高三年級數(shù)學(xué)必修三知識點(diǎn)筆記

字號:

每一門科目都有自己的學(xué)習(xí)方法,但其實都是萬變不離其中的,數(shù)學(xué)作為最燒腦的科目之一,也是要記、要背、要講技巧的。下面是大家整理的《高三年級數(shù)學(xué)必修三知識點(diǎn)筆記》,希望大家喜歡。
    1.高三年級數(shù)學(xué)必修三知識點(diǎn)筆記 篇一
    系統(tǒng)抽樣
    定義
    當(dāng)總體中的個體數(shù)較多時,采用簡單隨機(jī)抽樣顯得較為費(fèi)事。這時,可將總體分成均衡的幾個部分,然后按照預(yù)先定出的規(guī)則,從每一部分抽取一個個體,得到所需要的樣本,這種抽樣叫做系統(tǒng)抽樣。
    步驟
    一般地,假設(shè)要從容量為N的總體中抽取容量為n的樣本,我們可以按下列步驟進(jìn)行系統(tǒng)抽樣:
    (1)先將總體的N個個體編號。有時可直接利用個體自身所帶的號碼,如學(xué)號、準(zhǔn)考證號、門牌號等;
    (2)確定分段間隔k,對編號進(jìn)行分段。當(dāng)N/n(n是樣本容量)是整數(shù)時,取k=N/n;
    (3)在第一段用簡單隨機(jī)抽樣確定第一個個體編號l(l≤k);
    (4)按照一定的規(guī)則抽取樣本。通常是將l加上間隔k得到第2個個體編號(l+k),再加k得到第3個個體編號(l+2k),依次進(jìn)行下去,直到獲取整個樣本。
    2.高三年級數(shù)學(xué)必修三知識點(diǎn)筆記 篇二
    函數(shù)單調(diào)性的常用結(jié)論:
    1、若f(x),g(x)均為某區(qū)間上的增(減)函數(shù),則f(x)+g(x)在這個區(qū)間上也為增(減)函數(shù)。
    2、若f(x)為增(減)函數(shù),則-f(x)為減(增)函數(shù)。
    3、若f(x)與g(x)的單調(diào)性相同,則f[g(x)]是增函數(shù);若f(x)與g(x)的單調(diào)性不同,則f[g(x)]是減函數(shù)。
    4、奇函數(shù)在對稱區(qū)間上的單調(diào)性相同,偶函數(shù)在對稱區(qū)間上的單調(diào)性相反。
    5、常用函數(shù)的單調(diào)性解答:比較大小、求值域、求最值、解不等式、證不等式、作函數(shù)圖象。
    3.高三年級數(shù)學(xué)必修三知識點(diǎn)筆記 篇三
    不等式的解集:
    ①能使不等式成立的未知數(shù)的值,叫做不等式的解。
    ②一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。
    ③求不等式解集的過程叫做解不等式。
    不等式的判定:
    ①常見的不等號有“>”“<”“≤”“≥”及“≠”。分別讀作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;
    ②在不等式“a>b”或“a
    ③不等號的開口所對的數(shù)較大,不等號的尖頭所對的數(shù)較小;
    ④在列不等式時,一定要注意不等式關(guān)系的關(guān)鍵字,如:正數(shù)、非負(fù)數(shù)、不大于、小于等等。
    4.高三年級數(shù)學(xué)必修三知識點(diǎn)筆記 篇四
    特殊棱錐的頂點(diǎn)在底面的射影位置:
    ①棱錐的側(cè)棱長均相等,則頂點(diǎn)在底面上的射影為底面多邊形的外心.
    ②棱錐的側(cè)棱與底面所成的角均相等,則頂點(diǎn)在底面上的射影為底面多邊形的外心.
    ③棱錐的各側(cè)面與底面所成角均相等,則頂點(diǎn)在底面上的射影為底面多邊形內(nèi)心.
    ④棱錐的頂點(diǎn)到底面各邊距離相等,則頂點(diǎn)在底面上的射影為底面多邊形內(nèi)心.
    ⑤三棱錐有兩組對棱垂直,則頂點(diǎn)在底面的射影為三角形垂心.
    ⑥三棱錐的三條側(cè)棱兩兩垂直,則頂點(diǎn)在底面上的射影為三角形的垂心.
