人生的意義不僅在于追求成功,更在于怎樣過好每一天。寫總結(jié)時要注意用詞準確,不要夸張,也不要貶低自己的成績或經(jīng)歷。了解他人的總結(jié)經(jīng)驗,可以幫助我們更好地進行自我總結(jié)。
大學(xué)生數(shù)學(xué)建模論文篇一
【摘 要】本文重點分析了數(shù)學(xué)建模對當(dāng)前數(shù)學(xué)教育教學(xué)改革的現(xiàn)實意義,探討了數(shù)學(xué)建模對學(xué)生應(yīng)用數(shù)學(xué)能力的培養(yǎng),闡述了計算機在數(shù)學(xué)建模競賽中的作用和地位,最后介紹了數(shù)學(xué)建模對數(shù)學(xué)教學(xué)改革的啟示意義。
【關(guān)鍵詞】數(shù)學(xué)建模;綜合素質(zhì);教學(xué)改革
長期以來,我國的數(shù)學(xué)教學(xué)中一直普遍存在著重結(jié)論而輕過程、重形式而輕內(nèi)容、重解法而輕應(yīng)用等弊端,不注重學(xué)生數(shù)學(xué)能力和素質(zhì)的培養(yǎng);過分強調(diào)對定義、定理、法則、公式等知識的灌輸與講授,不注重這些知識的應(yīng)用,割斷了理論與實際的聯(lián)系,造成學(xué)與用的嚴重脫節(jié),致使在我們的數(shù)學(xué)教育體制下培養(yǎng)出來的學(xué)生的能力結(jié)構(gòu)都形成了一種嚴重的病態(tài),主要表現(xiàn)在:數(shù)學(xué)理論知識掌握得還可以,但應(yīng)用知識的能力很差,不能學(xué)以致用,缺乏創(chuàng)造力和解決實際問題的能力,這些問題使我們的學(xué)生在走向工作崗位時上手速度慢,面對新的數(shù)學(xué)問題時束手無策,不能將所學(xué)的知識靈活運用到實際中去。顯然,這種教育體制和理念與現(xiàn)代教育理念是背道而馳的,是必須拋棄的。開展數(shù)學(xué)建模教學(xué)或數(shù)學(xué)建模競賽,能夠培養(yǎng)學(xué)生各方面的綜合能力,提高學(xué)生的綜合素質(zhì),對于當(dāng)前數(shù)學(xué)教育教學(xué)改革有著極為重要的現(xiàn)實意義。
1 數(shù)學(xué)建模能夠豐富和優(yōu)化學(xué)生的知識結(jié)構(gòu),開拓學(xué)生的視野
數(shù)學(xué)建模所涉及到的許多問題都超出了學(xué)生所學(xué)的專業(yè),例如“基金的最佳適用”、“會議籌備”、“地震搜索”等許多建模問題,分別屬于不同的學(xué)科與專業(yè),為了解決這些問題,學(xué)生必須查閱和學(xué)習(xí)與該問題相關(guān)的專業(yè)書籍和科技資料,了解這些專業(yè)的相關(guān)知識,從而軟化或削弱了目前教育中僵死的專業(yè)界限,使學(xué)生掌握寬廣而扎實的基礎(chǔ)知識,使他們不斷拓寬分析問題、解決問題的思路,朝著復(fù)合型人才和具備全面綜合素質(zhì)人才的方向發(fā)展。
2 數(shù)學(xué)建模可以培養(yǎng)學(xué)生利用數(shù)學(xué)知識解決實際問題的能力
數(shù)學(xué)建模要求建模者利用自己所掌握的數(shù)學(xué)知識及對實際問題的理解,通過積極主動的思維,提出適當(dāng)?shù)募僭O(shè),并建立相應(yīng)的數(shù)學(xué)模型,進而利用恰當(dāng)?shù)臄?shù)學(xué)方法(現(xiàn)有的或新創(chuàng)造的)求解此模型,并對解做出評價,必要時對模型做出改進。這一過程包括了歸納、整理、推理、深化等活動,因此把數(shù)學(xué)建模引入課堂教學(xué),必將改變目前數(shù)學(xué)教學(xué)只見定義、定理不見問題背景的局面,必將改變知識僵化、學(xué)而不用的局面,從而調(diào)動了學(xué)生學(xué)習(xí)的積極性,培養(yǎng)了學(xué)生解決實際問題的能力。
3 數(shù)學(xué)建模能夠培養(yǎng)學(xué)生的創(chuàng)造力、想象力、聯(lián)想力和洞察力
數(shù)學(xué)模型來源于客觀實際,錯綜復(fù)雜,沒有現(xiàn)成的答案和固定的模式,因此學(xué)生在建立和求解這類模型時,必須積極動腦,而且常常需要另辟蹊徑,在這里,常常會迸發(fā)出打破常規(guī)、突破傳統(tǒng)的思維火花,通過這種實踐活動,可以培養(yǎng)學(xué)生的創(chuàng)造能力,促使他們在頭腦中樹立推崇創(chuàng)新、追求創(chuàng)新和以創(chuàng)新為榮的意識。在從實際問題中抽象出數(shù)學(xué)模型的過程中,須把實際關(guān)系轉(zhuǎn)化為數(shù)學(xué)關(guān)系,這要求他們敢于想象和聯(lián)想,此外他們還要從貌似不同的問題中抓住其本質(zhì)的和共性的東西,這將培養(yǎng)他們把握問題內(nèi)在本質(zhì)的能力,即洞察力,可以說,培養(yǎng)學(xué)生的這些能力始終貫穿在數(shù)學(xué)建模的整個過程。
4 數(shù)學(xué)建??梢耘囵B(yǎng)學(xué)生熟練地運用計算機的能力
5 數(shù)學(xué)建??梢栽鰪姶髮W(xué)生的適應(yīng)能力
通過數(shù)學(xué)建模的學(xué)習(xí)及競賽訓(xùn)練,他們不僅受到了現(xiàn)代數(shù)學(xué)思維及方法的熏陶,更重要的是對不同的實際問題,如何進行分析、推理、概括以及如何利用數(shù)學(xué)方法與計算機知識,還有各方面的知識綜合起來解決它。因此,他們具有較高的素質(zhì),無論以后到哪個行業(yè)工作,都能很快適應(yīng)需要。不僅如此,由于建模決不是一件輕而易舉的事,需要學(xué)生對實際問題進行反復(fù)多次的研究、分析、觀察和對模型進行反復(fù)多次的計算、論證及修改等,整個過程是一個非常艱辛的探索過程,這可以培養(yǎng)學(xué)生高度的責(zé)任感、堅韌不拔的毅力、遭遇挫折后較強的心理承受能力以及孜孜不倦、精益求精的探索精神,使他們具有良好的心理素質(zhì)與精神狀態(tài)。同時數(shù)學(xué)建模一般都是由幾個人組成的團隊來完成的,其成功與否,完全取決于大家的密切合作,既要合理分工,又要密切配合,這樣又可以培養(yǎng)學(xué)生的組織管理能力、協(xié)調(diào)能力和相互協(xié)作的團隊精神,這些對他們今后走向工作崗位都是大有裨益的。
此外,數(shù)學(xué)建模從教育觀念、內(nèi)容、形式和手段都有一定的創(chuàng)新,對數(shù)學(xué)教學(xué)改革有積極的啟示意義。首先,數(shù)學(xué)建模突出了教與學(xué)的雙主體性關(guān)系。教師要根據(jù)學(xué)生的學(xué)習(xí)興趣、能力及特點,不斷修正自己的教育內(nèi)容和方法。學(xué)生要對教師所給予的信息有批判性地、創(chuàng)造性地、發(fā)展性地能動反映,要在相互討論、相互啟發(fā)下尋求更多更好的解答方案。這種雙主體的關(guān)系是對傳統(tǒng)教學(xué)方式的根本突破。
其次,數(shù)學(xué)建模促進了課程體系和教學(xué)內(nèi)容的改革。長期以來,我們的課程設(shè)置和教學(xué)內(nèi)容都具有強烈的理科特點:重基礎(chǔ)理論、輕實踐應(yīng)用;重傳統(tǒng)的經(jīng)典數(shù)學(xué)內(nèi)容、輕離散的數(shù)值計算。然而,數(shù)學(xué)建模所要用到的主要數(shù)學(xué)方法和數(shù)學(xué)知識恰好正是被我們長期所忽視的那些內(nèi)容。因此,這迫使我們調(diào)整課程體系和教學(xué)內(nèi)容。比如可增加一些應(yīng)用型、實踐類課程等等;在其余各門課程的教學(xué)中,也要盡量注意到使數(shù)學(xué)理論與應(yīng)用相結(jié)合,增加實際應(yīng)用方面的內(nèi)容和例題,從而使教學(xué)內(nèi)容也得到了更新。
再次,數(shù)學(xué)建模增加了教師對新興科技知識的傳授,拓寬了學(xué)生的知識面。這些特點對于目前數(shù)學(xué)教材中存在的內(nèi)容陳舊、知識面狹窄及形式呆板等問題,具有借鑒作用。數(shù)學(xué)建模的試題通常聯(lián)系新興的學(xué)科,在科學(xué)技術(shù)迅猛發(fā)展的今天,各種新興學(xué)科、邊緣學(xué)科、交叉學(xué)科不斷涌現(xiàn),廣博的知識面和對新興科學(xué)技術(shù)的追蹤能力是獲得成功的關(guān)鍵因素之一。
數(shù)學(xué)建模不僅有利于學(xué)生更好的掌握知識、運用知識,也有利于高校的科研和教學(xué),使學(xué)生和教師能在平時的學(xué)習(xí)、工作中自動形成勤于思考的好習(xí)慣,數(shù)學(xué)建模競賽與學(xué)生畢業(yè)以后工作時的條件非常相近,是對學(xué)生業(yè)務(wù)、能力和素質(zhì)的全面培養(yǎng),特別是開放性思維和創(chuàng)新意識,這項活動的開展有利于學(xué)生的全面素質(zhì)的培養(yǎng),既豐富、活躍了廣大學(xué)生的課外生活,也為優(yōu)秀學(xué)員脫穎而出創(chuàng)造了條件。
【參考文獻】
[1]顏筱紅,粱東穎。高職院校數(shù)學(xué)建模教學(xué)的研究[j].廣西教育,2013(2):54,134.
[3]李大潛。中國大學(xué)生數(shù)學(xué)建模競賽[m].2版。北京:高等教育出版社,2001.
[4]謝金星。2008高教社杯全國大學(xué)生數(shù)學(xué)建模競賽[j].工程數(shù)學(xué)學(xué)報,2008(25):1-2.
大學(xué)生數(shù)學(xué)建模論文篇二
1、海選和優(yōu)選有機結(jié)合借助紙質(zhì)宣傳單、大型講座等方式進行數(shù)學(xué)建模競賽的宣傳,對其作用以及影響進行充分的講解,鼓勵校園內(nèi)的同學(xué)來積極的進行參加。倘若想要參與其中的同學(xué)人數(shù)過多時,畢竟參賽名額是有一定限制的,可以利用面試的方式對其進行篩選。為不打擊學(xué)生的積極性,在條件允許的情況下,可以盡可能保留更多的參賽者,通過面試成績把大家劃分為正式參賽隊和業(yè)余參賽隊。
2、充分利用現(xiàn)有資源在進行數(shù)學(xué)建模競賽組隊時,應(yīng)充分的全面考慮有效利用現(xiàn)有的資源。首先是要掌握不同隊伍中不同人員屬于什么年級,其次了解她們的每個人學(xué)習(xí)狀況以及所學(xué)專業(yè)等等,通常來說,同一隊伍中的每個人最理想的狀態(tài)是學(xué)習(xí)不同專業(yè)的,如此一來大家可以做到取長補短,理論知識與實踐動手兩手抓,一個團隊里需要出眾的知識更需要過人的文筆。如此一來才能保證隊伍的整體實力,力爭在建模競賽中取得好成績。
3、重點培訓(xùn)在對學(xué)生進行賽前相關(guān)培訓(xùn)時,在培訓(xùn)的過程中,教師可根據(jù)自身的擅長專題,來進行相關(guān)內(nèi)容的講解,與此同時結(jié)合不同隊伍的自身特點劃設(shè)側(cè)重點,同學(xué)之間的接受能力也是各不同的,能力強的可以開小灶,沒有相關(guān)競賽經(jīng)驗的要進行重點培訓(xùn),這種因人而異的講解模式確保不同能力的同學(xué),在培訓(xùn)中的過程中都能夠?qū)W有所獲。
4、合理分工密切合作在參加數(shù)學(xué)建模競賽的同學(xué)得到競賽試題之后,老師應(yīng)該及時幫助學(xué)生進行試題分析與指導(dǎo),根據(jù)團隊內(nèi)不同人員的實際情況以及試題的具體內(nèi)容難易,進行針對性的講解從而對同學(xué)們進行合理分工,確保每個人所負責(zé)的部分都是自己相較于其他人而言是最擅長的。值得注意的是,雖然進行分工,但這并不是絕對的分割,而是有側(cè)重的合理分工,彼此之間的密切合作才是核心,畢竟建模競賽中需要的是團隊協(xié)作,而不是英雄主義。
5、堅持可持續(xù)發(fā)展培訓(xùn)師資隊伍必須要有新鮮血液不斷注入,以老帶新最佳的血液注入方式,面對朝氣蓬勃的參賽學(xué)生,培訓(xùn)師資隊伍既要有身經(jīng)百戰(zhàn)經(jīng)驗豐富的老師,也要有跟他們擁有更多共同話題的青年教師。在此期間通過不斷的學(xué)習(xí),青年教師跟同學(xué)們共同成長,從而保證師資隊伍的可持續(xù)發(fā)展。
二、大學(xué)生數(shù)學(xué)建模競賽組織和管理方式的探索
1、進行課程教學(xué)并給出有效的教學(xué)計劃每個學(xué)生的知識儲備都有著各自的特點,借助良好的教育對學(xué)生們的知識架構(gòu)進行完善,實現(xiàn)培養(yǎng)出學(xué)生強大能力的目標(biāo),數(shù)學(xué)建模對學(xué)生來說裨益良多,被視作是大學(xué)校園中必備課程之一。但是進行課程開展的時候,要根據(jù)不同的培訓(xùn)對象大致分為以下兩類:第一、以選修課形式開設(shè)數(shù)學(xué)建模競賽課程,選修課程所面向的群體為整個學(xué)校的所有學(xué)生。第二、以必修課的方式開設(shè)數(shù)學(xué)建模競賽課程,必修課就要有針對性,因為并不是所有的學(xué)生都需要學(xué)習(xí)數(shù)學(xué),所以必修課針對的群體應(yīng)該是數(shù)學(xué)專業(yè)的學(xué)生。不同性質(zhì)的課程在教授上應(yīng)該有所區(qū)分,內(nèi)容的深淺也要有適當(dāng)?shù)恼{(diào)整。
2、利用建模教學(xué)實現(xiàn)知識與能力雙培養(yǎng)有效的教學(xué)是獲得數(shù)學(xué)建模競賽好成績的最佳途徑,但是教學(xué)的過程中要注重數(shù)學(xué)知識與實踐能力的均衡共同培養(yǎng),不能過分的注重知識的灌輸,而忽略了建模相關(guān)能力的培養(yǎng),對二者的培養(yǎng)必須要并駕齊驅(qū),如此才能真正的'掌握數(shù)學(xué)建模的精髓,從而在競賽中取得良好的成績。
3、數(shù)學(xué)建模競賽隊員的篩選數(shù)學(xué)建模所需要的人才是全方面的人才,除此之外還要對數(shù)學(xué)建模有足夠的興趣,并且還要有足夠多的時間來參加培訓(xùn)。以上述條件為基礎(chǔ),報名之后通過面試的測試,然后再從中篩選出相對優(yōu)秀的學(xué)生組成參賽隊伍,在篩選的時候要充分的考慮到團隊整體知識的涵蓋面,不同人之間所擅長的專業(yè)不同為最佳。
4、培訓(xùn)培訓(xùn)工作通常被劃分為不同的階段:首先是初級階段,這一階段所注重的是對相關(guān)知識的培訓(xùn)。從初等模型、簡單優(yōu)化模型、常微分方程模型等建模的基礎(chǔ)知識和方法入手由淺入深;其次是拔高階段,主要以專家講座為主,邀請建模專家進行系統(tǒng)的講解,并結(jié)合精典范例進行深入剖析,在擴大學(xué)生的知識面和視野的同時提升學(xué)生的建模能力。
三、結(jié)語
通過以上的一系列論述,我們已經(jīng)對大學(xué)數(shù)學(xué)建模競賽的隊伍組織及管理方式,有了更加清晰的了解和掌握。大學(xué)數(shù)學(xué)建模競賽對于大學(xué)生來說好處頗多,一方面能夠使學(xué)生們對學(xué)習(xí)的數(shù)學(xué)知識有更深的理解與更為靈活的應(yīng)用,另一方面,通過競賽中的組隊讓大家感受到合作的重要性,為以后步入社會的工作打下基礎(chǔ)。希望這篇文章能夠?qū)︶槍?shù)學(xué)建模的研究有一定的借鑒作用!
參考文獻:
[1]韓成標(biāo),賈進濤、高職院校參加數(shù)學(xué)建模競賽大有可為[j]、工程數(shù)學(xué)學(xué)報,(8)
[2]全國大學(xué)生數(shù)學(xué)建模競賽賽題講評與經(jīng)驗交流會在廣西大學(xué)舉行[j]、數(shù)學(xué)建模及其應(yīng)用,(04)
[3]錢方紅、基于數(shù)學(xué)模型解決數(shù)學(xué)建模競賽隊員選拔和組隊問題[j]、信息與電腦:理論版,(3)
[4]肖帆,張?zhí)m、高職院校數(shù)學(xué)建模競賽培訓(xùn)模式研究[j]、延安職業(yè)技術(shù)學(xué)院學(xué)報,2017(2)
大學(xué)生數(shù)學(xué)建模論文篇三
1.數(shù)學(xué)建模對學(xué)生創(chuàng)新思維和創(chuàng)新精神的培養(yǎng)
數(shù)學(xué)建模解決的都是與我們生活息息相關(guān)的實際問題,很多都是當(dāng)前社會比較關(guān)注的熱點問題,比如開放性小區(qū)的建立,人工智能機器人在工作中的應(yīng)用,這些問題開放性比較強,有明確的目的和要求,但它沒有唯一的結(jié)果和方法。因此留給學(xué)生很大的創(chuàng)新空間,使學(xué)生對數(shù)學(xué)產(chǎn)生了極大的興趣,他們發(fā)現(xiàn)這幾年學(xué)習(xí)的高數(shù)、線性代數(shù)、概率論與數(shù)理統(tǒng)計終于派上了用場。數(shù)學(xué)建模課程會結(jié)合《高等數(shù)學(xué)》,《線性代數(shù)》,《概率論與數(shù)理統(tǒng)計》等數(shù)學(xué)基礎(chǔ)學(xué)科,還會經(jīng)常涉及到物理,工程,經(jīng)濟,金融,農(nóng)林等各個領(lǐng)域各個學(xué)科,從不同的學(xué)科中找最熱門最真實的案例進行教學(xué),這要求學(xué)生有很強的自學(xué)能力,要不得學(xué)習(xí)新知識,新思路和新方法,讓學(xué)生結(jié)合所學(xué)的數(shù)學(xué)知識把自己學(xué)科的專業(yè)知識轉(zhuǎn)化成數(shù)學(xué)模型,讓數(shù)學(xué)充分發(fā)揮它的優(yōu)勢,以達到培養(yǎng)學(xué)生的創(chuàng)新能力,更重要的是對學(xué)生的知識體系起到了完善的作用。在整個競賽中從模型建立與求解到寫作,都是由學(xué)生獨立完成,充分發(fā)揮了他們的自主性和創(chuàng)造性。
2.數(shù)學(xué)建模能培養(yǎng)學(xué)生團隊合作精神和創(chuàng)新創(chuàng)業(yè)能力
數(shù)學(xué)建模競賽是由三個人組成一個小團隊共同處理一個問題,在這個團隊中每個人都各有分工,有的人擅長建立模型,有的人擅長計算機編程求解模型,有的人擅長寫作,這三個人缺一不可,任何一個人都發(fā)揮著舉足輕重的作用。通常我們還會設(shè)一個隊長能協(xié)調(diào)隊員之間的關(guān)系和對題目的把控。每個人都有不同的性格,能力,學(xué)識,知識結(jié)構(gòu),在做題的過程中會產(chǎn)生不同的想法,比如在模型的建立中,數(shù)據(jù)的處理過程中,算法的選取,編程語言的選取,寫作的過程中都會有很多的不同,所以每個成員都要有團隊精神、相互信任、相互溝通、相互尊重、取長補短、充分發(fā)揮集體的力量共同完成一個項目。同時每年無論在培訓(xùn)還是正式比賽過程中由于高強度的腦力活動,強大的心理壓力以及隊員之間的不和睦都會造成中途退賽,這樣無疑是最可惜的。所以,在競賽中除了培養(yǎng)學(xué)生的創(chuàng)新意識和團隊合作精神,還培養(yǎng)了大家的心理承受能力,強大的意志力以及與他人溝通交往的能力,是對自己綜合素質(zhì)的一個提高,對未來考研、出國、就業(yè)都有很大的幫助。
3.數(shù)學(xué)建模培養(yǎng)學(xué)生的創(chuàng)新創(chuàng)業(yè)的.綜合能力
通過在大二一年的數(shù)學(xué)建模選修課,以及假期的集中培訓(xùn)培養(yǎng)了學(xué)生的創(chuàng)新創(chuàng)業(yè)能力,很大程度上提高了他們思考問題解決問題的能力等綜合素質(zhì),同時還培養(yǎng)了他們應(yīng)用計算機去處理各種問題的科技能力。他們學(xué)會了各種軟件、語言,很多同學(xué)會數(shù)據(jù)挖掘、機器學(xué)習(xí)以及人工智能,這些都是未來科技的前沿,科技創(chuàng)新是企業(yè)發(fā)展的動力,現(xiàn)代教育不能只停留在教授學(xué)生理論知識的學(xué)習(xí),更重要的是理論與實踐的結(jié)合,走產(chǎn)學(xué)研相結(jié)合的道路,數(shù)學(xué)建模很好的把理論與實踐相結(jié)合,激發(fā)學(xué)生科研熱情,提高學(xué)生科研積極性,激發(fā)了學(xué)生的創(chuàng)新創(chuàng)業(yè)能力,為以后工作生活奠定了扎實的基礎(chǔ)。為了讓建模更好的服務(wù)學(xué)生,我們將不斷的努力,探索和改進培養(yǎng)模式和方法,爭取通過數(shù)學(xué)建模平臺使更多的同學(xué)受益,培養(yǎng)出更多的具有創(chuàng)新創(chuàng)業(yè)能力的大學(xué)生。
參考文獻:
[2]韋程東.數(shù)學(xué)建模能力培養(yǎng)方法研究[m].北京:科學(xué)出版社,.
大學(xué)生數(shù)學(xué)建模論文篇四
我們仔細閱讀了西北民族大學(xué)研究生數(shù)學(xué)建模競賽的競賽規(guī)則。
我們完全明白,在競賽開始后參賽隊員不能以任何方式(包括電話、電子郵件、網(wǎng)上咨詢等)與隊外的任何人(包括指導(dǎo)教師)研究、討論與賽題有關(guān)的問題。
我們知道,抄襲別人的成果是違反競賽規(guī)則的',如果引用別人的成果或其他公開的資料(包括網(wǎng)上查到的資料),必須按照規(guī)定的參考文獻的表述方式在正文引用處和參考文獻中明確列出。
我們鄭重承諾,嚴格遵守競賽規(guī)則,以保證競賽的公正、公平性。如有違反競賽規(guī)則的行為,我們將受到嚴肅處理。
我們參賽選擇的題號是(從a/b/c中選擇一項填寫):
我們的參賽論文題目是:
參賽隊員(打?。?BR> 隊員1姓名:;聯(lián)系電話:;郵箱:;
學(xué)院:;專業(yè)年級:;
隊員2姓名:;聯(lián)系電話:;郵箱:;
學(xué)院:;專業(yè)年級:;
隊員3姓名:;聯(lián)系電話:;郵箱:;
學(xué)院:;專業(yè)年級:;
參賽隊員簽名:1;2;3。
日期:年月日
將本文的word文檔下載到電腦,方便收藏和打印
推薦度:
點擊下載文檔
搜索文檔
大學(xué)生數(shù)學(xué)建模論文篇五
長期以來,我國的數(shù)學(xué)教學(xué)中一直普遍存在著重結(jié)論而輕過程、重形式而輕內(nèi)容、重解法而輕應(yīng)用等弊端,不注重學(xué)生數(shù)學(xué)能力和素質(zhì)的培養(yǎng);過分強調(diào)對定義、定理、法則、公式等知識的灌輸與講授,不注重這些知識的應(yīng)用,割斷了理論與實際的聯(lián)系,造成學(xué)與用的嚴重脫節(jié),致使在我們的數(shù)學(xué)教育體制下培養(yǎng)出來的學(xué)生的能力結(jié)構(gòu)都形成了一種嚴重的病態(tài),主要表現(xiàn)在:數(shù)學(xué)理論知識掌握得還可以,但應(yīng)用知識的能力很差,不能學(xué)以致用,缺乏創(chuàng)造力和解決實際問題的能力,這些問題使我們的學(xué)生在走向工作崗位時上手速度慢,面對新的數(shù)學(xué)問題時束手無策,不能將所學(xué)的知識靈活運用到實際中去。顯然,這種教育體制和理念與現(xiàn)代教育理念是背道而馳的,是必須拋棄的。開展數(shù)學(xué)建模教學(xué)或數(shù)學(xué)建模競賽,能夠培養(yǎng)學(xué)生各方面的綜合能力,提高學(xué)生的綜合素質(zhì),對于當(dāng)前數(shù)學(xué)教育教學(xué)改革有著極為重要的現(xiàn)實意義。
1數(shù)學(xué)建模能夠豐富和優(yōu)化學(xué)生的知識結(jié)構(gòu),開拓學(xué)生的視野
數(shù)學(xué)建模所涉及到的許多問題都超出了學(xué)生所學(xué)的專業(yè),例如“基金的最佳適用”、“會議籌備”、“地震搜索”等許多建模問題,分別屬于不同的學(xué)科與專業(yè),為了解決這些問題,學(xué)生必須查閱和學(xué)習(xí)與該問題相關(guān)的專業(yè)書籍和科技資料,了解這些專業(yè)的相關(guān)知識,從而軟化或削弱了目前教育中僵死的專業(yè)界限,使學(xué)生掌握寬廣而扎實的基礎(chǔ)知識,使他們不斷拓寬分析問題、解決問題的思路,朝著復(fù)合型人才和具備全面綜合素質(zhì)人才的方向發(fā)展。
2數(shù)學(xué)建??梢耘囵B(yǎng)學(xué)生利用數(shù)學(xué)知識解決實際問題的能力
數(shù)學(xué)建模要求建模者利用自己所掌握的數(shù)學(xué)知識及對實際問題的理解,通過積極主動的思維,提出適當(dāng)?shù)募僭O(shè),并建立相應(yīng)的數(shù)學(xué)模型,進而利用恰當(dāng)?shù)臄?shù)學(xué)方法(現(xiàn)有的或新創(chuàng)造的)求解此模型,并對解做出評價,必要時對模型做出改進。這一過程包括了歸納、整理、推理、深化等活動,因此把數(shù)學(xué)建模引入課堂教學(xué),必將改變目前數(shù)學(xué)教學(xué)只見定義、定理不見問題背景的局面,必將改變知識僵化、學(xué)而不用的局面,從而調(diào)動了學(xué)生學(xué)習(xí)的積極性,培養(yǎng)了學(xué)生解決實際問題的能力。
3數(shù)學(xué)建模能夠培養(yǎng)學(xué)生的創(chuàng)造力、想象力、聯(lián)想力和洞察力
數(shù)學(xué)模型來源于客觀實際,錯綜復(fù)雜,沒有現(xiàn)成的答案和固定的模式,因此學(xué)生在建立和求解這類模型時,必須積極動腦,而且常常需要另辟蹊徑,在這里,常常會迸發(fā)出打破常規(guī)、突破傳統(tǒng)的思維火花,通過這種實踐活動,可以培養(yǎng)學(xué)生的創(chuàng)造能力,促使他們在頭腦中樹立推崇創(chuàng)新、追求創(chuàng)新和以創(chuàng)新為榮的意識。在從實際問題中抽象出數(shù)學(xué)模型的過程中,須把實際關(guān)系轉(zhuǎn)化為數(shù)學(xué)關(guān)系,這要求他們敢于想象和聯(lián)想,此外他們還要從貌似不同的問題中抓住其本質(zhì)的和共性的東西,這將培養(yǎng)他們把握問題內(nèi)在本質(zhì)的能力,即洞察力,可以說,培養(yǎng)學(xué)生的這些能力始終貫穿在數(shù)學(xué)建模的整個過程。
4數(shù)學(xué)建??梢耘囵B(yǎng)學(xué)生熟練地運用計算機的能力
5數(shù)學(xué)建模可以增強大學(xué)生的適應(yīng)能力
通過數(shù)學(xué)建模的學(xué)習(xí)及競賽訓(xùn)練,他們不僅受到了現(xiàn)代數(shù)學(xué)思維及方法的熏陶,更重要的是對不同的實際問題,如何進行分析、推理、概括以及如何利用數(shù)學(xué)方法與計算機知識,還有各方面的知識綜合起來解決它。因此,他們具有較高的素質(zhì),無論以后到哪個行業(yè)工作,都能很快適應(yīng)需要。不僅如此,由于建模決不是一件輕而易舉的事,需要學(xué)生對實際問題進行反復(fù)多次的研究、分析、觀察和對模型進行反復(fù)多次的計算、論證及修改等,整個過程是一個非常艱辛的探索過程,這可以培養(yǎng)學(xué)生高度的責(zé)任感、堅韌不拔的毅力、遭遇挫折后較強的心理承受能力以及孜孜不倦、精益求精的探索精神,使他們具有良好的心理素質(zhì)與精神狀態(tài)。同時數(shù)學(xué)建模一般都是由幾個人組成的團隊來完成的,其成功與否,完全取決于大家的密切合作,既要合理分工,又要密切配合,這樣又可以培養(yǎng)學(xué)生的組織管理能力、協(xié)調(diào)能力和相互協(xié)作的團隊精神,這些對他們今后走向工作崗位都是大有裨益的。
此外,數(shù)學(xué)建模從教育觀念、內(nèi)容、形式和手段都有一定的創(chuàng)新,對數(shù)學(xué)教學(xué)改革有積極的啟示意義。首先,數(shù)學(xué)建模突出了教與學(xué)的雙主體性關(guān)系。教師要根據(jù)學(xué)生的學(xué)習(xí)興趣、能力及特點,不斷修正自己的教育內(nèi)容和方法。學(xué)生要對教師所給予的信息有批判性地、創(chuàng)造性地、發(fā)展性地能動反映,要在相互討論、相互啟發(fā)下尋求更多更好的解答方案。這種雙主體的關(guān)系是對傳統(tǒng)教學(xué)方式的根本突破。
其次,數(shù)學(xué)建模促進了課程體系和教學(xué)內(nèi)容的改革。長期以來,我們的課程設(shè)置和教學(xué)內(nèi)容都具有強烈的理科特點:重基礎(chǔ)理論、輕實踐應(yīng)用;重傳統(tǒng)的經(jīng)典數(shù)學(xué)內(nèi)容、輕離散的數(shù)值計算。然而,數(shù)學(xué)建模所要用到的主要數(shù)學(xué)方法和數(shù)學(xué)知識恰好正是被我們長期所忽視的那些內(nèi)容。因此,這迫使我們調(diào)整課程體系和教學(xué)內(nèi)容。比如可增加一些應(yīng)用型、實踐類課程等等;在其余各門課程的教學(xué)中,也要盡量注意到使數(shù)學(xué)理論與應(yīng)用相結(jié)合,增加實際應(yīng)用方面的內(nèi)容和例題,從而使教學(xué)內(nèi)容也得到了更新。
再次,數(shù)學(xué)建模增加了教師對新興科技知識的傳授,拓寬了學(xué)生的知識面。這些特點對于目前數(shù)學(xué)教材中存在的內(nèi)容陳舊、知識面狹窄及形式呆板等問題,具有借鑒作用。數(shù)學(xué)建模的試題通常聯(lián)系新興的學(xué)科,在科學(xué)技術(shù)迅猛發(fā)展的今天,各種新興學(xué)科、邊緣學(xué)科、交叉學(xué)科不斷涌現(xiàn),廣博的知識面和對新興科學(xué)技術(shù)的追蹤能力是獲得成功的關(guān)鍵因素之一。
數(shù)學(xué)建模不僅有利于學(xué)生更好的掌握知識、運用知識,也有利于高校的科研和教學(xué),使學(xué)生和教師能在平時的學(xué)習(xí)、工作中自動形成勤于思考的好習(xí)慣,數(shù)學(xué)建模競賽與學(xué)生畢業(yè)以后工作時的條件非常相近,是對學(xué)生業(yè)務(wù)、能力和素質(zhì)的全面培養(yǎng),特別是開放性思維和創(chuàng)新意識,這項活動的開展有利于學(xué)生的全面素質(zhì)的培養(yǎng),既豐富、活躍了廣大學(xué)生的課外生活,也為優(yōu)秀學(xué)員脫穎而出創(chuàng)造了條件。
【參考文獻】
[1]顏筱紅,粱東穎。高職院校數(shù)學(xué)建模教學(xué)的研究[j].廣西教育,2013(2):54,134.
[3]李大潛。中國大學(xué)生數(shù)學(xué)建模競賽[m].2版。北京:高等教育出版社,2001.
[4]謝金星。2008高教社杯全國大學(xué)生數(shù)學(xué)建模競賽[j].工程數(shù)學(xué)學(xué)報,2008(25):1-2.
