最新一元二次方程教案第一課時(匯總9篇)

字號:

    作為一名老師,常常要根據(jù)教學(xué)需要編寫教案,教案是教學(xué)活動的依據(jù),有著重要的地位。優(yōu)秀的教案都具備一些什么特點(diǎn)呢?以下是小編為大家收集的教案范文,僅供參考,大家一起來看看吧。
    一元二次方程教案第一課時篇一
    1、知識與能力目標(biāo):要求學(xué)生會根據(jù)實(shí)際問題列出一元二次方程,體會方程的模型思想,培養(yǎng)學(xué)生歸納、分析的能力。
    2、過程與方法目標(biāo):引導(dǎo)學(xué)生分析實(shí)際問題中的數(shù)量關(guān)系,回顧一元一次方程的概念,組織學(xué)生討論,讓學(xué)生自己抽象出一元二次方程的概念。
    3.、情感、態(tài)度與價(jià)值觀:通過數(shù)學(xué)建模的分析、思考過程,激發(fā)學(xué)生學(xué)數(shù)學(xué)的興趣,體會做數(shù)學(xué)的快樂,培養(yǎng)用數(shù)學(xué)的意識并與校園綠化相結(jié)合。
    教學(xué)重點(diǎn)、難點(diǎn)
    教學(xué)重點(diǎn):通過實(shí)際問題模型建立一元二次方程的概念,認(rèn)識一元二次方程一般形式.
    2。難點(diǎn):通過實(shí)際問題,建立一元二次方程的數(shù)學(xué)模型,再由一元一次方程的概念遷移到一元二次方程的概念。
    教學(xué)過程:
    (一)創(chuàng)設(shè)情景,導(dǎo)入新課
    分析:設(shè)長方形綠地的寬為x米,則列方程,
    整理可得。
    分析:設(shè)長方形綠地的寬為x米,則列方程,
    整理可得。
    【設(shè)計(jì)意圖】因?yàn)閿?shù)學(xué)來源與生活,所以以學(xué)生的實(shí)際生活背景為素材創(chuàng)設(shè)情景,易于被學(xué)生接受、感知。同時幫助學(xué)生從實(shí)際問題中提煉出數(shù)學(xué)問題,初步培養(yǎng)學(xué)生的空間概念和抽象能力。情景分析中學(xué)生自然會想到用方程來解決問題,但所列的方程不是以前學(xué)過的,從而激發(fā)學(xué)生的求知欲望,順利地進(jìn)入新課,并激發(fā)學(xué)生環(huán)保意識。
    一元二次方程教案第一課時篇二
    1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會方程與函數(shù)之間的聯(lián)系.
    3.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
    教學(xué)重點(diǎn):
    1.體會方程與函數(shù)之間的聯(lián)系。
    2.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
    教學(xué)難點(diǎn):
    1.探索方程與函數(shù)之間關(guān)系的過程。
    2.理解二次函數(shù)與x軸交點(diǎn)的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系。
    啟發(fā)引導(dǎo)合作交流
    課件
    計(jì)算機(jī)、實(shí)物投影。
    檢查預(yù)習(xí)引出課題
    1.解方程:(1)x2+x-2=0;(2)x2-6x+9=0;(3)x2-x+1=0;(4)x2-2x-2=0.
