知識是取之不盡,用之不竭的。只有限度地挖掘它,才能體會到學(xué)習(xí)的樂趣。任何一門學(xué)科的知識都需要大量的記憶和練習(xí)來鞏固。為各位同學(xué)整理了《高一數(shù)學(xué)下冊必修二知識點》,希望對你的學(xué)習(xí)有所幫助!
1.高一數(shù)學(xué)下冊必修二知識點 篇一
(1)不等關(guān)系
感受在現(xiàn)實世界和日常生活中存在著大量的不等關(guān)系,了解不等式(組)的實際背景。
(2)一元二次不等式
①經(jīng)歷從實際情境中抽象出一元二次不等式模型的過程。
②通過函數(shù)圖象了解一元二次不等式與相應(yīng)函數(shù)、方程的聯(lián)系。
③會解一元二次不等式,對給定的一元二次不等式,嘗試設(shè)計求解的程序框圖。
(3)二元一次不等式組與簡單線性規(guī)劃問題
①從實際情境中抽象出二元一次不等式組。
②了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組(參見例2)。
③從實際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決(參見例3)。
(4)基本不等式:
①探索并了解基本不等式的證明過程。
②會用基本不等式解決簡單的(小)值問題。
2.高一數(shù)學(xué)下冊必修二知識點 篇二
直線與平面有幾種位置關(guān)系
直線與平面的關(guān)系有3種:直線在平面上,直線與平面相交,直線與平面平行。其中直線與平面相交,又分為直線與平面斜交和直線與平面垂直兩個子類。
直線在平面內(nèi)——有無數(shù)個公共點;直線與平面相交——有且只有一個公共點;直線與平面平行——沒有公共點。直線與平面相交和平行統(tǒng)稱為直線在平面外。
直線與平面垂直的判定:如果直線L與平面α內(nèi)的任意一直線都垂直,我們就說直線L與平面α互相垂直,記作L⊥α,直線L叫做平面α的垂線,平面α叫做直線L的垂面。
線面平行:平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行。平面外一條直線與此平面的垂線垂直,則這條直線與此平面平行。
直線與平面的夾角范圍
[0,90°]或者說是[0,π/2]這個范圍。
當(dāng)兩條直線非垂直的相交的時候,形成了4個角,這4個角分成兩組對頂角。兩個銳角,兩個鈍角。按照規(guī)定,選擇銳角的那一對對頂角作為直線和直線的夾角。
直線的方向向量m=(2,0,1),平面的法向量為n=(-1,1,2),m,n夾角為θ,cosθ=(m_n)/|m||n|,結(jié)果等于0。也就是說,l和平面法向量垂直,那么l平行于平面。l和平面夾角就為0°
3.高一數(shù)學(xué)下冊必修二知識點 篇三
1、不等式的定義
在客觀世界中,量與量之間的不等關(guān)系是普遍存在的,我們用數(shù)學(xué)符號、連接兩個數(shù)或代數(shù)式以表示它們之間的不等關(guān)系,含有這些不等號的式子,叫做不等式
2、比較兩個實數(shù)的大小
兩個實數(shù)的大小是用實數(shù)的運算性質(zhì)來定義的,有a-baa-b=0a-ba0,則有a/baa/b=1a/ba
3、不等式的性質(zhì)
(1)對稱性:ab
(2)傳遞性:ab,ba
(3)可加性:aa+cb+c,ab,ca+c
(4)可乘性:ab,cacb0,c0bd;
(5)可乘方:a0bn(nN,n
(6)可開方:a0
(nN,n2)
注意:
一個技巧
作差法變形的技巧:作差法中變形是關(guān)鍵,常進行因式分解或配方
一種方法
待定系數(shù)法:求代數(shù)式的范圍時,先用已知的代數(shù)式表示目標(biāo)式,再利用多項式相等的法則求出參數(shù),最后利用不等式的性質(zhì)求出目標(biāo)式的范圍
4.高一數(shù)學(xué)下冊必修二知識點 篇四
空間中的垂直問題
(1)線線、面面、線面垂直的定義
①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。
②線面垂直:如果一條直線和一個平面內(nèi)的任何一條直線垂直,就說這條直線和這個平面垂直。
③平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直。
(2)垂直關(guān)系的判定和性質(zhì)定理
①線面垂直判定定理和性質(zhì)定理
判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個平面。
性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。
②面面垂直的判定定理和性質(zhì)定理
判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直。
性質(zhì)定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于他們的交線的直線垂直于另一個平面。
5.高一數(shù)學(xué)下冊必修二知識點 篇五
系統(tǒng)抽樣
1、系統(tǒng)抽樣(等距抽樣或機械抽樣):
把總體的單位進行排序,再計算出抽樣距離,然后按照這一固定的抽樣距離抽取樣本。第一個樣本采用簡單隨機抽樣的辦法抽取。
K(抽樣距離)=N(總體規(guī)模)/n(樣本規(guī)模)
前提條件:總體中個體的排列對于研究的變量來說,應(yīng)是隨機的,即不存在某種與研究變量相關(guān)的規(guī)則分布??梢栽谡{(diào)查允許的條件下,從不同的樣本開始抽樣,對比幾次樣本的特點。如果有明顯差別,說明樣本在總體中的分布承某種循環(huán)性規(guī)律,且這種循環(huán)和抽樣距離重合。
2、系統(tǒng)抽樣,即等距抽樣是實際中最為常用的抽樣方法之一。因為它對抽樣框的要求較低,實施也比較簡單。更為重要的是,如果有某種與調(diào)查指標(biāo)相關(guān)的輔助變量可供使用,總體單元按輔助變量的大小順序排隊的話,使用系統(tǒng)抽樣可以大大提高估計精度。