大學(xué)生數(shù)學(xué)建模論文篇六
1.數(shù)學(xué)建模對學(xué)生創(chuàng)新思維和創(chuàng)新精神的培養(yǎng)
數(shù)學(xué)建模解決的都是與我們生活息息相關(guān)的實際問題,很多都是當(dāng)前社會比較關(guān)注的熱點問題,比如開放性小區(qū)的建立,人工智能機器人在工作中的應(yīng)用,這些問題開放性比較強,有明確的目的和要求,但它沒有唯一的結(jié)果和方法。因此留給學(xué)生很大的創(chuàng)新空間,使學(xué)生對數(shù)學(xué)產(chǎn)生了極大的興趣,他們發(fā)現(xiàn)這幾年學(xué)習(xí)的高數(shù)、線性代數(shù)、概率論與數(shù)理統(tǒng)計終于派上了用場。數(shù)學(xué)建模課程會結(jié)合《高等數(shù)學(xué)》,《線性代數(shù)》,《概率論與數(shù)理統(tǒng)計》等數(shù)學(xué)基礎(chǔ)學(xué)科,還會經(jīng)常涉及到物理,工程,經(jīng)濟,金融,農(nóng)林等各個領(lǐng)域各個學(xué)科,從不同的學(xué)科中找最熱門最真實的案例進行教學(xué),這要求學(xué)生有很強的自學(xué)能力,要不得學(xué)習(xí)新知識,新思路和新方法,讓學(xué)生結(jié)合所學(xué)的數(shù)學(xué)知識把自己學(xué)科的專業(yè)知識轉(zhuǎn)化成數(shù)學(xué)模型,讓數(shù)學(xué)充分發(fā)揮它的優(yōu)勢,以達到培養(yǎng)學(xué)生的創(chuàng)新能力,更重要的是對學(xué)生的知識體系起到了完善的作用。在整個競賽中從模型建立與求解到寫作,都是由學(xué)生獨立完成,充分發(fā)揮了他們的自主性和創(chuàng)造性。
2.數(shù)學(xué)建模能培養(yǎng)學(xué)生團隊合作精神和創(chuàng)新創(chuàng)業(yè)能力
數(shù)學(xué)建模競賽是由三個人組成一個小團隊共同處理一個問題,在這個團隊中每個人都各有分工,有的人擅長建立模型,有的人擅長計算機編程求解模型,有的人擅長寫作,這三個人缺一不可,任何一個人都發(fā)揮著舉足輕重的作用。通常我們還會設(shè)一個隊長能協(xié)調(diào)隊員之間的關(guān)系和對題目的把控。每個人都有不同的性格,能力,學(xué)識,知識結(jié)構(gòu),在做題的過程中會產(chǎn)生不同的想法,比如在模型的建立中,數(shù)據(jù)的處理過程中,算法的選取,編程語言的選取,寫作的過程中都會有很多的不同,所以每個成員都要有團隊精神、相互信任、相互溝通、相互尊重、取長補短、充分發(fā)揮集體的力量共同完成一個項目。同時每年無論在培訓(xùn)還是正式比賽過程中由于高強度的腦力活動,強大的心理壓力以及隊員之間的不和睦都會造成中途退賽,這樣無疑是最可惜的。所以,在競賽中除了培養(yǎng)學(xué)生的創(chuàng)新意識和團隊合作精神,還培養(yǎng)了大家的心理承受能力,強大的意志力以及與他人溝通交往的能力,是對自己綜合素質(zhì)的一個提高,對未來考研、出國、就業(yè)都有很大的幫助。
3.數(shù)學(xué)建模培養(yǎng)學(xué)生的創(chuàng)新創(chuàng)業(yè)的.綜合能力
通過在大二一年的數(shù)學(xué)建模選修課,以及假期的集中培訓(xùn)培養(yǎng)了學(xué)生的創(chuàng)新創(chuàng)業(yè)能力,很大程度上提高了他們思考問題解決問題的能力等綜合素質(zhì),同時還培養(yǎng)了他們應(yīng)用計算機去處理各種問題的科技能力。他們學(xué)會了各種軟件、語言,很多同學(xué)會數(shù)據(jù)挖掘、機器學(xué)習(xí)以及人工智能,這些都是未來科技的前沿,科技創(chuàng)新是企業(yè)發(fā)展的動力,現(xiàn)代教育不能只停留在教授學(xué)生理論知識的學(xué)習(xí),更重要的是理論與實踐的結(jié)合,走產(chǎn)學(xué)研相結(jié)合的道路,數(shù)學(xué)建模很好的把理論與實踐相結(jié)合,激發(fā)學(xué)生科研熱情,提高學(xué)生科研積極性,激發(fā)了學(xué)生的創(chuàng)新創(chuàng)業(yè)能力,為以后工作生活奠定了扎實的基礎(chǔ)。為了讓建模更好的服務(wù)學(xué)生,我們將不斷的努力,探索和改進培養(yǎng)模式和方法,爭取通過數(shù)學(xué)建模平臺使更多的同學(xué)受益,培養(yǎng)出更多的具有創(chuàng)新創(chuàng)業(yè)能力的大學(xué)生。
參考文獻:
[2]韋程東.數(shù)學(xué)建模能力培養(yǎng)方法研究[m].北京:科學(xué)出版社,2012.
大學(xué)生數(shù)學(xué)建模論文篇七
計算數(shù)學(xué)建模是用數(shù)學(xué)的思考方式,采用數(shù)學(xué)的方法和語言,通過簡化,抽象的方式來解決實際問題的一種數(shù)學(xué)手段。數(shù)學(xué)建模所解決的問題不止現(xiàn)實的,還包括對未來的一種預(yù)見。數(shù)學(xué)建??梢哉f和我們的生活息息相關(guān),尤其是如今科技發(fā)達的今天。數(shù)學(xué)建模應(yīng)用領(lǐng)域超乎我們的想象,甚至達到無所不及的程度,隨著數(shù)學(xué)建模在大學(xué)教學(xué)中的廣泛使用,使數(shù)學(xué)建模不止成為一種學(xué)科,更重要的是指導(dǎo)新生代更好的利用現(xiàn)代科學(xué)技術(shù),成為高科技人才,把我國人才強國,科教興國的戰(zhàn)略推向一個新的高度。
1.數(shù)學(xué)建模對教學(xué)過程的作用
1.1數(shù)學(xué)建模引進大學(xué)數(shù)學(xué)教學(xué)的必要。教學(xué)過程,是教師根據(jù)社會發(fā)展要求和當(dāng)代學(xué)生身心發(fā)展的特點,借助教學(xué)條件,指導(dǎo)學(xué)生通過認識教學(xué)內(nèi)容從而認識客觀世界,并在此基礎(chǔ)之上發(fā)展自身的過程,即教學(xué)活動的展開過程。以往高工專的數(shù)學(xué)教學(xué)存在著知識單一,內(nèi)容陳舊,脫離實際等缺陷,已經(jīng)不能滿足時代的發(fā)展,如今的數(shù)學(xué)教學(xué)過程不是單純的傳授數(shù)學(xué)學(xué)科知識,而是通過數(shù)學(xué)教學(xué)過程引導(dǎo)學(xué)生認識科學(xué),理解科學(xué),從而指導(dǎo)實踐,促進學(xué)生的德智體美勞全面的進步和發(fā)展。因此數(shù)學(xué)建模成為一門學(xué)科,被各大高等院校廣泛引用和推廣,其實數(shù)學(xué)建模不止應(yīng)用在大學(xué)數(shù)學(xué)教學(xué)中,其他一切教學(xué)過程多可引進數(shù)學(xué)建模。1.2數(shù)學(xué)建模在大學(xué)數(shù)學(xué)教學(xué)中的運用。大學(xué)數(shù)學(xué)教師通過這個數(shù)學(xué)建模過程來引導(dǎo)學(xué)生解決問題和指導(dǎo)實踐的能力。再次建模結(jié)果對現(xiàn)實生活的指導(dǎo),這是大學(xué)數(shù)學(xué)教學(xué)中數(shù)學(xué)建模所需要達到的效果和要求。不再停留在理論學(xué)習(xí),而是通過理論指導(dǎo)實踐,從而為科學(xué)的進步和人才綜合水平的提高提供可能。
2.數(shù)學(xué)建模對當(dāng)代大學(xué)生的作用
2.1數(shù)學(xué)建模對數(shù)學(xué)學(xué)科和其他學(xué)科學(xué)生的巨大影響力學(xué)習(xí)數(shù)學(xué)建模,能夠使一個單獨的數(shù)學(xué)家變成經(jīng)濟學(xué)家,物理學(xué)家還有金融學(xué)家,甚至是藝術(shù)家,只要正握數(shù)學(xué)建模就能指導(dǎo)學(xué)生通過掌握數(shù)學(xué)建模的思維和方法向其他領(lǐng)域?qū)W習(xí)和進步。數(shù)學(xué)建模成為連接數(shù)學(xué)和其他領(lǐng)域的紐帶,是當(dāng)今數(shù)學(xué)科學(xué)在其他領(lǐng)導(dǎo)應(yīng)用的橋梁,是數(shù)學(xué)技術(shù)轉(zhuǎn)化為其他技術(shù)的途徑,數(shù)學(xué)建模在學(xué)生中越來越受到關(guān)注和歡迎,越來越多的學(xué)生開始學(xué)習(xí)數(shù)學(xué)建模,尤其是數(shù)學(xué)界和工程界的學(xué)生,這成為當(dāng)今學(xué)生成為現(xiàn)代科技工作者必須掌握的只是能力之一。
2.2數(shù)學(xué)建模對學(xué)生綜合能力的提高數(shù)學(xué)建模是大學(xué)數(shù)學(xué)教師運用數(shù)學(xué)科學(xué)去分析和解決實際問題,在數(shù)學(xué)建模學(xué)習(xí)的過程中,大學(xué)生的數(shù)學(xué)能力得到提高,其分析問題、解決問題的能力得到提高,這對大學(xué)生畢業(yè)走向社會具有著重大意義。通過數(shù)學(xué)建模的學(xué)習(xí)和應(yīng)用,激發(fā)大學(xué)生學(xué)習(xí)數(shù)學(xué)和應(yīng)用數(shù)學(xué)的能力,運用數(shù)學(xué)的思維和方法,利用現(xiàn)代計算機科學(xué),來解決數(shù)學(xué)及其他領(lǐng)域的問題。
3.數(shù)學(xué)建模對大學(xué)數(shù)學(xué)及其他學(xué)科教師的作用
數(shù)學(xué)建模引入大學(xué)數(shù)學(xué)教學(xué),這是時代的進步,是時代對當(dāng)代大學(xué)教師提出的新要求,尤其是大學(xué)數(shù)學(xué)教師,其不再停留在以往的單純的數(shù)學(xué)知識講授方向,而是將數(shù)學(xué)科學(xué)作為基礎(chǔ),引導(dǎo)當(dāng)代大學(xué)生發(fā)散思維,發(fā)揮主觀能動性,從而學(xué)習(xí)數(shù)學(xué)科學(xué),并運用數(shù)學(xué)科學(xué)解決現(xiàn)實問題。在這個過程中大學(xué)教師的專業(yè)知識得到提高,其創(chuàng)新精神也得到了極大的豐富。大學(xué)數(shù)學(xué)教師不止完成數(shù)學(xué)教學(xué),更重要的是培養(yǎng)了高科技的人才,這對大學(xué)數(shù)學(xué)教師的社會地位也有了相應(yīng)的改變,在尊重人才,尊重科學(xué)的氛圍中,大學(xué)數(shù)學(xué)教師及其他學(xué)科的教師得到了鼓舞,得到了進步,得到了認可。數(shù)學(xué)建模越來越重要,關(guān)于數(shù)學(xué)建模的各種國內(nèi)國際大賽頻頻舉辦,這對大學(xué)數(shù)學(xué)教師在知識,體力和創(chuàng)新性上都提出新的要求,為了更好的參與數(shù)學(xué)建模比賽,大學(xué)數(shù)學(xué)教師投入更多的時間和經(jīng)歷在學(xué)生教育和數(shù)學(xué)建模中,他們成為真正的臺前和幕后的指揮者。
隨著現(xiàn)代大學(xué)學(xué)科的豐富,尤其是計算機科學(xué)的廣泛應(yīng)用,大學(xué)數(shù)學(xué)教學(xué)的跨時代發(fā)展,數(shù)學(xué)建模成為各個高校數(shù)學(xué)教學(xué)的重點內(nèi)容,數(shù)學(xué)建模教學(xué)吸納數(shù)學(xué)家,計算機學(xué)家等多個學(xué)科專家的意見,從而為培養(yǎng)出綜合行的高科技人才做好充分的準備??梢哉f數(shù)學(xué)建模教學(xué)是當(dāng)今大學(xué)數(shù)學(xué)教學(xué)的主旋律,是數(shù)學(xué)科學(xué)和其他科學(xué)進步發(fā)展的方向和原動力。
參考文獻:
[1]李進華.教育教學(xué)改革與教育創(chuàng)新探索.安徽:安徽大學(xué)出版社,20xx.8.
[2]于駿.現(xiàn)代數(shù)學(xué)思想方法.山東:石油大學(xué)出版社,1997.
大學(xué)生數(shù)學(xué)建模論文篇八
摘要:數(shù)學(xué)建模作為現(xiàn)代應(yīng)用數(shù)學(xué)的一個重要組成部分被越來越多的人所重視。本文描述數(shù)學(xué)建模課程及數(shù)學(xué)建模競賽在培養(yǎng)大學(xué)生各種能力中的作用。
關(guān)鍵詞:數(shù)學(xué)建模;競賽;大學(xué)生;能力
一、引言
數(shù)學(xué)建模是運用數(shù)學(xué)的語言和方法,去描述或模擬實際問題中的數(shù)量關(guān)系,并解決實際問題的一種強有力的教學(xué)手段。數(shù)學(xué)建模是應(yīng)用數(shù)學(xué)的語言和方法解決實際問題的過程,也是一個培養(yǎng)大學(xué)生各種能力的綜合過程。
大學(xué)生數(shù)學(xué)建模競賽最早是1985年在美國出現(xiàn)的。1989年在幾位從事數(shù)學(xué)建模教育的教師的組織和推動下,我國幾所大學(xué)的大學(xué)生開始參加美國的競賽。自1994年起,教育部高教司和中國工業(yè)與應(yīng)用數(shù)學(xué)學(xué)會共同主辦全國大學(xué)生數(shù)學(xué)建模競賽,每年一屆,這項活動被教育部列為全國大學(xué)生四大競賽之一。隨著全國大學(xué)生數(shù)學(xué)建模競賽的廣泛影響,越來越多的高校組織隊員參加該項競賽,這項競賽的規(guī)模以平均年增長25%以上的速度發(fā)展。2008年全國有31個省/市/自治區(qū)(包括香港)1,023所院校、12,846個隊、38,000多名來自各個專業(yè)的大學(xué)生參加競賽,比2007年新增院校15所。2009年全國有33個省/市/自治區(qū)(包括香港和澳門特區(qū))1,137所院校、15,046個隊、45,000多名來自各個專業(yè)的大學(xué)生參加競賽,是歷年來參賽人數(shù)最多的(其中西藏和澳門是首次參賽)。
20世紀八十年代以來,我國各高等院校相繼開設(shè)數(shù)學(xué)建模課程。數(shù)學(xué)建模課程是在高等數(shù)學(xué)、線性代數(shù)、概率與數(shù)理統(tǒng)計之后,為實現(xiàn)理論和實踐一體化、進一步提高運用數(shù)學(xué)知識和計算機技術(shù)解決實際問題,培養(yǎng)創(chuàng)新能力所開設(shè)的一門廣泛的公共基礎(chǔ)課。教育必須反映社會的實際需要,數(shù)學(xué)建模課程進入大學(xué)課堂,既順應(yīng)時代發(fā)展的潮流,也符合教育改革的要求。
素質(zhì)教育是新世紀高校高等數(shù)學(xué)教育改革的一個重要方向。在大學(xué)校園中,數(shù)學(xué)建模課程的開設(shè)及數(shù)學(xué)建?;顒拥拈_展,能有效地激發(fā)大學(xué)生學(xué)習(xí)的興趣和積極性,使大學(xué)生掌握準確快捷的計算方法和嚴密的邏輯推理,培養(yǎng)大學(xué)生用數(shù)學(xué)工具分析解決實際問題的能力,是實施素質(zhì)教育的一種有效途徑。
二、數(shù)學(xué)建模對大學(xué)生能力的培養(yǎng)
通過數(shù)學(xué)建模課程的教學(xué)與參加數(shù)學(xué)建模競賽的實踐,使我們深刻感受到數(shù)學(xué)建模過程,不僅是對大學(xué)生知識和方法的培養(yǎng),更是對當(dāng)代大學(xué)生各種能力的培養(yǎng)有著深遠的意義。
1、有利于提高學(xué)生分析解決問題的能力。數(shù)學(xué)建模教學(xué)強調(diào)如何把實際問題轉(zhuǎn)化為數(shù)學(xué)問題,要求建模者利用自己所掌握的數(shù)學(xué)知識及對實際問題的理解提出合理的假設(shè),從一個個實際問題中抽象出數(shù)學(xué)問題,建立相應(yīng)數(shù)學(xué)模型,利用恰當(dāng)?shù)臄?shù)學(xué)方法來求解此模型,解決實際問題,并對模型進行評價改進。因此,數(shù)學(xué)建模教學(xué)為大學(xué)生架設(shè)了由抽象的數(shù)學(xué)理論知識通向具體的實際問題的橋梁,是使大學(xué)生的數(shù)學(xué)知識和應(yīng)用能力共同提高的有效方式。大學(xué)生通過參與數(shù)學(xué)建模及競賽活動,能切身體會到學(xué)習(xí)數(shù)學(xué)的實用價值,這是傳統(tǒng)教學(xué)無法達到的效果,從而激發(fā)了大學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,提高了學(xué)生分析解決實際問題的能力。
2、有利于培養(yǎng)大學(xué)生應(yīng)用數(shù)學(xué)的能力。數(shù)學(xué)建模通過積極主動的發(fā)散性思維,培養(yǎng)學(xué)生“應(yīng)用數(shù)學(xué)”的能力。這是數(shù)學(xué)教育的根本任務(wù),當(dāng)然應(yīng)當(dāng)成為數(shù)學(xué)應(yīng)用于教學(xué)目的中的重中之重。應(yīng)用數(shù)學(xué)的能力是一種綜合能力,它離不開數(shù)學(xué)運算、數(shù)學(xué)推理、空間想像等基本的數(shù)學(xué)能力,但它主要側(cè)重于從實際問題中提出并表達數(shù)學(xué)問題的能力,運用并初步構(gòu)建數(shù)學(xué)模型的能力,對數(shù)學(xué)問題及模型進行變換化歸的能力,對數(shù)學(xué)結(jié)果進行檢驗和評價、闡釋和處理的能力。數(shù)學(xué)建模過程包括了歸納、整理、推理、深化等過程,因此把數(shù)學(xué)建模引入課堂教學(xué),學(xué)生能夠?qū)W會如何利用所學(xué)知識構(gòu)造數(shù)學(xué)模型,求解數(shù)學(xué)模型,從而解決實際問題,并且做出必要的評價與改進,從而加深對數(shù)學(xué)知識的理解,提高了應(yīng)用數(shù)學(xué)的能力。
3、有利于學(xué)生抽象概括能力的培養(yǎng)。應(yīng)用數(shù)學(xué)去解決各類實際問題時,建立數(shù)學(xué)模型是十分關(guān)鍵的一步,同時也是十分困難的一步。建立教學(xué)模型的過程,是把錯綜復(fù)雜的實際問題簡化,抽象、概括為合理的數(shù)學(xué)結(jié)構(gòu)的過程。抽象是抽取事物的本質(zhì)屬性,使它與其他屬性分開;概括是將同類事物的相同屬性結(jié)合起來。抽象和概括是緊密聯(lián)系的,只有抽象出事物的本質(zhì)屬性才能進行概括,如果思維不具有概括性也無從進行抽象。抽象能力是指在建模過程中能拋棄無關(guān)的非本質(zhì)因素,從本質(zhì)上看問題,自覺地進行層層的抽象概括,建立數(shù)學(xué)模型的能力。數(shù)學(xué)建模過程使學(xué)生對復(fù)雜的事物,有意識地區(qū)分主要因素與次要因素,本質(zhì)與表面現(xiàn)象,從而抓住本質(zhì)解決問題。它有利于提高學(xué)生思維的深刻性和抽象概括能力,它主要體現(xiàn)在學(xué)生能善于從復(fù)雜的事物中把握事物的本質(zhì)及規(guī)律,使學(xué)生面對具體問題能有條理地在簡約狀態(tài)下進行思考,并有助于真理的發(fā)現(xiàn)。
4、有利于提高大學(xué)生自學(xué)的能力。數(shù)學(xué)建模以學(xué)生為主,教師事先設(shè)計好問題,啟發(fā)、引導(dǎo)學(xué)生主動查閱文獻資料和學(xué)習(xí)新知識,鼓勵學(xué)生積極開展討論和辯論。學(xué)生通過學(xué)習(xí)數(shù)學(xué)建模課程,參加數(shù)學(xué)建模競賽,需要自學(xué)他完全不了解或知之不多的有關(guān)學(xué)科的專業(yè)知識,在這個過程中,有助于培養(yǎng)大學(xué)生獲取新知識的主動精神,有利于提高大學(xué)生的自學(xué)能力。
參加數(shù)學(xué)建模競賽賽前培訓(xùn)的同學(xué)大都需要學(xué)習(xí)諸如數(shù)理統(tǒng)計、優(yōu)化、微分方程、計算方法、層次分析法、數(shù)學(xué)軟件包的使用等等講座,用的學(xué)時并不多,多數(shù)是啟發(fā)性的講一些基本的概念和方法,主要是靠學(xué)生自己去學(xué),充分調(diào)動學(xué)生們的積極性,充分發(fā)揮學(xué)生們的潛能。同時,在比賽的短短3天時間里,要查閱大量的資料,取其精華,從中尋找到所需要的資料,收集必要的信息,這也必須要求大學(xué)生掌握科學(xué)的方法。這種能力必將使大學(xué)生在未來的工作和科研中受益匪淺。
5、有利于培養(yǎng)大學(xué)生的洞察力和想像力。洞察力是人們對個人認知、情感、行為的動機與相互關(guān)系的透徹分析。通俗地講,洞察力就是透過現(xiàn)象看本質(zhì),變無意識為有意識。就這層意義而言,洞察力就是學(xué)會用心理學(xué)的原理和視角來歸納總結(jié)人的行為表現(xiàn)。洞察力是指深入事物或問題的能力,更多的是摻雜了分析和判斷的能力,可以說洞察力是一種綜合能力。
想像力是人在已有形象的基礎(chǔ)上,在頭腦中創(chuàng)造出新形象的能力。in有一句名言:想像力比知識更重要,因為知識是有限的,而想像力包括世界的一切,推動著社會進步,并且是知識的源泉。這句話可以認為是開設(shè)“數(shù)學(xué)建模”這門課程的一個指導(dǎo)思想。
數(shù)學(xué)建模的模型假設(shè)過程就是根據(jù)對實際問題的觀察分析、類比、想像,用數(shù)理建?;蛳到y(tǒng)辨識建模方法作假設(shè),通過形象思維對問題進行簡單化、模型化,做出合乎邏輯的想像,形成實際問題數(shù)理化的設(shè)想。例如,2006年全國大學(xué)生數(shù)學(xué)建模競賽中c題“易拉罐的最優(yōu)設(shè)計問題”,第四問要求大學(xué)生利用對所測量的易拉罐的“洞察力和想像力”,做出自己的關(guān)于易拉罐形狀和尺寸的最優(yōu)設(shè)計。大學(xué)生做題的過程,無異于是對大學(xué)生洞察力和想像力培養(yǎng)的真實體現(xiàn)。
6、有利于提高大學(xué)生利用計算機解決問題的能力。首先,計算機是數(shù)學(xué)建模的得力助手。數(shù)學(xué)建模過程中,大多數(shù)問題靈活多變,很多模型的求解都面臨著大量的計算;其次,所建模型是否與實際吻合,常常要用模型的解來判斷,而且這種工作,在建立一個實際問題的數(shù)學(xué)模型中經(jīng)常要重復(fù)多遍。因此,熟練使用計算機計算數(shù)學(xué)問題是對學(xué)生的必須要求。我們倡導(dǎo)大學(xué)生盡量利用計算機程序或某些專用的數(shù)學(xué)應(yīng)用軟件如mathematica、matlab、lingo、mapple等,以及當(dāng)代高新科技成果,將數(shù)學(xué)、計算機有機地結(jié)合起來去解決實際問題。數(shù)學(xué)建模教學(xué)中結(jié)合實驗室上機實踐,計算機的應(yīng)用不僅僅表現(xiàn)在數(shù)學(xué)建模中模型的簡化與求解,而且給大學(xué)生提供了一種評價模型的“試驗場所”,這就有助于培養(yǎng)大學(xué)生利用數(shù)學(xué)軟件和計算機解決實際問題的能力。
7、有利于培養(yǎng)大學(xué)生的創(chuàng)新能力。創(chuàng)新是指人類為了滿足自身的需要,不斷拓展對客觀世界、自身任職與行為過程和結(jié)果的活動。創(chuàng)新能力指人在順利完成以原有知識經(jīng)驗為基礎(chǔ)的創(chuàng)建新事物活動中表現(xiàn)出來的潛在心理品質(zhì)。我們在教學(xué)中應(yīng)給學(xué)生留有充分的余地,鼓勵學(xué)生開闊視野、大膽懷疑、勇于進取、勇于創(chuàng)新,讓學(xué)生充分發(fā)揮想像力,不拘泥于用一種方法解決問題,從而培養(yǎng)學(xué)生的創(chuàng)新能力。在數(shù)學(xué)建模競賽中,對給出的具體實際問題,一般不會有現(xiàn)成的模型,這就要求大學(xué)生在原有模型的基礎(chǔ)上進行大膽的嘗試與創(chuàng)新。創(chuàng)新是一個民族的靈魂,只有創(chuàng)新才能發(fā)展。而創(chuàng)新教育是以全面、充分發(fā)展學(xué)生的創(chuàng)造力為核心的教育,它是適應(yīng)經(jīng)濟時代發(fā)展的教育思想。數(shù)學(xué)建模課程就是培養(yǎng)創(chuàng)新能力的一個極好的載體,數(shù)學(xué)建模的過程是一個創(chuàng)造性的過程,我們應(yīng)該充分發(fā)揮它在創(chuàng)新能力培養(yǎng)中的作用,它為培養(yǎng)大學(xué)生創(chuàng)造性思維能力和創(chuàng)新精神提供了廣闊的空間。
8、有利于提高大學(xué)生論文寫作和表達能力。數(shù)學(xué)建模成績的好壞、獲獎級別的高低與論文撰寫有著密切關(guān)系,數(shù)學(xué)建模的答卷是評價的唯一依據(jù)。建模方法獨特、結(jié)果出色,但如果不能做到結(jié)構(gòu)清晰、重點突出、文字流暢,也將會失去獲獎的機會。寫好論文的訓(xùn)練,是科技寫作的一種基本訓(xùn)練。通過建模競賽,學(xué)生能夠?qū)W會如何更加準確地闡述自己的觀點。所以,數(shù)學(xué)建模對培養(yǎng)學(xué)生的論文寫作能力和表達能力,都起到了積極的作用。
9、有利于培養(yǎng)大學(xué)生的合作交流能力和團隊合作精神。數(shù)學(xué)建模的問題涉及各個領(lǐng)域,都有一定的深度和廣度,所需知識較多,數(shù)學(xué)建模課程廣泛地采用討論班的教學(xué)方式,同學(xué)自己報告、討論、辯論,教師主要起質(zhì)疑、答疑、輔導(dǎo)的作用,與此同時,同學(xué)之間互相平等,互相尊重,培養(yǎng)了學(xué)生合作交流的能力。
參考文獻:
[1]姜啟源,謝金星,葉俊。數(shù)學(xué)模型[m].高等教育出版社,2004.
[2]趙靜,但奇。數(shù)學(xué)建模與數(shù)學(xué)實驗[m].高等教育出版社,2004.
[3]劉來福等。數(shù)學(xué)模型與數(shù)學(xué)建模[m].北京:北京師范大學(xué)出版社,1999.
大學(xué)生數(shù)學(xué)建模論文篇九
大量的應(yīng)用型技能型人才,有效滿足了社會各行各業(yè)的用工需求。隨著國家對高職教育的重視和不斷投入,提高教育的教學(xué)質(zhì)量勢在必行[1]。數(shù)學(xué)建模的核心是以數(shù)學(xué)模型為基礎(chǔ)的實際運用,鑒于數(shù)學(xué)建模的這種特點,國內(nèi)高職數(shù)學(xué)教育逐步把數(shù)學(xué)建模理念融入到課題教學(xué)中,提高學(xué)生的應(yīng)用能力。以數(shù)學(xué)建模理念的告知書明確教學(xué)改革要求學(xué)生結(jié)合計算機技術(shù),靈活運用數(shù)學(xué)的思想和方法獨立地分析和解決問題,不僅能培養(yǎng)學(xué)生的探索精神和創(chuàng)新意識,而且能培養(yǎng)學(xué)生團結(jié)協(xié)作、不怕困難、求實嚴謹?shù)淖黠L(fēng)[2]。筆者結(jié)合自身的教學(xué)工作經(jīng)驗,對基于數(shù)學(xué)建模理念的高職數(shù)學(xué)教學(xué)改革進行了探索,對教學(xué)實踐中出現(xiàn)的問題進行了分析梳理,以期為高職數(shù)學(xué)教學(xué)改革提供新思路,推動高職數(shù)學(xué)教學(xué)水平的不斷提高,培養(yǎng)出具有良好數(shù)學(xué)素養(yǎng)和專業(yè)技能的新型高職人才。
近年來,隨著國內(nèi)產(chǎn)業(yè)結(jié)構(gòu)的不斷調(diào)整,對于高等職業(yè)技術(shù)人才需求不斷增大,社會對高等職業(yè)技術(shù)教育寄予厚望。但是傳統(tǒng)的高職教育由于專業(yè)設(shè)置不合理,使用教材落后,實訓(xùn)實踐場地不足,培養(yǎng)出的學(xué)生動手能力差、專業(yè)能力不足,面對社會發(fā)展的新形勢,高職教育必須進行教學(xué)改革,提高學(xué)生的職業(yè)能力和就業(yè)競爭力。高職教育不同于普通本科教育,它有以下幾方面的特點。
1人才培養(yǎng)目標(biāo)不同
高職教育和本科教育人才培養(yǎng)目標(biāo)不同,高職教育是以技術(shù)應(yīng)用型高技能人才為培養(yǎng)目標(biāo),所有的教學(xué)課程設(shè)計和人才培養(yǎng)體系設(shè)計都是基于此目標(biāo)展開的,高職教育主要是為了向產(chǎn)業(yè)發(fā)展提供生產(chǎn)、服務(wù)、管理等一線工作的高級技術(shù)應(yīng)用型人才,專業(yè)能力培養(yǎng)和目標(biāo)職業(yè)匹配度高,所以高職教育教學(xué)成果最直接的評價就是畢業(yè)生的就業(yè)競爭力和上崗后的適應(yīng)能力。
2兩者的教學(xué)內(nèi)容不同
高職教育的教學(xué)重點是學(xué)生要掌握與實踐工作關(guān)系較為密切的業(yè)務(wù)處理能力、動手能力與交流能力,把學(xué)生的職業(yè)能力建設(shè)列為教學(xué)重點,課程設(shè)計專業(yè)性強,一旦就業(yè)能為企業(yè)創(chuàng)造明顯的效益,高職教育各專業(yè)課程差別較大。
3生源情況不同
在當(dāng)前的教育教學(xué)體系下,高職教育的生源普遍較差,大多是沒有希望考上大學(xué),轉(zhuǎn)而進入高職學(xué)習(xí),希望通過掌握一定的技術(shù)來實現(xiàn)就業(yè),所以高職學(xué)生的基礎(chǔ)知識普遍較差,學(xué)習(xí)興趣不高。數(shù)學(xué)建模給高職數(shù)學(xué)教學(xué)改革開辟了新思路,數(shù)學(xué)建模為數(shù)學(xué)理論學(xué)習(xí)和工程實踐應(yīng)用搭建了橋梁,在工學(xué)結(jié)合的基本原則下,采取數(shù)學(xué)建模教學(xué)理念,培養(yǎng)學(xué)生的數(shù)學(xué)素養(yǎng)及動手應(yīng)用能力是一個非常有效的手段[3]。
1數(shù)學(xué)建模的概念數(shù)學(xué)建模是將數(shù)學(xué)理論和現(xiàn)實問題相結(jié)合的一門科學(xué),它將實際問題抽象、歸納成為相應(yīng)的數(shù)學(xué)模型,在此基礎(chǔ)上應(yīng)用數(shù)學(xué)概念、數(shù)學(xué)定理、數(shù)學(xué)方法等手段研究處理實際問題,從定性或者定理的角度給出科學(xué)的結(jié)果[4]。數(shù)學(xué)建模的發(fā)展為數(shù)學(xué)知識的應(yīng)用提供了途徑,對于現(xiàn)實中的特點問題,可以用數(shù)學(xué)語言來描述其內(nèi)在規(guī)律和問題,運用數(shù)學(xué)研究的成果,結(jié)合計算機專業(yè)軟件,通過抽象、簡化、假設(shè)、引進變量等處理過程后,將實際問題用數(shù)學(xué)方式表達,轉(zhuǎn)化成為數(shù)學(xué)問題,借助數(shù)學(xué)思想建立起數(shù)學(xué)模型,從而解決實際問題。2基于數(shù)學(xué)建模思想的教學(xué)理念基于數(shù)學(xué)建模的這種學(xué)科特點,可以把數(shù)學(xué)知識應(yīng)用化,因此,基于數(shù)學(xué)建模思想的教學(xué)理念可以概括為三個層次:首先,確立提高學(xué)生數(shù)學(xué)應(yīng)用能力為目標(biāo),以提高學(xué)生數(shù)學(xué)學(xué)習(xí)興趣為手段,以學(xué)習(xí)數(shù)學(xué)建模為途徑;其次,結(jié)合教學(xué)內(nèi)容,開發(fā)相應(yīng)的數(shù)學(xué)建模案例,因地制宜、因生制宜,根據(jù)專業(yè)不同編寫相應(yīng)的校本教材;最后,改進教學(xué)方法,創(chuàng)新課堂教學(xué)模式,建立課外數(shù)學(xué)建模學(xué)習(xí)興趣小組,帶領(lǐng)學(xué)生進行數(shù)學(xué)應(yīng)用實踐活動,鼓勵學(xué)生參加各種數(shù)學(xué)建模競賽[5]。
傳統(tǒng)的數(shù)學(xué)教學(xué)模式以教師課堂講授為中心,學(xué)生只能被動的接受,由于學(xué)生的基礎(chǔ)知識水平不同,掌握新知識的能力也不同,這種沒有區(qū)分的教學(xué)模式教學(xué)效果差,往往帶來的結(jié)果是造成基礎(chǔ)差的學(xué)生跟不上,對數(shù)學(xué)感興趣的學(xué)生失去興趣?;跀?shù)學(xué)建模理念的高職數(shù)學(xué)教學(xué)改革,是以學(xué)生數(shù)學(xué)應(yīng)用能力提高為目標(biāo),以數(shù)學(xué)學(xué)習(xí)興趣培養(yǎng)為出發(fā)點,以數(shù)學(xué)建模為途徑,以教學(xué)方式改革為保障,打造高職數(shù)學(xué)教學(xué)改革新模式,全面提高高職教育應(yīng)用型人才培養(yǎng)水平。
1結(jié)合專業(yè)特色,突出數(shù)學(xué)教育的應(yīng)用性
數(shù)學(xué)作為高職教育的基礎(chǔ)性學(xué)科,理論性強,體系性強,對于基礎(chǔ)知識薄弱、學(xué)習(xí)興趣差的高職生來說感覺難學(xué)、枯燥,這是因為高職數(shù)學(xué)教育沒有教會學(xué)生如何在專業(yè)學(xué)習(xí)中和以后的工作中如何去用學(xué)到的數(shù)學(xué)知識,學(xué)生感覺知識無用自然也就不會主動去學(xué),之所以引入數(shù)學(xué)建模的思想就是為了讓學(xué)生利用學(xué)到的數(shù)學(xué)知識去解決實際問題,讓學(xué)生認識到數(shù)學(xué)不只是紙面上的寫寫算算,數(shù)學(xué)可以把實際問題抽象化,變成數(shù)學(xué)問題,利用數(shù)學(xué)的研究方法給實際問題進行科學(xué)的指導(dǎo),這樣高職數(shù)學(xué)教育就不再是課堂上的照本宣科,課下的演算作業(yè),將基礎(chǔ)數(shù)學(xué)教育和學(xué)生的專業(yè)教育相結(jié)合,帶來學(xué)生用數(shù)學(xué)解決專業(yè)問題是大幅度提高學(xué)生專業(yè)能力的有效途徑。
2結(jié)合學(xué)生能力,因材施教、因地制宜
高職學(xué)校的生源不如普通高校,一般學(xué)習(xí)基礎(chǔ)較差,對于專業(yè)實訓(xùn)課并不明顯,但是在基礎(chǔ)學(xué)科教學(xué)過程特別突出,很多基礎(chǔ)知識掌握不牢,甚至一點印象都沒有,教師在上課時要充分考慮到這種情況,在課堂授課時給予實時的補充,以助于知識的過渡。因材施教是我國傳統(tǒng)的教育思想,在掌握學(xué)生知識水平的基礎(chǔ)上,教師要根據(jù)不同學(xué)習(xí)層次學(xué)生的具體情況,安排教學(xué)內(nèi)容和設(shè)置教學(xué)目標(biāo),對于基礎(chǔ)知識水平不高、學(xué)習(xí)興趣較差、學(xué)習(xí)能力較弱的學(xué)生要進行課外輔導(dǎo)。高職基礎(chǔ)課教育是專業(yè)課學(xué)習(xí)的基礎(chǔ),授課教師要根據(jù)學(xué)生的專業(yè)學(xué)習(xí)情況和專業(yè)特點,把遷移知識運用能力在課堂上結(jié)合學(xué)生的專業(yè)背景進行輔導(dǎo),高職數(shù)學(xué)教育不僅僅是為了學(xué)習(xí)數(shù)學(xué),更多的是發(fā)揮數(shù)學(xué)知識在其專業(yè)能力培養(yǎng)中的作用。
3培養(yǎng)學(xué)生學(xué)習(xí)興趣,促進整體教學(xué)質(zhì)量提高
高職學(xué)校的學(xué)生學(xué)習(xí)興趣普遍不高,尤其是對于學(xué)了十幾年都感覺頭痛的數(shù)學(xué),要想提高數(shù)學(xué)的教學(xué)質(zhì)量,首先必須要培養(yǎng)學(xué)生的學(xué)習(xí)興趣,長期以來學(xué)生在數(shù)學(xué)學(xué)習(xí)上已經(jīng)有了根深蒂固的認識,培養(yǎng)數(shù)學(xué)學(xué)習(xí)興趣很難,但是如果學(xué)生沒有學(xué)習(xí)興趣,教師授課內(nèi)容、授課方式改革都起不了太大的作用,學(xué)生對于數(shù)學(xué)學(xué)習(xí)興趣低由于低年級學(xué)習(xí)時受到的挫敗感,因此要讓學(xué)生建立學(xué)習(xí)數(shù)學(xué)的自信心,讓他們體驗學(xué)會數(shù)學(xué)的成就感,這樣才能逐步培養(yǎng)他們的學(xué)習(xí)興趣。教師可以采取以點帶面的方式,先選擇有一定基礎(chǔ)的學(xué)生,再從全部課程學(xué)習(xí)中發(fā)現(xiàn)表現(xiàn)優(yōu)秀的個體,組織參加建模競賽,進行單獨賽前加強指導(dǎo),用這些榜樣的力量提高全體同學(xué)的學(xué)習(xí)積極性。數(shù)學(xué)建模作為提高高職數(shù)學(xué)教育教學(xué)水平的“點”,能夠以其趣味性強,帶動學(xué)生的學(xué)習(xí)興趣,促進高職數(shù)學(xué)教育教學(xué)水平的全面提高。
4改革教學(xué)及評價方式,建立面向應(yīng)用的數(shù)學(xué)教育體系
由于基于數(shù)學(xué)建模思想的高職數(shù)學(xué)教學(xué)改革打破了以往的課堂教學(xué)方式和考核方式,學(xué)生面對的不再是期末的一張試卷,而是一個個數(shù)學(xué)建模案例,需要學(xué)生運用本學(xué)期學(xué)到的數(shù)學(xué)知識解決實際問題,教師根據(jù)學(xué)生對案例的理解程度,數(shù)學(xué)模型運用能力,實際過程分析和解題技巧等多方面給出評價,同時積極評價、鼓勵學(xué)生的創(chuàng)新思維,并將其納入到考核體系當(dāng)中。通過以上各個方面評價的加權(quán)作為最后的評價指標(biāo)。這種以數(shù)學(xué)知識應(yīng)用為基礎(chǔ),直接面向應(yīng)用的高職數(shù)學(xué)教育模式能極大的激發(fā)學(xué)生的學(xué)習(xí)積極性和知識應(yīng)用能力,符合高職應(yīng)用型人才培養(yǎng)理念,對提高高職學(xué)生的專業(yè)能力也打下了堅實的基礎(chǔ)?;跀?shù)學(xué)建模理念的高職數(shù)學(xué)教學(xué)改革是推動高職應(yīng)用型人才培養(yǎng)體系建設(shè)的新舉措,也是推動高職基礎(chǔ)課教學(xué)水平的重要內(nèi)容,能有效解決學(xué)生學(xué)習(xí)興趣低,基礎(chǔ)知識掌握不牢,數(shù)學(xué)知識應(yīng)用能力低等問題,通過“案例驅(qū)動法+討論法”,引導(dǎo)學(xué)生再次對課本知識進行思考和應(yīng)用,有利于培養(yǎng)學(xué)生的創(chuàng)新思維和應(yīng)用能力。引入數(shù)學(xué)建模理念教學(xué),把課堂學(xué)習(xí)的主動權(quán)交回給學(xué)生,既保證了高等數(shù)學(xué)原有的知識體系的完整,也可以提高教學(xué)效率。通過教學(xué)方式和評價方式改革,學(xué)生的學(xué)習(xí)主動性增強,也改變了以往對于數(shù)學(xué)學(xué)習(xí)的學(xué)習(xí)態(tài)度。高等數(shù)學(xué)作為高職教育學(xué)生必修的基礎(chǔ)課,在培養(yǎng)學(xué)生基本數(shù)學(xué)素養(yǎng)上具有重要作用,是理工類專業(yè)課程體系的重要組成部分,基于數(shù)學(xué)建模理念的高職數(shù)學(xué)教學(xué)改革也為同類基礎(chǔ)理論課改革提供了新思路和范例。
[1]孫麗.在高職數(shù)學(xué)教學(xué)改革中應(yīng)注重數(shù)學(xué)建模思想的滲透[j].科技資訊,20xx(22):188.
