高二年級(jí)數(shù)學(xué)下冊(cè)復(fù)習(xí)知識(shí)點(diǎn)

字號(hào):

高二數(shù)學(xué)有很多知識(shí),但是并不是全部都會(huì)考,其中有一部分是常考的,我們針對(duì)這部分學(xué)習(xí)能提高效率哦。為各位同學(xué)整理了《高二年級(jí)數(shù)學(xué)下冊(cè)復(fù)習(xí)知識(shí)點(diǎn)》,希望對(duì)你的學(xué)習(xí)有所幫助!
    1.高二年級(jí)數(shù)學(xué)下冊(cè)復(fù)習(xí)知識(shí)點(diǎn) 篇一
    極值的定義:
    (1)極大值:一般地,設(shè)函數(shù)f(x)在點(diǎn)x0附近有定義,如果對(duì)x0附近的所有的點(diǎn),都有f(x)
    (2)極小值:一般地,設(shè)函數(shù)f(x)在x0附近有定義,如果對(duì)x0附近的所有的點(diǎn),都有f(x)>f(x0),就說f(x0)是函數(shù)f(x)的一個(gè)極小值,記作y極小值=f(x0),x0是極小值點(diǎn)。
    極值的性質(zhì):
    (1)極值是一個(gè)局部概念,由定義知道,極值只是某個(gè)點(diǎn)的函數(shù)值與它附近點(diǎn)的函數(shù)值比較是或最小,并不意味著它在函數(shù)的整個(gè)的定義域內(nèi)或最小;
    (2)函數(shù)的極值不是的,即一個(gè)函數(shù)在某區(qū)間上或定義域內(nèi)極大值或極小值可以不止一個(gè);
    (3)極大值與極小值之間無確定的大小關(guān)系,即一個(gè)函數(shù)的極大值未必大于極小值;
    (4)函數(shù)的極值點(diǎn)一定出現(xiàn)在區(qū)間的內(nèi)部,區(qū)間的端點(diǎn)不能成為極值點(diǎn),而使函數(shù)取得值、最小值的點(diǎn)可能在區(qū)間的內(nèi)部,也可能在區(qū)間的端點(diǎn)。
    2.高二年級(jí)數(shù)學(xué)下冊(cè)復(fù)習(xí)知識(shí)點(diǎn) 篇二
    等比數(shù)列性質(zhì)
    (1)若m、n、p、q∈N*,且m+n=p+q,則am·an=ap·aq;
    (2)在等比數(shù)列中,依次每k項(xiàng)之和仍成等比數(shù)列。
    (3)從等比數(shù)列的定義、通項(xiàng)公式、前n項(xiàng)和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
    (4)等比中項(xiàng):q、r、p成等比數(shù)列,則aq·ap=ar,ar則為ap,aq等比中項(xiàng)。
    記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
    另外,一個(gè)各項(xiàng)均為正數(shù)的等比數(shù)列各項(xiàng)取同底指數(shù)冪后構(gòu)成一個(gè)等差數(shù)列;反之,以任一個(gè)正數(shù)C為底,用一個(gè)等差數(shù)列的各項(xiàng)做指數(shù)構(gòu)造冪Can,則是等比數(shù)列。在這個(gè)意義下,我們說:一個(gè)正項(xiàng)等比數(shù)列與等差數(shù)列是“同構(gòu)”的。
    (5)等比數(shù)列前n項(xiàng)之和Sn=a1(1-q’n)/(1-q)
    (6)任意兩項(xiàng)am,an的關(guān)系為an=am·q’(n-m)
    (7)在等比數(shù)列中,首項(xiàng)a1與公比q都不為零。
    3.高二年級(jí)數(shù)學(xué)下冊(cè)復(fù)習(xí)知識(shí)點(diǎn) 篇三
    已知函數(shù)有零點(diǎn)(方程有根)求參數(shù)取值常用的方法
    1、直接法:
    直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過解不等式確定參數(shù)范圍。
    2、分離參數(shù)法:
    先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域問題加以解決。
    3、數(shù)形結(jié)合法:
    先對(duì)解析式變形,在同一平面直角坐標(biāo)系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解。
    4.高二年級(jí)數(shù)學(xué)下冊(cè)復(fù)習(xí)知識(shí)點(diǎn) 篇四
    有界性
    設(shè)函數(shù)f(x)在區(qū)間X上有定義,如果存在M>0,對(duì)于一切屬于區(qū)間X上的x,恒有|f(x)|≤M,則稱f(x)在區(qū)間X上有界,否則稱f(x)在區(qū)間上無XX。
    單調(diào)性
    設(shè)函數(shù)f(x)的定義域?yàn)镈,區(qū)間I包含于D。如果對(duì)于區(qū)間上任意兩點(diǎn)x1及x2,當(dāng)x1f(x2),則稱函數(shù)f(x)在區(qū)間I上是單調(diào)遞減的。單調(diào)遞增和單調(diào)遞減的函數(shù)統(tǒng)稱為單調(diào)函數(shù)。
    奇偶性
