高一上冊數(shù)學知識點歸納筆記

字號:

高中數(shù)學的理論性、抽象性強,就需要在對知識的理解上下功夫,要多思考,多研究。以下是整理的《高一上冊數(shù)學知識點歸納筆記》希望能夠幫助到大家。
    1.高一上冊數(shù)學知識點歸納筆記 篇一
    棱柱:
    定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。
    分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱柱、四棱柱、五棱柱等。
    表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱
    幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。
    2.高一上冊數(shù)學知識點歸納筆記 篇二
    空間幾何體的直觀圖
    空間幾何體的直觀圖常用斜二測畫法來畫,基本步驟是:
    (1)畫幾何體的底面
    在已知圖形中取互相垂直的x軸、y軸,兩軸相交于點O,畫直觀圖時,把它們畫成對應(yīng)的x′軸、y′軸,兩軸相交于點O′,且使∠x′O′y′=45°或135°,已知圖形中平行于x軸、y軸的線段,在直觀圖中平行于x′軸、y′軸。已知圖形中平行于x軸的線段,在直觀圖中長度不變,平行于y軸的線段,長度變?yōu)樵瓉淼囊话搿?BR>    (2)畫幾何體的高
    在已知圖形中過O點作z軸垂直于xOy平面,在直觀圖中對應(yīng)的z′軸,也垂直于x′O′y′平面,已知圖形中平行于z軸的線段,在直觀圖中仍平行于z′軸且長度不變。
    3.高一上冊數(shù)學知識點歸納筆記 篇三
    冪函數(shù)的性質(zhì):
    對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:
    首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當指數(shù)n是負整數(shù)時,設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負數(shù),那么我們就可以知道:
    排除了為0與負數(shù)兩種可能,即對于x>0,則a可以是任意實數(shù);
    排除了為0這種可能,即對于x<0x="">0的所有實數(shù),q不能是偶數(shù);
    排除了為負數(shù)這種可能,即對于x為大于且等于0的所有實數(shù),a就不能是負數(shù)。
    總結(jié)起來,就可以得到當a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:如果a為任意實數(shù),則函數(shù)的定義域為大于0的所有實數(shù);
    如果a為負數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。
    在x大于0時,函數(shù)的值域總是大于0的實數(shù)。
    在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。
    而只有a為正數(shù),0才進入函數(shù)的值域。
    4.高一上冊數(shù)學知識點歸納筆記 篇四
    定義:
    從平面解析幾何的角度來看,平面上的直線就是由平面直角坐標系中的一個二元一次方程所表示的圖形。求兩條直線的交點,只需把這兩個二元一次方程聯(lián)立求解,當這個聯(lián)立方程組無解時,兩直線平行;有無窮多解時,兩直線重合;只有一解時,兩直線相交于一點。常用直線向上方向與X軸正向的夾角(叫直線的傾斜角)或該角的正切(稱直線的斜率)來表示平面上直線(對于X軸)的傾斜程度??梢酝ㄟ^斜率來判斷兩條直線是否互相平行或互相垂直,也可計算它們的交角。直線與某個坐標軸的交點在該坐標軸上的坐標,稱為直線在該坐標軸上的截距。直線在平面上的位置,由它的斜率和一個截距完全確定。在空間,兩個平面相交時,交線為一條直線。因此,在空間直角坐標系中,用兩個表示平面的三元一次方程聯(lián)立,作為它們相交所得直線的方程。
    表達式:
    斜截式:y=kx+b
    兩點式:(y-y1)/(y1-y2)=(x-x1)/(x1-x2)
    點斜式:y-y1=k(x-x1)
    截距式:(x/a)+(y/b)=0
    5.高一上冊數(shù)學知識點歸納筆記 篇五
    函數(shù)的最值問題
    ⑴對于二次函數(shù),利用配方法,將函數(shù)化為y=(x-a)2+b的形式,得出函數(shù)的值或最小值。
    ⑵對于易于畫出函數(shù)圖像的函數(shù),畫出圖像,從圖像中觀察最值。
    ⑶關(guān)于二次函數(shù)在閉區(qū)間的最值問題
    ⅰ判斷二次函數(shù)的頂點是否在所求區(qū)間內(nèi),若在區(qū)間內(nèi),則接ⅱ,若不在區(qū)間內(nèi),則接ⅲ。
    ⅱ若二次函數(shù)的頂點在所求區(qū)間內(nèi),則在二次函數(shù)y=ax2+bx+c中,a>0時,頂點為最小值,a<0時頂點為值;后判斷區(qū)間的兩端點距離頂點的遠近,離頂點遠的端點的函數(shù)值,即為a>0時的值或a<0時的最小值。
    ⅲ若二次函數(shù)的頂點不在所求區(qū)間內(nèi),則判斷函數(shù)在該區(qū)間的單調(diào)性
    若函數(shù)在[a,b]上遞增,則最小值為f(a),值為f(b);
    若函數(shù)在[a,b]上遞減,則最小值為f(b),值為f(a)。