大學(xué)生數(shù)學(xué)建模論文篇十
信息化時代,數(shù)學(xué)科學(xué)與其他學(xué)科交叉融合,使得數(shù)學(xué)技術(shù)變成了一種普適性的關(guān)鍵技術(shù)。大學(xué)加強數(shù)學(xué)課程的應(yīng)用功能,不但可以為學(xué)生提供解決問題的思想和方法,而且更為重要的是可以培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)科學(xué)進行定量化、精確化思維的意識,學(xué)會創(chuàng)造性地解決問題的應(yīng)用能力。數(shù)學(xué)建模課程將數(shù)學(xué)的基本原理、現(xiàn)代優(yōu)化算法以及程序設(shè)計知識很好地融合在一起,有助于培養(yǎng)學(xué)生綜合應(yīng)用數(shù)學(xué)知識將現(xiàn)實問題化為數(shù)學(xué)問題,并進行求解運算的能力,激發(fā)學(xué)生對解決現(xiàn)實問題的探索欲望,強化數(shù)學(xué)課程本身的應(yīng)用功能,凸顯數(shù)學(xué)課程的教育價值,適應(yīng)大學(xué)數(shù)學(xué)課程以培養(yǎng)學(xué)生創(chuàng)新意識為宗旨的教育改革需要。
大學(xué)傳統(tǒng)的數(shù)學(xué)主干課程,如高等數(shù)學(xué)、線性代數(shù)、概率論與數(shù)理統(tǒng)計在奠定學(xué)生的數(shù)學(xué)基礎(chǔ)、培養(yǎng)自學(xué)能力以及為后續(xù)課程的學(xué)習(xí)在基礎(chǔ)方面發(fā)揮奠基作用。但是,這種原有的教學(xué)模式重在突出培養(yǎng)學(xué)生嚴格的邏輯思維能力,而對數(shù)學(xué)的應(yīng)用重視不夠,這使得學(xué)生即使掌握了較為高深的數(shù)學(xué)理論,卻并不能將其靈活應(yīng)用于現(xiàn)實生活解決實際問題,更是缺乏將數(shù)學(xué)應(yīng)用于專業(yè)研究和軍事工程的能力,與創(chuàng)新教育的基本要求差距甚遠。教育轉(zhuǎn)型要求數(shù)學(xué)教學(xué)模式從傳統(tǒng)的傳授知識為主向以培養(yǎng)能力素質(zhì)為主轉(zhuǎn)變,特別是將數(shù)學(xué)建模的思想方法融入到數(shù)學(xué)主干課程之中,在教學(xué)過程中引導(dǎo)學(xué)生將數(shù)學(xué)知識內(nèi)化為學(xué)生的應(yīng)用能力,充分發(fā)揮數(shù)學(xué)建模思想在數(shù)學(xué)教學(xué)過程中的引領(lǐng)作用。數(shù)學(xué)課程教學(xué)改革要適應(yīng)這一教學(xué)模式轉(zhuǎn)型需要,深入探究融入式教學(xué)模式的理論與方式,是推進數(shù)學(xué)教育改革的重要舉措。
2.1理清數(shù)學(xué)建模思想方法與數(shù)學(xué)主干課程的關(guān)系。數(shù)學(xué)主干課程提供了大學(xué)數(shù)學(xué)的基礎(chǔ)理論與基本原理,將數(shù)學(xué)建模的思想方法有機地融入到數(shù)學(xué)主干課程中,不但可以有效地提升數(shù)學(xué)課程的應(yīng)用功能,而且有利于深化學(xué)生對數(shù)學(xué)本原知識的理解,培養(yǎng)學(xué)生的綜合應(yīng)用能力。深入研究數(shù)學(xué)主干課程的功能定位,主要從課程目標(biāo)上的一致性、課程內(nèi)容上的互補性、學(xué)習(xí)形式上的互促性、功能上的整體優(yōu)化性等方面,研究數(shù)學(xué)建模本身所承載的思想、方法與數(shù)學(xué)主干課程的內(nèi)容與邏輯關(guān)系,闡述數(shù)學(xué)建模思想方法對提高學(xué)生創(chuàng)新能力和對數(shù)學(xué)教育改革的重要意義,探索開展融入式教學(xué)及創(chuàng)新數(shù)學(xué)課程教學(xué)模式的有效途徑。
2.2探索融入式教學(xué)模式提升數(shù)學(xué)主干課程應(yīng)用功能的方式。融入式教學(xué)主要有輕度融入、中度融入和完全融入三種方式。根據(jù)主干課程的基本特點,對課程體系進行調(diào)整,在問題解決過程中安排需要融入的知識體系,按照三種方式融入數(shù)學(xué)建模的思想與方法。以學(xué)生能力訓(xùn)練為主導(dǎo),在培養(yǎng)深厚的數(shù)學(xué)基礎(chǔ)和嚴格的邏輯思維能力的基礎(chǔ)上,充分發(fā)揮數(shù)學(xué)建模思想方法對學(xué)生思維方式的培養(yǎng)功能和引導(dǎo)作用,培養(yǎng)學(xué)生敏銳的分析能力、深刻的'歸納演繹能力以及將數(shù)學(xué)知識應(yīng)用于工程問題的創(chuàng)新能力。
2.3建立數(shù)學(xué)建模思想方法融入數(shù)學(xué)主干課程的評價方式。融入式教學(xué)是處于探索中的教學(xué)模式,教學(xué)成效有待于實踐檢驗。選取開展融入式教學(xué)的實驗班級,對數(shù)學(xué)建模思想方法融入主干課程進行教學(xué)效果實踐驗證。設(shè)計相應(yīng)的考察量表,從運用直覺思維深入理解背景知識、符號翻譯開展邏輯思維、依托圖表理順數(shù)量關(guān)系、大膽嘗試進行建模求解等多方面對實驗課程的教學(xué)效果進行檢驗,深入分析融入式教學(xué)模式的成效與不足,為探索有效的教學(xué)模式提出改進的對策。
3.1改革課程教學(xué)內(nèi)容,滲透數(shù)學(xué)建模的思想方法。傳統(tǒng)的數(shù)學(xué)主干課程教學(xué)內(nèi)容,將數(shù)學(xué)看作嚴謹?shù)难堇[體系,教學(xué)過程中著力于對學(xué)生傳授大學(xué)數(shù)學(xué)的基礎(chǔ)知識,而對應(yīng)用能力的培養(yǎng)卻重視不夠。使得本應(yīng)能夠發(fā)揮應(yīng)用功能的數(shù)學(xué)知識則淪為僵死的教條性數(shù)學(xué)原理,這失去了教學(xué)的活力。學(xué)生即使掌握了再高深的數(shù)學(xué)知識,仍難以學(xué)會用數(shù)學(xué)的基本方法解決現(xiàn)實問題?,F(xiàn)行的大學(xué)數(shù)學(xué)課程教學(xué)內(nèi)容中,適當(dāng)?shù)貪B透一些應(yīng)用性比較廣泛的數(shù)學(xué)方法,如微元法、迭代法及最佳逼近等方法,有利于促進學(xué)生對數(shù)學(xué)基礎(chǔ)知識的掌握,同時理解數(shù)學(xué)原理所蘊涵的思想與方法。
這樣,在解決實際問題的時候,學(xué)生就會有意識地從數(shù)學(xué)的角度進行思考,嘗試建立相應(yīng)的數(shù)學(xué)模型并進行求解,拓展了數(shù)學(xué)知識的深度與廣度,提升了學(xué)生的數(shù)學(xué)應(yīng)用能力四、結(jié)語數(shù)學(xué)建模是數(shù)學(xué)科學(xué)在科技、經(jīng)濟、軍事等領(lǐng)域廣泛應(yīng)用的接口,是數(shù)學(xué)科學(xué)轉(zhuǎn)化成科學(xué)技術(shù)的重要途徑。在數(shù)學(xué)主干課程中融入數(shù)學(xué)建模的思想與方法,可以推動大學(xué)數(shù)學(xué)教育改革的深入發(fā)展,加深學(xué)生對相關(guān)知識的理解和掌握,有助于從思維方式上培養(yǎng)學(xué)生的創(chuàng)新意識與創(chuàng)新能力。
此外,數(shù)學(xué)建模思想方法融入教學(xué)主干課程還涉及到許多問題,比如數(shù)學(xué)建模與計算技術(shù)如何有效結(jié)合以進行模擬仿真、融入式教學(xué)模式的基本理論、構(gòu)建新的課程體系等問題,仍將有待于更深入的研究。
大學(xué)生數(shù)學(xué)建模論文篇十一
隨著我國高等教育的發(fā)展,高校招生規(guī)模越來越大,而生源質(zhì)量較低,特別是獨立學(xué)院院校。就我校而言,絕大多數(shù)專業(yè)都開設(shè)了數(shù)學(xué)類課程。但在教學(xué)中,普遍認為理論性太強,與實際脫節(jié)嚴重,不能引起學(xué)生的學(xué)習(xí)興趣。并且,傳統(tǒng)教學(xué)忽視了學(xué)生用數(shù)學(xué)解決實際問題的能力,所以,進行數(shù)學(xué)教學(xué)改革勢在必行。數(shù)學(xué)建??膳囵B(yǎng)學(xué)生利用數(shù)學(xué)知識解決實際問題的能力,通過數(shù)模方法對實際問題進行巧妙處理,讓學(xué)生體會到數(shù)學(xué)不僅能傳播理論知識和求解一些數(shù)學(xué)問題,還可將其應(yīng)用到實際問題中,讓學(xué)生看到一些實際模型的來龍去脈,提高學(xué)生的學(xué)習(xí)積極性。數(shù)學(xué)建模是培養(yǎng)學(xué)生綜合科學(xué)素質(zhì)和創(chuàng)新能力的一個極好載體,而且能充分考驗學(xué)生的洞察能力、創(chuàng)新能力、聯(lián)想能力、使用當(dāng)代科技最新成果的能力等。學(xué)生們同舟共濟的團隊合作精神和協(xié)調(diào)組織能力,以及誠信意識和自律精神的塑造,都能得到很好的培養(yǎng)。技能技術(shù)的掌握和團隊合作精神對于獨立學(xué)院學(xué)生將來進入社會十分重要,這也是衡量獨立學(xué)院辦學(xué)成功與否的一個方面。因此,獨立學(xué)院的人才培養(yǎng)目標(biāo)定位,既要達到本科生應(yīng)具備的理論基礎(chǔ),又要有相對突出的專業(yè)技能,應(yīng)培養(yǎng)“應(yīng)用型本科”人才。因而,獨立學(xué)院的數(shù)學(xué)課堂上應(yīng)該多方面滲透數(shù)學(xué)模型的思想。
(一)人才培養(yǎng)創(chuàng)新的需要
根據(jù)獨立學(xué)院人才培養(yǎng)目標(biāo)和實際情況,有針對性的加大基礎(chǔ)課和實踐環(huán)節(jié)教學(xué)的'比重,側(cè)重于實踐能力的培養(yǎng),在專業(yè)課程體系中適當(dāng)增加實驗、實踐教學(xué)內(nèi)容,加強與社會實體的聯(lián)系。力求培養(yǎng)出具有實際操作能力的高素質(zhì)大學(xué)生。數(shù)學(xué)建模是將一個實際問題,對其作出一些必要的簡化與假設(shè),將其轉(zhuǎn)化成一個數(shù)學(xué)問題,借助數(shù)學(xué)工具和數(shù)學(xué)方法精確或近似地解決該問題,并用數(shù)學(xué)結(jié)果解釋客觀現(xiàn)象、回答實際問題并接受客觀實際的檢驗。數(shù)學(xué)建模能彌補傳統(tǒng)數(shù)學(xué)教學(xué)在實際應(yīng)用方面的不足,促進數(shù)學(xué)教師在現(xiàn)代化教學(xué)手段、教學(xué)模式方面的更新。數(shù)學(xué)建模有助于調(diào)動學(xué)生的學(xué)習(xí)興趣,在計算機應(yīng)用能力、實踐能力和創(chuàng)新意識的培養(yǎng)方面都有著非常大的作用,以便學(xué)生將來能更好地適應(yīng)工作崗位。
(二)高校教學(xué)改革的需要
當(dāng)今社會信息高度發(fā)達,競爭日益激烈,必須具備一定的創(chuàng)新意識和創(chuàng)新能力,否則很難適應(yīng)社會信息時代的要求。傳統(tǒng)的教學(xué)模式是以課堂理論講授為主,學(xué)生絕大部分時間都集中學(xué)習(xí)書本知識,很少有機會接觸社會,也難做到學(xué)以致用。絕大多數(shù)課程都是教師的一言堂,考試也是以教師講課內(nèi)容為主。學(xué)生忙于記錄和背誦而閑置其聰慧的頭腦。長期的灌輸式教學(xué)導(dǎo)致學(xué)生明顯缺乏學(xué)習(xí)的主動性,會聽從而不會質(zhì)疑,更不會形成開創(chuàng)性的觀點,很難適應(yīng)企事業(yè)單位動態(tài)的工作環(huán)境。數(shù)學(xué)作為一門傳統(tǒng)基礎(chǔ)學(xué)科,對獨立學(xué)院的學(xué)生來說,學(xué)習(xí)上有一定的難度。我們的教學(xué)應(yīng)以“必需,夠用”為度。數(shù)學(xué)建模從形式到內(nèi)容,都與畢業(yè)后工作時的條件非常相近,是一次非常好的鍛煉,學(xué)生通過自主的學(xué)習(xí),把實際的問題轉(zhuǎn)化為數(shù)學(xué)理論解決,有助于學(xué)生創(chuàng)新能力的培養(yǎng)動手能力的提高,這也正是獨立學(xué)院院校應(yīng)用型本科人才培養(yǎng)的方向。
(三)學(xué)生參加數(shù)學(xué)建模競賽的需要
獨立學(xué)院學(xué)生思維活躍,且比較注重個人能力素質(zhì)的提高。很多學(xué)生愿意在學(xué)校參加一些競賽來提高自己。全國大學(xué)生數(shù)學(xué)建模競賽尤其受學(xué)生重視,但仍有很多大學(xué)生不了解這類競賽,因此,在數(shù)學(xué)課堂上引入數(shù)學(xué)建模思想,學(xué)生既了解了數(shù)學(xué)建模,又對數(shù)學(xué)公式提起了興趣,還有助于獨立學(xué)院學(xué)生在全國大學(xué)生數(shù)學(xué)建模競賽中取得優(yōu)異成績。
高等數(shù)學(xué)的作用表現(xiàn)在為各專業(yè)后續(xù)課程的學(xué)習(xí)提供必要的數(shù)學(xué)知識,培養(yǎng)各專業(yè)學(xué)生的數(shù)學(xué)思想與數(shù)學(xué)修養(yǎng),全面提高大學(xué)生創(chuàng)新思維和應(yīng)用能力。只有把數(shù)學(xué)建模思想融入數(shù)學(xué)教學(xué)中,才能調(diào)動學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,培養(yǎng)學(xué)生的創(chuàng)新能力,實現(xiàn)提高學(xué)生綜合分析問題能力的最終目標(biāo)。
作者:崔瑋王文麗單位:中國地質(zhì)大學(xué)長城學(xué)院信息工程系
大學(xué)生數(shù)學(xué)建模論文篇十二
計算數(shù)學(xué)建模是用數(shù)學(xué)的思考方式,采用數(shù)學(xué)的方法和語言,通過簡化,抽象的方式來解決實際問題的一種數(shù)學(xué)手段。數(shù)學(xué)建模所解決的問題不止現(xiàn)實的,還包括對未來的一種預(yù)見。數(shù)學(xué)建??梢哉f和我們的生活息息相關(guān),尤其是如今科技發(fā)達的今天。數(shù)學(xué)建模應(yīng)用領(lǐng)域超乎我們的想象,甚至達到無所不及的程度,隨著數(shù)學(xué)建模在大學(xué)教學(xué)中的廣泛使用,使數(shù)學(xué)建模不止成為一種學(xué)科,更重要的是指導(dǎo)新生代更好的利用現(xiàn)代科學(xué)技術(shù),成為高科技人才,把我國人才強國,科教興國的戰(zhàn)略推向一個新的高度。
1.1數(shù)學(xué)建模引進大學(xué)數(shù)學(xué)教學(xué)的必要。教學(xué)過程,是教師根據(jù)社會發(fā)展要求和當(dāng)代學(xué)生身心發(fā)展的特點,借助教學(xué)條件,指導(dǎo)學(xué)生通過認識教學(xué)內(nèi)容從而認識客觀世界,并在此基礎(chǔ)之上發(fā)展自身的過程,即教學(xué)活動的展開過程。以往高工專的數(shù)學(xué)教學(xué)存在著知識單一,內(nèi)容陳舊,脫離實際等缺陷,已經(jīng)不能滿足時代的發(fā)展,如今的數(shù)學(xué)教學(xué)過程不是單純的傳授數(shù)學(xué)學(xué)科知識,而是通過數(shù)學(xué)教學(xué)過程引導(dǎo)學(xué)生認識科學(xué),理解科學(xué),從而指導(dǎo)實踐,促進學(xué)生的德智體美勞全面的進步和發(fā)展。因此數(shù)學(xué)建模成為一門學(xué)科,被各大高等院校廣泛引用和推廣,其實數(shù)學(xué)建模不止應(yīng)用在大學(xué)數(shù)學(xué)教學(xué)中,其他一切教學(xué)過程多可引進數(shù)學(xué)建模。1.2數(shù)學(xué)建模在大學(xué)數(shù)學(xué)教學(xué)中的運用。大學(xué)數(shù)學(xué)教師通過這個數(shù)學(xué)建模過程來引導(dǎo)學(xué)生解決問題和指導(dǎo)實踐的能力。再次建模結(jié)果對現(xiàn)實生活的指導(dǎo),這是大學(xué)數(shù)學(xué)教學(xué)中數(shù)學(xué)建模所需要達到的效果和要求。不再停留在理論學(xué)習(xí),而是通過理論指導(dǎo)實踐,從而為科學(xué)的進步和人才綜合水平的提高提供可能。
2.1數(shù)學(xué)建模對數(shù)學(xué)學(xué)科和其他學(xué)科學(xué)生的巨大影響力學(xué)習(xí)數(shù)學(xué)建模,能夠使一個單獨的數(shù)學(xué)家變成經(jīng)濟學(xué)家,物理學(xué)家還有金融學(xué)家,甚至是藝術(shù)家,只要正握數(shù)學(xué)建模就能指導(dǎo)學(xué)生通過掌握數(shù)學(xué)建模的思維和方法向其他領(lǐng)域?qū)W習(xí)和進步。數(shù)學(xué)建模成為連接數(shù)學(xué)和其他領(lǐng)域的紐帶,是當(dāng)今數(shù)學(xué)科學(xué)在其他領(lǐng)導(dǎo)應(yīng)用的橋梁,是數(shù)學(xué)技術(shù)轉(zhuǎn)化為其他技術(shù)的途徑,數(shù)學(xué)建模在學(xué)生中越來越受到關(guān)注和歡迎,越來越多的學(xué)生開始學(xué)習(xí)數(shù)學(xué)建模,尤其是數(shù)學(xué)界和工程界的學(xué)生,這成為當(dāng)今學(xué)生成為現(xiàn)代科技工作者必須掌握的只是能力之一。
2.2數(shù)學(xué)建模對學(xué)生綜合能力的提高數(shù)學(xué)建模是大學(xué)數(shù)學(xué)教師運用數(shù)學(xué)科學(xué)去分析和解決實際問題,在數(shù)學(xué)建模學(xué)習(xí)的過程中,大學(xué)生的數(shù)學(xué)能力得到提高,其分析問題、解決問題的能力得到提高,這對大學(xué)生畢業(yè)走向社會具有著重大意義。通過數(shù)學(xué)建模的學(xué)習(xí)和應(yīng)用,激發(fā)大學(xué)生學(xué)習(xí)數(shù)學(xué)和應(yīng)用數(shù)學(xué)的能力,運用數(shù)學(xué)的思維和方法,利用現(xiàn)代計算機科學(xué),來解決數(shù)學(xué)及其他領(lǐng)域的問題。
數(shù)學(xué)建模引入大學(xué)數(shù)學(xué)教學(xué),這是時代的進步,是時代對當(dāng)代大學(xué)教師提出的新要求,尤其是大學(xué)數(shù)學(xué)教師,其不再停留在以往的單純的數(shù)學(xué)知識講授方向,而是將數(shù)學(xué)科學(xué)作為基礎(chǔ),引導(dǎo)當(dāng)代大學(xué)生發(fā)散思維,發(fā)揮主觀能動性,從而學(xué)習(xí)數(shù)學(xué)科學(xué),并運用數(shù)學(xué)科學(xué)解決現(xiàn)實問題。在這個過程中大學(xué)教師的專業(yè)知識得到提高,其創(chuàng)新精神也得到了極大的豐富。大學(xué)數(shù)學(xué)教師不止完成數(shù)學(xué)教學(xué),更重要的是培養(yǎng)了高科技的人才,這對大學(xué)數(shù)學(xué)教師的社會地位也有了相應(yīng)的改變,在尊重人才,尊重科學(xué)的氛圍中,大學(xué)數(shù)學(xué)教師及其他學(xué)科的教師得到了鼓舞,得到了進步,得到了認可。數(shù)學(xué)建模越來越重要,關(guān)于數(shù)學(xué)建模的各種國內(nèi)國際大賽頻頻舉辦,這對大學(xué)數(shù)學(xué)教師在知識,體力和創(chuàng)新性上都提出新的要求,為了更好的參與數(shù)學(xué)建模比賽,大學(xué)數(shù)學(xué)教師投入更多的時間和經(jīng)歷在學(xué)生教育和數(shù)學(xué)建模中,他們成為真正的臺前和幕后的指揮者。
隨著現(xiàn)代大學(xué)學(xué)科的豐富,尤其是計算機科學(xué)的廣泛應(yīng)用,大學(xué)數(shù)學(xué)教學(xué)的跨時代發(fā)展,數(shù)學(xué)建模成為各個高校數(shù)學(xué)教學(xué)的重點內(nèi)容,數(shù)學(xué)建模教學(xué)吸納數(shù)學(xué)家,計算機學(xué)家等多個學(xué)科專家的意見,從而為培養(yǎng)出綜合行的高科技人才做好充分的準備??梢哉f數(shù)學(xué)建模教學(xué)是當(dāng)今大學(xué)數(shù)學(xué)教學(xué)的主旋律,是數(shù)學(xué)科學(xué)和其他科學(xué)進步發(fā)展的方向和原動力。
[1]李進華.教育教學(xué)改革與教育創(chuàng)新探索.安徽:安徽大學(xué)出版社,20xx.8.
[2]于駿.現(xiàn)代數(shù)學(xué)思想方法.山東:石油大學(xué)出版社,1997.