    設(shè)為一個(gè)實(shí)變量實(shí)值函數(shù),若有f(-x)=-f(x),則f(x)為奇函數(shù)。
    幾何上,一個(gè)奇函數(shù)關(guān)于原點(diǎn)對(duì)稱,亦即其圖像在繞原點(diǎn)做180度旋轉(zhuǎn)后不會(huì)改變。
    奇函數(shù)的例子有x、sin(x)、sinh(x)和erf(x)。
    設(shè)f(x)為一實(shí)變量實(shí)值函數(shù),若有f(x)=f(-x),則f(x)為偶函數(shù)。
    幾何上,一個(gè)偶函數(shù)關(guān)于y軸對(duì)稱,亦即其圖在對(duì)y軸映射后不會(huì)改變。
    偶函數(shù)的例子有|x|、x2、cos(x)和cosh(x)。
    偶函數(shù)不可能是個(gè)雙射映射。
    連續(xù)性
    在數(shù)學(xué)中,連續(xù)是函數(shù)的一種屬性。直觀上來說,連續(xù)的函數(shù)就是當(dāng)輸入值的變化足夠小的時(shí)候,輸出的變化也會(huì)隨之足夠小的函數(shù)。如果輸入值的某種微小的變化會(huì)產(chǎn)生輸出值的一個(gè)突然的跳躍甚至無法定義,則這個(gè)函數(shù)被稱為是不連續(xù)的函數(shù)(或者說具有不連續(xù)性)。
    5.高二年級(jí)數(shù)學(xué)下冊(cè)復(fù)習(xí)知識(shí)點(diǎn) 篇五
    一、隨機(jī)事件
    (1)事件的三種運(yùn)算:并(和)、交(積)、差;注意差A(yù)-B可以表示成A與B的逆的積。
    (2)四種運(yùn)算律:交換律、結(jié)合律、分配律、德莫根律。
    (3)事件的五種關(guān)系:包含、相等、互斥(互不相容)、對(duì)立、相互獨(dú)立。
    二、概率定義
    (1)統(tǒng)計(jì)定義:頻率穩(wěn)定在一個(gè)數(shù)附近,這個(gè)數(shù)稱為事件的概率;
    (2)古典定義:要求樣本空間只有有限個(gè)基本事件,每個(gè)基本事件出現(xiàn)的可能性相等,則事件A所含基本事件個(gè)數(shù)與樣本空間所含基本事件個(gè)數(shù)的比稱為事件的古典概率;
    (3)幾何概率:樣本空間中的元素有無窮多個(gè),每個(gè)元素出現(xiàn)的可能性相等,則可以將樣本空間看成一個(gè)幾何圖形,事件A看成這個(gè)圖形的子集,它的概率通過子集圖形的大小與樣本空間圖形的大小的比來計(jì)算;
    (4)公理化定義:滿足三條公理的任何從樣本空間的子集集合到[0,1]的映射。
    三、概率性質(zhì)與公式
    (1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特別地,如果A與B互不相容,則P(A+B)=P(A)+P(B);
    (2)差:P(A-B)=P(A)-P(AB),特別地,如果B包含于A,則P(A-B)=P(A)-P(B);
    (3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特別地,如果A與B相互獨(dú)立,則P(AB)=P(A)P(B);
    (4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果。
    貝葉斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai)。它是由果索因;
    如果一個(gè)事件B可以在多種情形(原因)A1,A2,....,An下發(fā)生,則用全概率公式求B發(fā)生的概率;如果事件B已經(jīng)發(fā)生,要求它是由Aj引起的概率,則用貝葉斯公式。
    (5)二項(xiàng)概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n。當(dāng)一個(gè)問題可以看成n重貝努力試驗(yàn)(三個(gè)條件:n次重復(fù),每次只有A與A的逆可能發(fā)生,各次試驗(yàn)結(jié)果相互獨(dú)立)時(shí),要考慮二項(xiàng)概率公式。
    6.高二年級(jí)數(shù)學(xué)下冊(cè)復(fù)習(xí)知識(shí)點(diǎn) 篇六
    系統(tǒng)抽樣
    1.系統(tǒng)抽樣(等距抽樣或機(jī)械抽樣):
    把總體的單位進(jìn)行排序,再計(jì)算出抽樣距離,然后按照這一固定的抽樣距離抽取樣本。第一個(gè)樣本采用簡(jiǎn)單隨機(jī)抽樣的辦法抽取。
    K(抽樣距離)=N(總體規(guī)模)/n(樣本規(guī)模)
    前提條件:總體中個(gè)體的排列對(duì)于研究的變量來說,應(yīng)是隨機(jī)的,即不存在某種與研究變量相關(guān)的規(guī)則分布。可以在調(diào)查允許的條件下,從不同的樣本開始抽樣,對(duì)比幾次樣本的特點(diǎn)。如果有明顯差別,說明樣本在總體中的分布承某種循環(huán)性規(guī)律,且這種循環(huán)和抽樣距離重合。
    2.系統(tǒng)抽樣,即等距抽樣是實(shí)際中最為常用的抽樣方法之一。因?yàn)樗鼘?duì)抽樣框的要求較低,實(shí)施也比較簡(jiǎn)單。更為重要的是,如果有某種與調(diào)查指標(biāo)相關(guān)的輔助變量可供使用,總體單元按輔助變量的大小順序排隊(duì)的話,使用系統(tǒng)抽樣可以大大提高估計(jì)精度。