    ⑦每個四面體都有外接球,球心0是各條棱的中垂面的交點(diǎn),此點(diǎn)到各頂點(diǎn)的距離等于球半徑;
    ⑧每個四面體都有內(nèi)切球,球心
    5.高三年級數(shù)學(xué)必修三知識點(diǎn)筆記 篇五
    1.數(shù)列的定義、分類與通項公式
    (1)數(shù)列的定義:
    ①數(shù)列:按照一定順序排列的一列數(shù).
    ②數(shù)列的項:數(shù)列中的每一個數(shù).
    (2)數(shù)列的分類:
    分類標(biāo)準(zhǔn)類型滿足條件
    項數(shù)有窮數(shù)列項數(shù)有限
    無窮數(shù)列項數(shù)無限
    項與項間的大小關(guān)系遞增數(shù)列an+1>an其中n∈N_
    遞減數(shù)列an+1
    常數(shù)列an+1=an
    (3)數(shù)列的通項公式:
    如果數(shù)列{an}的第n項與序號n之間的關(guān)系可以用一個式子來表示,那么這個公式叫做這個數(shù)列的通項公式.
    2.數(shù)列的遞推公式
    如果已知數(shù)列{an}的首項(或前幾項),且任一項an與它的前一項an-1(n≥2)(或前幾項)間的關(guān)系可用一個公式來表示,那么這個公式叫數(shù)列的遞推公式.
    3.對數(shù)列概念的理解
    (1)數(shù)列是按一定“順序”排列的一列數(shù),一個數(shù)列不僅與構(gòu)成它的“數(shù)”有關(guān),而且還與這些“數(shù)”的排列順序有關(guān),這有別于集合中元素的無序性.因此,若組成兩個數(shù)列的數(shù)相同而排列次序不同,那么它們就是不同的兩個數(shù)列.
    (2)數(shù)列中的數(shù)可以重復(fù)出現(xiàn),而集合中的元素不能重復(fù)出現(xiàn),這也是數(shù)列與數(shù)集的區(qū)別.
    4.數(shù)列的函數(shù)特征
    數(shù)列是一個定義域為正整數(shù)集N_(或它的有限子集{1,2,3,…,n})的特殊函數(shù),數(shù)列的通項公式也就是相應(yīng)的函數(shù)解析式,即f(n)=an(n∈N_).
    6.高三年級數(shù)學(xué)必修三知識點(diǎn)筆記 篇六
    輾轉(zhuǎn)相除法
    1.輾轉(zhuǎn)相除法是用于求公約數(shù)的一種方法,這種算法由歐幾里得在公元前年左右首先提出,因而又叫歐幾里得算法.
    2.所謂輾轉(zhuǎn)相法,就是對于給定的兩個數(shù),用較大的數(shù)除以較小的數(shù).若余數(shù)不為零,則將較小的數(shù)和余數(shù)構(gòu)成新的一對數(shù),繼續(xù)上面的除法,直到大數(shù)被小數(shù)除盡,則這時的除數(shù)就是原來兩個數(shù)的公約數(shù).
    3.更相減損術(shù)是一種求兩數(shù)公約數(shù)的方法.其基本過程是:對于給定的兩數(shù),用較大的數(shù)減去較小的數(shù),接著把所得的差與較小的數(shù)比較,并以大數(shù)減小數(shù),繼續(xù)這個操作,直到所得的數(shù)相等為止,則這個數(shù)就是所求的公約數(shù).
    4.秦九韶算法是一種用于計算一元二次多項式的值的方法.
    5.常用的排序方法是直接插入排序和冒泡排序.
    6.進(jìn)位制是人們?yōu)榱擞嫈?shù)和運(yùn)算方便而約定的記數(shù)系統(tǒng).“滿進(jìn)一”,就是k進(jìn)制,進(jìn)制的基數(shù)是k.
    7.將進(jìn)制的數(shù)化為十進(jìn)制數(shù)的方法是:先將進(jìn)制數(shù)寫成用各位上的數(shù)字與k的冪的乘積之和的形式,再按照十進(jìn)制數(shù)的運(yùn)算規(guī)則計算出結(jié)果.
    8.將十進(jìn)制數(shù)化為進(jìn)制數(shù)的方法是:除k取余法.即用k連續(xù)去除該十進(jìn)制數(shù)或所得的商,直到商為零為止,然后把每次所得的余數(shù)倒著排成一個數(shù)就是相應(yīng)的進(jìn)制數(shù).