大學(xué)生數(shù)學(xué)建模論文篇十三
培養(yǎng)應(yīng)用型人才是我國高等教育從精英教育向大眾教育發(fā)展的必然產(chǎn)物,也是知識經(jīng)濟飛速發(fā)展和市場對人才多元化需求的必然要求。隨著科學(xué)技術(shù)的不斷發(fā)展,各學(xué)科各領(lǐng)域?qū)嶋H問題的研究日益精確化與定量化,數(shù)學(xué)在科學(xué)研究與工程技術(shù)中的作用不斷增強,其應(yīng)用的范圍幾乎覆蓋了所有學(xué)科分支,滲透到社會生活中的各個領(lǐng)域。前蘇聯(lián)數(shù)學(xué)家亞歷山大洛夫曾說過,“數(shù)學(xué)在其它科學(xué)中,在技術(shù)中,在全部生活實踐中都有廣泛的應(yīng)用”。1993年,王梓坤院士發(fā)表的著名報告《今日數(shù)學(xué)及其應(yīng)用》中也深刻指出:“現(xiàn)代世界國家間的競爭本質(zhì)上是高技術(shù)的競爭,而高技術(shù)本質(zhì)上是一種數(shù)學(xué)技術(shù)?!睌?shù)學(xué)是一門技術(shù)已經(jīng)成為人們的共識。數(shù)學(xué)技術(shù)離不開數(shù)學(xué)建模,數(shù)學(xué)建模是把數(shù)學(xué)作為工具,并應(yīng)用它解決實際問題的一種活動,它是一個跨學(xué)科、跨專業(yè)、綜合性和應(yīng)用性都非常強的過程,是數(shù)學(xué)應(yīng)用的必由之路,是聯(lián)系數(shù)學(xué)與實際問題的橋梁,是數(shù)學(xué)在各個領(lǐng)域廣泛應(yīng)用的媒介。因此,數(shù)學(xué)建模的過程是一個全而培養(yǎng)學(xué)生綜合素質(zhì)、提高學(xué)生各種能力的過程,數(shù)學(xué)建模是培養(yǎng)生產(chǎn)一線應(yīng)用型人才的一條重要途徑。
應(yīng)用型人才是將專業(yè)知識和專業(yè)技能應(yīng)用于社會實踐的專門人才是熟練掌握社會生產(chǎn)或社會活動一線的基礎(chǔ)知識和基本技能,主要從事一線生產(chǎn)的技術(shù)或?qū)iT人才社會對應(yīng)用型人才的基本要求是具有基礎(chǔ)扎實,知識而寬,應(yīng)用能力強,素質(zhì)高,有較強的創(chuàng)新精神和團隊合作精神。他們的突出特點是既具有寬廣的知識而和深厚的基礎(chǔ)理論,又能將所學(xué)知識應(yīng)用于本行業(yè)相關(guān)技術(shù)領(lǐng)域,適應(yīng)產(chǎn)業(yè)發(fā)展對應(yīng)用型人才市場需求的不斷變化,還有接受繼續(xù)教育的基礎(chǔ)條件和進一步獲取新知識的基本能力和擴展與職業(yè)相關(guān)的學(xué)科知識能力。
隨著高等教育的不斷擴招,高等教育的大眾化趨勢已越來越明顯,在這種背景下,傳統(tǒng)的“研究型”、“學(xué)術(shù)型”人才培養(yǎng)模式受到了嚴峻的挑戰(zhàn),因此,一些發(fā)達國家率先提出了“發(fā)展應(yīng)用型大學(xué)”,“培養(yǎng)應(yīng)用型人才”的口號。德國早在20世紀70年代就成立了應(yīng)用科技大學(xué),其應(yīng)用型人才的培養(yǎng)特色鮮明,深受歡迎。美國的工程教育,英國的技術(shù)學(xué)院,日本的短期大學(xué)都以培養(yǎng)應(yīng)用型人才而著稱。近年來,我國高等院校對應(yīng)用型人才的培養(yǎng)取得了一定的進展,但仍然存在認識上的不足,培養(yǎng)方案和措施仍有許多不盡如人意的地方,應(yīng)用型人才的培養(yǎng)模式還有待于進一步探索。通過多年的實踐和探索,根據(jù)應(yīng)用型人才的特點和社會日益數(shù)字化,對應(yīng)用型人才的要求以及數(shù)學(xué)在各行各業(yè)中的廣泛應(yīng)用、數(shù)學(xué)建模在應(yīng)用型人才培養(yǎng)中具有不可替代的重要作用。
數(shù)學(xué)建模就是用數(shù)學(xué)語言、方法近似地刻畫要解決的實際問題,對于已建立的模型采用推理、證明、數(shù)值計算等技術(shù)手段及相應(yīng)的數(shù)學(xué)軟件求解,并利用所得的結(jié)果擬合實際問題。數(shù)學(xué)建模在應(yīng)用型人才培養(yǎng)中的作用主要體現(xiàn)在以下幾個方面:
由于實際問題的'復(fù)雜性,在數(shù)學(xué)建模過程中要涉及到大量的數(shù)據(jù)收集和對數(shù)據(jù)的分析與處理,一個完整的建模過程一般要經(jīng)歷模型的假設(shè)、模型的建立與求解、算法的設(shè)計和計算機實現(xiàn)、對結(jié)果的分析與檢驗并將所得的結(jié)果模擬實際問題等幾個階段。這些過程只靠個人的力量在有限時間內(nèi)是很難完成的,這就注定了數(shù)學(xué)建模是一個團隊的集體行為,需要有師生之間、學(xué)生之間以及學(xué)生與社會之間的交流與合作。因此數(shù)學(xué)建模有利于提高學(xué)生的團隊合作精神,而團隊合作精神又是社會對應(yīng)用型人才的基本要求。
數(shù)學(xué)建模所面臨的數(shù)據(jù)是雜亂無章的,這就要求學(xué)生對這些數(shù)據(jù)進行去粗取精,去偽存真,歸納、提煉、整理、加工和總結(jié),還需要對一些已知條件進行符號化和量化,然后從中抽象出恰當(dāng)?shù)臄?shù)學(xué)關(guān)系,從而組建一定的數(shù)學(xué)模型,再用所學(xué)的數(shù)學(xué)理論和方法去求解數(shù)學(xué)模型。在對實際問題中的數(shù)據(jù)進行加工和整理過程中,為使問題簡化,有些因素是可以忽略的,但有些因素不能忽略,究竟哪些因素可以忽略、哪些因素不能忽略并沒有一定的范式,這要根據(jù)建模者對實際問題的理解、研究問題的目的以及數(shù)學(xué)背景來完成這個過程,應(yīng)該說這是一個創(chuàng)造性的過程。另外,數(shù)學(xué)模型是對實際問題的近似刻畫,為了使建立的數(shù)學(xué)模型盡可能完美地表達實際問題,又使模型易于求解,需要對模型進行不斷的改進和不斷的完善,這就要求學(xué)生不斷對問題進行深入的了解,深入到知識的更深層面,這樣又會產(chǎn)生新的疑問,這個過程多次循環(huán)們復(fù),學(xué)生的創(chuàng)新能力將不斷得到加強。創(chuàng)新能力也是社會對應(yīng)用型人才的基本要求。
一個完整的數(shù)學(xué)建模過程是綜合運用知識和能力,解決實際問題的過程。這不僅需要學(xué)生有較好的數(shù)學(xué)基礎(chǔ)和嚴密的邏輯推理能力,還要求學(xué)生對問題的實際背景有一定的了解,要求學(xué)生有廣博的知識和深厚的專業(yè)基礎(chǔ),并能對這些知識進行融會貫通。數(shù)學(xué)建模面臨的數(shù)據(jù)}i-.}i是龐大而復(fù)雜的,對數(shù)據(jù)的處理過程是一個分析與綜合,抽象與概括,比較與類比,系統(tǒng)化與具體化的過程。在這個過程中,學(xué)生的應(yīng)變能力和多角度分析,多方位思考能力不斷得到提高,綜合素質(zhì)不斷得到加強。綜合素質(zhì)和能力是應(yīng)用型人才的基本特征和社會對應(yīng)用型人才的起碼要求。
從實際問題中抽象出來的數(shù)學(xué)模型一般很復(fù)雜,因此模型的求解一般很困難,甚至無法求出模型的解析解,即使能求出模型的解析解,由于其復(fù)雜性而無多大的應(yīng)用價值。所以數(shù)學(xué)模型的求解通常需要編寫算法,運用某些數(shù)學(xué)軟件利用計算機求其數(shù)值解,這就要求學(xué)生有較強的數(shù)學(xué)軟件應(yīng)用能力和對計算機的實際操作能力。在操作的過程中,學(xué)生的動手能力和實踐能力自然而然得到提高。另外在數(shù)學(xué)建模中,需要進行調(diào)查研究,需要對有關(guān)的數(shù)據(jù)進行廣泛的采集和補充,這就是應(yīng)用型人才培養(yǎng)中所強調(diào)的實踐性。
數(shù)學(xué)建模本身就是綜合運用知識,解決實際問題的過程。數(shù)學(xué)建模中的很多典型案例,如“最優(yōu)捕魚策略”,“投資的收入和風(fēng)險”,“車燈線光源的優(yōu)化設(shè)計”等就較好地突現(xiàn)了知識的應(yīng)用性。數(shù)學(xué)建模是數(shù)學(xué)應(yīng)用的必由之路,是聯(lián)系數(shù)學(xué)與實際問題的橋梁。一方面數(shù)學(xué)建模需要用數(shù)學(xué)語言、方法近似地刻畫要解決的實際問題,另一方面數(shù)學(xué)建模需要利用所得的結(jié)果擬合實際問題,所有這些都與應(yīng)用型人才的突出特點和社會對應(yīng)用型人才的要求是一致的。
數(shù)學(xué)建模需要學(xué)生親自參與問題的研究與探索,數(shù)據(jù)的收集和補充需要學(xué)生的積極參與,數(shù)據(jù)的處理和模型的建立需要學(xué)生的主動參與,模型的求解需要學(xué)生獨立完成。數(shù)學(xué)建模一般需要綜合運用多方面的知識,需要了解相關(guān)問題的背景材料,需要對相關(guān)的數(shù)據(jù)進行合理的取舍和有效的篩選,有些知識和相關(guān)的資料需要學(xué)生自己去查詢,所有這些都為學(xué)生的自主學(xué)習(xí)提供了一個良好的“下臺。另外,數(shù)學(xué)建模需要用自己的語言描述問題的解決過程,需要廣泛的交流與合作,還需要進行論文的寫作等等,這些都對學(xué)生語言表達能力的提高具有重要的作用。應(yīng)用型人才的一個突出特點就是具有接受繼續(xù)教育的基礎(chǔ)條件和進一步獲取新知識的基本能力和擴展與職業(yè)相關(guān)的學(xué)科知識能力,而自學(xué)能力和語言表達能力為進一步獲取新知識等能力提供了良好的基礎(chǔ)。
應(yīng)該說,數(shù)學(xué)建模的作用是多方面的,通過數(shù)學(xué)建模的訓(xùn)練,學(xué)生獲得了參與研究探索的體驗,培養(yǎng)了收集、分析和利用信息的能力,學(xué)會了分享與合作,鍛煉了學(xué)生的意志力、洞察力、想象力、自學(xué)能力、語言的翻譯和表達能力以及綜合應(yīng)用專業(yè)知識解決實際問題的能力與分析問題、解決問題的能力,所有這一切都是應(yīng)用型人才培養(yǎng)所要達到的目標(biāo),也是與應(yīng)用型人才培養(yǎng)模式的四個基本點是一致的。因此數(shù)學(xué)建模能將應(yīng)用型人才的突出特征和社會對應(yīng)用型人才的要求體現(xiàn)得淋漓盡致,它在應(yīng)用型人才的培養(yǎng)中具有不可替代的重要作用。
1.馬克思有一句名言,“一門科學(xué)只有成功地應(yīng)用了數(shù)學(xué)時,才算真正達到了完善的地步”。不論是自然科學(xué)還是社會科學(xué)都需要數(shù)學(xué),都蘊含數(shù)學(xué)。一門科學(xué)要成功地應(yīng)用數(shù)學(xué),必須對這門學(xué)科中的問題建立數(shù)學(xué)模型。因此,建議高等院校的各個專業(yè)都要不同程度地開設(shè)數(shù)學(xué)建模課程,并根據(jù)專業(yè)的不同要求選擇合適的數(shù)學(xué)建模內(nèi)容,真正做到“人人學(xué)有用的數(shù)學(xué),人人做有用的數(shù)學(xué),人人用有用的數(shù)學(xué)”。
2.數(shù)學(xué)建模課程應(yīng)增加實訓(xùn)內(nèi)容,數(shù)學(xué)建模的學(xué)習(xí)應(yīng)以實訓(xùn)內(nèi)容為主。教師應(yīng)根據(jù)學(xué)生的具體情況,女排布置具有綜合性、開放性、靈活性和趣味性的實訓(xùn)題目,讓學(xué)生自己進行調(diào)查研究,自己收集數(shù)據(jù)、分析數(shù)據(jù)和處理數(shù)據(jù),模型的建立和求解要以學(xué)生為主體,并以論文的形式提交給教師,教師提供實時指導(dǎo)和幫助,對建模的結(jié)果進行有的放矢的點評,并將實訓(xùn)內(nèi)容作為學(xué)生期末考評的主要內(nèi)容和重要依據(jù)。
3.舉辦多種形式的數(shù)學(xué)建模競賽,豐富數(shù)學(xué)建模的教學(xué)內(nèi)容和教學(xué)方式,引進案例教學(xué)和專題講座,通過對典型案例的深入剖析,激發(fā)學(xué)生的學(xué)習(xí)興趣和積極性,培養(yǎng)學(xué)生的數(shù)學(xué)建模思想和堅忍不拔的毅力,聘請專家對一些典型問題進行專題講座。
大學(xué)生數(shù)學(xué)建模論文篇十四
優(yōu)秀高教社杯全國大學(xué)生數(shù)學(xué)建模競賽題目
(請先閱讀“全國大學(xué)生數(shù)學(xué)建模競賽論文格式規(guī)范”)
a題城市表層土壤重金屬污染分析
隨著城市經(jīng)濟的快速發(fā)展和城市人口的不斷增加,人類活動對城市環(huán)境質(zhì)量的影響日顯突出。對城市土壤地質(zhì)環(huán)境異常的查證,以及如何應(yīng)用查證獲得的海量數(shù)據(jù)資料開展城市環(huán)境質(zhì)量評價,研究人類活動影響下城市地質(zhì)環(huán)境的演變模式,日益成為人們關(guān)注的焦點。
按照功能劃分,城區(qū)一般可分為生活區(qū)、工業(yè)區(qū)、山區(qū)、主干道路區(qū)及公園綠地區(qū)等,分別記為1類區(qū)、2類區(qū)、??、5類區(qū),不同的區(qū)域環(huán)境受人類活動影響的程度不同。
現(xiàn)對某城市城區(qū)土壤地質(zhì)環(huán)境進行調(diào)查。為此,將所考察的城區(qū)劃分為間距1公里左右的網(wǎng)格子區(qū)域,按照每平方公里1個采樣點對表層土(0~10厘米深度)進行取樣、編號,并用gps記錄采樣點的位置。應(yīng)用專門儀器測試分析,獲得了每個樣本所含的多種化學(xué)元素的濃度數(shù)據(jù)。另一方面,按照2公里的間距在那些遠離人群及工業(yè)活動的自然區(qū)取樣,將其作為該城區(qū)表層土壤中元素的背景值。
附件1列出了采樣點的位置、海拔高度及其所屬功能區(qū)等信息,附件2列出了8種主要重金屬元素在采樣點處的濃度,附件3列出了8種主要重金屬元素的背景值。
現(xiàn)要求你們通過數(shù)學(xué)建模來完成以下任務(wù):
(1)給出8種主要重金屬元素在該城區(qū)的空間分布,并分析該城區(qū)內(nèi)不同區(qū)域重金屬的污染程度。
(2)通過數(shù)據(jù)分析,說明重金屬污染的主要原因。
(3)分析重金屬污染物的傳播特征,由此建立模型,確定污染源的位置。
大學(xué)生數(shù)學(xué)建模論文篇十五
在高等教育事業(yè)改革不斷深化的背景下,為了提升教育教學(xué)質(zhì)量,新時期對大學(xué)數(shù)學(xué)教學(xué)提出了更高的要求。大學(xué)數(shù)學(xué)作為課堂教學(xué)的主體,教師在傳授知識的同時,要注重學(xué)生學(xué)習(xí)能力和解決問題能力的培養(yǎng)。
數(shù)學(xué)知識來源于生活,應(yīng)用于生活,如微積分作為高等數(shù)學(xué)知識中的典型代表,在各個行業(yè)中具有不可或缺的作用。為此,任課教師在大學(xué)數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題和解決問題的能力十分重要,在傳授知識的過程中幫助學(xué)生利用所學(xué)知識來解決實際問題。一般情況下,教師著重介紹相關(guān)數(shù)學(xué)概念和原理,推導(dǎo)常用公式,促使學(xué)生能夠記住公式,學(xué)會公式的應(yīng)用過程,逐漸掌握解題技巧。
因此,如何能夠在傳授知識的同時,促使學(xué)生掌握數(shù)學(xué)學(xué)習(xí)方法,將所學(xué)知識應(yīng)用到實踐中來解決數(shù)學(xué)問題是一個首要問題。從大量教學(xué)實踐中可以了解到,在大學(xué)數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模思想十分重要,有助于激發(fā)學(xué)生的學(xué)習(xí)興趣,促使學(xué)生積極投入其中,切實提升學(xué)生的數(shù)學(xué)專業(yè)水平。
在大學(xué)數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模思想,應(yīng)該結(jié)合實際情況,深入挖掘數(shù)學(xué)知識。在教學(xué)中,教師應(yīng)該充分發(fā)揮自身引導(dǎo)作用,聯(lián)系學(xué)生數(shù)學(xué)知識實際學(xué)習(xí)情況,有針對性地整合數(shù)學(xué)知識,了解相關(guān)數(shù)學(xué)內(nèi)容,這樣不僅可以豐富教學(xué)內(nèi)容,還可以為課堂教學(xué)注入新的活力,有效激發(fā)學(xué)生的學(xué)習(xí)興趣,提升學(xué)習(xí)成效。具體表現(xiàn)在以下方面:
(一)閉區(qū)間連續(xù)函數(shù)的性質(zhì)
閉區(qū)間連續(xù)函數(shù)的性質(zhì)內(nèi)容是大學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,由于知識理論性較強,知識較為抽象,學(xué)習(xí)難度較大,在講解完相關(guān)理論知識后,可以引入椅子的穩(wěn)定問題,創(chuàng)建數(shù)學(xué)模型,提問學(xué)生如何在不平穩(wěn)的地面上平穩(wěn)地放置椅子。學(xué)生可以了解到這一問題同所學(xué)知識相關(guān)聯(lián),閉區(qū)間連續(xù)函數(shù)的性質(zhì)可以解決這一問題。學(xué)生整合所學(xué)知識,通過對問題的分析,可以了解到利用介值定理來解決問題。通過建立數(shù)學(xué)模型,學(xué)生更加充分地掌握了閉區(qū)間連續(xù)函數(shù)的`性質(zhì),提升了學(xué)習(xí)成效,為后續(xù)知識學(xué)習(xí)打下了堅實的基礎(chǔ)。
(二)定積分
定積分是高等數(shù)學(xué)教學(xué)中的重要組成部分,在解決幾何問題時均有所應(yīng)用,并且被廣泛應(yīng)用在實際生活中。如,在一道全國大學(xué)生數(shù)學(xué)建模競賽題目中,計算煤矸石的堆積,煤礦采煤時所產(chǎn)生的煤矸石,為了處理煤矸石就需要征用土地來堆放煤矸石,根據(jù)上級主管部門的年產(chǎn)量計劃和經(jīng)費如何堆放煤矸石?題目中的關(guān)鍵點在于堆放煤矸石的征地費用和電費的計算。征地費計算難度較小,但是煤矸石堆積的電費計算難度較高,但此項內(nèi)容涉及定積分中的變力做功知識點。學(xué)生掌握這些內(nèi)容后就可以建立數(shù)學(xué)模型,更加高效地了解如何根據(jù)預(yù)期開采量來堆放煤矸石。通過數(shù)學(xué)模型,學(xué)生也可以了解到定積分內(nèi)容同實際生活之間的聯(lián)系,學(xué)習(xí)積極性就會大大提升。
(三)最值問題
在高等數(shù)學(xué)中,最值問題占比比較大,同時在實際生活中應(yīng)用較為普遍,導(dǎo)數(shù)知識可以解決實際生活中的最值問題,這就需要提高對導(dǎo)數(shù)知識實際應(yīng)用的重視程度。教師在為學(xué)生講解完導(dǎo)數(shù)的相關(guān)概念知識后,通過建立關(guān)于天空的采空模型,提問學(xué)生為什么雨后太陽出來了,雨滴還在空中,那么將為人們呈現(xiàn)出什么樣的景色?學(xué)生回答彩虹。繼續(xù)提問彩虹為什么有顏色,是什么決定了天空中彩虹的高度?對此,學(xué)生的興趣較為濃厚,可以分為若干個小組進行討論。通過分析可以得出,雨滴可以反射太陽光,形成彩虹。結(jié)合光線的反射和折射定律,借助所學(xué)的導(dǎo)數(shù)知識來計算得出太陽光偏轉(zhuǎn)角度的最值,有效解決實際學(xué)習(xí)的問題,加深對知識的理解和記憶,提升數(shù)學(xué)知識學(xué)習(xí)成效。
(四)微分方程
微分方程知識同實際生活之間息息相關(guān),建立微分方程可以有效解決實際生活中的問題。這就需要學(xué)生在了解微分方程知識的基礎(chǔ)上,進一步建立數(shù)學(xué)模型來解決問題。如,在當(dāng)前社會進步和發(fā)展下,人均物質(zhì)生活水平顯著提升,肥胖成為危害人們身體健康的主要問題之一,受到社會各界廣泛的關(guān)注和重視。通過問題精簡化和假設(shè),可以得到微分方程模型,在分析方程中飲食控制和運動鍛煉兩個關(guān)鍵要素后,有助于避免人們走入減肥誤區(qū),幫助他們樹立正確的減肥理念。
(五)矩陣
在高等數(shù)學(xué)教學(xué)中,矩陣的概念較為抽象和復(fù)雜,在講解問題之前,應(yīng)該根據(jù)知識點來創(chuàng)設(shè)教學(xué)情境,輔助教學(xué)活動。通過引入企業(yè)工廠生產(chǎn)總成本模型,充分描述工廠生產(chǎn)中需要的原材料和勞動力,并且詳細記錄管理費用。這有助于加深人們對矩陣概念的認知和理解,提升學(xué)習(xí)成效,同時幫助學(xué)生深入理解和記憶,鍛煉學(xué)生的數(shù)學(xué)解題思維,加深概念理解和記憶,掌握解題技巧和方法,從而提升學(xué)生的數(shù)學(xué)建模意識。
綜上所述,在大學(xué)數(shù)學(xué)教學(xué)中,可以通過數(shù)學(xué)建模思想來引導(dǎo)學(xué)生養(yǎng)成良好的自主學(xué)習(xí)能力,發(fā)揮自身的主體能動性和創(chuàng)新能力,提升學(xué)生解決問題的能力,將所學(xué)知識靈活運用到實際生活中,養(yǎng)成良好的數(shù)學(xué)素養(yǎng)。
大學(xué)生數(shù)學(xué)建模論文篇十六
為了培養(yǎng)小學(xué)生良好的數(shù)學(xué)學(xué)習(xí)興趣,激發(fā)他們的數(shù)學(xué)潛能,教師需要采取必要的措施注重數(shù)學(xué)建模思想的有效培養(yǎng),促進學(xué)生的全面發(fā)展。在制定相關(guān)培養(yǎng)策略的過程中,教師應(yīng)充分考慮小學(xué)生的性格特點,提高數(shù)學(xué)建模思想培養(yǎng)的有效性?;诖?,文章將從不同的方面對小學(xué)生數(shù)學(xué)建模思想的培養(yǎng)策略進行初步的探討。
作為小學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,數(shù)學(xué)建模思想的滲透及相關(guān)教學(xué)活動的順利開展,有利于提高復(fù)雜數(shù)學(xué)問題的處理效率,保持數(shù)學(xué)課堂教學(xué)的高效性。要實現(xiàn)這樣的發(fā)展目標(biāo),增強小學(xué)生數(shù)學(xué)建模思想的實際培養(yǎng)效果,需要加強對學(xué)生動手實踐能力的培養(yǎng),激發(fā)學(xué)生的更高興趣。建模的過程涉及問題表述、求解、必要解釋及有效驗證,在這四個環(huán)節(jié)中,可能會存在一定的問題,影響著數(shù)學(xué)教學(xué)計劃的實施。因此,教師需要利用學(xué)生動手實踐能力的作用,實現(xiàn)數(shù)學(xué)建模思想的有效培養(yǎng),促使小學(xué)生能夠在數(shù)學(xué)建模過程中享受到更多的快樂。比如,在講解“認識角”知識的過程中,某些學(xué)生認為邊越長角度也越大。為了使學(xué)生能夠?qū)ζ渲械闹R點有更加正確而全面的認識,教師可以通過在黑板上設(shè)置一些能夠活動的三角板,讓學(xué)生親自動手操作,以此得出角與邊長的正確關(guān)系,為后續(xù)教學(xué)計劃的實施打下堅實的基礎(chǔ)。通過這種教學(xué)方法的合理運用,可以激發(fā)出學(xué)生們在數(shù)學(xué)建模學(xué)習(xí)中的更高興趣,豐富他們的想象力,從而使他們對數(shù)學(xué)建模思想有一定的了解,在未來學(xué)習(xí)過程中能夠保持良好的`數(shù)學(xué)建模能力。
通過對小學(xué)階段各種數(shù)學(xué)實踐教學(xué)活動實際概況的深入分析,可知構(gòu)建良好的數(shù)學(xué)模型有利于加深學(xué)生對各知識(福建省莆田市秀嶼區(qū)東嶠前江小學(xué),福建莆田351164)點的深入理解,增強其主動參與數(shù)學(xué)建模教學(xué)活動的積極性。因此,為了使小學(xué)生數(shù)學(xué)建模思想培養(yǎng)能夠達到預(yù)期的效果,教師需要結(jié)合實際的教學(xué)內(nèi)容,建立必要的數(shù)學(xué)參考模型,提升學(xué)生對數(shù)學(xué)建模思想的整體認知水平。比如,在講授“異分母分數(shù)加減法”這部分知識的過程中,可以設(shè)置“0.8千克+300克”“1.6千克-400克”等問題,向?qū)W生提問是否可以直接計算,并說出原因。當(dāng)學(xué)生通過對問題的深入思考,總結(jié)出“單位不同不能直接計算”的結(jié)論后,繼續(xù)向?qū)W生提問小數(shù)計算中為什么每一位都要對齊,實現(xiàn)“計數(shù)單位統(tǒng)一后才能計算”這一數(shù)學(xué)模型的構(gòu)建。在這樣的教學(xué)過程中,學(xué)生可以加深對知識點的理解,實現(xiàn)數(shù)學(xué)建模思想的有效培養(yǎng)。
加強小學(xué)生數(shù)學(xué)建模思想的有效培養(yǎng),需要在具體的教學(xué)活動開展中注重對數(shù)學(xué)思想的靈活運用,增強相關(guān)模型構(gòu)建的可靠性,促使學(xué)生在長期的數(shù)學(xué)學(xué)習(xí)中能夠不斷提高自身的數(shù)學(xué)能力,運用各種數(shù)學(xué)知識處理實際問題。比如,在“角的度量”這部分內(nèi)容講解的過程中,為了提高學(xué)生對角的分類及畫角相關(guān)知識點的深入理解,教師可以將所有的學(xué)生分為不同的小組,讓學(xué)生們通過小組討論的方式,對角的正確分類及如何畫角有一定的了解,并讓每個小組代表在講臺上演示畫角的過程。此時,教師可以通過對多媒體教學(xué)設(shè)備的合理運用,利用動態(tài)化的文字與圖片對其中的知識要點進行展示,確保學(xué)生們能夠在良好的教學(xué)模式中提升自身的認知水平,并在不斷的思考過程中逐漸形成良好的創(chuàng)造性思維,強化自身的創(chuàng)新意識。比如,在講解“圖形變換”中的軸對稱、旋轉(zhuǎn)知識點的過程中,教師應(yīng)通過對學(xué)生的正確引導(dǎo),運用三角板、圓柱等教學(xué)輔助工具,讓學(xué)生從不同的角度對各種軸對稱圖形、旋轉(zhuǎn)后得到的圖形進行深入思考,提高自身數(shù)學(xué)建模過程中的創(chuàng)新能力,從不同的角度深入理解圖像變換過程,對這部分內(nèi)容有更多的了解。因此,教師應(yīng)注重小學(xué)生數(shù)學(xué)建模思想培養(yǎng)中多方位思考方式的針對性培養(yǎng),提高學(xué)生的創(chuàng)新能力,優(yōu)化學(xué)生的思維方式,全面提升小學(xué)數(shù)學(xué)建模教學(xué)水平。
總之,加強小學(xué)生數(shù)學(xué)建模思想培養(yǎng)策略的制定與實施,有利于滿足素質(zhì)教育的更高要求,實現(xiàn)對小學(xué)生數(shù)學(xué)能力的有效鍛煉,確保相關(guān)的教學(xué)計劃能夠在規(guī)定的時間內(nèi)順利地完成。與此同時,結(jié)合當(dāng)前小學(xué)數(shù)學(xué)教育教學(xué)的實際發(fā)展概況,可知靈活運用各種科學(xué)的數(shù)學(xué)建模思想培養(yǎng)策略,有利于滿足學(xué)生數(shù)學(xué)建模學(xué)習(xí)中的多樣化需求,為相關(guān)教學(xué)目標(biāo)的順利實現(xiàn)提供可靠的保障。
[1]童小艷.小學(xué)數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生建模思想的策略[j].學(xué)子(教育新理念),20xx(6).
[2]白寧.先學(xué)而后教——小學(xué)生數(shù)學(xué)建模思想培養(yǎng)的捷徑[j].數(shù)學(xué)學(xué)習(xí)與研究,20xx(16).
大學(xué)生數(shù)學(xué)建模論文篇十七
1、從應(yīng)用數(shù)學(xué)出發(fā)數(shù)學(xué)建模主要是通過運用數(shù)學(xué)知識解決生活中遇到實際問題的全過程。要讓數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)教學(xué)課程進行有效的融合,最佳切入點就是課堂上把用數(shù)學(xué)解決生活中的實際問題與教學(xué)內(nèi)容相融合,以應(yīng)用數(shù)學(xué)為導(dǎo)向,訓(xùn)練學(xué)生綜合運用數(shù)學(xué)知識去刻畫實際問題、提煉數(shù)學(xué)模型、處理實際數(shù)據(jù)、分析解決實際問題的能力,培養(yǎng)學(xué)生運用數(shù)學(xué)原理解決生活問題的興趣和愛好。授課過程中,要改變以往單純地進行課堂灌輸?shù)男袨?,多引入?yīng)用數(shù)學(xué)的內(nèi)容,通過師生互動、課堂討論、小課題研究實踐等多種形式靈活多樣的教學(xué)方法,培養(yǎng)引導(dǎo)學(xué)生樹立應(yīng)用數(shù)學(xué)建模解決實際問題的思想。
2、從數(shù)學(xué)實驗做起要加強獨立學(xué)院學(xué)生進行數(shù)學(xué)實驗的行為,筆者認為數(shù)學(xué)建模與數(shù)學(xué)實驗有著密切的聯(lián)系,兩者都是從解決實際問題出發(fā),當(dāng)前的大學(xué)生數(shù)學(xué)實驗基本上是應(yīng)用數(shù)學(xué)軟件、數(shù)值計算、建立模型、過程演算和圖形顯示等一系列過程,因此進行數(shù)學(xué)實驗的全過程就是數(shù)學(xué)建模思想的啟發(fā)過程。但是我國的教育資源和教學(xué)方針限制了獨立學(xué)院學(xué)生的學(xué)習(xí)環(huán)境和學(xué)習(xí)資源,能夠進行數(shù)學(xué)實驗的條件還是有限的。即使個別有實驗?zāi)芰Φ膶W(xué)校,也未能進行充分利用,數(shù)學(xué)實驗課的內(nèi)容隨意性較大,有些院校將其降格為軟件學(xué)習(xí)課程或初級算法課。根據(jù)調(diào)研,目前大部分獨立學(xué)院未開設(shè)此類課程,這是數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)教學(xué)課程融合的一大損失,不利于學(xué)生創(chuàng)新思維能力的提高。各校應(yīng)當(dāng)積極創(chuàng)造條件,把數(shù)學(xué)實驗課設(shè)為大學(xué)數(shù)學(xué)的必修課,爭取設(shè)立數(shù)學(xué)建模選修課,并積極探索、逐步實現(xiàn)把數(shù)學(xué)建模的思想和方法融入大學(xué)數(shù)學(xué)的主干課程。
3、從計算機應(yīng)用切入數(shù)學(xué)是為理、工、經(jīng)、管、農(nóng)、醫(yī)、文等眾多學(xué)科服務(wù)的基礎(chǔ)工具,它在不同的領(lǐng)域因為應(yīng)用程度不同而導(dǎo)致被重視的程度不同。但在當(dāng)今的信息化時代,計算機的廣泛應(yīng)用和計算技術(shù)的飛速發(fā)展,使科學(xué)計算和數(shù)值模擬已成為絕大多數(shù)學(xué)科的必要工具和常用手段。數(shù)學(xué)在不同學(xué)科領(lǐng)域有了共同的主題,即應(yīng)用數(shù)學(xué)建模,通過計算機對各自領(lǐng)域的科學(xué)研究、生活問題等進行模擬分析,這成為數(shù)學(xué)建模思想在跨學(xué)科領(lǐng)域交流和傳播的一個重要途徑。每個領(lǐng)域的教學(xué)可以計算機應(yīng)用為切入點,讓數(shù)學(xué)建模思想與數(shù)學(xué)授課無縫結(jié)合,在提高學(xué)生掌握知識能力、挖掘培養(yǎng)創(chuàng)新思維的同時,增加了大學(xué)數(shù)學(xué)課程內(nèi)容的豐富性、實用性,促進教學(xué)手段變革和創(chuàng)新。因此,大學(xué)應(yīng)以適應(yīng)現(xiàn)代信息技術(shù)發(fā)展的形勢和學(xué)生將來的需求為契機,加快改進大學(xué)數(shù)學(xué)課程教學(xué)方式,把數(shù)學(xué)建模的思想和方法以及現(xiàn)代計算技術(shù)和計算工具盡快融入大學(xué)數(shù)學(xué)的主干課程當(dāng)中。
大學(xué)數(shù)學(xué)課程是大學(xué)工科各專業(yè)培養(yǎng)計劃中重要的公共基礎(chǔ)理論課,其目的在于培養(yǎng)工程技術(shù)人才所必備的數(shù)學(xué)素質(zhì),為培養(yǎng)我國現(xiàn)代化建設(shè)需要的高素質(zhì)人才服務(wù)。數(shù)學(xué)建模課程的必修化,要從能夠擴充學(xué)生的知識結(jié)構(gòu),培養(yǎng)學(xué)生的創(chuàng)造性思維能力、抽象概括能力、邏輯推理能力、自學(xué)能力、分析問題和解決問題能力的角度出發(fā),建立適合獨立學(xué)院學(xué)生的數(shù)學(xué)建模教學(xué)內(nèi)容。日前獨立學(xué)院開展數(shù)學(xué)建?;顒由婕皟?nèi)容較淺,缺少相應(yīng)的數(shù)學(xué)建模和數(shù)學(xué)實驗方而的教材。筆者近幾年通過承擔(dān)此類課題的研究,認為應(yīng)該加強以下內(nèi)容的建設(shè):
。2、開設(shè)選修課拓展知識領(lǐng)域,讓學(xué)生可以通過選修數(shù)學(xué)建模、運籌學(xué)、開設(shè)數(shù)學(xué)實驗(介紹matlab、maple等計算軟件課程),增加建立和解答數(shù)學(xué)模型的方法和技巧。比如以前用的“文曲星”電子詞典里的貸款計算,就是一個典型的運用數(shù)學(xué)模型方便百姓自己計算的應(yīng)用。這個模型單靠數(shù)學(xué)和經(jīng)濟學(xué)單方面的知識是不夠的,必須把數(shù)學(xué)與經(jīng)濟學(xué)聯(lián)系在一起,才能有效解決生活中的問題。
3、積極組織學(xué)生開展或是參加數(shù)學(xué)建模大賽比賽是各個選手充分發(fā)揮水平、展示自己智慧的途徑,也是數(shù)學(xué)建模思想傳播的最好手段。比賽可以讓各個選手發(fā)現(xiàn)自己的不足,尋找自身數(shù)學(xué)建模出發(fā)點的缺陷,通過交流,還可以拓展學(xué)生思維。因此,有必要積極組織學(xué)生參入初等數(shù)學(xué)知識可以解決的數(shù)學(xué)模型、線性規(guī)劃模型、指派問題模型、存儲問題模型、圖論應(yīng)用題等方面的模擬競賽,通過參賽積累大量數(shù)學(xué)建模知識,促進數(shù)學(xué)建模在教學(xué)中扮演更重要的`角色。教師應(yīng)該對歷年的全國大學(xué)生數(shù)學(xué)建模競賽真題進行認真的解讀分析,通過對有意義的題目,如20xx年的《葡萄酒的評價》、《太陽能小屋的設(shè)計》,20xx年的《交巡警服務(wù)平臺的設(shè)置與調(diào)度車燈線光源的計算》、20xx年的《眼科病床的合理安排》等,與生活相關(guān)的例子進行講解分析,提高學(xué)生對數(shù)學(xué)建模的興趣和對模型應(yīng)用的直觀的認識,實現(xiàn)學(xué)校應(yīng)用型人才的培養(yǎng)。
4、加快教育方式的轉(zhuǎn)變高等教育設(shè)立數(shù)學(xué)這門學(xué)科就是為了應(yīng)用服務(wù),內(nèi)容應(yīng)重點放在基本概念、定理、公式等在生活中的應(yīng)用上。而傳統(tǒng)的高等數(shù)學(xué),除了推導(dǎo)就是證明,因此,要對傳統(tǒng)內(nèi)容進行優(yōu)化組合,根據(jù)教學(xué)特點和學(xué)生情況推陳出新,要注重數(shù)學(xué)思想的滲透和數(shù)學(xué)方法的介紹,對高等數(shù)學(xué)精髓的求導(dǎo)、微分方法、積分方法等的授課要重點放在解決實際生活的應(yīng)用上。要結(jié)合一些社會實踐問題與函數(shù)建立的關(guān)系,分析確定變量、參數(shù),加強有關(guān)函數(shù)關(guān)系式建立的日常訓(xùn)練。培養(yǎng)學(xué)生對一些問題的邏輯分析、抽象、簡化并用數(shù)學(xué)語言表達的能力,逐步將學(xué)生帶入遇到問題就能自然地去轉(zhuǎn)化成數(shù)學(xué)模型進行處理的境界,并能將數(shù)學(xué)結(jié)論又能很好反向轉(zhuǎn)化成實際應(yīng)用。
21世紀我國進入了大眾教育時期,高校招生人數(shù)劇增,學(xué)生水平差距較大,需要學(xué)校瞄準正確的培養(yǎng)方向。通過對美國教學(xué)改革的研究,筆者認為我國的數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)教學(xué)課程融合必須盡快在大學(xué)中廣泛推進,但要注意一些問題:第一,數(shù)學(xué)教學(xué)改革一定要基于學(xué)生的現(xiàn)實水平,數(shù)學(xué)建模思想融入要與時俱進。第二,教學(xué)目標(biāo)要正確定位,融合過程一定要與教學(xué)研究相結(jié)合,要在加強交流的基礎(chǔ)上不斷改進。第三,大學(xué)生數(shù)學(xué)建模競賽的舉辦和參入,要給予正確的理解和引導(dǎo),形成良性循環(huán)。要根據(jù)個人興趣愛好,注重個性,不應(yīng)面面強求。第四,傳統(tǒng)數(shù)學(xué)思想與現(xiàn)在數(shù)學(xué)建模思想必須互補,必修與選修課程的作用與角色要分清。數(shù)學(xué)主干課程的教學(xué)水平是大學(xué)教學(xué)質(zhì)量的關(guān)鍵指標(biāo)之一,具備數(shù)學(xué)建模思想是理工類大學(xué)生能否成為創(chuàng)新人才的重要條件之一。兩者的融合必將促進我國教學(xué)水平和質(zhì)量的提高,為社會輸送更多的實用型、創(chuàng)新型人才。
大學(xué)生數(shù)學(xué)建模論文篇一
【摘 要】本文重點分析了數(shù)學(xué)建模對當(dāng)前數(shù)學(xué)教育教學(xué)改革的現(xiàn)實意義,探討了數(shù)學(xué)建模對學(xué)生應(yīng)用數(shù)學(xué)能力的培養(yǎng),闡述了計算機在數(shù)學(xué)建模競賽中的作用和地位,最后介紹了數(shù)學(xué)建模對數(shù)學(xué)教學(xué)改革的啟示意義。
【關(guān)鍵詞】數(shù)學(xué)建模;綜合素質(zhì);教學(xué)改革
長期以來,我國的數(shù)學(xué)教學(xué)中一直普遍存在著重結(jié)論而輕過程、重形式而輕內(nèi)容、重解法而輕應(yīng)用等弊端,不注重學(xué)生數(shù)學(xué)能力和素質(zhì)的培養(yǎng);過分強調(diào)對定義、定理、法則、公式等知識的灌輸與講授,不注重這些知識的應(yīng)用,割斷了理論與實際的聯(lián)系,造成學(xué)與用的嚴重脫節(jié),致使在我們的數(shù)學(xué)教育體制下培養(yǎng)出來的學(xué)生的能力結(jié)構(gòu)都形成了一種嚴重的病態(tài),主要表現(xiàn)在:數(shù)學(xué)理論知識掌握得還可以,但應(yīng)用知識的能力很差,不能學(xué)以致用,缺乏創(chuàng)造力和解決實際問題的能力,這些問題使我們的學(xué)生在走向工作崗位時上手速度慢,面對新的數(shù)學(xué)問題時束手無策,不能將所學(xué)的知識靈活運用到實際中去。顯然,這種教育體制和理念與現(xiàn)代教育理念是背道而馳的,是必須拋棄的。開展數(shù)學(xué)建模教學(xué)或數(shù)學(xué)建模競賽,能夠培養(yǎng)學(xué)生各方面的綜合能力,提高學(xué)生的綜合素質(zhì),對于當(dāng)前數(shù)學(xué)教育教學(xué)改革有著極為重要的現(xiàn)實意義。
1 數(shù)學(xué)建模能夠豐富和優(yōu)化學(xué)生的知識結(jié)構(gòu),開拓學(xué)生的視野
數(shù)學(xué)建模所涉及到的許多問題都超出了學(xué)生所學(xué)的專業(yè),例如“基金的最佳適用”、“會議籌備”、“地震搜索”等許多建模問題,分別屬于不同的學(xué)科與專業(yè),為了解決這些問題,學(xué)生必須查閱和學(xué)習(xí)與該問題相關(guān)的專業(yè)書籍和科技資料,了解這些專業(yè)的相關(guān)知識,從而軟化或削弱了目前教育中僵死的專業(yè)界限,使學(xué)生掌握寬廣而扎實的基礎(chǔ)知識,使他們不斷拓寬分析問題、解決問題的思路,朝著復(fù)合型人才和具備全面綜合素質(zhì)人才的方向發(fā)展。
2 數(shù)學(xué)建模可以培養(yǎng)學(xué)生利用數(shù)學(xué)知識解決實際問題的能力
數(shù)學(xué)建模要求建模者利用自己所掌握的數(shù)學(xué)知識及對實際問題的理解,通過積極主動的思維,提出適當(dāng)?shù)募僭O(shè),并建立相應(yīng)的數(shù)學(xué)模型,進而利用恰當(dāng)?shù)臄?shù)學(xué)方法(現(xiàn)有的或新創(chuàng)造的)求解此模型,并對解做出評價,必要時對模型做出改進。這一過程包括了歸納、整理、推理、深化等活動,因此把數(shù)學(xué)建模引入課堂教學(xué),必將改變目前數(shù)學(xué)教學(xué)只見定義、定理不見問題背景的局面,必將改變知識僵化、學(xué)而不用的局面,從而調(diào)動了學(xué)生學(xué)習(xí)的積極性,培養(yǎng)了學(xué)生解決實際問題的能力。
3 數(shù)學(xué)建模能夠培養(yǎng)學(xué)生的創(chuàng)造力、想象力、聯(lián)想力和洞察力
數(shù)學(xué)模型來源于客觀實際,錯綜復(fù)雜,沒有現(xiàn)成的答案和固定的模式,因此學(xué)生在建立和求解這類模型時,必須積極動腦,而且常常需要另辟蹊徑,在這里,常常會迸發(fā)出打破常規(guī)、突破傳統(tǒng)的思維火花,通過這種實踐活動,可以培養(yǎng)學(xué)生的創(chuàng)造能力,促使他們在頭腦中樹立推崇創(chuàng)新、追求創(chuàng)新和以創(chuàng)新為榮的意識。在從實際問題中抽象出數(shù)學(xué)模型的過程中,須把實際關(guān)系轉(zhuǎn)化為數(shù)學(xué)關(guān)系,這要求他們敢于想象和聯(lián)想,此外他們還要從貌似不同的問題中抓住其本質(zhì)的和共性的東西,這將培養(yǎng)他們把握問題內(nèi)在本質(zhì)的能力,即洞察力,可以說,培養(yǎng)學(xué)生的這些能力始終貫穿在數(shù)學(xué)建模的整個過程。
4 數(shù)學(xué)建??梢耘囵B(yǎng)學(xué)生熟練地運用計算機的能力
5 數(shù)學(xué)建??梢栽鰪姶髮W(xué)生的適應(yīng)能力
通過數(shù)學(xué)建模的學(xué)習(xí)及競賽訓(xùn)練,他們不僅受到了現(xiàn)代數(shù)學(xué)思維及方法的熏陶,更重要的是對不同的實際問題,如何進行分析、推理、概括以及如何利用數(shù)學(xué)方法與計算機知識,還有各方面的知識綜合起來解決它。因此,他們具有較高的素質(zhì),無論以后到哪個行業(yè)工作,都能很快適應(yīng)需要。不僅如此,由于建模決不是一件輕而易舉的事,需要學(xué)生對實際問題進行反復(fù)多次的研究、分析、觀察和對模型進行反復(fù)多次的計算、論證及修改等,整個過程是一個非常艱辛的探索過程,這可以培養(yǎng)學(xué)生高度的責(zé)任感、堅韌不拔的毅力、遭遇挫折后較強的心理承受能力以及孜孜不倦、精益求精的探索精神,使他們具有良好的心理素質(zhì)與精神狀態(tài)。同時數(shù)學(xué)建模一般都是由幾個人組成的團隊來完成的,其成功與否,完全取決于大家的密切合作,既要合理分工,又要密切配合,這樣又可以培養(yǎng)學(xué)生的組織管理能力、協(xié)調(diào)能力和相互協(xié)作的團隊精神,這些對他們今后走向工作崗位都是大有裨益的。
此外,數(shù)學(xué)建模從教育觀念、內(nèi)容、形式和手段都有一定的創(chuàng)新,對數(shù)學(xué)教學(xué)改革有積極的啟示意義。首先,數(shù)學(xué)建模突出了教與學(xué)的雙主體性關(guān)系。教師要根據(jù)學(xué)生的學(xué)習(xí)興趣、能力及特點,不斷修正自己的教育內(nèi)容和方法。學(xué)生要對教師所給予的信息有批判性地、創(chuàng)造性地、發(fā)展性地能動反映,要在相互討論、相互啟發(fā)下尋求更多更好的解答方案。這種雙主體的關(guān)系是對傳統(tǒng)教學(xué)方式的根本突破。
其次,數(shù)學(xué)建模促進了課程體系和教學(xué)內(nèi)容的改革。長期以來,我們的課程設(shè)置和教學(xué)內(nèi)容都具有強烈的理科特點:重基礎(chǔ)理論、輕實踐應(yīng)用;重傳統(tǒng)的經(jīng)典數(shù)學(xué)內(nèi)容、輕離散的數(shù)值計算。然而,數(shù)學(xué)建模所要用到的主要數(shù)學(xué)方法和數(shù)學(xué)知識恰好正是被我們長期所忽視的那些內(nèi)容。因此,這迫使我們調(diào)整課程體系和教學(xué)內(nèi)容。比如可增加一些應(yīng)用型、實踐類課程等等;在其余各門課程的教學(xué)中,也要盡量注意到使數(shù)學(xué)理論與應(yīng)用相結(jié)合,增加實際應(yīng)用方面的內(nèi)容和例題,從而使教學(xué)內(nèi)容也得到了更新。
再次,數(shù)學(xué)建模增加了教師對新興科技知識的傳授,拓寬了學(xué)生的知識面。這些特點對于目前數(shù)學(xué)教材中存在的內(nèi)容陳舊、知識面狹窄及形式呆板等問題,具有借鑒作用。數(shù)學(xué)建模的試題通常聯(lián)系新興的學(xué)科,在科學(xué)技術(shù)迅猛發(fā)展的今天,各種新興學(xué)科、邊緣學(xué)科、交叉學(xué)科不斷涌現(xiàn),廣博的知識面和對新興科學(xué)技術(shù)的追蹤能力是獲得成功的關(guān)鍵因素之一。
數(shù)學(xué)建模不僅有利于學(xué)生更好的掌握知識、運用知識,也有利于高校的科研和教學(xué),使學(xué)生和教師能在平時的學(xué)習(xí)、工作中自動形成勤于思考的好習(xí)慣,數(shù)學(xué)建模競賽與學(xué)生畢業(yè)以后工作時的條件非常相近,是對學(xué)生業(yè)務(wù)、能力和素質(zhì)的全面培養(yǎng),特別是開放性思維和創(chuàng)新意識,這項活動的開展有利于學(xué)生的全面素質(zhì)的培養(yǎng),既豐富、活躍了廣大學(xué)生的課外生活,也為優(yōu)秀學(xué)員脫穎而出創(chuàng)造了條件。
【參考文獻】
[1]顏筱紅,粱東穎。高職院校數(shù)學(xué)建模教學(xué)的研究[j].廣西教育,2013(2):54,134.
