數(shù)學(xué)是一門研究數(shù)量、結(jié)構(gòu)、空間以及變化等概念的學(xué)科。它通過(guò)抽象和邏輯推理,利用計(jì)數(shù)、計(jì)算、測(cè)量和對(duì)形狀及運(yùn)動(dòng)的直觀理解來(lái)發(fā)展。以下是為大家精心整理的小學(xué)數(shù)學(xué)知識(shí)梳理(精選10篇),歡迎大家閱讀。
1.小學(xué)數(shù)學(xué)知識(shí)梳理 篇一
1.大數(shù)的認(rèn)識(shí)
億以內(nèi)的數(shù)的認(rèn)識(shí):
十萬(wàn):10個(gè)一萬(wàn);
一百萬(wàn):10個(gè)十萬(wàn);
一千萬(wàn):10個(gè)一百萬(wàn);
一億:10個(gè)一千萬(wàn);
2.數(shù)級(jí)
數(shù)級(jí)是為便于人們記讀阿拉伯?dāng)?shù)的一種識(shí)讀方法,在位值制(數(shù)位順序)的基礎(chǔ)上,以三位或四位分級(jí)的原則,把數(shù)讀,寫出來(lái)。通常在阿拉伯?dāng)?shù)的書寫上,以小數(shù)點(diǎn)或者空格作為各個(gè)數(shù)級(jí)的標(biāo)識(shí),從右向左把數(shù)分開。
3.數(shù)級(jí)分類
(1)四位分級(jí)法
即以四位數(shù)為一個(gè)數(shù)級(jí)的分級(jí)方法。我國(guó)讀數(shù)的習(xí)慣,就是按這種方法讀的。
如:萬(wàn)(數(shù)字后面4個(gè)0)、億(數(shù)字后面8個(gè)0)、兆(數(shù)字后面12個(gè)0,這是中法計(jì)數(shù))……
這些級(jí)分別叫做個(gè)級(jí),萬(wàn)級(jí),億級(jí)……
(2)三位分級(jí)法
即以三位數(shù)為一個(gè)數(shù)級(jí)的分級(jí)方法。這西方的分級(jí)方法,這種分級(jí)方法也是國(guó)際通行的分級(jí)方法。如:千,數(shù)字后面3個(gè)0、百萬(wàn),數(shù)字后面6個(gè)0、十億,數(shù)字后面9個(gè)0……
2.小學(xué)數(shù)學(xué)知識(shí)梳理 篇二
余數(shù)及其應(yīng)用:
基本概念:
對(duì)任意自然數(shù)a、b、q、r,如果使得a÷b=q……r,且0 余數(shù)的性質(zhì):
①余數(shù)小于除數(shù)。
②若a、b除以c的余數(shù)相同,則c|a-b或c|b-a。
③a與b的和除以c的余數(shù)等于a除以c的余數(shù)加上b除以c的余數(shù)的和除以c的余數(shù)。
④a與b的積除以c的余數(shù)等于a除以c的余數(shù)與b除以c的余數(shù)的積除以c的余數(shù)。
3.小學(xué)數(shù)學(xué)知識(shí)梳理 篇三
加法乘法原理和幾何計(jì)數(shù):
加法原理:
如果完成一件任務(wù)有n類方法,在第一類方法中有m1種不同方法,在第二類方法中有m2種不同方法……,在第n類方法中有mn種不同方法,那么完成這件任務(wù)共有:m1+m2.......+mn種不同的方法。
關(guān)鍵問題:
確定工作的分類方法。
基本特征:
每一種方法都可完成任務(wù)。
乘法原理:
如果完成一件任務(wù)需要分成n個(gè)步驟進(jìn)行,做第1步有m1種方法,不管第1步用哪一種方法,第2步總有m2種方法……不管前面n-1步用哪種方法,第n步總有mn種方法,那么完成這件任務(wù)共有:m1×m2.......×mn種不同的方法。
