高三必修四數(shù)學知識點整理

字號:

數(shù)學是研究數(shù)量、結構、變化、空間以及信息等概念的一門學科。為各位同學整理了《高三必修四數(shù)學知識點整理》,希望對你的學習有所幫助!
    1.高三必修四數(shù)學知識點整理 篇一
    行列式運算法則
    1、三角形行列式的值,等于對角線元素的乘積。計算時,一般需要多次運算來把行列式轉換為上三角型或下三角型。
    2、交換行列式中的兩行(列),行列式變號。
    3、行列式中某行(列)的公因子,可以提出放到行列式之外。
    4、行列式的某行乘以a,加到另外一行,行列式不變,常用于消去某些元素。
    5、若行列式中,兩行(列)完全一樣,則行列式為0;可以推論,如果兩行(列)成比例,行列式為0。
    6、行列式展開:行列式的值,等于其中某一行(列)的每個元素與其代數(shù)余子式乘積的和;但若是另一行(列)的元素與本行(列)的代數(shù)余子式乘積求和,則其和為0。
    7、在求解代數(shù)余子式相關問題時,可以對行列式進行值替代。
    8、克拉默法則:利用線性方程組的系數(shù)行列式求解方程。
    9、齊次線性方程組:在線性方程組等式右側的常數(shù)項全部為0時,該方程組稱為齊次線性方程組,否則為非齊次線性方程組。齊次線性方程組一定有零解,但不一定有非零解。當D=0時,有非零解;當D!=0時,方程組無非零解。
    2.高三必修四數(shù)學知識點整理 篇二
    等邊三角形內切圓的半徑
    內切圓半徑為6分之根號3乘以a。假設等邊三角形的邊長為a,那么長的一半為a/2,根據勾股定容理,所以三角形的高是√[a2-(a/2)2]=√3a/2。又因為是等邊三角形,所以三角形的四心合一。分高為2:1,其中長的是外接圓半徑,短的是內切圓半徑。所以,內切圓半徑是6分之根號3乘以a。
    一、等邊三角形內切圓相關知識
    1、與三角形三邊都相切的圓叫做三角形的內切圓,圓心叫做三角形的內心,三角形叫做圓的外切三角形,三角形的內心是三角形三條角平分線的交點。
    2、三角形一定有內切圓,其他的圖形不一定有內切圓(一般情況下,n邊形無內切圓,但也有例外,如對邊之和相等的四邊形有內切圓),且內切圓圓心定在三角形內部。
    3、在三角形中,三個角的角平分線的交點是內切圓的圓心,圓心到三角形各個邊的垂線段相等。
    4、內切圓的半徑為r=2S/C,當中S表示三角形的面積,C表示三角形的周長。
    5、面積法;1/2lr(l周長)用于任意三角形。
    二、什么是內切圓
    與多邊形各邊都相切的圓叫做多邊形的內切圓。特殊地,與三角形三邊都相切的圓叫做三角形的內切圓,圓心叫做三角形的內心,三角形叫做圓的外切三角形。三角形的內心是三角形三條角平分線的交點。
    三角形一定有內切圓,其他的圖形不一定有內切圓,且內切圓圓心定在三角形內部。
    3.高三必修四數(shù)學知識點整理 篇三
    兩個復數(shù)相等的定義:
    如果兩個復數(shù)的實部和虛部分別相等,那么我們就說這兩個復數(shù)相等,即:如果a,b,c,d∈R,那么a+bi=c+di
    a=c,b=d。特殊地,a,b∈R時,a+bi=0
    a=0,b=0.
    復數(shù)相等的充要條件,提供了將復數(shù)問題化歸為實數(shù)問題解決的途徑。
    復數(shù)相等特別提醒:
    一般地,兩個復數(shù)只能說相等或不相等,而不能比較大小。如果兩個復數(shù)都是實數(shù),就可以比較大小,也只有當兩個復數(shù)全是實數(shù)時才能比較大小。
    解復數(shù)相等問題的方法步驟:
    (1)把給的復數(shù)化成復數(shù)的標準形式;
    (2)根據復數(shù)相等的充要條件解之。
    4.高三必修四數(shù)學知識點整理 篇四
    1.定義:
    用符號〉,=,〈號連接的式子叫不等式。
    2.性質:
    ①不等式的兩邊都加上或減去同一個整式,不等號方向不變。
    ②不等式的兩邊都乘以或者除以一個正數(shù),不等號方向不變。
    ③不等式的兩邊都乘以或除以同一個負數(shù),不等號方向相反。
    3.分類:
    ①一元一次不等式:左右兩邊都是整式,只含有一個未知數(shù),且未知數(shù)的次數(shù)是1的不等式叫一元一次不等式。
    ②一元一次不等式組:
    a.關于同一個未知數(shù)的幾個一元一次不等式合在一起,就組成了一元一次不等式組。
    b.一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。
    4.考點:
    ①解一元一次不等式(組)
    ②根據具體問題中的數(shù)量關系列不等式(組)并解決簡單實際問題
    ③用數(shù)軸表示一元一次不等式(組)的解集
    5.高三必修四數(shù)學知識點整理 篇五
    向量的向量積
    定義:兩個向量a和b的向量積(外積、叉積)是一個向量,記作a×b。若a、b不共線,則a×b的模是:∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按這個次序構成右手系。若a、b共線,則a×b=0。
    向量的向量積性質:
    ∣a×b∣是以a和b為邊的平行四邊形面積。
    a×a=0。
    a‖b〈=〉a×b=0。
    向量的向量積運算律
    a×b=-b×a;
    (λa)×b=λ(a×b)=a×(λb);
    (a+b)×c=a×c+b×c.
    注:向量沒有除法,“向量AB/向量CD”是沒有意義的。
    6.高三必修四數(shù)學知識點整理 篇六
    【公式一】
    設α為任意角,終邊相同的角的同一三角函數(shù)的值相等:
    sin(2kπ+α)=sinα(k∈Z)
    cos(2kπ+α)=cosα(k∈Z)
    tan(2kπ+α)=tanα(k∈Z)
    cot(2kπ+α)=cotα(k∈Z)
    【公式二】
    設α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關系:
    sin(π+α)=-sinα
    cos(π+α)=-cosα
    tan(π+α)=tanα
    cot(π+α)=cotα
    【公式三】
    任意角α與-α的三角函數(shù)值之間的關系:
    sin(-α)=-sinα
    cos(-α)=cosα
    tan(-α)=-tanα
    cot(-α)=-cotα
    【公式四】
    利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關系:
    sin(π-α)=sinα
    cos(π-α)=-cosα
    tan(π-α)=-tanα
    cot(π-α)=-cotα
    【公式五】
    利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關系:
    sin(2π-α)=-sinα
    cos(2π-α)=cosα
    tan(2π-α)=-tanα
    cot(2π-α)=-cotα
    【公式六】
    π/2±α及3π/2±α與α的三角函數(shù)值之間的關系:
    sin(π/2+α)=cosα
    cos(π/2+α)=-sinα
    tan(π/2+α)=-cotα
    cot(π/2+α)=-tanα
    sin(π/2-α)=cosα
    cos(π/2-α)=sinα
    tan(π/2-α)=cotα
    cot(π/2-α)=tanα
    sin(3π/2+α)=-cosα
    cos(3π/2+α)=sinα
    tan(3π/2+α)=-cotα
    cot(3π/2+α)=-tanα
    sin(3π/2-α)=-cosα
    cos(3π/2-α)=-sinα
    tan(3π/2-α)=cotα
    cot(3π/2-α)=tanα
    (以上k∈Z)