[3]李大潛。中國大學(xué)生數(shù)學(xué)建模競賽[m].2版。北京:高等教育出版社,2001.
[4]謝金星。2008高教社杯全國大學(xué)生數(shù)學(xué)建模競賽[j].工程數(shù)學(xué)學(xué)報,2008(25):1-2.
大學(xué)生數(shù)學(xué)建模論文篇二
1、海選和優(yōu)選有機結(jié)合借助紙質(zhì)宣傳單、大型講座等方式進行數(shù)學(xué)建模競賽的宣傳,對其作用以及影響進行充分的講解,鼓勵校園內(nèi)的同學(xué)來積極的進行參加。倘若想要參與其中的同學(xué)人數(shù)過多時,畢竟參賽名額是有一定限制的,可以利用面試的方式對其進行篩選。為不打擊學(xué)生的積極性,在條件允許的情況下,可以盡可能保留更多的參賽者,通過面試成績把大家劃分為正式參賽隊和業(yè)余參賽隊。
2、充分利用現(xiàn)有資源在進行數(shù)學(xué)建模競賽組隊時,應(yīng)充分的全面考慮有效利用現(xiàn)有的資源。首先是要掌握不同隊伍中不同人員屬于什么年級,其次了解她們的每個人學(xué)習(xí)狀況以及所學(xué)專業(yè)等等,通常來說,同一隊伍中的每個人最理想的狀態(tài)是學(xué)習(xí)不同專業(yè)的,如此一來大家可以做到取長補短,理論知識與實踐動手兩手抓,一個團隊里需要出眾的知識更需要過人的文筆。如此一來才能保證隊伍的整體實力,力爭在建模競賽中取得好成績。
3、重點培訓(xùn)在對學(xué)生進行賽前相關(guān)培訓(xùn)時,在培訓(xùn)的過程中,教師可根據(jù)自身的擅長專題,來進行相關(guān)內(nèi)容的講解,與此同時結(jié)合不同隊伍的自身特點劃設(shè)側(cè)重點,同學(xué)之間的接受能力也是各不同的,能力強的可以開小灶,沒有相關(guān)競賽經(jīng)驗的要進行重點培訓(xùn),這種因人而異的講解模式確保不同能力的同學(xué),在培訓(xùn)中的過程中都能夠?qū)W有所獲。
4、合理分工密切合作在參加數(shù)學(xué)建模競賽的同學(xué)得到競賽試題之后,老師應(yīng)該及時幫助學(xué)生進行試題分析與指導(dǎo),根據(jù)團隊內(nèi)不同人員的實際情況以及試題的具體內(nèi)容難易,進行針對性的講解從而對同學(xué)們進行合理分工,確保每個人所負責(zé)的部分都是自己相較于其他人而言是最擅長的。值得注意的是,雖然進行分工,但這并不是絕對的分割,而是有側(cè)重的合理分工,彼此之間的密切合作才是核心,畢竟建模競賽中需要的是團隊協(xié)作,而不是英雄主義。
5、堅持可持續(xù)發(fā)展培訓(xùn)師資隊伍必須要有新鮮血液不斷注入,以老帶新最佳的血液注入方式,面對朝氣蓬勃的參賽學(xué)生,培訓(xùn)師資隊伍既要有身經(jīng)百戰(zhàn)經(jīng)驗豐富的老師,也要有跟他們擁有更多共同話題的青年教師。在此期間通過不斷的學(xué)習(xí),青年教師跟同學(xué)們共同成長,從而保證師資隊伍的可持續(xù)發(fā)展。
二、大學(xué)生數(shù)學(xué)建模競賽組織和管理方式的探索
1、進行課程教學(xué)并給出有效的教學(xué)計劃每個學(xué)生的知識儲備都有著各自的特點,借助良好的教育對學(xué)生們的知識架構(gòu)進行完善,實現(xiàn)培養(yǎng)出學(xué)生強大能力的目標(biāo),數(shù)學(xué)建模對學(xué)生來說裨益良多,被視作是大學(xué)校園中必備課程之一。但是進行課程開展的時候,要根據(jù)不同的培訓(xùn)對象大致分為以下兩類:第一、以選修課形式開設(shè)數(shù)學(xué)建模競賽課程,選修課程所面向的群體為整個學(xué)校的所有學(xué)生。第二、以必修課的方式開設(shè)數(shù)學(xué)建模競賽課程,必修課就要有針對性,因為并不是所有的學(xué)生都需要學(xué)習(xí)數(shù)學(xué),所以必修課針對的群體應(yīng)該是數(shù)學(xué)專業(yè)的學(xué)生。不同性質(zhì)的課程在教授上應(yīng)該有所區(qū)分,內(nèi)容的深淺也要有適當(dāng)?shù)恼{(diào)整。
2、利用建模教學(xué)實現(xiàn)知識與能力雙培養(yǎng)有效的教學(xué)是獲得數(shù)學(xué)建模競賽好成績的最佳途徑,但是教學(xué)的過程中要注重數(shù)學(xué)知識與實踐能力的均衡共同培養(yǎng),不能過分的注重知識的灌輸,而忽略了建模相關(guān)能力的培養(yǎng),對二者的培養(yǎng)必須要并駕齊驅(qū),如此才能真正的'掌握數(shù)學(xué)建模的精髓,從而在競賽中取得良好的成績。
3、數(shù)學(xué)建模競賽隊員的篩選數(shù)學(xué)建模所需要的人才是全方面的人才,除此之外還要對數(shù)學(xué)建模有足夠的興趣,并且還要有足夠多的時間來參加培訓(xùn)。以上述條件為基礎(chǔ),報名之后通過面試的測試,然后再從中篩選出相對優(yōu)秀的學(xué)生組成參賽隊伍,在篩選的時候要充分的考慮到團隊整體知識的涵蓋面,不同人之間所擅長的專業(yè)不同為最佳。
4、培訓(xùn)培訓(xùn)工作通常被劃分為不同的階段:首先是初級階段,這一階段所注重的是對相關(guān)知識的培訓(xùn)。從初等模型、簡單優(yōu)化模型、常微分方程模型等建模的基礎(chǔ)知識和方法入手由淺入深;其次是拔高階段,主要以專家講座為主,邀請建模專家進行系統(tǒng)的講解,并結(jié)合精典范例進行深入剖析,在擴大學(xué)生的知識面和視野的同時提升學(xué)生的建模能力。
三、結(jié)語
通過以上的一系列論述,我們已經(jīng)對大學(xué)數(shù)學(xué)建模競賽的隊伍組織及管理方式,有了更加清晰的了解和掌握。大學(xué)數(shù)學(xué)建模競賽對于大學(xué)生來說好處頗多,一方面能夠使學(xué)生們對學(xué)習(xí)的數(shù)學(xué)知識有更深的理解與更為靈活的應(yīng)用,另一方面,通過競賽中的組隊讓大家感受到合作的重要性,為以后步入社會的工作打下基礎(chǔ)。希望這篇文章能夠?qū)︶槍?shù)學(xué)建模的研究有一定的借鑒作用!
參考文獻:
[1]韓成標(biāo),賈進濤、高職院校參加數(shù)學(xué)建模競賽大有可為[j]、工程數(shù)學(xué)學(xué)報,(8)
[2]全國大學(xué)生數(shù)學(xué)建模競賽賽題講評與經(jīng)驗交流會在廣西大學(xué)舉行[j]、數(shù)學(xué)建模及其應(yīng)用,(04)
[3]錢方紅、基于數(shù)學(xué)模型解決數(shù)學(xué)建模競賽隊員選拔和組隊問題[j]、信息與電腦:理論版,(3)
[4]肖帆,張?zhí)m、高職院校數(shù)學(xué)建模競賽培訓(xùn)模式研究[j]、延安職業(yè)技術(shù)學(xué)院學(xué)報,2017(2)
大學(xué)生數(shù)學(xué)建模論文篇三
1.數(shù)學(xué)建模對學(xué)生創(chuàng)新思維和創(chuàng)新精神的培養(yǎng)
數(shù)學(xué)建模解決的都是與我們生活息息相關(guān)的實際問題,很多都是當(dāng)前社會比較關(guān)注的熱點問題,比如開放性小區(qū)的建立,人工智能機器人在工作中的應(yīng)用,這些問題開放性比較強,有明確的目的和要求,但它沒有唯一的結(jié)果和方法。因此留給學(xué)生很大的創(chuàng)新空間,使學(xué)生對數(shù)學(xué)產(chǎn)生了極大的興趣,他們發(fā)現(xiàn)這幾年學(xué)習(xí)的高數(shù)、線性代數(shù)、概率論與數(shù)理統(tǒng)計終于派上了用場。數(shù)學(xué)建模課程會結(jié)合《高等數(shù)學(xué)》,《線性代數(shù)》,《概率論與數(shù)理統(tǒng)計》等數(shù)學(xué)基礎(chǔ)學(xué)科,還會經(jīng)常涉及到物理,工程,經(jīng)濟,金融,農(nóng)林等各個領(lǐng)域各個學(xué)科,從不同的學(xué)科中找最熱門最真實的案例進行教學(xué),這要求學(xué)生有很強的自學(xué)能力,要不得學(xué)習(xí)新知識,新思路和新方法,讓學(xué)生結(jié)合所學(xué)的數(shù)學(xué)知識把自己學(xué)科的專業(yè)知識轉(zhuǎn)化成數(shù)學(xué)模型,讓數(shù)學(xué)充分發(fā)揮它的優(yōu)勢,以達到培養(yǎng)學(xué)生的創(chuàng)新能力,更重要的是對學(xué)生的知識體系起到了完善的作用。在整個競賽中從模型建立與求解到寫作,都是由學(xué)生獨立完成,充分發(fā)揮了他們的自主性和創(chuàng)造性。
2.數(shù)學(xué)建模能培養(yǎng)學(xué)生團隊合作精神和創(chuàng)新創(chuàng)業(yè)能力
數(shù)學(xué)建模競賽是由三個人組成一個小團隊共同處理一個問題,在這個團隊中每個人都各有分工,有的人擅長建立模型,有的人擅長計算機編程求解模型,有的人擅長寫作,這三個人缺一不可,任何一個人都發(fā)揮著舉足輕重的作用。通常我們還會設(shè)一個隊長能協(xié)調(diào)隊員之間的關(guān)系和對題目的把控。每個人都有不同的性格,能力,學(xué)識,知識結(jié)構(gòu),在做題的過程中會產(chǎn)生不同的想法,比如在模型的建立中,數(shù)據(jù)的處理過程中,算法的選取,編程語言的選取,寫作的過程中都會有很多的不同,所以每個成員都要有團隊精神、相互信任、相互溝通、相互尊重、取長補短、充分發(fā)揮集體的力量共同完成一個項目。同時每年無論在培訓(xùn)還是正式比賽過程中由于高強度的腦力活動,強大的心理壓力以及隊員之間的不和睦都會造成中途退賽,這樣無疑是最可惜的。所以,在競賽中除了培養(yǎng)學(xué)生的創(chuàng)新意識和團隊合作精神,還培養(yǎng)了大家的心理承受能力,強大的意志力以及與他人溝通交往的能力,是對自己綜合素質(zhì)的一個提高,對未來考研、出國、就業(yè)都有很大的幫助。
3.數(shù)學(xué)建模培養(yǎng)學(xué)生的創(chuàng)新創(chuàng)業(yè)的.綜合能力
通過在大二一年的數(shù)學(xué)建模選修課,以及假期的集中培訓(xùn)培養(yǎng)了學(xué)生的創(chuàng)新創(chuàng)業(yè)能力,很大程度上提高了他們思考問題解決問題的能力等綜合素質(zhì),同時還培養(yǎng)了他們應(yīng)用計算機去處理各種問題的科技能力。他們學(xué)會了各種軟件、語言,很多同學(xué)會數(shù)據(jù)挖掘、機器學(xué)習(xí)以及人工智能,這些都是未來科技的前沿,科技創(chuàng)新是企業(yè)發(fā)展的動力,現(xiàn)代教育不能只停留在教授學(xué)生理論知識的學(xué)習(xí),更重要的是理論與實踐的結(jié)合,走產(chǎn)學(xué)研相結(jié)合的道路,數(shù)學(xué)建模很好的把理論與實踐相結(jié)合,激發(fā)學(xué)生科研熱情,提高學(xué)生科研積極性,激發(fā)了學(xué)生的創(chuàng)新創(chuàng)業(yè)能力,為以后工作生活奠定了扎實的基礎(chǔ)。為了讓建模更好的服務(wù)學(xué)生,我們將不斷的努力,探索和改進培養(yǎng)模式和方法,爭取通過數(shù)學(xué)建模平臺使更多的同學(xué)受益,培養(yǎng)出更多的具有創(chuàng)新創(chuàng)業(yè)能力的大學(xué)生。
參考文獻:
[2]韋程東.數(shù)學(xué)建模能力培養(yǎng)方法研究[m].北京:科學(xué)出版社,.
大學(xué)生數(shù)學(xué)建模論文篇四
我們仔細閱讀了西北民族大學(xué)研究生數(shù)學(xué)建模競賽的競賽規(guī)則。
我們完全明白,在競賽開始后參賽隊員不能以任何方式(包括電話、電子郵件、網(wǎng)上咨詢等)與隊外的任何人(包括指導(dǎo)教師)研究、討論與賽題有關(guān)的問題。
我們知道,抄襲別人的成果是違反競賽規(guī)則的',如果引用別人的成果或其他公開的資料(包括網(wǎng)上查到的資料),必須按照規(guī)定的參考文獻的表述方式在正文引用處和參考文獻中明確列出。
我們鄭重承諾,嚴格遵守競賽規(guī)則,以保證競賽的公正、公平性。如有違反競賽規(guī)則的行為,我們將受到嚴肅處理。
我們參賽選擇的題號是(從a/b/c中選擇一項填寫):
我們的參賽論文題目是:
參賽隊員(打?。?BR> 隊員1姓名:;聯(lián)系電話:;郵箱:;
學(xué)院:;專業(yè)年級:;
隊員2姓名:;聯(lián)系電話:;郵箱:;
學(xué)院:;專業(yè)年級:;
隊員3姓名:;聯(lián)系電話:;郵箱:;
學(xué)院:;專業(yè)年級:;
參賽隊員簽名:1;2;3。
日期:年月日
將本文的word文檔下載到電腦,方便收藏和打印
推薦度:
點擊下載文檔
搜索文檔
大學(xué)生數(shù)學(xué)建模論文篇五
長期以來,我國的數(shù)學(xué)教學(xué)中一直普遍存在著重結(jié)論而輕過程、重形式而輕內(nèi)容、重解法而輕應(yīng)用等弊端,不注重學(xué)生數(shù)學(xué)能力和素質(zhì)的培養(yǎng);過分強調(diào)對定義、定理、法則、公式等知識的灌輸與講授,不注重這些知識的應(yīng)用,割斷了理論與實際的聯(lián)系,造成學(xué)與用的嚴重脫節(jié),致使在我們的數(shù)學(xué)教育體制下培養(yǎng)出來的學(xué)生的能力結(jié)構(gòu)都形成了一種嚴重的病態(tài),主要表現(xiàn)在:數(shù)學(xué)理論知識掌握得還可以,但應(yīng)用知識的能力很差,不能學(xué)以致用,缺乏創(chuàng)造力和解決實際問題的能力,這些問題使我們的學(xué)生在走向工作崗位時上手速度慢,面對新的數(shù)學(xué)問題時束手無策,不能將所學(xué)的知識靈活運用到實際中去。顯然,這種教育體制和理念與現(xiàn)代教育理念是背道而馳的,是必須拋棄的。開展數(shù)學(xué)建模教學(xué)或數(shù)學(xué)建模競賽,能夠培養(yǎng)學(xué)生各方面的綜合能力,提高學(xué)生的綜合素質(zhì),對于當(dāng)前數(shù)學(xué)教育教學(xué)改革有著極為重要的現(xiàn)實意義。
1數(shù)學(xué)建模能夠豐富和優(yōu)化學(xué)生的知識結(jié)構(gòu),開拓學(xué)生的視野
數(shù)學(xué)建模所涉及到的許多問題都超出了學(xué)生所學(xué)的專業(yè),例如“基金的最佳適用”、“會議籌備”、“地震搜索”等許多建模問題,分別屬于不同的學(xué)科與專業(yè),為了解決這些問題,學(xué)生必須查閱和學(xué)習(xí)與該問題相關(guān)的專業(yè)書籍和科技資料,了解這些專業(yè)的相關(guān)知識,從而軟化或削弱了目前教育中僵死的專業(yè)界限,使學(xué)生掌握寬廣而扎實的基礎(chǔ)知識,使他們不斷拓寬分析問題、解決問題的思路,朝著復(fù)合型人才和具備全面綜合素質(zhì)人才的方向發(fā)展。
2數(shù)學(xué)建??梢耘囵B(yǎng)學(xué)生利用數(shù)學(xué)知識解決實際問題的能力
數(shù)學(xué)建模要求建模者利用自己所掌握的數(shù)學(xué)知識及對實際問題的理解,通過積極主動的思維,提出適當(dāng)?shù)募僭O(shè),并建立相應(yīng)的數(shù)學(xué)模型,進而利用恰當(dāng)?shù)臄?shù)學(xué)方法(現(xiàn)有的或新創(chuàng)造的)求解此模型,并對解做出評價,必要時對模型做出改進。這一過程包括了歸納、整理、推理、深化等活動,因此把數(shù)學(xué)建模引入課堂教學(xué),必將改變目前數(shù)學(xué)教學(xué)只見定義、定理不見問題背景的局面,必將改變知識僵化、學(xué)而不用的局面,從而調(diào)動了學(xué)生學(xué)習(xí)的積極性,培養(yǎng)了學(xué)生解決實際問題的能力。
3數(shù)學(xué)建模能夠培養(yǎng)學(xué)生的創(chuàng)造力、想象力、聯(lián)想力和洞察力
數(shù)學(xué)模型來源于客觀實際,錯綜復(fù)雜,沒有現(xiàn)成的答案和固定的模式,因此學(xué)生在建立和求解這類模型時,必須積極動腦,而且常常需要另辟蹊徑,在這里,常常會迸發(fā)出打破常規(guī)、突破傳統(tǒng)的思維火花,通過這種實踐活動,可以培養(yǎng)學(xué)生的創(chuàng)造能力,促使他們在頭腦中樹立推崇創(chuàng)新、追求創(chuàng)新和以創(chuàng)新為榮的意識。在從實際問題中抽象出數(shù)學(xué)模型的過程中,須把實際關(guān)系轉(zhuǎn)化為數(shù)學(xué)關(guān)系,這要求他們敢于想象和聯(lián)想,此外他們還要從貌似不同的問題中抓住其本質(zhì)的和共性的東西,這將培養(yǎng)他們把握問題內(nèi)在本質(zhì)的能力,即洞察力,可以說,培養(yǎng)學(xué)生的這些能力始終貫穿在數(shù)學(xué)建模的整個過程。
4數(shù)學(xué)建??梢耘囵B(yǎng)學(xué)生熟練地運用計算機的能力
5數(shù)學(xué)建模可以增強大學(xué)生的適應(yīng)能力
通過數(shù)學(xué)建模的學(xué)習(xí)及競賽訓(xùn)練,他們不僅受到了現(xiàn)代數(shù)學(xué)思維及方法的熏陶,更重要的是對不同的實際問題,如何進行分析、推理、概括以及如何利用數(shù)學(xué)方法與計算機知識,還有各方面的知識綜合起來解決它。因此,他們具有較高的素質(zhì),無論以后到哪個行業(yè)工作,都能很快適應(yīng)需要。不僅如此,由于建模決不是一件輕而易舉的事,需要學(xué)生對實際問題進行反復(fù)多次的研究、分析、觀察和對模型進行反復(fù)多次的計算、論證及修改等,整個過程是一個非常艱辛的探索過程,這可以培養(yǎng)學(xué)生高度的責(zé)任感、堅韌不拔的毅力、遭遇挫折后較強的心理承受能力以及孜孜不倦、精益求精的探索精神,使他們具有良好的心理素質(zhì)與精神狀態(tài)。同時數(shù)學(xué)建模一般都是由幾個人組成的團隊來完成的,其成功與否,完全取決于大家的密切合作,既要合理分工,又要密切配合,這樣又可以培養(yǎng)學(xué)生的組織管理能力、協(xié)調(diào)能力和相互協(xié)作的團隊精神,這些對他們今后走向工作崗位都是大有裨益的。
此外,數(shù)學(xué)建模從教育觀念、內(nèi)容、形式和手段都有一定的創(chuàng)新,對數(shù)學(xué)教學(xué)改革有積極的啟示意義。首先,數(shù)學(xué)建模突出了教與學(xué)的雙主體性關(guān)系。教師要根據(jù)學(xué)生的學(xué)習(xí)興趣、能力及特點,不斷修正自己的教育內(nèi)容和方法。學(xué)生要對教師所給予的信息有批判性地、創(chuàng)造性地、發(fā)展性地能動反映,要在相互討論、相互啟發(fā)下尋求更多更好的解答方案。這種雙主體的關(guān)系是對傳統(tǒng)教學(xué)方式的根本突破。
其次,數(shù)學(xué)建模促進了課程體系和教學(xué)內(nèi)容的改革。長期以來,我們的課程設(shè)置和教學(xué)內(nèi)容都具有強烈的理科特點:重基礎(chǔ)理論、輕實踐應(yīng)用;重傳統(tǒng)的經(jīng)典數(shù)學(xué)內(nèi)容、輕離散的數(shù)值計算。然而,數(shù)學(xué)建模所要用到的主要數(shù)學(xué)方法和數(shù)學(xué)知識恰好正是被我們長期所忽視的那些內(nèi)容。因此,這迫使我們調(diào)整課程體系和教學(xué)內(nèi)容。比如可增加一些應(yīng)用型、實踐類課程等等;在其余各門課程的教學(xué)中,也要盡量注意到使數(shù)學(xué)理論與應(yīng)用相結(jié)合,增加實際應(yīng)用方面的內(nèi)容和例題,從而使教學(xué)內(nèi)容也得到了更新。
再次,數(shù)學(xué)建模增加了教師對新興科技知識的傳授,拓寬了學(xué)生的知識面。這些特點對于目前數(shù)學(xué)教材中存在的內(nèi)容陳舊、知識面狹窄及形式呆板等問題,具有借鑒作用。數(shù)學(xué)建模的試題通常聯(lián)系新興的學(xué)科,在科學(xué)技術(shù)迅猛發(fā)展的今天,各種新興學(xué)科、邊緣學(xué)科、交叉學(xué)科不斷涌現(xiàn),廣博的知識面和對新興科學(xué)技術(shù)的追蹤能力是獲得成功的關(guān)鍵因素之一。
數(shù)學(xué)建模不僅有利于學(xué)生更好的掌握知識、運用知識,也有利于高校的科研和教學(xué),使學(xué)生和教師能在平時的學(xué)習(xí)、工作中自動形成勤于思考的好習(xí)慣,數(shù)學(xué)建模競賽與學(xué)生畢業(yè)以后工作時的條件非常相近,是對學(xué)生業(yè)務(wù)、能力和素質(zhì)的全面培養(yǎng),特別是開放性思維和創(chuàng)新意識,這項活動的開展有利于學(xué)生的全面素質(zhì)的培養(yǎng),既豐富、活躍了廣大學(xué)生的課外生活,也為優(yōu)秀學(xué)員脫穎而出創(chuàng)造了條件。
【參考文獻】
[1]顏筱紅,粱東穎。高職院校數(shù)學(xué)建模教學(xué)的研究[j].廣西教育,2013(2):54,134.
[3]李大潛。中國大學(xué)生數(shù)學(xué)建模競賽[m].2版。北京:高等教育出版社,2001.
[4]謝金星。2008高教社杯全國大學(xué)生數(shù)學(xué)建模競賽[j].工程數(shù)學(xué)學(xué)報,2008(25):1-2.