關(guān)鍵問題:
確定工作的完成步驟。
基本特征:
每一步只能完成任務(wù)的一部分。
直線:
一點(diǎn)在直線或空間沿一定方向或相反方向運(yùn)動(dòng),形成的軌跡。
直線特點(diǎn):
沒有端點(diǎn),沒有長(zhǎng)度。
線段:
直線上任意兩點(diǎn)間的距離。這兩點(diǎn)叫端點(diǎn)。
線段特點(diǎn):
有兩個(gè)端點(diǎn),有長(zhǎng)度。
射線:
把直線的一端無(wú)限延長(zhǎng)。
射線特點(diǎn):
只有一個(gè)端點(diǎn);沒有長(zhǎng)度。
①數(shù)線段規(guī)律:總數(shù)=1+2+3+…+(點(diǎn)數(shù)一1);
②數(shù)角規(guī)律=1+2+3+…+(射線數(shù)一1);
③數(shù)長(zhǎng)方形規(guī)律:個(gè)數(shù)=長(zhǎng)的線段數(shù)×寬的線段數(shù):
④數(shù)長(zhǎng)方形規(guī)律:個(gè)數(shù)=1×1+2×2+3×3+…+行數(shù)×列數(shù)
4.小學(xué)數(shù)學(xué)知識(shí)梳理 篇四
數(shù)列求和:
等差數(shù)列:
在一列數(shù)中,任意相鄰兩個(gè)數(shù)的差是一定的,這樣的一列數(shù),就叫做等差數(shù)列。
基本概念:
首項(xiàng):等差數(shù)列的第一個(gè)數(shù),一般用a1表示;
項(xiàng)數(shù):等差數(shù)列的所有數(shù)的個(gè)數(shù),一般用n表示;
公差:數(shù)列中任意相鄰兩個(gè)數(shù)的差,一般用d表示;
通項(xiàng):表示數(shù)列中每一個(gè)數(shù)的公式,一般用an表示;
數(shù)列的和:這一數(shù)列全部數(shù)字的和,一般用Sn表示.
基本思路:
等差數(shù)列中涉及五個(gè)量:a1,an,d,n,sn,,通項(xiàng)公式中涉及四個(gè)量,如果己知其中三個(gè),就可求出第四個(gè);求和公式中涉及四個(gè)量,如果己知其中三個(gè),就可以求這第四個(gè)。
基本公式:
通項(xiàng)公式:an=a1+(n-1)d;
通項(xiàng)=首項(xiàng)+(項(xiàng)數(shù)一1)×公差;
數(shù)列和公式:sn,=(a1+an)×n÷2;
數(shù)列和=(首項(xiàng)+末項(xiàng))×項(xiàng)數(shù)÷2;
項(xiàng)數(shù)公式:n=(an+a1)÷d+1;
項(xiàng)數(shù)=(末項(xiàng)-首項(xiàng))÷公差+1;
公差公式:d=(an-a1))÷(n-1);
公差=(末項(xiàng)-首項(xiàng))÷(項(xiàng)數(shù)-1);
關(guān)鍵問題:
確定已知量和未知量,確定使用的公式;
5.小學(xué)數(shù)學(xué)知識(shí)梳理 篇五
平均數(shù):
基本公式:
①平均數(shù)=總數(shù)量÷總份數(shù)
總數(shù)量=平均數(shù)×總份數(shù)
總份數(shù)=總數(shù)量÷平均數(shù)
②平均數(shù)=基準(zhǔn)數(shù)+每一個(gè)數(shù)與基準(zhǔn)數(shù)差的和÷總份數(shù)
基本算法:
①求出總數(shù)量以及總份數(shù),利用基本公式①進(jìn)行計(jì)算.