    2.回顧一次函數(shù)與一元一次方程的關(guān)系,利用函數(shù)的圖象求方程3x-4=0的解。
    教師展示預(yù)習(xí)作業(yè)的內(nèi)容,指名回答,師生共同回顧舊知,教師做出適當(dāng)總結(jié)和評價(jià)。
    學(xué)生回答問題結(jié)論準(zhǔn)確性,能否把前后知識聯(lián)系起來,2題的格式要規(guī)范。
    這兩道預(yù)習(xí)題目是對舊知識的回顧,為本課的教學(xué)起到鋪墊的作用,1題中的三個方程是課本中觀察欄目中的三個函數(shù)式的變式,這三個方程把二次方程的根的三種情況體現(xiàn)出來,讓學(xué)生回顧二次方程的相關(guān)知識;2題是一次函數(shù)與一元一次方程的關(guān)系的問題,這題的設(shè)計(jì)是讓學(xué)生用學(xué)過的熟悉的知識類比探究本課新知識。
    一元二次方程教案第一課時篇三
    1、知識與技能目標(biāo):認(rèn)識一元二次方程,并能分析簡單問題中的數(shù)量關(guān)系列出一元二次方程。
    2、過程與方法:學(xué)生通過觀察與模仿,建立起對一元二次方程的感性認(rèn)識,獲得對代數(shù)式的初步經(jīng)驗(yàn),鍛煉抽象思維能力。
    3、情感態(tài)度與價(jià)值觀:學(xué)生在獨(dú)立思考的過程中,能將生活中的經(jīng)驗(yàn)與所學(xué)的知識結(jié)合起來,形成實(shí)事求是的態(tài)度以及進(jìn)行質(zhì)疑和獨(dú)立思考的習(xí)慣。
    重點(diǎn):理解一元二次方程的意義,能根據(jù)題目列出一元二次方程,會將不規(guī)則的一元二次方程化成標(biāo)準(zhǔn)的一元二次方程。
    難點(diǎn):找對題目中的數(shù)量關(guān)系從而列出一元二次方程。
    (一)導(dǎo)入新課
    生:老師,這是雷鋒叔叔。
    生:是的老師。
    生:想。
    師:同學(xué)們也都很樂于助人,好那我們看一看這個問題是什么,然后帶著這個問題開始我們今天的學(xué)習(xí)一元二次方程。
    (二)新課教學(xué)
    師:我們來看到這個題目,要設(shè)計(jì)一座2m高的人體雕像,使雕像的上部(腰以上)與下部(腰以下)的高度比,等于下部與全部(全身)的高度比,雕像的下部應(yīng)設(shè)計(jì)為全高?同學(xué)們用ac來表示上部,bc來表示下部先簡單列一下這個比例關(guān)系,待會老師下去看看同學(xué)們的式子。
    (下去巡視)
    (三)小結(jié)作業(yè)
    師:今天大家學(xué)習(xí)了一元二次方程,同學(xué)們回去還要加強(qiáng)鞏固,做練習(xí)題的1、2(2)題。
    一元二次方程教案第一課時篇四
    2.知道的一般形式,會把化成一般形式。
    3.通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實(shí)踐又反過來作用于實(shí)踐的辨證唯物主義觀點(diǎn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
    教學(xué)重點(diǎn)和難點(diǎn):
    重點(diǎn):的概念和它的一般形式。
    難點(diǎn):對的一般形式的正確理解及其各項(xiàng)系數(shù)的確定。
    教學(xué)建議:
    1.教材分析:
    1)知識結(jié)構(gòu):本小節(jié)首先通過實(shí)例引出的概念,介紹了的一般形式以及中各項(xiàng)的名稱。
    1.了解整式方程和的概念;
    2.知道的一般形式,會把化成一般形式。
    3.通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實(shí)踐又反過來作用于實(shí)踐的辨證唯物主義觀點(diǎn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
    教學(xué)難點(diǎn)和難點(diǎn):
    重點(diǎn):
    1.的有關(guān)概念
    2.會把化成一般形式
    難點(diǎn):的含義.
    第12頁
    一元二次方程教案第一課時篇五
    1、知識與技能目標(biāo):認(rèn)識一元二次方程,并能分析簡單問題中的數(shù)量關(guān)系列出一元二次方程。
    2、過程與方法:學(xué)生通過觀察與模仿,建立起對一元二次方程的感性認(rèn)識,獲得對代數(shù)式的初步經(jīng)驗(yàn),鍛煉抽象思維能力。
    3、情感態(tài)度與價(jià)值觀:學(xué)生在獨(dú)立思考的過程中,能將生活中的經(jīng)驗(yàn)與所學(xué)的知識結(jié)合起來,形成實(shí)事求是的態(tài)度以及進(jìn)行質(zhì)疑和獨(dú)立思考的習(xí)慣。
    二、教學(xué)重難點(diǎn)
    重點(diǎn):理解一元二次方程的意義,能根據(jù)題目列出一元二次方程,會將不規(guī)則的一元二次方程化成標(biāo)準(zhǔn)的一元二次方程。
