨在培養(yǎng)大學(xué)生的創(chuàng)新意識(shí)與團(tuán)隊(duì)精神。
一、大學(xué)生數(shù)學(xué)建模競(jìng)賽培訓(xùn)的重要性
數(shù)學(xué)建模競(jìng)賽作為教育部四大學(xué)科競(jìng)賽之首,規(guī)模最大,影響最大。因此,數(shù)學(xué)建模競(jìng)賽培訓(xùn)顯得尤為重要。它有利于讓學(xué)生盡早了解并掌握建模的基礎(chǔ)理論知識(shí)及相關(guān)應(yīng)用軟件;有利于培養(yǎng)學(xué)生分析問題和解決實(shí)際問題的能力;有利于培養(yǎng)學(xué)生的團(tuán)隊(duì)合作精神,使隊(duì)員間盡早磨合,相互了解;有利于培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和發(fā)散思維;有利于訓(xùn)練學(xué)生快速獲取有用信息和資料的能力;有利于增強(qiáng)學(xué)生的寫作技能和排版技術(shù)等。
通過參加數(shù)學(xué)建模競(jìng)賽,受到了一次科學(xué)研究的初步訓(xùn)練,初步具備了科學(xué)研究的能力,提高了自身的分析問題和解決問題的能力以及計(jì)算機(jī)應(yīng)用能力,培養(yǎng)了刻苦鉆研問題的精神以及與他人友好合作的團(tuán)隊(duì)精神,培養(yǎng)了敢于戰(zhàn)勝困難的堅(jiān)強(qiáng)意志和創(chuàng)新能力,這些能力和精神為各自今后的學(xué)習(xí)和工作都帶來了巨大的影響。因?yàn)閰⑴c數(shù)學(xué)建模比賽,許多學(xué)生收獲了知識(shí),取得了榮譽(yù),參賽隊(duì)員的共同體會(huì)是:一次參賽,終生受益。
二、培訓(xùn)中創(chuàng)新方法――案例模板式教學(xué)
數(shù)學(xué)建模培訓(xùn)一般是通過給學(xué)生講解數(shù)學(xué)建模的基本知識(shí)與理論,相關(guān)的數(shù)學(xué)軟件及軟件包,輔以講座,上機(jī),討論等方式,讓學(xué)生對(duì)數(shù)學(xué)建模的基本方法及相關(guān)數(shù)學(xué)軟件的使用有一定的了解,對(duì)數(shù)學(xué)建模的基本思想有基本把握。
在培訓(xùn)中,通過對(duì)以往競(jìng)賽試題的分析,將近幾年的數(shù)學(xué)建模競(jìng)賽分為兩大類:固定式問題和開放式問題,采用案例模板式教學(xué)對(duì)參加建模競(jìng)賽的同學(xué)進(jìn)行輔導(dǎo)。其中,固定式問題指讓學(xué)生對(duì)固定的有一定物理背景的問題進(jìn)行數(shù)學(xué)建模求解;開放式問題指讓學(xué)生準(zhǔn)確把握題意后能充分根據(jù)自己的喜好,選取不同方向或方法進(jìn)行建模求解。例如:
全國大學(xué)生數(shù)學(xué)建模大賽a題《車道被占用對(duì)城市道路通行能力的影響》為典型的固定式題目,要求學(xué)生對(duì)已給的.視頻數(shù)據(jù)確定通行能力的數(shù)學(xué)模型,并且求出排隊(duì)長度。而全國大學(xué)生數(shù)學(xué)建模競(jìng)賽b題《20上海世博會(huì)影響力的定量評(píng)估》為典型的開放式題目,讓學(xué)生選取感興趣的某個(gè)側(cè)面,利用互聯(lián)網(wǎng)數(shù)據(jù),建立數(shù)學(xué)模型,使學(xué)生在準(zhǔn)確把握題意后能充分根據(jù)自己的喜好,選取不同方向進(jìn)行建模求解,相對(duì)于固定問題開放性較強(qiáng)。
因此,要求教師在數(shù)學(xué)建模培訓(xùn)中,既要突出固定式的求解思路,又要注意培養(yǎng)學(xué)生開放式的發(fā)散思維。具體表現(xiàn)為:在固定求解思路上,要包括深刻理解題意,挖掘問題內(nèi)部的區(qū)別,結(jié)合已有的數(shù)學(xué)建?;A(chǔ)、數(shù)學(xué)建模基本方法、數(shù)學(xué)建模特殊方法,通過對(duì)具體競(jìng)賽題的分析,總結(jié)出相關(guān)類型問題的數(shù)學(xué)求解方法;在開放性問題上,充分調(diào)動(dòng)學(xué)生的積極性,讓學(xué)生在查閱相關(guān)資料后,進(jìn)行討論交流,各抒己見,從各個(gè)層面,多角度的找出可行性強(qiáng)的數(shù)學(xué)建模方法。求解思路如下圖1和圖2所示。
三、結(jié)束語
數(shù)學(xué)建模培訓(xùn)是對(duì)大學(xué)數(shù)學(xué)教學(xué)改革的一次推動(dòng),是對(duì)高校教學(xué)水平、管理水平的大檢驗(yàn),是對(duì)指導(dǎo)教師綜合實(shí)力的展示和提升,也是對(duì)學(xué)生各種能力和綜合素質(zhì)的一次提高,參加過建模的同學(xué)收獲很多,不但領(lǐng)會(huì)到數(shù)學(xué)之美,建模之樂,還體會(huì)到團(tuán)隊(duì)合作的強(qiáng)大,專業(yè)交叉的益處,可以說對(duì)學(xué)生是一個(gè)專業(yè),性格,心智等全方面的鍛煉和提高。
通過對(duì)大學(xué)生數(shù)學(xué)建模競(jìng)賽培訓(xùn)中教學(xué)創(chuàng)新方法的初步探究,數(shù)學(xué)建模培訓(xùn)變得更加系統(tǒng)化、專業(yè)化,為學(xué)生參加各級(jí)數(shù)學(xué)建模競(jìng)賽提供了更好地學(xué)習(xí)實(shí)踐和交流的平臺(tái),為培養(yǎng)學(xué)生的專業(yè)建模能力探索了新的途徑和方法。
大學(xué)生數(shù)學(xué)建模論文篇四
1、海選和優(yōu)選有機(jī)結(jié)合借助紙質(zhì)宣傳單、大型講座等方式進(jìn)行數(shù)學(xué)建模競(jìng)賽的宣傳,對(duì)其作用以及影響進(jìn)行充分的講解,鼓勵(lì)校園內(nèi)的同學(xué)來積極的進(jìn)行參加。倘若想要參與其中的同學(xué)人數(shù)過多時(shí),畢竟參賽名額是有一定限制的,可以利用面試的方式對(duì)其進(jìn)行篩選。為不打擊學(xué)生的積極性,在條件允許的情況下,可以盡可能保留更多的參賽者,通過面試成績把大家劃分為正式參賽隊(duì)和業(yè)余參賽隊(duì)。
2、充分利用現(xiàn)有資源在進(jìn)行數(shù)學(xué)建模競(jìng)賽組隊(duì)時(shí),應(yīng)充分的全面考慮有效利用現(xiàn)有的資源。首先是要掌握不同隊(duì)伍中不同人員屬于什么年級(jí),其次了解她們的每個(gè)人學(xué)習(xí)狀況以及所學(xué)專業(yè)等等,通常來說,同一隊(duì)伍中的每個(gè)人最理想的狀態(tài)是學(xué)習(xí)不同專業(yè)的,如此一來大家可以做到取長補(bǔ)短,理論知識(shí)與實(shí)踐動(dòng)手兩手抓,一個(gè)團(tuán)隊(duì)里需要出眾的知識(shí)更需要過人的文筆。如此一來才能保證隊(duì)伍的整體實(shí)力,力爭(zhēng)在建模競(jìng)賽中取得好成績。
3、重點(diǎn)培訓(xùn)在對(duì)學(xué)生進(jìn)行賽前相關(guān)培訓(xùn)時(shí),在培訓(xùn)的過程中,教師可根據(jù)自身的擅長專題,來進(jìn)行相關(guān)內(nèi)容的講解,與此同時(shí)結(jié)合不同隊(duì)伍的自身特點(diǎn)劃設(shè)側(cè)重點(diǎn),同學(xué)之間的接受能力也是各不同的,能力強(qiáng)的可以開小灶,沒有相關(guān)競(jìng)賽經(jīng)驗(yàn)的要進(jìn)行重點(diǎn)培訓(xùn),這種因人而異的講解模式確保不同能力的同學(xué),在培訓(xùn)中的過程中都能夠?qū)W有所獲。
4、合理分工密切合作在參加數(shù)學(xué)建模競(jìng)賽的同學(xué)得到競(jìng)賽試題之后,老師應(yīng)該及時(shí)幫助學(xué)生進(jìn)行試題分析與指導(dǎo),根據(jù)團(tuán)隊(duì)內(nèi)不同人員的實(shí)際情況以及試題的具體內(nèi)容難易,進(jìn)行針對(duì)性的講解從而對(duì)同學(xué)們進(jìn)行合理分工,確保每個(gè)人所負(fù)責(zé)的部分都是自己相較于其他人而言是最擅長的。值得注意的是,雖然進(jìn)行分工,但這并不是絕對(duì)的分割,而是有側(cè)重的合理分工,彼此之間的密切合作才是核心,畢竟建模競(jìng)賽中需要的是團(tuán)隊(duì)協(xié)作,而不是英雄主義。
5、堅(jiān)持可持續(xù)發(fā)展培訓(xùn)師資隊(duì)伍必須要有新鮮血液不斷注入,以老帶新最佳的血液注入方式,面對(duì)朝氣蓬勃的參賽學(xué)生,培訓(xùn)師資隊(duì)伍既要有身經(jīng)百戰(zhàn)經(jīng)驗(yàn)豐富的老師,也要有跟他們擁有更多共同話題的青年教師。在此期間通過不斷的學(xué)習(xí),青年教師跟同學(xué)們共同成長,從而保證師資隊(duì)伍的可持續(xù)發(fā)展。
二、大學(xué)生數(shù)學(xué)建模競(jìng)賽組織和管理方式的探索
1、進(jìn)行課程教學(xué)并給出有效的教學(xué)計(jì)劃每個(gè)學(xué)生的知識(shí)儲(chǔ)備都有著各自的特點(diǎn),借助良好的教育對(duì)學(xué)生們的知識(shí)架構(gòu)進(jìn)行完善,實(shí)現(xiàn)培養(yǎng)出學(xué)生強(qiáng)大能力的目標(biāo),數(shù)學(xué)建模對(duì)學(xué)生來說裨益良多,被視作是大學(xué)校園中必備課程之一。但是進(jìn)行課程開展的時(shí)候,要根據(jù)不同的培訓(xùn)對(duì)象大致分為以下兩類:第一、以選修課形式開設(shè)數(shù)學(xué)建模競(jìng)賽課程,選修課程所面向的群體為整個(gè)學(xué)校的所有學(xué)生。第二、以必修課的方式開設(shè)數(shù)學(xué)建模競(jìng)賽課程,必修課就要有針對(duì)性,因?yàn)椴⒉皇撬械膶W(xué)生都需要學(xué)習(xí)數(shù)學(xué),所以必修課針對(duì)的群體應(yīng)該是數(shù)學(xué)專業(yè)的學(xué)生。不同性質(zhì)的課程在教授上應(yīng)該有所區(qū)分,內(nèi)容的深淺也要有適當(dāng)?shù)恼{(diào)整。
2、利用建模教學(xué)實(shí)現(xiàn)知識(shí)與能力雙培養(yǎng)有效的教學(xué)是獲得數(shù)學(xué)建模競(jìng)賽好成績的最佳途徑,但是教學(xué)的過程中要注重?cái)?shù)學(xué)知識(shí)與實(shí)踐能力的均衡共同培養(yǎng),不能過分的注重知識(shí)的灌輸,而忽略了建模相關(guān)能力的培養(yǎng),對(duì)二者的培養(yǎng)必須要并駕齊驅(qū),如此才能真正的'掌握數(shù)學(xué)建模的精髓,從而在競(jìng)賽中取得良好的成績。
3、數(shù)學(xué)建模競(jìng)賽隊(duì)員的篩選數(shù)學(xué)建模所需要的人才是全方面的人才,除此之外還要對(duì)數(shù)學(xué)建模有足夠的興趣,并且還要有足夠多的時(shí)間來參加培訓(xùn)。以上述條件為基礎(chǔ),報(bào)名之后通過面試的測(cè)試,然后再從中篩選出相對(duì)優(yōu)秀的學(xué)生組成參賽隊(duì)伍,在篩選的時(shí)候要充分的考慮到團(tuán)隊(duì)整體知識(shí)的涵蓋面,不同人之間所擅長的專業(yè)不同為最佳。
4、培訓(xùn)培訓(xùn)工作通常被劃分為不同的階段:首先是初級(jí)階段,這一階段所注重的是對(duì)相關(guān)知識(shí)的培訓(xùn)。從初等模型、簡(jiǎn)單優(yōu)化模型、常微分方程模型等建模的基礎(chǔ)知識(shí)和方法入手由淺入深;其次是拔高階段,主要以專家講座為主,邀請(qǐng)建模專家進(jìn)行系統(tǒng)的講解,并結(jié)合精典范例進(jìn)行深入剖析,在擴(kuò)大學(xué)生的知識(shí)面和視野的同時(shí)提升學(xué)生的建模能力。
三、結(jié)語
通過以上的一系列論述,我們已經(jīng)對(duì)大學(xué)數(shù)學(xué)建模競(jìng)賽的隊(duì)伍組織及管理方式,有了更加清晰的了解和掌握。大學(xué)數(shù)學(xué)建模競(jìng)賽對(duì)于大學(xué)生來說好處頗多,一方面能夠使學(xué)生們對(duì)學(xué)習(xí)的數(shù)學(xué)知識(shí)有更深的理解與更為靈活的應(yīng)用,另一方面,通過競(jìng)賽中的組隊(duì)讓大家感受到合作的重要性,為以后步入社會(huì)的工作打下基礎(chǔ)。希望這篇文章能夠?qū)︶槍?duì)數(shù)學(xué)建模的研究有一定的借鑒作用!