②基準(zhǔn)數(shù)法:根據(jù)給出的數(shù)之間的關(guān)系,確定一個(gè)基準(zhǔn)數(shù);一般選與所有數(shù)比較接近的數(shù)或者中間數(shù)為基準(zhǔn)數(shù);以基準(zhǔn)數(shù)為標(biāo)準(zhǔn),求所有給出數(shù)與基準(zhǔn)數(shù)的差;再求出所有差的和;再求出這些差的平均數(shù);最后求這個(gè)差的平均數(shù)和基準(zhǔn)數(shù)的和,就是所求的平均數(shù)。
6.小學(xué)數(shù)學(xué)知識(shí)梳理 篇六
周期循環(huán)與數(shù)表規(guī)律:
周期現(xiàn)象:
事物在運(yùn)動(dòng)變化的過(guò)程中,某些特征有規(guī)律循環(huán)出現(xiàn)。
周期:
我們把連續(xù)兩次出現(xiàn)所經(jīng)過(guò)的時(shí)間叫周期。
關(guān)鍵問題:
確定循環(huán)周期。
閏年:一年有366天;
①年份能被4整除;
②如果年份能被100整除,則年份必須能被400整除;
平年:一年有365天。
①年份不能被4整除;
②如果年份能被100整除,但不能被400整除。
7.小學(xué)數(shù)學(xué)知識(shí)梳理 篇七
牛吃草問題:
基本思路:
假設(shè)每頭牛吃草的速度為“1”份,根據(jù)兩次不同的吃法,求出其中的總草量的差;再找出造成這種差異的原因,即可確定草的生長(zhǎng)速度和總草量。
基本特點(diǎn):
原草量和新草生長(zhǎng)速度是不變的;
關(guān)鍵問題:
確定兩個(gè)不變的量。
基本公式:
生長(zhǎng)量=(較長(zhǎng)時(shí)間×長(zhǎng)時(shí)間牛頭數(shù)-較短時(shí)間×短時(shí)間牛頭數(shù))÷(長(zhǎng)時(shí)間-短時(shí)間);
總草量=較長(zhǎng)時(shí)間×長(zhǎng)時(shí)間牛頭數(shù)-較長(zhǎng)時(shí)間×生長(zhǎng)量;
8.小學(xué)數(shù)學(xué)知識(shí)梳理 篇八
盈虧問題:
基本概念:
一定量的對(duì)象,按照某種標(biāo)準(zhǔn)分組,產(chǎn)生一種結(jié)果:按照另一種標(biāo)準(zhǔn)分組,又產(chǎn)生一種結(jié)果,由于分組的標(biāo)準(zhǔn)不同,造成結(jié)果的差異,由它們的關(guān)系求對(duì)象分組的組數(shù)或?qū)ο蟮目偭俊?BR> 基本思路:
先將兩種分配方案進(jìn)行比較,分析由于標(biāo)準(zhǔn)的差異造成結(jié)果的變化,根據(jù)這個(gè)關(guān)系求出參加分配的總份數(shù),然后根據(jù)題意求出對(duì)象的總量。
基本題型:
①一次有余數(shù),另一次不足;
基本公式:總份數(shù)=(余數(shù)+不足數(shù))÷兩次每份數(shù)的差
②當(dāng)兩次都有余數(shù);
基本公式:總份數(shù)=(較大余數(shù)一較小余數(shù))÷兩次每份數(shù)的差
③當(dāng)兩次都不足;
基本公式:總份數(shù)=(較大不足數(shù)一較小不足數(shù))÷兩次每份數(shù)的差
基本特點(diǎn):
對(duì)象總量和總的組數(shù)是不變的。
關(guān)鍵問題:
確定對(duì)象總量和總的組數(shù)。
9.小學(xué)數(shù)學(xué)知識(shí)梳理 篇九
雞兔同籠問題:
基本概念:
雞兔同籠問題又稱為置換問題、假設(shè)問題,就是把假設(shè)錯(cuò)的那部分置換出來(lái);
基本思路:
①假設(shè),即假設(shè)某種現(xiàn)象存在(甲和乙一樣或者乙和甲一樣):
②假設(shè)后,發(fā)生了和題目條件不同的差,找出這個(gè)差是多少;