    難點(diǎn):找對題目中的數(shù)量關(guān)系從而列出一元二次方程。
    三、教學(xué)過程
    (一)導(dǎo)入新課
    生:老師,這是雷鋒叔叔。
    生:是的老師。
    生:想。
    師:同學(xué)們也都很樂于助人,好那我們看一看這個問題是什么,然后帶著這個問題開始我們今天的學(xué)習(xí)一元二次方程。
    (二)新課教學(xué)
    師:我們來看到這個題目,要設(shè)計(jì)一座2m高的人體雕像,使雕像的上部(腰以上)與下部(腰以下)的高度比,等于下部與全部(全身)的高度比,雕像的下部應(yīng)設(shè)計(jì)為全高?同學(xué)們用ac來表示上部,bc來表示下部先簡單列一下這個比例關(guān)系,待會老師下去看看同學(xué)們的式子。
    (下去巡視)
    (三)小結(jié)作業(yè)
    師:今天大家學(xué)習(xí)了一元二次方程,同學(xué)們回去還要加強(qiáng)鞏固,做練習(xí)題的1、2(2)題。
    四、板書設(shè)計(jì)
    五、教學(xué)反思
    將本文的word文檔下載到電腦,方便收藏和打印
    推薦度:
    點(diǎn)擊下載文檔
    搜索文檔
    一元二次方程教案第一課時篇六
    表示整數(shù)),則另一奇數(shù)為,b.設(shè)較小的奇數(shù)為,則另一奇數(shù)為;c.設(shè)較小的奇數(shù)為,則另一個奇數(shù)。,另一個為,
    據(jù)題意,得
    整理后,得
    解這個方程,得。
    由得,由得,
    答:這兩個奇數(shù)是17,19或者-19,-17。
    解法(二)設(shè)較小的奇數(shù)為,則較大的奇數(shù)為。
    據(jù)題意,得
    整理后,得
    解這個方程,得。
    當(dāng)時,
    當(dāng)時,。
    答:兩個奇數(shù)分別為17,19;或者-19,-17。
    第12頁
    一元二次方程教案第一課時篇七
    一、教材分析
    1、教材的地位和作用
    一元二次方程是中學(xué)教學(xué)的主要內(nèi)容,在初中代數(shù)中占有重要的地位,在一元二次方程的前面,學(xué)生學(xué)了實(shí)數(shù)與代數(shù)式的運(yùn)算,一元一次方程(包括可化為一元一次方程的分式方程)和一次方程組,上述內(nèi)容都是學(xué)習(xí)一元二次方程的基礎(chǔ),通過一元二次方程的學(xué)習(xí),就可以對上述內(nèi)容加以鞏固,一元二次方程也是以后學(xué)習(xí)(指數(shù)方式,對數(shù)方程,三角方程以及不等式,函數(shù),二次曲線等內(nèi)容)的基礎(chǔ),此外,學(xué)習(xí)一元二次方程對其他學(xué)科也有重要的`意義。
    2、教學(xué)目標(biāo)及確立目標(biāo)的依據(jù)
    九年義務(wù)教育大綱對這部分的要求是:使學(xué)生了解一元二次方程的概念,依據(jù)教學(xué)大綱的要求及教材的內(nèi)容,針對學(xué)生的理解和接受知識的實(shí)際情況,以提高學(xué)生的素質(zhì)為主要目的而制定如下教學(xué)目標(biāo)。
    知識目標(biāo):使學(xué)生進(jìn)一步理解和掌握一元二次方程的概念及一元二次方程的一般形式。
    能力目標(biāo):通過一元二次方程概念的教學(xué),培養(yǎng)學(xué)生善于觀察,發(fā)現(xiàn),探索,歸納問題的能力,培養(yǎng)學(xué)生創(chuàng)造性思維和邏輯推理的能力。
    德育目標(biāo):培養(yǎng)學(xué)生把感性認(rèn)識上升到理性認(rèn)識的辯證唯物主義的觀點(diǎn)。
    3、重點(diǎn),難點(diǎn)及確定重難點(diǎn)的依據(jù)
    一元二次方程有著承上啟下的作用,在今后的學(xué)習(xí)中有廣泛的應(yīng)用,因此本節(jié)課做為起始課的重點(diǎn)是一元二次方程的概念,一元二次方程(特別是含有字母系數(shù)的)化成一般形式是本節(jié)課的難點(diǎn)。
    二、教材處理
    在教學(xué)中,我發(fā)現(xiàn)有的學(xué)生對概念背得很熟,但在準(zhǔn)確和熟練應(yīng)用方面較差,缺乏應(yīng)變能力,針對學(xué)生中存在的這些問題,本節(jié)課突出對教學(xué)概念形成過程的教學(xué),采用探索發(fā)現(xiàn)的方法研究概念,并引導(dǎo)學(xué)生進(jìn)行創(chuàng)造性學(xué)習(xí)。
    三、教學(xué)方法和學(xué)法
    教學(xué)中,我運(yùn)用啟發(fā)引導(dǎo)的方法讓學(xué)生從一元一次方程入手,類比發(fā)現(xiàn)并歸納出一元二次方程的概念,啟發(fā)學(xué)生發(fā)現(xiàn)規(guī)律,并總結(jié)規(guī)律,最后達(dá)到問題解決。
    四、教學(xué)手段
    采用投影儀
    五、教學(xué)程序