參考文獻(xiàn):
[1]韓成標(biāo),賈進(jìn)濤、高職院校參加數(shù)學(xué)建模競(jìng)賽大有可為[j]、工程數(shù)學(xué)學(xué)報(bào),(8)
[2]全國大學(xué)生數(shù)學(xué)建模競(jìng)賽賽題講評(píng)與經(jīng)驗(yàn)交流會(huì)在廣西大學(xué)舉行[j]、數(shù)學(xué)建模及其應(yīng)用,(04)
[3]錢方紅、基于數(shù)學(xué)模型解決數(shù)學(xué)建模競(jìng)賽隊(duì)員選拔和組隊(duì)問題[j]、信息與電腦:理論版,(3)
[4]肖帆,張?zhí)m、高職院校數(shù)學(xué)建模競(jìng)賽培訓(xùn)模式研究[j]、延安職業(yè)技術(shù)學(xué)院學(xué)報(bào),2017(2)
大學(xué)生數(shù)學(xué)建模論文篇五
1.數(shù)學(xué)建模對(duì)學(xué)生創(chuàng)新思維和創(chuàng)新精神的培養(yǎng)
數(shù)學(xué)建模解決的都是與我們生活息息相關(guān)的實(shí)際問題,很多都是當(dāng)前社會(huì)比較關(guān)注的熱點(diǎn)問題,比如開放性小區(qū)的建立,人工智能機(jī)器人在工作中的應(yīng)用,這些問題開放性比較強(qiáng),有明確的目的和要求,但它沒有唯一的結(jié)果和方法。因此留給學(xué)生很大的創(chuàng)新空間,使學(xué)生對(duì)數(shù)學(xué)產(chǎn)生了極大的興趣,他們發(fā)現(xiàn)這幾年學(xué)習(xí)的高數(shù)、線性代數(shù)、概率論與數(shù)理統(tǒng)計(jì)終于派上了用場(chǎng)。數(shù)學(xué)建模課程會(huì)結(jié)合《高等數(shù)學(xué)》,《線性代數(shù)》,《概率論與數(shù)理統(tǒng)計(jì)》等數(shù)學(xué)基礎(chǔ)學(xué)科,還會(huì)經(jīng)常涉及到物理,工程,經(jīng)濟(jì),金融,農(nóng)林等各個(gè)領(lǐng)域各個(gè)學(xué)科,從不同的學(xué)科中找最熱門最真實(shí)的案例進(jìn)行教學(xué),這要求學(xué)生有很強(qiáng)的自學(xué)能力,要不得學(xué)習(xí)新知識(shí),新思路和新方法,讓學(xué)生結(jié)合所學(xué)的數(shù)學(xué)知識(shí)把自己學(xué)科的專業(yè)知識(shí)轉(zhuǎn)化成數(shù)學(xué)模型,讓數(shù)學(xué)充分發(fā)揮它的優(yōu)勢(shì),以達(dá)到培養(yǎng)學(xué)生的創(chuàng)新能力,更重要的是對(duì)學(xué)生的知識(shí)體系起到了完善的作用。在整個(gè)競(jìng)賽中從模型建立與求解到寫作,都是由學(xué)生獨(dú)立完成,充分發(fā)揮了他們的自主性和創(chuàng)造性。
2.數(shù)學(xué)建模能培養(yǎng)學(xué)生團(tuán)隊(duì)合作精神和創(chuàng)新創(chuàng)業(yè)能力
數(shù)學(xué)建模競(jìng)賽是由三個(gè)人組成一個(gè)小團(tuán)隊(duì)共同處理一個(gè)問題,在這個(gè)團(tuán)隊(duì)中每個(gè)人都各有分工,有的人擅長建立模型,有的人擅長計(jì)算機(jī)編程求解模型,有的人擅長寫作,這三個(gè)人缺一不可,任何一個(gè)人都發(fā)揮著舉足輕重的作用。通常我們還會(huì)設(shè)一個(gè)隊(duì)長能協(xié)調(diào)隊(duì)員之間的關(guān)系和對(duì)題目的把控。每個(gè)人都有不同的性格,能力,學(xué)識(shí),知識(shí)結(jié)構(gòu),在做題的過程中會(huì)產(chǎn)生不同的想法,比如在模型的建立中,數(shù)據(jù)的處理過程中,算法的選取,編程語言的選取,寫作的過程中都會(huì)有很多的不同,所以每個(gè)成員都要有團(tuán)隊(duì)精神、相互信任、相互溝通、相互尊重、取長補(bǔ)短、充分發(fā)揮集體的力量共同完成一個(gè)項(xiàng)目。同時(shí)每年無論在培訓(xùn)還是正式比賽過程中由于高強(qiáng)度的腦力活動(dòng),強(qiáng)大的心理壓力以及隊(duì)員之間的不和睦都會(huì)造成中途退賽,這樣無疑是最可惜的。所以,在競(jìng)賽中除了培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和團(tuán)隊(duì)合作精神,還培養(yǎng)了大家的心理承受能力,強(qiáng)大的意志力以及與他人溝通交往的能力,是對(duì)自己綜合素質(zhì)的一個(gè)提高,對(duì)未來考研、出國、就業(yè)都有很大的幫助。
3.數(shù)學(xué)建模培養(yǎng)學(xué)生的創(chuàng)新創(chuàng)業(yè)的.綜合能力
通過在大二一年的數(shù)學(xué)建模選修課,以及假期的集中培訓(xùn)培養(yǎng)了學(xué)生的創(chuàng)新創(chuàng)業(yè)能力,很大程度上提高了他們思考問題解決問題的能力等綜合素質(zhì),同時(shí)還培養(yǎng)了他們應(yīng)用計(jì)算機(jī)去處理各種問題的科技能力。他們學(xué)會(huì)了各種軟件、語言,很多同學(xué)會(huì)數(shù)據(jù)挖掘、機(jī)器學(xué)習(xí)以及人工智能,這些都是未來科技的前沿,科技創(chuàng)新是企業(yè)發(fā)展的動(dòng)力,現(xiàn)代教育不能只停留在教授學(xué)生理論知識(shí)的學(xué)習(xí),更重要的是理論與實(shí)踐的結(jié)合,走產(chǎn)學(xué)研相結(jié)合的道路,數(shù)學(xué)建模很好的把理論與實(shí)踐相結(jié)合,激發(fā)學(xué)生科研熱情,提高學(xué)生科研積極性,激發(fā)了學(xué)生的創(chuàng)新創(chuàng)業(yè)能力,為以后工作生活奠定了扎實(shí)的基礎(chǔ)。為了讓建模更好的服務(wù)學(xué)生,我們將不斷的努力,探索和改進(jìn)培養(yǎng)模式和方法,爭(zhēng)取通過數(shù)學(xué)建模平臺(tái)使更多的同學(xué)受益,培養(yǎng)出更多的具有創(chuàng)新創(chuàng)業(yè)能力的大學(xué)生。
參考文獻(xiàn):
[2]韋程?hào)|.數(shù)學(xué)建模能力培養(yǎng)方法研究[m].北京:科學(xué)出版社,.
大學(xué)生數(shù)學(xué)建模論文篇六
一、數(shù)學(xué)建模競(jìng)賽概述
競(jìng)賽形式組委會(huì)規(guī)定三名大學(xué)生組成一隊(duì),參賽學(xué)生根據(jù)題目要求可以自由地收集、查閱資料,調(diào)查研究,使用計(jì)算機(jī)、互聯(lián)網(wǎng)和任何軟件,在三天時(shí)間內(nèi)分工合作完成一篇包括模型假設(shè)、模型建立和模型求解、計(jì)算方法的設(shè)計(jì)和計(jì)算機(jī)實(shí)現(xiàn)、結(jié)果的檢驗(yàn)和評(píng)價(jià)、模型的改進(jìn)等方面的論文(即答卷)。競(jìng)賽評(píng)獎(jiǎng)的主要標(biāo)準(zhǔn)為假設(shè)的合理性、建模的創(chuàng)造性、結(jié)果的正確性和文字表述的清晰程度。
二、賽前學(xué)習(xí)內(nèi)容
1.建?;A(chǔ)知識(shí)、常用工具軟件的使用
(1)掌握數(shù)學(xué)建模必備的基礎(chǔ)知識(shí)(如線性代數(shù)、高等數(shù)學(xué)、概率統(tǒng)計(jì)等),還有數(shù)學(xué)建模競(jìng)賽中常用的但尚未學(xué)過的方法,如灰色預(yù)測(cè)、回歸分析、曲線擬合等常用預(yù)測(cè)方法,運(yùn)籌學(xué)中若干優(yōu)化算法。(2)針對(duì)數(shù)學(xué)建模特點(diǎn),結(jié)合典型的問題,重點(diǎn)學(xué)習(xí)幾種常用數(shù)學(xué)軟件(matlab、lindo、lingo、spss)的使用,并且具備一般性開發(fā)能力,尤其應(yīng)注意同一數(shù)學(xué)模型,有時(shí)可以使用多個(gè)軟件進(jìn)行求解。
2.常見數(shù)學(xué)建模的過程及方法
數(shù)學(xué)建模競(jìng)賽是一項(xiàng)非常具有挑戰(zhàn)性和創(chuàng)造性的活動(dòng),不一定用一些條條框框規(guī)定各種實(shí)際問題的模型具體如何建立。但一般來說,數(shù)學(xué)建模主要涉及兩個(gè)方面:一是將實(shí)際問題轉(zhuǎn)化為理論數(shù)學(xué)模型;二是對(duì)理論數(shù)學(xué)模型進(jìn)行分析和計(jì)算。簡(jiǎn)而言之,就是建立數(shù)學(xué)模型來解決各種實(shí)際問題的過程。這個(gè)過程可以用如圖1來表示。
3.數(shù)學(xué)建模常用算法的設(shè)計(jì)
建模與計(jì)算是數(shù)學(xué)模型的兩大核心。當(dāng)數(shù)學(xué)模型建立后,完成相關(guān)數(shù)學(xué)模型的計(jì)算就成為解決問題的關(guān)鍵,而所采用算法的好壞將直接影響運(yùn)算速度的快慢,以及答案的優(yōu)劣。根據(jù)近年來競(jìng)賽題型特點(diǎn)及以前參賽獲獎(jiǎng)學(xué)生的心得體會(huì),建議多用數(shù)學(xué)軟件如matlab、lindo、lingo、spss等來設(shè)計(jì)求解的算法,本文列舉了幾種常用的算法。(1)參數(shù)估計(jì)、數(shù)據(jù)擬合、插值等常用數(shù)據(jù)處理算法。在數(shù)學(xué)建模比賽中,通常會(huì)遇到海量的數(shù)據(jù)需要處理,而處理數(shù)據(jù)的關(guān)鍵就在于正確使用這些算法,通常采用matlab作為運(yùn)算工具。(2)線性規(guī)劃、整數(shù)規(guī)劃、多目標(biāo)規(guī)劃、二次規(guī)劃等優(yōu)化類問題。數(shù)學(xué)建模競(jìng)賽大多數(shù)問題是最優(yōu)化問題,很多時(shí)候這些問題可以用數(shù)學(xué)規(guī)劃模型進(jìn)行描述,通常使用lindo、lingo軟件求解。(3)圖論算法主要包括最短路、網(wǎng)絡(luò)流、二分圖等算法,如果涉及到圖論的問題可以用這些方法進(jìn)行求解。(4)最優(yōu)化理論的三大非經(jīng)典算法:神經(jīng)網(wǎng)絡(luò)、模擬退火法、遺傳算法。這些算法通常是用來解決一些較困難的最優(yōu)化問題的,主要使用lingo、matlab、spss軟件來實(shí)現(xiàn)。
三、數(shù)學(xué)建模競(jìng)賽中經(jīng)常出現(xiàn)的問題
在國家數(shù)學(xué)建模競(jìng)賽中常見如下問題:數(shù)學(xué)模型最好明確、合理、簡(jiǎn)潔,但是有些論文不給出明確的模型,只是根據(jù)賽題的情況用“湊”的方法給出結(jié)果,雖然結(jié)果大致是對(duì)的,但是沒有一般性,不是數(shù)學(xué)建模的正確思路;有的論文過于簡(jiǎn)單,該交代的內(nèi)容省略了,難以看懂;有的隊(duì)羅列一系列假設(shè)或模型,又不作比較、評(píng)價(jià),希望碰上“參考答案”或“評(píng)閱思路”,反而弄巧成拙;有的論文參考文獻(xiàn)不全,或引用他人成果不作交代。另外,吃透題意方面不足,沒有抓住和解決主要問題;就事論事,形成數(shù)學(xué)模型的意識(shí)和能力欠缺;對(duì)所用方法一知半解,不管具體條件,套用現(xiàn)成的方法,導(dǎo)致錯(cuò)誤;對(duì)結(jié)果的分析不夠,怎樣符合實(shí)際考慮不周;隊(duì)員之間合作精神差,孤軍奮戰(zhàn);依賴心理重,甚至違紀(jì)。以上情況都需要各參賽隊(duì)引起注意,有則改之,無則加勉。
四、競(jìng)賽中應(yīng)重視的問題
1.團(tuán)隊(duì)合作是能否獲獎(jiǎng)的關(guān)鍵
通常在數(shù)學(xué)建模競(jìng)賽時(shí),三個(gè)隊(duì)員的分工要明確,其中一個(gè)作為組長,也算是領(lǐng)軍人物,主要是負(fù)責(zé)構(gòu)建整個(gè)問題的框架,并提出有創(chuàng)意的想法,當(dāng)然其他部分如論文寫作、程序設(shè)計(jì)、計(jì)算等也要能參加;第二位是算手,主要進(jìn)行算法設(shè)計(jì)及編程計(jì)算;最后一位是寫手,主要工作在于論文的'寫作和潤色上。好的論文要讓評(píng)委一眼就能明了其中的意思,因此寫手的工作也需要一定的技巧。當(dāng)然,要想競(jìng)賽時(shí)達(dá)到這樣的標(biāo)準(zhǔn),需要三個(gè)隊(duì)員在平時(shí)訓(xùn)練時(shí)多加練習(xí)。
2.合理安排競(jìng)賽過程中的時(shí)間
數(shù)學(xué)建模競(jìng)賽中時(shí)間分配很重要,分配不好有可能完不成競(jìng)賽論文,有的隊(duì)伍把問題解答完了,但是發(fā)現(xiàn)沒有時(shí)間進(jìn)行寫作,或者寫的很差勁而不能獲獎(jiǎng),因此要大致做好安排。一般前兩天不要熬的太狠,晚上10:00點(diǎn)前要休息,最后一夜必須熬通宵,否則體力肯定跟不上。之前有些隊(duì)伍,前兩天勁頭很足,晚上做到很晚才休息,但是到了第三天晚上就沒有精力了,這樣一般很難獲獎(jiǎng)。
3.摘要的撰寫很重要
論文的摘要是整篇論文的門面。摘要首先可以強(qiáng)調(diào)一下所做問題的重要性和意義,但不要寫廢話,也不要完全照抄題目的一些話,應(yīng)該直奔主題,主要寫明自己是怎樣分析問題,用什么方法解決問題,最重要的結(jié)論是什么。在中國的競(jìng)賽中,結(jié)論很重要,評(píng)委肯定會(huì)去和標(biāo)準(zhǔn)答案進(jìn)行比較。如果結(jié)論正確一般能得獎(jiǎng),如果不正確,評(píng)委可能會(huì)繼續(xù)往下看,也可能會(huì)扔在一邊,但不寫結(jié)論的話就一定不會(huì)得獎(jiǎng)了,這一點(diǎn)和美國競(jìng)賽不同,因此要認(rèn)真把重要結(jié)論寫在摘要上,如果結(jié)論的數(shù)據(jù)太多,也可只寫幾個(gè)代表性的數(shù)據(jù),注明其他數(shù)據(jù)見論文中何處。
4.論文寫作也要規(guī)范
數(shù)學(xué)建模競(jìng)賽的論文有一個(gè)比較固定的模式。論文大致按照如下形式來寫:摘要、問題重述、模型假設(shè)和符號(hào)說明、問題分析(建立、分析、求解模型)、模型檢驗(yàn)、模型的優(yōu)缺點(diǎn)評(píng)價(jià)、參考文獻(xiàn)、附錄等等。另外,在正文中也可以加入一些圖和表,附錄也可以貼一些算法流程圖或比較大的結(jié)果或圖表等等,近年來為了防止舞弊,組委會(huì)要求把算法的源程序也必須放在附錄中。
五、結(jié)論
全國大學(xué)生數(shù)學(xué)建模競(jìng)賽對(duì)于大學(xué)生而言,是一個(gè)富有挑戰(zhàn)的競(jìng)賽。它不但能培養(yǎng)大學(xué)生解決實(shí)際問題的能力,同時(shí)能培養(yǎng)其創(chuàng)造力、團(tuán)隊(duì)合作的能力,而這些能力將會(huì)成為參賽學(xué)生以后成功就業(yè)的重要推動(dòng)力??梢哉f,一次參賽,終身受益。
大學(xué)生數(shù)學(xué)建模論文篇七
