高一年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)歸納總結(jié)

字號(hào):


    要想學(xué)好數(shù)學(xué),大量做題是必可避免的,熟練地掌握各種題型,這樣才能有效的提高數(shù)學(xué)成績(jī)。以下是整理的《高一年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)歸納總結(jié)》希望能夠幫助到大家。
    1.高一年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)歸納總結(jié) 篇一
    (1)數(shù)列的概念和簡(jiǎn)單表示法
    ①了解數(shù)列的概念和幾種簡(jiǎn)單的表示方法(列表、圖象、通項(xiàng)公式).
    ②了解數(shù)列是自變量為正整數(shù)的一類函數(shù).
    (2)等差數(shù)列、等比數(shù)列
    ①理解等差數(shù)列、等比數(shù)列的概念.
    ②掌握等差數(shù)列、等比數(shù)列的通項(xiàng)公式與前項(xiàng)和公式.
    ③能在具體的問題情境中,識(shí)別數(shù)列的等差關(guān)系或等比關(guān)系,并能用有關(guān)知識(shí)解決相應(yīng)的問題.
    ④了解等差數(shù)列與一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的關(guān)系.
    2.高一年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)歸納總結(jié) 篇二
    sin2A=2sinA*cosA
    sin(A+B)=sinAcosB+cosAsinB
    sin(A-B)=sinAcosB-sinBcosA?
    cos(A+B)=cosAcosB-sinAsinB
    cos(A-B)=cosAcosB+sinAsinB
    tan(A+B)=(tanA+tanB)/(1-tanAtanB)
    tan(A-B)=(tanA-tanB)/(1+tanAtanB)
    tan2A=2tanA/[1-(tanA)^2]
    cos2a=(cosa)^2-(sina)^2=2(cosa)^2-1=1-2(sina)^2
    tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)(sinA)^2=(1-cos2A)/2
    (cosA)^2=(1+cos2A)/2a3-b3=(a-b)(a2+ab+b2)a3+b3=(a+b)(a2-ab+b2)
    (a+b)^2=a^2+2ab+b^2(a-b)^2=a^2-2ab+b^2
    (a+b)3=(a+b)(a+b)(a+b)=(a2+2ab+b2)(a+b)=a3+3a2b+3ab2+b3
    (a-b)3=(a-b)(a-b)(a-b)=(a2-2ab+b2)(a-b)=a3-3a2b+3ab2-b3
    3.高一年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)歸納總結(jié) 篇三
    函數(shù)的周期性
    (1)y=f(x)對(duì)x∈R時(shí),f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);
    (2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為2︱a︱的周期函數(shù);
    (3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為4︱a︱的周期函數(shù);
    (4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對(duì)稱,則f(x)是周期為2的周期函數(shù);
    (5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對(duì)稱,則函數(shù)y=f(x)是周期為2的周期函數(shù);
    (6)y=f(x)對(duì)x∈R時(shí),f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù)
    4.高一年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)歸納總結(jié) 篇四
    1、抽樣方法主要有:簡(jiǎn)單隨機(jī)抽樣(抽簽法、隨機(jī)數(shù)表法)常常用于總體個(gè)數(shù)較少時(shí),它的特征是從總體中逐個(gè)抽取;系統(tǒng)抽樣,常用于總體個(gè)數(shù)較多時(shí),它的主要特征是均衡成若干部分,每部分只取一個(gè);分層抽樣,主要特征是分層按比例抽樣,主要用于總體中有明顯差異,它們的共同特征是每個(gè)個(gè)體被抽到的概率相等,體現(xiàn)了抽樣的客觀性和平等性。
    2、對(duì)總體分布的估計(jì)——用樣本的頻率作為總體的概率,用樣本的期望(平均值)和方差去估計(jì)總體的期望和方差。
    3、向量——既有大小又有方向的量。在此規(guī)定下向量可以在平面(或空間)平行移動(dòng)而不改變。
    4、并線向量(平行向量)——方向相同或相反的向量。規(guī)定零向量與任意向量平行。
    5.高一年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)歸納總結(jié) 篇五
    反比例函數(shù)圖像性質(zhì):
    反比例函數(shù)的圖像為雙曲線。
    由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關(guān)于原點(diǎn)對(duì)稱。
    另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點(diǎn),向兩個(gè)坐標(biāo)軸作垂線,這點(diǎn)、兩個(gè)垂足及原點(diǎn)所圍成的矩形面積是定值,為∣k∣。
    當(dāng)K>0時(shí),反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)
    當(dāng)K<0時(shí),反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)
    反比例函數(shù)圖像只能無限趨向于坐標(biāo)軸,無法和坐標(biāo)軸相交。
    6.高一年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)歸納總結(jié) 篇六
    求函數(shù)的解析式一般有四種情況
    (1)根據(jù)某實(shí)際問題需建立一種函數(shù)關(guān)系時(shí),必須引入合適的變量,根據(jù)數(shù)學(xué)的有關(guān)知識(shí)尋求函數(shù)的解析式.
    (2)有時(shí)題設(shè)給出函數(shù)特征,求函數(shù)的解析式,可采用待定系數(shù)法.比如函數(shù)是一次函數(shù),可設(shè)f(x)=ax+b(a≠0),其中a,b為待定系數(shù),根據(jù)題設(shè)條件,列出方程組,求出a,b即可.
    (3)若題設(shè)給出復(fù)合函數(shù)f[g(x)]的表達(dá)式時(shí),可用換元法求函數(shù)f(x)的表達(dá)式,這時(shí)必須求出g(x)的值域,這相當(dāng)于求函數(shù)的定義域.
    (4)若已知f(x)滿足某個(gè)等式,這個(gè)等式除f(x)是未知量外,還出現(xiàn)其他未知量(如f(-x),等),必須根據(jù)已知等式,再構(gòu)造其他等式組成方程組,利用解方程組法求出f(x)的表達(dá)式.