大學(xué)生數(shù)學(xué)建模論文篇六
1.數(shù)學(xué)建模對學(xué)生創(chuàng)新思維和創(chuàng)新精神的培養(yǎng)
數(shù)學(xué)建模解決的都是與我們生活息息相關(guān)的實際問題,很多都是當(dāng)前社會比較關(guān)注的熱點問題,比如開放性小區(qū)的建立,人工智能機器人在工作中的應(yīng)用,這些問題開放性比較強,有明確的目的和要求,但它沒有唯一的結(jié)果和方法。因此留給學(xué)生很大的創(chuàng)新空間,使學(xué)生對數(shù)學(xué)產(chǎn)生了極大的興趣,他們發(fā)現(xiàn)這幾年學(xué)習(xí)的高數(shù)、線性代數(shù)、概率論與數(shù)理統(tǒng)計終于派上了用場。數(shù)學(xué)建模課程會結(jié)合《高等數(shù)學(xué)》,《線性代數(shù)》,《概率論與數(shù)理統(tǒng)計》等數(shù)學(xué)基礎(chǔ)學(xué)科,還會經(jīng)常涉及到物理,工程,經(jīng)濟,金融,農(nóng)林等各個領(lǐng)域各個學(xué)科,從不同的學(xué)科中找最熱門最真實的案例進行教學(xué),這要求學(xué)生有很強的自學(xué)能力,要不得學(xué)習(xí)新知識,新思路和新方法,讓學(xué)生結(jié)合所學(xué)的數(shù)學(xué)知識把自己學(xué)科的專業(yè)知識轉(zhuǎn)化成數(shù)學(xué)模型,讓數(shù)學(xué)充分發(fā)揮它的優(yōu)勢,以達到培養(yǎng)學(xué)生的創(chuàng)新能力,更重要的是對學(xué)生的知識體系起到了完善的作用。在整個競賽中從模型建立與求解到寫作,都是由學(xué)生獨立完成,充分發(fā)揮了他們的自主性和創(chuàng)造性。
2.數(shù)學(xué)建模能培養(yǎng)學(xué)生團隊合作精神和創(chuàng)新創(chuàng)業(yè)能力
數(shù)學(xué)建模競賽是由三個人組成一個小團隊共同處理一個問題,在這個團隊中每個人都各有分工,有的人擅長建立模型,有的人擅長計算機編程求解模型,有的人擅長寫作,這三個人缺一不可,任何一個人都發(fā)揮著舉足輕重的作用。通常我們還會設(shè)一個隊長能協(xié)調(diào)隊員之間的關(guān)系和對題目的把控。每個人都有不同的性格,能力,學(xué)識,知識結(jié)構(gòu),在做題的過程中會產(chǎn)生不同的想法,比如在模型的建立中,數(shù)據(jù)的處理過程中,算法的選取,編程語言的選取,寫作的過程中都會有很多的不同,所以每個成員都要有團隊精神、相互信任、相互溝通、相互尊重、取長補短、充分發(fā)揮集體的力量共同完成一個項目。同時每年無論在培訓(xùn)還是正式比賽過程中由于高強度的腦力活動,強大的心理壓力以及隊員之間的不和睦都會造成中途退賽,這樣無疑是最可惜的。所以,在競賽中除了培養(yǎng)學(xué)生的創(chuàng)新意識和團隊合作精神,還培養(yǎng)了大家的心理承受能力,強大的意志力以及與他人溝通交往的能力,是對自己綜合素質(zhì)的一個提高,對未來考研、出國、就業(yè)都有很大的幫助。
3.數(shù)學(xué)建模培養(yǎng)學(xué)生的創(chuàng)新創(chuàng)業(yè)的.綜合能力
通過在大二一年的數(shù)學(xué)建模選修課,以及假期的集中培訓(xùn)培養(yǎng)了學(xué)生的創(chuàng)新創(chuàng)業(yè)能力,很大程度上提高了他們思考問題解決問題的能力等綜合素質(zhì),同時還培養(yǎng)了他們應(yīng)用計算機去處理各種問題的科技能力。他們學(xué)會了各種軟件、語言,很多同學(xué)會數(shù)據(jù)挖掘、機器學(xué)習(xí)以及人工智能,這些都是未來科技的前沿,科技創(chuàng)新是企業(yè)發(fā)展的動力,現(xiàn)代教育不能只停留在教授學(xué)生理論知識的學(xué)習(xí),更重要的是理論與實踐的結(jié)合,走產(chǎn)學(xué)研相結(jié)合的道路,數(shù)學(xué)建模很好的把理論與實踐相結(jié)合,激發(fā)學(xué)生科研熱情,提高學(xué)生科研積極性,激發(fā)了學(xué)生的創(chuàng)新創(chuàng)業(yè)能力,為以后工作生活奠定了扎實的基礎(chǔ)。為了讓建模更好的服務(wù)學(xué)生,我們將不斷的努力,探索和改進培養(yǎng)模式和方法,爭取通過數(shù)學(xué)建模平臺使更多的同學(xué)受益,培養(yǎng)出更多的具有創(chuàng)新創(chuàng)業(yè)能力的大學(xué)生。
參考文獻:
[2]韋程東.數(shù)學(xué)建模能力培養(yǎng)方法研究[m].北京:科學(xué)出版社,2012.
大學(xué)生數(shù)學(xué)建模論文篇七
計算數(shù)學(xué)建模是用數(shù)學(xué)的思考方式,采用數(shù)學(xué)的方法和語言,通過簡化,抽象的方式來解決實際問題的一種數(shù)學(xué)手段。數(shù)學(xué)建模所解決的問題不止現(xiàn)實的,還包括對未來的一種預(yù)見。數(shù)學(xué)建??梢哉f和我們的生活息息相關(guān),尤其是如今科技發(fā)達的今天。數(shù)學(xué)建模應(yīng)用領(lǐng)域超乎我們的想象,甚至達到無所不及的程度,隨著數(shù)學(xué)建模在大學(xué)教學(xué)中的廣泛使用,使數(shù)學(xué)建模不止成為一種學(xué)科,更重要的是指導(dǎo)新生代更好的利用現(xiàn)代科學(xué)技術(shù),成為高科技人才,把我國人才強國,科教興國的戰(zhàn)略推向一個新的高度。
1.數(shù)學(xué)建模對教學(xué)過程的作用
1.1數(shù)學(xué)建模引進大學(xué)數(shù)學(xué)教學(xué)的必要。教學(xué)過程,是教師根據(jù)社會發(fā)展要求和當(dāng)代學(xué)生身心發(fā)展的特點,借助教學(xué)條件,指導(dǎo)學(xué)生通過認識教學(xué)內(nèi)容從而認識客觀世界,并在此基礎(chǔ)之上發(fā)展自身的過程,即教學(xué)活動的展開過程。以往高工專的數(shù)學(xué)教學(xué)存在著知識單一,內(nèi)容陳舊,脫離實際等缺陷,已經(jīng)不能滿足時代的發(fā)展,如今的數(shù)學(xué)教學(xué)過程不是單純的傳授數(shù)學(xué)學(xué)科知識,而是通過數(shù)學(xué)教學(xué)過程引導(dǎo)學(xué)生認識科學(xué),理解科學(xué),從而指導(dǎo)實踐,促進學(xué)生的德智體美勞全面的進步和發(fā)展。因此數(shù)學(xué)建模成為一門學(xué)科,被各大高等院校廣泛引用和推廣,其實數(shù)學(xué)建模不止應(yīng)用在大學(xué)數(shù)學(xué)教學(xué)中,其他一切教學(xué)過程多可引進數(shù)學(xué)建模。1.2數(shù)學(xué)建模在大學(xué)數(shù)學(xué)教學(xué)中的運用。大學(xué)數(shù)學(xué)教師通過這個數(shù)學(xué)建模過程來引導(dǎo)學(xué)生解決問題和指導(dǎo)實踐的能力。再次建模結(jié)果對現(xiàn)實生活的指導(dǎo),這是大學(xué)數(shù)學(xué)教學(xué)中數(shù)學(xué)建模所需要達到的效果和要求。不再停留在理論學(xué)習(xí),而是通過理論指導(dǎo)實踐,從而為科學(xué)的進步和人才綜合水平的提高提供可能。
2.數(shù)學(xué)建模對當(dāng)代大學(xué)生的作用
2.1數(shù)學(xué)建模對數(shù)學(xué)學(xué)科和其他學(xué)科學(xué)生的巨大影響力學(xué)習(xí)數(shù)學(xué)建模,能夠使一個單獨的數(shù)學(xué)家變成經(jīng)濟學(xué)家,物理學(xué)家還有金融學(xué)家,甚至是藝術(shù)家,只要正握數(shù)學(xué)建模就能指導(dǎo)學(xué)生通過掌握數(shù)學(xué)建模的思維和方法向其他領(lǐng)域?qū)W習(xí)和進步。數(shù)學(xué)建模成為連接數(shù)學(xué)和其他領(lǐng)域的紐帶,是當(dāng)今數(shù)學(xué)科學(xué)在其他領(lǐng)導(dǎo)應(yīng)用的橋梁,是數(shù)學(xué)技術(shù)轉(zhuǎn)化為其他技術(shù)的途徑,數(shù)學(xué)建模在學(xué)生中越來越受到關(guān)注和歡迎,越來越多的學(xué)生開始學(xué)習(xí)數(shù)學(xué)建模,尤其是數(shù)學(xué)界和工程界的學(xué)生,這成為當(dāng)今學(xué)生成為現(xiàn)代科技工作者必須掌握的只是能力之一。
2.2數(shù)學(xué)建模對學(xué)生綜合能力的提高數(shù)學(xué)建模是大學(xué)數(shù)學(xué)教師運用數(shù)學(xué)科學(xué)去分析和解決實際問題,在數(shù)學(xué)建模學(xué)習(xí)的過程中,大學(xué)生的數(shù)學(xué)能力得到提高,其分析問題、解決問題的能力得到提高,這對大學(xué)生畢業(yè)走向社會具有著重大意義。通過數(shù)學(xué)建模的學(xué)習(xí)和應(yīng)用,激發(fā)大學(xué)生學(xué)習(xí)數(shù)學(xué)和應(yīng)用數(shù)學(xué)的能力,運用數(shù)學(xué)的思維和方法,利用現(xiàn)代計算機科學(xué),來解決數(shù)學(xué)及其他領(lǐng)域的問題。
3.數(shù)學(xué)建模對大學(xué)數(shù)學(xué)及其他學(xué)科教師的作用
數(shù)學(xué)建模引入大學(xué)數(shù)學(xué)教學(xué),這是時代的進步,是時代對當(dāng)代大學(xué)教師提出的新要求,尤其是大學(xué)數(shù)學(xué)教師,其不再停留在以往的單純的數(shù)學(xué)知識講授方向,而是將數(shù)學(xué)科學(xué)作為基礎(chǔ),引導(dǎo)當(dāng)代大學(xué)生發(fā)散思維,發(fā)揮主觀能動性,從而學(xué)習(xí)數(shù)學(xué)科學(xué),并運用數(shù)學(xué)科學(xué)解決現(xiàn)實問題。在這個過程中大學(xué)教師的專業(yè)知識得到提高,其創(chuàng)新精神也得到了極大的豐富。大學(xué)數(shù)學(xué)教師不止完成數(shù)學(xué)教學(xué),更重要的是培養(yǎng)了高科技的人才,這對大學(xué)數(shù)學(xué)教師的社會地位也有了相應(yīng)的改變,在尊重人才,尊重科學(xué)的氛圍中,大學(xué)數(shù)學(xué)教師及其他學(xué)科的教師得到了鼓舞,得到了進步,得到了認可。數(shù)學(xué)建模越來越重要,關(guān)于數(shù)學(xué)建模的各種國內(nèi)國際大賽頻頻舉辦,這對大學(xué)數(shù)學(xué)教師在知識,體力和創(chuàng)新性上都提出新的要求,為了更好的參與數(shù)學(xué)建模比賽,大學(xué)數(shù)學(xué)教師投入更多的時間和經(jīng)歷在學(xué)生教育和數(shù)學(xué)建模中,他們成為真正的臺前和幕后的指揮者。
隨著現(xiàn)代大學(xué)學(xué)科的豐富,尤其是計算機科學(xué)的廣泛應(yīng)用,大學(xué)數(shù)學(xué)教學(xué)的跨時代發(fā)展,數(shù)學(xué)建模成為各個高校數(shù)學(xué)教學(xué)的重點內(nèi)容,數(shù)學(xué)建模教學(xué)吸納數(shù)學(xué)家,計算機學(xué)家等多個學(xué)科專家的意見,從而為培養(yǎng)出綜合行的高科技人才做好充分的準備??梢哉f數(shù)學(xué)建模教學(xué)是當(dāng)今大學(xué)數(shù)學(xué)教學(xué)的主旋律,是數(shù)學(xué)科學(xué)和其他科學(xué)進步發(fā)展的方向和原動力。
參考文獻:
[1]李進華.教育教學(xué)改革與教育創(chuàng)新探索.安徽:安徽大學(xué)出版社,20xx.8.
[2]于駿.現(xiàn)代數(shù)學(xué)思想方法.山東:石油大學(xué)出版社,1997.
大學(xué)生數(shù)學(xué)建模論文篇八
摘要:數(shù)學(xué)建模作為現(xiàn)代應(yīng)用數(shù)學(xué)的一個重要組成部分被越來越多的人所重視。本文描述數(shù)學(xué)建模課程及數(shù)學(xué)建模競賽在培養(yǎng)大學(xué)生各種能力中的作用。
關(guān)鍵詞:數(shù)學(xué)建模;競賽;大學(xué)生;能力
一、引言
數(shù)學(xué)建模是運用數(shù)學(xué)的語言和方法,去描述或模擬實際問題中的數(shù)量關(guān)系,并解決實際問題的一種強有力的教學(xué)手段。數(shù)學(xué)建模是應(yīng)用數(shù)學(xué)的語言和方法解決實際問題的過程,也是一個培養(yǎng)大學(xué)生各種能力的綜合過程。
大學(xué)生數(shù)學(xué)建模競賽最早是1985年在美國出現(xiàn)的。1989年在幾位從事數(shù)學(xué)建模教育的教師的組織和推動下,我國幾所大學(xué)的大學(xué)生開始參加美國的競賽。自1994年起,教育部高教司和中國工業(yè)與應(yīng)用數(shù)學(xué)學(xué)會共同主辦全國大學(xué)生數(shù)學(xué)建模競賽,每年一屆,這項活動被教育部列為全國大學(xué)生四大競賽之一。隨著全國大學(xué)生數(shù)學(xué)建模競賽的廣泛影響,越來越多的高校組織隊員參加該項競賽,這項競賽的規(guī)模以平均年增長25%以上的速度發(fā)展。2008年全國有31個省/市/自治區(qū)(包括香港)1,023所院校、12,846個隊、38,000多名來自各個專業(yè)的大學(xué)生參加競賽,比2007年新增院校15所。2009年全國有33個省/市/自治區(qū)(包括香港和澳門特區(qū))1,137所院校、15,046個隊、45,000多名來自各個專業(yè)的大學(xué)生參加競賽,是歷年來參賽人數(shù)最多的(其中西藏和澳門是首次參賽)。
20世紀八十年代以來,我國各高等院校相繼開設(shè)數(shù)學(xué)建模課程。數(shù)學(xué)建模課程是在高等數(shù)學(xué)、線性代數(shù)、概率與數(shù)理統(tǒng)計之后,為實現(xiàn)理論和實踐一體化、進一步提高運用數(shù)學(xué)知識和計算機技術(shù)解決實際問題,培養(yǎng)創(chuàng)新能力所開設(shè)的一門廣泛的公共基礎(chǔ)課。教育必須反映社會的實際需要,數(shù)學(xué)建模課程進入大學(xué)課堂,既順應(yīng)時代發(fā)展的潮流,也符合教育改革的要求。
素質(zhì)教育是新世紀高校高等數(shù)學(xué)教育改革的一個重要方向。在大學(xué)校園中,數(shù)學(xué)建模課程的開設(shè)及數(shù)學(xué)建?;顒拥拈_展,能有效地激發(fā)大學(xué)生學(xué)習(xí)的興趣和積極性,使大學(xué)生掌握準確快捷的計算方法和嚴密的邏輯推理,培養(yǎng)大學(xué)生用數(shù)學(xué)工具分析解決實際問題的能力,是實施素質(zhì)教育的一種有效途徑。
二、數(shù)學(xué)建模對大學(xué)生能力的培養(yǎng)
通過數(shù)學(xué)建模課程的教學(xué)與參加數(shù)學(xué)建模競賽的實踐,使我們深刻感受到數(shù)學(xué)建模過程,不僅是對大學(xué)生知識和方法的培養(yǎng),更是對當(dāng)代大學(xué)生各種能力的培養(yǎng)有著深遠的意義。
1、有利于提高學(xué)生分析解決問題的能力。數(shù)學(xué)建模教學(xué)強調(diào)如何把實際問題轉(zhuǎn)化為數(shù)學(xué)問題,要求建模者利用自己所掌握的數(shù)學(xué)知識及對實際問題的理解提出合理的假設(shè),從一個個實際問題中抽象出數(shù)學(xué)問題,建立相應(yīng)數(shù)學(xué)模型,利用恰當(dāng)?shù)臄?shù)學(xué)方法來求解此模型,解決實際問題,并對模型進行評價改進。因此,數(shù)學(xué)建模教學(xué)為大學(xué)生架設(shè)了由抽象的數(shù)學(xué)理論知識通向具體的實際問題的橋梁,是使大學(xué)生的數(shù)學(xué)知識和應(yīng)用能力共同提高的有效方式。大學(xué)生通過參與數(shù)學(xué)建模及競賽活動,能切身體會到學(xué)習(xí)數(shù)學(xué)的實用價值,這是傳統(tǒng)教學(xué)無法達到的效果,從而激發(fā)了大學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,提高了學(xué)生分析解決實際問題的能力。
2、有利于培養(yǎng)大學(xué)生應(yīng)用數(shù)學(xué)的能力。數(shù)學(xué)建模通過積極主動的發(fā)散性思維,培養(yǎng)學(xué)生“應(yīng)用數(shù)學(xué)”的能力。這是數(shù)學(xué)教育的根本任務(wù),當(dāng)然應(yīng)當(dāng)成為數(shù)學(xué)應(yīng)用于教學(xué)目的中的重中之重。應(yīng)用數(shù)學(xué)的能力是一種綜合能力,它離不開數(shù)學(xué)運算、數(shù)學(xué)推理、空間想像等基本的數(shù)學(xué)能力,但它主要側(cè)重于從實際問題中提出并表達數(shù)學(xué)問題的能力,運用并初步構(gòu)建數(shù)學(xué)模型的能力,對數(shù)學(xué)問題及模型進行變換化歸的能力,對數(shù)學(xué)結(jié)果進行檢驗和評價、闡釋和處理的能力。數(shù)學(xué)建模過程包括了歸納、整理、推理、深化等過程,因此把數(shù)學(xué)建模引入課堂教學(xué),學(xué)生能夠?qū)W會如何利用所學(xué)知識構(gòu)造數(shù)學(xué)模型,求解數(shù)學(xué)模型,從而解決實際問題,并且做出必要的評價與改進,從而加深對數(shù)學(xué)知識的理解,提高了應(yīng)用數(shù)學(xué)的能力。
3、有利于學(xué)生抽象概括能力的培養(yǎng)。應(yīng)用數(shù)學(xué)去解決各類實際問題時,建立數(shù)學(xué)模型是十分關(guān)鍵的一步,同時也是十分困難的一步。建立教學(xué)模型的過程,是把錯綜復(fù)雜的實際問題簡化,抽象、概括為合理的數(shù)學(xué)結(jié)構(gòu)的過程。抽象是抽取事物的本質(zhì)屬性,使它與其他屬性分開;概括是將同類事物的相同屬性結(jié)合起來。抽象和概括是緊密聯(lián)系的,只有抽象出事物的本質(zhì)屬性才能進行概括,如果思維不具有概括性也無從進行抽象。抽象能力是指在建模過程中能拋棄無關(guān)的非本質(zhì)因素,從本質(zhì)上看問題,自覺地進行層層的抽象概括,建立數(shù)學(xué)模型的能力。數(shù)學(xué)建模過程使學(xué)生對復(fù)雜的事物,有意識地區(qū)分主要因素與次要因素,本質(zhì)與表面現(xiàn)象,從而抓住本質(zhì)解決問題。它有利于提高學(xué)生思維的深刻性和抽象概括能力,它主要體現(xiàn)在學(xué)生能善于從復(fù)雜的事物中把握事物的本質(zhì)及規(guī)律,使學(xué)生面對具體問題能有條理地在簡約狀態(tài)下進行思考,并有助于真理的發(fā)現(xiàn)。
4、有利于提高大學(xué)生自學(xué)的能力。數(shù)學(xué)建模以學(xué)生為主,教師事先設(shè)計好問題,啟發(fā)、引導(dǎo)學(xué)生主動查閱文獻資料和學(xué)習(xí)新知識,鼓勵學(xué)生積極開展討論和辯論。學(xué)生通過學(xué)習(xí)數(shù)學(xué)建模課程,參加數(shù)學(xué)建模競賽,需要自學(xué)他完全不了解或知之不多的有關(guān)學(xué)科的專業(yè)知識,在這個過程中,有助于培養(yǎng)大學(xué)生獲取新知識的主動精神,有利于提高大學(xué)生的自學(xué)能力。
參加數(shù)學(xué)建模競賽賽前培訓(xùn)的同學(xué)大都需要學(xué)習(xí)諸如數(shù)理統(tǒng)計、優(yōu)化、微分方程、計算方法、層次分析法、數(shù)學(xué)軟件包的使用等等講座,用的學(xué)時并不多,多數(shù)是啟發(fā)性的講一些基本的概念和方法,主要是靠學(xué)生自己去學(xué),充分調(diào)動學(xué)生們的積極性,充分發(fā)揮學(xué)生們的潛能。同時,在比賽的短短3天時間里,要查閱大量的資料,取其精華,從中尋找到所需要的資料,收集必要的信息,這也必須要求大學(xué)生掌握科學(xué)的方法。這種能力必將使大學(xué)生在未來的工作和科研中受益匪淺。
5、有利于培養(yǎng)大學(xué)生的洞察力和想像力。洞察力是人們對個人認知、情感、行為的動機與相互關(guān)系的透徹分析。通俗地講,洞察力就是透過現(xiàn)象看本質(zhì),變無意識為有意識。就這層意義而言,洞察力就是學(xué)會用心理學(xué)的原理和視角來歸納總結(jié)人的行為表現(xiàn)。洞察力是指深入事物或問題的能力,更多的是摻雜了分析和判斷的能力,可以說洞察力是一種綜合能力。
想像力是人在已有形象的基礎(chǔ)上,在頭腦中創(chuàng)造出新形象的能力。in有一句名言:想像力比知識更重要,因為知識是有限的,而想像力包括世界的一切,推動著社會進步,并且是知識的源泉。這句話可以認為是開設(shè)“數(shù)學(xué)建模”這門課程的一個指導(dǎo)思想。
數(shù)學(xué)建模的模型假設(shè)過程就是根據(jù)對實際問題的觀察分析、類比、想像,用數(shù)理建?;蛳到y(tǒng)辨識建模方法作假設(shè),通過形象思維對問題進行簡單化、模型化,做出合乎邏輯的想像,形成實際問題數(shù)理化的設(shè)想。例如,2006年全國大學(xué)生數(shù)學(xué)建模競賽中c題“易拉罐的最優(yōu)設(shè)計問題”,第四問要求大學(xué)生利用對所測量的易拉罐的“洞察力和想像力”,做出自己的關(guān)于易拉罐形狀和尺寸的最優(yōu)設(shè)計。大學(xué)生做題的過程,無異于是對大學(xué)生洞察力和想像力培養(yǎng)的真實體現(xiàn)。
6、有利于提高大學(xué)生利用計算機解決問題的能力。首先,計算機是數(shù)學(xué)建模的得力助手。數(shù)學(xué)建模過程中,大多數(shù)問題靈活多變,很多模型的求解都面臨著大量的計算;其次,所建模型是否與實際吻合,常常要用模型的解來判斷,而且這種工作,在建立一個實際問題的數(shù)學(xué)模型中經(jīng)常要重復(fù)多遍。因此,熟練使用計算機計算數(shù)學(xué)問題是對學(xué)生的必須要求。我們倡導(dǎo)大學(xué)生盡量利用計算機程序或某些專用的數(shù)學(xué)應(yīng)用軟件如mathematica、matlab、lingo、mapple等,以及當(dāng)代高新科技成果,將數(shù)學(xué)、計算機有機地結(jié)合起來去解決實際問題。數(shù)學(xué)建模教學(xué)中結(jié)合實驗室上機實踐,計算機的應(yīng)用不僅僅表現(xiàn)在數(shù)學(xué)建模中模型的簡化與求解,而且給大學(xué)生提供了一種評價模型的“試驗場所”,這就有助于培養(yǎng)大學(xué)生利用數(shù)學(xué)軟件和計算機解決實際問題的能力。
7、有利于培養(yǎng)大學(xué)生的創(chuàng)新能力。創(chuàng)新是指人類為了滿足自身的需要,不斷拓展對客觀世界、自身任職與行為過程和結(jié)果的活動。創(chuàng)新能力指人在順利完成以原有知識經(jīng)驗為基礎(chǔ)的創(chuàng)建新事物活動中表現(xiàn)出來的潛在心理品質(zhì)。我們在教學(xué)中應(yīng)給學(xué)生留有充分的余地,鼓勵學(xué)生開闊視野、大膽懷疑、勇于進取、勇于創(chuàng)新,讓學(xué)生充分發(fā)揮想像力,不拘泥于用一種方法解決問題,從而培養(yǎng)學(xué)生的創(chuàng)新能力。在數(shù)學(xué)建模競賽中,對給出的具體實際問題,一般不會有現(xiàn)成的模型,這就要求大學(xué)生在原有模型的基礎(chǔ)上進行大膽的嘗試與創(chuàng)新。創(chuàng)新是一個民族的靈魂,只有創(chuàng)新才能發(fā)展。而創(chuàng)新教育是以全面、充分發(fā)展學(xué)生的創(chuàng)造力為核心的教育,它是適應(yīng)經(jīng)濟時代發(fā)展的教育思想。數(shù)學(xué)建模課程就是培養(yǎng)創(chuàng)新能力的一個極好的載體,數(shù)學(xué)建模的過程是一個創(chuàng)造性的過程,我們應(yīng)該充分發(fā)揮它在創(chuàng)新能力培養(yǎng)中的作用,它為培養(yǎng)大學(xué)生創(chuàng)造性思維能力和創(chuàng)新精神提供了廣闊的空間。
8、有利于提高大學(xué)生論文寫作和表達能力。數(shù)學(xué)建模成績的好壞、獲獎級別的高低與論文撰寫有著密切關(guān)系,數(shù)學(xué)建模的答卷是評價的唯一依據(jù)。建模方法獨特、結(jié)果出色,但如果不能做到結(jié)構(gòu)清晰、重點突出、文字流暢,也將會失去獲獎的機會。寫好論文的訓(xùn)練,是科技寫作的一種基本訓(xùn)練。通過建模競賽,學(xué)生能夠?qū)W會如何更加準確地闡述自己的觀點。所以,數(shù)學(xué)建模對培養(yǎng)學(xué)生的論文寫作能力和表達能力,都起到了積極的作用。
9、有利于培養(yǎng)大學(xué)生的合作交流能力和團隊合作精神。數(shù)學(xué)建模的問題涉及各個領(lǐng)域,都有一定的深度和廣度,所需知識較多,數(shù)學(xué)建模課程廣泛地采用討論班的教學(xué)方式,同學(xué)自己報告、討論、辯論,教師主要起質(zhì)疑、答疑、輔導(dǎo)的作用,與此同時,同學(xué)之間互相平等,互相尊重,培養(yǎng)了學(xué)生合作交流的能力。
參考文獻:
[1]姜啟源,謝金星,葉俊。數(shù)學(xué)模型[m].高等教育出版社,2004.
[2]趙靜,但奇。數(shù)學(xué)建模與數(shù)學(xué)實驗[m].高等教育出版社,2004.
[3]劉來福等。數(shù)學(xué)模型與數(shù)學(xué)建模[m].北京:北京師范大學(xué)出版社,1999.
大學(xué)生數(shù)學(xué)建模論文篇九
大量的應(yīng)用型技能型人才,有效滿足了社會各行各業(yè)的用工需求。隨著國家對高職教育的重視和不斷投入,提高教育的教學(xué)質(zhì)量勢在必行[1]。數(shù)學(xué)建模的核心是以數(shù)學(xué)模型為基礎(chǔ)的實際運用,鑒于數(shù)學(xué)建模的這種特點,國內(nèi)高職數(shù)學(xué)教育逐步把數(shù)學(xué)建模理念融入到課題教學(xué)中,提高學(xué)生的應(yīng)用能力。以數(shù)學(xué)建模理念的告知書明確教學(xué)改革要求學(xué)生結(jié)合計算機技術(shù),靈活運用數(shù)學(xué)的思想和方法獨立地分析和解決問題,不僅能培養(yǎng)學(xué)生的探索精神和創(chuàng)新意識,而且能培養(yǎng)學(xué)生團結(jié)協(xié)作、不怕困難、求實嚴謹?shù)淖黠L(fēng)[2]。筆者結(jié)合自身的教學(xué)工作經(jīng)驗,對基于數(shù)學(xué)建模理念的高職數(shù)學(xué)教學(xué)改革進行了探索,對教學(xué)實踐中出現(xiàn)的問題進行了分析梳理,以期為高職數(shù)學(xué)教學(xué)改革提供新思路,推動高職數(shù)學(xué)教學(xué)水平的不斷提高,培養(yǎng)出具有良好數(shù)學(xué)素養(yǎng)和專業(yè)技能的新型高職人才。
近年來,隨著國內(nèi)產(chǎn)業(yè)結(jié)構(gòu)的不斷調(diào)整,對于高等職業(yè)技術(shù)人才需求不斷增大,社會對高等職業(yè)技術(shù)教育寄予厚望。但是傳統(tǒng)的高職教育由于專業(yè)設(shè)置不合理,使用教材落后,實訓(xùn)實踐場地不足,培養(yǎng)出的學(xué)生動手能力差、專業(yè)能力不足,面對社會發(fā)展的新形勢,高職教育必須進行教學(xué)改革,提高學(xué)生的職業(yè)能力和就業(yè)競爭力。高職教育不同于普通本科教育,它有以下幾方面的特點。
1人才培養(yǎng)目標(biāo)不同
高職教育和本科教育人才培養(yǎng)目標(biāo)不同,高職教育是以技術(shù)應(yīng)用型高技能人才為培養(yǎng)目標(biāo),所有的教學(xué)課程設(shè)計和人才培養(yǎng)體系設(shè)計都是基于此目標(biāo)展開的,高職教育主要是為了向產(chǎn)業(yè)發(fā)展提供生產(chǎn)、服務(wù)、管理等一線工作的高級技術(shù)應(yīng)用型人才,專業(yè)能力培養(yǎng)和目標(biāo)職業(yè)匹配度高,所以高職教育教學(xué)成果最直接的評價就是畢業(yè)生的就業(yè)競爭力和上崗后的適應(yīng)能力。
2兩者的教學(xué)內(nèi)容不同
高職教育的教學(xué)重點是學(xué)生要掌握與實踐工作關(guān)系較為密切的業(yè)務(wù)處理能力、動手能力與交流能力,把學(xué)生的職業(yè)能力建設(shè)列為教學(xué)重點,課程設(shè)計專業(yè)性強,一旦就業(yè)能為企業(yè)創(chuàng)造明顯的效益,高職教育各專業(yè)課程差別較大。
3生源情況不同
在當(dāng)前的教育教學(xué)體系下,高職教育的生源普遍較差,大多是沒有希望考上大學(xué),轉(zhuǎn)而進入高職學(xué)習(xí),希望通過掌握一定的技術(shù)來實現(xiàn)就業(yè),所以高職學(xué)生的基礎(chǔ)知識普遍較差,學(xué)習(xí)興趣不高。數(shù)學(xué)建模給高職數(shù)學(xué)教學(xué)改革開辟了新思路,數(shù)學(xué)建模為數(shù)學(xué)理論學(xué)習(xí)和工程實踐應(yīng)用搭建了橋梁,在工學(xué)結(jié)合的基本原則下,采取數(shù)學(xué)建模教學(xué)理念,培養(yǎng)學(xué)生的數(shù)學(xué)素養(yǎng)及動手應(yīng)用能力是一個非常有效的手段[3]。
1數(shù)學(xué)建模的概念數(shù)學(xué)建模是將數(shù)學(xué)理論和現(xiàn)實問題相結(jié)合的一門科學(xué),它將實際問題抽象、歸納成為相應(yīng)的數(shù)學(xué)模型,在此基礎(chǔ)上應(yīng)用數(shù)學(xué)概念、數(shù)學(xué)定理、數(shù)學(xué)方法等手段研究處理實際問題,從定性或者定理的角度給出科學(xué)的結(jié)果[4]。數(shù)學(xué)建模的發(fā)展為數(shù)學(xué)知識的應(yīng)用提供了途徑,對于現(xiàn)實中的特點問題,可以用數(shù)學(xué)語言來描述其內(nèi)在規(guī)律和問題,運用數(shù)學(xué)研究的成果,結(jié)合計算機專業(yè)軟件,通過抽象、簡化、假設(shè)、引進變量等處理過程后,將實際問題用數(shù)學(xué)方式表達,轉(zhuǎn)化成為數(shù)學(xué)問題,借助數(shù)學(xué)思想建立起數(shù)學(xué)模型,從而解決實際問題。2基于數(shù)學(xué)建模思想的教學(xué)理念基于數(shù)學(xué)建模的這種學(xué)科特點,可以把數(shù)學(xué)知識應(yīng)用化,因此,基于數(shù)學(xué)建模思想的教學(xué)理念可以概括為三個層次:首先,確立提高學(xué)生數(shù)學(xué)應(yīng)用能力為目標(biāo),以提高學(xué)生數(shù)學(xué)學(xué)習(xí)興趣為手段,以學(xué)習(xí)數(shù)學(xué)建模為途徑;其次,結(jié)合教學(xué)內(nèi)容,開發(fā)相應(yīng)的數(shù)學(xué)建模案例,因地制宜、因生制宜,根據(jù)專業(yè)不同編寫相應(yīng)的校本教材;最后,改進教學(xué)方法,創(chuàng)新課堂教學(xué)模式,建立課外數(shù)學(xué)建模學(xué)習(xí)興趣小組,帶領(lǐng)學(xué)生進行數(shù)學(xué)應(yīng)用實踐活動,鼓勵學(xué)生參加各種數(shù)學(xué)建模競賽[5]。
傳統(tǒng)的數(shù)學(xué)教學(xué)模式以教師課堂講授為中心,學(xué)生只能被動的接受,由于學(xué)生的基礎(chǔ)知識水平不同,掌握新知識的能力也不同,這種沒有區(qū)分的教學(xué)模式教學(xué)效果差,往往帶來的結(jié)果是造成基礎(chǔ)差的學(xué)生跟不上,對數(shù)學(xué)感興趣的學(xué)生失去興趣?;跀?shù)學(xué)建模理念的高職數(shù)學(xué)教學(xué)改革,是以學(xué)生數(shù)學(xué)應(yīng)用能力提高為目標(biāo),以數(shù)學(xué)學(xué)習(xí)興趣培養(yǎng)為出發(fā)點,以數(shù)學(xué)建模為途徑,以教學(xué)方式改革為保障,打造高職數(shù)學(xué)教學(xué)改革新模式,全面提高高職教育應(yīng)用型人才培養(yǎng)水平。
1結(jié)合專業(yè)特色,突出數(shù)學(xué)教育的應(yīng)用性
數(shù)學(xué)作為高職教育的基礎(chǔ)性學(xué)科,理論性強,體系性強,對于基礎(chǔ)知識薄弱、學(xué)習(xí)興趣差的高職生來說感覺難學(xué)、枯燥,這是因為高職數(shù)學(xué)教育沒有教會學(xué)生如何在專業(yè)學(xué)習(xí)中和以后的工作中如何去用學(xué)到的數(shù)學(xué)知識,學(xué)生感覺知識無用自然也就不會主動去學(xué),之所以引入數(shù)學(xué)建模的思想就是為了讓學(xué)生利用學(xué)到的數(shù)學(xué)知識去解決實際問題,讓學(xué)生認識到數(shù)學(xué)不只是紙面上的寫寫算算,數(shù)學(xué)可以把實際問題抽象化,變成數(shù)學(xué)問題,利用數(shù)學(xué)的研究方法給實際問題進行科學(xué)的指導(dǎo),這樣高職數(shù)學(xué)教育就不再是課堂上的照本宣科,課下的演算作業(yè),將基礎(chǔ)數(shù)學(xué)教育和學(xué)生的專業(yè)教育相結(jié)合,帶來學(xué)生用數(shù)學(xué)解決專業(yè)問題是大幅度提高學(xué)生專業(yè)能力的有效途徑。
2結(jié)合學(xué)生能力,因材施教、因地制宜
高職學(xué)校的生源不如普通高校,一般學(xué)習(xí)基礎(chǔ)較差,對于專業(yè)實訓(xùn)課并不明顯,但是在基礎(chǔ)學(xué)科教學(xué)過程特別突出,很多基礎(chǔ)知識掌握不牢,甚至一點印象都沒有,教師在上課時要充分考慮到這種情況,在課堂授課時給予實時的補充,以助于知識的過渡。因材施教是我國傳統(tǒng)的教育思想,在掌握學(xué)生知識水平的基礎(chǔ)上,教師要根據(jù)不同學(xué)習(xí)層次學(xué)生的具體情況,安排教學(xué)內(nèi)容和設(shè)置教學(xué)目標(biāo),對于基礎(chǔ)知識水平不高、學(xué)習(xí)興趣較差、學(xué)習(xí)能力較弱的學(xué)生要進行課外輔導(dǎo)。高職基礎(chǔ)課教育是專業(yè)課學(xué)習(xí)的基礎(chǔ),授課教師要根據(jù)學(xué)生的專業(yè)學(xué)習(xí)情況和專業(yè)特點,把遷移知識運用能力在課堂上結(jié)合學(xué)生的專業(yè)背景進行輔導(dǎo),高職數(shù)學(xué)教育不僅僅是為了學(xué)習(xí)數(shù)學(xué),更多的是發(fā)揮數(shù)學(xué)知識在其專業(yè)能力培養(yǎng)中的作用。
3培養(yǎng)學(xué)生學(xué)習(xí)興趣,促進整體教學(xué)質(zhì)量提高
高職學(xué)校的學(xué)生學(xué)習(xí)興趣普遍不高,尤其是對于學(xué)了十幾年都感覺頭痛的數(shù)學(xué),要想提高數(shù)學(xué)的教學(xué)質(zhì)量,首先必須要培養(yǎng)學(xué)生的學(xué)習(xí)興趣,長期以來學(xué)生在數(shù)學(xué)學(xué)習(xí)上已經(jīng)有了根深蒂固的認識,培養(yǎng)數(shù)學(xué)學(xué)習(xí)興趣很難,但是如果學(xué)生沒有學(xué)習(xí)興趣,教師授課內(nèi)容、授課方式改革都起不了太大的作用,學(xué)生對于數(shù)學(xué)學(xué)習(xí)興趣低由于低年級學(xué)習(xí)時受到的挫敗感,因此要讓學(xué)生建立學(xué)習(xí)數(shù)學(xué)的自信心,讓他們體驗學(xué)會數(shù)學(xué)的成就感,這樣才能逐步培養(yǎng)他們的學(xué)習(xí)興趣。教師可以采取以點帶面的方式,先選擇有一定基礎(chǔ)的學(xué)生,再從全部課程學(xué)習(xí)中發(fā)現(xiàn)表現(xiàn)優(yōu)秀的個體,組織參加建模競賽,進行單獨賽前加強指導(dǎo),用這些榜樣的力量提高全體同學(xué)的學(xué)習(xí)積極性。數(shù)學(xué)建模作為提高高職數(shù)學(xué)教育教學(xué)水平的“點”,能夠以其趣味性強,帶動學(xué)生的學(xué)習(xí)興趣,促進高職數(shù)學(xué)教育教學(xué)水平的全面提高。
4改革教學(xué)及評價方式,建立面向應(yīng)用的數(shù)學(xué)教育體系
由于基于數(shù)學(xué)建模思想的高職數(shù)學(xué)教學(xué)改革打破了以往的課堂教學(xué)方式和考核方式,學(xué)生面對的不再是期末的一張試卷,而是一個個數(shù)學(xué)建模案例,需要學(xué)生運用本學(xué)期學(xué)到的數(shù)學(xué)知識解決實際問題,教師根據(jù)學(xué)生對案例的理解程度,數(shù)學(xué)模型運用能力,實際過程分析和解題技巧等多方面給出評價,同時積極評價、鼓勵學(xué)生的創(chuàng)新思維,并將其納入到考核體系當(dāng)中。通過以上各個方面評價的加權(quán)作為最后的評價指標(biāo)。這種以數(shù)學(xué)知識應(yīng)用為基礎(chǔ),直接面向應(yīng)用的高職數(shù)學(xué)教育模式能極大的激發(fā)學(xué)生的學(xué)習(xí)積極性和知識應(yīng)用能力,符合高職應(yīng)用型人才培養(yǎng)理念,對提高高職學(xué)生的專業(yè)能力也打下了堅實的基礎(chǔ)?;跀?shù)學(xué)建模理念的高職數(shù)學(xué)教學(xué)改革是推動高職應(yīng)用型人才培養(yǎng)體系建設(shè)的新舉措,也是推動高職基礎(chǔ)課教學(xué)水平的重要內(nèi)容,能有效解決學(xué)生學(xué)習(xí)興趣低,基礎(chǔ)知識掌握不牢,數(shù)學(xué)知識應(yīng)用能力低等問題,通過“案例驅(qū)動法+討論法”,引導(dǎo)學(xué)生再次對課本知識進行思考和應(yīng)用,有利于培養(yǎng)學(xué)生的創(chuàng)新思維和應(yīng)用能力。引入數(shù)學(xué)建模理念教學(xué),把課堂學(xué)習(xí)的主動權(quán)交回給學(xué)生,既保證了高等數(shù)學(xué)原有的知識體系的完整,也可以提高教學(xué)效率。通過教學(xué)方式和評價方式改革,學(xué)生的學(xué)習(xí)主動性增強,也改變了以往對于數(shù)學(xué)學(xué)習(xí)的學(xué)習(xí)態(tài)度。高等數(shù)學(xué)作為高職教育學(xué)生必修的基礎(chǔ)課,在培養(yǎng)學(xué)生基本數(shù)學(xué)素養(yǎng)上具有重要作用,是理工類專業(yè)課程體系的重要組成部分,基于數(shù)學(xué)建模理念的高職數(shù)學(xué)教學(xué)改革也為同類基礎(chǔ)理論課改革提供了新思路和范例。
[1]孫麗.在高職數(shù)學(xué)教學(xué)改革中應(yīng)注重數(shù)學(xué)建模思想的滲透[j].科技資訊,20xx(22):188.