眾所周知,高等數(shù)學(xué)是所有自然學(xué)科的基礎(chǔ),一個(gè)大學(xué)生要想在以后的工作、學(xué)習(xí)中大展宏圖,那么就一定少不了堅(jiān)實(shí)的高等數(shù)學(xué)基礎(chǔ)。如何解決大學(xué)生在學(xué)習(xí)高等數(shù)學(xué)時(shí)碰到的問題?如何調(diào)動(dòng)大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性?讓學(xué)生們了解高等數(shù)學(xué)的用途,真正愿意靜下心來好好學(xué)習(xí)高等數(shù)學(xué),努力為以后的發(fā)展打好數(shù)學(xué)基礎(chǔ)。一直以來,各所高校的教師們都在努力的想辦法、找對(duì)策,一些實(shí)用有效的方法已經(jīng)提出并且在逐步推廣,比如,問題驅(qū)動(dòng)式的教學(xué)方法和基于pbl的教學(xué)方法等。筆者從所在學(xué)校的學(xué)生實(shí)際學(xué)習(xí)情況出發(fā),根據(jù)幾年來的教學(xué)心得和積累,打算提出一種較為實(shí)用的教學(xué)方法——利用數(shù)學(xué)建模的思想調(diào)動(dòng)大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性。該方法在筆者所教授的班級(jí)中已經(jīng)實(shí)際應(yīng)用過幾屆,學(xué)生普遍反映效果較好,任課老師也認(rèn)為該方法確實(shí)能極大地調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性。
提到高等數(shù)學(xué),學(xué)生們的第一反應(yīng)往往是:各種公式塞滿黑板,各種運(yùn)算充斥腦海;定義、定理、推論一個(gè)連著一個(gè);極限、連續(xù)、可導(dǎo)可積一個(gè)涵蓋另一個(gè)[1]。和高中數(shù)學(xué)相比,記憶的負(fù)擔(dān)輕了(實(shí)際上是知識(shí)點(diǎn)太多,記不住了),而對(duì)思維的要求卻提高了。對(duì)大學(xué)生來說,每一次的高數(shù)課,都是一次大腦的思維訓(xùn)練,時(shí)刻要求精神高度集中,一定要緊跟老師的步劃,一旦走神,后面的內(nèi)容就不知所云了。這樣的要求短時(shí)間可以達(dá)到,長久下去學(xué)生們會(huì)覺得很辛苦,很有壓力,會(huì)出現(xiàn)抱怨。筆者碰到過這樣的學(xué)生,剛開始時(shí),興致勃勃,雄心萬丈,可到后來興趣索然,馬虎應(yīng)對(duì)。怪學(xué)生嗎?誠然學(xué)生有責(zé)任,但任課老師也該負(fù)很大的責(zé)任。作為高等數(shù)學(xué)的老師我們經(jīng)常要面對(duì)學(xué)生提的這些問題:(1)我學(xué)的專業(yè)和高等數(shù)學(xué)相差甚遠(yuǎn),有可能這一輩子都不會(huì)用到高等數(shù)學(xué)的知識(shí),那我學(xué)高等數(shù)學(xué)的目的何在?(2)老師您天天鼓吹高等數(shù)學(xué)的強(qiáng)大功能和廣泛用途,但是通過一學(xué)期的學(xué)習(xí),我發(fā)現(xiàn)除了對(duì)付考試有用,真不知高等數(shù)學(xué)可以用在何處?這些問題不及時(shí)解決,時(shí)間長了一定會(huì)影響到大學(xué)生對(duì)高等數(shù)學(xué)的學(xué)習(xí)積極性,甚至有可能會(huì)產(chǎn)生厭學(xué)的情緒和氛圍。有些極端的學(xué)生,期末考試之后,一聽到自己高等數(shù)學(xué)考過了,立馬將高等數(shù)學(xué)的課本給撕了,可想而知高等數(shù)學(xué)對(duì)其造成的壓力有多大[2]。如何解決大學(xué)生在學(xué)習(xí)高等數(shù)學(xué)時(shí)碰到的問題?如何調(diào)動(dòng)大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性?讓學(xué)生們了解高等數(shù)學(xué)的用途,真正愿意靜下心來好好學(xué)習(xí)高等數(shù)學(xué),努力地為以后的發(fā)展打好數(shù)學(xué)基礎(chǔ)。筆者從所在學(xué)校的學(xué)生實(shí)際學(xué)習(xí)情況出發(fā),根據(jù)幾年來的教學(xué)心得和積累,打算提出一種較為實(shí)用的教學(xué)方法——利用數(shù)學(xué)建模的思想調(diào)動(dòng)大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性。
一、以實(shí)際問題反推解決問題時(shí)我們需要的高等數(shù)學(xué)知識(shí)
有這樣一個(gè)實(shí)際問題:報(bào)童每天清晨從報(bào)社購進(jìn)報(bào)紙零售,晚上將沒賣掉的報(bào)紙退回給報(bào)社。假設(shè)報(bào)紙每份的購進(jìn)價(jià)為b元,零售價(jià)為a元,退回價(jià)為c元,自然地有abc。這就是說,報(bào)童每售出一份報(bào)紙賺a-b元,每退回一份報(bào)紙賠b-c元,報(bào)童每天如果購進(jìn)的報(bào)紙?zhí)?,那么?huì)不夠賣,就會(huì)少賺錢;如果每天購進(jìn)的報(bào)紙?zhí)?,那么?huì)賣不完,將要賠錢。請(qǐng)為報(bào)童規(guī)劃一下,他該如何確定每天購進(jìn)的報(bào)紙份數(shù),以獲得最大的收入[3]。
現(xiàn)在我們來反推該問題涉及到的高等數(shù)學(xué)的知識(shí):首先,通過分析題目可知,問題解決的關(guān)鍵在于——如何確定每天的報(bào)紙需求量,注意每天的報(bào)紙需求量是隨機(jī)變化的?解決這個(gè)關(guān)鍵問題的知識(shí)我們?cè)缇驼莆樟?,分別是數(shù)理統(tǒng)計(jì)中的頻率連續(xù)化、概率論中的概率密度與期望和高等數(shù)學(xué)中的定積分[4]。
二、利用高等數(shù)學(xué)的解決實(shí)際問題
f(r)[4]。如果求出了f(r),那么
g(n)=[(a-b)r+(b-c)(n-r)]f(r)+(a-b)nf(r).(1)
現(xiàn)在我們來求f(r),假定報(bào)童已經(jīng)通過自己的經(jīng)驗(yàn)和其他渠道掌握了一年(365天)中每天報(bào)紙的售出份數(shù),那么在他的銷售范圍內(nèi),每天報(bào)紙日需求量r的概率f(r)為:
f(r)=,r=(0,1,2,3,…)
其中k表示為賣出r份的天數(shù)。
g(n)=[(a-b)r+(b-c)(n-r)]p(r)dr+(a-b)np(r)dr.(2)
通過上面的分析,可知實(shí)際問題歸結(jié)為,在p(r)和a,b,c已知時(shí),求n使得g(n)最大。
=-(b-c)p(r)dr+(a-b)p(r)dr.(3)
令=0,得到=,又因?yàn)閜(r)dr+p(r)dr=1,所以p(r)dr=.(4)
在等式(4)中,p(r)和a,b,c均為已知,所以利用定積分的知識(shí)一定可以求出n。也即可以確定每天購進(jìn)的報(bào)紙份數(shù),使報(bào)童每天獲得最大的收入。
三、利用現(xiàn)實(shí)問題,讓學(xué)生學(xué)會(huì)思考,給他們提供創(chuàng)造成就感的機(jī)會(huì)
通過上面碰到的實(shí)際問題,可以很容易地說服同學(xué)們靜下心來好好學(xué)習(xí)高等數(shù)學(xué)。因?yàn)橥ㄟ^實(shí)際問題的求解,學(xué)生們了解到了,要想解決一個(gè)實(shí)際問題(哪怕是很小的問題),也需要大量的高等數(shù)學(xué)知識(shí)的儲(chǔ)備;學(xué)生們也大概領(lǐng)略到了高等數(shù)學(xué)的用途與功能。這樣的教學(xué)方法簡(jiǎn)單、直接,勝過老師課堂上反復(fù)的嘮叨與強(qiáng)調(diào)。有了這樣的一些實(shí)際問題,老師們就可以大膽地將數(shù)學(xué)建模思想引入高等數(shù)學(xué)的教學(xué)當(dāng)中,讓學(xué)生們?cè)诮鉀Q實(shí)際問題中學(xué)會(huì)思考,掌握知識(shí),提高能力。
通過訓(xùn)練后,碰到實(shí)際問題,同學(xué)們會(huì)自然的想到我們的教學(xué)方法:(1)這些實(shí)際問題涉及到的高等數(shù)學(xué)知識(shí)?那些自己掌握了,那些還沒有弄明白,學(xué)要加強(qiáng)學(xué)習(xí)。(2)知識(shí)點(diǎn)找到后,如何建立起數(shù)學(xué)與實(shí)際問題求解之間的關(guān)系?也即如何建立數(shù)學(xué)模型。(3)除了老師給的題目,自己本專業(yè)中的實(shí)際問題,能否用高等數(shù)學(xué)的知識(shí)去解決?通過思考、分析、解決這些問題,學(xué)生們會(huì)有一種創(chuàng)造創(chuàng)新的成就感,會(huì)愿意自主學(xué)習(xí),自然而然其學(xué)習(xí)高等數(shù)學(xué)的積極性也會(huì)大大提高了。
大學(xué)生數(shù)學(xué)建模論文篇八
計(jì)算數(shù)學(xué)建模是用數(shù)學(xué)的思考方式,采用數(shù)學(xué)的方法和語言,通過簡(jiǎn)化,抽象的方式來解決實(shí)際問題的一種數(shù)學(xué)手段。數(shù)學(xué)建模所解決的問題不止現(xiàn)實(shí)的,還包括對(duì)未來的一種預(yù)見。數(shù)學(xué)建??梢哉f和我們的生活息息相關(guān),尤其是如今科技發(fā)達(dá)的今天。數(shù)學(xué)建模應(yīng)用領(lǐng)域超乎我們的想象,甚至達(dá)到無所不及的程度,隨著數(shù)學(xué)建模在大學(xué)教學(xué)中的廣泛使用,使數(shù)學(xué)建模不止成為一種學(xué)科,更重要的是指導(dǎo)新生代更好的利用現(xiàn)代科學(xué)技術(shù),成為高科技人才,把我國人才強(qiáng)國,科教興國的戰(zhàn)略推向一個(gè)新的高度。
1.1數(shù)學(xué)建模引進(jìn)大學(xué)數(shù)學(xué)教學(xué)的必要。教學(xué)過程,是教師根據(jù)社會(huì)發(fā)展要求和當(dāng)代學(xué)生身心發(fā)展的特點(diǎn),借助教學(xué)條件,指導(dǎo)學(xué)生通過認(rèn)識(shí)教學(xué)內(nèi)容從而認(rèn)識(shí)客觀世界,并在此基礎(chǔ)之上發(fā)展自身的過程,即教學(xué)活動(dòng)的展開過程。以往高工專的數(shù)學(xué)教學(xué)存在著知識(shí)單一,內(nèi)容陳舊,脫離實(shí)際等缺陷,已經(jīng)不能滿足時(shí)代的發(fā)展,如今的數(shù)學(xué)教學(xué)過程不是單純的傳授數(shù)學(xué)學(xué)科知識(shí),而是通過數(shù)學(xué)教學(xué)過程引導(dǎo)學(xué)生認(rèn)識(shí)科學(xué),理解科學(xué),從而指導(dǎo)實(shí)踐,促進(jìn)學(xué)生的德智體美勞全面的進(jìn)步和發(fā)展。因此數(shù)學(xué)建模成為一門學(xué)科,被各大高等院校廣泛引用和推廣,其實(shí)數(shù)學(xué)建模不止應(yīng)用在大學(xué)數(shù)學(xué)教學(xué)中,其他一切教學(xué)過程多可引進(jìn)數(shù)學(xué)建模。1.2數(shù)學(xué)建模在大學(xué)數(shù)學(xué)教學(xué)中的運(yùn)用。大學(xué)數(shù)學(xué)教師通過這個(gè)數(shù)學(xué)建模過程來引導(dǎo)學(xué)生解決問題和指導(dǎo)實(shí)踐的能力。再次建模結(jié)果對(duì)現(xiàn)實(shí)生活的指導(dǎo),這是大學(xué)數(shù)學(xué)教學(xué)中數(shù)學(xué)建模所需要達(dá)到的效果和要求。不再停留在理論學(xué)習(xí),而是通過理論指導(dǎo)實(shí)踐,從而為科學(xué)的進(jìn)步和人才綜合水平的提高提供可能。
2.1數(shù)學(xué)建模對(duì)數(shù)學(xué)學(xué)科和其他學(xué)科學(xué)生的巨大影響力學(xué)習(xí)數(shù)學(xué)建模,能夠使一個(gè)單獨(dú)的數(shù)學(xué)家變成經(jīng)濟(jì)學(xué)家,物理學(xué)家還有金融學(xué)家,甚至是藝術(shù)家,只要正握數(shù)學(xué)建模就能指導(dǎo)學(xué)生通過掌握數(shù)學(xué)建模的思維和方法向其他領(lǐng)域?qū)W習(xí)和進(jìn)步。數(shù)學(xué)建模成為連接數(shù)學(xué)和其他領(lǐng)域的紐帶,是當(dāng)今數(shù)學(xué)科學(xué)在其他領(lǐng)導(dǎo)應(yīng)用的橋梁,是數(shù)學(xué)技術(shù)轉(zhuǎn)化為其他技術(shù)的途徑,數(shù)學(xué)建模在學(xué)生中越來越受到關(guān)注和歡迎,越來越多的學(xué)生開始學(xué)習(xí)數(shù)學(xué)建模,尤其是數(shù)學(xué)界和工程界的學(xué)生,這成為當(dāng)今學(xué)生成為現(xiàn)代科技工作者必須掌握的只是能力之一。
2.2數(shù)學(xué)建模對(duì)學(xué)生綜合能力的提高數(shù)學(xué)建模是大學(xué)數(shù)學(xué)教師運(yùn)用數(shù)學(xué)科學(xué)去分析和解決實(shí)際問題,在數(shù)學(xué)建模學(xué)習(xí)的過程中,大學(xué)生的數(shù)學(xué)能力得到提高,其分析問題、解決問題的能力得到提高,這對(duì)大學(xué)生畢業(yè)走向社會(huì)具有著重大意義。通過數(shù)學(xué)建模的學(xué)習(xí)和應(yīng)用,激發(fā)大學(xué)生學(xué)習(xí)數(shù)學(xué)和應(yīng)用數(shù)學(xué)的能力,運(yùn)用數(shù)學(xué)的思維和方法,利用現(xiàn)代計(jì)算機(jī)科學(xué),來解決數(shù)學(xué)及其他領(lǐng)域的問題。
數(shù)學(xué)建模引入大學(xué)數(shù)學(xué)教學(xué),這是時(shí)代的進(jìn)步,是時(shí)代對(duì)當(dāng)代大學(xué)教師提出的新要求,尤其是大學(xué)數(shù)學(xué)教師,其不再停留在以往的單純的數(shù)學(xué)知識(shí)講授方向,而是將數(shù)學(xué)科學(xué)作為基礎(chǔ),引導(dǎo)當(dāng)代大學(xué)生發(fā)散思維,發(fā)揮主觀能動(dòng)性,從而學(xué)習(xí)數(shù)學(xué)科學(xué),并運(yùn)用數(shù)學(xué)科學(xué)解決現(xiàn)實(shí)問題。在這個(gè)過程中大學(xué)教師的專業(yè)知識(shí)得到提高,其創(chuàng)新精神也得到了極大的豐富。大學(xué)數(shù)學(xué)教師不止完成數(shù)學(xué)教學(xué),更重要的是培養(yǎng)了高科技的人才,這對(duì)大學(xué)數(shù)學(xué)教師的社會(huì)地位也有了相應(yīng)的改變,在尊重人才,尊重科學(xué)的氛圍中,大學(xué)數(shù)學(xué)教師及其他學(xué)科的教師得到了鼓舞,得到了進(jìn)步,得到了認(rèn)可。數(shù)學(xué)建模越來越重要,關(guān)于數(shù)學(xué)建模的各種國內(nèi)國際大賽頻頻舉辦,這對(duì)大學(xué)數(shù)學(xué)教師在知識(shí),體力和創(chuàng)新性上都提出新的要求,為了更好的參與數(shù)學(xué)建模比賽,大學(xué)數(shù)學(xué)教師投入更多的時(shí)間和經(jīng)歷在學(xué)生教育和數(shù)學(xué)建模中,他們成為真正的臺(tái)前和幕后的指揮者。
隨著現(xiàn)代大學(xué)學(xué)科的豐富,尤其是計(jì)算機(jī)科學(xué)的廣泛應(yīng)用,大學(xué)數(shù)學(xué)教學(xué)的跨時(shí)代發(fā)展,數(shù)學(xué)建模成為各個(gè)高校數(shù)學(xué)教學(xué)的重點(diǎn)內(nèi)容,數(shù)學(xué)建模教學(xué)吸納數(shù)學(xué)家,計(jì)算機(jī)學(xué)家等多個(gè)學(xué)科專家的意見,從而為培養(yǎng)出綜合行的高科技人才做好充分的準(zhǔn)備。可以說數(shù)學(xué)建模教學(xué)是當(dāng)今大學(xué)數(shù)學(xué)教學(xué)的主旋律,是數(shù)學(xué)科學(xué)和其他科學(xué)進(jìn)步發(fā)展的方向和原動(dòng)力。
[1]李進(jìn)華.教育教學(xué)改革與教育創(chuàng)新探索.安徽:安徽大學(xué)出版社,20xx.8.