1.高一數(shù)學(xué)下冊必修二知識點 篇一
(1)不等關(guān)系
感受在現(xiàn)實世界和日常生活中存在著大量的不等關(guān)系,了解不等式(組)的實際背景。
(2)一元二次不等式
①經(jīng)歷從實際情境中抽象出一元二次不等式模型的過程。
②通過函數(shù)圖象了解一元二次不等式與相應(yīng)函數(shù)、方程的聯(lián)系。
③會解一元二次不等式,對給定的一元二次不等式,嘗試設(shè)計求解的程序框圖。
(3)二元一次不等式組與簡單線性規(guī)劃問題
①從實際情境中抽象出二元一次不等式組。
②了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組(參見例2)。
③從實際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決(參見例3)。
(4)基本不等式:
①探索并了解基本不等式的證明過程。
②會用基本不等式解決簡單的(小)值問題。
2.高一數(shù)學(xué)下冊必修二知識點 篇二
直線與平面有幾種位置關(guān)系
直線與平面的關(guān)系有3種:直線在平面上,直線與平面相交,直線與平面平行。其中直線與平面相交,又分為直線與平面斜交和直線與平面垂直兩個子類。
直線在平面內(nèi)——有無數(shù)個公共點;直線與平面相交——有且只有一個公共點;直線與平面平行——沒有公共點。直線與平面相交和平行統(tǒng)稱為直線在平面外。
直線與平面垂直的判定:如果直線L與平面α內(nèi)的任意一直線都垂直,我們就說直線L與平面α互相垂直,記作L⊥α,直線L叫做平面α的垂線,平面α叫做直線L的垂面。
線面平行:平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行。平面外一條直線與此平面的垂線垂直,則這條直線與此平面平行。
直線與平面的夾角范圍
[0,90°]或者說是[0,π/2]這個范圍。
當(dāng)兩條直線非垂直的相交的時候,形成了4個角,這4個角分成兩組對頂角。兩個銳角,兩個鈍角。按照規(guī)定,選擇銳角的那一對對頂角作為直線和直線的夾角。
直線的方向向量m=(2,0,1),平面的法向量為n=(-1,1,2),m,n夾角為θ,cosθ=(m_n)/|m||n|,結(jié)果等于0。也就是說,l和平面法向量垂直,那么l平行于平面。l和平面夾角就為0°
3.高一數(shù)學(xué)下冊必修二知識點 篇三
1、不等式的定義
在客觀世界中,量與量之間的不等關(guān)系是普遍存在的,我們用數(shù)學(xué)符號、連接兩個數(shù)或代數(shù)式以表示它們之間的不等關(guān)系,含有這些不等號的式子,叫做不等式
2、比較兩個實數(shù)的大小
兩個實數(shù)的大小是用實數(shù)的運算性質(zhì)來定義的,有a-baa-b=0a-ba0,則有a/baa/b=1a/ba
3、不等式的性質(zhì)
(1)對稱性:ab
(2)傳遞性:ab,ba
(3)可加性:aa+cb+c,ab,ca+c
(4)可乘性:ab,cacb0,c0bd;
(5)可乘方:a0bn(nN,n
(6)可開方:a0
(nN,n2)
注意:
一個技巧
作差法變形的技巧:作差法中變形是關(guān)鍵,常進行因式分解或配方
一種方法
待定系數(shù)法:求代數(shù)式的范圍時,先用已知的代數(shù)式表示目標(biāo)式,再利用多項式相等的法則求出參數(shù),最后利用不等式的性質(zhì)求出目標(biāo)式的范圍
4.高一數(shù)學(xué)下冊必修二知識點 篇四
空間中的垂直問題
(1)線線、面面、線面垂直的定義
①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。
②線面垂直:如果一條直線和一個平面內(nèi)的任何一條直線垂直,就說這條直線和這個平面垂直。
③平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直。
(2)垂直關(guān)系的判定和性質(zhì)定理
①線面垂直判定定理和性質(zhì)定理
判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個平面。
性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。
②面面垂直的判定定理和性質(zhì)定理
判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直。
性質(zhì)定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于他們的交線的直線垂直于另一個平面。
5.高一數(shù)學(xué)下冊必修二知識點 篇五
系統(tǒng)抽樣
1、系統(tǒng)抽樣(等距抽樣或機械抽樣):
把總體的單位進行排序,再計算出抽樣距離,然后按照這一固定的抽樣距離抽取樣本。第一個樣本采用簡單隨機抽樣的辦法抽取。
K(抽樣距離)=N(總體規(guī)模)/n(樣本規(guī)模)
前提條件:總體中個體的排列對于研究的變量來說,應(yīng)是隨機的,即不存在某種與研究變量相關(guān)的規(guī)則分布??梢栽谡{(diào)查允許的條件下,從不同的樣本開始抽樣,對比幾次樣本的特點。如果有明顯差別,說明樣本在總體中的分布承某種循環(huán)性規(guī)律,且這種循環(huán)和抽樣距離重合。
2、系統(tǒng)抽樣,即等距抽樣是實際中最為常用的抽樣方法之一。因為它對抽樣框的要求較低,實施也比較簡單。更為重要的是,如果有某種與調(diào)查指標(biāo)相關(guān)的輔助變量可供使用,總體單元按輔助變量的大小順序排隊的話,使用系統(tǒng)抽樣可以大大提高估計精度。