③每個(gè)事物造成的差是固定的,從而找出出現(xiàn)這個(gè)差的原因;
④再根據(jù)這兩個(gè)差作適當(dāng)?shù)恼{(diào)整,消去出現(xiàn)的差。
基本公式:
①把所有雞假設(shè)成兔子:雞數(shù)=(兔腳數(shù)×總頭數(shù)-總腳數(shù))÷(兔腳數(shù)-雞腳數(shù))
②把所有兔子假設(shè)成雞:兔數(shù)=(總腳數(shù)一雞腳數(shù)×總頭數(shù))÷(兔腳數(shù)一雞腳數(shù))
關(guān)鍵問題:找出總量的差與單位量的差。
10.小學(xué)數(shù)學(xué)知識(shí)梳理 篇十
1、年齡問題的三個(gè)基本特征:
①兩個(gè)人的年齡差是不變的;
②兩個(gè)人的年齡是同時(shí)增加或者同時(shí)減少的;
③兩個(gè)人的年齡的倍數(shù)是發(fā)生變化的;
2、歸一問題的基本特點(diǎn):
問題中有一個(gè)不變的量,一般是那個(gè)“單一量”,題目一般用“照這樣的速度”……等詞語(yǔ)來(lái)表示。
關(guān)鍵問題:
根據(jù)題目中的條件確定并求出單一量。
1.小學(xué)數(shù)學(xué)知識(shí)梳理 篇一
1.大數(shù)的認(rèn)識(shí)
億以內(nèi)的數(shù)的認(rèn)識(shí):
十萬(wàn):10個(gè)一萬(wàn);
一百萬(wàn):10個(gè)十萬(wàn);
一千萬(wàn):10個(gè)一百萬(wàn);
一億:10個(gè)一千萬(wàn);
2.數(shù)級(jí)
數(shù)級(jí)是為便于人們記讀阿拉伯?dāng)?shù)的一種識(shí)讀方法,在位值制(數(shù)位順序)的基礎(chǔ)上,以三位或四位分級(jí)的原則,把數(shù)讀,寫出來(lái)。通常在阿拉伯?dāng)?shù)的書寫上,以小數(shù)點(diǎn)或者空格作為各個(gè)數(shù)級(jí)的標(biāo)識(shí),從右向左把數(shù)分開。
3.數(shù)級(jí)分類
(1)四位分級(jí)法
即以四位數(shù)為一個(gè)數(shù)級(jí)的分級(jí)方法。我國(guó)讀數(shù)的習(xí)慣,就是按這種方法讀的。
如:萬(wàn)(數(shù)字后面4個(gè)0)、億(數(shù)字后面8個(gè)0)、兆(數(shù)字后面12個(gè)0,這是中法計(jì)數(shù))……
這些級(jí)分別叫做個(gè)級(jí),萬(wàn)級(jí),億級(jí)……
(2)三位分級(jí)法
即以三位數(shù)為一個(gè)數(shù)級(jí)的分級(jí)方法。這西方的分級(jí)方法,這種分級(jí)方法也是國(guó)際通行的分級(jí)方法。如:千,數(shù)字后面3個(gè)0、百萬(wàn),數(shù)字后面6個(gè)0、十億,數(shù)字后面9個(gè)0……
2.小學(xué)數(shù)學(xué)知識(shí)梳理 篇二
余數(shù)及其應(yīng)用:
基本概念:
對(duì)任意自然數(shù)a、b、q、r,如果使得a÷b=q……r,且0
①余數(shù)小于除數(shù)。
②若a、b除以c的余數(shù)相同,則c|a-b或c|b-a。
③a與b的和除以c的余數(shù)等于a除以c的余數(shù)加上b除以c的余數(shù)的和除以c的余數(shù)。
④a與b的積除以c的余數(shù)等于a除以c的余數(shù)與b除以c的余數(shù)的積除以c的余數(shù)。
3.小學(xué)數(shù)學(xué)知識(shí)梳理 篇三
加法乘法原理和幾何計(jì)數(shù):
加法原理:
如果完成一件任務(wù)有n類方法,在第一類方法中有m1種不同方法,在第二類方法中有m2種不同方法……,在第n類方法中有mn種不同方法,那么完成這件任務(wù)共有:m1+m2.......+mn種不同的方法。