[2]于駿.現(xiàn)代數(shù)學(xué)思想方法.山東:石油大學(xué)出版社,1997.
大學(xué)生數(shù)學(xué)建模論文篇九
為了培養(yǎng)小學(xué)生良好的數(shù)學(xué)學(xué)習(xí)興趣,激發(fā)他們的數(shù)學(xué)潛能,教師需要采取必要的措施注重?cái)?shù)學(xué)建模思想的有效培養(yǎng),促進(jìn)學(xué)生的全面發(fā)展。在制定相關(guān)培養(yǎng)策略的過程中,教師應(yīng)充分考慮小學(xué)生的性格特點(diǎn),提高數(shù)學(xué)建模思想培養(yǎng)的有效性?;诖耍恼聦牟煌姆矫鎸?duì)小學(xué)生數(shù)學(xué)建模思想的培養(yǎng)策略進(jìn)行初步的探討。
作為小學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,數(shù)學(xué)建模思想的滲透及相關(guān)教學(xué)活動(dòng)的順利開展,有利于提高復(fù)雜數(shù)學(xué)問題的處理效率,保持?jǐn)?shù)學(xué)課堂教學(xué)的高效性。要實(shí)現(xiàn)這樣的發(fā)展目標(biāo),增強(qiáng)小學(xué)生數(shù)學(xué)建模思想的實(shí)際培養(yǎng)效果,需要加強(qiáng)對(duì)學(xué)生動(dòng)手實(shí)踐能力的培養(yǎng),激發(fā)學(xué)生的更高興趣。建模的過程涉及問題表述、求解、必要解釋及有效驗(yàn)證,在這四個(gè)環(huán)節(jié)中,可能會(huì)存在一定的問題,影響著數(shù)學(xué)教學(xué)計(jì)劃的實(shí)施。因此,教師需要利用學(xué)生動(dòng)手實(shí)踐能力的作用,實(shí)現(xiàn)數(shù)學(xué)建模思想的有效培養(yǎng),促使小學(xué)生能夠在數(shù)學(xué)建模過程中享受到更多的快樂。比如,在講解“認(rèn)識(shí)角”知識(shí)的過程中,某些學(xué)生認(rèn)為邊越長角度也越大。為了使學(xué)生能夠?qū)ζ渲械闹R(shí)點(diǎn)有更加正確而全面的認(rèn)識(shí),教師可以通過在黑板上設(shè)置一些能夠活動(dòng)的三角板,讓學(xué)生親自動(dòng)手操作,以此得出角與邊長的正確關(guān)系,為后續(xù)教學(xué)計(jì)劃的實(shí)施打下堅(jiān)實(shí)的基礎(chǔ)。通過這種教學(xué)方法的合理運(yùn)用,可以激發(fā)出學(xué)生們?cè)跀?shù)學(xué)建模學(xué)習(xí)中的更高興趣,豐富他們的想象力,從而使他們對(duì)數(shù)學(xué)建模思想有一定的了解,在未來學(xué)習(xí)過程中能夠保持良好的`數(shù)學(xué)建模能力。
通過對(duì)小學(xué)階段各種數(shù)學(xué)實(shí)踐教學(xué)活動(dòng)實(shí)際概況的深入分析,可知構(gòu)建良好的數(shù)學(xué)模型有利于加深學(xué)生對(duì)各知識(shí)(福建省莆田市秀嶼區(qū)東嶠前江小學(xué),福建莆田351164)點(diǎn)的深入理解,增強(qiáng)其主動(dòng)參與數(shù)學(xué)建模教學(xué)活動(dòng)的積極性。因此,為了使小學(xué)生數(shù)學(xué)建模思想培養(yǎng)能夠達(dá)到預(yù)期的效果,教師需要結(jié)合實(shí)際的教學(xué)內(nèi)容,建立必要的數(shù)學(xué)參考模型,提升學(xué)生對(duì)數(shù)學(xué)建模思想的整體認(rèn)知水平。比如,在講授“異分母分?jǐn)?shù)加減法”這部分知識(shí)的過程中,可以設(shè)置“0.8千克+300克”“1.6千克-400克”等問題,向?qū)W生提問是否可以直接計(jì)算,并說出原因。當(dāng)學(xué)生通過對(duì)問題的深入思考,總結(jié)出“單位不同不能直接計(jì)算”的結(jié)論后,繼續(xù)向?qū)W生提問小數(shù)計(jì)算中為什么每一位都要對(duì)齊,實(shí)現(xiàn)“計(jì)數(shù)單位統(tǒng)一后才能計(jì)算”這一數(shù)學(xué)模型的構(gòu)建。在這樣的教學(xué)過程中,學(xué)生可以加深對(duì)知識(shí)點(diǎn)的理解,實(shí)現(xiàn)數(shù)學(xué)建模思想的有效培養(yǎng)。
加強(qiáng)小學(xué)生數(shù)學(xué)建模思想的有效培養(yǎng),需要在具體的教學(xué)活動(dòng)開展中注重對(duì)數(shù)學(xué)思想的靈活運(yùn)用,增強(qiáng)相關(guān)模型構(gòu)建的可靠性,促使學(xué)生在長期的數(shù)學(xué)學(xué)習(xí)中能夠不斷提高自身的數(shù)學(xué)能力,運(yùn)用各種數(shù)學(xué)知識(shí)處理實(shí)際問題。比如,在“角的度量”這部分內(nèi)容講解的過程中,為了提高學(xué)生對(duì)角的分類及畫角相關(guān)知識(shí)點(diǎn)的深入理解,教師可以將所有的學(xué)生分為不同的小組,讓學(xué)生們通過小組討論的方式,對(duì)角的正確分類及如何畫角有一定的了解,并讓每個(gè)小組代表在講臺(tái)上演示畫角的過程。此時(shí),教師可以通過對(duì)多媒體教學(xué)設(shè)備的合理運(yùn)用,利用動(dòng)態(tài)化的文字與圖片對(duì)其中的知識(shí)要點(diǎn)進(jìn)行展示,確保學(xué)生們能夠在良好的教學(xué)模式中提升自身的認(rèn)知水平,并在不斷的思考過程中逐漸形成良好的創(chuàng)造性思維,強(qiáng)化自身的創(chuàng)新意識(shí)。比如,在講解“圖形變換”中的軸對(duì)稱、旋轉(zhuǎn)知識(shí)點(diǎn)的過程中,教師應(yīng)通過對(duì)學(xué)生的正確引導(dǎo),運(yùn)用三角板、圓柱等教學(xué)輔助工具,讓學(xué)生從不同的角度對(duì)各種軸對(duì)稱圖形、旋轉(zhuǎn)后得到的圖形進(jìn)行深入思考,提高自身數(shù)學(xué)建模過程中的創(chuàng)新能力,從不同的角度深入理解圖像變換過程,對(duì)這部分內(nèi)容有更多的了解。因此,教師應(yīng)注重小學(xué)生數(shù)學(xué)建模思想培養(yǎng)中多方位思考方式的針對(duì)性培養(yǎng),提高學(xué)生的創(chuàng)新能力,優(yōu)化學(xué)生的思維方式,全面提升小學(xué)數(shù)學(xué)建模教學(xué)水平。
總之,加強(qiáng)小學(xué)生數(shù)學(xué)建模思想培養(yǎng)策略的制定與實(shí)施,有利于滿足素質(zhì)教育的更高要求,實(shí)現(xiàn)對(duì)小學(xué)生數(shù)學(xué)能力的有效鍛煉,確保相關(guān)的教學(xué)計(jì)劃能夠在規(guī)定的時(shí)間內(nèi)順利地完成。與此同時(shí),結(jié)合當(dāng)前小學(xué)數(shù)學(xué)教育教學(xué)的實(shí)際發(fā)展概況,可知靈活運(yùn)用各種科學(xué)的數(shù)學(xué)建模思想培養(yǎng)策略,有利于滿足學(xué)生數(shù)學(xué)建模學(xué)習(xí)中的多樣化需求,為相關(guān)教學(xué)目標(biāo)的順利實(shí)現(xiàn)提供可靠的保障。
[1]童小艷.小學(xué)數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生建模思想的策略[j].學(xué)子(教育新理念),20xx(6).
[2]白寧.先學(xué)而后教——小學(xué)生數(shù)學(xué)建模思想培養(yǎng)的捷徑[j].數(shù)學(xué)學(xué)習(xí)與研究,20xx(16).
大學(xué)生數(shù)學(xué)建模論文篇十
1、從應(yīng)用數(shù)學(xué)出發(fā)數(shù)學(xué)建模主要是通過運(yùn)用數(shù)學(xué)知識(shí)解決生活中遇到實(shí)際問題的全過程。要讓數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)教學(xué)課程進(jìn)行有效的融合,最佳切入點(diǎn)就是課堂上把用數(shù)學(xué)解決生活中的實(shí)際問題與教學(xué)內(nèi)容相融合,以應(yīng)用數(shù)學(xué)為導(dǎo)向,訓(xùn)練學(xué)生綜合運(yùn)用數(shù)學(xué)知識(shí)去刻畫實(shí)際問題、提煉數(shù)學(xué)模型、處理實(shí)際數(shù)據(jù)、分析解決實(shí)際問題的能力,培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)原理解決生活問題的興趣和愛好。授課過程中,要改變以往單純地進(jìn)行課堂灌輸?shù)男袨椋嘁霊?yīng)用數(shù)學(xué)的內(nèi)容,通過師生互動(dòng)、課堂討論、小課題研究實(shí)踐等多種形式靈活多樣的教學(xué)方法,培養(yǎng)引導(dǎo)學(xué)生樹立應(yīng)用數(shù)學(xué)建模解決實(shí)際問題的思想。
2、從數(shù)學(xué)實(shí)驗(yàn)做起要加強(qiáng)獨(dú)立學(xué)院學(xué)生進(jìn)行數(shù)學(xué)實(shí)驗(yàn)的行為,筆者認(rèn)為數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)有著密切的聯(lián)系,兩者都是從解決實(shí)際問題出發(fā),當(dāng)前的大學(xué)生數(shù)學(xué)實(shí)驗(yàn)基本上是應(yīng)用數(shù)學(xué)軟件、數(shù)值計(jì)算、建立模型、過程演算和圖形顯示等一系列過程,因此進(jìn)行數(shù)學(xué)實(shí)驗(yàn)的全過程就是數(shù)學(xué)建模思想的啟發(fā)過程。但是我國的教育資源和教學(xué)方針限制了獨(dú)立學(xué)院學(xué)生的學(xué)習(xí)環(huán)境和學(xué)習(xí)資源,能夠進(jìn)行數(shù)學(xué)實(shí)驗(yàn)的條件還是有限的。即使個(gè)別有實(shí)驗(yàn)?zāi)芰Φ膶W(xué)校,也未能進(jìn)行充分利用,數(shù)學(xué)實(shí)驗(yàn)課的內(nèi)容隨意性較大,有些院校將其降格為軟件學(xué)習(xí)課程或初級(jí)算法課。根據(jù)調(diào)研,目前大部分獨(dú)立學(xué)院未開設(shè)此類課程,這是數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)教學(xué)課程融合的一大損失,不利于學(xué)生創(chuàng)新思維能力的提高。各校應(yīng)當(dāng)積極創(chuàng)造條件,把數(shù)學(xué)實(shí)驗(yàn)課設(shè)為大學(xué)數(shù)學(xué)的必修課,爭(zhēng)取設(shè)立數(shù)學(xué)建模選修課,并積極探索、逐步實(shí)現(xiàn)把數(shù)學(xué)建模的思想和方法融入大學(xué)數(shù)學(xué)的主干課程。
3、從計(jì)算機(jī)應(yīng)用切入數(shù)學(xué)是為理、工、經(jīng)、管、農(nóng)、醫(yī)、文等眾多學(xué)科服務(wù)的基礎(chǔ)工具,它在不同的領(lǐng)域因?yàn)閼?yīng)用程度不同而導(dǎo)致被重視的程度不同。但在當(dāng)今的信息化時(shí)代,計(jì)算機(jī)的廣泛應(yīng)用和計(jì)算技術(shù)的飛速發(fā)展,使科學(xué)計(jì)算和數(shù)值模擬已成為絕大多數(shù)學(xué)科的必要工具和常用手段。數(shù)學(xué)在不同學(xué)科領(lǐng)域有了共同的主題,即應(yīng)用數(shù)學(xué)建模,通過計(jì)算機(jī)對(duì)各自領(lǐng)域的科學(xué)研究、生活問題等進(jìn)行模擬分析,這成為數(shù)學(xué)建模思想在跨學(xué)科領(lǐng)域交流和傳播的一個(gè)重要途徑。每個(gè)領(lǐng)域的教學(xué)可以計(jì)算機(jī)應(yīng)用為切入點(diǎn),讓數(shù)學(xué)建模思想與數(shù)學(xué)授課無縫結(jié)合,在提高學(xué)生掌握知識(shí)能力、挖掘培養(yǎng)創(chuàng)新思維的同時(shí),增加了大學(xué)數(shù)學(xué)課程內(nèi)容的豐富性、實(shí)用性,促進(jìn)教學(xué)手段變革和創(chuàng)新。因此,大學(xué)應(yīng)以適應(yīng)現(xiàn)代信息技術(shù)發(fā)展的形勢(shì)和學(xué)生將來的需求為契機(jī),加快改進(jìn)大學(xué)數(shù)學(xué)課程教學(xué)方式,把數(shù)學(xué)建模的思想和方法以及現(xiàn)代計(jì)算技術(shù)和計(jì)算工具盡快融入大學(xué)數(shù)學(xué)的主干課程當(dāng)中。
大學(xué)數(shù)學(xué)課程是大學(xué)工科各專業(yè)培養(yǎng)計(jì)劃中重要的公共基礎(chǔ)理論課,其目的在于培養(yǎng)工程技術(shù)人才所必備的數(shù)學(xué)素質(zhì),為培養(yǎng)我國現(xiàn)代化建設(shè)需要的高素質(zhì)人才服務(wù)。數(shù)學(xué)建模課程的必修化,要從能夠擴(kuò)充學(xué)生的知識(shí)結(jié)構(gòu),培養(yǎng)學(xué)生的創(chuàng)造性思維能力、抽象概括能力、邏輯推理能力、自學(xué)能力、分析問題和解決問題能力的角度出發(fā),建立適合獨(dú)立學(xué)院學(xué)生的數(shù)學(xué)建模教學(xué)內(nèi)容。日前獨(dú)立學(xué)院開展數(shù)學(xué)建模活動(dòng)涉及內(nèi)容較淺,缺少相應(yīng)的數(shù)學(xué)建模和數(shù)學(xué)實(shí)驗(yàn)方而的教材。筆者近幾年通過承擔(dān)此類課題的研究,認(rèn)為應(yīng)該加強(qiáng)以下內(nèi)容的建設(shè):
