高一年級下學期數(shù)學知識點總結(jié)

字號:

在掌握了適合自己的一套學習方法的同時,還要有一套可行的復(fù)習計劃。為各位同學整理了《高一年級下學期數(shù)學知識點總結(jié)》,希望對你的學習有所幫助!
    1.高一年級下學期數(shù)學知識點總結(jié) 篇一
    1.多面體的結(jié)構(gòu)特征
    (1)棱柱的上下底面平行,側(cè)棱都平行且長度相等,上底面和下底面是全等的多邊形.
    (2)棱錐的底面是任意多邊形,側(cè)面是有一個公共頂點的三角形.
    (3)棱臺可由平行于棱錐底面的'平面截棱錐得到,其上下底面的兩個多邊形相似.
    2.旋轉(zhuǎn)體的結(jié)構(gòu)特征
    (1)圓柱可以由矩形繞其一邊所在直線旋轉(zhuǎn)得到.
    (2)圓錐可以由直角三角形繞其一條直角邊所在直線旋轉(zhuǎn)得到.
    (3)圓臺可以由直角梯形繞直角腰所在直線或等腰梯形繞上下底中點的連線旋轉(zhuǎn)得到,也可由平行于圓錐底面的平面截圓錐得到.
    (4)球可以由半圓或圓繞其直徑旋轉(zhuǎn)得到.
    3.空間幾何體的三視圖
    空間幾何體的三視圖是用正投影得到,這種投影下與投影面平行的平面圖形留下的影子與平面圖形的形狀和大小是完全相同的,三視圖包括主視圖、左視圖、俯視圖.
    4.空間幾何體的直觀圖
    (1)在已知圖形中建立直角坐標系xOy.畫直觀圖時,它們分別對應(yīng)x軸和y軸,兩軸交于點O,使xOy=45,它們確定的平面表示水平平面;
    (2)已知圖形中平行于x軸或y軸的線段,在直觀圖中分別畫成平行于x軸和y軸的線段;
    (3)已知圖形中平行于x軸的線段,在直觀圖中保持原長度不變;平行于y軸的線段,長度為原來的.
    2.高一年級下學期數(shù)學知識點總結(jié) 篇二
    1.拋物線是軸對稱圖形。對稱軸為直線
    x=-b/2a。
    對稱軸與拋物線的交點為拋物線的頂點P。
    特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)
    2.拋物線有一個頂點P,坐標為
    P(-b/2a,(4ac-b’2)/4a)
    當-b/2a=0時,P在y軸上;當Δ=b’2-4ac=0時,P在x軸上。
    3.二次項系數(shù)a決定拋物線的開口方向和大小。
    當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。
    |a|越大,則拋物線的開口越小。
    4.一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。
    當a與b同號時(即ab>0),對稱軸在y軸左;
    當a與b異號時(即ab<0),對稱軸在y軸右。
    5.常數(shù)項c決定拋物線與y軸交點。
    拋物線與y軸交于(0,c)
    6.拋物線與x軸交點個數(shù)
    Δ=b’2-4ac>0時,拋物線與x軸有2個交點。
    Δ=b’2-4ac=0時,拋物線與x軸有1個交點。
    Δ=b’2-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(shù)(x=-b±√b’2-4ac的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)
    3.高一年級下學期數(shù)學知識點總結(jié) 篇三
    同角三角函數(shù)基本關(guān)系
    同角三角函數(shù)的基本關(guān)系式
    倒數(shù)關(guān)系:
    tanα·cotα=1
    sinα·cscα=1
    cosα·secα=1
    商的關(guān)系:
    sinα/cosα=tanα=secα/cscα
    cosα/sinα=cotα=cscα/secα
    平方關(guān)系:
    sin^2(α)+cos^2(α)=1
    1+tan^2(α)=sec^2(α)
    1+cot^2(α)=csc^2(α)
    同角三角函數(shù)關(guān)系六角形記憶法
    六角形記憶法:(參看圖片或參考資料鏈接)
    構(gòu)造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。
    (1)倒數(shù)關(guān)系:對角線上兩個函數(shù)互為倒數(shù);
    (2)商數(shù)關(guān)系:六邊形任意一頂點上的函數(shù)值等于與它相鄰的兩個頂點上函數(shù)值的乘積。
    (主要是兩條虛線兩端的三角函數(shù)值的乘積)。由此,可得商數(shù)關(guān)系式。
    (3)平方關(guān)系:在帶有陰影線的三角形中,上面兩個頂點上的三角函數(shù)值的平方和等于下面頂點上的三角函數(shù)值的平方。
    兩角和差公式
    兩角和與差的三角函數(shù)公式
    sin(α+β)=sinαcosβ+cosαsinβ
    sin(α-β)=sinαcosβ-cosαsinβ
    cos(α+β)=cosαcosβ-sinαsinβ
    cos(α-β)=cosαcosβ+sinαsinβ
    4.高一年級下學期數(shù)學知識點總結(jié) 篇四
    直線和平面的位置關(guān)系:
    直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行
    ①直線在平面內(nèi)——有無數(shù)個公共點
    ②直線和平面相交——有且只有一個公共點
    直線與平面所成的角:平面的一條斜線和它在這個平面內(nèi)的射影所成的銳角。
    esp.空間向量法(找平面的法向量)
    規(guī)定:
    a、直線與平面垂直時,所成的角為直角,
    b、直線與平面平行或在平面內(nèi),所成的角為0°角
    由此得直線和平面所成角的取值范圍為[0°,90°]
    最小角定理:斜線與平面所成的角是斜線與該平面內(nèi)任一條直線所成角中的最小角
    三垂線定理及逆定理:如果平面內(nèi)的一條直線,與這個平面的一條斜線的射影垂直,那么它也與這條斜線垂直
    esp.直線和平面垂直
    直線和平面垂直的定義:如果一條直線a和一個平面內(nèi)的任意一條直線都垂直,我們就說直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。
    直線與平面垂直的判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個平面。
    直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。
    5.高一年級下學期數(shù)學知識點總結(jié) 篇五
    映射
    一般地,設(shè)A、B是兩個非空的函數(shù),如果按某一個確定的對應(yīng)法則f,使對于函數(shù)A中的任意一個元素x,在函數(shù)B中都有確定的元素y與之對應(yīng),那么就稱對應(yīng)f:AB為從函數(shù)A到函數(shù)B的一個映射。記作“f(對應(yīng)關(guān)系):A(原象)B(象)”
    對于映射f:A→B來說,則應(yīng)滿足:
    (1)函數(shù)A中的每一個元素,在函數(shù)B中都有象,并且象是的;
    (2)函數(shù)A中不同的元素,在函數(shù)B中對應(yīng)的象可以是同一個;
    (3)不要求函數(shù)B中的每一個元素在函數(shù)A中都有原象。