三角函數(shù)的公式非常多,咋一看這么多的公式會(huì)讓同學(xué)們覺得這個(gè)知識點(diǎn)比較難,再加上三角函數(shù)本身就具有一定難度,很多人就覺得這個(gè)知識點(diǎn)非常不好學(xué)。以下是整理的《高一三角函數(shù)知識點(diǎn)歸納總結(jié)》希望能夠幫助到大家。
1.高一三角函數(shù)知識點(diǎn)歸納總結(jié) 篇一
公式一:設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:
sin(2kπ+α)=sinαk∈z
cos(2kπ+α)=cosαk∈z
tan(kπ+α)=tanαk∈z
cot(2kπ+α)=cotαk∈z
公式二:設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:
sin(π+α)=—sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:任意角α與-α的三角函數(shù)值之間的關(guān)系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:π/2±α與α的三角函數(shù)值之間的關(guān)系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
推算公式:3π/2±α與α的三角函數(shù)值之間的關(guān)系:
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
2.高一三角函數(shù)知識點(diǎn)歸納總結(jié) 篇二
三角函數(shù)性質(zhì)
1、用五點(diǎn)法作正弦函數(shù)和余弦函數(shù)的簡圖(描點(diǎn)法):
正弦函數(shù)y=sinx,x∈[0,2π]的圖象中,五個(gè)關(guān)鍵點(diǎn)是:(0,0)(π/2,1)(π,0)(3π/2,-1)(2π,0)
余弦函數(shù)y=cosx,x∈[0,2]的圖像中,五個(gè)關(guān)鍵點(diǎn)是:(0,1)(π/2,0)(π,-1)(3π/2,0)(2π,1)
2、周期函數(shù)定義:對于函數(shù)y=f(x),如果存在一個(gè)非零常數(shù)T,使得當(dāng)x取定義域內(nèi)的每一個(gè)值時(shí),都有f(x+T)=f(x),那么函數(shù)y=f(x)就叫做周期函數(shù),非零常數(shù)T叫做這個(gè)函數(shù)的周期。
注意:周期T往往是多值的(如y=sinx2π,4π,„,-2π,-4π,„都是周期)周期T中最小的正數(shù)叫做y=f(x)的最小正周期y=sinx,y=cosx的最小正周期為2π。
3.高一三角函數(shù)知識點(diǎn)歸納總結(jié) 篇三
銳角三角函數(shù)公式
兩角和與差的三角函數(shù):
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-cosAsinB?
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB-1)/(cotB+cotA)
cot(A-B)=(cotAcotB+1)/(cotB-cotA)
三角和的三角函數(shù):
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
輔助角公式:
Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中
sint=B/(A^2+B^2)^(1/2)
cost=A/(A^2+B^2)^(1/2)
tant=B/A
Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B
倍角公式:
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
三倍角公式:
sin(3α)=3sinα-4sin^3(α)
cos(3α)=4cos^3(α)-3cosα
半角公式:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
降冪公式
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=covers(2α)/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
萬能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
積化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
和差化積公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
推導(dǎo)公式:
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos^2α
1-cos2α=2sin^2α
1+sinα=(sinα/2+cosα/2)^2
4.高一三角函數(shù)知識點(diǎn)歸納總結(jié) 篇四
銳角三角函數(shù)的定義
銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),(余割csc)都叫做角A的銳角三角函數(shù)。
正弦等于對邊比斜邊
余弦等于鄰邊比斜邊
正切等于對邊比鄰邊
余切等于鄰邊比對邊
正割等于斜邊比鄰邊
余割等于斜邊比對邊
正切與余切互為倒數(shù)
它的本質(zhì)是任意角的集合與一個(gè)比值的集合的變量之間的映射。通常的三角函數(shù)是在平面直角坐標(biāo)系中定義的,其定義域?yàn)檎麄€(gè)實(shí)數(shù)域。另一種定義是在直角三角形中,但并不完全?,F(xiàn)代數(shù)學(xué)把它們描述成無窮數(shù)列的極限和微分方程的解,將其定義擴(kuò)展到復(fù)數(shù)系。
由于三角函數(shù)的周期性,它并不具有單值函數(shù)意義上的反函數(shù)。
5.高一三角函數(shù)知識點(diǎn)歸納總結(jié) 篇五
銳角三角函數(shù)的性質(zhì)
1、銳角三角函數(shù)定義
銳角角A的正弦,余弦和正切都叫做角A的銳角三角函數(shù)
2、互余角的三角函數(shù)間的關(guān)系。
sin(90°-α)=cosα,cos(90°-α)=sinα,
tan(90°-α)=cotα,cot(90°-α)=tanα.
3、同角三角函數(shù)間的關(guān)系
平方關(guān)系:sin2α+cos2α=1
倒數(shù)關(guān)系:cotα=(或tanα·cotα=1)
商的關(guān)系:tanα=,cotα=.
(這三個(gè)關(guān)系的證明均可由定義得出)
4、三角函數(shù)值
(1)特殊角三角函數(shù)值
(2)0°~90°的任意角的三角函數(shù)值,查三角函數(shù)表。
(3)銳角三角函數(shù)值的變化情況
(i)銳角三角函數(shù)值都是正值
(ii)當(dāng)角度在0°~90°間變化時(shí),
正弦值隨著角度的增大(或減小)而增大(或減小)
余弦值隨著角度的增大(或減小)而減小(或增大)
正切值隨著角度的增大(或減小)而增大(或減小)
余切值隨著角度的增大(或減小)而減小(或增大)
(iii)當(dāng)角度在0°≤α≤90°間變化時(shí),
0≤sinα≤1,1≥cosα≥0,
當(dāng)角度在0°<α<90°間變化時(shí),
tanα>0,cotα>0.