。2、開設(shè)選修課拓展知識(shí)領(lǐng)域,讓學(xué)生可以通過選修數(shù)學(xué)建模、運(yùn)籌學(xué)、開設(shè)數(shù)學(xué)實(shí)驗(yàn)(介紹matlab、maple等計(jì)算軟件課程),增加建立和解答數(shù)學(xué)模型的方法和技巧。比如以前用的“文曲星”電子詞典里的貸款計(jì)算,就是一個(gè)典型的運(yùn)用數(shù)學(xué)模型方便百姓自己計(jì)算的應(yīng)用。這個(gè)模型單靠數(shù)學(xué)和經(jīng)濟(jì)學(xué)單方面的知識(shí)是不夠的,必須把數(shù)學(xué)與經(jīng)濟(jì)學(xué)聯(lián)系在一起,才能有效解決生活中的問題。
3、積極組織學(xué)生開展或是參加數(shù)學(xué)建模大賽比賽是各個(gè)選手充分發(fā)揮水平、展示自己智慧的途徑,也是數(shù)學(xué)建模思想傳播的最好手段。比賽可以讓各個(gè)選手發(fā)現(xiàn)自己的不足,尋找自身數(shù)學(xué)建模出發(fā)點(diǎn)的缺陷,通過交流,還可以拓展學(xué)生思維。因此,有必要積極組織學(xué)生參入初等數(shù)學(xué)知識(shí)可以解決的數(shù)學(xué)模型、線性規(guī)劃模型、指派問題模型、存儲(chǔ)問題模型、圖論應(yīng)用題等方面的模擬競(jìng)賽,通過參賽積累大量數(shù)學(xué)建模知識(shí),促進(jìn)數(shù)學(xué)建模在教學(xué)中扮演更重要的`角色。教師應(yīng)該對(duì)歷年的全國大學(xué)生數(shù)學(xué)建模競(jìng)賽真題進(jìn)行認(rèn)真的解讀分析,通過對(duì)有意義的題目,如20xx年的《葡萄酒的評(píng)價(jià)》、《太陽能小屋的設(shè)計(jì)》,20xx年的《交巡警服務(wù)平臺(tái)的設(shè)置與調(diào)度車燈線光源的計(jì)算》、20xx年的《眼科病床的合理安排》等,與生活相關(guān)的例子進(jìn)行講解分析,提高學(xué)生對(duì)數(shù)學(xué)建模的興趣和對(duì)模型應(yīng)用的直觀的認(rèn)識(shí),實(shí)現(xiàn)學(xué)校應(yīng)用型人才的培養(yǎng)。
4、加快教育方式的轉(zhuǎn)變高等教育設(shè)立數(shù)學(xué)這門學(xué)科就是為了應(yīng)用服務(wù),內(nèi)容應(yīng)重點(diǎn)放在基本概念、定理、公式等在生活中的應(yīng)用上。而傳統(tǒng)的高等數(shù)學(xué),除了推導(dǎo)就是證明,因此,要對(duì)傳統(tǒng)內(nèi)容進(jìn)行優(yōu)化組合,根據(jù)教學(xué)特點(diǎn)和學(xué)生情況推陳出新,要注重?cái)?shù)學(xué)思想的滲透和數(shù)學(xué)方法的介紹,對(duì)高等數(shù)學(xué)精髓的求導(dǎo)、微分方法、積分方法等的授課要重點(diǎn)放在解決實(shí)際生活的應(yīng)用上。要結(jié)合一些社會(huì)實(shí)踐問題與函數(shù)建立的關(guān)系,分析確定變量、參數(shù),加強(qiáng)有關(guān)函數(shù)關(guān)系式建立的日常訓(xùn)練。培養(yǎng)學(xué)生對(duì)一些問題的邏輯分析、抽象、簡(jiǎn)化并用數(shù)學(xué)語言表達(dá)的能力,逐步將學(xué)生帶入遇到問題就能自然地去轉(zhuǎn)化成數(shù)學(xué)模型進(jìn)行處理的境界,并能將數(shù)學(xué)結(jié)論又能很好反向轉(zhuǎn)化成實(shí)際應(yīng)用。
21世紀(jì)我國進(jìn)入了大眾教育時(shí)期,高校招生人數(shù)劇增,學(xué)生水平差距較大,需要學(xué)校瞄準(zhǔn)正確的培養(yǎng)方向。通過對(duì)美國教學(xué)改革的研究,筆者認(rèn)為我國的數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)教學(xué)課程融合必須盡快在大學(xué)中廣泛推進(jìn),但要注意一些問題:第一,數(shù)學(xué)教學(xué)改革一定要基于學(xué)生的現(xiàn)實(shí)水平,數(shù)學(xué)建模思想融入要與時(shí)俱進(jìn)。第二,教學(xué)目標(biāo)要正確定位,融合過程一定要與教學(xué)研究相結(jié)合,要在加強(qiáng)交流的基礎(chǔ)上不斷改進(jìn)。第三,大學(xué)生數(shù)學(xué)建模競(jìng)賽的舉辦和參入,要給予正確的理解和引導(dǎo),形成良性循環(huán)。要根據(jù)個(gè)人興趣愛好,注重個(gè)性,不應(yīng)面面強(qiáng)求。第四,傳統(tǒng)數(shù)學(xué)思想與現(xiàn)在數(shù)學(xué)建模思想必須互補(bǔ),必修與選修課程的作用與角色要分清。數(shù)學(xué)主干課程的教學(xué)水平是大學(xué)教學(xué)質(zhì)量的關(guān)鍵指標(biāo)之一,具備數(shù)學(xué)建模思想是理工類大學(xué)生能否成為創(chuàng)新人才的重要條件之一。兩者的融合必將促進(jìn)我國教學(xué)水平和質(zhì)量的提高,為社會(huì)輸送更多的實(shí)用型、創(chuàng)新型人才。
大學(xué)生數(shù)學(xué)建模論文篇十一
優(yōu)秀高教社杯全國大學(xué)生數(shù)學(xué)建模競(jìng)賽題目
(請(qǐng)先閱讀“全國大學(xué)生數(shù)學(xué)建模競(jìng)賽論文格式規(guī)范”)
a題城市表層土壤重金屬污染分析
隨著城市經(jīng)濟(jì)的快速發(fā)展和城市人口的不斷增加,人類活動(dòng)對(duì)城市環(huán)境質(zhì)量的影響日顯突出。對(duì)城市土壤地質(zhì)環(huán)境異常的查證,以及如何應(yīng)用查證獲得的海量數(shù)據(jù)資料開展城市環(huán)境質(zhì)量評(píng)價(jià),研究人類活動(dòng)影響下城市地質(zhì)環(huán)境的演變模式,日益成為人們關(guān)注的焦點(diǎn)。
按照功能劃分,城區(qū)一般可分為生活區(qū)、工業(yè)區(qū)、山區(qū)、主干道路區(qū)及公園綠地區(qū)等,分別記為1類區(qū)、2類區(qū)、??、5類區(qū),不同的區(qū)域環(huán)境受人類活動(dòng)影響的程度不同。
現(xiàn)對(duì)某城市城區(qū)土壤地質(zhì)環(huán)境進(jìn)行調(diào)查。為此,將所考察的城區(qū)劃分為間距1公里左右的網(wǎng)格子區(qū)域,按照每平方公里1個(gè)采樣點(diǎn)對(duì)表層土(0~10厘米深度)進(jìn)行取樣、編號(hào),并用gps記錄采樣點(diǎn)的位置。應(yīng)用專門儀器測(cè)試分析,獲得了每個(gè)樣本所含的多種化學(xué)元素的濃度數(shù)據(jù)。另一方面,按照2公里的間距在那些遠(yuǎn)離人群及工業(yè)活動(dòng)的自然區(qū)取樣,將其作為該城區(qū)表層土壤中元素的背景值。
附件1列出了采樣點(diǎn)的位置、海拔高度及其所屬功能區(qū)等信息,附件2列出了8種主要重金屬元素在采樣點(diǎn)處的濃度,附件3列出了8種主要重金屬元素的背景值。
現(xiàn)要求你們通過數(shù)學(xué)建模來完成以下任務(wù):
(1)給出8種主要重金屬元素在該城區(qū)的空間分布,并分析該城區(qū)內(nèi)不同區(qū)域重金屬的污染程度。
(2)通過數(shù)據(jù)分析,說明重金屬污染的主要原因。
(3)分析重金屬污染物的傳播特征,由此建立模型,確定污染源的位置。
大學(xué)生數(shù)學(xué)建模論文篇十二
摘要:數(shù)學(xué)作為很多學(xué)科的計(jì)算工具,可以說是現(xiàn)代科學(xué)的基礎(chǔ),要想利用數(shù)學(xué)來解決實(shí)際問題,首先要建立相應(yīng)的數(shù)學(xué)模型,本文在數(shù)學(xué)建模思想概念和特點(diǎn)的基礎(chǔ)上,從計(jì)算機(jī)軟件、實(shí)際生活中的應(yīng)用等方面,對(duì)其應(yīng)用的發(fā)展進(jìn)行了分析,最后從分析問題、建立模型、校驗(yàn)?zāi)P腿齻€(gè)階段,對(duì)數(shù)學(xué)建模的方法,進(jìn)行了深入的研究。
關(guān)鍵詞:數(shù)學(xué)建模;思想;應(yīng)用;方法;分析
引言
隨著自然科學(xué)的發(fā)展,利用數(shù)學(xué)等思想來解決實(shí)際問題,越來越受到人們的重視,數(shù)學(xué)作為一門歷史悠久的自然科學(xué),是在實(shí)際應(yīng)用的基礎(chǔ)上發(fā)展起來,但是隨著理論研究的深入,現(xiàn)在數(shù)學(xué)理論已經(jīng)非常先進(jìn),很多理論都無法付諸實(shí)踐,在這種背景下,如何利用現(xiàn)有的數(shù)學(xué)理論來解決實(shí)際問題,成為了很多專家和學(xué)者研究的問題。通過實(shí)際的調(diào)查發(fā)現(xiàn),要想利用數(shù)學(xué)來解決實(shí)際問題,首先要建立相應(yīng)的數(shù)學(xué)模型,將實(shí)際的問題轉(zhuǎn)化成數(shù)學(xué)符號(hào)的表達(dá)方式,這樣才能夠通過數(shù)學(xué)計(jì)算,來解決一些實(shí)際問題,從某種意義上來說,計(jì)算機(jī)就是由若干個(gè)數(shù)學(xué)模型組成的,計(jì)算機(jī)軟件之所以能夠解決實(shí)際問題,就是根據(jù)實(shí)際應(yīng)用的需要,建立了一個(gè)相應(yīng)的數(shù)學(xué)模型,這樣才能夠讓計(jì)算機(jī)來解決。
1數(shù)學(xué)建模思想分析
1.1數(shù)學(xué)建模思想的概念
數(shù)學(xué)是一門歷史悠久的自然科學(xué),在古時(shí)候,由于實(shí)際應(yīng)用的需要,人們就已經(jīng)開始使用數(shù)學(xué)來解決實(shí)際問題,但是受到當(dāng)時(shí)技術(shù)條件的限制,數(shù)學(xué)理論的水平比較低,只是利用數(shù)學(xué)來進(jìn)行計(jì)數(shù)等,隨著經(jīng)濟(jì)和科技水平的提高,尤其是在工業(yè)革命之后,自然科學(xué)得到了極大的發(fā)展,對(duì)于利用自然科學(xué)來解決實(shí)際問題,也成為了人們研究的重點(diǎn),在市場(chǎng)經(jīng)濟(jì)的推動(dòng)下,人們將這些理論知識(shí)轉(zhuǎn)化成為產(chǎn)品。計(jì)算機(jī)就是在這種背景下產(chǎn)生的,在數(shù)學(xué)理論的基礎(chǔ)上,將電路的通和不通兩種狀態(tài),與數(shù)學(xué)的二進(jìn)制相結(jié)合,這樣就能夠讓計(jì)算機(jī)來處理實(shí)際問題,從本質(zhì)上來說,這就是數(shù)學(xué)建模思想的范疇,但是在計(jì)算機(jī)出現(xiàn)的早期,數(shù)學(xué)建模的理論還沒有形成,隨著計(jì)算機(jī)軟件技術(shù)的發(fā)展,人們逐漸的意識(shí)到數(shù)學(xué)建模的重要性,發(fā)現(xiàn)利用數(shù)學(xué)建模思想,可以解決很多實(shí)際的問題,而數(shù)學(xué)建模的概念,就是將遇到的實(shí)際問題,利用特定的數(shù)學(xué)符號(hào)進(jìn)行描述,這樣實(shí)際問題就轉(zhuǎn)化為數(shù)學(xué)問題,可以利用數(shù)學(xué)的計(jì)算方法來解決。
1.2數(shù)學(xué)建模思想的特點(diǎn)
如何解決實(shí)際問題,從有人類文明開始,就成為了人們研究的重點(diǎn),隨著自然科學(xué)的發(fā)展,出現(xiàn)了很多具體的學(xué)科,利用這些不同的學(xué)科,可以解決不同的實(shí)際問題,而數(shù)學(xué)就是其中最重要的一門學(xué)科,而且是其他學(xué)科的基礎(chǔ),如物理學(xué)科中,數(shù)學(xué)就是一個(gè)計(jì)算的工具,由此可以看出數(shù)學(xué)的重要性,進(jìn)入到信息時(shí)代后,計(jì)算機(jī)得到了普及應(yīng)用,無論是日常生活中還是工作中,計(jì)算機(jī)都有非常重要的應(yīng)用,而在信息時(shí)代,注重的是解決問題的效率。與其他解決問題的方式相比,數(shù)學(xué)建模顯然更加科學(xué),現(xiàn)在數(shù)學(xué)建模已經(jīng)成為了一門獨(dú)立的學(xué)科,很多高校中都開設(shè)了這門課程,為了培養(yǎng)學(xué)生們利用數(shù)學(xué)解決實(shí)際問題的能力,我國每年都會(huì)舉辦全國性的數(shù)學(xué)建模大賽,采用開放式的參賽方式,對(duì)學(xué)生們的數(shù)學(xué)建模能力進(jìn)行考驗(yàn),而大賽的題目,很多都是一些實(shí)際問題,對(duì)于比賽的結(jié)果,每個(gè)參賽隊(duì)伍的建模方式都有一定的差異,其中選出一個(gè)最有效的方式成為冠軍。由此可以看出,對(duì)于一個(gè)實(shí)際的問題,可以建立多個(gè)數(shù)學(xué)模型進(jìn)行解決,但是執(zhí)行的效率具有一定的差異,如有些計(jì)算的步驟較少,而有些計(jì)算的過程比較簡(jiǎn)單,而如何評(píng)價(jià)一個(gè)模型的效率,必須從各個(gè)方面進(jìn)行綜合的考慮。
2數(shù)學(xué)建模思想的應(yīng)用
2.1計(jì)算機(jī)軟件中數(shù)學(xué)建模思想的應(yīng)用