關(guān)鍵問題:
確定工作的分類方法。
基本特征:
每一種方法都可完成任務(wù)。
乘法原理:
如果完成一件任務(wù)需要分成n個(gè)步驟進(jìn)行,做第1步有m1種方法,不管第1步用哪一種方法,第2步總有m2種方法……不管前面n-1步用哪種方法,第n步總有mn種方法,那么完成這件任務(wù)共有:m1×m2.......×mn種不同的方法。
關(guān)鍵問題:
確定工作的完成步驟。
基本特征:
每一步只能完成任務(wù)的一部分。
直線:
一點(diǎn)在直線或空間沿一定方向或相反方向運(yùn)動(dòng),形成的軌跡。
直線特點(diǎn):
沒有端點(diǎn),沒有長(zhǎng)度。
線段:
直線上任意兩點(diǎn)間的距離。這兩點(diǎn)叫端點(diǎn)。
線段特點(diǎn):
有兩個(gè)端點(diǎn),有長(zhǎng)度。
射線:
把直線的一端無(wú)限延長(zhǎng)。
射線特點(diǎn):
只有一個(gè)端點(diǎn);沒有長(zhǎng)度。
①數(shù)線段規(guī)律:總數(shù)=1+2+3+…+(點(diǎn)數(shù)一1);
②數(shù)角規(guī)律=1+2+3+…+(射線數(shù)一1);
③數(shù)長(zhǎng)方形規(guī)律:個(gè)數(shù)=長(zhǎng)的線段數(shù)×寬的線段數(shù):
④數(shù)長(zhǎng)方形規(guī)律:個(gè)數(shù)=1×1+2×2+3×3+…+行數(shù)×列數(shù)
4.小學(xué)數(shù)學(xué)知識(shí)梳理 篇四
數(shù)列求和:
等差數(shù)列:
在一列數(shù)中,任意相鄰兩個(gè)數(shù)的差是一定的,這樣的一列數(shù),就叫做等差數(shù)列。
基本概念:
首項(xiàng):等差數(shù)列的第一個(gè)數(shù),一般用a1表示;
項(xiàng)數(shù):等差數(shù)列的所有數(shù)的個(gè)數(shù),一般用n表示;
公差:數(shù)列中任意相鄰兩個(gè)數(shù)的差,一般用d表示;
通項(xiàng):表示數(shù)列中每一個(gè)數(shù)的公式,一般用an表示;
數(shù)列的和:這一數(shù)列全部數(shù)字的和,一般用Sn表示.
基本思路:
等差數(shù)列中涉及五個(gè)量:a1,an,d,n,sn,,通項(xiàng)公式中涉及四個(gè)量,如果己知其中三個(gè),就可求出第四個(gè);求和公式中涉及四個(gè)量,如果己知其中三個(gè),就可以求這第四個(gè)。
基本公式:
通項(xiàng)公式:an=a1+(n-1)d;
通項(xiàng)=首項(xiàng)+(項(xiàng)數(shù)一1)×公差;
數(shù)列和公式:sn,=(a1+an)×n÷2;
數(shù)列和=(首項(xiàng)+末項(xiàng))×項(xiàng)數(shù)÷2;
項(xiàng)數(shù)公式:n=(an+a1)÷d+1;
項(xiàng)數(shù)=(末項(xiàng)-首項(xiàng))÷公差+1;
公差公式:d=(an-a1))÷(n-1);
公差=(末項(xiàng)-首項(xiàng))÷(項(xiàng)數(shù)-1);
關(guān)鍵問題:
確定已知量和未知量,確定使用的公式;
5.小學(xué)數(shù)學(xué)知識(shí)梳理 篇五
平均數(shù):
基本公式:
①平均數(shù)=總數(shù)量÷總份數(shù)
總數(shù)量=平均數(shù)×總份數(shù)
總份數(shù)=總數(shù)量÷平均數(shù)
②平均數(shù)=基準(zhǔn)數(shù)+每一個(gè)數(shù)與基準(zhǔn)數(shù)差的和÷總份數(shù)
基本算法:
①求出總數(shù)量以及總份數(shù),利用基本公式①進(jìn)行計(jì)算.