大學(xué)生數(shù)學(xué)建模論文篇十
信息化時代,數(shù)學(xué)科學(xué)與其他學(xué)科交叉融合,使得數(shù)學(xué)技術(shù)變成了一種普適性的關(guān)鍵技術(shù)。大學(xué)加強數(shù)學(xué)課程的應(yīng)用功能,不但可以為學(xué)生提供解決問題的思想和方法,而且更為重要的是可以培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)科學(xué)進行定量化、精確化思維的意識,學(xué)會創(chuàng)造性地解決問題的應(yīng)用能力。數(shù)學(xué)建模課程將數(shù)學(xué)的基本原理、現(xiàn)代優(yōu)化算法以及程序設(shè)計知識很好地融合在一起,有助于培養(yǎng)學(xué)生綜合應(yīng)用數(shù)學(xué)知識將現(xiàn)實問題化為數(shù)學(xué)問題,并進行求解運算的能力,激發(fā)學(xué)生對解決現(xiàn)實問題的探索欲望,強化數(shù)學(xué)課程本身的應(yīng)用功能,凸顯數(shù)學(xué)課程的教育價值,適應(yīng)大學(xué)數(shù)學(xué)課程以培養(yǎng)學(xué)生創(chuàng)新意識為宗旨的教育改革需要。
大學(xué)傳統(tǒng)的數(shù)學(xué)主干課程,如高等數(shù)學(xué)、線性代數(shù)、概率論與數(shù)理統(tǒng)計在奠定學(xué)生的數(shù)學(xué)基礎(chǔ)、培養(yǎng)自學(xué)能力以及為后續(xù)課程的學(xué)習(xí)在基礎(chǔ)方面發(fā)揮奠基作用。但是,這種原有的教學(xué)模式重在突出培養(yǎng)學(xué)生嚴格的邏輯思維能力,而對數(shù)學(xué)的應(yīng)用重視不夠,這使得學(xué)生即使掌握了較為高深的數(shù)學(xué)理論,卻并不能將其靈活應(yīng)用于現(xiàn)實生活解決實際問題,更是缺乏將數(shù)學(xué)應(yīng)用于專業(yè)研究和軍事工程的能力,與創(chuàng)新教育的基本要求差距甚遠。教育轉(zhuǎn)型要求數(shù)學(xué)教學(xué)模式從傳統(tǒng)的傳授知識為主向以培養(yǎng)能力素質(zhì)為主轉(zhuǎn)變,特別是將數(shù)學(xué)建模的思想方法融入到數(shù)學(xué)主干課程之中,在教學(xué)過程中引導(dǎo)學(xué)生將數(shù)學(xué)知識內(nèi)化為學(xué)生的應(yīng)用能力,充分發(fā)揮數(shù)學(xué)建模思想在數(shù)學(xué)教學(xué)過程中的引領(lǐng)作用。數(shù)學(xué)課程教學(xué)改革要適應(yīng)這一教學(xué)模式轉(zhuǎn)型需要,深入探究融入式教學(xué)模式的理論與方式,是推進數(shù)學(xué)教育改革的重要舉措。
2.1理清數(shù)學(xué)建模思想方法與數(shù)學(xué)主干課程的關(guān)系。數(shù)學(xué)主干課程提供了大學(xué)數(shù)學(xué)的基礎(chǔ)理論與基本原理,將數(shù)學(xué)建模的思想方法有機地融入到數(shù)學(xué)主干課程中,不但可以有效地提升數(shù)學(xué)課程的應(yīng)用功能,而且有利于深化學(xué)生對數(shù)學(xué)本原知識的理解,培養(yǎng)學(xué)生的綜合應(yīng)用能力。深入研究數(shù)學(xué)主干課程的功能定位,主要從課程目標(biāo)上的一致性、課程內(nèi)容上的互補性、學(xué)習(xí)形式上的互促性、功能上的整體優(yōu)化性等方面,研究數(shù)學(xué)建模本身所承載的思想、方法與數(shù)學(xué)主干課程的內(nèi)容與邏輯關(guān)系,闡述數(shù)學(xué)建模思想方法對提高學(xué)生創(chuàng)新能力和對數(shù)學(xué)教育改革的重要意義,探索開展融入式教學(xué)及創(chuàng)新數(shù)學(xué)課程教學(xué)模式的有效途徑。
2.2探索融入式教學(xué)模式提升數(shù)學(xué)主干課程應(yīng)用功能的方式。融入式教學(xué)主要有輕度融入、中度融入和完全融入三種方式。根據(jù)主干課程的基本特點,對課程體系進行調(diào)整,在問題解決過程中安排需要融入的知識體系,按照三種方式融入數(shù)學(xué)建模的思想與方法。以學(xué)生能力訓(xùn)練為主導(dǎo),在培養(yǎng)深厚的數(shù)學(xué)基礎(chǔ)和嚴格的邏輯思維能力的基礎(chǔ)上,充分發(fā)揮數(shù)學(xué)建模思想方法對學(xué)生思維方式的培養(yǎng)功能和引導(dǎo)作用,培養(yǎng)學(xué)生敏銳的分析能力、深刻的'歸納演繹能力以及將數(shù)學(xué)知識應(yīng)用于工程問題的創(chuàng)新能力。
2.3建立數(shù)學(xué)建模思想方法融入數(shù)學(xué)主干課程的評價方式。融入式教學(xué)是處于探索中的教學(xué)模式,教學(xué)成效有待于實踐檢驗。選取開展融入式教學(xué)的實驗班級,對數(shù)學(xué)建模思想方法融入主干課程進行教學(xué)效果實踐驗證。設(shè)計相應(yīng)的考察量表,從運用直覺思維深入理解背景知識、符號翻譯開展邏輯思維、依托圖表理順數(shù)量關(guān)系、大膽嘗試進行建模求解等多方面對實驗課程的教學(xué)效果進行檢驗,深入分析融入式教學(xué)模式的成效與不足,為探索有效的教學(xué)模式提出改進的對策。
3.1改革課程教學(xué)內(nèi)容,滲透數(shù)學(xué)建模的思想方法。傳統(tǒng)的數(shù)學(xué)主干課程教學(xué)內(nèi)容,將數(shù)學(xué)看作嚴謹?shù)难堇[體系,教學(xué)過程中著力于對學(xué)生傳授大學(xué)數(shù)學(xué)的基礎(chǔ)知識,而對應(yīng)用能力的培養(yǎng)卻重視不夠。使得本應(yīng)能夠發(fā)揮應(yīng)用功能的數(shù)學(xué)知識則淪為僵死的教條性數(shù)學(xué)原理,這失去了教學(xué)的活力。學(xué)生即使掌握了再高深的數(shù)學(xué)知識,仍難以學(xué)會用數(shù)學(xué)的基本方法解決現(xiàn)實問題?,F(xiàn)行的大學(xué)數(shù)學(xué)課程教學(xué)內(nèi)容中,適當(dāng)?shù)貪B透一些應(yīng)用性比較廣泛的數(shù)學(xué)方法,如微元法、迭代法及最佳逼近等方法,有利于促進學(xué)生對數(shù)學(xué)基礎(chǔ)知識的掌握,同時理解數(shù)學(xué)原理所蘊涵的思想與方法。
這樣,在解決實際問題的時候,學(xué)生就會有意識地從數(shù)學(xué)的角度進行思考,嘗試建立相應(yīng)的數(shù)學(xué)模型并進行求解,拓展了數(shù)學(xué)知識的深度與廣度,提升了學(xué)生的數(shù)學(xué)應(yīng)用能力四、結(jié)語數(shù)學(xué)建模是數(shù)學(xué)科學(xué)在科技、經(jīng)濟、軍事等領(lǐng)域廣泛應(yīng)用的接口,是數(shù)學(xué)科學(xué)轉(zhuǎn)化成科學(xué)技術(shù)的重要途徑。在數(shù)學(xué)主干課程中融入數(shù)學(xué)建模的思想與方法,可以推動大學(xué)數(shù)學(xué)教育改革的深入發(fā)展,加深學(xué)生對相關(guān)知識的理解和掌握,有助于從思維方式上培養(yǎng)學(xué)生的創(chuàng)新意識與創(chuàng)新能力。
此外,數(shù)學(xué)建模思想方法融入教學(xué)主干課程還涉及到許多問題,比如數(shù)學(xué)建模與計算技術(shù)如何有效結(jié)合以進行模擬仿真、融入式教學(xué)模式的基本理論、構(gòu)建新的課程體系等問題,仍將有待于更深入的研究。
大學(xué)生數(shù)學(xué)建模論文篇十一
隨著我國高等教育的發(fā)展,高校招生規(guī)模越來越大,而生源質(zhì)量較低,特別是獨立學(xué)院院校。就我校而言,絕大多數(shù)專業(yè)都開設(shè)了數(shù)學(xué)類課程。但在教學(xué)中,普遍認為理論性太強,與實際脫節(jié)嚴重,不能引起學(xué)生的學(xué)習(xí)興趣。并且,傳統(tǒng)教學(xué)忽視了學(xué)生用數(shù)學(xué)解決實際問題的能力,所以,進行數(shù)學(xué)教學(xué)改革勢在必行。數(shù)學(xué)建??膳囵B(yǎng)學(xué)生利用數(shù)學(xué)知識解決實際問題的能力,通過數(shù)模方法對實際問題進行巧妙處理,讓學(xué)生體會到數(shù)學(xué)不僅能傳播理論知識和求解一些數(shù)學(xué)問題,還可將其應(yīng)用到實際問題中,讓學(xué)生看到一些實際模型的來龍去脈,提高學(xué)生的學(xué)習(xí)積極性。數(shù)學(xué)建模是培養(yǎng)學(xué)生綜合科學(xué)素質(zhì)和創(chuàng)新能力的一個極好載體,而且能充分考驗學(xué)生的洞察能力、創(chuàng)新能力、聯(lián)想能力、使用當(dāng)代科技最新成果的能力等。學(xué)生們同舟共濟的團隊合作精神和協(xié)調(diào)組織能力,以及誠信意識和自律精神的塑造,都能得到很好的培養(yǎng)。技能技術(shù)的掌握和團隊合作精神對于獨立學(xué)院學(xué)生將來進入社會十分重要,這也是衡量獨立學(xué)院辦學(xué)成功與否的一個方面。因此,獨立學(xué)院的人才培養(yǎng)目標(biāo)定位,既要達到本科生應(yīng)具備的理論基礎(chǔ),又要有相對突出的專業(yè)技能,應(yīng)培養(yǎng)“應(yīng)用型本科”人才。因而,獨立學(xué)院的數(shù)學(xué)課堂上應(yīng)該多方面滲透數(shù)學(xué)模型的思想。
(一)人才培養(yǎng)創(chuàng)新的需要
根據(jù)獨立學(xué)院人才培養(yǎng)目標(biāo)和實際情況,有針對性的加大基礎(chǔ)課和實踐環(huán)節(jié)教學(xué)的'比重,側(cè)重于實踐能力的培養(yǎng),在專業(yè)課程體系中適當(dāng)增加實驗、實踐教學(xué)內(nèi)容,加強與社會實體的聯(lián)系。力求培養(yǎng)出具有實際操作能力的高素質(zhì)大學(xué)生。數(shù)學(xué)建模是將一個實際問題,對其作出一些必要的簡化與假設(shè),將其轉(zhuǎn)化成一個數(shù)學(xué)問題,借助數(shù)學(xué)工具和數(shù)學(xué)方法精確或近似地解決該問題,并用數(shù)學(xué)結(jié)果解釋客觀現(xiàn)象、回答實際問題并接受客觀實際的檢驗。數(shù)學(xué)建模能彌補傳統(tǒng)數(shù)學(xué)教學(xué)在實際應(yīng)用方面的不足,促進數(shù)學(xué)教師在現(xiàn)代化教學(xué)手段、教學(xué)模式方面的更新。數(shù)學(xué)建模有助于調(diào)動學(xué)生的學(xué)習(xí)興趣,在計算機應(yīng)用能力、實踐能力和創(chuàng)新意識的培養(yǎng)方面都有著非常大的作用,以便學(xué)生將來能更好地適應(yīng)工作崗位。
(二)高校教學(xué)改革的需要
當(dāng)今社會信息高度發(fā)達,競爭日益激烈,必須具備一定的創(chuàng)新意識和創(chuàng)新能力,否則很難適應(yīng)社會信息時代的要求。傳統(tǒng)的教學(xué)模式是以課堂理論講授為主,學(xué)生絕大部分時間都集中學(xué)習(xí)書本知識,很少有機會接觸社會,也難做到學(xué)以致用。絕大多數(shù)課程都是教師的一言堂,考試也是以教師講課內(nèi)容為主。學(xué)生忙于記錄和背誦而閑置其聰慧的頭腦。長期的灌輸式教學(xué)導(dǎo)致學(xué)生明顯缺乏學(xué)習(xí)的主動性,會聽從而不會質(zhì)疑,更不會形成開創(chuàng)性的觀點,很難適應(yīng)企事業(yè)單位動態(tài)的工作環(huán)境。數(shù)學(xué)作為一門傳統(tǒng)基礎(chǔ)學(xué)科,對獨立學(xué)院的學(xué)生來說,學(xué)習(xí)上有一定的難度。我們的教學(xué)應(yīng)以“必需,夠用”為度。數(shù)學(xué)建模從形式到內(nèi)容,都與畢業(yè)后工作時的條件非常相近,是一次非常好的鍛煉,學(xué)生通過自主的學(xué)習(xí),把實際的問題轉(zhuǎn)化為數(shù)學(xué)理論解決,有助于學(xué)生創(chuàng)新能力的培養(yǎng)動手能力的提高,這也正是獨立學(xué)院院校應(yīng)用型本科人才培養(yǎng)的方向。
(三)學(xué)生參加數(shù)學(xué)建模競賽的需要
獨立學(xué)院學(xué)生思維活躍,且比較注重個人能力素質(zhì)的提高。很多學(xué)生愿意在學(xué)校參加一些競賽來提高自己。全國大學(xué)生數(shù)學(xué)建模競賽尤其受學(xué)生重視,但仍有很多大學(xué)生不了解這類競賽,因此,在數(shù)學(xué)課堂上引入數(shù)學(xué)建模思想,學(xué)生既了解了數(shù)學(xué)建模,又對數(shù)學(xué)公式提起了興趣,還有助于獨立學(xué)院學(xué)生在全國大學(xué)生數(shù)學(xué)建模競賽中取得優(yōu)異成績。
高等數(shù)學(xué)的作用表現(xiàn)在為各專業(yè)后續(xù)課程的學(xué)習(xí)提供必要的數(shù)學(xué)知識,培養(yǎng)各專業(yè)學(xué)生的數(shù)學(xué)思想與數(shù)學(xué)修養(yǎng),全面提高大學(xué)生創(chuàng)新思維和應(yīng)用能力。只有把數(shù)學(xué)建模思想融入數(shù)學(xué)教學(xué)中,才能調(diào)動學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,培養(yǎng)學(xué)生的創(chuàng)新能力,實現(xiàn)提高學(xué)生綜合分析問題能力的最終目標(biāo)。
作者:崔瑋王文麗單位:中國地質(zhì)大學(xué)長城學(xué)院信息工程系
大學(xué)生數(shù)學(xué)建模論文篇十二
計算數(shù)學(xué)建模是用數(shù)學(xué)的思考方式,采用數(shù)學(xué)的方法和語言,通過簡化,抽象的方式來解決實際問題的一種數(shù)學(xué)手段。數(shù)學(xué)建模所解決的問題不止現(xiàn)實的,還包括對未來的一種預(yù)見。數(shù)學(xué)建??梢哉f和我們的生活息息相關(guān),尤其是如今科技發(fā)達的今天。數(shù)學(xué)建模應(yīng)用領(lǐng)域超乎我們的想象,甚至達到無所不及的程度,隨著數(shù)學(xué)建模在大學(xué)教學(xué)中的廣泛使用,使數(shù)學(xué)建模不止成為一種學(xué)科,更重要的是指導(dǎo)新生代更好的利用現(xiàn)代科學(xué)技術(shù),成為高科技人才,把我國人才強國,科教興國的戰(zhàn)略推向一個新的高度。
1.1數(shù)學(xué)建模引進大學(xué)數(shù)學(xué)教學(xué)的必要。教學(xué)過程,是教師根據(jù)社會發(fā)展要求和當(dāng)代學(xué)生身心發(fā)展的特點,借助教學(xué)條件,指導(dǎo)學(xué)生通過認識教學(xué)內(nèi)容從而認識客觀世界,并在此基礎(chǔ)之上發(fā)展自身的過程,即教學(xué)活動的展開過程。以往高工專的數(shù)學(xué)教學(xué)存在著知識單一,內(nèi)容陳舊,脫離實際等缺陷,已經(jīng)不能滿足時代的發(fā)展,如今的數(shù)學(xué)教學(xué)過程不是單純的傳授數(shù)學(xué)學(xué)科知識,而是通過數(shù)學(xué)教學(xué)過程引導(dǎo)學(xué)生認識科學(xué),理解科學(xué),從而指導(dǎo)實踐,促進學(xué)生的德智體美勞全面的進步和發(fā)展。因此數(shù)學(xué)建模成為一門學(xué)科,被各大高等院校廣泛引用和推廣,其實數(shù)學(xué)建模不止應(yīng)用在大學(xué)數(shù)學(xué)教學(xué)中,其他一切教學(xué)過程多可引進數(shù)學(xué)建模。1.2數(shù)學(xué)建模在大學(xué)數(shù)學(xué)教學(xué)中的運用。大學(xué)數(shù)學(xué)教師通過這個數(shù)學(xué)建模過程來引導(dǎo)學(xué)生解決問題和指導(dǎo)實踐的能力。再次建模結(jié)果對現(xiàn)實生活的指導(dǎo),這是大學(xué)數(shù)學(xué)教學(xué)中數(shù)學(xué)建模所需要達到的效果和要求。不再停留在理論學(xué)習(xí),而是通過理論指導(dǎo)實踐,從而為科學(xué)的進步和人才綜合水平的提高提供可能。
2.1數(shù)學(xué)建模對數(shù)學(xué)學(xué)科和其他學(xué)科學(xué)生的巨大影響力學(xué)習(xí)數(shù)學(xué)建模,能夠使一個單獨的數(shù)學(xué)家變成經(jīng)濟學(xué)家,物理學(xué)家還有金融學(xué)家,甚至是藝術(shù)家,只要正握數(shù)學(xué)建模就能指導(dǎo)學(xué)生通過掌握數(shù)學(xué)建模的思維和方法向其他領(lǐng)域?qū)W習(xí)和進步。數(shù)學(xué)建模成為連接數(shù)學(xué)和其他領(lǐng)域的紐帶,是當(dāng)今數(shù)學(xué)科學(xué)在其他領(lǐng)導(dǎo)應(yīng)用的橋梁,是數(shù)學(xué)技術(shù)轉(zhuǎn)化為其他技術(shù)的途徑,數(shù)學(xué)建模在學(xué)生中越來越受到關(guān)注和歡迎,越來越多的學(xué)生開始學(xué)習(xí)數(shù)學(xué)建模,尤其是數(shù)學(xué)界和工程界的學(xué)生,這成為當(dāng)今學(xué)生成為現(xiàn)代科技工作者必須掌握的只是能力之一。
2.2數(shù)學(xué)建模對學(xué)生綜合能力的提高數(shù)學(xué)建模是大學(xué)數(shù)學(xué)教師運用數(shù)學(xué)科學(xué)去分析和解決實際問題,在數(shù)學(xué)建模學(xué)習(xí)的過程中,大學(xué)生的數(shù)學(xué)能力得到提高,其分析問題、解決問題的能力得到提高,這對大學(xué)生畢業(yè)走向社會具有著重大意義。通過數(shù)學(xué)建模的學(xué)習(xí)和應(yīng)用,激發(fā)大學(xué)生學(xué)習(xí)數(shù)學(xué)和應(yīng)用數(shù)學(xué)的能力,運用數(shù)學(xué)的思維和方法,利用現(xiàn)代計算機科學(xué),來解決數(shù)學(xué)及其他領(lǐng)域的問題。
數(shù)學(xué)建模引入大學(xué)數(shù)學(xué)教學(xué),這是時代的進步,是時代對當(dāng)代大學(xué)教師提出的新要求,尤其是大學(xué)數(shù)學(xué)教師,其不再停留在以往的單純的數(shù)學(xué)知識講授方向,而是將數(shù)學(xué)科學(xué)作為基礎(chǔ),引導(dǎo)當(dāng)代大學(xué)生發(fā)散思維,發(fā)揮主觀能動性,從而學(xué)習(xí)數(shù)學(xué)科學(xué),并運用數(shù)學(xué)科學(xué)解決現(xiàn)實問題。在這個過程中大學(xué)教師的專業(yè)知識得到提高,其創(chuàng)新精神也得到了極大的豐富。大學(xué)數(shù)學(xué)教師不止完成數(shù)學(xué)教學(xué),更重要的是培養(yǎng)了高科技的人才,這對大學(xué)數(shù)學(xué)教師的社會地位也有了相應(yīng)的改變,在尊重人才,尊重科學(xué)的氛圍中,大學(xué)數(shù)學(xué)教師及其他學(xué)科的教師得到了鼓舞,得到了進步,得到了認可。數(shù)學(xué)建模越來越重要,關(guān)于數(shù)學(xué)建模的各種國內(nèi)國際大賽頻頻舉辦,這對大學(xué)數(shù)學(xué)教師在知識,體力和創(chuàng)新性上都提出新的要求,為了更好的參與數(shù)學(xué)建模比賽,大學(xué)數(shù)學(xué)教師投入更多的時間和經(jīng)歷在學(xué)生教育和數(shù)學(xué)建模中,他們成為真正的臺前和幕后的指揮者。
隨著現(xiàn)代大學(xué)學(xué)科的豐富,尤其是計算機科學(xué)的廣泛應(yīng)用,大學(xué)數(shù)學(xué)教學(xué)的跨時代發(fā)展,數(shù)學(xué)建模成為各個高校數(shù)學(xué)教學(xué)的重點內(nèi)容,數(shù)學(xué)建模教學(xué)吸納數(shù)學(xué)家,計算機學(xué)家等多個學(xué)科專家的意見,從而為培養(yǎng)出綜合行的高科技人才做好充分的準備??梢哉f數(shù)學(xué)建模教學(xué)是當(dāng)今大學(xué)數(shù)學(xué)教學(xué)的主旋律,是數(shù)學(xué)科學(xué)和其他科學(xué)進步發(fā)展的方向和原動力。
[1]李進華.教育教學(xué)改革與教育創(chuàng)新探索.安徽:安徽大學(xué)出版社,20xx.8.
[2]于駿.現(xiàn)代數(shù)學(xué)思想方法.山東:石油大學(xué)出版社,1997.
