數(shù)學(xué)的學(xué)習(xí)要逐步形成 “以我為主”的學(xué)習(xí)模式數(shù)學(xué)不是靠老師教會的,而是在老師的引導(dǎo)下,靠自己主動的思維活動去獲取的。為各位同學(xué)整理了《高一必修二數(shù)學(xué)重點(diǎn)知識歸納》,希望對你的學(xué)習(xí)有所幫助!
1.高一必修二數(shù)學(xué)重點(diǎn)知識歸納 篇一
數(shù)列
(1)數(shù)列的概念和簡單表示法
①了解數(shù)列的概念和幾種簡單的表示方法(列表、圖象、通項(xiàng)公式).
②了解數(shù)列是自變量為正整數(shù)的一類函數(shù).
(2)等差數(shù)列、等比數(shù)列
①理解等差數(shù)列、等比數(shù)列的概念.
②掌握等差數(shù)列、等比數(shù)列的通項(xiàng)公式與前項(xiàng)和公式.
③能在具體的問題情境中,識別數(shù)列的等差關(guān)系或等比關(guān)系,并能用有關(guān)知識解決相應(yīng)的問題.
④了解等差數(shù)列與一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的關(guān)系.
2.高一必修二數(shù)學(xué)重點(diǎn)知識歸納 篇二
銳角三角函數(shù)定義:銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數(shù)。
正弦(sin)等于對邊比斜邊;sinA=a/c
余弦(cos)等于鄰邊比斜邊;cosA=b/c
正切(tan)等于對邊比鄰邊;tanA=a/b
余切(cot)等于鄰邊比對邊;cotA=b/a
正割(sec)等于斜邊比鄰邊;secA=c/b
余割(csc)等于斜邊比對邊。cscA=c/a
互余角的三角函數(shù)間的關(guān)系
sin(90°-α)=cosα,cos(90°-α)=sinα,
tan(90°-α)=cotα,cot(90°-α)=tanα.
平方關(guān)系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
積的關(guān)系:
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
倒數(shù)關(guān)系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
3.高一必修二數(shù)學(xué)重點(diǎn)知識歸納 篇三
二面角
(1)半平面:平面內(nèi)的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。
(2)二面角:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]
(3)二面角的棱:這一條直線叫做二面角的棱。
(4)二面角的面:這兩個半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一點(diǎn)為端點(diǎn),在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。
(6)直二面角:平面角是直角的二面角叫做直二面角。
4.高一必修二數(shù)學(xué)重點(diǎn)知識歸納 篇四
空間中的垂直問題
(1)線線、面面、線面垂直的定義
①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直.
②線面垂直:如果一條直線和一個平面內(nèi)的任何一條直線垂直,就說這條直線和這個平面垂直.
③平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直.
(2)垂直關(guān)系的判定和性質(zhì)定理
①線面垂直判定定理和性質(zhì)定理
判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個平面.
性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行.
②面面垂直的判定定理和性質(zhì)定理
判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直.
性質(zhì)定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于他們的交線的直線垂直于另一個平面.
5.高一必修二數(shù)學(xué)重點(diǎn)知識歸納 篇五
柱、錐、臺、球的結(jié)構(gòu)特征
(1)棱柱:
定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。
表示:用各頂點(diǎn)字母,如五棱柱或用對角線的端點(diǎn)字母,如五棱柱
幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。
(2)棱錐
定義:有一個面是多邊形,其余各面都是有一個公共頂點(diǎn)的三角形,由這些面所圍成的幾何體
分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等
表示:用各頂點(diǎn)字母,如五棱錐
幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。
(3)棱臺:
定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分
分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺、五棱臺等
表示:用各頂點(diǎn)字母,如五棱臺
幾何特征:
①上下底面是相似的平行多邊形
②側(cè)面是梯形
③側(cè)棱交于原棱錐的頂點(diǎn)
(4)圓柱:
定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體
幾何特征:
①底面是全等的圓;
②母線與軸平行;
③軸與底面圓的半徑垂直;
④側(cè)面展開圖是一個矩形。
(5)圓錐:
定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體
幾何特征:
①底面是一個圓;
②母線交于圓錐的頂點(diǎn);
③側(cè)面展開圖是一個扇形。
(6)圓臺:
定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分
幾何特征:
①上下底面是兩個圓;
②側(cè)面母線交于原圓錐的頂點(diǎn);
③側(cè)面展開圖是一個弓形。
(7)球體:
定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體
幾何特征:
①球的截面是圓;
②球面上任意一點(diǎn)到球心的距離等于半徑。
1.高一必修二數(shù)學(xué)重點(diǎn)知識歸納 篇一
數(shù)列
(1)數(shù)列的概念和簡單表示法
①了解數(shù)列的概念和幾種簡單的表示方法(列表、圖象、通項(xiàng)公式).