通過深入的分析可以知道,計(jì)算機(jī)之所以能夠解決實(shí)際問題,很大程度上依賴與計(jì)算機(jī)軟件,而計(jì)算機(jī)軟件自身就是一個(gè)或幾個(gè)數(shù)學(xué)模型,在軟件開發(fā)的過程中,首先要進(jìn)行需求的分析,這其實(shí)就是數(shù)學(xué)建模的第一個(gè)環(huán)節(jié),對(duì)問題進(jìn)行分析,在了解到問題之后,就要通過計(jì)算機(jī)語言,對(duì)問題進(jìn)行描述,而計(jì)算機(jī)語言是人與計(jì)算機(jī)進(jìn)行溝通的語言,最終這些語言都要轉(zhuǎn)化成0和1二進(jìn)制的方式,這樣計(jì)算機(jī)才能夠進(jìn)行具體的計(jì)算。由此可以看出,計(jì)算機(jī)就是依靠數(shù)學(xué)來解決實(shí)際問題,而每個(gè)計(jì)算機(jī)軟件,都可以認(rèn)為是一個(gè)數(shù)學(xué)模型,如在早期的計(jì)算機(jī)程序設(shè)計(jì)中,受到當(dāng)時(shí)計(jì)算機(jī)技術(shù)水平的限制,采用的還是低級(jí)語言,由于低級(jí)語言人們很難理解,因此在程序編寫之前,都會(huì)先建立一個(gè)數(shù)學(xué)模型,然后將這個(gè)模型轉(zhuǎn)化成相應(yīng)的計(jì)算機(jī)語言,這樣計(jì)算機(jī)就可以解決實(shí)際的問題,由于計(jì)算機(jī)能夠自行計(jì)算的特點(diǎn),只要輸入相應(yīng)的參數(shù)后,就可以直接得到結(jié)果,不再需要人為的計(jì)算。
2.2數(shù)學(xué)建模思想直接解決實(shí)際問題
經(jīng)過了多年的發(fā)展,現(xiàn)在數(shù)學(xué)建模自身已經(jīng)非常完善,為了培養(yǎng)我國的數(shù)學(xué)建模人才,從1992年開始,每年我國都會(huì)舉辦一屆全國數(shù)學(xué)建模大賽,所有的高校學(xué)生都可以參加,大賽采用了開放性的參賽方式,通常情況下,對(duì)于題目設(shè)置的也比較靈活,會(huì)有多個(gè)題目提供給隊(duì)員選擇,學(xué)生可以根據(jù)自己的實(shí)際情況,來選擇一個(gè)最適合自己的問題。而數(shù)學(xué)建模大賽舉辦的主要目的,就是讓學(xué)生們掌握如何利用數(shù)學(xué)理論,來解決實(shí)際問題,在學(xué)習(xí)數(shù)學(xué)知識(shí)的過程中,很多學(xué)生會(huì)認(rèn)為,數(shù)學(xué)與實(shí)踐的距離很遠(yuǎn),學(xué)習(xí)的都是純理論的知識(shí),學(xué)習(xí)的興趣很低,與一些實(shí)踐密切相關(guān)的學(xué)科相比,選擇數(shù)學(xué)專業(yè)的學(xué)生很少,而數(shù)學(xué)建模的出現(xiàn),在很大程度上改善了這種情況,讓人們真正的了解數(shù)學(xué),并利用數(shù)學(xué)來解決復(fù)雜的問題。受到特殊的歷史因素影響,我國自然科學(xué)發(fā)展的起步較晚,在建國后經(jīng)歷了很長一段時(shí)間封,閉發(fā)展,與西方發(fā)達(dá)國家之間的交流比較少,因此對(duì)于數(shù)學(xué)建模等現(xiàn)代科學(xué),研究的時(shí)間比較短,導(dǎo)致目前我國很少會(huì)利用數(shù)學(xué)建模來解決實(shí)際問題,相比之下,發(fā)達(dá)國家在很多領(lǐng)域中,經(jīng)常會(huì)用到數(shù)學(xué)建模的知識(shí),如在企業(yè)日常運(yùn)營中,需要進(jìn)行市場(chǎng)調(diào)研等工作,而對(duì)于這些調(diào)研工作的處理,在進(jìn)行之前都會(huì)建立一個(gè)數(shù)學(xué)模型,然后按照這個(gè)建立的模型來處理。
2.3數(shù)學(xué)建模思想應(yīng)用的發(fā)展
從本質(zhì)上來說,數(shù)學(xué)是在實(shí)際應(yīng)用的基礎(chǔ)上,逐漸形成的一門學(xué)科,但是受到當(dāng)時(shí)技術(shù)水平的限制,雖然人們已經(jīng)懂得去計(jì)算,卻并知道自己使用的是數(shù)學(xué)知識(shí),隨著自然科學(xué)的發(fā)展,對(duì)數(shù)學(xué)的應(yīng)用越來越多,而數(shù)學(xué)自身理論的發(fā)展速度很快,遠(yuǎn)遠(yuǎn)超過了實(shí)際應(yīng)用的范圍,同時(shí)隨著其他學(xué)科的發(fā)展,數(shù)學(xué)變成了一種計(jì)算的工具,因此數(shù)學(xué)應(yīng)用的第一個(gè)階段中,主要是作為一種工具。隨著電子計(jì)算機(jī)的出現(xiàn),對(duì)數(shù)學(xué)的應(yīng)用達(dá)到了一個(gè)極限,人們?cè)跀?shù)學(xué)和物理的基礎(chǔ)上,制作出了能夠自動(dòng)計(jì)算的機(jī)器,在計(jì)算機(jī)出現(xiàn)的早期,受到性能和體積上的限制,只能進(jìn)行一些簡(jiǎn)單的數(shù)學(xué)計(jì)算,還不能解決實(shí)際的問題,但是計(jì)算機(jī)語言和軟件技術(shù)的.發(fā)展,使其在很多領(lǐng)域得到了應(yīng)用,在計(jì)算的基礎(chǔ)上,能夠解決很多問題,而軟件程序的開發(fā),其實(shí)就是建立數(shù)學(xué)模型的過程,由此可以看出,數(shù)學(xué)建模思想應(yīng)用的第二階段中,主要是以現(xiàn)代計(jì)算機(jī)等電子設(shè)備的方式,來解決實(shí)際的問題。
3數(shù)學(xué)建模思想應(yīng)用的方法
3.1分析問題
數(shù)學(xué)模型的應(yīng)用都是為了解決實(shí)際問題,雖然很多問題都可以通過建模的方式來解決,但是并不是所有的問題,因此在遇到實(shí)際問題時(shí),首先要對(duì)問題進(jìn)行具體的分析,首先就是看是否能夠轉(zhuǎn)化成數(shù)學(xué)符號(hào),如果能夠直接用數(shù)學(xué)語言來進(jìn)行描述,那么就可以容易的建立相應(yīng)的數(shù)學(xué)模型,但是通過實(shí)際的調(diào)查發(fā)現(xiàn),隨著經(jīng)濟(jì)和科技的發(fā)展,遇到的問題越來越復(fù)雜,其中很多都無法直接用數(shù)學(xué)語言來描述,這就增加了數(shù)學(xué)建模的難度。由此可以看出,分析問題作為數(shù)學(xué)建模的第一個(gè)環(huán)節(jié),也是最重要的一個(gè)環(huán)節(jié),如果問題分析的不夠具體,那么將無法建立出數(shù)學(xué)模型,同時(shí)對(duì)數(shù)學(xué)模型的建立也具有非常重要的影響,通過實(shí)際的調(diào)查發(fā)現(xiàn),能夠建立高效率的數(shù)學(xué)模型,都是對(duì)問題分析的比較徹底,甚至有些獨(dú)特的理解,只有這樣才能夠采用建立一個(gè)最簡(jiǎn)單的模型,而隨著數(shù)學(xué)建模自身的發(fā)展,現(xiàn)在建立模型的過程中,對(duì)于一個(gè)實(shí)際的問題,經(jīng)常需要建立多個(gè)模型,這樣通過多個(gè)數(shù)學(xué)模型協(xié)同來解決一個(gè)問題。
3.2數(shù)學(xué)模型的建立
在分析實(shí)際問題后,就要用數(shù)學(xué)符號(hào)來描述要解決的問題,這是建立數(shù)學(xué)模型的準(zhǔn)備環(huán)節(jié),要想利用數(shù)學(xué)來解決實(shí)際問題,無論采用哪種方式,都要轉(zhuǎn)化成數(shù)學(xué)語言,然后才能夠通過計(jì)算的方式解決,而數(shù)學(xué)模型的過程,就是在描述完成后,建立相應(yīng)的數(shù)學(xué)表達(dá)式,通常情況下,在分析問題時(shí),都能夠發(fā)現(xiàn)某種內(nèi)在的規(guī)律,這個(gè)規(guī)律是數(shù)學(xué)建模的基礎(chǔ)。如果無法找到這個(gè)規(guī)律,顯然就不能利用現(xiàn)有的一些數(shù)學(xué)定律,從而建立相應(yīng)的表達(dá)式,最后解決相應(yīng)的問題,由此可以看出,分析問題的內(nèi)在規(guī)律,是影響數(shù)學(xué)建模的重要因素,而這個(gè)規(guī)律的發(fā)現(xiàn),除了在現(xiàn)有的數(shù)學(xué)知識(shí)外,也可以結(jié)合其他學(xué)科的知識(shí),尤其是現(xiàn)在遇到的問題越來越復(fù)雜,對(duì)于以往簡(jiǎn)單的問題,只需要建立一個(gè)簡(jiǎn)單的模型即可解決,而現(xiàn)在復(fù)雜的問題,經(jīng)常需要建立多個(gè)模型。因此現(xiàn)在數(shù)學(xué)建模的難度越來越大,從近些年全國數(shù)學(xué)建模大賽的題目就可以看出,對(duì)于問題的描述越來越模糊,甚至出現(xiàn)了一些歷史上的難題,而不同學(xué)生根據(jù)自己的理解,建立的模型也具有很大的差異,其中一些模型非常新穎,為實(shí)際問題的解決提供了良好的參考,目前我國對(duì)數(shù)學(xué)建模的研究有限,尤其是與西方發(fā)達(dá)國家相比,實(shí)踐的機(jī)會(huì)還比較少。
3.3數(shù)學(xué)模型的校驗(yàn)
在數(shù)學(xué)模型建立之后,對(duì)于這個(gè)模型是否能夠解決實(shí)際問題,具體的執(zhí)行效率如何,都需要進(jìn)行校驗(yàn),因此檢驗(yàn)是數(shù)學(xué)模型建立最后的一個(gè)環(huán)節(jié),也是非常重要的一個(gè)步驟,通常情況下,經(jīng)過校驗(yàn)都能夠發(fā)現(xiàn)模型中存在的一些問題,從而進(jìn)行完善,這樣才能夠保證嚴(yán)謹(jǐn)性,在實(shí)際校驗(yàn)的過程中,要對(duì)數(shù)學(xué)模型的每個(gè)部分進(jìn)行驗(yàn)證,通過輸入特定的數(shù)據(jù),看得到的結(jié)果是否符合理論值,如果沒有問題,就說明該模型可以解決實(shí)際問題。除了檢驗(yàn)?zāi)P偷臏?zhǔn)確外,校驗(yàn)還有另外一個(gè)作用,就是優(yōu)化模型,在選定數(shù)據(jù)后,能夠看到數(shù)學(xué)模型計(jì)算的整個(gè)過程,這時(shí)就可以對(duì)具體的細(xì)節(jié)進(jìn)行優(yōu)化,如哪部分可以減少計(jì)算的步驟,或者簡(jiǎn)化計(jì)算的方式等,這樣可以使整個(gè)模型更加科學(xué)、合理,由此可以看出,校驗(yàn)工作對(duì)于數(shù)學(xué)模型的建立,具有非常重要的意義。
4結(jié)語
通過全文的分析可以知道,對(duì)于數(shù)學(xué)理論的應(yīng)用,從很久之前就已經(jīng)開始了,但是數(shù)學(xué)建模思想的出現(xiàn),卻是隨著計(jì)算機(jī)技術(shù)的發(fā)展,逐漸形成的一門學(xué)科,電子計(jì)算機(jī)的出現(xiàn),在很大程度上改變了處理事情的方式,利用計(jì)算機(jī)軟件,只要輸入相應(yīng)的參數(shù),就可以直接得到結(jié)果,這正是數(shù)學(xué)模型完成的任務(wù),只是計(jì)算機(jī)的出現(xiàn),省略了中間的計(jì)算過程,因此計(jì)算機(jī)軟件的方式,是數(shù)學(xué)建模思想最好的應(yīng)用方法,要想解決不同的問題,只要建立不同的模型,然后編寫相應(yīng)的程序。
大學(xué)生數(shù)學(xué)建模論文篇十三
數(shù)學(xué)建模是銜接數(shù)學(xué)與應(yīng)用問題的橋梁,該課程主要培養(yǎng)學(xué)生的綜合素質(zhì)要求。本文針對(duì)于數(shù)學(xué)建模的課程考核問題進(jìn)行探討,分析數(shù)學(xué)建模課程考核存在問題,改革思路,并提出多層次綜合考核方式,應(yīng)用于數(shù)學(xué)建模的課程考核,效果良好。
數(shù)學(xué)建模;課程考核;創(chuàng)新能力
數(shù)學(xué)建模是一門介紹數(shù)學(xué)知識(shí)應(yīng)用于解決實(shí)際問題的方法課程,該課程主要講授如何針對(duì)日常生活中的實(shí)際問題,做假設(shè)簡(jiǎn)化并進(jìn)行抽象提取,然后用數(shù)學(xué)表達(dá)式或者數(shù)學(xué)公式等將該問題表達(dá)出來,并求解該問題,從而達(dá)到解決實(shí)際問題的目的。數(shù)學(xué)建模的教學(xué)內(nèi)容包含常見數(shù)學(xué)模型的介紹、數(shù)學(xué)軟件編程和處理實(shí)際問題的數(shù)學(xué)方法。即數(shù)學(xué)建模是一門銜接數(shù)學(xué)與實(shí)際問題的應(yīng)用型課程,其教學(xué)、考核等都與其他數(shù)學(xué)課程不同。中共中央國務(wù)院《關(guān)于深化教育改革全面推進(jìn)素質(zhì)教育的決定》明確指出:“高等教育要重視培養(yǎng)大學(xué)生的創(chuàng)新能力、實(shí)踐能力和創(chuàng)業(yè)精神,普遍提高大學(xué)生的人文素養(yǎng)和科學(xué)素質(zhì)?!碧貏e對(duì)于當(dāng)前處于經(jīng)濟(jì)結(jié)構(gòu)調(diào)整期,“中國制造”向“中國創(chuàng)造”轉(zhuǎn)型,國家需要大量的高素質(zhì)創(chuàng)新型人才。而高校是培養(yǎng)高素質(zhì)創(chuàng)新型人才的重要基地,需要改變?cè)械娜瞬排囵B(yǎng)模式,提高學(xué)生的動(dòng)手能力和綜合素質(zhì),培養(yǎng)適合經(jīng)濟(jì)發(fā)展需要的高素質(zhì)創(chuàng)新型人才。因此,本科教學(xué)中越來越重視培養(yǎng)學(xué)生收集處理信息的能力、獲取新知識(shí)的能力、分析和解決問題的能力、語言文字表達(dá)能力以及團(tuán)結(jié)協(xié)作和社會(huì)活動(dòng)的能力。數(shù)學(xué)建模競(jìng)賽是利用數(shù)學(xué)知識(shí)解決實(shí)際問題的競(jìng)賽活動(dòng),要求參賽學(xué)生利用三天三夜的時(shí)間完成數(shù)學(xué)建模競(jìng)賽,整個(gè)競(jìng)賽過程中學(xué)生需要分析問題、查找資料、建立模型、編程求解、撰寫建模論文等步驟。這些步驟要求參賽學(xué)生具有較強(qiáng)的信息收集、知識(shí)獲取、分析、編程、論文撰寫、團(tuán)隊(duì)協(xié)作等能力。因此,數(shù)學(xué)建模競(jìng)賽活動(dòng)是培養(yǎng)學(xué)生各方面能力的競(jìng)賽,也是全國參與人數(shù)最多、受益面最廣、舉辦時(shí)間最長的競(jìng)賽活動(dòng)之一。數(shù)學(xué)建模是信息與計(jì)算科學(xué)和應(yīng)用數(shù)學(xué)專業(yè)的專業(yè)必修課,參加數(shù)學(xué)建模競(jìng)賽的必須培訓(xùn)課程,數(shù)學(xué)建模的考核不僅僅是給出該課程的成績,更重要的承擔(dān)為數(shù)學(xué)建模競(jìng)賽選拔參賽人員的任務(wù)。本文針對(duì)數(shù)學(xué)建模的考核問題進(jìn)行討論。