    1、新課導(dǎo)入:
    (1)什么叫一元一次方程?(并引入一元二次方程的概念做鋪墊)
    (2)列方程解應(yīng)用題的方法,步驟?(并引例打基礎(chǔ))
    課本引例(如圖)由教師提出并分析其中的數(shù)量關(guān)系。(用實(shí)際問題引出一元二次方程,可以幫助學(xué)生認(rèn)識到一元二次方程是來源于客觀需要的)
    設(shè)出求知數(shù),列出代數(shù)式,并根據(jù)等量關(guān)系列出方程
    數(shù)學(xué)教案-
    將本文的word文檔下載到電腦,方便收藏和打印
    推薦度:
    點(diǎn)擊下載文檔
    搜索文檔
    一元二次方程教案第一課時篇八
    1. 了解整式方程和的概念;
    2. 知道的一般形式,會把化成一般形式。
    3. 通過本節(jié)課引入的,初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實(shí)踐又反過來作用于實(shí)踐的辨證唯物主義觀點(diǎn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
    重點(diǎn)和難點(diǎn):
    重點(diǎn):的概念和它的一般形式。
    難點(diǎn):對的一般形式的正確理解及其各項(xiàng)系數(shù)的確定。
    建議:
    1.? 教材分析:
    1)知識結(jié)構(gòu):本小節(jié)首先通過實(shí)例引出的概念,介紹了的一般形式以及中各項(xiàng)的名稱。
    2)重點(diǎn)、難點(diǎn)分析
    理解的定義:
    是 的重要組成部分。方程 ,只有當(dāng) 時,才叫做。如果 且 ,它就是了。解題時遇到字母系數(shù)的方程可能出現(xiàn)以下情況:
    (1)的條件是確定的,如方程 ( ),把它化成一般形式為 ,由于 ,所以 ,符合的定義。
    (2)條件是用“關(guān)于 的”這樣的語句表述的,那么它就隱含了二次項(xiàng)系數(shù)不為零的條件。如“關(guān)于 的 ”,這時題中隱含了 的條件,這在解題中是不能忽略的。
    (3)方程中含有字母系數(shù)的 項(xiàng),且出現(xiàn)“關(guān)于 的方程”這樣的語句,就要對方程中的字母系數(shù)進(jìn)行討論。如:“關(guān)于 的方程 ”,這就有兩種可能,當(dāng) 時,它是一元一次方程 ;當(dāng) 時,它是,解題時就會有不同的結(jié)果。
    目的
    1.了解整式方程和的概念;
    2.知道的一般形式,會把化成一般形式。
    3.通過本節(jié)課引入的,初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實(shí)踐又反過來作用于實(shí)踐的辨證唯物主義觀點(diǎn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
    難點(diǎn)和難點(diǎn):
    重點(diǎn):
    1.的有關(guān)概念
    2.會把化成一般形式
    難點(diǎn): 的含義。
    第 1 2 頁
    一元二次方程教案第一課時篇九
    1.了解整式方程和一元二次方程的概念;
    2.知道一元二次方程的一般形式,會把一元二次方程化成一般形式。
    3.通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實(shí)踐又反過來作用于實(shí)踐的辨證唯物主義觀點(diǎn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
    重點(diǎn):一元二次方程的概念和它的一般形式。
    難點(diǎn):對一元二次方程的一般形式的正確理解及其各項(xiàng)系數(shù)的確定。
    1.教材分析:
    1)知識結(jié)構(gòu):本小節(jié)首先通過實(shí)例引出一元二次方程的概念,介紹了一元二次方程的一般形式以及一元二次方程中各項(xiàng)的名稱。
    2)重點(diǎn)、難點(diǎn)分析
    理解一元二次方程的定義:
    是一元二次方程的重要組成部分。方程,只有當(dāng)時,才叫做一元二次方程。如果且,它就是一元二次方程了。解題時遇到字母系數(shù)的方程可能出現(xiàn)以下情況:
    (1)一元二次方程的條件是確定的,如方程(),把它化成一般形式為,由于,所以,符合一元二次方程的定義。
    (2)條件是用“關(guān)于的一元二次方程”這樣的語句表述的,那么它就隱含了二次項(xiàng)系數(shù)不為零的條件。如“關(guān)于的一元二次方程”,這時題中隱含了的條件,這在解題中是不能忽略的。
    (3)方程中含有字母系數(shù)的項(xiàng),且出現(xiàn)“關(guān)于的方程”這樣的語句,就要對方程中的字母系數(shù)進(jìn)行討論。如:“關(guān)于的方程”,這就有兩種可能,當(dāng)時,它是一元一次方程;當(dāng)時,它是一元二次方程,解題時就會有不同的結(jié)果。