高三必修四數(shù)學(xué)知識(shí)點(diǎn)整理

字號(hào):

數(shù)學(xué)是研究數(shù)量、結(jié)構(gòu)、變化、空間以及信息等概念的一門學(xué)科。為各位同學(xué)整理了《高三必修四數(shù)學(xué)知識(shí)點(diǎn)整理》,希望對(duì)你的學(xué)習(xí)有所幫助!
    1.高三必修四數(shù)學(xué)知識(shí)點(diǎn)整理 篇一
    行列式運(yùn)算法則
    1、三角形行列式的值,等于對(duì)角線元素的乘積。計(jì)算時(shí),一般需要多次運(yùn)算來(lái)把行列式轉(zhuǎn)換為上三角型或下三角型。
    2、交換行列式中的兩行(列),行列式變號(hào)。
    3、行列式中某行(列)的公因子,可以提出放到行列式之外。
    4、行列式的某行乘以a,加到另外一行,行列式不變,常用于消去某些元素。
    5、若行列式中,兩行(列)完全一樣,則行列式為0;可以推論,如果兩行(列)成比例,行列式為0。
    6、行列式展開(kāi):行列式的值,等于其中某一行(列)的每個(gè)元素與其代數(shù)余子式乘積的和;但若是另一行(列)的元素與本行(列)的代數(shù)余子式乘積求和,則其和為0。
    7、在求解代數(shù)余子式相關(guān)問(wèn)題時(shí),可以對(duì)行列式進(jìn)行值替代。
    8、克拉默法則:利用線性方程組的系數(shù)行列式求解方程。
    9、齊次線性方程組:在線性方程組等式右側(cè)的常數(shù)項(xiàng)全部為0時(shí),該方程組稱為齊次線性方程組,否則為非齊次線性方程組。齊次線性方程組一定有零解,但不一定有非零解。當(dāng)D=0時(shí),有非零解;當(dāng)D!=0時(shí),方程組無(wú)非零解。
    2.高三必修四數(shù)學(xué)知識(shí)點(diǎn)整理 篇二
    等邊三角形內(nèi)切圓的半徑
    內(nèi)切圓半徑為6分之根號(hào)3乘以a。假設(shè)等邊三角形的邊長(zhǎng)為a,那么長(zhǎng)的一半為a/2,根據(jù)勾股定容理,所以三角形的高是√[a2-(a/2)2]=√3a/2。又因?yàn)槭堑冗吶切?,所以三角形的四心合一。分高?:1,其中長(zhǎng)的是外接圓半徑,短的是內(nèi)切圓半徑。所以,內(nèi)切圓半徑是6分之根號(hào)3乘以a。
    一、等邊三角形內(nèi)切圓相關(guān)知識(shí)
    1、與三角形三邊都相切的圓叫做三角形的內(nèi)切圓,圓心叫做三角形的內(nèi)心,三角形叫做圓的外切三角形,三角形的內(nèi)心是三角形三條角平分線的交點(diǎn)。
    2、三角形一定有內(nèi)切圓,其他的圖形不一定有內(nèi)切圓(一般情況下,n邊形無(wú)內(nèi)切圓,但也有例外,如對(duì)邊之和相等的四邊形有內(nèi)切圓),且內(nèi)切圓圓心定在三角形內(nèi)部。
    3、在三角形中,三個(gè)角的角平分線的交點(diǎn)是內(nèi)切圓的圓心,圓心到三角形各個(gè)邊的垂線段相等。
    4、內(nèi)切圓的半徑為r=2S/C,當(dāng)中S表示三角形的面積,C表示三角形的周長(zhǎng)。
    5、面積法;1/2lr(l周長(zhǎng))用于任意三角形。
    二、什么是內(nèi)切圓
    與多邊形各邊都相切的圓叫做多邊形的內(nèi)切圓。特殊地,與三角形三邊都相切的圓叫做三角形的內(nèi)切圓,圓心叫做三角形的內(nèi)心,三角形叫做圓的外切三角形。三角形的內(nèi)心是三角形三條角平分線的交點(diǎn)。
    三角形一定有內(nèi)切圓,其他的圖形不一定有內(nèi)切圓,且內(nèi)切圓圓心定在三角形內(nèi)部。
    3.高三必修四數(shù)學(xué)知識(shí)點(diǎn)整理 篇三
    兩個(gè)復(fù)數(shù)相等的定義:
    如果兩個(gè)復(fù)數(shù)的實(shí)部和虛部分別相等,那么我們就說(shuō)這兩個(gè)復(fù)數(shù)相等,即:如果a,b,c,d∈R,那么a+bi=c+di
    a=c,b=d。特殊地,a,b∈R時(shí),a+bi=0
    a=0,b=0.