(1)考核手段和目的存在誤區(qū)。傳統(tǒng)的考核方法注重于理論知識(shí)的檢驗(yàn),忽略了對(duì)學(xué)生創(chuàng)新意識(shí)、實(shí)踐能力的培養(yǎng)。同時(shí),教育主管部門對(duì)于該課程的考核要求與其他課程類似,僅僅考核知識(shí)點(diǎn)的.掌握,忽視了該課程的開設(shè)目地,從而使得部分學(xué)生的利用數(shù)學(xué)方法解決實(shí)際問題的能力未能提高,沒有達(dá)到學(xué)習(xí)此課程的目的。(2)考核重結(jié)果,輕過程。目前,數(shù)學(xué)建模是考查課程,該課程的考核存在兩個(gè)極端:簡(jiǎn)單根據(jù)學(xué)生的數(shù)學(xué)建模論文給予成績或試卷考試成績??己私Y(jié)果忽略了對(duì)學(xué)生的各方面能力的考察,導(dǎo)致開卷考試變成了學(xué)生的簡(jiǎn)單應(yīng)付了事;而且部分考核只看最后的結(jié)果,而忽略了數(shù)學(xué)建模的整個(gè)訓(xùn)練過程。(3)考核方式單一。數(shù)學(xué)建模課程牽涉數(shù)學(xué)方法、編程能力、論文的寫作能力、及其綜合動(dòng)手能力等。單純從試卷或最終數(shù)學(xué)建模論文不能體現(xiàn)學(xué)生的各種能力。導(dǎo)致學(xué)生的某一種能力掩蓋了其他能力的展現(xiàn),導(dǎo)致數(shù)學(xué)建模競(jìng)賽學(xué)生選拔過程中存在一種現(xiàn)象:通過各種方式選拔的“優(yōu)秀”學(xué)生,真正參加數(shù)學(xué)建模競(jìng)賽時(shí),根本無法動(dòng)手。(4)教學(xué)改革需要。隨著大數(shù)據(jù)、人工智能、深度學(xué)習(xí)等領(lǐng)域的興起,數(shù)學(xué)知識(shí)是解決此類實(shí)際問題的必須工具,解決該類問題的過程其實(shí)就是數(shù)學(xué)建模的過程。隨著“新工科”培養(yǎng)計(jì)劃的興起,數(shù)學(xué)、編程、寫作能力成為衡量人才的重要指標(biāo)。數(shù)學(xué)建模是銜接數(shù)學(xué)和實(shí)際問題的橋梁,設(shè)置合理的考核方式,體現(xiàn)學(xué)生多方面能力是數(shù)學(xué)建模課程考核改革的動(dòng)力。
(1)轉(zhuǎn)變教育觀念,樹立科學(xué)考核。數(shù)學(xué)建模是一門利用數(shù)學(xué)方法、計(jì)算機(jī)編程、論文寫作等方面知識(shí)解決實(shí)際問題的課程。該課程主要培養(yǎng)學(xué)生利用數(shù)學(xué)建模方法解決實(shí)際問題的能力。因此,任課教師改變課程考核等同于考試的觀念,將考核過程貫穿學(xué)生的學(xué)習(xí)階段,學(xué)習(xí)階段融入整個(gè)考核過程。從而避免教、考脫節(jié)的現(xiàn)象,形成教考相互融合,提高學(xué)生的積極性。(2)實(shí)施多元化考核,提高學(xué)生的動(dòng)手能力。數(shù)學(xué)建模課程是綜合利用各種能力解決實(shí)際問題的方法論型課程,該課程的最終目的是培養(yǎng)學(xué)生的各種能力及其解決實(shí)際問題的綜合能力。包含多個(gè)知識(shí)點(diǎn)的試卷測(cè)試是應(yīng)試教育的體現(xiàn),不足以反映學(xué)生的動(dòng)手能力。多元化的考核方式能促進(jìn)教學(xué)過程逐步向以訓(xùn)練學(xué)生的解決實(shí)際問題能力為導(dǎo)向,激發(fā)學(xué)生的創(chuàng)新意識(shí)、鍛煉學(xué)生的實(shí)踐能力。(3)實(shí)施多元化考核,促進(jìn)學(xué)生學(xué)風(fēng)。多元化考核將教學(xué)和考核的過程相互融合,學(xué)生的學(xué)習(xí)和考核交替進(jìn)行,能夠促使學(xué)生、自我反省,發(fā)現(xiàn)自己學(xué)習(xí)的不足,及時(shí)改進(jìn)。同時(shí),教考融合能夠促使學(xué)生自發(fā)學(xué)習(xí),調(diào)到學(xué)生的學(xué)習(xí)積極性,避免出現(xiàn)“平時(shí)送、考前緊、考后忘”的現(xiàn)象。
鑒于數(shù)學(xué)建模是利用計(jì)算機(jī)、數(shù)學(xué)解決實(shí)際問題的方法論文課程。該課程的教學(xué)過程包含介紹數(shù)學(xué)建模所用知識(shí)點(diǎn)和綜合利用各個(gè)知識(shí)點(diǎn)解決實(shí)際問題兩個(gè)階段。該課程考核改革主要訓(xùn)練學(xué)生綜合利用知識(shí)解決實(shí)際問題的能力,過程的訓(xùn)練是教學(xué)的重點(diǎn)??荚嚫母镄柝灤┯谠撜n程的具體教學(xué)過程,因此將考核分為階段考核、綜合考核、結(jié)課考核、參賽考核四種方式。(1)階段考核。數(shù)學(xué)建模的教學(xué)內(nèi)容包括編程語言介紹、數(shù)學(xué)建模方法介紹和數(shù)學(xué)論文寫作介紹幾個(gè)主要的方面。相應(yīng)地,編程能力、應(yīng)用數(shù)學(xué)建模能力和論文寫作能力的訓(xùn)練是數(shù)學(xué)建模的根本目的。因此,本項(xiàng)目擬根據(jù)數(shù)學(xué)建模的教學(xué)大綱安排,對(duì)每種能力進(jìn)行單獨(dú)考核,結(jié)合每種能力的特點(diǎn),設(shè)置不同的題目,考核每種能力的得分。根據(jù)教學(xué)進(jìn)度發(fā)布測(cè)試題目,初步擬定每種能力的測(cè)試成績各占總成績的10%,共占總成績的30%。(2)綜合考核。數(shù)學(xué)建模是綜合運(yùn)用各種能力的解決實(shí)際問題。在各種能力訓(xùn)練的基礎(chǔ)上,強(qiáng)化訓(xùn)練學(xué)生的綜合運(yùn)用各種知識(shí)的能力。在此階段,從歷年數(shù)學(xué)建模題目和日常生活中挑出2~3個(gè)題目,進(jìn)行適當(dāng)簡(jiǎn)化處理,促使學(xué)生利用3~5天的時(shí)間完成一篇論文,進(jìn)行點(diǎn)評(píng)評(píng)分,挑選部分典型論文進(jìn)行講解;然后要求學(xué)生繼續(xù)完善論文,再次點(diǎn)評(píng)評(píng)分,如此循環(huán)多次。每個(gè)題目的成績約占總成績的10%,該階段共占總成績的30%。(3)結(jié)課考核。針對(duì)數(shù)學(xué)建模授課期間的知識(shí)點(diǎn)訓(xùn)練和綜合訓(xùn)練,最后仿照數(shù)學(xué)建模的參賽組織形式,從實(shí)際生活中挑選2個(gè)側(cè)重點(diǎn)不同的題目;同時(shí),建議選課學(xué)生自由組合,3人一組,共同完成數(shù)學(xué)建模論文。該階段對(duì)前期訓(xùn)練的檢測(cè),同時(shí)考核學(xué)生的團(tuán)隊(duì)精神,最終論文的成績占總成績的40%。(4)參賽考核。數(shù)學(xué)建模課程可作為數(shù)學(xué)建模競(jìng)賽的前期培訓(xùn),從選課選手中選取部分成績優(yōu)秀的學(xué)生,組織他們參加全國大學(xué)生數(shù)學(xué)建模競(jìng)賽,競(jìng)賽獲國家級(jí)獎(jiǎng),最終成績直接評(píng)為優(yōu)秀;廣西區(qū)級(jí)獎(jiǎng)最終成績可直接評(píng)為良好。
該考核方案在信息與計(jì)算科學(xué)專業(yè)的數(shù)學(xué)建模課程試用。教學(xué)中將考核過程融入教學(xué)過程,教學(xué)過程穿插考核,這樣能夠防止“考核型學(xué)習(xí)現(xiàn)象”,促使學(xué)生逐步向“學(xué)習(xí)型考核”轉(zhuǎn)變。同時(shí),數(shù)學(xué)建模是應(yīng)用型課程,多元化考試能夠訓(xùn)練學(xué)生的應(yīng)用數(shù)學(xué)、計(jì)算機(jī)編程和論文書寫能力,單一考核不再適應(yīng),多元化考核能夠發(fā)現(xiàn)學(xué)生的優(yōu)點(diǎn),促進(jìn)教學(xué)過程轉(zhuǎn)變?yōu)椤耙阅芰閷?dǎo)向”,符合當(dāng)前的教育改革理念。數(shù)學(xué)建模講授的內(nèi)容有:線性規(guī)劃模型、非線性規(guī)劃模型、圖論模型(最短路模型、生成樹模型、網(wǎng)絡(luò)圖模型)、微分方程模型、差分方程模型、插值模型、擬合模型、回歸分析模型、因子分析模型、統(tǒng)計(jì)檢驗(yàn)?zāi)P?、綜合評(píng)價(jià)模型、模擬仿真模型等模型及其相關(guān)算法的軟件編程。在教學(xué)安排中,對(duì)于數(shù)學(xué)模型部分盡可能講解數(shù)學(xué)建模中常見模型的建模方法、模型特點(diǎn)及其適應(yīng)范圍、該模型的求解算法等。對(duì)于涉及模型求解算法的理論及其具體的求解步驟略講或者不講解,對(duì)于調(diào)用軟件的算法集成命令及其調(diào)用方法等詳細(xì)介紹。對(duì)于數(shù)學(xué)建模論文寫作方面,通過閱讀優(yōu)秀論文,特別是我校20xx年的“matlab創(chuàng)新獎(jiǎng)”論文。同時(shí),選取部分簡(jiǎn)單例題,根據(jù)完整數(shù)學(xué)建模論文的章節(jié)要求布置任務(wù),要求完成相應(yīng)論文。然后根據(jù)學(xué)生的完成情況,進(jìn)行詳細(xì)點(diǎn)評(píng),特別數(shù)學(xué)建模論文的寫作及其注意事項(xiàng)。學(xué)生主動(dòng)完成平時(shí)練習(xí)的積極性高,80%的同學(xué)能夠按時(shí)完成布置的任務(wù)。剩下部分同學(xué)再經(jīng)過多次提醒之后也補(bǔ)交了布置的任務(wù)。從提交的作業(yè)發(fā)現(xiàn),大部分同學(xué)的作業(yè)都是自己認(rèn)真完成,少數(shù)同學(xué)是在參考他人的基礎(chǔ)之上完成。在課程結(jié)束后,參照數(shù)學(xué)建模的形式,要求同學(xué)們可以自由組隊(duì),隊(duì)員人數(shù)為1~3人,根據(jù)人數(shù)的多少,設(shè)置不同的評(píng)價(jià)標(biāo)準(zhǔn)。為考查學(xué)生的學(xué)習(xí)情況,本人給出幾道歷年真題或類真題,這些題目是根據(jù)當(dāng)前的熱點(diǎn)新聞等經(jīng)過加工而提出。從學(xué)生提交的結(jié)課論文來看,已經(jīng)達(dá)到了預(yù)期效果,大部分同學(xué)具備了數(shù)學(xué)建模的基本素質(zhì),掌握了數(shù)學(xué)建模技巧,能夠完成數(shù)學(xué)建模論文。通過兩年的試用,信息與計(jì)算科學(xué)專業(yè)參加數(shù)學(xué)建模競(jìng)賽的人數(shù)比往年增加20%,而獲得?。▍^(qū))級(jí)獎(jiǎng)以上的獎(jiǎng)項(xiàng)比往年增加40%。因此,說明數(shù)學(xué)建模考核方案對(duì)學(xué)生的評(píng)價(jià)具備一定的準(zhǔn)確性。
為配合考核方案的實(shí)施,特?cái)M定考核改革調(diào)查問卷,本人共做了兩次問卷調(diào)查,共收到近八十分問卷。問卷包括數(shù)學(xué)學(xué)習(xí)興趣、參加數(shù)學(xué)建模的積極性、考核嚴(yán)厲與否、考核方案認(rèn)同度等內(nèi)容。統(tǒng)計(jì)調(diào)查問卷發(fā)現(xiàn),學(xué)生對(duì)數(shù)學(xué)知識(shí)的學(xué)習(xí)興趣明顯提高,參加數(shù)學(xué)建模競(jìng)賽的積極性也大幅度提高。并且大部分學(xué)生認(rèn)同考核方案,也贊成將考核過程與教學(xué)過程相結(jié)合。從調(diào)查問卷的統(tǒng)計(jì)結(jié)果看:有近70%的學(xué)生認(rèn)為該課程應(yīng)該嚴(yán)格考核;76%的學(xué)生認(rèn)同該考核方案。由此可見,數(shù)學(xué)建模考核方式改革具有一定的推廣和實(shí)施價(jià)值(見圖1)。
根據(jù)實(shí)施《數(shù)學(xué)建模》考核改革方案的學(xué)生反饋情況,總的來看,學(xué)生對(duì)考核方案比較認(rèn)同,也同意嚴(yán)格考核。從學(xué)生的參賽人數(shù)和獲獎(jiǎng)比例也說明了該考核方案能有效提升學(xué)生的學(xué)習(xí)興趣,提高學(xué)生的各方面能力。
[2]謝發(fā)忠,楊彩霞,馬修水.創(chuàng)新人才培養(yǎng)與高校課程考試改革[j].合肥工業(yè)大學(xué)學(xué)報(bào),20xx.24(2):21-4.