1.高一三角函數(shù)知識點(diǎn)歸納總結(jié) 篇一
公式一:設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:
sin(2kπ+α)=sinαk∈z
cos(2kπ+α)=cosαk∈z
tan(kπ+α)=tanαk∈z
cot(2kπ+α)=cotαk∈z
公式二:設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:
sin(π+α)=—sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:任意角α與-α的三角函數(shù)值之間的關(guān)系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:π/2±α與α的三角函數(shù)值之間的關(guān)系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
推算公式:3π/2±α與α的三角函數(shù)值之間的關(guān)系:
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
2.高一三角函數(shù)知識點(diǎn)歸納總結(jié) 篇二
三角函數(shù)性質(zhì)
1、用五點(diǎn)法作正弦函數(shù)和余弦函數(shù)的簡圖(描點(diǎn)法):
正弦函數(shù)y=sinx,x∈[0,2π]的圖象中,五個(gè)關(guān)鍵點(diǎn)是:(0,0)(π/2,1)(π,0)(3π/2,-1)(2π,0)
余弦函數(shù)y=cosx,x∈[0,2]的圖像中,五個(gè)關(guān)鍵點(diǎn)是:(0,1)(π/2,0)(π,-1)(3π/2,0)(2π,1)
2、周期函數(shù)定義:對于函數(shù)y=f(x),如果存在一個(gè)非零常數(shù)T,使得當(dāng)x取定義域內(nèi)的每一個(gè)值時(shí),都有f(x+T)=f(x),那么函數(shù)y=f(x)就叫做周期函數(shù),非零常數(shù)T叫做這個(gè)函數(shù)的周期。
注意:周期T往往是多值的(如y=sinx2π,4π,„,-2π,-4π,„都是周期)周期T中最小的正數(shù)叫做y=f(x)的最小正周期y=sinx,y=cosx的最小正周期為2π。
3.高一三角函數(shù)知識點(diǎn)歸納總結(jié) 篇三
銳角三角函數(shù)公式
兩角和與差的三角函數(shù):
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-cosAsinB?
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB-1)/(cotB+cotA)
cot(A-B)=(cotAcotB+1)/(cotB-cotA)
三角和的三角函數(shù):
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
輔助角公式:
Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中
sint=B/(A^2+B^2)^(1/2)
cost=A/(A^2+B^2)^(1/2)
tant=B/A
Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B
倍角公式:
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
三倍角公式:
sin(3α)=3sinα-4sin^3(α)
cos(3α)=4cos^3(α)-3cosα
半角公式:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
降冪公式
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=covers(2α)/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
萬能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
積化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
和差化積公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
推導(dǎo)公式:
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos^2α
1-cos2α=2sin^2α
1+sinα=(sinα/2+cosα/2)^2
4.高一三角函數(shù)知識點(diǎn)歸納總結(jié) 篇四
銳角三角函數(shù)的定義
銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),(余割csc)都叫做角A的銳角三角函數(shù)。
正弦等于對邊比斜邊
余弦等于鄰邊比斜邊
正切等于對邊比鄰邊
余切等于鄰邊比對邊
正割等于斜邊比鄰邊
余割等于斜邊比對邊
正切與余切互為倒數(shù)
它的本質(zhì)是任意角的集合與一個(gè)比值的集合的變量之間的映射。通常的三角函數(shù)是在平面直角坐標(biāo)系中定義的,其定義域?yàn)檎麄€(gè)實(shí)數(shù)域。另一種定義是在直角三角形中,但并不完全?,F(xiàn)代數(shù)學(xué)把它們描述成無窮數(shù)列的極限和微分方程的解,將其定義擴(kuò)展到復(fù)數(shù)系。
由于三角函數(shù)的周期性,它并不具有單值函數(shù)意義上的反函數(shù)。
5.高一三角函數(shù)知識點(diǎn)歸納總結(jié) 篇五
銳角三角函數(shù)的性質(zhì)
1、銳角三角函數(shù)定義
銳角角A的正弦,余弦和正切都叫做角A的銳角三角函數(shù)
2、互余角的三角函數(shù)間的關(guān)系。
sin(90°-α)=cosα,cos(90°-α)=sinα,
tan(90°-α)=cotα,cot(90°-α)=tanα.
3、同角三角函數(shù)間的關(guān)系
平方關(guān)系:sin2α+cos2α=1
倒數(shù)關(guān)系:cotα=(或tanα·cotα=1)
商的關(guān)系:tanα=,cotα=.
(這三個(gè)關(guān)系的證明均可由定義得出)
4、三角函數(shù)值
(1)特殊角三角函數(shù)值
(2)0°~90°的任意角的三角函數(shù)值,查三角函數(shù)表。
(3)銳角三角函數(shù)值的變化情況
(i)銳角三角函數(shù)值都是正值
(ii)當(dāng)角度在0°~90°間變化時(shí),
正弦值隨著角度的增大(或減小)而增大(或減小)
余弦值隨著角度的增大(或減小)而減小(或增大)
正切值隨著角度的增大(或減小)而增大(或減小)
余切值隨著角度的增大(或減小)而減小(或增大)
(iii)當(dāng)角度在0°≤α≤90°間變化時(shí),
0≤sinα≤1,1≥cosα≥0,
當(dāng)角度在0°<α<90°間變化時(shí),
tanα>0,cotα>0.