    復(fù)數(shù)相等的充要條件,提供了將復(fù)數(shù)問(wèn)題化歸為實(shí)數(shù)問(wèn)題解決的途徑。
    復(fù)數(shù)相等特別提醒:
    一般地,兩個(gè)復(fù)數(shù)只能說(shuō)相等或不相等,而不能比較大小。如果兩個(gè)復(fù)數(shù)都是實(shí)數(shù),就可以比較大小,也只有當(dāng)兩個(gè)復(fù)數(shù)全是實(shí)數(shù)時(shí)才能比較大小。
    解復(fù)數(shù)相等問(wèn)題的方法步驟:
    (1)把給的復(fù)數(shù)化成復(fù)數(shù)的標(biāo)準(zhǔn)形式;
    (2)根據(jù)復(fù)數(shù)相等的充要條件解之。
    4.高三必修四數(shù)學(xué)知識(shí)點(diǎn)整理 篇四
    1.定義:
    用符號(hào)〉,=,〈號(hào)連接的式子叫不等式。
    2.性質(zhì):
    ①不等式的兩邊都加上或減去同一個(gè)整式,不等號(hào)方向不變。
    ②不等式的兩邊都乘以或者除以一個(gè)正數(shù),不等號(hào)方向不變。
    ③不等式的兩邊都乘以或除以同一個(gè)負(fù)數(shù),不等號(hào)方向相反。
    3.分類:
    ①一元一次不等式:左右兩邊都是整式,只含有一個(gè)未知數(shù),且未知數(shù)的次數(shù)是1的不等式叫一元一次不等式。
    ②一元一次不等式組:
    a.關(guān)于同一個(gè)未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成了一元一次不等式組。
    b.一元一次不等式組中各個(gè)不等式的解集的公共部分,叫做這個(gè)一元一次不等式組的解集。
    4.考點(diǎn):
    ①解一元一次不等式(組)
    ②根據(jù)具體問(wèn)題中的數(shù)量關(guān)系列不等式(組)并解決簡(jiǎn)單實(shí)際問(wèn)題
    ③用數(shù)軸表示一元一次不等式(組)的解集
    5.高三必修四數(shù)學(xué)知識(shí)點(diǎn)整理 篇五
    向量的向量積
    定義:兩個(gè)向量a和b的向量積(外積、叉積)是一個(gè)向量,記作a×b。若a、b不共線,則a×b的模是:∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按這個(gè)次序構(gòu)成右手系。若a、b共線,則a×b=0。
    向量的向量積性質(zhì):
    ∣a×b∣是以a和b為邊的平行四邊形面積。
    a×a=0。
    a‖b〈=〉a×b=0。
    向量的向量積運(yùn)算律
    a×b=-b×a;
    (λa)×b=λ(a×b)=a×(λb);
    (a+b)×c=a×c+b×c.
    注:向量沒(méi)有除法,“向量AB/向量CD”是沒(méi)有意義的。
    6.高三必修四數(shù)學(xué)知識(shí)點(diǎn)整理 篇六
    【公式一】
    設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:
    sin(2kπ+α)=sinα(k∈Z)
    cos(2kπ+α)=cosα(k∈Z)
    tan(2kπ+α)=tanα(k∈Z)
    cot(2kπ+α)=cotα(k∈Z)
    【公式二】
    設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:
    sin(π+α)=-sinα
    cos(π+α)=-cosα
    tan(π+α)=tanα
    cot(π+α)=cotα
    【公式三】
    任意角α與-α的三角函數(shù)值之間的關(guān)系:
    sin(-α)=-sinα
    cos(-α)=cosα
    tan(-α)=-tanα
    cot(-α)=-cotα
    【公式四】
    利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:
    sin(π-α)=sinα
    cos(π-α)=-cosα
    tan(π-α)=-tanα
    cot(π-α)=-cotα
    【公式五】
    利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:
    sin(2π-α)=-sinα
    cos(2π-α)=cosα
    tan(2π-α)=-tanα
    cot(2π-α)=-cotα
    【公式六】
    π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系:
    sin(π/2+α)=cosα
    cos(π/2+α)=-sinα
    tan(π/2+α)=-cotα
    cot(π/2+α)=-tanα
    sin(π/2-α)=cosα
    cos(π/2-α)=sinα
    tan(π/2-α)=cotα
    cot(π/2-α)=tanα
    sin(3π/2+α)=-cosα
    cos(3π/2+α)=sinα
    tan(3π/2+α)=-cotα
    cot(3π/2+α)=-tanα
    sin(3π/2-α)=-cosα
    cos(3π/2-α)=-sinα
    tan(3π/2-α)=cotα
    cot(3π/2-α)=tanα
    (以上k∈Z)