[3]李紅枝,毛建文,古宏標(biāo),黃榕波,邢德剛.創(chuàng)新意識(shí)和創(chuàng)新能力培養(yǎng)中高??荚嚫母锏奶剿鱗j].山西醫(yī)科大學(xué)學(xué)報(bào),20xx.13(4):397-400.
[5]蒲俊,張朝倫,李順初,付曉艦.地方綜合性大學(xué)理工科學(xué)生數(shù)學(xué)建模創(chuàng)新培養(yǎng)改革的探討[j].中國大學(xué)教學(xué),20xx.7:56-8.
大學(xué)生數(shù)學(xué)建模論文篇十四
數(shù)學(xué)是在實(shí)際應(yīng)用的需求中產(chǎn)生的,要描述一個(gè)實(shí)際現(xiàn)象可以有很多種方式,為了實(shí)際問題描述的更具邏輯性、科學(xué)性、客觀性和可重復(fù)性,人們采用一種普遍認(rèn)為比較嚴(yán)格的語言來描述各種現(xiàn)象,這種語言就是數(shù)學(xué)。數(shù)學(xué)建模則是架于數(shù)學(xué)理論和實(shí)際問題之間的橋梁,數(shù)學(xué)模型是對(duì)于現(xiàn)實(shí)生活中的特定對(duì)象,根據(jù)其內(nèi)在的規(guī)律,做出一些必要的假設(shè),為了一個(gè)特定目的,運(yùn)用數(shù)學(xué)工具,得到的一個(gè)數(shù)學(xué)結(jié)構(gòu),用來解釋現(xiàn)實(shí)現(xiàn)象,預(yù)測(cè)未來狀況。因此,數(shù)學(xué)建模就是用數(shù)學(xué)語言描述實(shí)際現(xiàn)象的過程。
大部分的獨(dú)立院校的數(shù)學(xué)建模工作純?cè)谝欢ǖ膯栴},主要體現(xiàn)在以下幾個(gè)方面:(一)學(xué)生方面的問題。獨(dú)立院校的大部分學(xué)生的數(shù)學(xué)功底差,對(duì)數(shù)學(xué)的學(xué)習(xí)興趣不大,普遍認(rèn)為數(shù)學(xué)的學(xué)習(xí)對(duì)自身的專業(yè)的幫助不大。從而更不愿意接觸與數(shù)學(xué)有關(guān)的數(shù)學(xué)建模,對(duì)數(shù)學(xué)建模競(jìng)賽的興趣不大。在獨(dú)立院校中,參加數(shù)學(xué)建模競(jìng)賽的大都是低年級(jí)的學(xué)生,而這些學(xué)生的數(shù)學(xué)知識(shí)結(jié)構(gòu)還不完整,他們往往參加了一屆數(shù)學(xué)競(jìng)賽并未獲得獎(jiǎng)項(xiàng)后就不愿意再次參加。而高年級(jí)的同學(xué)忙于其他的就業(yè)、考研等壓力,無暇參加數(shù)學(xué)建模競(jìng)賽的培訓(xùn)。(二)教資方面的問題。首先。傳統(tǒng)的教學(xué)是知識(shí)為中心、以教師的講解為中心。數(shù)學(xué)建模的教學(xué)要求教師以學(xué)生為中心,培養(yǎng)學(xué)生學(xué)會(huì)學(xué)習(xí)的能力,發(fā)展學(xué)生的創(chuàng)新能力和創(chuàng)造能力。獨(dú)立院校外聘的老師常常對(duì)獨(dú)立院校的學(xué)生不夠了解,這直接影響到教學(xué)成果。其次,數(shù)學(xué)建模涉及的知識(shí)面廣,不但包括數(shù)學(xué)的各個(gè)分支,還包含了其他背景的專業(yè)知識(shí)。獨(dú)立院校的教師一部分是才從大學(xué)畢業(yè)不久的研究生,他們對(duì)于數(shù)學(xué)建模教學(xué)和競(jìng)賽的培訓(xùn)經(jīng)驗(yàn)不足,科研能力不是很強(qiáng),對(duì)數(shù)學(xué)的各個(gè)分支的把控能力不強(qiáng),對(duì)其他專業(yè)的了解不夠全面。(三)教學(xué)實(shí)施方面的問題。大學(xué)生數(shù)學(xué)建模競(jìng)賽的目的決不僅僅是獲獎(jiǎng),更重要的是通過參加大學(xué)生數(shù)學(xué)建模競(jìng)賽活動(dòng),促進(jìn)高校數(shù)學(xué)教學(xué)改革,起到培養(yǎng)全體學(xué)生能力、提高全體學(xué)生素質(zhì)的作用。獨(dú)立院校數(shù)學(xué)建模教學(xué)存在很多的問題。首先,大學(xué)數(shù)學(xué)建模教育在獨(dú)立院校中的普及性不夠。數(shù)學(xué)建模的宣傳力度不大,課程大多開在大一和大二的跨選課,這個(gè)時(shí)候?qū)W生的數(shù)學(xué)知識(shí)結(jié)構(gòu)還不完整。其次就是教材的選取,數(shù)學(xué)建模的相關(guān)教材大都是為了數(shù)學(xué)建模競(jìng)賽而編寫的,對(duì)于獨(dú)立院校的學(xué)生來說,這些教材的難度系數(shù)大,涉及的知識(shí)面廣,遠(yuǎn)遠(yuǎn)超過了學(xué)生的接受能力。
(一)讓學(xué)生了解數(shù)學(xué)建模,培養(yǎng)學(xué)習(xí)數(shù)學(xué)建模的興趣。數(shù)學(xué)建模課程的開設(shè)有利于培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)具體解決實(shí)際問題的能力,讓學(xué)生發(fā)現(xiàn)學(xué)習(xí)數(shù)學(xué)的用處,改變學(xué)生學(xué)習(xí)數(shù)學(xué)的態(tài)度,提高學(xué)習(xí)數(shù)學(xué)的能力,認(rèn)識(shí)到數(shù)學(xué)的意義和價(jià)值。獨(dú)立院校學(xué)生的數(shù)學(xué)基礎(chǔ)雖然比較差,但是學(xué)生的動(dòng)手能力強(qiáng)。學(xué)??梢栽诙嚅_展數(shù)學(xué)建模的講座和課程,讓學(xué)生了解數(shù)學(xué)建模。同時(shí)多向?qū)W生宣傳數(shù)學(xué)建模的成果。(二)在教學(xué)內(nèi)容中滲透數(shù)學(xué)建模思想和方法。1.在日常數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模的思想方法。傳統(tǒng)的數(shù)學(xué)教學(xué)重視的是知識(shí)的培養(yǎng)和傳輸,而忽視的是實(shí)際應(yīng)用能力。教師的教學(xué)目標(biāo)是使學(xué)生掌握數(shù)學(xué)理論知識(shí)。一般的教學(xué)方法是:教師引入相關(guān)的的基本概念,證明定理,推導(dǎo)公式,列舉例題,學(xué)生記住公式,套用公式,掌握解題方法與技巧。學(xué)生往往學(xué)習(xí)了不少的純粹的數(shù)學(xué)理論知識(shí),卻不知道如何應(yīng)用到實(shí)際問題中。數(shù)學(xué)建模課程與傳統(tǒng)數(shù)學(xué)課程相比差別較大,學(xué)校開設(shè)的數(shù)學(xué)建??邕x課及數(shù)學(xué)建模培訓(xùn)班,對(duì)培養(yǎng)學(xué)生觀察能力、分析能力、想象力、邏輯能力、解決實(shí)際問題的能力起到了很好的作用。由于學(xué)校開設(shè)的數(shù)學(xué)建模課程大多是選修課程,課時(shí)較少,參選的學(xué)生也有限,數(shù)學(xué)建模的作用不能很好的向?qū)W生傳輸。高等數(shù)學(xué)中的很多內(nèi)容都與數(shù)學(xué)建模的思想有關(guān),因此,在大學(xué)數(shù)學(xué)課程的教學(xué)過程中,教師應(yīng)有意識(shí)地結(jié)合傳統(tǒng)的數(shù)學(xué)課程的特點(diǎn),將數(shù)學(xué)建模的思想和內(nèi)容融入到數(shù)學(xué)課堂教學(xué)中。這樣既可以激發(fā)學(xué)生的學(xué)習(xí)興趣,又能很好的將突出數(shù)學(xué)建模的思想。2.數(shù)學(xué)建模與專業(yè)緊密聯(lián)系,發(fā)揮數(shù)學(xué)對(duì)專業(yè)知識(shí)的服務(wù)作用。數(shù)學(xué)建模與專業(yè)知識(shí)的結(jié)合,不僅可以讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)的重要作用,在專業(yè)知識(shí)學(xué)習(xí)中的地位,還可以培養(yǎng)學(xué)習(xí)數(shù)學(xué)知識(shí)的興趣,增強(qiáng)數(shù)學(xué)學(xué)習(xí)的凝聚力,同時(shí)加深對(duì)專業(yè)知識(shí)的理解。通過專業(yè)知識(shí)作為背景,學(xué)生更愿意嘗試問題的研究。在學(xué)習(xí)中遇到的專業(yè)問題也可以嘗試用數(shù)學(xué)建模的思想進(jìn)行解決。這有利于提高學(xué)生的綜合能力的培養(yǎng)。3.分層次進(jìn)行數(shù)學(xué)建模教育。大體說來獨(dú)立院校的數(shù)學(xué)建模課程的開設(shè)應(yīng)該分成兩個(gè)階段:(1)第一階段:大學(xué)一年級(jí),在這個(gè)階段,大部分學(xué)生對(duì)數(shù)學(xué)建模沒有了解,這時(shí)候適合開設(shè)一些數(shù)學(xué)建模的講座和活動(dòng),讓學(xué)生了解數(shù)學(xué)建模。同時(shí),在日常的數(shù)學(xué)教學(xué)中選擇簡(jiǎn)單的應(yīng)用問題和改變后的數(shù)學(xué)建模題目,結(jié)合自身的專業(yè)知識(shí)進(jìn)行講解,讓學(xué)生了解數(shù)學(xué)建模的一般含義?;痉椒ê筒襟E,讓學(xué)生具備初步的建模能力。(2)中級(jí)層次:大學(xué)二、三年級(jí)。在這個(gè)階段,學(xué)生基本具備了完整的數(shù)學(xué)結(jié)構(gòu),具有了基本的建模能力。這個(gè)時(shí)候應(yīng)該開設(shè)數(shù)學(xué)建模專業(yè)課程,讓學(xué)生處理比較復(fù)雜的數(shù)學(xué)建模問題,讓學(xué)生自己去采集有用的信息,學(xué)會(huì)提出模型的假設(shè),對(duì)數(shù)據(jù)和信息需進(jìn)行整理、分析和判斷,并模型進(jìn)行分析和評(píng)價(jià),最終完成科技論文。
(一)提高數(shù)學(xué)教師自身水平。在數(shù)學(xué)建模教學(xué)過程中,教師扮演著重要的角色。教師水平的高低決定著數(shù)學(xué)建模教學(xué)能否達(dá)到預(yù)期的目的。數(shù)學(xué)建模的教學(xué),不僅要求教師具備較高的專業(yè)水平,還要求教師具備解決實(shí)際問題的能力和豐富的數(shù)學(xué)建模實(shí)踐經(jīng)驗(yàn)。而獨(dú)立院校的教師部分教師是才畢業(yè)不久的研究生,缺乏實(shí)踐經(jīng)驗(yàn)。這就對(duì)獨(dú)立院校的的數(shù)學(xué)建模教學(xué)工作產(chǎn)生了很大的障礙。為了提高教師的水平,可以多派青年教師進(jìn)行專業(yè)培訓(xùn)學(xué)習(xí)和學(xué)術(shù)交流,參加各種學(xué)術(shù)會(huì)議、到名校去做訪問學(xué)者等等。同時(shí)可以多請(qǐng)著名的數(shù)學(xué)專家教授來到校園做建模學(xué)術(shù)報(bào)告,使師生拓寬視野,增長知識(shí),了解建模的新趨勢(shì)、新動(dòng)態(tài)。青年教師還需要依據(jù)特定的教學(xué)內(nèi)容、教學(xué)對(duì)象和教學(xué)環(huán)境對(duì)自己的教學(xué)工作作出計(jì)劃、實(shí)施和調(diào)整以及反思和總結(jié)。青年數(shù)學(xué)教師還必須更新教育理念,改變傳統(tǒng)的教學(xué)理念。只有不斷創(chuàng)新,努力提高自身素質(zhì),才能適應(yīng)新的形勢(shì),符合建模發(fā)展的要求。(二)選取合適的教材。數(shù)學(xué)建模教材使用也存在諸多不足之處。絕大部分高校教學(xué)建模課程采用的是理工類專業(yè)數(shù)學(xué)建模教材。這些教材主要涵蓋的數(shù)學(xué)模型的難度系數(shù)大。而獨(dú)立院校的學(xué)生的基礎(chǔ)薄弱,無法接收這些模型。在教學(xué)過程中,教師可以將具體的案例或是歷年的數(shù)學(xué)建模題目做為教學(xué)內(nèi)容。通過具體的建模實(shí)例,講解建模的思想和方法。一邊講解,一邊讓學(xué)生分組討論,提出對(duì)問題的新的理解和對(duì)魔性的認(rèn)識(shí),嘗試提出新的模型。(三)豐富建模活動(dòng)。全面開展數(shù)學(xué)建?;顒?dòng)是數(shù)學(xué)建模思想的最重要的形式,它既使課內(nèi)和課外知識(shí)相互結(jié)合,又可以普及建模知識(shí)與提高建模能力結(jié)合,可以培養(yǎng)學(xué)生利用數(shù)學(xué)知識(shí)分析和解決實(shí)際問題的能力,可以有效地提升了學(xué)生的數(shù)學(xué)綜合素質(zhì)。學(xué)??梢远ㄆ诘拈_展數(shù)學(xué)建模宣傳活動(dòng),擴(kuò)大數(shù)學(xué)建模的知名度。學(xué)校還可以邀請(qǐng)有經(jīng)驗(yàn)的專家和獲獎(jiǎng)學(xué)生開展建模講座,提高對(duì)數(shù)學(xué)建模的重視,積極的組織建?;顒?dòng)。實(shí)踐證明,只有根據(jù)獨(dú)立院校的自身特點(diǎn)和培養(yǎng)目標(biāo),對(duì)數(shù)學(xué)建模課程的教學(xué)不斷進(jìn)行改革,才能解決獨(dú)立院校數(shù)學(xué)建模課程教學(xué)的問題,才能真正的讓學(xué)生喜歡上數(shù)學(xué),喜歡上數(shù)學(xué)建模。
[1]李大潛.將數(shù)學(xué)建模思想融入數(shù)學(xué)主干課程[j].中國大學(xué)教育.20xx.
[2]賈曉峰等.大學(xué)生數(shù)學(xué)建模競(jìng)賽與高等學(xué)校數(shù)學(xué)改革[j].工科數(shù)學(xué).20xx:162.
[3]融入數(shù)學(xué)建模思想的高等數(shù)學(xué)教學(xué)研究[j].科技創(chuàng)新導(dǎo)報(bào).20xx:162.
作者:李雙單位:湖北文理學(xué)院理工學(xué)院