②基準(zhǔn)數(shù)法:根據(jù)給出的數(shù)之間的關(guān)系,確定一個(gè)基準(zhǔn)數(shù);一般選與所有數(shù)比較接近的數(shù)或者中間數(shù)為基準(zhǔn)數(shù);以基準(zhǔn)數(shù)為標(biāo)準(zhǔn),求所有給出數(shù)與基準(zhǔn)數(shù)的差;再求出所有差的和;再求出這些差的平均數(shù);最后求這個(gè)差的平均數(shù)和基準(zhǔn)數(shù)的和,就是所求的平均數(shù)。
6.小學(xué)數(shù)學(xué)知識(shí)梳理 篇六
周期循環(huán)與數(shù)表規(guī)律:
周期現(xiàn)象:
事物在運(yùn)動(dòng)變化的過(guò)程中,某些特征有規(guī)律循環(huán)出現(xiàn)。
周期:
我們把連續(xù)兩次出現(xiàn)所經(jīng)過(guò)的時(shí)間叫周期。
關(guān)鍵問題:
確定循環(huán)周期。
閏年:一年有366天;
①年份能被4整除;
②如果年份能被100整除,則年份必須能被400整除;
平年:一年有365天。
①年份不能被4整除;
②如果年份能被100整除,但不能被400整除。
7.小學(xué)數(shù)學(xué)知識(shí)梳理 篇七
牛吃草問題:
基本思路:
假設(shè)每頭牛吃草的速度為“1”份,根據(jù)兩次不同的吃法,求出其中的總草量的差;再找出造成這種差異的原因,即可確定草的生長(zhǎng)速度和總草量。
基本特點(diǎn):
原草量和新草生長(zhǎng)速度是不變的;
關(guān)鍵問題:
確定兩個(gè)不變的量。
基本公式:
生長(zhǎng)量=(較長(zhǎng)時(shí)間×長(zhǎng)時(shí)間牛頭數(shù)-較短時(shí)間×短時(shí)間牛頭數(shù))÷(長(zhǎng)時(shí)間-短時(shí)間);
總草量=較長(zhǎng)時(shí)間×長(zhǎng)時(shí)間牛頭數(shù)-較長(zhǎng)時(shí)間×生長(zhǎng)量;
8.小學(xué)數(shù)學(xué)知識(shí)梳理 篇八
盈虧問題:
基本概念:
一定量的對(duì)象,按照某種標(biāo)準(zhǔn)分組,產(chǎn)生一種結(jié)果:按照另一種標(biāo)準(zhǔn)分組,又產(chǎn)生一種結(jié)果,由于分組的標(biāo)準(zhǔn)不同,造成結(jié)果的差異,由它們的關(guān)系求對(duì)象分組的組數(shù)或?qū)ο蟮目偭俊?BR> 基本思路:
先將兩種分配方案進(jìn)行比較,分析由于標(biāo)準(zhǔn)的差異造成結(jié)果的變化,根據(jù)這個(gè)關(guān)系求出參加分配的總份數(shù),然后根據(jù)題意求出對(duì)象的總量。
基本題型:
①一次有余數(shù),另一次不足;
基本公式:總份數(shù)=(余數(shù)+不足數(shù))÷兩次每份數(shù)的差
②當(dāng)兩次都有余數(shù);
基本公式:總份數(shù)=(較大余數(shù)一較小余數(shù))÷兩次每份數(shù)的差
③當(dāng)兩次都不足;
基本公式:總份數(shù)=(較大不足數(shù)一較小不足數(shù))÷兩次每份數(shù)的差
基本特點(diǎn):
對(duì)象總量和總的組數(shù)是不變的。
關(guān)鍵問題:
確定對(duì)象總量和總的組數(shù)。
9.小學(xué)數(shù)學(xué)知識(shí)梳理 篇九
雞兔同籠問題:
基本概念:
雞兔同籠問題又稱為置換問題、假設(shè)問題,就是把假設(shè)錯(cuò)的那部分置換出來(lái);
基本思路:
①假設(shè),即假設(shè)某種現(xiàn)象存在(甲和乙一樣或者乙和甲一樣):
②假設(shè)后,發(fā)生了和題目條件不同的差,找出這個(gè)差是多少;
③每個(gè)事物造成的差是固定的,從而找出出現(xiàn)這個(gè)差的原因;
④再根據(jù)這兩個(gè)差作適當(dāng)?shù)恼{(diào)整,消去出現(xiàn)的差。
基本公式:
①把所有雞假設(shè)成兔子:雞數(shù)=(兔腳數(shù)×總頭數(shù)-總腳數(shù))÷(兔腳數(shù)-雞腳數(shù))
②把所有兔子假設(shè)成雞:兔數(shù)=(總腳數(shù)一雞腳數(shù)×總頭數(shù))÷(兔腳數(shù)一雞腳數(shù))
關(guān)鍵問題:找出總量的差與單位量的差。
10.小學(xué)數(shù)學(xué)知識(shí)梳理 篇十
1、年齡問題的三個(gè)基本特征:
①兩個(gè)人的年齡差是不變的;
②兩個(gè)人的年齡是同時(shí)增加或者同時(shí)減少的;
③兩個(gè)人的年齡的倍數(shù)是發(fā)生變化的;
2、歸一問題的基本特點(diǎn):
問題中有一個(gè)不變的量,一般是那個(gè)“單一量”,題目一般用“照這樣的速度”……等詞語(yǔ)來(lái)表示。
關(guān)鍵問題:
根據(jù)題目中的條件確定并求出單一量。