②了解數(shù)列是自變量為正整數(shù)的一類函數(shù).
(2)等差數(shù)列、等比數(shù)列
①理解等差數(shù)列、等比數(shù)列的概念.
②掌握等差數(shù)列、等比數(shù)列的通項(xiàng)公式與前項(xiàng)和公式.
③能在具體的問題情境中,識別數(shù)列的等差關(guān)系或等比關(guān)系,并能用有關(guān)知識解決相應(yīng)的問題.
④了解等差數(shù)列與一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的關(guān)系.
2.高一必修二數(shù)學(xué)重點(diǎn)知識歸納 篇二
銳角三角函數(shù)定義:銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數(shù)。
正弦(sin)等于對邊比斜邊;sinA=a/c
余弦(cos)等于鄰邊比斜邊;cosA=b/c
正切(tan)等于對邊比鄰邊;tanA=a/b
余切(cot)等于鄰邊比對邊;cotA=b/a
正割(sec)等于斜邊比鄰邊;secA=c/b
余割(csc)等于斜邊比對邊。cscA=c/a
互余角的三角函數(shù)間的關(guān)系
sin(90°-α)=cosα,cos(90°-α)=sinα,
tan(90°-α)=cotα,cot(90°-α)=tanα.
平方關(guān)系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
積的關(guān)系:
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
倒數(shù)關(guān)系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
3.高一必修二數(shù)學(xué)重點(diǎn)知識歸納 篇三
二面角
(1)半平面:平面內(nèi)的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。
(2)二面角:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]
(3)二面角的棱:這一條直線叫做二面角的棱。
(4)二面角的面:這兩個半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一點(diǎn)為端點(diǎn),在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。
(6)直二面角:平面角是直角的二面角叫做直二面角。
4.高一必修二數(shù)學(xué)重點(diǎn)知識歸納 篇四
空間中的垂直問題
(1)線線、面面、線面垂直的定義
①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直.
②線面垂直:如果一條直線和一個平面內(nèi)的任何一條直線垂直,就說這條直線和這個平面垂直.
③平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直.
(2)垂直關(guān)系的判定和性質(zhì)定理
①線面垂直判定定理和性質(zhì)定理
判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個平面.
性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行.
②面面垂直的判定定理和性質(zhì)定理
判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直.
性質(zhì)定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于他們的交線的直線垂直于另一個平面.
5.高一必修二數(shù)學(xué)重點(diǎn)知識歸納 篇五
柱、錐、臺、球的結(jié)構(gòu)特征
(1)棱柱:
定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。
表示:用各頂點(diǎn)字母,如五棱柱或用對角線的端點(diǎn)字母,如五棱柱
幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。
(2)棱錐
定義:有一個面是多邊形,其余各面都是有一個公共頂點(diǎn)的三角形,由這些面所圍成的幾何體
分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等
表示:用各頂點(diǎn)字母,如五棱錐
幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。
(3)棱臺:
定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分
分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺、五棱臺等
表示:用各頂點(diǎn)字母,如五棱臺
幾何特征:
①上下底面是相似的平行多邊形
②側(cè)面是梯形
③側(cè)棱交于原棱錐的頂點(diǎn)
(4)圓柱:
定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體
幾何特征:
①底面是全等的圓;
②母線與軸平行;
③軸與底面圓的半徑垂直;
④側(cè)面展開圖是一個矩形。
(5)圓錐:
定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體
幾何特征:
①底面是一個圓;
②母線交于圓錐的頂點(diǎn);
③側(cè)面展開圖是一個扇形。
(6)圓臺:
定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分
幾何特征:
①上下底面是兩個圓;
②側(cè)面母線交于原圓錐的頂點(diǎn);
③側(cè)面展開圖是一個弓形。
(7)球體:
定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體
幾何特征:
①球的截面是圓;
②球面上任意一點(diǎn)到球心的距離等于半徑。