大學(xué)生數(shù)學(xué)建模論文篇十三
培養(yǎng)應(yīng)用型人才是我國高等教育從精英教育向大眾教育發(fā)展的必然產(chǎn)物,也是知識經(jīng)濟飛速發(fā)展和市場對人才多元化需求的必然要求。隨著科學(xué)技術(shù)的不斷發(fā)展,各學(xué)科各領(lǐng)域?qū)嶋H問題的研究日益精確化與定量化,數(shù)學(xué)在科學(xué)研究與工程技術(shù)中的作用不斷增強,其應(yīng)用的范圍幾乎覆蓋了所有學(xué)科分支,滲透到社會生活中的各個領(lǐng)域。前蘇聯(lián)數(shù)學(xué)家亞歷山大洛夫曾說過,“數(shù)學(xué)在其它科學(xué)中,在技術(shù)中,在全部生活實踐中都有廣泛的應(yīng)用”。1993年,王梓坤院士發(fā)表的著名報告《今日數(shù)學(xué)及其應(yīng)用》中也深刻指出:“現(xiàn)代世界國家間的競爭本質(zhì)上是高技術(shù)的競爭,而高技術(shù)本質(zhì)上是一種數(shù)學(xué)技術(shù)?!睌?shù)學(xué)是一門技術(shù)已經(jīng)成為人們的共識。數(shù)學(xué)技術(shù)離不開數(shù)學(xué)建模,數(shù)學(xué)建模是把數(shù)學(xué)作為工具,并應(yīng)用它解決實際問題的一種活動,它是一個跨學(xué)科、跨專業(yè)、綜合性和應(yīng)用性都非常強的過程,是數(shù)學(xué)應(yīng)用的必由之路,是聯(lián)系數(shù)學(xué)與實際問題的橋梁,是數(shù)學(xué)在各個領(lǐng)域廣泛應(yīng)用的媒介。因此,數(shù)學(xué)建模的過程是一個全而培養(yǎng)學(xué)生綜合素質(zhì)、提高學(xué)生各種能力的過程,數(shù)學(xué)建模是培養(yǎng)生產(chǎn)一線應(yīng)用型人才的一條重要途徑。
應(yīng)用型人才是將專業(yè)知識和專業(yè)技能應(yīng)用于社會實踐的專門人才是熟練掌握社會生產(chǎn)或社會活動一線的基礎(chǔ)知識和基本技能,主要從事一線生產(chǎn)的技術(shù)或?qū)iT人才社會對應(yīng)用型人才的基本要求是具有基礎(chǔ)扎實,知識而寬,應(yīng)用能力強,素質(zhì)高,有較強的創(chuàng)新精神和團隊合作精神。他們的突出特點是既具有寬廣的知識而和深厚的基礎(chǔ)理論,又能將所學(xué)知識應(yīng)用于本行業(yè)相關(guān)技術(shù)領(lǐng)域,適應(yīng)產(chǎn)業(yè)發(fā)展對應(yīng)用型人才市場需求的不斷變化,還有接受繼續(xù)教育的基礎(chǔ)條件和進一步獲取新知識的基本能力和擴展與職業(yè)相關(guān)的學(xué)科知識能力。
隨著高等教育的不斷擴招,高等教育的大眾化趨勢已越來越明顯,在這種背景下,傳統(tǒng)的“研究型”、“學(xué)術(shù)型”人才培養(yǎng)模式受到了嚴峻的挑戰(zhàn),因此,一些發(fā)達國家率先提出了“發(fā)展應(yīng)用型大學(xué)”,“培養(yǎng)應(yīng)用型人才”的口號。德國早在20世紀70年代就成立了應(yīng)用科技大學(xué),其應(yīng)用型人才的培養(yǎng)特色鮮明,深受歡迎。美國的工程教育,英國的技術(shù)學(xué)院,日本的短期大學(xué)都以培養(yǎng)應(yīng)用型人才而著稱。近年來,我國高等院校對應(yīng)用型人才的培養(yǎng)取得了一定的進展,但仍然存在認識上的不足,培養(yǎng)方案和措施仍有許多不盡如人意的地方,應(yīng)用型人才的培養(yǎng)模式還有待于進一步探索。通過多年的實踐和探索,根據(jù)應(yīng)用型人才的特點和社會日益數(shù)字化,對應(yīng)用型人才的要求以及數(shù)學(xué)在各行各業(yè)中的廣泛應(yīng)用、數(shù)學(xué)建模在應(yīng)用型人才培養(yǎng)中具有不可替代的重要作用。
數(shù)學(xué)建模就是用數(shù)學(xué)語言、方法近似地刻畫要解決的實際問題,對于已建立的模型采用推理、證明、數(shù)值計算等技術(shù)手段及相應(yīng)的數(shù)學(xué)軟件求解,并利用所得的結(jié)果擬合實際問題。數(shù)學(xué)建模在應(yīng)用型人才培養(yǎng)中的作用主要體現(xiàn)在以下幾個方面:
由于實際問題的'復(fù)雜性,在數(shù)學(xué)建模過程中要涉及到大量的數(shù)據(jù)收集和對數(shù)據(jù)的分析與處理,一個完整的建模過程一般要經(jīng)歷模型的假設(shè)、模型的建立與求解、算法的設(shè)計和計算機實現(xiàn)、對結(jié)果的分析與檢驗并將所得的結(jié)果模擬實際問題等幾個階段。這些過程只靠個人的力量在有限時間內(nèi)是很難完成的,這就注定了數(shù)學(xué)建模是一個團隊的集體行為,需要有師生之間、學(xué)生之間以及學(xué)生與社會之間的交流與合作。因此數(shù)學(xué)建模有利于提高學(xué)生的團隊合作精神,而團隊合作精神又是社會對應(yīng)用型人才的基本要求。
數(shù)學(xué)建模所面臨的數(shù)據(jù)是雜亂無章的,這就要求學(xué)生對這些數(shù)據(jù)進行去粗取精,去偽存真,歸納、提煉、整理、加工和總結(jié),還需要對一些已知條件進行符號化和量化,然后從中抽象出恰當(dāng)?shù)臄?shù)學(xué)關(guān)系,從而組建一定的數(shù)學(xué)模型,再用所學(xué)的數(shù)學(xué)理論和方法去求解數(shù)學(xué)模型。在對實際問題中的數(shù)據(jù)進行加工和整理過程中,為使問題簡化,有些因素是可以忽略的,但有些因素不能忽略,究竟哪些因素可以忽略、哪些因素不能忽略并沒有一定的范式,這要根據(jù)建模者對實際問題的理解、研究問題的目的以及數(shù)學(xué)背景來完成這個過程,應(yīng)該說這是一個創(chuàng)造性的過程。另外,數(shù)學(xué)模型是對實際問題的近似刻畫,為了使建立的數(shù)學(xué)模型盡可能完美地表達實際問題,又使模型易于求解,需要對模型進行不斷的改進和不斷的完善,這就要求學(xué)生不斷對問題進行深入的了解,深入到知識的更深層面,這樣又會產(chǎn)生新的疑問,這個過程多次循環(huán)們復(fù),學(xué)生的創(chuàng)新能力將不斷得到加強。創(chuàng)新能力也是社會對應(yīng)用型人才的基本要求。
一個完整的數(shù)學(xué)建模過程是綜合運用知識和能力,解決實際問題的過程。這不僅需要學(xué)生有較好的數(shù)學(xué)基礎(chǔ)和嚴密的邏輯推理能力,還要求學(xué)生對問題的實際背景有一定的了解,要求學(xué)生有廣博的知識和深厚的專業(yè)基礎(chǔ),并能對這些知識進行融會貫通。數(shù)學(xué)建模面臨的數(shù)據(jù)}i-.}i是龐大而復(fù)雜的,對數(shù)據(jù)的處理過程是一個分析與綜合,抽象與概括,比較與類比,系統(tǒng)化與具體化的過程。在這個過程中,學(xué)生的應(yīng)變能力和多角度分析,多方位思考能力不斷得到提高,綜合素質(zhì)不斷得到加強。綜合素質(zhì)和能力是應(yīng)用型人才的基本特征和社會對應(yīng)用型人才的起碼要求。
從實際問題中抽象出來的數(shù)學(xué)模型一般很復(fù)雜,因此模型的求解一般很困難,甚至無法求出模型的解析解,即使能求出模型的解析解,由于其復(fù)雜性而無多大的應(yīng)用價值。所以數(shù)學(xué)模型的求解通常需要編寫算法,運用某些數(shù)學(xué)軟件利用計算機求其數(shù)值解,這就要求學(xué)生有較強的數(shù)學(xué)軟件應(yīng)用能力和對計算機的實際操作能力。在操作的過程中,學(xué)生的動手能力和實踐能力自然而然得到提高。另外在數(shù)學(xué)建模中,需要進行調(diào)查研究,需要對有關(guān)的數(shù)據(jù)進行廣泛的采集和補充,這就是應(yīng)用型人才培養(yǎng)中所強調(diào)的實踐性。
數(shù)學(xué)建模本身就是綜合運用知識,解決實際問題的過程。數(shù)學(xué)建模中的很多典型案例,如“最優(yōu)捕魚策略”,“投資的收入和風(fēng)險”,“車燈線光源的優(yōu)化設(shè)計”等就較好地突現(xiàn)了知識的應(yīng)用性。數(shù)學(xué)建模是數(shù)學(xué)應(yīng)用的必由之路,是聯(lián)系數(shù)學(xué)與實際問題的橋梁。一方面數(shù)學(xué)建模需要用數(shù)學(xué)語言、方法近似地刻畫要解決的實際問題,另一方面數(shù)學(xué)建模需要利用所得的結(jié)果擬合實際問題,所有這些都與應(yīng)用型人才的突出特點和社會對應(yīng)用型人才的要求是一致的。
數(shù)學(xué)建模需要學(xué)生親自參與問題的研究與探索,數(shù)據(jù)的收集和補充需要學(xué)生的積極參與,數(shù)據(jù)的處理和模型的建立需要學(xué)生的主動參與,模型的求解需要學(xué)生獨立完成。數(shù)學(xué)建模一般需要綜合運用多方面的知識,需要了解相關(guān)問題的背景材料,需要對相關(guān)的數(shù)據(jù)進行合理的取舍和有效的篩選,有些知識和相關(guān)的資料需要學(xué)生自己去查詢,所有這些都為學(xué)生的自主學(xué)習(xí)提供了一個良好的“下臺。另外,數(shù)學(xué)建模需要用自己的語言描述問題的解決過程,需要廣泛的交流與合作,還需要進行論文的寫作等等,這些都對學(xué)生語言表達能力的提高具有重要的作用。應(yīng)用型人才的一個突出特點就是具有接受繼續(xù)教育的基礎(chǔ)條件和進一步獲取新知識的基本能力和擴展與職業(yè)相關(guān)的學(xué)科知識能力,而自學(xué)能力和語言表達能力為進一步獲取新知識等能力提供了良好的基礎(chǔ)。
應(yīng)該說,數(shù)學(xué)建模的作用是多方面的,通過數(shù)學(xué)建模的訓(xùn)練,學(xué)生獲得了參與研究探索的體驗,培養(yǎng)了收集、分析和利用信息的能力,學(xué)會了分享與合作,鍛煉了學(xué)生的意志力、洞察力、想象力、自學(xué)能力、語言的翻譯和表達能力以及綜合應(yīng)用專業(yè)知識解決實際問題的能力與分析問題、解決問題的能力,所有這一切都是應(yīng)用型人才培養(yǎng)所要達到的目標(biāo),也是與應(yīng)用型人才培養(yǎng)模式的四個基本點是一致的。因此數(shù)學(xué)建模能將應(yīng)用型人才的突出特征和社會對應(yīng)用型人才的要求體現(xiàn)得淋漓盡致,它在應(yīng)用型人才的培養(yǎng)中具有不可替代的重要作用。
1.馬克思有一句名言,“一門科學(xué)只有成功地應(yīng)用了數(shù)學(xué)時,才算真正達到了完善的地步”。不論是自然科學(xué)還是社會科學(xué)都需要數(shù)學(xué),都蘊含數(shù)學(xué)。一門科學(xué)要成功地應(yīng)用數(shù)學(xué),必須對這門學(xué)科中的問題建立數(shù)學(xué)模型。因此,建議高等院校的各個專業(yè)都要不同程度地開設(shè)數(shù)學(xué)建模課程,并根據(jù)專業(yè)的不同要求選擇合適的數(shù)學(xué)建模內(nèi)容,真正做到“人人學(xué)有用的數(shù)學(xué),人人做有用的數(shù)學(xué),人人用有用的數(shù)學(xué)”。
2.數(shù)學(xué)建模課程應(yīng)增加實訓(xùn)內(nèi)容,數(shù)學(xué)建模的學(xué)習(xí)應(yīng)以實訓(xùn)內(nèi)容為主。教師應(yīng)根據(jù)學(xué)生的具體情況,女排布置具有綜合性、開放性、靈活性和趣味性的實訓(xùn)題目,讓學(xué)生自己進行調(diào)查研究,自己收集數(shù)據(jù)、分析數(shù)據(jù)和處理數(shù)據(jù),模型的建立和求解要以學(xué)生為主體,并以論文的形式提交給教師,教師提供實時指導(dǎo)和幫助,對建模的結(jié)果進行有的放矢的點評,并將實訓(xùn)內(nèi)容作為學(xué)生期末考評的主要內(nèi)容和重要依據(jù)。
3.舉辦多種形式的數(shù)學(xué)建模競賽,豐富數(shù)學(xué)建模的教學(xué)內(nèi)容和教學(xué)方式,引進案例教學(xué)和專題講座,通過對典型案例的深入剖析,激發(fā)學(xué)生的學(xué)習(xí)興趣和積極性,培養(yǎng)學(xué)生的數(shù)學(xué)建模思想和堅忍不拔的毅力,聘請專家對一些典型問題進行專題講座。
大學(xué)生數(shù)學(xué)建模論文篇十四
優(yōu)秀高教社杯全國大學(xué)生數(shù)學(xué)建模競賽題目
(請先閱讀“全國大學(xué)生數(shù)學(xué)建模競賽論文格式規(guī)范”)
a題城市表層土壤重金屬污染分析
隨著城市經(jīng)濟的快速發(fā)展和城市人口的不斷增加,人類活動對城市環(huán)境質(zhì)量的影響日顯突出。對城市土壤地質(zhì)環(huán)境異常的查證,以及如何應(yīng)用查證獲得的海量數(shù)據(jù)資料開展城市環(huán)境質(zhì)量評價,研究人類活動影響下城市地質(zhì)環(huán)境的演變模式,日益成為人們關(guān)注的焦點。
按照功能劃分,城區(qū)一般可分為生活區(qū)、工業(yè)區(qū)、山區(qū)、主干道路區(qū)及公園綠地區(qū)等,分別記為1類區(qū)、2類區(qū)、??、5類區(qū),不同的區(qū)域環(huán)境受人類活動影響的程度不同。
現(xiàn)對某城市城區(qū)土壤地質(zhì)環(huán)境進行調(diào)查。為此,將所考察的城區(qū)劃分為間距1公里左右的網(wǎng)格子區(qū)域,按照每平方公里1個采樣點對表層土(0~10厘米深度)進行取樣、編號,并用gps記錄采樣點的位置。應(yīng)用專門儀器測試分析,獲得了每個樣本所含的多種化學(xué)元素的濃度數(shù)據(jù)。另一方面,按照2公里的間距在那些遠離人群及工業(yè)活動的自然區(qū)取樣,將其作為該城區(qū)表層土壤中元素的背景值。
附件1列出了采樣點的位置、海拔高度及其所屬功能區(qū)等信息,附件2列出了8種主要重金屬元素在采樣點處的濃度,附件3列出了8種主要重金屬元素的背景值。
現(xiàn)要求你們通過數(shù)學(xué)建模來完成以下任務(wù):
(1)給出8種主要重金屬元素在該城區(qū)的空間分布,并分析該城區(qū)內(nèi)不同區(qū)域重金屬的污染程度。
(2)通過數(shù)據(jù)分析,說明重金屬污染的主要原因。
(3)分析重金屬污染物的傳播特征,由此建立模型,確定污染源的位置。
大學(xué)生數(shù)學(xué)建模論文篇十五
在高等教育事業(yè)改革不斷深化的背景下,為了提升教育教學(xué)質(zhì)量,新時期對大學(xué)數(shù)學(xué)教學(xué)提出了更高的要求。大學(xué)數(shù)學(xué)作為課堂教學(xué)的主體,教師在傳授知識的同時,要注重學(xué)生學(xué)習(xí)能力和解決問題能力的培養(yǎng)。
數(shù)學(xué)知識來源于生活,應(yīng)用于生活,如微積分作為高等數(shù)學(xué)知識中的典型代表,在各個行業(yè)中具有不可或缺的作用。為此,任課教師在大學(xué)數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題和解決問題的能力十分重要,在傳授知識的過程中幫助學(xué)生利用所學(xué)知識來解決實際問題。一般情況下,教師著重介紹相關(guān)數(shù)學(xué)概念和原理,推導(dǎo)常用公式,促使學(xué)生能夠記住公式,學(xué)會公式的應(yīng)用過程,逐漸掌握解題技巧。
因此,如何能夠在傳授知識的同時,促使學(xué)生掌握數(shù)學(xué)學(xué)習(xí)方法,將所學(xué)知識應(yīng)用到實踐中來解決數(shù)學(xué)問題是一個首要問題。從大量教學(xué)實踐中可以了解到,在大學(xué)數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模思想十分重要,有助于激發(fā)學(xué)生的學(xué)習(xí)興趣,促使學(xué)生積極投入其中,切實提升學(xué)生的數(shù)學(xué)專業(yè)水平。
在大學(xué)數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模思想,應(yīng)該結(jié)合實際情況,深入挖掘數(shù)學(xué)知識。在教學(xué)中,教師應(yīng)該充分發(fā)揮自身引導(dǎo)作用,聯(lián)系學(xué)生數(shù)學(xué)知識實際學(xué)習(xí)情況,有針對性地整合數(shù)學(xué)知識,了解相關(guān)數(shù)學(xué)內(nèi)容,這樣不僅可以豐富教學(xué)內(nèi)容,還可以為課堂教學(xué)注入新的活力,有效激發(fā)學(xué)生的學(xué)習(xí)興趣,提升學(xué)習(xí)成效。具體表現(xiàn)在以下方面:
(一)閉區(qū)間連續(xù)函數(shù)的性質(zhì)
閉區(qū)間連續(xù)函數(shù)的性質(zhì)內(nèi)容是大學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,由于知識理論性較強,知識較為抽象,學(xué)習(xí)難度較大,在講解完相關(guān)理論知識后,可以引入椅子的穩(wěn)定問題,創(chuàng)建數(shù)學(xué)模型,提問學(xué)生如何在不平穩(wěn)的地面上平穩(wěn)地放置椅子。學(xué)生可以了解到這一問題同所學(xué)知識相關(guān)聯(lián),閉區(qū)間連續(xù)函數(shù)的性質(zhì)可以解決這一問題。學(xué)生整合所學(xué)知識,通過對問題的分析,可以了解到利用介值定理來解決問題。通過建立數(shù)學(xué)模型,學(xué)生更加充分地掌握了閉區(qū)間連續(xù)函數(shù)的`性質(zhì),提升了學(xué)習(xí)成效,為后續(xù)知識學(xué)習(xí)打下了堅實的基礎(chǔ)。
(二)定積分
定積分是高等數(shù)學(xué)教學(xué)中的重要組成部分,在解決幾何問題時均有所應(yīng)用,并且被廣泛應(yīng)用在實際生活中。如,在一道全國大學(xué)生數(shù)學(xué)建模競賽題目中,計算煤矸石的堆積,煤礦采煤時所產(chǎn)生的煤矸石,為了處理煤矸石就需要征用土地來堆放煤矸石,根據(jù)上級主管部門的年產(chǎn)量計劃和經(jīng)費如何堆放煤矸石?題目中的關(guān)鍵點在于堆放煤矸石的征地費用和電費的計算。征地費計算難度較小,但是煤矸石堆積的電費計算難度較高,但此項內(nèi)容涉及定積分中的變力做功知識點。學(xué)生掌握這些內(nèi)容后就可以建立數(shù)學(xué)模型,更加高效地了解如何根據(jù)預(yù)期開采量來堆放煤矸石。通過數(shù)學(xué)模型,學(xué)生也可以了解到定積分內(nèi)容同實際生活之間的聯(lián)系,學(xué)習(xí)積極性就會大大提升。
(三)最值問題
在高等數(shù)學(xué)中,最值問題占比比較大,同時在實際生活中應(yīng)用較為普遍,導(dǎo)數(shù)知識可以解決實際生活中的最值問題,這就需要提高對導(dǎo)數(shù)知識實際應(yīng)用的重視程度。教師在為學(xué)生講解完導(dǎo)數(shù)的相關(guān)概念知識后,通過建立關(guān)于天空的采空模型,提問學(xué)生為什么雨后太陽出來了,雨滴還在空中,那么將為人們呈現(xiàn)出什么樣的景色?學(xué)生回答彩虹。繼續(xù)提問彩虹為什么有顏色,是什么決定了天空中彩虹的高度?對此,學(xué)生的興趣較為濃厚,可以分為若干個小組進行討論。通過分析可以得出,雨滴可以反射太陽光,形成彩虹。結(jié)合光線的反射和折射定律,借助所學(xué)的導(dǎo)數(shù)知識來計算得出太陽光偏轉(zhuǎn)角度的最值,有效解決實際學(xué)習(xí)的問題,加深對知識的理解和記憶,提升數(shù)學(xué)知識學(xué)習(xí)成效。
(四)微分方程
微分方程知識同實際生活之間息息相關(guān),建立微分方程可以有效解決實際生活中的問題。這就需要學(xué)生在了解微分方程知識的基礎(chǔ)上,進一步建立數(shù)學(xué)模型來解決問題。如,在當(dāng)前社會進步和發(fā)展下,人均物質(zhì)生活水平顯著提升,肥胖成為危害人們身體健康的主要問題之一,受到社會各界廣泛的關(guān)注和重視。通過問題精簡化和假設(shè),可以得到微分方程模型,在分析方程中飲食控制和運動鍛煉兩個關(guān)鍵要素后,有助于避免人們走入減肥誤區(qū),幫助他們樹立正確的減肥理念。
(五)矩陣
在高等數(shù)學(xué)教學(xué)中,矩陣的概念較為抽象和復(fù)雜,在講解問題之前,應(yīng)該根據(jù)知識點來創(chuàng)設(shè)教學(xué)情境,輔助教學(xué)活動。通過引入企業(yè)工廠生產(chǎn)總成本模型,充分描述工廠生產(chǎn)中需要的原材料和勞動力,并且詳細記錄管理費用。這有助于加深人們對矩陣概念的認知和理解,提升學(xué)習(xí)成效,同時幫助學(xué)生深入理解和記憶,鍛煉學(xué)生的數(shù)學(xué)解題思維,加深概念理解和記憶,掌握解題技巧和方法,從而提升學(xué)生的數(shù)學(xué)建模意識。
綜上所述,在大學(xué)數(shù)學(xué)教學(xué)中,可以通過數(shù)學(xué)建模思想來引導(dǎo)學(xué)生養(yǎng)成良好的自主學(xué)習(xí)能力,發(fā)揮自身的主體能動性和創(chuàng)新能力,提升學(xué)生解決問題的能力,將所學(xué)知識靈活運用到實際生活中,養(yǎng)成良好的數(shù)學(xué)素養(yǎng)。
大學(xué)生數(shù)學(xué)建模論文篇十六
為了培養(yǎng)小學(xué)生良好的數(shù)學(xué)學(xué)習(xí)興趣,激發(fā)他們的數(shù)學(xué)潛能,教師需要采取必要的措施注重數(shù)學(xué)建模思想的有效培養(yǎng),促進學(xué)生的全面發(fā)展。在制定相關(guān)培養(yǎng)策略的過程中,教師應(yīng)充分考慮小學(xué)生的性格特點,提高數(shù)學(xué)建模思想培養(yǎng)的有效性?;诖?,文章將從不同的方面對小學(xué)生數(shù)學(xué)建模思想的培養(yǎng)策略進行初步的探討。
作為小學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,數(shù)學(xué)建模思想的滲透及相關(guān)教學(xué)活動的順利開展,有利于提高復(fù)雜數(shù)學(xué)問題的處理效率,保持數(shù)學(xué)課堂教學(xué)的高效性。要實現(xiàn)這樣的發(fā)展目標(biāo),增強小學(xué)生數(shù)學(xué)建模思想的實際培養(yǎng)效果,需要加強對學(xué)生動手實踐能力的培養(yǎng),激發(fā)學(xué)生的更高興趣。建模的過程涉及問題表述、求解、必要解釋及有效驗證,在這四個環(huán)節(jié)中,可能會存在一定的問題,影響著數(shù)學(xué)教學(xué)計劃的實施。因此,教師需要利用學(xué)生動手實踐能力的作用,實現(xiàn)數(shù)學(xué)建模思想的有效培養(yǎng),促使小學(xué)生能夠在數(shù)學(xué)建模過程中享受到更多的快樂。比如,在講解“認識角”知識的過程中,某些學(xué)生認為邊越長角度也越大。為了使學(xué)生能夠?qū)ζ渲械闹R點有更加正確而全面的認識,教師可以通過在黑板上設(shè)置一些能夠活動的三角板,讓學(xué)生親自動手操作,以此得出角與邊長的正確關(guān)系,為后續(xù)教學(xué)計劃的實施打下堅實的基礎(chǔ)。通過這種教學(xué)方法的合理運用,可以激發(fā)出學(xué)生們在數(shù)學(xué)建模學(xué)習(xí)中的更高興趣,豐富他們的想象力,從而使他們對數(shù)學(xué)建模思想有一定的了解,在未來學(xué)習(xí)過程中能夠保持良好的`數(shù)學(xué)建模能力。
通過對小學(xué)階段各種數(shù)學(xué)實踐教學(xué)活動實際概況的深入分析,可知構(gòu)建良好的數(shù)學(xué)模型有利于加深學(xué)生對各知識(福建省莆田市秀嶼區(qū)東嶠前江小學(xué),福建莆田351164)點的深入理解,增強其主動參與數(shù)學(xué)建模教學(xué)活動的積極性。因此,為了使小學(xué)生數(shù)學(xué)建模思想培養(yǎng)能夠達到預(yù)期的效果,教師需要結(jié)合實際的教學(xué)內(nèi)容,建立必要的數(shù)學(xué)參考模型,提升學(xué)生對數(shù)學(xué)建模思想的整體認知水平。比如,在講授“異分母分數(shù)加減法”這部分知識的過程中,可以設(shè)置“0.8千克+300克”“1.6千克-400克”等問題,向?qū)W生提問是否可以直接計算,并說出原因。當(dāng)學(xué)生通過對問題的深入思考,總結(jié)出“單位不同不能直接計算”的結(jié)論后,繼續(xù)向?qū)W生提問小數(shù)計算中為什么每一位都要對齊,實現(xiàn)“計數(shù)單位統(tǒng)一后才能計算”這一數(shù)學(xué)模型的構(gòu)建。在這樣的教學(xué)過程中,學(xué)生可以加深對知識點的理解,實現(xiàn)數(shù)學(xué)建模思想的有效培養(yǎng)。
加強小學(xué)生數(shù)學(xué)建模思想的有效培養(yǎng),需要在具體的教學(xué)活動開展中注重對數(shù)學(xué)思想的靈活運用,增強相關(guān)模型構(gòu)建的可靠性,促使學(xué)生在長期的數(shù)學(xué)學(xué)習(xí)中能夠不斷提高自身的數(shù)學(xué)能力,運用各種數(shù)學(xué)知識處理實際問題。比如,在“角的度量”這部分內(nèi)容講解的過程中,為了提高學(xué)生對角的分類及畫角相關(guān)知識點的深入理解,教師可以將所有的學(xué)生分為不同的小組,讓學(xué)生們通過小組討論的方式,對角的正確分類及如何畫角有一定的了解,并讓每個小組代表在講臺上演示畫角的過程。此時,教師可以通過對多媒體教學(xué)設(shè)備的合理運用,利用動態(tài)化的文字與圖片對其中的知識要點進行展示,確保學(xué)生們能夠在良好的教學(xué)模式中提升自身的認知水平,并在不斷的思考過程中逐漸形成良好的創(chuàng)造性思維,強化自身的創(chuàng)新意識。比如,在講解“圖形變換”中的軸對稱、旋轉(zhuǎn)知識點的過程中,教師應(yīng)通過對學(xué)生的正確引導(dǎo),運用三角板、圓柱等教學(xué)輔助工具,讓學(xué)生從不同的角度對各種軸對稱圖形、旋轉(zhuǎn)后得到的圖形進行深入思考,提高自身數(shù)學(xué)建模過程中的創(chuàng)新能力,從不同的角度深入理解圖像變換過程,對這部分內(nèi)容有更多的了解。因此,教師應(yīng)注重小學(xué)生數(shù)學(xué)建模思想培養(yǎng)中多方位思考方式的針對性培養(yǎng),提高學(xué)生的創(chuàng)新能力,優(yōu)化學(xué)生的思維方式,全面提升小學(xué)數(shù)學(xué)建模教學(xué)水平。
總之,加強小學(xué)生數(shù)學(xué)建模思想培養(yǎng)策略的制定與實施,有利于滿足素質(zhì)教育的更高要求,實現(xiàn)對小學(xué)生數(shù)學(xué)能力的有效鍛煉,確保相關(guān)的教學(xué)計劃能夠在規(guī)定的時間內(nèi)順利地完成。與此同時,結(jié)合當(dāng)前小學(xué)數(shù)學(xué)教育教學(xué)的實際發(fā)展概況,可知靈活運用各種科學(xué)的數(shù)學(xué)建模思想培養(yǎng)策略,有利于滿足學(xué)生數(shù)學(xué)建模學(xué)習(xí)中的多樣化需求,為相關(guān)教學(xué)目標(biāo)的順利實現(xiàn)提供可靠的保障。
[1]童小艷.小學(xué)數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生建模思想的策略[j].學(xué)子(教育新理念),20xx(6).
[2]白寧.先學(xué)而后教——小學(xué)生數(shù)學(xué)建模思想培養(yǎng)的捷徑[j].數(shù)學(xué)學(xué)習(xí)與研究,20xx(16).
大學(xué)生數(shù)學(xué)建模論文篇十七
1、從應(yīng)用數(shù)學(xué)出發(fā)數(shù)學(xué)建模主要是通過運用數(shù)學(xué)知識解決生活中遇到實際問題的全過程。要讓數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)教學(xué)課程進行有效的融合,最佳切入點就是課堂上把用數(shù)學(xué)解決生活中的實際問題與教學(xué)內(nèi)容相融合,以應(yīng)用數(shù)學(xué)為導(dǎo)向,訓(xùn)練學(xué)生綜合運用數(shù)學(xué)知識去刻畫實際問題、提煉數(shù)學(xué)模型、處理實際數(shù)據(jù)、分析解決實際問題的能力,培養(yǎng)學(xué)生運用數(shù)學(xué)原理解決生活問題的興趣和愛好。授課過程中,要改變以往單純地進行課堂灌輸?shù)男袨?,多引入?yīng)用數(shù)學(xué)的內(nèi)容,通過師生互動、課堂討論、小課題研究實踐等多種形式靈活多樣的教學(xué)方法,培養(yǎng)引導(dǎo)學(xué)生樹立應(yīng)用數(shù)學(xué)建模解決實際問題的思想。
2、從數(shù)學(xué)實驗做起要加強獨立學(xué)院學(xué)生進行數(shù)學(xué)實驗的行為,筆者認為數(shù)學(xué)建模與數(shù)學(xué)實驗有著密切的聯(lián)系,兩者都是從解決實際問題出發(fā),當(dāng)前的大學(xué)生數(shù)學(xué)實驗基本上是應(yīng)用數(shù)學(xué)軟件、數(shù)值計算、建立模型、過程演算和圖形顯示等一系列過程,因此進行數(shù)學(xué)實驗的全過程就是數(shù)學(xué)建模思想的啟發(fā)過程。但是我國的教育資源和教學(xué)方針限制了獨立學(xué)院學(xué)生的學(xué)習(xí)環(huán)境和學(xué)習(xí)資源,能夠進行數(shù)學(xué)實驗的條件還是有限的。即使個別有實驗?zāi)芰Φ膶W(xué)校,也未能進行充分利用,數(shù)學(xué)實驗課的內(nèi)容隨意性較大,有些院校將其降格為軟件學(xué)習(xí)課程或初級算法課。根據(jù)調(diào)研,目前大部分獨立學(xué)院未開設(shè)此類課程,這是數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)教學(xué)課程融合的一大損失,不利于學(xué)生創(chuàng)新思維能力的提高。各校應(yīng)當(dāng)積極創(chuàng)造條件,把數(shù)學(xué)實驗課設(shè)為大學(xué)數(shù)學(xué)的必修課,爭取設(shè)立數(shù)學(xué)建模選修課,并積極探索、逐步實現(xiàn)把數(shù)學(xué)建模的思想和方法融入大學(xué)數(shù)學(xué)的主干課程。
3、從計算機應(yīng)用切入數(shù)學(xué)是為理、工、經(jīng)、管、農(nóng)、醫(yī)、文等眾多學(xué)科服務(wù)的基礎(chǔ)工具,它在不同的領(lǐng)域因為應(yīng)用程度不同而導(dǎo)致被重視的程度不同。但在當(dāng)今的信息化時代,計算機的廣泛應(yīng)用和計算技術(shù)的飛速發(fā)展,使科學(xué)計算和數(shù)值模擬已成為絕大多數(shù)學(xué)科的必要工具和常用手段。數(shù)學(xué)在不同學(xué)科領(lǐng)域有了共同的主題,即應(yīng)用數(shù)學(xué)建模,通過計算機對各自領(lǐng)域的科學(xué)研究、生活問題等進行模擬分析,這成為數(shù)學(xué)建模思想在跨學(xué)科領(lǐng)域交流和傳播的一個重要途徑。每個領(lǐng)域的教學(xué)可以計算機應(yīng)用為切入點,讓數(shù)學(xué)建模思想與數(shù)學(xué)授課無縫結(jié)合,在提高學(xué)生掌握知識能力、挖掘培養(yǎng)創(chuàng)新思維的同時,增加了大學(xué)數(shù)學(xué)課程內(nèi)容的豐富性、實用性,促進教學(xué)手段變革和創(chuàng)新。因此,大學(xué)應(yīng)以適應(yīng)現(xiàn)代信息技術(shù)發(fā)展的形勢和學(xué)生將來的需求為契機,加快改進大學(xué)數(shù)學(xué)課程教學(xué)方式,把數(shù)學(xué)建模的思想和方法以及現(xiàn)代計算技術(shù)和計算工具盡快融入大學(xué)數(shù)學(xué)的主干課程當(dāng)中。
大學(xué)數(shù)學(xué)課程是大學(xué)工科各專業(yè)培養(yǎng)計劃中重要的公共基礎(chǔ)理論課,其目的在于培養(yǎng)工程技術(shù)人才所必備的數(shù)學(xué)素質(zhì),為培養(yǎng)我國現(xiàn)代化建設(shè)需要的高素質(zhì)人才服務(wù)。數(shù)學(xué)建模課程的必修化,要從能夠擴充學(xué)生的知識結(jié)構(gòu),培養(yǎng)學(xué)生的創(chuàng)造性思維能力、抽象概括能力、邏輯推理能力、自學(xué)能力、分析問題和解決問題能力的角度出發(fā),建立適合獨立學(xué)院學(xué)生的數(shù)學(xué)建模教學(xué)內(nèi)容。日前獨立學(xué)院開展數(shù)學(xué)建?;顒由婕皟?nèi)容較淺,缺少相應(yīng)的數(shù)學(xué)建模和數(shù)學(xué)實驗方而的教材。筆者近幾年通過承擔(dān)此類課題的研究,認為應(yīng)該加強以下內(nèi)容的建設(shè):
。2、開設(shè)選修課拓展知識領(lǐng)域,讓學(xué)生可以通過選修數(shù)學(xué)建模、運籌學(xué)、開設(shè)數(shù)學(xué)實驗(介紹matlab、maple等計算軟件課程),增加建立和解答數(shù)學(xué)模型的方法和技巧。比如以前用的“文曲星”電子詞典里的貸款計算,就是一個典型的運用數(shù)學(xué)模型方便百姓自己計算的應(yīng)用。這個模型單靠數(shù)學(xué)和經(jīng)濟學(xué)單方面的知識是不夠的,必須把數(shù)學(xué)與經(jīng)濟學(xué)聯(lián)系在一起,才能有效解決生活中的問題。
3、積極組織學(xué)生開展或是參加數(shù)學(xué)建模大賽比賽是各個選手充分發(fā)揮水平、展示自己智慧的途徑,也是數(shù)學(xué)建模思想傳播的最好手段。比賽可以讓各個選手發(fā)現(xiàn)自己的不足,尋找自身數(shù)學(xué)建模出發(fā)點的缺陷,通過交流,還可以拓展學(xué)生思維。因此,有必要積極組織學(xué)生參入初等數(shù)學(xué)知識可以解決的數(shù)學(xué)模型、線性規(guī)劃模型、指派問題模型、存儲問題模型、圖論應(yīng)用題等方面的模擬競賽,通過參賽積累大量數(shù)學(xué)建模知識,促進數(shù)學(xué)建模在教學(xué)中扮演更重要的`角色。教師應(yīng)該對歷年的全國大學(xué)生數(shù)學(xué)建模競賽真題進行認真的解讀分析,通過對有意義的題目,如20xx年的《葡萄酒的評價》、《太陽能小屋的設(shè)計》,20xx年的《交巡警服務(wù)平臺的設(shè)置與調(diào)度車燈線光源的計算》、20xx年的《眼科病床的合理安排》等,與生活相關(guān)的例子進行講解分析,提高學(xué)生對數(shù)學(xué)建模的興趣和對模型應(yīng)用的直觀的認識,實現(xiàn)學(xué)校應(yīng)用型人才的培養(yǎng)。
4、加快教育方式的轉(zhuǎn)變高等教育設(shè)立數(shù)學(xué)這門學(xué)科就是為了應(yīng)用服務(wù),內(nèi)容應(yīng)重點放在基本概念、定理、公式等在生活中的應(yīng)用上。而傳統(tǒng)的高等數(shù)學(xué),除了推導(dǎo)就是證明,因此,要對傳統(tǒng)內(nèi)容進行優(yōu)化組合,根據(jù)教學(xué)特點和學(xué)生情況推陳出新,要注重數(shù)學(xué)思想的滲透和數(shù)學(xué)方法的介紹,對高等數(shù)學(xué)精髓的求導(dǎo)、微分方法、積分方法等的授課要重點放在解決實際生活的應(yīng)用上。要結(jié)合一些社會實踐問題與函數(shù)建立的關(guān)系,分析確定變量、參數(shù),加強有關(guān)函數(shù)關(guān)系式建立的日常訓(xùn)練。培養(yǎng)學(xué)生對一些問題的邏輯分析、抽象、簡化并用數(shù)學(xué)語言表達的能力,逐步將學(xué)生帶入遇到問題就能自然地去轉(zhuǎn)化成數(shù)學(xué)模型進行處理的境界,并能將數(shù)學(xué)結(jié)論又能很好反向轉(zhuǎn)化成實際應(yīng)用。
21世紀我國進入了大眾教育時期,高校招生人數(shù)劇增,學(xué)生水平差距較大,需要學(xué)校瞄準正確的培養(yǎng)方向。通過對美國教學(xué)改革的研究,筆者認為我國的數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)教學(xué)課程融合必須盡快在大學(xué)中廣泛推進,但要注意一些問題:第一,數(shù)學(xué)教學(xué)改革一定要基于學(xué)生的現(xiàn)實水平,數(shù)學(xué)建模思想融入要與時俱進。第二,教學(xué)目標(biāo)要正確定位,融合過程一定要與教學(xué)研究相結(jié)合,要在加強交流的基礎(chǔ)上不斷改進。第三,大學(xué)生數(shù)學(xué)建模競賽的舉辦和參入,要給予正確的理解和引導(dǎo),形成良性循環(huán)。要根據(jù)個人興趣愛好,注重個性,不應(yīng)面面強求。第四,傳統(tǒng)數(shù)學(xué)思想與現(xiàn)在數(shù)學(xué)建模思想必須互補,必修與選修課程的作用與角色要分清。數(shù)學(xué)主干課程的教學(xué)水平是大學(xué)教學(xué)質(zhì)量的關(guān)鍵指標(biāo)之一,具備數(shù)學(xué)建模思想是理工類大學(xué)生能否成為創(chuàng)新人才的重要條件之一。兩者的融合必將促進我國教學(xué)水平和質(zhì)量的提高,為社會輸送更多的實用型、創(chuàng)新型人才。